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Abstract. One of the open questions regarding the origin of life is the
problem how macromolecules could be created. One possible answer is
the existence of autocatalytic sets in which some macromolecules mutu-
ally catalyze each other’s formation. This mechanism is theoretically
described in the Kauffman model. We introduce and simulate an exten-
sion of the Kauffman model, in which ligation and cleavage reactions are
spatially separated in different containers connected by diffusion, and
provide computational results for instances with and without autocat-
alytic sets, focusing on the time evolution of the densities of the vari-
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ous molecules. Furthermore, we study the rich behavior of a randomly
generated instance containing an autocatalytic metabolism, in which
molecules are created by ligation processes and destroyed by cleavage
processes and vice versa or generated and destroyed both by ligation
processes.

Keywords: Kauffman model · origin of life · chemical evolution · Fick
diffusion · autocatalytic set

1 Introduction

Over the past decades, the Kauffman model [11–13] has been intensively studied
[7,9,10,21]. It deals with one of the basic questions of the origin of life [14] how
macromolecules could be created via chemical evolution. As a possible answer,
it proposes the emergence of autocatalytic sets in which some molecules are able
to mutually catalyze each other’s formation and which are self-sustaining if some
food source in the form of monomers or small oligomers is provided. The basic
condition for the production of macromolecules from an autocatalytic set is that
the framework of catalyzed ligation and cleavage reactions forms a graph which
in principle allows the production of the desired macromolecules [8]. This condi-
tion is necessary but not sufficient. Also the dynamics has to be considered as e.g.
in the work of Bagley and Farmer [1]: They define an autocatalytic metabolism
(ACM) as a coupled set of catalyzed reactions which lead to permanent concen-
trations pi(t) for the various molecules i that significantly depart from values one
would obtain without catalysis. Füchslin et al. [5] simulated the Kauffman model
in one container: They chose appropriate values for the occurrence of catalyzed
cleavage and ligation reactions, started off with pi(t = 0) = 1 for all molecules,
allowed only an inflow of two constituent monomeric molecules, and measured
probabilities for the occurrence of an ACM and the sizes of the ACM by having
a look at the final values of pi for the non-monomeric molecules. If at least one
of them was larger than a proposed threshold, an ACM existed in their system.

In nature, one will find that catalyzed reactions are often only performed
under some specific conditions, as e.g. enzymes only work in specific pH ranges.
We assume that these specific conditions which change spatially might increase
the probability for the existence of autocatalytic sets leading to macromolecules
required for more complex forms of life. In order to make a first step in inves-
tigating this assumption, we extend the work by Füchslin et al. [5] to a system
comprised of two containers: In one container, only catalyzed cleavage reactions
shall be performed, in the other container, only catalyzed ligation reactions.
Both containers are connected, such that molecules can diffuse into the other
container depending on the concentration difference and the diffusion constant.
This paper is organized as follows: We describe in general our extended model
with spatially separated ligation and cleavage reactions in Sect. 2 and provide
the simulation details for its application to a system of copolymers in Sect. 3.
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Computational results for two randomly generated instances, one of them con-
taining an ACM and the other displaying no ACM, are discussed in Sect. 4,
before a conclusion and an outlook to future work is given in Sect. 5.

2 Extension of the Kauffmann Model

Based on the statements above, we now extend the model to a system with
multiple containers. We thus deal with unnormalized densities pi,j annotated
with two indices, where the first index i denotes as before the number of the
corresponding molecule and the new second index j denotes the number of the
container. The time evolution of pi,j is described by a set of differential equations.
The total derivative dpi,j/dt subsummizes the various temporal changes of pi,j(t)
imposed by different processes.

2.1 “In-Out” Processes

As most basic processes, we assume a constant inflow ki,j,in and an outflow which
depends linearly on the density pi,j with a factor ki,j,out in each container:

(
dpi,j

dt

)
in−out

= ki,j,in − ki,j,out × pi,j (1)

For these “in-out” processes, we consider the system of various containers as
homogeneous, i.e., we set the k-parameters to the same values for all containers.
Furthermore, we set all outflow-parameters for the various molecules to the same
value. Second, we want to have the same amount of inflow for two constituing
molecules with indices i = 1 and i = 2 only, all other molecules shall be created
through ligation and cleavage processes. Thus, we have

ki,j,out ≡ kout > 0 and ki,j,in ≡ ki,in =

{
kin > 0 for i = 1, 2
0 otherwise

. (2)

In the absence of other processes, these in-out processes would converge to an
equilibrium in which

(pi,j)in−out−equ =

{
kin
kout

for i = 1, 2

0 otherwise
(3)

in all containers, to which also systems with reactions but no ACM converge.
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2.2 Cleavage and Ligation Processes

A ligation process is simply given by
α + β −−→ γ

and the corresponding cleavage process by
γ −−→ α + β .

