Supplementary information D of the paper Public opinion about solar radiation management: A cross-cultural study in 20 countries around the world

Detailed results of the analyses of covariance and supplementary figures presenting the distributions of the variables

Content of Supplementary information D:

- Table D1a. Mean scores for belief in global warming, different perceptions about SRM and acceptability of SRM among students
- Table D1b. Mean scores for belief in global warming, different perceptions about SRM and acceptability of SRM among the general public
- Table D2a. Overall mean scores for belief in global warming, different perceptions about SRM and acceptability of SRM among students in the Global South, the 'non-WEIRD' Global North, and the 'WEIRD' Global North
- Table D2b. Overall mean scores for belief in global warming, different perceptions about SRM and acceptability of SRM among the general public in the Global South, the 'non-WEIRD' Global North, and the 'WEIRD' Global North
- Fig. D1a. Distributions in belief in global warming, perceptions about SRM and acceptability of SRM in the full student sample (N=4,583).
- Fig. D1b. Distributions in belief in global warming, perceptions about SRM and acceptability of SRM in the full general public sample (*N*=2,248)
- Fig. D2a. Distributions in the perception that SRM addresses the causes of global warming among students in each country
- Fig. D2b. Distributions in the perception that SRM addresses the causes of global warming among the general public in each country

Table D1a. Mean scores for belief in global warming, different perceptions about SRM and acceptability of SRM among students

