
Containment of GraphQueries Modulo Schema

VÍCTOR GUTIÉRREZ-BASULTO, Cardiff University, UK
ALBERT GUTOWSKI, University of Warsaw, Poland
YAZMÍN IBÁÑEZ-GARCÍA, Cardiff University, UK
FILIP MURLAK, University of Warsaw, Poland

With multiple graph database systems on the market and a new Graph Query Language standard on the
horizon, it is time to revisit some classic static analysis problems. Query containment, arguably the workhorse
of static analysis, has already received a lot of attention in the context of graph databases, but not so in the
presence of schemas. We aim to change this. Because there is no universal agreement yet on what graph
schemas should be, we rely on an abstract formalism borrowed from the knowledge representation community:
we assume that schemas are expressed in a description logic (DL). We identify a suitable DL that capture
both basic constraints on the labels of incident nodes and edges, and more refined schema features such as
participation, cardinality, and unary key constraints. Basing upon, and extending, the rich body of work on DLs,
we solve the containment modulo schema problem for unions of conjunctive regular path queries (UCRPQs)
and schemas whose descriptions do not mix inverses and counting. For two-way UCRPQs (UC2RPQs) we solve
the problem under additional assumptions that tend to hold in practice: we restrict the use of concatenation in
queries and participation constraints in schemas.

CCS Concepts: • Theory of computation→ Logic and databases.

Additional Key Words and Phrases: conjunctive regular path queries, two-way, containment, schema, descrip-
tion logics, entailment, finite model reasoning

ACM Reference Format:
Víctor Gutiérrez-Basulto, Albert Gutowski, Yazmín Ibáñez-García, and Filip Murlak. 2024. Containment
of Graph Queries Modulo Schema. Proc. ACM Manag. Data 2, 2 (PODS), Article 77 (May 2024), 26 pages.
https://doi.org/10.1145/3651140

1 INTRODUCTION
Graph databases are today a mainstream technology with numerous applications in areas such
as biology, social sciences, and logistics [35]. For example, in bioinformatics graph databases are
commonly used to represent protein, cellular, and drug networks [25, 32]. Existing graph query
languages, such as SPARQL or Cypher, and the upcoming Graph Query Language standard [19,
24] are navigational: they are build around regular path queries (RPQs) that allow one to test
whether two nodes are related by a path of edges specified by a regular expression [1, 6, 13, 14].
Popular extensions of RPQs include: two-way RPQs (2RPQs), which can traverse edges forward
and backwards; conjunctive RPQs (CRPQs), which are the closure of RPQs by conjunction and
projection; and UC2RPQs, which combine both above extensions with closure under union. These
formalisms have been widely studied in multiple classical contexts, one of which is static analysis.
Arguably, the fundamental static analysis problem is query containment; that is, checking whether

Authors’ addresses: Víctor Gutiérrez-Basulto, gutierrezbasultov@cardiff.ac.uk, Cardiff University, Cardiff, UK; Albert
Gutowski, a.gutowski@mimuw.edu.pl, University of Warsaw, Warsaw, Poland; Yazmín Ibáñez-García, ibanezgarciay@
cardiff.ac.uk, Cardiff University, Cardiff, UK; Filip Murlak, f.murlak@uw.edu.pl, University of Warsaw, Warsaw, Poland.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 2836-6573/2024/5-ART77
https://doi.org/10.1145/3651140

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

HTTPS://ORCID.ORG/0000-0002-6117-5459
HTTPS://ORCID.ORG/0000-0001-7084-2965
HTTPS://ORCID.ORG/0000-0002-1276-904X
HTTPS://ORCID.ORG/0000-0003-0989-3717
https://doi.org/10.1145/3651140
https://orcid.org/0000-0002-6117-5459
https://orcid.org/0000-0001-7084-2965
https://orcid.org/0000-0001-7084-2965
https://orcid.org/0000-0002-1276-904X
https://orcid.org/0000-0003-0989-3717
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3651140

77:2 Víctor Gutiérrez-Basulto, Albert Gutowski, Yazmín Ibáñez-García, and Filip Murlak

*

Customer

id

Premier Card

Company

name
address

Credit Card

number

Retail Company

owns*

*

Rewards Program

id

earns

partner

0 .. 3

owns

*

*

*

1 .. *

Fig. 1. Schema of a financial graph database

a query necessarily yields a subset of the result of another query. It was showed long ago that the
containment problem for UC2RPQs is ExpSpace-complete [13], improving a previously established
ExpSpace upper bound for CRPQs [23]. More recently, this result has been refined by investigating
the containment problem of practical subclasses of CRPQs [22], or by identifying conditions under
which the UC2RPQ-containment problem becomes tractable [21]. However, none of these works
considers containment of navigational queries in the presence of schemas. A notable exception
is the work by Deutsch and Tannen [20] in which expressive fragments of first-order logic are
used as schema languages; the technical contribution of this work are decidability results, but no
tight complexity bounds are provided. The only other exception we are aware of is a very recent
work on graph database transformations [8], which shows as a side result that containment of
UC2RPQs in acyclic UC2RPQs modulo schemas expressed in the Horn fragment of the description
logic ALCIF is in 2EXPTIME.

The scarcity of work on graph query containment in the presence of schemas is perhaps explained
by the fact that there is no agreement yet on what graph schemas should be. Recently, however, a
community proposal called PG-Schema for the property graph data model has been put forward [2],
leveraging an earlier constraint language called PG-Keys [3]. Motivated by this, we revisit the
problem of containment of UC2RPQs modulo schema. Following the lead of Boneva et al. [8], we
work with schemas expressed in description logics; specifically, in a logic called ALCQI which
extends the basic Boolean-complete description logic ALC with the ability to count (Q) and see
edges backwards (I) [5]. Description logics are the go-to formalism for conceptual modelling
in the knowledge representation community, conveniently capturing ER models and UML class
diagrams [4, 7, 15, 16]. ALCQI specifically has been advocated as a good choice [7, 15] and
is well aligned with the core features of PG-Schema: over graphs with single labels on edges,
ALCQI captures PG-Types (the core of PG-Schema) and a practically relevant subset of PG-Keys,
including participation, cardinality, and unary key constraints (properties can be handled via
reification). Among alternatives, ALUNI [16] cannot handle arbitrary combinations of node
labels and DL-Lite [4] cannot talk about both endpoints of an edge simultaneously.
Example 1.1. Schema S in Figure 1 represents a conceptual data model where each customer

owns at least one credit card; some credit cards are premier cards and earn rewards for purchases
from partner retail companies and their subsidiaries; each premier card participates in at most 3
rewards programs. In Section 2 we show how to express this inALCQI. We retrieve customers and
partners from which they earn rewards using 𝑞1 (𝑥,𝑦) = (Owns · Earns · Partner · Owns∗) (𝑥,𝑦) and
𝑞2 (𝑥,𝑦) = (Owns·Earns·Partner) (𝑥, 𝑧)∧𝑅𝑒𝑡𝑎𝑖𝑙𝐶𝑜𝑚𝑝𝑎𝑛𝑦 (𝑧)∧Owns∗ (𝑧,𝑦); we use · for concatenation

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

Containment of GraphQueries Modulo Schema 77:3

and ∗ for unbounded iteration. Without schema, 𝑞2 is contained in 𝑞1, but not conversely; modulo
S, 𝑞1 is contained in 𝑞2 as well.

Using description logics as an abstract schema specification language allows us to reuse some
ideas and techniques, but only up to a point. The main obstacle is the attitude to infinity: while
database theory focuses on finite structures, knowledge representation traditionally embraces
infinite models. For containment of navigational queries these two worlds are far apart: even for
very limited logics, the answer depends on whether infinite graphs are allowed. Hence, previous
results on query containment modulo constraints expressed in description logics [12, 17] do not
apply in our case

Our contribution. We solve the containment modulo schema for the following combinations of
query and schema languages:
(1) UCRPQs and either ALCIor ALCQ,
(2) simple UC2RPQs and ALCQ,
(3) UC2RPQs and ALCQI without participation constraints,

where ‘simple’ essentially means no concatenation in regular expressions. In all cases the problem
is in 2EXPTIME; in items (1) and (2) the bound is tight by earlier results discussed below. We leave
open the more general combination of UC2RPQs and ALCQI: handling backward edges turned
out to be rather subtle, both in queries and in schemas. However, the combinations we support
already provide the expressivity needed in many settings. Item (2) is particularly useful. On one
hand, recent studies of query logs [9, 10] show that a vast majority of queries are simple. On the
other hand, the combination allows capturing some backward constraints by reversing the edges,
because the query language supports backward edges; for example, one-to-many relationships can
be supported.
Our approach, detailed in Section 3, relies on a non-trivial reduction of query containment to

a related problem of finite entailment, asking if a given query is satisfied in every finite graph
that extends a given graph and satisfies a given schema. Then, we extend significantly the limited
available results on finite entailment [18, 27, 28] to be able to cover the combinations of schema
and query languages we aim at (Sections 5–6). As a technical highlight, let us point out a general
method of building structures that avoid a given UC2RPQ (Section 4), akin to the large-girth method
of avoiding conjunctive queries [33], based on a novel construction of the coil.

