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Abstract. We perform computer simulations of an agglomeration pro-
cess for monodisperse and polydisperse systems of spherical particles in a
cylindrical container, using a simplified stochastic-hydrodynamic model.
We consider a ternary system with three particle types A, B, and C,
in which only connections of the type A − B can be forged, while any
other connections with particles of the same type or with C-particles are
forbidden, and for comparison a binary system with two particle types
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A and C, in which only connections of the type A − A can be formed.
We study the breakdown of the percolation in the agglomeration at the
bottom of the cylinder with an increasing fraction of C-particles.

Keywords: percolation · polydisperse · binary system · ternary
system

1 Introduction

Fig. 1. Left: Snapshot of an agglomeration of droplets recorded from an experiment.
Right: Agglomeration of a polydisperse system of 2,000 spherical particles with types
A and B, depicted as red and green, at the bottom of a cylindrical container, obtained
in a computer simulation. (Color figure online)

We intend to develop a probabilistic compiler [3,22] to aid the three-dimensional
agglomeration of droplets filled with various chemicals (see Fig. 1) in a specific
way in order to e.g. allow the creation of desired macromolecules via a successive
reaction scheme [12,13,18,19]. Neighboring droplets can form connections, either
by forming bilayers [7] or by getting glued to each other by matching pairs of
single-stranded DNA [4], as sketched in Fig. 2. Chemicals contained within the
droplets can move to neighboring droplets either directly, as hydrophobic com-
pounds can be exchanged between adjacent oil droplets at the contact face, or,
if the oil droplets are contained in a hull comprised of amphiphilic molecules
like phospholipids, through pores within these bilayers. An example for such a
pore is shown in Fig. 3. Thus, a complex bilayer network is created [16], with
the droplets being the nodes of this graph and the existing connections being
the edges between the corresponding droplets. In such bilayer networks, a con-
trolled successive reaction scheme can be effectuated to produce the intended
macromolecules. As already demonstrated for a toy example, a gradual reaction
network with three educts, two reaction steps, a desired product, and an unde-
sired side product, can achieve a higher yield and a smaller amount of undesired
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Fig. 2. Sketch of a pair of oil-filled droplets in water, to which complementary strands
of ssDNA oligonucleotides are attached: The surfaces of the droplets are composed by
single-tail surfactant molecules like lipids with a hydrophilic head on the outside and
a hydrophobic tail on the inside, thus forming a boundary for the oil-in-water droplet.
By adding some single-strand DNA to the surface of a droplet, it can be ensured that
only desired connections to specific other droplets with just the complementary single-
strand DNA can be formed. Please note that the connection of the droplets in this
picture is overenlarged in relation to the size of the droplets. In reality, the droplets
have a radius of 1–50µm, whereas a base pair of a nucleic acid is roughly 0.34 nm in
length [1], such that the sticks of connecting DNA strands are roughly 5 nm long.

Fig. 3. Alpha hemolysin (aHL) pore: The left picture reveals how the aHL, which is
comprised of seven macromolecules, sticks its trunk through the bilayer between two
droplets. The right picture presents in detail a cut through the pore formed, revealing
the channel through which molecules can move between the adjacent droplets.

side products in an agglomeration of droplets with restricted molecule transfer
than in a scenario in which all educts would be put in one well-stirred pot only
[17].

For some applications, it is necessary to thin out the network, i.e., to reduce
the number of edges connecting nodes in the network. This leads as we will
show later to smaller numbers of nodes a node is attached to on average, to
smaller cluster sizes and in turn to larger numbers of clusters which are isolated
of each other, just as we need them for these applications, in which we either
need to better govern the gradual chemical reaction process or in which we need
to strongly reduce the maximum number of steps within such a gradual process.
In order to achieve this thinning-out, particles which do not connect to any other
particle can be added to the system. Within the scope of this paper, we study
the effects of these auxiliary particles on the properties of the overall network
for two basic scenarios:
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– “Ternary” scenario:
In the ternary scenario, systems with three particle types A, B, and C are
considered. Only connections between neighboring A- and B-particles can be
forged. Besides these A − B-connections, no other connections to particles of
the same type or to C-particles are possible. Without the C-particles, this
system would form a so-called bipartite network. In our simulations, we only
consider the special case that the fraction fA of A-particles equals the fraction
fB of B-particles. We will study the changes of the properties of the network
for an increasing fraction fC of C-particles, with fC = 1−fA −fB = 1−2fA.