As already mentioned above, reactions enabled by catalyst molecules are con-
sidered within the Kauffman model. Let R be the set of possible reactions and
R = |R| be their number. Then, for cleavage reaction r, there is a set K(r) con-
taining K(r) = |K(r)| catalyst molecules κk(r), k = 1, . . . , K(r), each of which
is able to catalyze the reaction

γ(r)
κk(r)−−−→ α(r) + β(r) .

Thus, for the cleavage reactions, we get the addend

(
dpi,j

dt

)
cleavage

= kj,C ×
R∑

r=1

pγ(r),j

(−δi,γ(r) + δi,α(r) + δi,β(r)

) ×
K(r)∑
k=1

pκk(r),j

(4)
with the Kronecker symbol

δi,x =

{
1 if i = x

0 otherwise
(5)

and the cleavage parameters kj,C relating the cleavage processes to the in-out
processes.

Note that in the special case that there are no catalyst molecules for some
cleavage reaction r̃, such that the reaction cannot be performed, the set of cata-

lyst molecules is empty, K(r̃) = 0, and
0∑

k=1

· · · = 0, such that this reaction does

not contribute to the derivatives of the densities.
Analogously to the cleavage reactions, for each ligation reaction r, there is a

set L(r) containing L(r) = |L(r)| catalyst molecules λl(r), l = 1, . . . , L(r), each
of which is able to catalyze the reaction

α(r) + β(r)
λl(r)−−−→ γ(r) .

Thus, for the ligation reactions, we get the addend

(
dpi,j

dt

)
ligation

=

R∑
r=1

kα(r),β(r),j,L×pα(r),j×pβ(r),j

(
δi,γ(r) − δi,α(r) − δi,β(r)

)×
L(r)∑
l=1

pλl(r),j

(6)
with the ligation parameters kα(r),β(r),j,L. The reason behind making the liga-
tion parameters depending on the molecules is the insight that if two different
molecules get into close enough contact for a reaction, their corresponding end
monomers must get into contact. For simplicity, we define

kα,β,j,L =
kj,L

Λ(α) × Λ(β)
(7)
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with constant ligation parameters kj,L and Λ(α) and Λ(β) being the lengths of
molecules α and β, rsp., which we define as the numbers of monomers in the
molecules.

The dependency of the cleavage and ligation parameters kj,C and kj,L on the
index j of the container allows us to separate cleavage and ligation processes
spatially as intended:

– If we intend to have only cleavage processes in some specific container ĵ, then
we set kĵ,L = 0 and kĵ,C to some non-vanishing value.

– Analogously, if we intend to have only ligation processes in some specific
container j̃, then we set kj̃,C = 0 and kj̃,L to some non-vanishing value.

2.3 Consideration of Finite Energy Amounts

In [5], the authors extend the Kauffman model by introducing an energy consid-
eration: For many cleavage and ligation reactions in nature, an activation energy
is required. However, the available amount of energy is rather limited. So far,
the formulas (4) and (6) assume an infinite amount of energy or at least a large
and renewable amount of energy which provides no obstacle for the reactions to
be executed.

In order to include energy restrictions, a further variable εj is introduced for
each container j, with εj(t) denoting the amount of energy available at time t
in container j. In order to consider the energy, the right sides of Eqs. (4) and
(6) need to be multiplied with εj and a further differential equation has to be
added,

(
dεj

dt

)
total

= kE,j − kE,j,out × εj

− εj × kj,C ×
R∑

r=1

pγ(r),j ×
K(r)∑
k=1

pκk(r),j

− εj ×
R∑

r=1

kj,L

Λ(α(r)) × Λ(β(r))
× pα(r),j × pβ(r),j ×

L(r)∑
l=1

pλl(r),j

(8)

with the energy inflow kE,j , which we choose identical for all containers, i.e.,
then kE,j ≡ kE , and the outflow rate kE,j,out, which we set identical with the
corresponding parameter for all molecules, i.e., kE,j,out ≡ kout.