2 PRELIMINARIES
Graphs. We fix a recursively enumerable set Γ of node labels, and an recursively enumerable set
Σ of edge labels. We model graph databases as labeled directed graphs in which nodes can have
multiple labels, while edges have a single label. Parallel edges are allowed, as long as they have
different labels. We present such graphs as relational structures over unary relation symbols Γ and
binary relation symbols Σ. That is, a graph 𝐺 is a pair

(
dom(𝐺), ·𝐺

)
where dom(𝐺) is the set of

nodes of 𝐺 and the function ·𝐺 maps each 𝐴 ∈ Γ to a set 𝐴𝐺 ⊆ dom(𝐺) and each 𝑟 ∈ Σ to a binary
relation 𝑟𝐺 ⊆ dom(𝐺) × dom(𝐺). Graph 𝐺 is finite if dom(𝐺) is finite and 𝐴𝐺 and 𝑟𝐺 are empty
for all but finitely many 𝐴 ∈ Γ and 𝑟 ∈ Σ. Graph 𝐺 is a subgraph of graph 𝐺 ′, written 𝐺 ⊆ 𝐺 ′, if
dom(𝐺) ⊆ dom(𝐺 ′), 𝐴𝐺 ⊆ 𝐴𝐺 ′ and 𝑟𝐺 ⊆ 𝑟𝐺 ′ for all 𝐴 ∈ Γ and 𝑟 ∈ Σ. A homomorphism ℎ from
graph𝐺 to graph𝐺 ′, written ℎ : 𝐺 → 𝐺 ′, is a function ℎ : dom(𝐺) → dom(𝐺 ′) such that 𝑢 ∈ 𝐴𝐺 iff
ℎ(𝑢) ∈ 𝐴𝐺 ′ and (𝑢, 𝑣) ∈ 𝑟𝐺 implies

(
ℎ(𝑢), ℎ(𝑣)

)
∈ 𝑟𝐺 for all 𝑢, 𝑣 ∈ dom(𝐺), 𝐴 ∈ Γ, and 𝑟 ∈ Σ; that

is, ℎ preserves the absence of node labels . We use 𝐴 for complement node labels: we say a node has
label 𝐴 iff it does not have label 𝐴 and let 𝐴𝐺 = dom(𝐺) \𝐴𝐺 , Γ−0 = {𝐴 | 𝐴 ∈ Γ0}, Γ±0 = Γ0 ∪ Γ−0 for
every Γ0 ⊆ Γ. A type is a subset of Γ± that contains at most one of𝐴 and𝐴 for all𝐴 ∈ Γ. A type over

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

77:4 Víctor Gutiérrez-Basulto, Albert Gutowski, Yazmín Ibáñez-García, and Filip Murlak

Γ0 is a type that is a subset of Γ±0 . A node 𝑢 is of type 𝜏 in𝐺 if 𝑢 ∈ 𝐴𝐺 for all 𝐴 ∈ 𝜏 . Thus, every node
is of type ∅ and for every homomorphism ℎ : 𝐺 → 𝐺 ′, if 𝑢 is of type 𝜏 in𝐺 then ℎ(𝑢) is of type 𝜏 in
𝐺 ′. A graph realizes type 𝜏 if it contains a node of type 𝜏 . A graph𝐺 respects a set Θ of types if each
node in𝐺 is of some type from Θ. We use 𝑟− for inverse edges and let (𝑟−)𝐺 =

{
(𝑢, 𝑣) | (𝑣,𝑢) ∈ 𝑟𝐺

}
,

Σ−0 = {𝑟− | 𝑟 ∈ Σ0}, Σ±0 = Σ0 ∪ Σ−0 for every Σ0 ⊆ Σ.

Queries. LetV be an enumerable set of variables. We work with conjunctive two-way regular path
queries (C2RPQs) of the form

𝑞 = 𝐴1 (𝑥1) ∧ · · · ∧𝐴𝑘 (𝑥𝑘) ∧ 𝜑1 (𝑦1, 𝑧1) ∧ . . . ∧ 𝜑𝑚 (𝑦𝑚, 𝑧𝑚) ,

where 𝑥1, . . . , 𝑥𝑘 , 𝑦1, . . . , 𝑦𝑚, 𝑧1, . . . , 𝑧𝑚 ∈ V ,𝐴1, . . . , 𝐴𝑘 ∈ Γ±, and 𝜑1, . . . , 𝜑𝑚 are regular expressions
over the alphabet Γ± ∪ Σ±, using concatenation, union, and Kleene star; we allow complement node
labels to facilitate query factorization in Section 3. We write var (𝑞) for the set of variables used in
𝑞. A match of 𝑞 in a graph𝐺 is a function 𝜋 : var (𝑞) → dom(𝐺) such that for every atom 𝐴(𝑥) in 𝑞,
𝜋 (𝑥) ∈ 𝐴𝐺 , and for every atom 𝜑 (𝑦, 𝑧) in 𝑞 there are ℓ1, . . . , ℓ𝑛 ∈ Γ± ∪ Σ±, and 𝑣0, . . . , 𝑣𝑛 ∈ dom(𝐺)
for some 𝑛 ∈ N such that

(1) 𝑣0 = 𝜋 (𝑦) and 𝑣𝑛 = 𝜋 (𝑧);
(2) for all 𝑖 ∈ {1, . . . , 𝑛}, either ℓ𝑖 ∈ Σ± and (𝑣𝑖−1, 𝑣𝑖) ∈ (ℓ𝑖)𝐺 or ℓ𝑖 ∈ Γ± and 𝑣𝑖−1 = 𝑣𝑖 ∈ (ℓ𝑖)𝐺 ;
(3) the word ℓ1 . . . ℓ𝑛 matches the regular expression 𝜑 .

We say that𝑞 is satisfied in𝐺 andwrite𝐺 |= 𝑞 if there is a match of𝑞 in𝐺 . Owing to homomorphisms
preserving complement node labels, if 𝐺 |= 𝑞 and 𝐺 maps homomorphically to 𝐺 ′ then 𝐺 ′ |= 𝑞.
We also use unions of C2RPQs (abbreviated as UC2RPQs) represented as sets of C2RPQs 𝑄 =

{𝑞1, . . . , 𝑞𝑘 } and extend the notion of satisfaction to UC2RPQs in the natural fashion. By (unions of)
conjunctive regular path queries, abbreviated as (U)CRPQs, we mean (U)2CRPQs that do not use
labels from Σ− in regular expressions. By (two-way) regular path queries, abbreviated as (2)RPQs,
we mean binary atoms of C(2)RPQs. A query is test-free if it does not use labels from Γ± in regular
expressions. A query is simple if it only uses regular expressions of the forms 𝑟 and (𝑟1+𝑟2+· · ·+𝑟𝑛)∗
with 𝑟, 𝑟1, . . . , 𝑟𝑛 ∈ Σ±.

Following [28], we sometimes work with UC2RPQs represented by means of a (nondeterministic)
semiautomaton [26] A = (𝑆,Δ, 𝛿) where 𝑆 is a finite set of states, Δ ⊆ Γ± ∪ Σ± is a finite alphabet,
and 𝛿 ⊆ 𝑆 ×Δ×𝑆 is the transition relation. A semiautomaton is essentially a nondeterministic finite
automaton without initial and final states; a run of a semiautomaton A over a word𝑤 is defined
just like for a nondeterministic finite automaton, except that it can begin in any state and there is
no notion of accepting runs. Under this representation, (2)RPQs are atoms of the form A𝑠,𝑠′ (𝑡, 𝑡 ′)
where 𝑠, 𝑠′ ∈ 𝑆 are states of A. In the definition of a match we rephrase item (3) as follows:

(3’) some run of A over ℓ1 . . . ℓ𝑛 begins in 𝑠 and ends in 𝑠′.

Each UC(2)RPQ𝑄 can be effectively rewritten as a UC(2)RPQ𝑄 ′ expressed by means of a (nondeter-
ministic) semiautomaton A of size linear in the total size of regular expressions in 𝑄 , by replacing
each regular expression in𝑄 withA𝑠,𝑠′ for some states 𝑠, 𝑠′ ofA. Simple UC(2)RPQs correspond to
disjoint unions of single-edge automata and single-state automata, with Δ ⊆ Σ±

Description logics. We work with graph properties expressed in the description logic ALCQI(and
its fragments) [5]. In description logics, elements of Γ and Σ are called concept names and role names,
respectively. ALCQIallows building more complex concepts with the following grammar:

𝐶 ::= ⊥ | 𝐴 | 𝐶 ⊓𝐶 | ¬𝐶 | ∃≤𝑛𝑟 .𝐶 ,

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

Containment of GraphQueries Modulo Schema 77:5

where 𝐴 ∈ Γ±, 𝑟 ∈ Σ±, and 𝑛 ∈ N. We extend the interpretation function ·𝐺 to complex concepts as
follows:

⊥𝐺 = ∅ , (𝐶1 ⊓𝐶2)𝐺 = 𝐶𝐺
1 ∩𝐶𝐺

2 , (¬𝐶)𝐺 = dom(𝐺) \𝐶𝐺 ,

(∃≤𝑛𝑟 .𝐶)𝐺 =
{
𝑢 ∈ dom(𝐺) | ∃≤𝑛𝑣 . (𝑢, 𝑣) ∈ 𝑟𝐺 ∧ 𝑣 ∈ 𝐶𝐺

}
.

We also use additional operators that are redundant but useful when defining fragments; for brevity
we introduce them as syntactic sugar: ⊤ := ¬⊥, 𝐶1 ⊔𝐶2 := ¬(¬𝐶1 ⊓ ¬𝐶2), ∃≥𝑛𝑟 .𝐶 := ¬∃≤𝑛−1𝑟 .𝐶 ,
∃𝑟 .𝐶 := ∃≥1𝑟 .𝐶 , ∀𝑟 .𝐶 := ∃≤0𝑟 .¬𝐶 . Statements in description logics have the form of concept
inclusions (CIs),

𝐶 ⊑ 𝐷
where 𝐶 and 𝐷 are concepts. A graph 𝐺 satisfies 𝐶 ⊑ 𝐷 , in symbols 𝐺 |= 𝐶 ⊑ 𝐷 , if 𝐶𝐺 ⊆ 𝐷𝐺 . A set
T of CIs is traditionally called a TBox. A graph 𝐺 satisfies T , written as 𝐺 |= T , if 𝐺 |= 𝐶 ⊑ 𝐷 for
each 𝐶 ⊑ 𝐷 ∈ T . A node 𝑣 in 𝐺 satisfies 𝐶 ⊑ 𝐷 if 𝑣 ∈ 𝐶𝐺 implies 𝑣 ∈ 𝐷𝐺 ; 𝑣 satisfies T if it satisfies
each 𝐶 ⊑ 𝐷 ∈ T .
In the logic ALCQ we disallow using inverse roles: in expressions of the form ∃≤𝑛𝑟 .𝐶 (and all

derived expressions), we require that 𝑟 ∈ Σ. InALCI, we disallow counting: in expressions ∃≤𝑛𝑟 .𝐶
we require 𝑛 = 0; this corresponds to allowing only ∃𝑟 .𝐶 and ∀𝑟 .𝐶 . If both above restrictions are
imposed, we obtain the logic ALC.