– “Binary” scenario:
For comparison, we also study a binary scenario with two particle types A
and C, in which only pairs of neighboring A-particles can form connections.
Besides these connections of the type A − A, there are no other connections,
such that also here the C-particles serve as auxiliary particles for thinning
out the network. Again we want to study the effects of an increasing fraction
fC of C-particles on the properties of the network. This scenario can also be
considered as a site percolation problem [20], in which the locations of the
A-particles represent the occupied sites and the locations of the C-particles
represent the empty sites. The probability p for an occupied site is simply
given by p = fA = 1 − fC .

In our computer simulations, we study both polydisperse systems, in which the
radii of the particles differ from each other, and monodisperse systems, in which
all particles share the same radius value, in order to mimick experiments of var-
ious kinds: The production of droplets using a microfluidic approach, in which
an inner stream of fluid within an outer stream of another fluid is broken up
in droplets in e.g. a t-junction under specific pressure conditions [7], leads to
a rather monodisperse system of droplets. Contrarily, in other experiments, we
are repeatedly rubbing a phial filled with water and one drop consisting of oil
molecules and amphiphilic molecules over a rough surface, thus sending excita-
tions into the system, which lead to a breakup of the large drop into many small
droplets of varying sizes, resulting in a polydisperse system [4].

Within the scope of this paper, we present computational results for simula-
tions based on a simplified stochastic-hydrodynamic model of an agglomeration
process of a system of droplets, mimicking experiments. Here we want to focus
on the influence of the fraction fC of auxiliary C-droplets on some specific prop-
erties of the networks created, which are of crucial importance for the gradual
reaction scheme intended. We are especially interested in the question whether
there is a percolation transition at some critical value of fC : For an infinitely
large system, one expects to get a sharp transition between two phases, with an
infinitely large cluster for fC below the critical value and no such infinitely large
cluster for fC above that value. For finite systems, one gets a smooth transition
between a regime with a large cluster dominating the system for small fC and
a regime with no such large cluster but many small clusters for large fC . In
order to focus on these questions and to exclude effects from other experimental
properties, we simulate the droplets as hard spheres and ignore details of the
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surface structure of the particles, attractive forces as well as adhesion effects. As
the extension of the bilayers is very small and as due to their small radii [2], the
droplets keep their spherical shape during the experiments, as shown in Fig. 1,
such that this simplified approach is justified.

This paper is organized as follows: In the next section, we sketch briefly
how we simulate the agglomeration of droplets in a container. Then we give
a short introduction to network analysis and percolation theory, focusing on
those network properties for which we will present computational results. As we
are mainly interested in the description of the percolation transition with an
increasing fraction fC of auxiliary C-droplets, we present results depending on
fC for the decreasing maximum and average number of nodes a node is attached
to, for which we find power laws depending on 1−fC , for the increasing number
of clusters, for which we get a linear behavior, and for the decreasing size of
the largest cluster, which clearly exhibits a percolation transition. Finally, we
provide a summary and give an outlook.

2 Simulation Details

At the beginning of the simulations, we place N spherical particles at randomly
selected positions in a cylindrical container with radius 1mm and height 4mm
in a way that they do not overlap with each other and that they do not overlap
with the walls of the cylinder. For the polydisperse system, we randomly choose
the particle radii ri uniformly from the interval [10–50]µm, whereas we set all
radii ri ≡ 30µm for the monodisperse system.

After this initialization, we perform the main simulation which is comprised
of 107 time steps of a duration of δt = 10−5 s. In each time step, the particles
are subjected to various forces:

– They sink in water due to gravity �FG reduced by the buoyant force �Fb:

�FG(i) − �Fb(i) =
4π

3
r3
i (�oil − �water) g (1)

For the oil density, we use the value �oil = 1.23 kg/l, which is just the density
of the oil used in some experiments.

– Secondly, the spatial components vx,y,z(i) of the velocity vectors �v(i) are
subjected to random velocity changes: They are randomly altered by up to
±5% of their absolute values in order to take at least in this small random way
into account that the containers are moved by the experimentalists during the
agglomeration process.