2.4 Diffusion Processes

So far, we only considered processes taking place separately in each container,
such that we only have a set of separate containers up to now. But now, we want
to take diffusion between neighboring containers into account. For simplicity, we
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want to rely hereby on Fick’s first law of diffusion [4], according to which the
diffusion velocity vD is given by

vD = kD
Δc × T

Δx × r × η
, (9)

with some diffusion constant kD, the concentration difference Δc, the tempera-
ture T , the path length Δx which needs to be transversed, the radius r of the
particle, and the viscosity η of the medium. In our case, the radius corresponds
to the length Λ(i) of molecule i and the concentration difference corresponds
to the difference pi,j − pi,n of the densities of molecule i in neighboring con-
tainers j and n. As diffusion processes occur only between neighboring pairs of
containers, we need to create neighborhood lists: let N (j) be the set containing
N(j) = |N (j)| index numbers of containers being neighbor to container j. Then
we can write the addend for the diffusion processes as

(
dpi,j

dt

)
diffusion

=
∑

n∈N (j)

kD
pi,n − pi,j

Λ(i)
=

kD

Λ(i)
×

⎛
⎝−N(j)pi,j +

∑
n∈N (j)

pi,n

⎞
⎠
(10)

with the diffusion constant kD. As in Fick’s first law of diffusion, the diffusion
is proportional to the difference of the densities and inverse proportional to the
length of the corresponding molecule. For containers of equal shape and volume
with the same distance to all of their neighbors, we can omit the dependency on
the path length.

Please note that we consider here only passive diffusion, i.e., diffusion does
not use up any energy. Furthermore, only molecules can move to neighboring
droplets, but there is no diffusion of energy in our model.

Such an approach with a time-independent diffusion constant kD is at odds
with the experimental reality: Experiments performed on the development of
aHL pores opening channels in bilayers between droplets by William David
Jamieson at Cardiff University clearly show that it takes a significant amount
of time until the first pore is formed. Thereafter, the number of pores increases
monotonously in time, with decreasing slope. Thus, we have to alter Eq. (10)
in order to consider the increase of the number mj,n(t) of pores between the
neighboring containers j and n:

(
dpi,j

dt

)
diff.incr.

=
kD

Λ(i)

∑
n∈N (j)

mj,n(t) × (pi,n − pi,j) (11)

As the pores themselves are created by ligation of polymers (for example, aHL
pores are comprised of seven macromolecules), one might think of considering the
energy required for the creation of the pores, but we will abstain here from such
an approach and neglect the energy consumption for the creation of pores. Fur-
thermore, in order to show more clearly the effect of the opening of an increasing
number of pores, we omit the dependencies of mj,n(t) on the container numbers
j and n, i.e. mj,n(t) ≡ m(t).
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3 Simulation Details

In this paper, we apply the Kauffman model to a set of reactions generating and
splitting copolymers comprised of a linear sequence of two different monomers A
and B. Thus, there are 2Λ different molecules containing Λ monomers. (Please
note that we assume the molecules to be directed, e.g. the molecules A − B and
B − A are different molecules.) We consider only polymers comprised of up to a
maximum number Λmax of monomers.

The total number M of different molecule types is given by

M =
Λmax∑
Λ=1

2Λ = 2Λmax+1 − 2. (12)

The number R of cleavage reactions can be determined to

R =
Λmax∑
Λ=2

(Λ − 1)2Λ = Λmax2Λmax+1 − 2M. (13)

In contrast to [5], we do not allow ligation reactions leading to molecules with
more than Λmax monomers, such that the number of ligation reactions equals
the number of cleavage reactions.

In our simulations, we use Λmax = 3, such that we have 12 non-monomeric
different molecule types in our system and a reaction framework containing 20
possible reactions. For the various parameters, we choose values already used in
[5]: The two monomers are not allowed to serve as catalysts, each of the other
molecules is chosen with probability rC = 0.05 to serve as catalyst for a cleavage
reaction and with probability rL = 0.1 to serve as catalyst for a ligation reaction.
The other parameters are set to

ki,in =

{
1 for the monomers, i.e., for i = 1, 2
0 otherwise

,

kout = 0.02, kC = 1, kL = 1, kE = 1, and kD = 0.05.
We will first have a look at the original Kauffman system with only one con-

tainer for which we set kC = 1 and kL = 1. In order to study the effect of spatial
separation of cleavage and ligation processes without any further side-effects
occurring in more complex systems, we consider the extended Kauffman system
with two containers only, one container j = 1, in which only cleavage reactions
take place, and a second container j = 2, in which only ligation reactions are
performed. For this purpose, we set k1,C = k2,L = 1 and k1,L = k2,C = 0.

We will also consider both diffusion processes as given in Eqs. (10) and (11).
For the function m(t), we choose

m(t) =

{
0 if t < 1
�log(t)� otherwise

. (14)
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This simple function is still able to reflect the key properties of the time evolution
of the number of pores as observed in the experiment, i.e., the significant amount
of time before the first pore opens up, the monotonous increase, and the concave
shape after the opening of the first pore. As the pores open up at the times
t = e, e2, e3, . . . according to Eq. (14), the changes due to the opening of more
pores are equally spaced out on a logarithmic time scale.