		Belief i	_	al	SRM lin	_	obal	SRM add	SRM inc			SRM is p			CDM in			SRM af		1	CDM is		-alala			
		warming 99.737%			warmin	g 9.73	37%	of global	warming 99.7.		mitigatio		737%	humans a		37%	SRM is		37%	countrie		1 <u>y</u> '37%	SRM is		737%	
			C		_	CI ¹			CI ¹		_	C	I^1			I^1	CI ¹		I^1	-	CI ¹		_	C	CI^1	
Sample	N/n	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL	
Overall	4,583	2.05	2.01	2.10	0.75	0.67	0.82	-0.25	-0.33	-0.16	-0.81	-0.88	-0.74	-0.12	-0.18	-0.06	-0.83	-0.91	-0.75	-1.13	-1.20	-1.06	0.64	0.58	0.71	
Argentina	210	2.49 ^{h,i}	2.37	2.60	0.92 ^d	0.59	1.20	0.11 ^{f-i}	-0.27	0.54	-0.67 ^{d-g}	-1.00	-0.32	0.05 ^{e-h}	-0.23	0.35	-0.93 ^{a-f}	-1.29	-0.60	-1.56 ^{a,b}	-1.84	-1.24	1.08 ^{g,h}	0.80	1.34	
Brazil	210	2.15 ^{d-f}	1.95	2.33	0.63 ^{b-d}	0.27	0.97	-0.68 ^{b,c,e}	-1.12	-0.24	-1.18 ^{b,c}	-1.49	-0.81	-0.02 ^{d-h}	-0.31	0.28	-0.78 ^{b-g}	-1.13	-0.41	-1.46 ^{a-c}	-1.75	-1.14	0.82 ^{e-h}	0.51	1.11	
China	187	1.64°	1.44	1.82	0.92 ^d	0.67	1.17	-0.53 ^{c,e}	-0.90	-0.18	-0.30^{g}	-0.64	0.06	$0.16^{g,h}$	-0.08	0.41	-1.16 ^{a,b}	-1.47	-0.84	-0.72 ^{f-h}	-1.04	-0.40	0.69 ^{c-f}	0.42	0.95	
Iran ³	193	1.65°	1.44	1.84	0.93 ^d	0.61	1.24	1.90 ^j	1.61	2.16	-0.62 ^{d-g}	-0.95	-0.26	-0.18 ^{c-g}	-0.44	0.11	-0.95 ^{a-d}	-1.24	-0.64	-1.11 ^{c-f}	-1.44	-0.78	0.75 ^{d-g}	0.47	0.99	
Nigeria	175	1.18 ^a	0.87	1.46	0.34 ^{a-c}	-0.03	0.74	-0.22 ^{e-g}	-0.67	0.19	-0.27 ^g	-0.63	0.08	$0.00^{\mathrm{d-h}}$	-0.28	0.28	-1.11 ^{a-c}	-1.50	-0.68	-0.53 ^{g,h}	-0.88	-0.17	0.54 ^{c-e}	0.20	0.84	
$Kazakhstan^{3} \\$	160	1.25 ^{a,b}	0.96	1.54	0.05^{a}	-0.37	0.48	$0.25^{f\text{-}i}$	-0.17	0.70	-0.53 ^{e-g}	-0.90	-0.15	-0.64 ^{a,b}	-0.94	-0.30	-0.95 ^{a-f}	-1.33	-0.53	-0.58g,h	-1.00	-0.17	0.03 ^{a,b}	-0.29	0.34	
Mexico	208	2.26 ^{d-g}	2.07	2.44	0.75 ^{c,d}	0.46	1.04	0.52^{i}	0.18	0.86	-0.21 ^g	-0.60	0.18	0.37 ^h	0.07	0.66	-1.30a	-1.60	-1.00	-0.33h	-0.73	0.04	1.12 ^h	0.84	1.40	
Russia	217	1.60 ^{b,c}	1.38	1.82	0.62 ^{b-d}	0.26	0.97	-0.32 ^{d-f}	-0.77	0.08	-0.88 ^{c-e}	-1.17	-0.61	-0.45 ^{a-c}	-0.69	-0.19	-0.63 ^{c-g}	-1.00	-0.27	-1.54 ^{a-c}	-1.82	-1.24	0.39 ^{b-d}	0.13	0.65	
Taiwan ³	260	2.03 ^d	1.86	2.18	0.82 ^d	0.58	1.05	-0.91 ^{b,c}	-1.24	-0.59	-0.65 ^{d-g}	-0.89	-0.40	-0.31 ^{b-d}	-0.51	-0.12	-0.88 ^{b-e}	-1.15	-0.61	-1.21 ^{b-e}	-1.46	-0.96	0.52 ^{c-e}	0.31	0.71	
