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Abstract

Online handwriting recognition is pivotal in domains like
note-taking, education, healthcare, and office tasks. Existing
diagram recognition algorithms mainly rely on the temporal
information of strokes, resulting in a decline in recognition
performance when dealing with notes that have been mod-
ified or have no temporal information. The current datasets
are drawn based on templates and cannot reflect the real free-
drawing situation. To address these challenges, we present
SpaceGTN, a time-agnostic Graph Transformer Network,
leveraging spatial integration and removing the need for tem-
poral data. Extensive experiments on multiple datasets have
demonstrated that our method consistently outperforms ex-
isting methods and achieves state-of-the-art performance. We
also propose a pipeline that seamlessly connects offline and
online handwritten diagrams. By integrating a stroke restora-
tion technique with SpaceGTN, it enables intelligent editing
of previously uneditable offline diagrams at the stroke level.
In addition, we have also launched the first online handwrit-
ten diagram dataset, OHSD, which is collected using a free-
drawing method and comes with modification annotations.

Introduction
In handwriting recognition and machine learning, re-
searchers have been concentrating on extracting structural
information from handwritten diagrams to enhance both
interaction design and intent comprehension. Methods for
recognizing handwritten diagrams can be categorized into
offline and online approaches. Offline methods, such as
(Herrera-Camara and Hammond 2017; Julca-Aguilar and
Hirata 2018; Montellano, Garcia, and Leija 2022), disre-
gard original stroke information, leading to difficulties in
editing interactions. Online algorithms, such as (Yun et al.
2022; Bresler, Průša, and Hlaváč 2016), leverage temporal
information from strokes to enhance algorithm performance.
However, temporal information is not always consistently
reliable. For example, temporal data is absent in strokes re-
stored from offline handwritten documents, and user editing
actions such as moving, erasing and redrawing can influence
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Figure 1: Overview of the proposed Diagram Manipulation
System. For offline diagrams, stroke data can be obtained by
a stroke restorer. Stroke and symbol annotations are gener-
ated by SpaceGTN, facilitating symbol relationship recon-
struction. Stroke-level and symbol-level manipulation func-
tions are available to users.

temporal features, consequently compromising the precision
of recognition and segmentation.

Current handwritten diagram datasets, such as (Yun et al.
2022; Bresler et al. 2014; Awal et al. 2011; Bresler, Průša,
and Hlaváč 2016), have serious limitations in applications
due to the limited numbers of samples and templates. Ad-
ditionally, these datasets exhibit consistent drawing styles,
achieved through copying or tracing, resulting in minimal
deviations such as irregular pauses or alterations. As a con-
sequence, they diverge from the context of real-world usage.
Many existing diagram datasets only contain a single cate-
gory of diagrams, like flowchart datasets (Yun et al. 2022;
Awal et al. 2011; Bresler, Průša, and Hlaváč 2016; Gervais
et al. 2020) or automaton datasets (Bresler et al. 2014). The
lack of type diversity makes it difficult to train models with
the diagram classification capability.

There is limited research on the recognition and interac-
tion systems for handwritten diagrams. Jiang et al. (2011)
implemented a recognition and interaction system for hand-
written Concept Maps, designing various pen-gesture-based
interaction methods. Bresler, Průša, and Hlaváč (2016) pro-
posed a recognition system for arrow-connected diagrams,



but no interaction on handwritten diagrams is supported.
Currently, there is no unified system capable of recognizing
and interacting with a diverse set of offline or online hand-
written diagrams.

To address the aforementioned issues, we propose an on-
line handwritten diagram recognition method that does not
rely on temporal information. Additionally, we propose a
comprehensive diagram dataset with abundant samples and
closer resemblance to real-world drawing scenarios. Build-
ing upon the aforementioned foundations, we develop a
complete diagram recognition and interaction pipeline for
both offline and online diagrams, as shown in Figure 1.