We use the Dormand-Prince method [3] for the numeric solution of the set of
differential equations. This algorithm which belongs to the class of Runge-Kutta
methods allows us to adaptively change the length of the time interval between
successive time steps by determining two different solutions of fourth and fifth
order and halving the length of the time interval if the deviation between them
is too large. We redo the calculation with a halved time interval if the relative
deviation exceeds a value of 10−8. We integrate over the time interval from t = 0
to t = 104. As initial conditions, we set pi,j(t = 0) = εj(t = 0) = 1 as in [5].

4 Computational Results

4.1 Revisiting the Original Kauffman Model Within One Container
Only

Fig. 1. Time evolution of the densities pi of the non-monomeric molecules in the
original Kauffman model with one container and without energy consideration, for
a randomly created instance displaying an ACM (left) and another randomly created
instance displaying no ACM (right)

We start out simulating the original Kauffman model in one container only and
present results for two randomly created catalyzed reaction instances, one of them
displaying an ACM and another one displaying no ACM. For the instance display-
ing an ACM, we provide the list of reactions in Table 1. We will use these two
instances with the same random choice of catalyst molecules for the various reac-
tions also in the simulations for the next scenarios and will use the same colors
for the same molecules. The time evolutions of the densities pi(t) of all 12 non-
monomertic molecules are shown for both instances in Fig. 1. In order to better
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Table 1. List of reactions in the instance containing an ACM: In this instance, we have
14 successively numbered molecules, with the monomers being denoted as Nos. 1 and
2, and 20 possible reactions. In the right two columns, only those cleavage and ligation
reactions are noted for which there is at least one catalyst molecule. This instance was
randomly generated.

Reaction No. reaction cleavage ligation

1 3 ←−→ 1 + 1 1 + 1
5−−→ 3

2 4 ←−→ 1 + 2 1 + 2
3,6,10,11,12,14−−−−−−−−−→ 4

3 5 ←−→ 2 + 1 2 + 1
4,6,8,12−−−−−→ 5

4 6 ←−→ 2 + 2

5 7 ←−→ 1 + 3 1 + 3
4,12−−→ 7

6 7 ←−→ 3 + 1 7
10−−→ 3 + 1

7 8 ←−→ 1 + 4

8 8 ←−→ 3 + 2 3 + 2
12−−→ 8

9 9 ←−→ 1 + 5 1 + 5
6−−→ 9

10 9 ←−→ 4 + 1 9
8−−→ 4 + 1 4 + 1

12,14−−−→ 9

11 10 ←−→ 1 + 6 10
5−−→ 1 + 6

12 10 ←−→ 4 + 2 4 + 2
5,9−−→ 10

13 11 ←−→ 2 + 3 2 + 3
5,12,14−−−−→ 11

14 11 ←−→ 5 + 1

15 12 ←−→ 2 + 4 12
9−−→ 2 + 4

16 12 ←−→ 5 + 2 5 + 2
4−−→ 12

17 13 ←−→ 2 + 5 2 + 5
7−−→ 13

18 13 ←−→ 6 + 1 13
13−−−→ 6 + 1 6 + 1

11,13−−−→ 13

19 14 ←−→ 2 + 6 14
13−−−→ 2 + 6 2 + 6

7,8−−→ 14

20 14 ←−→ 6 + 2 6 + 2
9−−→ 14

display the developments at short time scales, we use a logarithmic time scale.
After some intermediate increases and decreases of the various densities, the sys-
tem converges to final values for the various densities between t = 5 × 102 and
t = 103. The non-vanishing final values for some densities in the left picture indi-
cate that this instance displays an ACM, whereas the finally vanishing densities
in the right picture show that the second instance does not contain an ACM. For
the instance with an ACM, the Dormand-Prince method needs 194059 time steps,
whereas only 1772 are needed for the instance without an ACM. In order to get
results of equal quality for the time evolution of the densities, much more com-
puting time is needed for an instance with an ACM.

Please note that each color in the curves in Fig. 1 corresponds to one distinct
molecule. We will use the same color for the same distinct molecule in the curves
of Figs. 2, 3, 4, 5, 6, 7 and 8 and in the boxes in Figs. 9, 10 and 11.
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Fig. 2. Time evolution of the densities pi of the non-monomeric molecules as in Fig.
1, but now with energy consideration, both for the instance displaying an ACM (left)
and the instance displaying no ACM (right)

In the next step, we consider the model extended with an energy considera-
tion as introduced in [5]. We use the same instances as before. The computational
results are shown in Fig. 2. The instance which displayed an ACM before again
shows an ACM, but the resulting values of the densities for the various molecules
differ strongly from those in Fig. 1. The other instance again contains no ACM. A
further effect of considering the finite available energy is that it retards the dynam-
ics, as the curves for the various molecules start to deviate from the original val-
ues significantly later. Furthermore, one can state that the consideration of the
energy stabilizes the dynamics, as already mentioned in [5], as the intermediate
maxima are much smaller than without energy consideration. The computing time
required increases strongly when considering the energy: for the instance with an
ACM, the Dornand-Price method requires more than 8.6 million time steps and
it takes 8193 time steps for the instance without an ACM.