A TBox in each of these description logics can be normalized; that is, up to introducing auxiliary
concept names, it can be expressed equivalently in the same logic using only CIs of the forms

𝐾 ⊑ 𝐿 , 𝐴 ⊑ ∃𝑟 .𝐵 , 𝐴 ⊑ ∀𝑟 .𝐵 , 𝐴 ⊑ ∃≤𝑛𝑟 .𝐵 , 𝐴 ⊑ ∃≥𝑛𝑟 .𝐵 ,
where 𝐴, 𝐵 ∈ Γ±, 𝑟 ∈ Σ±, 𝐾 is ⊤ or an intersection of concept names and complement concept
names, and 𝐿 is ⊥ or a union of concept names and complement concept names (see e.g. [29,
Prop. 1]).

Example 2.1. The following CIs capture key features of the schema S from Example 1.1 (with
self-explanatory abbreviations):

Customer ⊑ ∃owns.CredCard , PremCC ⊑ CredCard ,

PremCC ⊑ ∃earns≤3.RwrdProg , RetlComp ⊑ Comp .

In order to fully capture schema S we also need to specify that only the depicted relationships are
allowed. For instance,

PremCC ⊑ ∀earns.RwrdProg , RwrdProg ⊑ ∀earns− .PremCC ,

and similarly for partner and owns. We must also ensure that entities do not overlap, unless explicitly
allowed by generalization relationships; for instance,

Customer ⊓ CredCard ⊑ ⊥ , RwrdProg ⊓ Company ⊑ ⊥ .

The use of inverse role earns−1 can be avoided, by flipping the CI to the contrapositive: PremCC ⊑
∀earns.RwrdProg.

3 CONTAINMENT AND ENTAILMENT
We focus on the Boolean variant of the containment problem. Given queries 𝑃 and 𝑄 and a TBox
T , we write

𝑃 ⊆T 𝑄
if 𝐺 |= 𝑃 implies 𝐺 |= 𝑄 for every finite graph 𝐺 that satisfies T . In the problem of containment
modulo schema the input is 𝑃 , 𝑄 , and T , and the question to decide is whether 𝑃 ⊆T 𝑄 .

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

77:6 Víctor Gutiérrez-Basulto, Albert Gutowski, Yazmín Ibáñez-García, and Filip Murlak

Without loss of generality we can focus on the containment of a connected C2RPQ in a union of
connected C2RPQs; by a slight abuse of terminology, we call a UC2RPQ connected if it contains
only connected C2RPQs. We also assume that the TBox is normalized, as explained in Section 2.

TBoxes without participation constraints
Towarm up, let us see how to solve the containment problem for TBoxes that do not use participation
constraints; that is, CIs of the form 𝐴 ⊑ ∃𝑟 .𝐵 and 𝐴 ⊑ ∃≥𝑛𝑟 .𝐵. We rely on a simple model property
established in [17] in the context of unrestricted satisfiability of C2RPQs in the presence of an
ALCIF TBox. We use a reformulation of the simple model property given by Boneva et al. [8]
in terms of Lee and Streinu’s sparse graphs [31]. A finite connected graph 𝐺 with 𝑛 nodes and𝑚
edges is 𝑐-sparse for an integer 𝑐 ≥ −1 if𝑚 ≤ 𝑛 + 𝑐 . A graph 𝐻 locally embeds into graph 𝐺 if there
exists a homomorphism ℎ : 𝐻 → 𝐺 such that for all 𝑟 ∈ Σ± and (𝑢, 𝑣1), (𝑢, 𝑣2) ∈ 𝑟𝐻 , if 𝑣1 ≠ 𝑣2 then
ℎ(𝑣1) ≠ ℎ(𝑣2).

Theorem 3.1 (Boneva et al. [8]). For every connected C2RPQ 𝑝 and every graph 𝐺 that satisfies
𝑝 there exists a |𝑝 |-sparse graph 𝐺𝑝 that satisfies 𝑝 and locally embeds into 𝐺 .

Theorem 3.1 is the key to the containment problem. Indeed, for every UC2RPQ 𝑄 , if 𝐺 ̸ |= 𝑄 ,
then 𝐺𝑝 ̸ |= 𝑄 because 𝐺𝑝 maps homomorphically into 𝐺 . Moreover, for every ALCQI TBox T
without participation constraints, if 𝐺 |= T then 𝐺𝑝 |= T . Indeed, let us fix a homomorphism
witnessing that 𝐺𝑝 locally embeds into 𝐺 . With participation constraints forbidden, T can only
contain CIs of three forms: 𝐾 ⊑ 𝐿, 𝐴 ⊑ ∀𝑟 .𝐵, and 𝐴 ⊑ ∃≤𝑛𝑟 .𝐵. CIs of the form 𝐾 ⊑ 𝐿 carry over
from 𝐺 to 𝐺𝑝 because homomorphisms preserve types of nodes. CIs of the form 𝐴 ⊑ ∀𝑟 .𝐵 carry
over because if a node in 𝐺𝑝 has label 𝐴 and an 𝑟 -successor without label 𝐵, so does its image in
𝐺 . CIs of the form 𝐴 ⊑ ∃≤𝑛𝑟 .𝐵 carry over because if a node in 𝐺𝑝 has label 𝐴 and more than 𝑛
𝑟 -successors with label 𝐵, so does its image in 𝐺 . Consequently, when deciding 𝑝 ⊆T 𝑄 for T
without participation constraints, it suffices to look for |𝑝 |-sparse counterexamples. This is easy
because every |𝑝 |-sparse graph is a tree up to removing at most |𝑝 | + 1 edges and reversing edges
so that they point away from the root. Assuming that the endpoints of each removed edge are
indicated with unique markers, and reversed edges are suitably labelled, we can construct a tree
automaton recognizing trees resulting from 𝑝-sparse counterexamples. To solve the containment
problem, we test if the language recognized by the automaton is empty.

Theorem 3.2. Containment of UC2RPQs moduloALCQI TBoxes without participation constraints
is in 2EXPTIME.

The entailment problem
We approach containment modulo schemas with participation constraints through a related problem
of entailment.

Given a finite graph 𝐺 , a TBox T , and a query 𝑄 , we say that 𝑄 is entailed by 𝐺 and T , written
as 𝐺,T |= 𝑄 , if 𝐺 ′ |= 𝑄 for every graph𝐺 ′ such that𝐺 ′ |= T and 𝐺 ⊆ 𝐺 ′. We say that 𝑄 is finitely
entailed by 𝐺 and T , written as 𝐺,T |=fin 𝑄 , if the above holds for every finite graph 𝐺 ′. The finite
entailment problem is to decide if 𝐺,T |=fin 𝑄 for given 𝐺 , T , and 𝑄 . (The traditional formulation
uses a finite set of ground facts, called the ABox, instead of 𝐺 .)
Finite entailment can be seen as a special case of containment modulo schema, via the well-

known correspondence between conjunctive queries and graphs. As we will see, under certain
assumptions on the TBox, also the converse reduction is possible. This will allow us to leverage
existing knowledge on the finite entailment problem. The following results will be relevant.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

Containment of GraphQueries Modulo Schema 77:7

𝐻 = 𝐻 0 ∪ 𝐻1 ∪ 𝐻2 𝐻 |= T 𝐻 ̸ |= 𝑄

Fig. 2. A star-like countermodel in containment modulo schema (Lemma 3.5).

Theorem 3.3. Finite entailment is 2EXPTIME-complete for the following combinations of query
languages and description logics:
(1) test-free UCRPQs and ALC [28],
(2) UCQs with transitive atoms and ALCI or ALCQ [27].

The lower bound in (2) holds already for ALC.
Recall that test-free means no labels from Γ± in regular expressions. UCQs with transitive atoms
are simple UCRPQs that only use regular expressions of the form 𝑟 and 𝑟+ with 𝑟 ∈ Σ.

Main results
Our main results are summarized in the following theorem.

Theorem 3.4. Containment modulo schema is 2EXPTIME-complete for the following combinations
of query and schema languages:
(1) UCRPQs and either ALCIor ALCQ,
(2) simple UC2RPQs and ALCQ.
The 2EXPTIME lower bound of Theorem 3.3 carries over immediately to the containment of

simple CRPQs modulo ALC TBox; the lower bounds in Theorem 3.4 follow. In order to establish
the upper bounds, in the reminder of this section we show how to reduce containment modulo
schema to finite entailment. Then, in Sections 4–6, we solve the finite entailment problem in the
three cases necessary to establish Theorem 3.4.

From containment to entailment
We give an algorithm for containment modulo schema that uses finite entailment as an oracle. As
for TBoxes without participation constraints, we first prove a simple countermodel property and
then show how to decide if a simple countermodel exists.
We build upon Theorem 3.1. Essentially, we show that if we start from a graph 𝐺 that satisfies
T , then 𝐺𝑝 can be extended to a simple graph that satisfies T and still maps homomorphically to
𝐺 , provided that T is an ALCI or ALCQ TBox. A graph 𝐻 is star-like if it consists of 𝑘 disjoint
graphs𝐻1, . . . , 𝐻𝑘 (called peripheral parts) and a graph𝐻 0 (called the central part) that shares exactly
one node with each 𝐻𝑖 for 𝑖 = 1, . . . , 𝑘 and the shared node has identical labels in both parts. In the
lemma below, illustrated in Fig. 2, the central part corresponds to 𝐺𝑝 and the peripheral parts are
copies of 𝐺 attached to provide witnesses for the participation constraints.