The contributions are summarized as follows:
• We introduce SpaceGTN, a graph transformer network

that leverages exclusively the spatial stroke informa-
tion. Alongside SpaceGTN, a dynamic graph building
methodology is developed to augment the representation
of handwritten diagram structures. Demonstrated across
diverse datasets, our approach achieves state-of-the-art
performance.

• We propose a handwritten diagram recognition and inter-
action pipeline that bridges both offline and online hand-
written diagrams. The process includes diagram stroke
restoration and tailored interaction designed for various
types of diagrams.

• We release a large-scale dataset featuring detailed anno-
tations, closely resembling real writing process, encom-
passing various types of online handwritten diagrams.

Related Work
In this section, we will review relevant research on handwrit-
ten diagram recognition algorithms, particularly focusing on
the application of graph neural networks in handwritten dia-
gram recognition. Subsequently, datasets on handwritten di-
agrams will be revisited. Finally, we will briefly touch upon
techniques for restoring online strokes from offline hand-
written documents.

Online and Offline Handwritten Diagram Recogni-
tion Algorithm. Handwritten diagram recognition algo-
rithms can be categorized into offline and online methods.
In offline methods, Herrera-Camara and Hammond (2017)
extract axis-aligned scores and other stroke features, em-
ploying computer vision techniques to recognize flowcharts.
Other studies employ methods based on Faster R-CNN
(Montellano, Garcia, and Leija 2022), (Julca-Aguilar and
Hirata 2018), or Arrow R-CNN (Schäfer, Keuper, and Stuck-
enschmidt 2021) for flowchart element recognition. Offline
methods discard stroke information, leading to difficulties
in interaction design. These methods are commonly used
for standardized redrawing (Schäfer, Keuper, and Stuck-
enschmidt 2021) or code generation (Montellano, Garcia,
and Leija 2022; Julca-Aguilar and Hirata 2018). In online
methods, some employ machine learning techniques such
as data mining (Blagojevic et al. 2010) or traditional clas-
sifiers such as SVM (Miyao and Maruyama 2012), yield-
ing relatively lower accuracy. Others leverage graph neu-
ral networks (GNNs). For stroke classification, relevant re-
search employs GNN variants like EGAT (Ye et al. 2019)

and EPAT (Ye et al. 2021). Instance GNN (Yun et al.
2022) has been employed for handwritten diagram recog-
nition and achieved state-of-the-art performance across var-
ious datasets. Graph neural networks have shown excellent
performance in handwriting recognition. However, existing
methods rely on online stroke temporal information during
graph building, feature extraction, and model training pro-
cesses. Eliminating the dependence on temporal information
to enhance the robustness of recognition algorithms in prac-
tical scenarios remains a pressing challenge.

Diagram Datasets. Diagram datasets, including
flowchart datasets (Yun et al. 2022; Awal et al. 2011;
Bresler, Průša, and Hlaváč 2016; Gervais et al. 2020) and
automaton datasets (Bresler et al. 2014), are characterized
by well-defined structural forms. Most of the diagram
datasets (Bresler et al. 2014; Yun et al. 2022; Awal et al.
2011; Bresler, Průša, and Hlaváč 2016) suffer from limited
sample sizes, particularly for specific categories of ele-
ments, making accurate assessment of model performance
challenging. Existing datasets adopt tracing or redrawing
techniques for handwritten documents creation, ensuring
consistent temporal patterns of stroke creation and pauses.
However, real-world sketching involves interruptions of
varying durations and modifications at arbitrary time points,
which are not accurately captured by existing datasets.
Furthermore, a single-type diagram dataset cannot ade-
quately support the training of classification algorithms
for diagrams. Therefore, the need arises for a large-scale,
realistic and multi-category diagram dataset.