4.2 Two Separate Containers

Fig. 3. Time evolution of the densities pi,j of the non-monomeric molecules as in Fig.
1, but now in two separate containers, one of them only allowing cleavage reactions
(left part, j = 1), the other one only allowing ligation reactions (right part, j = 2),
both for the instance displaying an ACM (left) and the instance displaying no ACM
(right)
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Fig. 4. Time evolution of the densities pi,j of the non-monomeric molecules as in Fig.
3, in two separate containers, one of them only allowing cleavage reactions (left part,
j = 1), the other one only allowing ligation reactions (right part, j = 2), but now with
energy consideration, both for the instance displaying an ACM (left) and the instance
displaying no ACM (right)

The results discussed so far for one container can also be interpreted as the
results obtained with two containers with spatially separated cleavage and lig-
ation reactions if the diffusion takes place so fast that any density differences
between the two containers are resolved immediately. Before considering the con-
nected containers with diffusion, we would like to study the other extreme case
first, in which the two containers are separate and in which no diffusion takes
place. The results for the scenario without considering the energy are shown
in Fig. 3, the results for the scenario including the energy in Fig. 4. For the
instance, which contained an ACM before, we find that the densities vanish in
the container with the cleavage processes as has to be expected (The original
densities of the non-monomeric molecules decrease due to outflow and cleavage
reactions and no new non-monomeric molecules are formed as there is no liga-
tion. So, there is no ACM.), whereas an ACM can still be found in the container
with the ligation processes. We also investigated other instances, for some of
them which contained an ACM in one container only there is also no ACM in
the container with only ligation processes.
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4.3 Two Containers with Diffusion

Fig. 5. Time evolution of the densities pi,j of the non-monomeric molecules as in Fig.
3, but now with diffusion between two connected containers, one of them only allowing
cleavage reactions (left part, j = 1), the other one only allowing ligation reactions
(right part, j = 2), both for the instance displaying an ACM (left) and the instance
displaying no ACM (right)

Finally, we get to the main point of this paper, the Kauffman model implemented
with spatially separated cleavage and ligation processes in two containers with
diffusion between them. First, we consider diffusion according to formula (10)
and present computational results without energy consideration in Fig. 5 and
with energy consideration in Fig. 6. We find that the instance which contained
an ACM before now contains ACMs in both containers despite the fact that the
diffusion constant kD is set to a very small value. On the other hand, the instance
which displayed no ACM before now also shows no ACMs. The molecules whose
curves plotted in light blue and light green dominated the ACM in the left
picture in Fig. 1 now also belong to the dominating molecules in the ACMs in
the left pictures of Fig. 5, but there are now more significant contributions of
other molecules as well. The same behavior is found for the molecules plotted in
dark yellow and orange when comparing Figs. 2 and 6.

Then we have a look at the diffusion with an increasing number of pores
according to formulas (11) and (14). The computational results are shown in Fig.
7 for the scenario without energy consideration and Fig. 8 with consideration of
the energy. For the left instance, we again get an ACM, the steps in the curves
reflect the opening of an increasing number of pores. These steps are smaller if
the energy is considered. As the number of pores increases in time, equilibrium
cannot be reached. For the instance without an ACM, we hardly see any steps,
the breakdown of the densities dominates the behavior.
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Fig. 6. Time evolution of the densities pi,j of the non-monomeric molecules as in Fig.
5, with diffusion between two connected containers, one of them only allowing cleavage
reactions (left part, j = 1), the other one only allowing ligation reactions (right part,
j = 2), but now with energy consideration, both for the instance displaying an ACM
(left) and the instance displaying no ACM (right)

Fig. 7. Time evolution of the densities pi,j of the non-monomeric molecules as in Fig. 5,
but now with diffusion through an increasing number of pores between two connected
containers, one of them only allowing cleavage reactions (left part, j = 1), the other
one only allowing ligation reactions (right part, j = 2), both for the instance displaying
an ACM (left) and the instance displaying no ACM (right)