Lemma 3.5. For every connected C2RPQ 𝑝 , UC2RPQ 𝑄 , and ALCI or ALCQ TBox T , 𝑝 ⊈T 𝑄 iff
there is a finite star-like graph 𝐻 such that 𝐻 |= T , 𝐻 ̸ |= 𝑄 , and
• the central part of 𝐻 is |𝑝 |-sparse and satisfies 𝑝 ,
• all peripheral parts of 𝐻 satisfy T ,
• in the central part, shared elements have only one incident edge and, in the ALCQ case, no
outgoing edges.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

77:8 Víctor Gutiérrez-Basulto, Albert Gutowski, Yazmín Ibáñez-García, and Filip Murlak

Proof. Let 𝐺 be a counter-model. By Theorem 3.1 there is a |𝑝 |-sparse graph 𝐺𝑝 that satisfies 𝑝
and locally embeds into𝐺 via a homomorphism ℎ. For each node 𝑢 in𝐺𝑝 , each role 𝑟 ∈ Σ± involved
in a participation constraint in T , and each 𝑟 -successor 𝑣 of ℎ(𝑢) in 𝐺 that is not an image via ℎ of
an 𝑟 -successor of𝑢 in𝐺𝑝 , extend𝐺𝑝 by adding a fresh copy of𝐺 and an 𝑟 -edge from𝑢 to the copy of
𝑣 . Let 𝐻 be the resulting graph with the copies of 𝐺 treated as peripheral parts. Graph 𝐻 still maps
homomorphically to𝐺 , as ℎ extends naturally. Hence, 𝐻 ̸ |= 𝑄 . It is easy to verify that 𝐻 |= T : while
one of the 𝑟−-successors of the copy of 𝑣 is duplicated, we know that 𝑟 is involved in a participation
constraint. If T is an ALCI TBox, the duplication cannot be detected, because the logic does not
count. If T is an ALCQ TBox, then 𝑟− ∈ Σ− , so the logic does not see 𝑟−-successors at all. The
remaining three conditions from the statement of the lemma hold as well, by construction. □

To decide if such a graph𝐻 exists, we separate the existence of the central part from the existence
of suitable peripheral parts. To this end, we replace global conditions 𝐻 |= T and 𝐻 ̸ |= 𝑄 with local
conditions over parts of 𝐻 . We refer to this technique as factorizing the TBox T and the query 𝑄 .

To factorize 𝑄 , we replace it with a UC2RPQ 𝑄 such that

(1) 𝑄 is factorized; that is, 𝑄 holds in a star-like graph iff it holds in any of its parts.

Of course, we cannot expect𝑄 to be equivalent to𝑄 . We use fresh node labels in𝑄 and ensure that

(2) 𝑄 holds in a graph 𝐺 iff 𝑄 holds in every graph 𝐺 equal to 𝐺 up to fresh node labels in 𝑄 .
This is sufficient to replace the condition 𝐻 ̸ |= 𝑄 in Lemma 3.5 with

• no part of 𝐻 satisfies 𝑄 .

Indeed, by (2), 𝐻 ̸ |= 𝑄 iff 𝐻 ̸ |= 𝑄 for some 𝐻 obtained by labelling 𝐻 with the fresh labels used in
𝑄 . By (1), 𝐻 ̸ |= 𝑄 iff no part of 𝐻 satisfies 𝑄 . As the additional labelling does not affect any other
condition in Lemma 3.5, 𝐻 can play the role of 𝐻 .

Example 3.6. Let 𝑄 consist of a single CRPQ

𝐴(𝑥) ∧ 𝑟 ∗ (𝑥,𝑦) ∧ 𝐵(𝑦) .

For 𝑄 we can take the union of the following CRPQs:

𝐴(𝑥) ∧𝐶𝐴 (𝑥) , 𝐶𝐴 (𝑥) ∧ 𝑟 ∗ (𝑥, 𝑧) ∧𝐶𝐴 (𝑧) , 𝐶𝐴 (𝑧) ∧𝐶𝐵 (𝑧) ,
𝐶𝐵 (𝑧) ∧ 𝑟 ∗ (𝑧,𝑦) ∧𝐶𝐵 (𝑦), 𝐶𝐵 (𝑦) ∧ 𝐵(𝑦) .

Intuitively, 𝑄 detects if label 𝐶𝐴 is missing in a node 𝑟 -reachable from 𝐴 or label 𝐶𝐵 is missing
in a node from which 𝐵 is 𝑟 -reachable, or some node has both label 𝐶𝐴 and label 𝐶𝐵 . Suppose
that all edges in the graph 𝐻 in Figure 2 have label 𝑟 . Then, 𝐻 ̸ |= 𝑄 . Let 𝐻 be obtained from 𝐻

by adding label 𝐶𝐴 to all nodes reachable from the unique node with label 𝐴, and label 𝐶𝐵 to all
nodes from which the unique node with label 𝐵 can be reached. Then, 𝐻 ̸ |= 𝑄 . Now, let 𝐻 be
any graph obtained from 𝐻 by adding labels 𝐶𝐴 and 𝐶𝐵 in some nodes. Suppose that 𝐻 satisfies
𝑞2 = 𝐶𝐴 (𝑥) ∧ 𝑟 ∗ (𝑥, 𝑧) ∧𝐶𝐴 (𝑧). Then, on the path witnessing this there is an edge from a node with
label 𝐶𝐴 to a node without label 𝐶𝐴. It follows that some part of 𝐻 satisfies 𝑞2. For other disjuncts
of 𝑄 the argument is either analogous or trivial. Hence, if 𝐻 |= 𝑄 then some part of 𝐻 satisfies 𝑄 .
Note that complement node labels are crucial in this construction.

Lemma 3.7. Given a connected UC2RPQ 𝑄 , a connected UC2RPQ 𝑄 satisfying conditions (1) and (2)
can be constructed in exponential time, while ensuring that 𝑄 is a union of C2RPQs of polynomial size,
and if 𝑄 is simple or one-way, so is 𝑄 .

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

Containment of GraphQueries Modulo Schema 77:9

Proof. We begin by developing some auxiliary notions. A pointed C2RPQ (𝑞, 𝑥) is a connected
C2RPQ 𝑞 along with a distinguished variable 𝑥 ∈ var (𝑞). We say (𝑞, 𝑥) matches in graph 𝐺 at node
𝑣 if there is a match 𝜋 of 𝑞 in 𝐺 such that 𝜋 (𝑥) = 𝑣 . Consider a match of a pointed C2RPQ (𝑞, 𝑥)
in a star-like graph 𝐺 with central part 𝐺0 and peripheral parts 𝐺1,𝐺2, . . . ,𝐺𝑘 , with 𝑥 matched in
𝐺0. Intuitively, the match breaks (𝑞, 𝑥) down into fragments matched in the respective parts of 𝐺 .
However, unlike for conjunctive queries, these fragments are not simply subsets of atoms of 𝑞,
because paths witnessing 2RPQs can move back and forth between parts of 𝐺 .
Let us split each 2RPQ A𝑠,𝑡 (𝑦, 𝑧) in 𝑞 into three 2RPQs,

A𝑠,𝑠′ (𝑦,𝑦′) , A𝑠′,𝑡 ′ (𝑦′, 𝑧′) , A𝑡 ′,𝑡 (𝑧′, 𝑧)

for fresh variables 𝑦′ and 𝑧′, corresponding to three segments of the path witnessing A𝑠,𝑡 (𝑦, 𝑧)
in 𝐺 : the maximal prefix within a peripheral part, the middle segment, and the maximal suffix
within a peripheral part. (If either of the segments is empty, adjust the split accordingly.) For each
shared node, replace all variables mapped to it with a fresh variable. For 𝑖 = 1, 2, . . . , 𝑘 , consider the
pointed C2RPQ (𝑞𝑖 , 𝑦𝑖) collecting all atoms witnessed entirely within𝐺𝑖 , with 𝑦𝑖 being the variable
mapped to the shared node in𝐺𝑖 , and the pointed C2RPQ (𝑞0, 𝑥 ′) collecting all remaining atoms (if
none are left, take A𝑠,𝑠 (𝑥 ′, 𝑥 ′) for any 𝑠), with 𝑥 ′ being either 𝑥 itself or the variable that replaced
it. Note that each (𝑞𝑖 , 𝑦𝑖) matches in 𝐺𝑖 at the shared node, whereas (𝑞0, 𝑥 ′) need not match in 𝐺0

as some of its 2RPQs may be witnessed by paths detouring into peripheral parts.
A unary factor of (𝑞, 𝑥) is any pointed C2RPQ that can be obtained as (𝑞𝑖 , 𝑦𝑖) for some match of
(𝑞, 𝑥) in a star-like graph, as well as any pointed query of the form

(
A𝑠,𝑠′ (𝑦,𝑦), 𝑦

)
.

We aim to discover matches of (𝑞, 𝑥) based on information about matches of its unary factors
(𝑝,𝑦), encoded in fresh node labels 𝐶𝑝,𝑦 dubbed permissions. Let (𝑞′, 𝑥 ′) be obtained from (𝑞0, 𝑥 ′)
above by adding atoms 𝐶𝑞𝑖 ,𝑦𝑖 (𝑦𝑖) for 𝑖 = 1, 2, . . . , 𝑘 and extending the underlying semiautomaton
with ‘shortcut’ transitions from state 𝑠 to state 𝑠′ over node label𝐶A𝑠,𝑠′ (𝑦,𝑦),𝑦 , to account for detours.
A central factor of (𝑞, 𝑥) is any pointed C2RPQ that can be obtained as (𝑞′, 𝑥 ′) for some match of
(𝑞, 𝑥) in a star-like graph.
A unary factor of a connected C2RPQ 𝑞 is a unary factor of any (𝑞, 𝑥) with 𝑥 ∈ var (𝑞). Factors

are connected C2RPQs, and a unary factor of a unary factor of 𝑞 is a unary factor of 𝑞 itself. In
the case of simple C2RPQs, detours to peripheral parts are pointless so we keep the underlying
semiautomaton unchanged, thus ensuring that factors are also simple.
We can now define 𝑄 for a connected UC2RPQ 𝑄 as the union of queries

𝑝′ ∧𝐶𝑝,𝑦 (𝑦′) ,

where (𝑝,𝑦) is a unary factor of some 𝑞 ∈ 𝑄 and (𝑝′, 𝑦′) is a central factor of (𝑝,𝑦), and queries

𝐶𝑞,𝑥 (𝑥) ,

where 𝑞 ∈ 𝑄 and 𝑥 ∈ var (𝑞). Note that𝑄 is connected, and if𝑄 is simple or one-way, so is𝑄 . Given
𝑄 , one can compute 𝑄 in exponential time, and each C2RPQ in 𝑄 has polynomial size. It is routine,
if a bit tedious, to check that 𝑄 satisfies conditions (1) and (2). □

Factorizing the TBox is easy. Let T0 be T with all participation constraints dropped. Because we
assume that each peripheral part of 𝐻 satisfies T , we can replace the condition 𝐻 |= T with
• the central part of 𝐻 satisfies T0 and each of its nodes satisfies all participation constraints in
T unless it is shared with a peripheral part.