Stroke Restoration. Offline diagram manipulation faces
challenges due to the absence of stroke information. Stroke
restoration methods reconstruct stroke coordinate sequences
from offline diagrams and are primarily utilized for character
recognition and structural analysis. Chan (2020) has verified
that mathematical formula recognition could benefit from
stroke restoration. Recent studies have employed template
or reference strokes to restore strokes in Chinese characters
(Wang, Jiang, and Liu 2022; Li et al. 2023). Nevertheless,
the acquisition of template or reference strokes becomes in-
tricate in free-drawing diagrams rich in stroke semantics and
multi-stroke structures. Stroke-level manipulation for offline
diagrams remains a challenge to be addressed.

Method
In this section, we introduce our proposed SpaceGTN
model. We first give the problem definition. Then, we pro-
vide details of dynamic graph building and SpaceGTN. Fi-
nally, the stroke restoration is decribed. The framework of
the model is shown in Figure 2.

Problem Definition
This research aims to address the challenge of intelligently
recognizing handwritten diagrams. We have L online hand-
written diagrams labeled as D, where D consists of diagrams
{Gi|i = 1, ..., L}. Each online handwritten diagram is de-
fined as a graph Gi, where each stroke Si

u is represented as
a node N i

u, and the node set N i in Gi can be expressed as
{(Si

u, C
i
u, I

i
u)|u = 1, ..., n}, where n denotes the number of



Figure 2: Overview of the processing pipeline based on SpaceGTN. The system generates the kdhop graph from the input online
handwritten diagram, subsequently extracting both attribute and image features. Within the SpaceGTN model, the PNAConv
processes the attribute features, while the AttnConv manages the image features. Features from each layer are then integrated
to derive the key and query matrices K, Q. The K, Q matrices along with the V matrix which is sourced from the attribute
feature, implement the attention mechanism. The spatial encoding from the stroke position information and the edge encoding
derived from the dynamic graph are added on the attention matrix. The edge embedding is the average of the node embeddings it
connects. The graph embedding is the mean of all the node embeddings within the graph. In conclusion, the system yields node,
edge, and graph classification results, ultimately producing an online handwritten diagram with strokes and symbol annotations.

nodes in Gi. Each node has a class label Ci
u, and a serial

number Iiu of the symbol it belongs to. The spatial relation-
ships between strokes are encoded as an edge set Ei. Each
edge is classified as positive or negative. Positive edges rep-
resent connections between nodes within the same symbol,
while negative edges represent connections between nodes
from different symbols. With the result of edge classifica-
tion, the symbol segmentation task can be completed. Each
edge set Ei is expressed as {(Ei

v, C
i
v)|v = 1, ...,m}, where

m denotes the number of edges in Gi. Therefore, the graph
Gi can be represented as: Gi = (N i, Ei, Ci), where Ci is
the category of graph Gi. Our nodes capture only the (x, y)
coordinates of each stroke, without requiring additional in-
formation such as time, pressure, pen state, or other stroke
specifics, making it easier for data capture. However, omit-
ting such vital information greatly increases the difficulty
of the research. For online diagrams, our goal is to group
strokes into symbols and predict labels for both the symbols
and the entire graph. For offline diagrams, we aim to convert
non-editable offline strokes into editable online strokes and
process them in the same manner as online diagrams.

Feature Extraction and Fusion Module
In our experiments, we have found that both the attribute
features of the strokes and the deep features of stroke images
have a significant impact on classification. Common stroke
feature extraction techniques, such as methods combining
CNN (LeCun et al. 1998) with LSTM (Yao et al. 2018) and
methods that directly extract stroke attribute features, pri-
marily rely on the temporal information of strokes. How-
ever, the absence or modification of temporal information
can severely affect the LSTM and the temporal attributes of
strokes. Therefore, we propose a dual-channel feature ex-
traction method: the first channel extracts the geometric and

contextual attribute features of strokes; the second channel
extracts deep image features using neural networks. Through
our experiments, PNAConv (Corso et al. 2020) surpasses
GCN (Kipf and Welling 2017) and GAT in spatial feature
aggregation of strokes. We chose PNAConv to aggregate at-
tribute features Xs, and combine convolution with attention
(Mnih et al. 2014) to construct the feature extractor F for
finely extracting the image features of the strokes Xp. In or-
der to mitigate the computational complexity introduced by
the transformer architecture, we employ feature fusion dur-
ing self-attention computation. During the fusion stage, at-
tribute features and deep features are concatenated at various
depths, simultaneously reducing feature dimensionality. For
the calculation of V (value) matrix in the attention model,
the feature fusion module is omitted, effectively addressing
problems introduced by the self-attention mechanism:

Xl = softmax(Fl(X
p
l )⊕ PNAConvl(X

s
l )) (1)

where Xl is the aggregated feature at layer l.

Dynamic Graph Building
Existing methods for determining if nodes are connected
based on time proximity are only suitable for fluent writ-
ing processes without modifications. However, our dataset
proves that instances of intermittent drawing and modifi-
cations frequently occur during the drawing process, lead-
ing to wrong connections in the graph. In handwritten di-
agrams, there can be numerous strokes within the same
category which are contained by different symbols. These
strokes should be able to convey information among them-
selves. However, the method in (Yun et al. 2022) fails to
effectively utilize the stroke information from symbols of
the same category that are located farther apart. To address
these challenges, we introduce a method for dynamic graph



building. We first construct graph connections based on spa-
tial proximity. If one node is spatially adjacent to another
one, an edge connecting them is added to the edge set. Sub-
sequently, nodes with their degrees smaller than a thresh-
old will be connected to their Kdhop nodes. Experiments
show that Kdhop connection can effectively connect non-
neighboring similar stroke nodes, but Kdhop may also con-
nect too many different types of nodes. To solve this prob-
lem, we use the similarity scores between nodes to dynam-
ically modify Kdhop connected edges. We dynamically up-
date the features of the strokes, as well as the similarity
score weights of the image features and attribute features
of the strokes during the training process, so as to obtain the
most accurate node similarity scores. We design a method
for computing similarity based on stroke image features.
Different from the common method (Zhang et al. 2018) of
extracting complex image features of AlexNet (Krizhevsky,
Sutskever, and Hinton 2012), we consider the details of sim-
ple images. Our feature extractor F adjusts the size of the
convolution kernel and adds the attention mechanism to ex-
tract the image features of the current stroke N i

p and the ad-
jacent stroke N i

q respectively. To quantify stroke similarity,
we define an image feature similarity score Sperc:

Sperc = exp(− 1

HjWj

Hj∑
h=1

Wj∑
w=1

(F j
h,w(p)− F j

h,w(q))
2) (2)

where F j
h,w is the image features on the map of the jth

layer. We further employ shape context score (Belongie, Ma-
lik, and Puzicha 2000) and curvature loss methods based on
stroke coordinate points. Because of the rotation invariance
of the stroke structure in the diagram, we use the Shape Con-
text score SSC to compare strokes Sp and Sq:

Ssc = exp(−
∑

(i,j)∈M

∑
k,l

|C(Pp,i)[k, l]− C(Pq,j)[k, l]|) (3)

where M is the optimal match of the strokes, and C is the
shape context of the strokes.

Observing that the curvatures of strokes in the same cat-
egory of symbols have similarities, we propose a curvature
similarity score Sc of strokes:

Sc = exp(−
n−2∑
i=1

|αi − βj |) (4)

where αi and βj represent the vector angles between adja-
cent points in strokes Sp and Sq respectively. We use the fol-
lowing formula to calculate the total similarity score Stotal:

Stotal = w1 · Sperc + w2 · Ssc + w3 · Sc (5)

where w1, w2, w3 are the weights of scores.