Fig. 8. Time evolution of the densities pi,j of the non-monomeric molecules as in Fig. 7,
with diffusion through an increasing number of pores between two connected containers,
one of them only allowing cleavage reactions (left part, j = 1), the other one only
allowing ligation reactions (right part, j = 2), but now with energy consideration, both
for the instance displaying an ACM (left) and the instance displaying no ACM (right)
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4.4 Comparison of Final Dynamics

Finally, we want to get a better insight in the behavior of the Kauffman model
and in the roles the various molecules play. For this purpose, we have a close
look at the final densities of the various molecules in the instance containing an
ACM, for the three scenarios of the original Kauffman model, the model with two
separate containers, and the model with two containers connected by diffusion
with a time-independent diffusion constant, each without consideration of finite
energy. The final values for the densities of the various molecules for these three
scenarios are provided in Table 2.

Table 2. Final values for the densities of the various molecules in the instance display-
ing an ACM for the original Kauffman model, for the extreme case without diffusion,
and for the scenario with a constant diffusion constant, without energy consideration

Molecule No. original model no diffusion with diffusion

i pi(tfinal) cleavage-only
pi,1(tfinal)

ligation-only
pi,2(tfinal)

cleavage-only
pi,1(tfinal)

ligation-only
pi,2(tfinal)

1 0.505 50 0.457 21.76 0.635

2 0.070 50 6.52E−2 14.71 8.27E−2

3 0.404 2.25E−87 0.155 1.385 0.316

4 0.352 3.64E−87 1.138 4.108 0.889

5 0.145 1.38E−87 0.365 0.184 0.331

6 6.775 5.47E−87 2.47E−323 6.708 6.66E−2

7 0.023 5.08E−88 3.219 4.67E−2 3.369

8 6.15E−5 1.38E−87 0.171 6.80E−2 0.150

9 20.56 2.66E−109 8.803 2.309 14.51

10 1.553 2.66E−109 17.00 1.165 15.41

11 1.416 1.38E−87 0.264 0.420 0.924

12 8.69E−5 5.08E−88 0.677 2.36E−3 0.333

13 2.615 2.71E−89 1.915 0.256 4.511

14 1.856 2.71E−89 2.10E−87 7.91E−2 1.391

Here we first have a look at pi(tfinal) for the original model. If choosing a
threshold ≥ 10−4, we could state that the ACM contains all molecules except
two. But the question arises whether we are right to exclude molecules Nos. 8
and 12 or whether they play a role in the ACM, even if their final densities are
very small. As Table 1 shows, each molecule can be created either by a ligation
or by a cleavage reaction or both.

When having a look at the results for the two separate containers, we find
as expected that there is no ACM in the cleavage-only container. All longer
molecules are destroyed by the cleavage processes and by the outflow. No new
longer molecules can be created, as the constant inflow of the two monomers
cannot be used for ligation, as there are no ligation reactions. Thus, we get a value
of 50 for the densities of the two monomers, which is just the ratio between the
inflow and the outflow parameters, and a vanishing value for all other molecules.
In the ligation-only container, we get final densities which partially slightly, but
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Fig. 9. Final dynamics: final values for the derivatives (dpi/dt)contr. of the densities
for the various non-monomeric molecules for the instance containing an ACM in the
original Kauffman model, for the various contributions: IO – inflow and outflow, CL+ –
generated by cleavage processes, CL- – destroyed by cleavage processes, LI+ – generated
by ligation processes, LI- – destroyed by ligation processes

most often strongly deviate from the final densities in the original Kauffman
scenario. Obviously, the additional cleavage processes in the original Kauffman
scenario lead to these large differences. Molecules Nos. 6 and 14 are obviously
not part of the ACM anymore, their densities truly vanish.

Then we have a look at the results for two containers connected by diffusion.
Here we see that the densities for the molecules Nos. 8 and 12 are much larger
in both containers than in the original Kauffman model. Obviously, a spatial
separation of reactions can lead to an enlargement of an ACM. But this result
also raises questions to the approach of determining the size of an ACM, i.e., the
number of molecules being part of an ACM, by excluding those molecules whose
densities are smaller than some arbitrarily chosen threshold. Here one has to be
very careful of how to choose the value of the threshold, in order to not exclude
those molecules which contribute to the ACM, even if their contribution seems
to be tiny.