The only delicate point is that CIs of the form 𝐴 ⊑ ∃≤𝑛𝑟 .𝐵 with 𝑟 ∈ Σ carry over from the parts of
𝐻 to the whole 𝐻 . This is the case because, by the additional condition forALCQ in the third item

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

77:10 Víctor Gutiérrez-Basulto, Albert Gutowski, Yazmín Ibáñez-García, and Filip Murlak

of Lemma 3.5, all outgoing edges of any node belong to a single part of 𝐻 . Note that for ALCQI
this would not work, as we would also have to deal with incoming edges.

Let Tp
(
T , 𝑄

)
be the set of maximal types over labels used in T and 𝑄 , realized in finite graphs

that satisfy T but not𝑄 . We can now reformulate the criterion from Lemma 3.5 as follows: 𝑝 ⊈T 𝑄
iff there is a |𝑝 |-sparse graph 𝐻0 such that 𝐻0 |= 𝑝 , 𝐻0 |= T0, 𝐻0 ̸ |= 𝑄 , and each node violating a
participation constraint from T is of some type from Tp

(
T , 𝑄

)
, and has only one incident edge

and, in the ALCQ case, no outgoing edges. Given Tp
(
T , 𝑄

)
, we can adapt the automata-based

argument behind Theorem 3.2 to decide if such 𝐻0 exists. It remains to compute Tp
(
T , 𝑄

)
. For that

we note that 𝜏 ∈ Tp
(
T , 𝑄

)
iff𝐺𝜏 ,T ̸|=fin 𝑄 , where𝐺𝜏 is a graph consisting of a single isolated node

of type 𝜏 . That is, we can compute Tp
(
T , 𝑄

)
by solving an instance of finite entailment for each

maximal type over labels used in T and 𝑄 . This completes the reduction of containment modulo
schema to finite entailment. Note that we have actually showed that it suffices to solve a variant of
finite entailment that asks if a given type 𝜏 ∈ Tp

(
T , 𝑄

)
can be realized in a finite graph 𝐺 such

that 𝐺 |= T and 𝐺 ̸ |= 𝑄 .

4 ASSEMBLING COUNTERMODELS
In Section 3, we solved containment modulo schema using a reduction to finite entailment, relying
on a star-like countermodel property and on factorizing queries and TBoxes. Our approach to finite
entailment is similar, but we reduce to simpler instances of the same problem, and countermodels
have richer structure. In this section we prepare our tools. We begin with concrete frames, which
will be used in Sections 5–6 to represent and manipulate complex decompositions of countermodels.
Next, we lift our method of factorizing queries from star-like graphs to graphs represented by
frames (TBoxes are handled in Sections 5–6). Finally, we pass to abstract frames, which will be used
in Sections 5–6 to reduce a complex instance of finite entailment to multiple simpler ones.

In what follows we use the notion of a pointed graph, which is just a graph with a distinguished
node. Two pointed graphs are considered isomorphic if they are isomorphic as graphs and the
isomorphism preserves the distinguished node.

Concrete frames
A concrete frame is a finite graph without self-loops whose nodes represent disjoint components of
a graph and edges represent edges between these components. More precisely, each frame node
𝑓 is labelled with a pointed graph 𝐺 𝑓 with distinguished node 𝑣 𝑓 , and each edge originating in
a frame node 𝑓 is labelled with a pair (𝑣, 𝑟) where 𝑣 ∈ dom(𝐺 𝑓) and 𝑟 ∈ Σ±. We assume that
dom(𝐺 𝑓) ∩ dom(𝐺𝑒) = ∅ whenever 𝑓 ≠ 𝑒 , and that different edges with labels (𝑣, 𝑟) and (𝑣, 𝑠) have
different targets. For every frame node 𝑓 and node 𝑣 ∈ dom(𝐺 𝑓) we define 𝐺 𝑓 ,𝑣 as the pointed
graph obtained as follows. For the distinguished node we take 𝑣 with labels inherited from 𝐺 𝑓 .
For each edge from 𝑓 to 𝑒 with label (𝑣, 𝑟) we add to 𝐺 𝑓 ,𝑣 the distinguished element 𝑣𝑒 of 𝐺𝑒

(with labels inherited from 𝐺𝑒) and add an 𝑟 -edge from 𝑣 to 𝑣𝑒 . If 𝑟 = 𝑠− ∈ Σ− , this results in an
𝑠-edge from 𝑣𝑒 to 𝑣 . We call graphs 𝐺 𝑓 the components and 𝐺 𝑓 ,𝑣 the connectors of the frame. While
components are arbitrary pointed graphs, connectors are very simple pointed graphs with a single
edge between the distinguished node and each non-distinguished node, no loops, and no edges
between non-distinguished nodes. Every concrete frame 𝐹 represents a graph𝐺𝐹 , obtained by taking
the union of all its components and connectors. Edges in 𝐺𝐹 that result from connectors are called
frame edges; a frame edge and the corresponding edge in 𝐹 may have opposite directions.
A concrete frame 𝐹 realizes a type 𝜏 if the distinguished node of some component of 𝐹 is of

type 𝜏 . Clearly, if 𝐹 realizes type 𝜏 , so does 𝐺𝐹 .

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

Containment of GraphQueries Modulo Schema 77:11

Factorizing queries over concrete frames
We aim to replace the condition 𝐺𝐹 ̸ |= 𝑄 by a local property of frame 𝐹 , depending exclusively
on the set of isomorphism types of the components and connectors of 𝐹 . In particular, we cannot
depend on how the components and connectors are arranged in 𝐹 .

Let 𝑄 be a connected UC2RPQ. A graph 𝐺 refutes 𝑄 if 𝐺 ̸ |= 𝑄 (in particular, 𝐺 ̸ |= 𝑄). A concrete
frame 𝐹 weakly refutes 𝑄 if
• each component 𝐺 𝑓 refutes 𝑄 ; that is, 𝐺 𝑓 ̸ |= 𝑄 ;
• each connector 𝐺 𝑓 ,𝑣 refutes 𝑄 ; that is, 𝐺 𝑓 ,𝑣 ̸ |= 𝑄 .

We say that 𝐹 actually refutes 𝑄 if𝐺𝐹 refutes𝑄 . ‘Weakly refuting𝑄 ’ is a local property and it works
for frames that are trees.

Lemma 4.1. If a concrete frame is a tree and weakly refutes a connected UC2RPQ𝑄 , then it actually
refutes 𝑄 .

Lemma 4.1 follows immediately from the lemma below applied to 𝑄 .

Lemma 4.2. Let 𝑃 be a factorized UC2RPQ and let 𝐹 be a concrete frame that is a tree. Then𝐺𝐹 |= 𝑃
iff some component or connector of 𝐹 satisfies 𝑃 .

Proof. We proceed by induction on the depth of the tree. Suppose 𝐺𝐹 |= 𝑃 . If 𝐹 has depth 0, the
unique component of 𝐹 is equal to 𝐺𝐹 , so it satisfies 𝑃 . Otherwise, 𝐺𝐹 is a star-like graph whose
central part is the root component 𝐺 𝑓0 of 𝐹 and each peripheral part is a star-like graph whose
central part is a connector 𝐺 𝑓0,𝑣 for some 𝑣 in 𝐺 𝑓0 , and the peripheral parts are pointed graphs
represented by subtrees of 𝐹 rooted at children of 𝑓0. Applying twice the fact that 𝑃 is factorized,
we conclude that 𝑃 is satisfied either in𝐺 𝑓0 , or in𝐺 𝑓0,𝑣 for some 𝑣 ∈ 𝐺 𝑓0 or in the graph represented
by a subtree 𝐹 ′ of 𝐹 rooted at a child of 𝑓0. In the first two cases we are done. In the third case, by
the induction hypothesis, 𝑃 is satisfied in a component or connector of 𝐹 ′, and we are done too. □

In general, concrete frames that weakly refute 𝑄 need not actually refute 𝑄 , but some can be
restructured to actually refute 𝑄 . To achieve this, we apply a novel general graph-theoretical
construction which we describe next.

The coil
Our aim is to unravel a given graph sufficiently, without making it infinite. Indeed, the coil con-
struction involves a bounded-recall (or sliding-window) unravelling of a graph. We think of paths
as sequences of nodes and edges. Unless specified otherwise, paths are directed.
For a graph 𝐺 and 𝑛 ≥ 0, let Paths(𝐺,𝑛) denote the set of paths (not necessarily simple) of

length at most 𝑛 in 𝐺 , including paths of length 0 consisting of a single node. For a node 𝑣 in 𝐺 , let
Paths(𝐺,𝑛, 𝑣) denote the set of paths in Paths(𝐺,𝑛) that originate in 𝑣 .

For a node 𝑣 in a graph𝐺 and 𝑛 > 0, the graph Unravel(𝐺,𝑛, 𝑣) is a tree with nodes Paths(𝐺,𝑛, 𝑣)
and an edge (𝜋, 𝜋 ′) whenever 𝜋 ′ is an extension of 𝜋 by one edge. The label of a node 𝜋 in
Unravel(𝐺,𝑛, 𝑣) is inherited from the last node of the path 𝜋 , and the label of an edge (𝜋, 𝜋 ′) is
inherited from the last edge of the path 𝜋 ′.
By the 𝑛-suffix of a path 𝜋 we mean the suffix of length 𝑛 of 𝜋 if 𝜋 has length at least 𝑛,

and the whole path 𝜋 otherwise. For a graph 𝐺 and 𝑛 > 0, Coil(𝐺,𝑛) is the graph with nodes
Paths(𝐺,𝑛) × {0, . . . , 𝑛} and an edge ((𝜋, ℓ), (𝜋 ′, ℓ ′)) whenever ℓ ′ ≡ ℓ + 1 (mod (𝑛 + 1)) and 𝜋 ′ is
the 𝑛-suffix of an extension of 𝜋 by one edge. The label of a node (𝜋, ℓ) in Coil(𝐺,𝑛) is inherited
from the last node of 𝜋 , and the label of an edge ((𝜋, ℓ), (𝜋 ′, ℓ ′)) is inherited from the last edge of
the path 𝜋 ′.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

77:12 Víctor Gutiérrez-Basulto, Albert Gutowski, Yazmín Ibáñez-García, and Filip Murlak

The coil has three key properties. Let ℎ𝐺 : Coil(𝐺,𝑛) → 𝐺 map a node (𝜋, ℓ) in Coil(𝐺,𝑛) to the
last node on 𝜋 .