– The particles are also subjected to the Stokes friction force �FS :

�FS(i) = −6πηri�v(i) (2)

The viscosity of water at 25 ◦C is η = 0.891mPas.
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– As in classic hydrodynamics, the concept of added mass [21] is used. When
applying Newton’s second law, we have to consider an effective mass of the
particle, i.e., �F (i) = meff(i)�a(i). This effective mass is composed of the mass
m(i) of particle i and of the added mass madded(i). This added mass is caused
by the inertia of the surrounding fluid, which needs to be deflected or attracted
if the particle itself is accelerated or decelerated in the water, and can be
determined to being half of the mass of the water displaced by oil particle i.

When working with such a set of second order differential equations governing
the laws of motion for the particles, the question arises as to which integrator
to use. Due to the stochastic nature of random velocity changes, only an Euler
scheme with very small time intervals is suitable for the determination of new
velocities and positions [6]. In the case of collisions between pairs of particles
or between particles and walls, a mostly elastic collision dynamics with 90%
elasticity and 10% plasticity is imposed. Overlaps occurring at the end of each
time step are resolved as in [9,14].

3 Network Analysis and Percolation Theory

For network analysis, we first of all have to define a network related to the
problem we intend to study. As mentioned above, we are interested in gen-
erating gradual chemical reaction schemes performed in networks of droplets,
with neighboring droplets being able to exchange molecules if pores within their
bilayers exist or, more theoretically speaking, if a connection between the par-
ticle types of the two adjacent droplets is allowed. Then we can define an edge
matrix η with

η(i, j) =

⎧
⎪⎨

⎪⎩

1 if droplets i and j are neighbors of each other
and a connection between them exists

0 otherwise.
(3)

Two droplets i and j with their midpoints (xi, yi, zi) and (xj , yj , zj) and their
radii ri and rj are neighboring each other if the condition

√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 ≤ ri + rj + 0.1µm (4)

is fulfilled, i.e., if the distance between their midpoints is smaller or equal to the
sum of their radii plus some small offset which we need to introduce because
of finite numerical precision. One usually sets η(i, i) ≡ 0 for all nodes i. Such
a matrix η contains all the information about the network. For this paper, we
study both a binary scenario and a ternary scenario, for which we can generate
two different edge matrices, considering the different conditions for the existence
of a connection.

When analyzing a network, one mostly takes either an atomistic view, looking
at the various nodes and determining their network related properties, or a global
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view, determining clusters of nodes. Clusters are defined as maximum subgroups
of nodes in which each node within this cluster can be reached from any other
node in the cluster by gradually traversing edges, thus walking along a path from
this node perhaps via other nodes in the subgroup to the destined node. More
seldomly, networks are considered at an intermediate level, e.g., for the detection
of the maximum clique [8], or one asks for the importance of specific nodes for
the overall network in a local-global view, see e.g. [11].

When looking at a network from a global point of view, one of the most impor-
tant questions arising is whether the network is percolating. For an infinitely
large network, this means that one has to ask whether there is an infinitely
large cluster in the network [20]. In the finite networks resulting from computer
simulations, one thus asks whether a dominating cluster exists in the network.

Mostly, the so-called site percolation is studied in which sites on a regular
lattice are either occupied or empty and in which each site is connected to all
neighboring sites. Theoretically, one finds for infinitely large systems that there
is a critical probability pcrit of occupied sites above which an infinitely large
cluster exists in the system and below which there is no percolation anymore.
Alternatively, also the so-called bond percolation is considered in which all lattice
sites are occupied but only a fraction p of the edges exist. Also here one finds
such a critical probability pcrit dividing two such regimes. For some scenarios,
this critical probability can be calculated exactly, but mostly, one has to make
use of computer simulations with increasing system size, to determine the various
clusters in the system and the size of the largest cluster, and finally to carefully
determine pcrit numerically [20].

4 Computational Results

The results presented in Figs. 4, 5, 6, 7 and 8 are averaged over the properties
of the final configurations of 100 independently performed simulation runs.

The first observable we have a look at is the number e of edges, which can
be derived from the edge matrix η with

e =
∑

i<j

η(i, j). (5)

Figure 4 displays the results for e for the binary and the ternary scenario in
simulations of monodisperse systems of 2,000 droplets and polydisperse systems
of 2,000 droplets. We generally find that there are more edges in the binary
scenario and that the number of edges decreases with an increasing fraction fC
of C-particles, which do not connect with each other and with other particles.
On average, there are slightly more edges in the monodisperse systems than in
the polydisperse systems, both for the binary and for the ternary scenarios.