Turkey	410	2.32 ^{f,g}	2.22	2.42	0.84 ^d	0.63	1.04	0.25^{g-i}	0.00	0.50	-0.94 ^{c-e}	-1.15	-0.74	-0.19 ^{c-f}	-0.39	0.01	-0.70 ^{c-g}	-0.92	-0.47	-1.62a	-1.83	-1.42	0.55 ^{c-e}	0.34	0.74	
Australia	114	2.37 ^{f-i}	2.18	2.54	1.08 ^d	0.67	1.44	-0.25 ^{e-h}	-0.75	0.26	-0.75 ^{c-g}	-1.18	-0.30	0.01 ^{d-h}	-0.33	0.37	-0.80 ^{a-g}	-1.30	-0.30	-0.78 ^{e-h}	-1.18	-0.37	0.86 ^{e-h}	0.47	1.24	
Ireland ³	139	2.34 ^{e-i}	2.12	2.55	0.89 ^d	0.53	1.21	-0.78 ^{b,c,e}	-1.26	-0.34	-1.18 ^{b,c}	-1.52	-0.82	-0.20 ^{b-g}	-0.51	0.10	-0.82 ^{a-g}	-1.33	-0.36	-1.46 ^{a-d}	-1.80	-1.10	0.90 ^{e-h}	0.48	1.25	
Italy ³	173	2.10 ^{d-f}	1.86	2.31	0.20 ^{a,b}	-0.22	0.64	-0.21 ^{e-h}	-0.63	0.20	-1.04 ^{b-d}	-1.37	-0.71	-0.03 ^{d-h}	-0.33	0.30	-0.51 ^{d-g}	-0.88	-0.13	-1.39 ^{a-d}	-1.74	-1.04	0.26 ^{a-c}	-0.10	0.61	
Netherlands ³	211	2.25 ^{d-g}	2.05	2.43	1.00 ^d	0.69	1.29	-0.88 ^{b-d}	-1.26	-0.50	-1.38 ^b	-1.67	-1.10	-0.27 ^{b,c,e}	-0.48	-0.06	-0.46 ^{e-g}	-0.80	-0.11	-1.57 ^{a,b}	-1.82	-1.31	0.67 ^{c-f}	0.39	0.94	
Norway ³	441	2.37 ^{g,h}	2.27	2.47	0.88 ^d	0.63	1.09	-1.06 ^b	-1.32	-0.83	-1.29 ^b	-1.51	-1.06	-0.16 ^{c-f}	-0.33	-0.01	-0.45 ^g	-0.71	-0.19	-1.63ª	-1.82	-1.44	0.60 ^{c-e}	0.41	0.78	
Spain ³	198	2.56 ⁱ	2.43	2.68	0.77 ^{c,d}	0.47	1.07	0.35 ^{h,i}	-0.03	0.74	-0.33g	-0.69	0.02	0.17 ^{f-h}	-0.14	0.45	-1.01 ^{a-c}	-1.35	-0.69	-0.98 ^{d-g}	-1.33	-0.61	0.85 ^{e-h}	0.53	1.17	
Switzerland ³	222	2.20 ^{d-g}		2.35	0.85 ^d	0.58	1.11	-1.69 ^a	-2.01	-1.38	-1.85a			-0.67 ^a		-0.46	-0.47 ^{f,g}	-0.80		-1.69a		-1.44	-0.14a	-0.40		
UK ³	194	2.14 ^{d-f}		2.32	0.82 ^d	0.55	1.10	-0.52 ^{c,e}	-0.88	-0.16				0.07 ^{f-h}	-0.18		-1.03 ^{a-d}		-0.65	-0.74 ^{f-h}	-1.04	-0.44	0.94 ^{f-h}	0.67	1.21	
USA ³	661	2.11 ^{d,e}	1.94	2.28	0.93 ^d	0.69	1.18	-0.01 ^{f-h}	-0.31	0.31	-0.45 ^{f,g}	-0.71	-0.18	-0.01 ^{d,f,g}	-0.21	0.21	-0.78 ^{b-g}	-1.06	-0.51	-0.65 ^{g,h}	-0.91	-0.40	0.79 ^{e-h}	0.57	1.03	
$F_{Country}(18$	8,4563)	41.50**	**		6.376***			44.55***			20.23***			10.33***			5.45***			24.13***			13.27***			
	fCountry	.41			.16			.42			.28			.20			.14			.31			.23			
$F_{Time}(1)$	11.85**			4.365*			0.21			0.03			0.53			0.57			0.40			0.54				
M (D 1' C'	f_{Time} .05				.03			.01	CCDM		.003	'41 1 '		.01			.01			.01			.01			