SpaceGTN Model
Many diagram recognition techniques primarily rely on
GAT(Ye et al. 2019, 2021; Yun et al. 2022). However,
GAT is limited to focusing on a node’s first-order neigh-
borhood. When GAT incorporates higher-order neighbor-
hoods, its classification performance deteriorates signifi-
cantly (Zhang et al. 2019). In hand-written diagrams, strokes

of the same category might lack direct connections, irrespec-
tive of whether they belong to the same symbol. This pre-
vents nodes from effectively aggregating all pertinent fea-
tures. To address this issue, we integrate the GTN network
(Ying et al. 2021) into handwritten diagram recognition for
the first time. This approach enables each node to collect
features across the entire diagram, facilitating learning for
distant nodes of the same category. Additionally, we intro-
duce two structure encoding methods tailored for handwrit-
ten diagrams, as explained in detail below.

Edge Encoding In the recognition of handwritten dia-
grams, edge features describe the relationships between
nodes, serving as a crucial component in graph representa-
tion. The majority of existing studies have incorporated edge
features into node features. Due to inaccuracies in edge re-
lationships and the constraints of the GAT network, edge in-
formation has not been effectively utilized to guide compu-
tations of global correlations. To address this problem, our
dynamic graph building module plays a pivotal role in edge
encoding. This module sorts nodes based on their dynamic
similarity scores Stotal, resulting in a more precise adjacency
matrix Eopt:

Eopt
p =

{
1 if Stotal ranks top k for node p
0 otherwise

(6)

where Stotal is the similarity score between nodes.
However, solely relying on Eopt to guide the attention ma-

trix does not capture the characteristics of connected edges.
We aggregate the edge features FE , assign them as weights
to the adjacency matrix, and use this matrix as a bias term
AE in the attention matrix calculation:

AE = Attn(FE)× Eopt (7)

Spatial Encoding For handwritten diagrams, the posi-
tional information of stroke nodes holds significant contex-
tual relevance. The effectiveness of absolute position infor-
mation for strokes in handwritten diagrams is limited by
substantial variations across different samples, and it inad-
equately emphasizes the relative interrelationships between
strokes. Consequently, we employ the technique of encod-
ing strokes through relative positional information. Specif-
ically, given any graph Gi with a node set N i, we define
h(N i

u) = p(N i
u)h and w(N i

u) = p(N i
u)w, where h repre-

sents the vertical coordinate and w represents the horizontal
coordinate. This yields a coordinate vector:

coords(N i
u) =

[
h(N i

u)
w(N i

u)

]
(8)

For any two nodes N i
ua

and N i
ub

, their relative coordinates
(RC) are defined as follows:

RC(N i
ua
, N i

ub
) = coords(N i

ua
)− coords(N i

ub
) (9)

The relative position encoding index (R) is expressed as:

R(N i
ua
, N i

ub
) = RC(N i

ua
, N i

ub
)h+RC(N i

ua
, N i

ub
)w (10)

Finally we get the attention matrix AG of the graph G:

AG = softmax
(
XWq(XWk)

T

√
dv

+AEWe +RNWr

)
(11)



where X is the characteristic matrix of the graph, W means
learnable weights, and RN is the relative position encoding
index of the graph.

Loss Function We choose the cross-entropy function (CE)
to calculate the loss for the node, edge and graph classifica-
tion problems.

CE(P,Q) = −
c∑

i=1

P (i) log(Q(i)) (12)

where P (i) is the true probability of sample i derived from
labels, Q(i) is the predicted probability of sample i by the
model, and c is the number of categories.

Stroke Restoration
Current stroke restoration methods mainly focus on junction
detection and stroke segment merging. The primary chal-
lenge lies in potential inaccuracies during the stroke segment
merging process. In this work, we improve the junction de-
tection method to facilitate segments merging. For every pair
of adjacent segments, we collect two point sequences P1,
P2 and vectors v1, v2 near the junction, separately calcu-
late their connectivity c, and then sequentially connect two
strokes with the biggest connectivity. The connectivity c is
calculated as:

c = η
|
∑

(xi − x̄)
∑

(yi − ȳ)|√∑
(xi − x̄)2

√∑
(yi − ȳ)2

+ (1− η)
v1 · v2

|v1| · |v2| (13)

where (xi, yi) ∈ P1 ∪ P2, x̄ =
∑

xi

n , ȳ =
∑

yi

n . The first
term in the formula represents the linear dependence, and
the second term represents the consistency of direction.