When taking a local perspective, one of the most important observables for
a specific node i is its degree d(i), which can be calculated as

d(i) =
N∑

j=1

η(i, j). (6)
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Fig. 4. Decrease of the number e of edges with an increasing fraction fC of C-particles
for the binary and ternary systems as described in the text: Results are presented
for monodisperse systems consisting of 2,000 particles (left) and polydisperse systems
consisting of 2,000 particles (right).

Thus, the degree d(i) counts to how many other droplets the droplet i is con-
nected. We are mainly interested in the maximum degree

dmax = maxi d(i) (7)

of all nodes. Of course, also dmax decreases with increasing fC , but in a specific
way, such that we plot dmax vs. 1 − fC in a double-logarithmic way in Fig. 5.
The graphics reveal the existence of a power law for dmax. For the monodisperse
systems comprised of 2,000 particles, we find a power law of the type

dmax = a(1 − fC)1/2, (8)

both for the binary and the ternary scenarios, whereas we get a power law of
the type

dmax = a(1 − fC)2/3 (9)

for the polydisperse systems comprised of 2,000 particles, both for the binary and
for the ternary scenarios. The values for the various prefactors a are provided in
Table 1.

In the next step, we have a look at the mean value 〈d〉 of the degrees, which
can be calculated as

〈d〉 =
1
N

N∑

i=1

d(i). (10)

〈d〉 is related to the overall number e of edges via

N × 〈d〉 = 2e. (11)

Also for 〈d〉, we find a complex power law behavior depending on 1 − fC , such
that we plot 〈d〉 vs. 1 − fC in a double-logarithmic way in Fig. 6. We get both
for the binary and for the ternary scenario, both for the monodisperse and for
the polydisperse systems the power law

〈d〉 = a(1 − fC)2. (12)
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Fig. 5. Increase of the maximum degree dmax vs. the remaining fraction 1 − fC of
particles not being C-particles for the binary and ternary systems as described in the
text: Results are presented for a monodisperse system consisting of 2,000 particles (left)
and a polydisperse system consisting of 2,000 particles (right).

Table 1. Prefactors a found for the power laws as described in the text.

degree scenario system a

dmax binary 2000, mono 11.5

dmax binary 2000, poly 15.3

dmax ternary 2000, mono 8.6

dmax ternary 2000, poly 10.2

〈d〉 binary 2000, mono 5.6

〈d〉 binary 2000, poly 5.3

〈d〉 ternary 2000, mono 2.8

〈d〉 ternary 2000, poly 2.6

The prefactors can again be found in Table 1.
Please note that both the maximum degrees and thus also the mean degrees

are restricted in size. For the monodisperse system, dmax cannot exceed the
value of the so-called kissing number k [15]. The kissing number problem is
stated as follows: How many spheres of equal size can be placed around a sphere
in their midst touching it without any overlaps? This kissing number equals 12
in three dimensions, as already stated by Newton and proved in the 1950s. For
the polydisperse system, there is a related restriction: Here dmax cannot exceed
a value of k, which depends on the ratio between the radii of the smallest and
largest spheres. As the radii of the spherical particles are randomly chosen from
the interval [10–50]µm, this ratio could be up to 1 : 5, for which we obtained a
bidisperse kissing number of 120 [15].

Furthermore, we would like to compare our results for 〈d〉 for monodisperse
systems with results obtained for other configurations of spheres. First of all, let
us consider the densest packing of spheres of the same size: The densest packings
can be achieved both in a face centered cubic (fcc) lattice and a hexagonal close
packing (hcp). For these densest packings, one gets 〈d〉 = dmax = 12, in the
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Fig. 6. Increase of the average degree 〈d〉 vs. the remaining fraction 1− fC of particles
not being C-particles for the binary and ternary systems as described in the text:
Results are presented for monodisperse systems consisting of 2,000 particles (left) and
polydisperse systems consisting of 2,000 particles (right).

case of infinitely extended lattices or lattices with periodic boundary conditions.
Contrarily, if studying entirely random packings of spheres of the same size, one
obtains 〈d〉 = 6 [10], a value which is almost in agreement with our values for
the binary scenario at fC = 0 for the monodisperse system. The deviation is due
to the finite extension of our agglomerations.