Note. Belief in global warming and all perceptions about and acceptability of SRM were measured with bipolar response scales ranging from -3, representing the negative pole, to ± 3 , representing the positive pole, with 0 being "neither nor". CI=Confidence interval. LL=Lower level. UL=Upper level. Coloured cells indicate mean scores that are, according to their CI, significantly larger (cells in dark blue) or smaller (cells in light blue) than the mid-point of the scale. Within a column, country means with different superscripts are significantly different from each other at the Bonferroni corrected BCa bootstrap $p \le .00278$. Country means in bold are the highest respectively lowest mean scores per column. CIs are Bonferroni corrected and BCa bootstrapped. All mean scores are controlled for time of data collection (spring versus autumn). Data were also collected among the general public. $\pm p \le .01$. The positive pole is indicate mean scores that are, according to their CI, significantly larger (cells in dark blue) or smaller (cells in light blue) than the mid-point of the scale. Within a column, country means with different superscripts are significantly different from each other at the Bonferroni corrected BCa bootstrap per column. Country means in bold are the highest respectively lowest mean scores per column. CI Si are Bonferroni corrected and BCa bootstrapped. All mean scores are controlled for time of data collection (spring versus autumn). Data were also collected among the general public.

Table D1b. Mean scores for belief in global warming, different perceptions about SRM and acceptability of SRM among the general public

		Belief i	n glob	al	SRM li	mits gl	obal	SRM add	lresses (SRM is p	ositive	for				SRM aff	fects				
		warmin		.000/	warmin	U		of global		_	mitigation			humans a			SRM is			countrie	_	-	SRM is		
			99.5 C	83%		99.583% CI ¹		99.583% CI ¹		99.583% CI ¹		99.583% CI ¹			99.583% CI ¹			99.5839 CI ¹				99.5 C			
Sample	N/n	M^2		UL	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL
Overall	2,245 ³	1.89		1.96			0.55	-0.43	-0.54		-0.79	-0.87		-0.30		-0.21	-0.86		-0.75	-1.10		-1.00	0.26	0.16	0.35
Iran	170	1.53 ^{a,b}	1.29	1.76	1.02 ^d	0.69	1.34	1.86 ^f	1.56	2.13	-0.49 ^{d,e}	-0.85	-0.13	0.05 ^d	-0.24	0.33	-0.92 ^{b,c}	-1.24	-0.60	-1.08 ^{b-e}	-1.43	-0.71	0.83e	0.52	1.12
Kazakhstan	141	1.51 ^{a,b}	1.28	1.73	-0.20a	-0.67	0.25	0.09e	-0.32	0.55	-0.60 ^{d,e}	-0.94	-0.25	-0.66 ^{a,b}	-1.01	-0.33	-1.47a	-1.84	-1.08	-0.81 ^{d,e}	-1.18	-0.39	-0.22a	-0.56	0.13