Property 1. The mapping ℎ𝐺 : Coil(𝐺,𝑛) → 𝐺 is a surjective homomorphism.

Proof. That ℎ𝐺 is a homomorphism follows directly from the construction of Coil(𝐺,𝑛). Surjec-
tivity is witnessed by nodes (𝜋, 0) for paths 𝜋 of length 0 consisting of just one node. □

Property 2. For every node 𝑢 in Coil(𝐺,𝑛), the subgraph induced by all nodes reachable from 𝑢

by paths of length at most 𝑛 − 1 is isomorphic to Unravel(𝐺,𝑛 − 1, ℎ𝐺 (𝑢)).

Proof. We begin with two preparatory observations. We can extend the function ℎ𝐺 to also
map an edge ((𝜋, ℓ), (𝜋 ′, ℓ ′)) in Coil(𝐺,𝑛) to the last edge on the path 𝜋 ′; note that it is an edge
from ℎ𝐺 ((𝜋, ℓ)) to ℎ𝐺 ((𝜋 ′, ℓ ′)) in 𝐺 . Then, for every node 𝑢 in Coil(𝐺,𝑛), ℎ𝐺 induces a bijection
between the edges outgoing from 𝑢 and the edges outgoing from ℎ𝐺 (𝑢). This follows straight from
the construction: for a node 𝑣 in 𝐺 , a path 𝜋 ending in 𝑣 , and an edge 𝑒 outgoing from 𝑣 , there is a
unique 𝑛-suffix of the extension of 𝜋 with the edge 𝑒 .
We can also extend ℎ𝐺 to a length-preserving mapping from paths in Coil(𝐺,𝑛) to paths in 𝐺 .

By construction, for each edge 𝑒 = ((𝜋, ℓ), (𝜋 ′, ℓ ′)) in Coil(𝐺,𝑛), we have ℓ ′ ≡ ℓ + 1 (mod (𝑛 + 1)),
and 𝜋 ′ is the 𝑛-suffix of the extension of 𝜋 with the edge ℎ𝐺 (𝑒). In consequence, for a path 𝜎 from
(𝜋, ℓ) to (𝜋 ′, ℓ ′) of length 𝑘 in Coil(𝐺,𝑛), we have ℓ ′ ≡ ℓ + 𝑘 (mod (𝑛 + 1)), and 𝜋 ′ is the 𝑛-suffix
of the path obtained by concatenating 𝜋 with ℎ𝐺 (𝜎).
Now, consider a node 𝑢′ = (𝜋 ′, ℓ ′) reachable from 𝑢 = (𝜋, ℓ) by a path 𝜎 of length at most 𝑛

in Coil(𝐺,𝑛). Then, by the second observation above, the length of 𝜎 is 𝑘 = (ℓ ′ − ℓ) mod (𝑛 + 1)
and ℎ𝐺 (𝜎) is the 𝑘-suffix of 𝜋 ′. In the light of the first observation above, this means that 𝜎 is a
unique path of length at most 𝑛 from 𝑢 to 𝑢′. It follows that the subgraph of Coil(𝐺,𝑛) induced by
the set of nodes reachable from 𝑢 by paths of length at most 𝑛 − 1 is a tree. Using again the first
observation above we show easily that this tree is isomorphic to Unravel(𝐺,𝑛 − 1, ℎ𝐺 (𝑢)) via the
mapping 𝑢′ ↦→ ℎ𝐺 (𝜎). □

For a node (𝜋, ℓ) in Coil(𝐺,𝑛), we refer to the value ℓ as the level of the node. A subgraph of
Coil(𝐺,𝑛) visits level ℓ if it contains a node of level ℓ .

Property 3. Every connected subgraph 𝐻 of Coil(𝐺,𝑛) that visits 𝑘 ≤ 𝑛 levels maps homomorphi-
cally to Unravel(𝐺,𝑘 − 1, 𝑣) for some node 𝑣 in 𝐺 .

Proof. Since 𝐻 does not visit all levels and is connected, there exists a unique level ℓ0 such
that 𝐻 visits level ℓ0, but does not visit level (ℓ0 − 1) mod (𝑛 + 1). For each node (𝜋, ℓ) in 𝐻 , let us
call the value (ℓ − ℓ0) mod (𝑛 + 1) the 𝐻 -level of (𝜋, ℓ). The 𝐻 -levels of nodes in 𝐻 range from 0
to 𝑘 − 1. A mapping 𝑔 from (𝜋, ℓ) to the suffix of 𝜋 of length equal to the 𝐻 -level of (𝜋, ℓ) is the
required homomorphism. For each edge ((𝜋, ℓ), (𝜋 ′, ℓ ′)) in 𝐻 , 𝜋 ′ is the 𝑛-suffix of the extension of
𝜋 with one edge; since the 𝐻 -level of (𝜋, ℓ) is not 𝑛, 𝑔(𝜋, ℓ) is a prefix of 𝑔(𝜋 ′, ℓ ′); thus, since 𝐻 is
connected, there exists a unique node 𝑣 in 𝐺 such that 𝑔(𝑢) begins in 𝑣 for all nodes 𝑢 in 𝐻 . It is
straightforward to verify that 𝑔 is indeed a homomorphism from 𝐻 to Unravel(𝐺,𝑘 − 1, 𝑣). □

Avoiding UC2RPQs
We aim to restructure a given concrete frame that weakly refutes 𝑄 into one that actually refutes
𝑄 , while preserving all local properties of the frame, such as weakly refuting a query. (We shall see
later that all other properties required of countermodels amount to local properties of frames).

We call two concrete frames locally isomorphic if the sets of isomorphism types of their compo-
nents and connectors are equal. Locally isomorphic concrete frames share local properties.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

Containment of GraphQueries Modulo Schema 77:13

Lemma 4.3 below allows us to avoid UC2RPQs, just as the large-girth method does for conjunctive
queries [33]. While in the case of conjunctive queries the construction depends only on the size of
the queries, for UC2RPQs we rely on a more refined measure, defined below.
An undirected path in the graph 𝐺𝐹 represented by a concrete frame 𝐹 induces an undirected

path in 𝐹 . The span of an undirected path in frame 𝐹 is the maximum absolute difference between
the number of edges traversed forward and backward by an infix of the path. The span of a 2RPQ
in 𝐹 is the maximum span of undirected paths induced in 𝐹 by paths witnessing the 2RPQ in 𝐺𝐹 .

Lemma 4.3. If a concrete frame 𝐹 weakly refutes a connected UC2RPQ 𝑄 such that all 2RPQs in 𝑄
have bounded span in 𝐹 , then some frame locally isomorphic to 𝐹 actually refutes 𝑄 .

Proof. For a frame 𝐹 and 𝑛 > 1, let 𝐹𝑛 be obtained from Coil(𝐹, 𝑛) by relabelling to ensure that
all components have disjoint domains: for each node 𝑒 in Coil(𝐹, 𝑛) with label 𝐺𝑒 , change its label
to a fresh isomorphic copy �̃�𝑒 of 𝐺𝑒 , and change labels in all outgoing edges from (𝑣, 𝑟) to (𝑣, 𝑟),
where 𝑣 is the copy of 𝑣 in �̃�𝑒 . Properties 1 and 2 ensure that 𝐹𝑛 is a frame and that it is locally
isomorphic to 𝐹 . The notion of levels of nodes carries over from Coil(𝐹, 𝑛) to 𝐹𝑛 .
The homomorphismℎ𝐹 : Coil(𝐹, 𝑛) → 𝐹 induces a homomorphism ℎ̃𝐹 : 𝐺𝐹𝑛 → 𝐺𝐹 that preserves

frame edges; that is, an edge in 𝐺𝐹𝑛 is a frame edge iff it is mapped by ℎ̃𝐹 to a frame edge in 𝐺𝐹 .

Claim 1. The span of a 2RPQ in 𝐹𝑛 is bounded from above by its span in 𝐹 .

Proof of Claim 1. Suppose that a witnessing path in 𝐺𝐹𝑛 induces an undirected path 𝜎 in 𝐹𝑛 .
Because 𝐹𝑛 differs from Coil(𝐹, 𝑛) only in the labelling of nodes and edges, we can view 𝜎 as an
undirected path in Coil(𝐹, 𝑛); this change of perspective does not affect the span of 𝜎 . Applying ℎ̃𝐹 to
the witnessing path in𝐺𝐹𝑛 , we obtain a witnessing path in𝐺𝐹 such that the induced undirected path
𝜎 ′ in 𝐹 can be obtained from𝜎 by applyingℎ𝐹 . As the span of a path is preserved by homomorphisms,
it follows that 𝜎 and 𝜎 ′ have the same span. This proves that the span of the 2RPQ in 𝐹 bounds its
span in 𝐹𝑛 from above. □

Consider a match of a C2RPQ 𝑞 in 𝐺𝐹𝑛 along with witnessing paths for all 2RPQs. Let 𝐻 be the
subgraph of 𝐹𝑛 built from all nodes 𝑓 such that some witnessing path contains a node in𝐺 𝑓 or some
variable is mapped to a node in𝐺 𝑓 , and all edges corresponding to the frame edges in𝐺𝐹𝑛 traversed
by some witnessing path. We call 𝐻 a match of 𝑞 in 𝐹𝑛 . Note that 𝐻 is a frame and 𝐺𝐻 |= 𝑞.

Claim 2. If 𝑞 is connected and consists of𝑚 2RPQs, each of which has span in 𝐹𝑛 bounded by 𝑘 ,
then every match 𝐻 of 𝑞 in 𝐹𝑛 visits at most 𝑘𝑚 + 1 levels in 𝐹𝑛 .