Now we turn to the global view in network analysis and have a look at the
number n of clusters in the system, which is plotted vs. the fraction fC in Fig. 7.
For fC = 0, we trivially have only a very small number of clusters in the binary
scenario, whereas there is already a significant number of clusters of roughly
n ≈ 0.05N − 0.07N in the ternary scenario. For small fC , n increases linearly
with fC , until it approaches sigmoidally the value n = N in the limit fC → 1.
For the ternary systems, there seems to be a little bending in the curves at
fC ≈ 0.5.

Finally, we end up at the most important point of our investigation. We
consider the size smax of the largest cluster in the system, which is plotted vs.
fC in Fig. 8. Generally, we get a linear decrease of smax with increasing fC for
small fC , before a transition takes place, in which the percolation breaks down:
For the binary scenario, we find a critical value of fC of roughly 0.55±0.05 both
for the monodisperse and the polydisperse system. For the ternary scenario, we
get 0.3 ± 0.05 both for the monodisperse and for the polydisperse system.

Here we again would like to compare these results with other results obtained
for spheres. As already mentioned, the densest packings of spheres of the same
size can be achieved in a fcc and a hcp lattice. The critical probability for an
infinitely large fcc lattice with periodic boundary conditions has been determined
to be pcrit = 0.198 [20]. But also hcp lattices on a slab with open boundary
conditions and infinite extensions in two dimensions have been studied. The
threshold depends on the thickness h (i.e., the number of layers on which the
midpoints of the spherical particles are located) of the slab, one gets pcrit =
0.2828 for h = 2 and pcrit = 0.2086 for h = 16 in the limit of infinite extension
in the other two dimensions [5]. For randomly packed spheres, a threshold of
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Fig. 7. Increase of the number n of clusters with an increasing fraction fC of C-particles
for the binary and ternary systems as described in the text: Results are presented
for monodisperse systems consisting of 2,000 particles (left) and polydisperse systems
consisting of 2,000 particles (right).

pcrit = 0.31 [10] was obtained. Thus, we see that the critical values strongly
depend on the systems under study. In our case, the spherical particles are
neither located on the sites of a regular grid nor placed entirely randomly.

5 Summary and Outlook

In this paper, we presented results of simulations for the agglomeration of poly-
disperse and monodisperse systems of droplets. We were mainly interested in
the effects the addition of auxiliary particles, which do not connect to any other
particles, has on the networks and their properties. We found a power law behav-
ior for the maximum degrees and mean degrees of the particles depending on
the fraction of the auxiliary particles in the system. Furthermore, we detected a
percolation breakdown if this fraction exceeds some critical value.

We will continue this study also with other connection scenarios, in which
e.g. A-particles can connect to other A-particles and to B- and C-particles, while
B-particles and C-particles cannot form connections. This scenario can be easily
realized in experiments by only placing the constituents for pore macromolecules
exclusively in the A-particles. Furthermore, we will extend our study to further
system sizes in order to get better estimates for the critical values and also to
find out in which way the prefactors a in the power laws found for the maximum
and the mean degree depend on the system size N .
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Fig. 8. Decrease of the size smax of the largest cluster with an increasing fraction fC
of C-particles for the binary and ternary systems as described in the text: Results are
presented for monodisperse systems consisting of 2,000 particles (left) and polydisperse
systems consisting of 2,000 particles (right).
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WIVACE 2021. CCIS, vol. 1722, pp. 72–84. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-23929-8 7

16. Schneider, J.J., et al.: Network creation during agglomeration processes of poly-
disperse and monodisperse systems of droplets. In: De Stefano, C., Fontanella, F.,
Vanneschi, L. (eds.) WIVACE 2022. CCIS, vol. 1780, pp. 94–106. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-31183-3 8

17. Schneider, J.J., et al.: Artificial chemistry performed in an agglomeration of
droplets with restricted molecule transfer. In: De Stefano, C., Fontanella, F., Van-
neschi, L. (eds.) WIVACE 2022. CCIS, vol. 1780, pp. 107–118. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-31183-3 9

18. Schneider, J.J., et al.: Obstacles on the pathway towards chemical programmability
using agglomerations of droplets. In: Schneider, J.J., Weyland, M.S., Flumini, D.,
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dimensional arrangement of droplets. In: Schneider, J.J., Weyland, M.S., Flumini,
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