Taiwan	231	2.27 ^e	2.13	2.39	0.64 ^{c,d}	0.37	0.89	-0.59 ^{c,d}	-0.94	-0.23	-0.27e	-0.54	0.01	-0.04 ^{c,d}	-0.32	0.22	-0.79 ^{b,c}	-1.06	-0.52	-0.98 ^{c-e}	-1.28	-0.67	0.47 ^{c-e}	0.21	0.72
Ireland	191	2.13 ^{d,e}	1.90	2.32	0.61 ^{c,d}	0.28	0.93	-1.20 ^{a,b}	-1.55	-0.84	-1.11 ^{b,c}	-1.38	-0.82	-0.40 ^{a-c}	-0.68	-0.11	-0.81 ^{b,c}	-1.19	-0.45	-1.48 ^{a,b}	-1.76	-1.18	0.34 ^{b-d}	0.02	0.65
Italy	166	1.96 ^{c,d}	1.70	2.21	0.05 ^{a,b}	-0.33	0.44	-0.26 ^{d,e}	-0.67	0.17	-0.74 ^{c,d}	-1.09	-0.37	-0.17 ^{c,d}	-0.48	0.13	-0.58°	-0.94	-0.21	-1.24 ^{b-d}	-1.60	-0.88	0.06 ^{a-c}	-0.28	0.40
Netherlands	262	1.62 ^{a,b}	1.43	1.81	0.35 ^{b,c}	0.06	0.65	-1.00 ^{b,c}	-1.30	-0.72	-1.24 ^{a,b}	-1.49	-0.98	-0.73ª	-0.96	-0.50	-1.12 ^{a,b}	-1.39	-0.85	-1.28 ^{b,c}	-1.51	-1.03	-0.03 ^{a,b}	-0.30	0.24
Norway	207	2.19 ^{d,e}	1.96	2.39	0.52 ^{b,c}	0.19	0.85	-1.32 ^{a,b}	-1.64	-0.98	-1.52ª	-1.75	-1.25	-0.32 ^{b-d}	-0.55	-0.09	-0.47 ^{b,c}	-0.79	-0.13	-1.66a	-1.91	-1.40	0.27 ^{b-d}	-0.01	0.56
Portugal ⁴	167	2.10 ^{d,e}	1.91	2.26	0.63 ^{c,d}	0.31	0.93	-0.43 ^{d,e}	-0.83	-0.02	-0.44 ^{d,e}	-0.81	-0.09	-0.01 ^{c,d}	-0.31	0.30	-0.82°	-1.17	-0.46	-0.93 ^{c-e}	-1.27	-0.57	0.63 ^{d,e}	0.30	0.93
Spain	195	2.50 ^f	2.35	2.64	0.71 ^{c,d}	0.37	1.02	0.06^{e}	-0.31	0.44	-0.67 ^{c-e}	-1.00	-0.31	-0.03 ^{c,d}	-0.34	0.29	-0.77 ^{b,c}	-1.08	-0.43	-1.05 ^{b-e}	-1.44	-0.68	0.63 ^{d,e}	0.29	0.96
Switzerland	96	1.83 ^{b-d}	1.48	2.15	0.32 ^{a-c}	-0.13	0.76	-1.65 ^a	-2.10	-1.19	-1.55 ^{a,b}	-1.97	-1.16	-0.78 ^a	-1.17	-0.39	-0.71 ^{b,c}	-1.16	-0.25	-1.48 ^{a,b}	-1.87	-1.07	-0.40a	-0.88	0.12
UK	187	1.75 ^{b,c}	1.50	1.98	0.39 ^{b,c}	0.04	0.73	-0.40 ^{d,e}	-0.77	-0.03	-0.36 ^{d,e}	-0.68	-0.04	-0.18 ^{c,d}	-0.47	0.10	-0.96 ^{a-c}	-1.34	-0.60	-0.58e	-0.93	-0.22	0.41 ^{c-e}	0.10	0.73
USA	232	1.33a	1.05	1.60	0.36 ^{b,c}	0.05	0.68	-0.33 ^{d,e}	-0.67	0.01	-0.43 ^{d,e}	-0.73	-0.14	-0.28 ^{b-d}	-0.59	0.03	-0.87 ^{b,c}	-1.23	-0.51	-0.66e	-0.99	-0.33	0.10^{a-c}	-0.21	0.42
F _{Country} ((11,2231)	23.09**	**		6.85***			42.61***			16.19***			8.03***			4.19***			8.71***			9.37***		
	$f_{Country}$.33			.18			.45			.28			.19			.14			.21			.21		
$F_{Education}$	n(1,2231)	37.73*	**		3.10			26.88***			36.28**	*		7.09**			< 0.01			24.06**	*		0.93		
	$f_{Education}$.13			.03			.10			.13			.05			<.01			.10			.02		
$\overline{F_{Tim}}$	e(1,2231)	4.13*			0.38			1.16			0.02			1.10			0.16			< 0.01			0.83		
	f_{Time}	.04			.01			.03			.003			.02			.01			<.01			.02		