In order to even better understand the final dynamics for these three sce-
narios, we have a look at the final values for the various contributions to the
derivatives of the densities, which are shown for the three scenarios considered
here in Figs. 9, 10, and 11. We consider separately the contributions by the
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Fig. 10. Final dynamics: final values for the derivatives (dpi,j/dt)contr. of the densities
for the various non-monomeric molecules in the cleavage-only container (left) and the
ligation-only container (right) in the scenario with two separate containers, for the
various contributions: IO – inflow and outflow, CL+ – generated by cleavage processes,
CL- – destroyed by cleavage processes, LI+ – generated by ligation processes, LI- –
destroyed by ligation processes, DIF – diffusion

various processes in-out-flow, cleavage, ligation, and diffusion. Already for the
original Kauffman model, we see a rich behavior: Molecules 4 and 5 are created
by ligation processes but also destroyed by ligation processes, molecules 7, 10,
12, 13, and 14 are created by ligation and destroyed by cleavage, while molecule
6 is created by cleavage and destroyed by ligation. Molecules 8, 9, and 11 are
created by ligation, but destroyed by outflow. Molecule 3 exhibits the richest
behavior, it is both created by cleavage and ligation and it is destroyed by liga-
tion. Of course, for all of these molecules, also the outflow plays some role, but
only for some of them the outflow provides the main contribution to decreasing
their densities. Thus, we get a very rich variety of behaviors already here in Fig.
9 for the original Kauffman model. Please note that all the bars in the subgraphs
for the various molecules add up to zero, as the final densities are constant such
that the sum of all contributions to their derivatives has to vanish.

Figure 10 shows the results for the scenario with two separate containers. As
expected, there is no ACM in the cleavage-only container, such that the deriva-
tives vanish there. In the ligation-only container, the derivatives for molecules 6
and 14 vanish as well, they are not part of the ACM here. But all other molecules
contribute to the ACM. Molecules 7–13 are created by ligation processes, their
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Fig. 11. Final dynamics: final values for the derivatives (dpi,j/dt)contr. of the densi-
ties for the various non-monomeric molecules in the cleavage-only container (left) and
the ligation-only container (right) in the scenario with two containers connected by
diffusion, for the various contributions: IO – inflow and outflow, CL+ – generated by
cleavage processes, CL- – destroyed by cleavage processes, LI+ – generated by ligation
processes, LI- – destroyed by ligation processes, DIF – diffusion

densities are reduced by outflow only. Molecules 4 and 5 are both created
and destroyed by ligation processes, additionally also outflow is reducing their
densities.

Figure 11 shows the corresponding results for the scenario with two containers
connected by diffusion, for which we again find interesting behaviors. Molecules
7 and 9–14 share the same behavior: they are produced in the ligatrion-only
container. Part of the density diffuses to the cleavage-only container where the
incoming density is destroyed by a cleavage process. In both containers, also
the outflow reduces the densities. Like in Fig. 9, molecule 6 demonstrates just
the opposite behavior, it is produced by a cleavage process in the cleavage-only
container, part of its density diffuses into the ligation-only container, where it
is destroyed by a ligation process and the outflow. Molecules 4 and 5 are again
dominated by the production and destruction via ligation processes. Please note
that also here the bars need to add up to zero, separately for both containers.

5 Conclusion and Outlook

For this paper, we performed simulations for the original Kauffman model, the
Kauffman model extended with the consideration of finite energy amounts, and
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our approach of spatially separating the cleavage and ligation reactions in two
containers connected by diffusion. We present computational results both for a
randomly created instance displaying an autocatalytic metabolism (ACM) and
for another randomly created instance without an ACM. The densities of the var-
ious non-monomeric molecules, which initially start out at the same value, first
undergo some intermediate transition. For the instance without the ACM, all of
them vanish in the long term in all simulations, whereas in the other instance,
the densities of some of the non-monomeric molecules converge to finite values,
thus forming the ACM. This other instance continues to display an ACM in all
scenarios. While the molecules dominating the ACM in the original Kauffman
approach with only one container stay dominant when spatially separating the
cleavage from the ligation processes in two different containers, other molecules
become dominant when including the energy finiteness. The size of the ACM,
i.e., the number of non-monomeric molecules with significant final density values,
increases when spatially separating cleavage from ligation processes. Studying
the final values for the contributions of the various processes to the derivatives
of the probabilities, we get a rich behavior, with some molecules produced and
destroyed by ligation processes, others produced by ligation and destroyed by
cleavage processes, and one molecule produced by cleavage and destroyed by
ligation processes. These results are to be expected, they reflect the list of reac-
tions in Table 1. This close look at the contributions to the overall derivative
obviously provides a better insight whether a molecule is part of the ACM than
the comparison of its density to an arbitrarily chosen threshold.