Proof of Claim 2. The set of levels visited by an undirected path in 𝐹𝑛 of span at most 𝑘 is of
the form {ℓ + 𝑖 mod 𝑛 : 𝑖 = 0, . . . , 𝑑} for some level ℓ and 𝑑 ≤ 𝑘 . Because 𝑞 is connected, 𝐻 is a
connected union of𝑚 undirected paths of span at most 𝑘 . Consequently, the set of levels visited by
𝐻 is of the form {ℓ + 𝑖 mod 𝑛 : 𝑖 = 0, . . . , 𝑑} for some level ℓ and 𝑑 ≤ 𝑘𝑚. □

We are now ready to prove the lemma. Let𝑚 = max{|𝑞 | : 𝑞 ∈ 𝑄} and let 𝑘 > 0 be an upper
bound on the span in 𝐹 of all 2RPQs occurring in 𝑄 . We will show that 𝐹𝑘𝑚+1 actually refutes 𝑄 .
Towards a contradiction, suppose that 𝐺𝐹𝑘𝑚+1 |= 𝑄 . Then there is a match 𝐻 of some 𝑞 from 𝑄 in

𝐹𝑘𝑚+1. Since𝑄 is connected, so is𝑄 and 𝐻 . By Claims 1-2, 𝐻 visits at most 𝑘𝑚 + 1 out of the 𝑘𝑚 + 2
levels in 𝐹𝑘𝑚+1. Let 𝐻 ′ be the subgraph of Coil(𝐹, 𝑘𝑚 + 1) corresponding to 𝐻 (equal to 𝐻 up to
relabelling). By Property 3, 𝐻 ′ maps homomorphically to Unravel(𝐹, 𝑘𝑚, 𝑓) for some 𝑓 in 𝐹 . Let
𝑇 be a frame obtained from Unravel(𝐹, 𝑘𝑚, 𝑓) by relabelling to ensure that all components have
disjoint domains, as was done for 𝐹𝑘𝑚+1. It follows that 𝐺𝐻 maps homomorphically to 𝐺𝑇 , which
means that 𝐺𝑇 |= 𝑄 . But at the same time, 𝑇 is locally isomorphic to a subframe of 𝐹 , so 𝑇 weakly

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

77:14 Víctor Gutiérrez-Basulto, Albert Gutowski, Yazmín Ibáñez-García, and Filip Murlak

refutes 𝑄 . Because 𝑇 is a tree, by Lemma 4.1, 𝑇 actually refutes 𝑄 . That is, 𝐺𝑇 ̸ |= 𝑄 . The obtained
contradiction shows that 𝐺𝐹𝑘𝑚+1 ̸ |= 𝑄 . □

Abstract frames
An abstract frame 𝐹 over Γ𝐹 ⊆ Γ is essentially a specification of a concrete frame: it is a finite graph
without self-loops, just as a concrete frame, and its nodes and edges still represent components of a
graph and edges between them, but the representation is symbolic rather than concrete.
Instead of a pointed graph 𝐺 𝑓 , each frame node 𝑓 holds an abstract specification of a pointed

graph, consisting of a set Θ𝑓 of maximal types over Γ𝐹 to be respected, a distinguished type 𝜏𝑓 ∈ Θ𝑓

to be realized, a TBox T𝑓 to be satisfied, and a query 𝑄 𝑓 to be avoided. We call (𝜏𝑓 ,T𝑓 ,Θ𝑓 , 𝑄 𝑓) an
(abstract) component of 𝐹 .

Each edge originating in frame node 𝑓 is labelled with a pair (𝜏, 𝑟) for some 𝜏 ∈ Θ𝑓 and 𝑟 ∈ Σ±.
Intuitively, it represents multiple edges originating in nodes of type 𝜏 . As in a concrete frame,
different edges originating in 𝑓 , labelled with (𝜏, 𝑟) and (𝜏, 𝑠) for any 𝑟, 𝑠 ∈ Σ±, must have different
targets. Connectors 𝐺 𝑓 ,𝜏 are defined like for concrete frames, with 𝑣 replaced by 𝜏 , except that we
need to materialize the type 𝜏 and the types 𝜏𝑒 : we use fresh nodes 𝑢 and 𝑢𝑒 .
A witnessing graph for component (𝜏𝑓 ,T𝑓 ,Θ𝑓 , 𝑄 𝑓) is any finite pointed graph 𝐺 such that 𝐺

respects Θ𝑓 , the distinguished element of 𝐺 is of type 𝜏𝑓 , 𝐺 |= T𝑓 , and 𝐺 ̸ |= 𝑄 𝑓 . An abstract frame
𝐹 represents a concrete frame 𝐹 ′ if 𝐹 ′ can be obtained from 𝐹 by replacing each (𝜏𝑓 ,T𝑓 ,Θ𝑓 , 𝑄 𝑓) with
an arbitrary witnessing graph 𝐺 𝑓 , and each edge labelled (𝜏, 𝑟) from 𝑓 to 𝑒 with edges labelled
(𝑣, 𝑟) from 𝑓 to 𝑒 , for 𝑣 ranging over all nodes of type 𝜏 in 𝐺 𝑓 . (Note that connector 𝐺 𝑓 ,𝑣 is then
isomorphic to 𝐺 𝑓 ,𝜏 for each node 𝑣 of type 𝜏 in 𝐺 𝑓 .) An abstract frame 𝐹 represents a graph 𝐺 if it
represents a concrete frame 𝐹 ′ such that 𝐺𝐹 ′ = 𝐺 .

An abstract frame 𝐹 realizes a type 𝜏 if 𝜏 ⊆ 𝜏𝑓 for some component (𝜏𝑓 ,T𝑓 ,Θ𝑓 , 𝑄 𝑓) of 𝐹 . Clearly,
if 𝐹 realizes type 𝜏 , then so does every graph and every concrete frame represented by 𝐹 .

An abstract component is productive if it has a witnessing graph. An abstract frame is productive
if all its components are productive. Each productive abstract frame represents at least one concrete
frame and at least one graph. Testing productivity of an abstract component is essentially a special
case of finite entailment; testing if an abstract frame is productive leads to multiple instances of
finite entailment.
To lift the notion of weakly refuting from concrete to abstract frames we rephrase the first

condition as
• for each component (𝜏𝑓 ,T𝑓 ,Θ𝑓 , 𝑄 𝑓), if a graph does not satisfy 𝑄 𝑓 , then it refutes 𝑄 ; that is,
𝑄 𝑓 contains 𝑄 in the query containment sense;

and additionally require that Γ𝐹 includes all node labels used in 𝑄 . It follows that if an abstract
frame weakly refutes 𝑄 , so do all concrete frames it represents.

5 ENTAILMENT OF ONE-WAY QUERIES
In this section we establish the following result.

Theorem 5.1. Finite entailment of UCRPQs in ALCI and ALCQ is 2EXPTIME-complete.

The lower bound is inherited from finite entailment of simple UCRPQs in ALC [27]. The upper
bound for ALCQ follows by eliminating tests from the query by encoding the type of each node
in the label of each outgoing edge and careful inspection of the proof for ALC [28]. Here, we
show the upper bound for ALCI. As noted in Section 3, for Theorem 3.4 it suffices to decide if
a given type 𝜏 (over labels used in T and 𝑄) can be realized in a finite graph that satisfies T and

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

Containment of GraphQueries Modulo Schema 77:15

refutes 𝑄 . As finite entailment is a special case of containment modulo schema, this also suffices
for Theorem 5.1.

The general idea is to decompose countermodels into components in which it is enough to reason
exclusively about forward (outgoing) edges or exclusively about backward (incoming) edges; this
will ultimately allow us to reduce finite entailment inALCI to finite entailment inALC. In order
to confine RPQs to a limited number of components, while at the same time providing both forward
and backward witnesses required in the ALCI TBox, we shall alternate between forward and
backward components.

Alternating frames
To distinguish forward and backward components we use a fresh node label 𝐶→. For the sake of
symmetry, we refer to 𝐶→ as 𝐶←. In any graph, nodes with label 𝐶→ are called forward and those
with label 𝐶← are called backward. A concrete frame is alternating if
• every component 𝐺 𝑓 satisfies ⊤ ⊑ 𝐶→ or ⊤ ⊑ 𝐶←;
• every connector 𝐺 𝑓 ,𝑣 is directed, that is, all its edges are directed from backward nodes to
forward nodes and either 𝐶→ or 𝐶← occurs only in the distinguished node.

For abstract frames we replace the first condition with
• for every component (𝜏𝑓 ,T𝑓 ,Θ𝑓 , 𝑄 𝑓), either each type in Θ𝑓 contains 𝐶→ or each type in Θ𝑓

contains 𝐶←.
In a graph represented by an alternating frame, components have only incoming or only outgoing
frame edges. Hence, an RPQ can only traverse a single frame edge; that is, its span is at most 1.

Factorizing ALCI TBoxes over alternating frames
In order to separate reasoning about forward and backward edges, we shall require that all forward
witnesses of forward nodes be provided in components and all backward witnesses in connectors,
and symmetrically for backward nodes. This leads to the following definition.
Let T→ be an ALC TBox obtained from T by dropping all participation constrains involving

inverse roles, that is, CIs of the form 𝐴 ⊑ ∃𝑟− .𝐵, and flipping CIs involving universal restrictions
over inverse roles: 𝐴 ⊑ ∀𝑟− .𝐵 is replaced by 𝐵 ⊑ ∀𝑟 .𝐴. The TBox T← is defined symmetrically. Note
that while T← is not an ALC TBox, it uses only inverse roles. Hence, by treating inverse roles as
role names, we can turn it into an ALC TBox. An alternating concrete frame satisfies T if
• each component 𝐺 𝑓 satisfies {⊤ ⊑ 𝐶→} ∪ T→ or {⊤ ⊑ 𝐶←} ∪ T←;
• in each connector 𝐺 𝑓 ,𝑣 , the distinguished node satisfies {⊤ ⊑ 𝐶→} ∪ T← or {⊤ ⊑ 𝐶←} ∪ T→.

For an alternating abstract frame 𝐹 , we replace the first item with
• for each component (𝜏𝑓 ,T𝑓 ,Θ𝑓 , 𝑄 𝑓), either T𝑓 entails T→ and each type in Θ𝑓 contains 𝐶→,
or T𝑓 entails T← and each type in Θ𝑓 contains 𝐶←,

and additionally require that Γ𝐹 includes all concept names used in T . As connectors in alternating
frames are directed and CIs are suitably flipped in T← and T→, the second item implies that each
connector satisfies all CIs of the form 𝐴 ⊑ ∀𝑟 .𝐵 or 𝐴 ⊑ ∀𝑟− .𝐵 in T .