Note. Belief in global warming and all perceptions about and acceptability of SRM were measured with bipolar response scales ranging from -3, representing the negative pole, to +3, representing the positive pole, with 0 being "neither nor". CI=Confidence interval. LL=Lower level. UL=Upper level. Coloured cells indicate mean scores that are, according to their CI, significantly larger (cells in dark blue) or smaller (cells in light blue) than the mid-point of the scale. Within a column, country means with different superscripts are significantly different from each other at the Bonferroni corrected BCa bootstrap $p \le .0045$. Country means in bold are the highest respectively lowest mean score per column. ¹ CIs are Bonferroni corrected and BCa bootstrapped. ² All mean scores are controlled for education level and time of data collection (spring versus autumn). ³ As n = 3 participants did not report on their education level and had thus to be excluded from the mean comparisons, the total sample is N = 2,245. ⁴ Data were only collected among the general public. * $p \le .05$. ** $p \le .01$. *** $p \le .001$.

Table D2a. Overall mean scores for belief in global warming, different perceptions about SRM and acceptability of SRM among students in the Global South, the 'non-WEIRD' Global North, and the 'WEIRD' Global North

	Belief in global warming			al	SRM li warmin	_	obal	SRM addresses causes of global warming			SRM increases mitigation efforts			SRM is positive for humans and nature			SRM is	inexper	nsive	SRM af		ly	SRM is acceptable			
		96.667% CI ¹					96.667% CI ¹		96.667% CI ¹		96.66 Cl		67% I ¹		96.667% CI ¹		96.667% CI ¹				96.667% CI ¹			96.6	667% CI ¹	
Sample	N	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL	
Global South	975	1.85 ^b	1.79	1.92	0.78a	0.68	0.87	0.11 ^a	-0.01	0.22	-0.60a	-0.72	-0.50	0.01a	-0.07	0.10	-0.97 ^b	-1.08	-0.86	-1.08a	-1.18	-0.98	0.79ª	0.70	0.88	
'Non-WEIRD' Global North	1,255	1.92 ^b	1.85	1.97	0.64a	0.54	0.74	-0.04ª	-0.16	0.08	-0.64ª	-0.73	-0.54	-0.24 ^b	-0.31	-0.16	-0.88 ^{a,b}	-0.98	-0.79	-1.06ª	-1.16	-0.97	0.53 ^b	0.46	0.61	
'WEIRD' Global North	2,353	2.24ª	2.20	2.28	0.80a	0.73	0.87	-0.54 ^b	-0.63	-0.45	-1.01 ^b	-1.08	-0.93	-0.12 ^{a,b}	-0.18	-0.06	-0.72ª	-0.80	-0.64	-1.20ª	-1.27	-1.13	0.63 ^{a,b}	0.56	0.70	

Note. Belief in global warming and all perceptions about and acceptability of SRM were measured with bipolar response scales ranging from -3, representing the negative pole, to +3, representing the positive pole, with 0 being "neither nor". CI=Confidence interval. LL=Lower level. UL=Upper level. Within a column, means with different superscripts are significantly different from each other according to their CIs. The cells of the means that are significantly larger than the other means are coloured in dark blue and the cells of the means that are significantly smaller than the other means are coloured in light blue. The cells of the means that are not significantly different from the other means are not coloured. ¹ CIs are Bonferroni corrected and BCa bootstrapped. ² All mean scores are controlled for time of data collection (spring versus autumn).

Table D2b. Overall mean scores for belief in global warming, different perceptions about SRM and acceptability of SRM among the general public in the Global South, the 'non-WEIRD' Global North, and the 'WEIRD' Global North

	Belief in global SRM limits					mits glo	obal	SRM addresses causes of global			SRM increases			SRM is	positive	e for									
		warming			warming			warming			mitigation efforts			humans and nature			SRM is inexpensive			countries equally			SRM is acceptable		
		96.667%			96.667%			96.667%			96.667%			96.667%			96.667%			96.667%					667%
	CI^1		T'	_	Cl		Cl ¹		1'		CI ¹		CI ¹				1'		CI ¹						
Sample	N	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL	M^2	LL	UL
Global South (Iran)	170	1.57 ^b	1.42	1.72	1.04ª	0.80	1.26	1.82ª	1.63	2.01	-0.50a	-0.76	-0.24	0.08ª	-0.11	0.27	-0.91 ^{a,b}	-1.12	-0.69	-1.08ª	-1.33	-0.82	0.86ª	0.64	1.08
'Non-WEIRD' Global North	372	1.96ª	1.86	2.06	0.25 ^b	0.06	0.44	-0.35 ^b	-0.55	-0.15	-0.53ª	-0.70	-0.37	-0.38 ^b	-0.54	-0.22	-1.13 ^b	-1.30	-0.96	-0.98ª	-1.15	-0.79	0.12 ^b	-0.03	0.27
'WEIRD' Global North	1,703	1.91ª	1.85	1.97	0.43 ^b	0.34	0.51	-0.70°	-0.79	-0.61	-0.87 ^b	-0.96	-0.79	-0.32 ^b	-0.39	-0.24	-0.79ª	-0.88	-0.70	-1.13ª	-1.21	-1.05	0.23 ^b	0.14	0.31