We intend to continue our investigations by creating larger statistics of these
scenarios and by applying all of them to large networks of spatially connected
droplets [15–19], in which either only ligation or only cleavage reactions are
performed. Depending on the simulation parameters, we expect to be able to
enlarge the probability for the occurrence of an ACM, for those instances in which
it is possible from a graph-theoretical aspect, but in which the dynamics prevents
the creation of an ACM in one container only. We also expect to get much larger
average sizes of an ACM. These large networks also provide a further advantage:
While it is impossible to change the kinetic parameters for the reactions as
well as the diffusion and transport parameters for real systems, large networks
of droplets with spatially separated reactions allow to put more emphasis on
some reactions, e.g., to implement many more droplets with ligation than with
cleavage reactions, thus increasing the probability for the occurrence of an ACM.

Furthermore, instead of using the approach to set up and numerically solve
a set of differential equations, we alternatively intend to apply a stochastic sim-
ulation framework, e.g., to work with the Gillespie algorithm [2,6], which we
recently applied to a minimum reaction system with one undesired side product
[20]. The Gillespie algorithm is better suited for large numbers of small contain-
ers in which the number of the various molecules could be so small that the
continuous density approach is no longer justified. This stochastic simulation
framework offers new possibilities and new insights, but also leads to further
difficulties: Here we would not have to depend on the value of a threshold for a
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density whether we would consider a specific molecule to be part of the ACM
or not. When using the Gillespie algorithm with its integer numbers for var-
ious molecules, we can simply state that a molecule is not part of the ACM
if its number is exactly zero over a sufficiently long time period. However, in
another simulation run, it might be the case that this molecule does not vanish
and thus is part of the ACM. Thus, the shape of the ACM achieved with the
Gillespie algorithm might depend on whether some number of catalyst molecules
necessary for some reactions become exactly zero due to a specific sequence of
stochastic random choices of reactions or due to the late opening up of pores,
or due to some other reasons, whereas in the continuous density approach, the
density might become very small but then has the chance to increase again.
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dimensional arrangements of droplets. In: Cicirelli, F., Guerrieri, A., Pizzuti, C.,
Socievole, A., Spezzano, G., Vinci, A. (eds.) WIVACE 2019. CCIS, vol. 1200, pp.
171–184. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45016-8 17

16. Schneider, J.J., Weyland, M.S., Flumini, D., Matuttis, H.-G., Morgenstern, I.,
Füchslin, R.M.: Studying and simulating the three-dimensional arrangement of
droplets. In: Cicirelli, F., Guerrieri, A., Pizzuti, C., Socievole, A., Spezzano, G.,
Vinci, A. (eds.) WIVACE 2019. CCIS, vol. 1200, pp. 158–170. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45016-8 16

17. Schneider, J.J., et al.: Network creation during agglomeration processes of poly-
disperse and monodisperse systems of droplets. In: De Stefano, C., Fontanella, F.,
Vanneschi, L. (eds.) WIVACE 2022. CCIS, vol. 1780, pp. 94–106. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-31183-3 8

18. Schneider, J.J., et al.: Influence of the geometry on the agglomeration of a polydis-
perse binary system of spherical particles. In: ALIFE 2021: The 2021 Conference
on Artificial Life (2021). https://doi.org/10.1162/isal a 00392

19. Schneider, J.J., et al.: Paths in a network of polydisperse spherical droplets. In:
ALIFE 2022: The 2022 Conference on Artificial Life (2022). https://doi.org/10.
1162/isal a 00502

20. Schneider, J.J., et al.: Artificial chemistry performed in agglomeration of droplets
with restricted molecule transfer. In: De Stefano, C., Fontanella, F., Vanneschi,
L. (eds.) WIVACE 2022. CCIS, vol. 1780, pp. 107–118. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-31183-3 9

21. Xavier, J.C., Kauffman, S.A.: Small-molecule autocatalytic networks are universal
metabolic fossils. Phil. Trans. R. Soc. A 380, 20210244 (2022)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-45016-8_17
https://doi.org/10.1007/978-3-030-45016-8_16
https://doi.org/10.1007/978-3-031-31183-3_8
https://doi.org/10.1162/isal_a_00392
https://doi.org/10.1162/isal_a_00502
https://doi.org/10.1162/isal_a_00502
https://doi.org/10.1007/978-3-031-31183-3_9
http://creativecommons.org/licenses/by/4.0/

	Kauffman Model with Spatially Separated Ligation and Cleavage Reactions
	1 Introduction
	2 Extension of the Kauffmann Model 
	2.1 ``In-Out'' Processes
	2.2 Cleavage and Ligation Processes
	2.3 Consideration of Finite Energy Amounts
	2.4 Diffusion Processes

	3 Simulation Details 
	4 Computational Results 
	4.1 Revisiting the Original Kauffman Model Within One Container Only
	4.2 Two Separate Containers
	4.3 Two Containers with Diffusion
	4.4 Comparison of Final Dynamics

	5 Conclusion and Outlook
	References