Unlike other approaches, we split the merged strokes at
their corners, which is more congruent with stroke-level ma-
nipulations. It offers a more intuitive representation for ge-
ometrical primitives which are better depicted by multiple
individual lines rather than a single continuous polyline.

OHSD Dataset
In this work, we release the first large-scale online hand-
written structure diagram dataset (OHSD), including 10,000
diagrams with 3 diagram types, a total of 4900 flowcharts,
3100 mind maps and 2000 automata. Figure 3 shows the
difference between template drawing and free drawing. For
free drawing, we provided the writers with prompt texts that
can be expressed in structural diagrams and asked them to
draw the corresponding diagram according to their own un-
derstanding. Compared with template drawing, free drawing
better matches real drawing scenarios. Each stroke in the
dataset contains point coordinates, timestamps, a category
label, a symbol label and stroke modification annotations.
Statistics indicate that about 40% of the symbols and 70%
of the diagrams contain modified strokes, and the number of
modified strokes for each free drawing diagram is 20%-30%
more than that of a template drawing diagram. It can be seen
that the chaos of stroke timestamp exists commonly in real
drawing scenarios, which further confirms the superiority of
our method that does not depend on temporal information.

(a) Template drawing. (b) Free drawing.

Figure 3: Comparison of template drawing and free drawing.
Both diagrams describe the Collatz conjecture. (a) Flowchart
drawn following a template. (b) Flowchart drawn based on
prompt text.

Datasets Types Diagrams Templates Symbols Strokes

FA 1 300 36 8261 14976
FC_A 1 419 28 9331 39051
FC_B 1 672 84 14880 70684

CASIA-OHFC 1 2957 1200 90376 849719
OHSD 3 10000 3900 319038 2757801

Table 1: Overview of online diagram datasets. The prompt
texts in OHSD are counted in the ‘Templates’ column.

OHSD is the first dataset collected using a free draw-
ing method and comes with modification annotations. Be-
sides, OHSD contains the most free drawing themes and
templates covering a wide range of application fields, a va-
riety of drawing styles, and structures including tree, time-
line, one-way and organizational structure, etc. In contrast
to other datasets, OHSD has a more balanced distribution
of different symbol types. In summary, OHSD manifests a
higher level in terms of complexity, standardization and di-
versity. Table 1 shows the comparison of OHSD, FA (Awal
et al. 2011), FC_A (Awal et al. 2011), FC_B (Bresler, Průša,
and Hlaváč 2016) and CASIA-OHFC (Yun et al. 2022).

Experiments
Experiment Design
We employed datasets listed in Table 1 to evaluate our
model. The experiments mainly encompass comparative ex-
periments and ablation experiments. For the comparative ex-
periments, we implement four offline methods, DETR (Car-
ion et al. 2020), Deformable DETR (Zhu et al. 2021), Mask
R-CNN (He et al. 2017), Faster R-CNN(Ren et al. 2015)
along with three online methods, Inst-GNN(Yun et al. 2022),
ORSAD (Bresler, Průša, and Hlaváč 2016) and EGAT (Ye
et al. 2019). We tested these methods across various datasets
and compared them with SpaceGTN. In the context of abla-
tion experiments, we systematically examine the impact of



(a) Handwritten diagram
example.

(b) Graph built based on
spatial distance.

(c) Graph built based on
Kdhop.

(d) Dynamic graph building.

Figure 4: Visualization of graph building approaches for handwritten diagram (a). (b) builds the graph solely based on spatial
distance. (c) introduces Kdhop edges, enhancing connectivity within symbols (highlighted in red), and reinforcing communi-
cation among symbols of the same category (highlighted in purple). (d) is built by calculating the dynamic similarity score Stotal
throughout the training process. The connections in the graph are dynamically adjusted. The graph significantly strengthens
connections between strokes that are spatially distant and similar in shape (highlighted in gold).