Note. Belief in global warming and all perceptions about and acceptability of SRM were measured with bipolar response scales ranging from -3, representing the negative pole, to +3, representing the positive pole, with 0 being "neither nor". CI=Confidence interval. LL=Lower level. UL=Upper level. Within a column, means with different superscripts are significantly different from each other according to their CIs. The cells of the means that are significantly larger than the other means are coloured in light blue or orange. The cells of the means that are not significantly different from the other means are not coloured. ¹ CIs are Bonferroni corrected and BCa bootstrapped. ² All mean scores are controlled for time of data collection (spring versus autumn) and for education level.

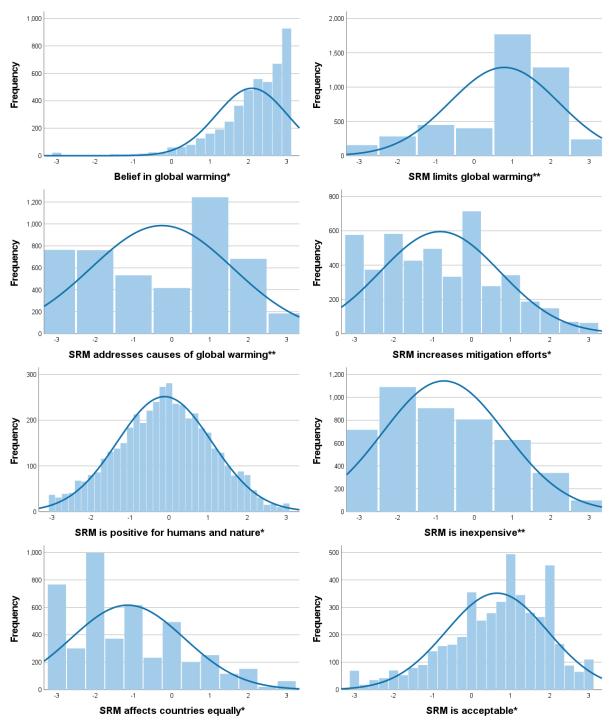


Fig. D1a. Distributions in belief in global warming, perceptions about SRM and acceptability of SRM in the full student sample (N=4,583)

Belief in global warming and all perceptions about and acceptability of SRM were measured with bipolar response scales ranging from -3, representing the negative pole, to +3, representing the positive pole, with 0 being "neither nor". * Multi-item measure. ** Single item measure.

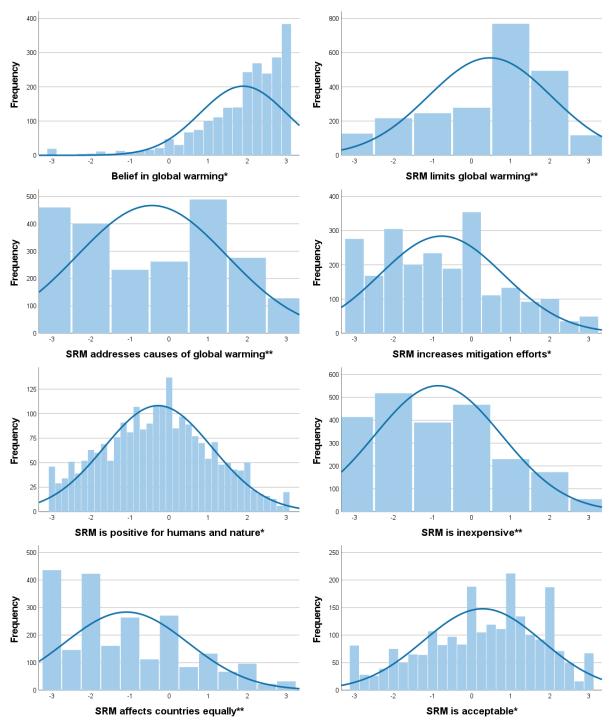


Fig. D1b. Distributions in belief in global warming, perceptions about SRM and acceptability of SRM in the full general public sample (N=2,248)

Belief in global warming and all perceptions about and acceptability of SRM were measured with bipolar response scales ranging from -3, representing the negative pole, to +3, representing the positive pole, with 0 being "neither nor". * Multi-item measure. ** Single item measure.