Figure 5: Diagram recognition accuracy of different degrees
of completion using different methods.

four modules, Kdhop graph building, dynamic graph build-
ing, edge encoding, and spatial encoding on model accuracy.
Furthermore, we also test the graph recognition accuracy at
varying completion stages of diagrams. Experiments are car-
ried out on NVIDIA A40 GPUs.

Evaluation Metrics
We employ Stroke Classification Accuracy, Stroke Classifi-
cation Precision and Symbol Recognition F1-Score to mea-
sure the performance of the model.
(1) Stroke Classification Accuracy (SCA).

SCA =

∑N
i=1 Ci∑N
i=1 Ti

(14)

where Ci is the number of strokes correctly classified in cat-
egory i, Ti is the total number of strokes in category i and
N is the number of categories.
(2) Stroke Classification Precision (SCP).

SCP =

N∑
i=1

Ti∑N
i=1 Ti

× Pi (15)

where Pi is the precision of class i.
(3) Symbol Recognition F1-Score (SRF).
F1-score is the harmonic mean of precision (P ) and recall
(R), given by:

F1 =
2× P ×R

P +R
(16)

where P is the fraction of correctly identified symbols out
of all predicted symbols, and R is the fraction of correctly
identified symbols out of all actual symbols. In the task of
diagram segmentation and recognition, a symbol is consid-
ered to be correctly identified only if both its strokes and
symbol category are correct.

Results and Analysis
Temporal Information Dependence of Methods To
study the dependency of online methods on temporal infor-
mation, we replicate projects whose codes are not publicly
available, and test the performance of methods without tem-
poral information. Table 3 shows the stroke classification re-
sults of these algorithms. The decreased accuracy in NUT
condition confirms other approaches’ high dependence on
temporal information. However, our approach utilizes spa-
tial information and remarkably surpasses the performance
of the state-of-the-art methodologies in UT condition.

Comparison with State-of-the-Art We compare our
model with state-of-the-art methods on multiple datasets.
Notably, temporal information is not utilized by any of the
methods. As illustrated in Table 2, the absence of temporal
information leads to low accuracy for the aforementioned
online methods across various datasets. Moreover, our al-
gorithm relies on the ultra-high accuracy of edge and node
classification. We discard the complicated post-processing
required in the segmentation process by other methods, thus
simplifying the process and making it more suitable for real-
time interaction. The strokes restored from offline diagrams
lack temporal information, and modifications or interrupted
drawing can cause confusion in the time data. In such cases,
other online methods fail to identify them accurately, while
our method remains unaffected. Extensive experiments on



Method FC_A FC_B CASIA-OHFC OHSD

SCA SCP SRF SCA SCP SRF SCA SCP SRF SCA SCP SRF

DETR 47.89 53.75 40.83 68.87 65.03 59.52 50.76 52.94 47.83 48.02 47.48 43.53
DeDETR 55.64 56.27 51.72 64.07 68.10 59.68 52.17 59.75 49.10 56.72 62.30 52.91

FasterRCNN 71.66 68.89 52.45 74.61 79.68 52.19 71.56 74.50 58.44 67.75 69.04 53.62
MaskRCNN 77.57 74.62 61.88 78.70 72.56 63.72 72.26 70.74 56.52 76.30 71.95 53.21

ORSAD 96.30 93.04 84.20 97.92 95.83 92.16 87.90 83.23 68.26 85.36 82.34 64.63
EGAT 97.28 96.46 - 98.32 98.25 - 89.71 90.46 - 90.12 89.51 -

InstGNN 98.44 98.07 95.04 98.56 98.71 97.82 92.86 93.18 74.29 95.52 94.86 88.32
Ours 99.02 98.67 95.32 99.12 99.32 98.05 98.13 97.93 80.47 99.78 99.32 95.54

Table 2: Quantitative comparisons across multiple datasets with diverse offline and online methods (%), all conducted without
incorporating temporal information.