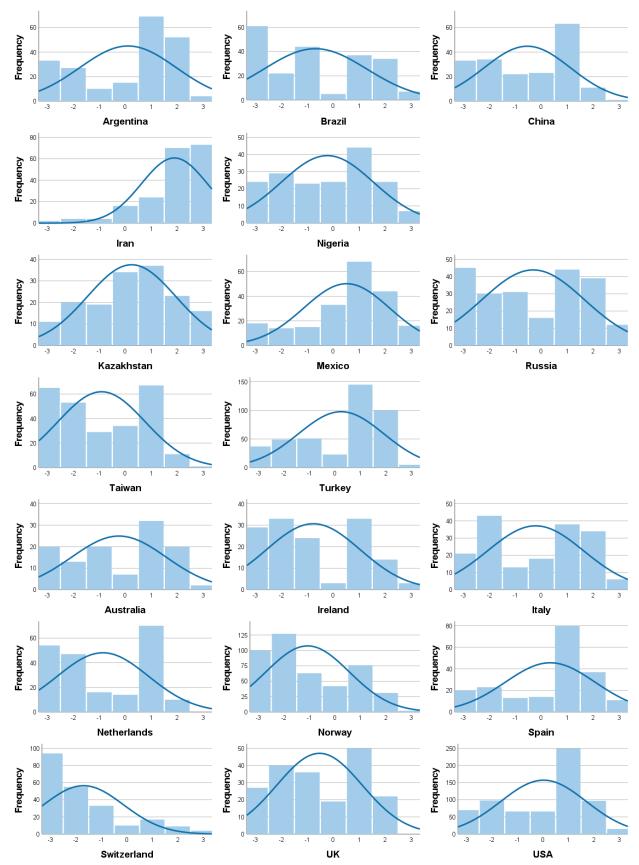


Fig. D2a. Distributions in the perception that SRM addresses the causes of global warming among students in each country

This perception was measured with a single item with a bipolar response scale ranging from -3 = [SRM would] totally not address the causes of global warming to +3 = [SRM would] totally address the causes of global warming with 0 being "neither nor".

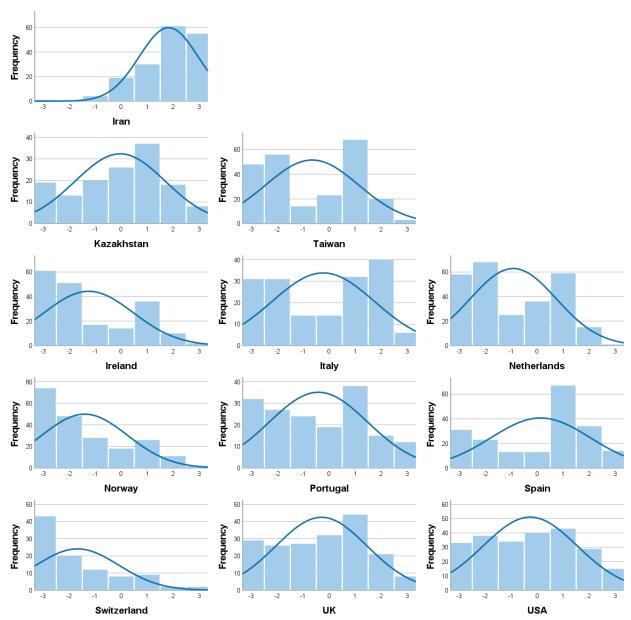


Fig. D2b. Distributions in the perception that SRM addresses the causes of global warming among the general public in each country

This perception was measured with a single item with a bipolar response scale ranging from -3 = [SRM would] totally not address the causes of global warming to +3 = [SRM would] totally address the causes of global warming with 0 being "neither nor".