CASIA-OHFC OHSD

Method UT NUT UT NUT

SCA SCP SCA SCP SCA SCP SCA SCP

ORSAD 91.31 91.04 87.90 83.23 86.65 84.36 85.36 82.34
EGAT 92.76 92.01 89.71 90.46 92.82 90.46 90.12 89.51
I-GNN 95.81 95.42 92.86 93.18 96.89 95.44 95.52 94.86
Ours - - 98.13 97.93 - - 99.78 99.32

Table 3: Online methods are applied to datasets containing
temporal information. The performance (%) of these meth-
ods under both scenarios: utilizing (UT) and not utilizing
temporal information (NUT). “I-GNN” stands for Inst-GNN
and “Ours” represents SpaceGTN.

multiple datasets (Table 2) show that our method consis-
tently outperforms existing methods and achieves state-of-
the-art performance.

Graph Classification Result As shown in Figure 5, di-
agram recognition accuracy using SpaceGTN can achieve
more than 85% under 20% strokes, and about 90% un-
der 30% strokes. The accuracy of the proposed method is
higher than that of other methods at different completion
degrees, especially in the low completion degree situation.
This implies that we can accurately identify the graph cat-
egory when the user initially draws, and promptly provide
corresponding interactive functions.

Ablation Study
We conduct ablation studies using the CASIA-OHFC
dataset to assess the influence of different components
within our proposed method on performance.

Effect of Dynamic Graph Building We investigate the
influence of various graph building blocks on performance.
We conduct experiments using the Kdhop method and com-
pute the similarity score Stotal separately and simultaneously.
The experimental results shown in Table 4 prove that method
for edge expansion relying only on the Kdhop is not opti-
mal. It introduces many irrelevant nodes and compromises
the aggregation of node features. However, the combined
approach of Kdhop and Dy_G is significantly better than

Exp Kdhop Dy_G Edgeenc Spenc SCA SCP

1 × × × × 94.06 94.28
2 ✓ × × × 94.56 94.44
3 × ✓ × × 96.13 95.57
4 × × ✓ × 95.90 95.83
5 × × × ✓ 95.02 94.82
6 ✓ ✓ × × 97.42 97.38
7 ✓ ✓ ✓ × 97.81 97.63
8 ✓ ✓ × ✓ 97.76 97.68
9 ✓ ✓ ✓ ✓ 98.13 97.93

Table 4: Ablation experiments conducted to investigate the
impact of modules Kdhop Graph Building (Kdhop), Dy-
namic Graph Building (Dy_G), Edge Encoding (Edgeenc),
and Spatial Encoding (Spenc) (%).

using either module alone. The visualization of graph build-
ing is shown in Figure 4.

Effect of Structure Encoding As presented in Table
4, activating either edge encoding or spatial encoding in
SpaceGTN, the performance enhancement is suboptimal.
Concurrent activation of both modules markedly boosts the
accuracy, which underscores the pivotal role of structural en-
coding in node classification.

Conclusion
The recognition of online handwritten diagrams is converted
into problems of graph, node and edge classification. We in-
troduce SpaceGTN, a graph transformer network that op-
erates independently of temporal information. Through the
integration of proposed modules, we attained an accuracy
of 98.13% on the CASIA-OHFC dataset and 99.78% on
the OHSD dataset in node classification task. Our approach
maintains state-of-the-art performance even when bench-
marked against methods that incorporate temporal informa-
tion. Furthermore, we have designed an integrated proto-
type system that harmoniously bridges offline and online
diagrams. In addition, we will publicly release the OHSD
dataset, the pioneering large-scale online handwritten dia-
gram dataset with freely drawn strokes and stroke modifica-
tion annotations.
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