In the definition abovewe provide all backwardwitnesses to forward nodes and forwardwitnesses
to backward nodes in connectors, even if some are also provided in components. This is correct
because ALCI cannot detect duplicate witnesses.

Lemma 5.2. If an alternating frame 𝐹 satisfies an ALCI TBox T , so does each graph 𝐹 represents.

Finite entailment by way of frames
We are now ready to characterize finite entailment in terms of abstract frames.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

77:16 Víctor Gutiérrez-Basulto, Albert Gutowski, Yazmín Ibáñez-García, and Filip Murlak

Lemma 5.3. For a unary type 𝜏 , an ALCI TBox T , and a connected UCRPQ 𝑄 , type 𝜏 is realized
in a finite graph that satisfies T and refutes 𝑄 iff 𝜏 is realized in a productive alternating abstract
frame that satisfies T and weakly refutes 𝑄 . [Proof: A.1]

Using Lemma 5.3, we can compute the set of such types 𝜏 using a greatest fixed-point procedure
(a variant of type elimination [30, 34]). Testing productivity of the abstract components of the
witnessing frames is reduced to finite entailment of test-free CRPQs inALC [28] (see Appendix A.2).

6 ENTAILMENT OF TWO-WAY QUERIES
We now move to two-way queries and show the following theorem.

Theorem 6.1. Finite entailment of simple UC2RPQs in ALCQ is 2EXPTIME-complete.

The lower bound follows from Theorem 3.3. Here we establish the upper bound. As in Section 5,
we work with the variant of finite entailment that asks if a type 𝜏 can be realized in a finite graph
that satisfies a TBox T and refutes a simple connected UC2RPQ 𝑄 .
The overall strategy is to successively reduce the number of role names used in the TBox until

none are left. The case with no roles is easy (see Appendix B.1). In order to reduce the number
of roles by one, we perform an intermediate step that neutralizes certain atoms in the query.
For Σ0 ⊆ Σ, by a Σ0-reachability atom we mean an atom (𝑟1 + 𝑟2 + · · · + 𝑟𝑘)∗ (𝑥,𝑦) such that
{𝑟1, 𝑟2, . . . , 𝑟𝑘 } ⊇ Σ0 or {𝑟1, 𝑟2, . . . , 𝑟𝑘 } ⊇ Σ−0 . Let ΣT be the set of role names used in the input TBox
T . Intuitively, we want to reduce an instance of the problem to multiple instances that do not
involve ΣT-reachability atoms, and then reduce each of those to multiple instances with fewer role
names in the TBox. However, rather than modifying the query, we modify the problem. We say
that a graph 𝐺 refutes 𝑄 modulo Σ0-reachability if 𝐺 ̸ |= 𝑄 mod Σ0 where 𝑄 mod Σ0 is the query
obtained from 𝑄 by dropping all Σ0-reachability atoms. The problem we will be solving, dubbed
finite entailment modulo Σ0-reachability, is to decide if a type 𝜏 can be realized in a finite graph
that satisfies T , respects Θ, and refutes 𝑄 modulo Σ0-reachability, where Σ0 ⊇ ΣT . (We recover
the original problem by taking Θ = {∅} and Σ0 = ΣT ∪ {𝑟 } for some fresh role name 𝑟 .) The
intermediate step will amount to replacing Σ0-reachability with ΣT-reachability. Next, we explain
how to factorize ALCQ TBoxes over frames, which will be needed in both steps.

Factorizing ALCQ TBoxes
Let T be an ALCQ TBox. Let ΓT be a set of fresh concept names 𝐶𝑛,𝑟,𝐷 for each role name 𝑟 and
concept name 𝐷 involved in an at-least or at-most restriction in T , and each 𝑛 ≤ 𝑁 where 𝑁 is
one plus the maximal number used in T . Let T= be the TBox obtained from T by dropping all CIs
involving roles, and adding

𝐶𝑛,𝑟,𝐷 ⊑ ∃≥𝑛𝑟 .𝐷 for each 𝐶𝑛,𝑟,𝐷 ∈ ΓT ,
𝐶𝑛,𝑟,𝐷 ⊑ ∃≤𝑛𝑟 .𝐷 for each 𝐶𝑛,𝑟,𝐷 ∈ ΓT with 𝑛 < 𝑁 ,

𝐶𝑁,𝑟,𝐷 ⊑ ∃≤𝑛−1𝑟 .𝐷 for each 𝐶𝑁,𝑟,𝐷 ∈ ΓT .

For every graph that satisfies all CIs from T that do not involve an at-least restriction, there is
a unique way to place labels 𝐶𝑛,𝑟,𝐷 that makes T= satisfied. In particular, there is one for every
subgraph of a graph that satisfies T . We also define T+ as the TBox obtained from T by replacing
each 𝐶 ⊑ ∃≤𝑛𝑟 .𝐷 with

𝐶 ⊑
𝑛⊔
𝑖=0

(
𝐶𝑖,𝑟,𝐷 ⊓ ∃≤𝑛−𝑖𝑟 .𝐷

)
Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

Containment of GraphQueries Modulo Schema 77:17

and each 𝐶 ⊑ ∃≥𝑛𝑟 .𝐷 with

𝐶 ⊑
𝑛⊔
𝑖=0

(
𝐶𝑖,𝑟,𝐷 ⊓ ∃≥𝑛−𝑖𝑟 .𝐷

)
⊔

𝑁⊔
𝑖=𝑛+1

𝐶𝑖,𝑟 ,𝐷 .

T+ can be normalized at the cost of introducing additional concept names, polynomially many in
the size of T and 𝑁 . A concrete frame satisfies an ALCQ TBox T if
• each component 𝐺 𝑓 satisfies T=;
• in each connector 𝐺 𝑓 ,𝑣 , the distinguished node satisfies T+ and has no incoming edges.

For abstract frames we rephrase the first condition as
• for each component (𝜏𝑓 ,T𝑓 ,Θ𝑓 , 𝑄 𝑓), T𝑓 entails T=.

Lemma 6.2. If a frame satisfies an ALCQ TBox T , each graph it represents satisfies T .

From Σ0-reachability to ΣT-reachability
Without loss of generality we can assume that countermodels only use role names from ΣT .
The general idea of this step is to decompose countermodels into strongly connected components.
Within each component, all ΣT-reachability atoms are trivially satisfied, so if the component refutes
𝑄 modulo Σ0-reachability, it also refutes 𝑄 modulo ΣT-reachability (because ΣT ⊆ Σ0). Replacing
Σ0-reachability with ΣT-reachability makes the conditions imposed on witnessing countermodels
more demanding, but we are guaranteed to find such countermodels if any countermodels exist. A
delicate aspect here is that we will be testing the existence of suitable components by invoking
a simpler instance of the decision problem, and there is no way to ensure that they are strongly
connected. The point is, however, that this is not needed: any component, strongly connected
or not, that refutes 𝑄 modulo ΣT-reachability, also refutes 𝑄 modulo Σ0-reachability (provided
ΣT ⊆ Σ0). This leads to the following strengthening of the notion of weakly refuting.
For a connected simple UC2RPQ 𝑄 and Σ1 ⊆ Σ2 ⊆ Σ, a concrete frame weakly refutes 𝑄 modulo
(Σ1, Σ2)-reachability if
• each component 𝐺 𝑓 refutes 𝑄 modulo Σ1-reachability; that is, 𝐺 𝑓 ̸ |= 𝑄 mod Σ1;
• each connector 𝐺 𝑓 ,𝑣 refutes 𝑄 modulo Σ2-reachability; that is, 𝐺 𝑓 ,𝑣 ̸ |= 𝑄 mod Σ2.

For an abstract frame 𝐹 we rephrase the first condition as
• for each component (𝜏𝑓 ,T𝑓 ,Θ𝑓 , 𝑄 𝑓), 𝑄 𝑓 contains 𝑄 mod Σ1 in the query containment sense;

and require that Γ𝐹 includes all node labels used in 𝑄 .
An abstract frame respects a set Θ of types, if for each component (𝜏𝑓 ,T𝑓 ,Θ𝑓 , 𝑄 𝑓), every type

from Θ𝑓 contains a type from Θ.

Lemma 6.3. Consider a type 𝜏 , an ALCQ TBox T , a set Θ of types, a connected simple UC2RPQ 𝑄 ,
and Σ0 ⊇ ΣT . Type 𝜏 is realized in a finite graph that satisfies T , respects Θ, and refutes 𝑄 modulo
Σ0-reachability iff 𝜏 is realized in a productive abstract frame that is a tree, satisfies T , respects Θ,
and weakly refutes 𝑄 modulo (ΣT , Σ0)-reachability. [Proof: B.2]

Witnessing abstract frames from Lemma 6.3 can be constructed bottom-up from suitable produc-
tive abstract components (Appendix B.3). Testing productivity of an abstract component amounts
to finite entailment modulo ΣT-reachability, which we handle next.

Entailment modulo ΣT-reachability
This time we decompose countermodels into components that use one role name fewer. In different
components we eliminate different role names, in a round-robin fashion, ensuring that the span of
every simple 2RPQ is at most |ΣT |, unless it is a ΣT-reachability atom.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

77:18 Víctor Gutiérrez-Basulto, Albert Gutowski, Yazmín Ibáñez-García, and Filip Murlak

Let 𝑟1, 𝑟2, . . . , 𝑟𝑚 be an enumeration of ΣT . For convenience, let 𝑟𝑚+1 = 𝑟1. For each 𝑟 ∈ ΣT , let
𝐶𝑟 be a fresh concept name. By an 𝑟 -node we mean a node that has label 𝐶𝑟 and labels 𝐶𝑠 for all
𝑠 ∈ ΣT \ {𝑟 }. A concrete frame is role-alternating if
• every component 𝐺 𝑓 satisfies

{⊤ ⊑ 𝐶𝑟 } ∪
{
⊤ ⊑ 𝐶0,𝑟 ,𝐷

�� 𝐶0,𝑟 ,𝐷 ∈ ΓT
}
∪

{
⊤ ⊑ 𝐶𝑠

�� 𝑠 ∈ ΣT \ {𝑟 }}
for some 𝑟 ∈ ΣT ;
• every connector 𝐺 𝑓 ,𝑣 is role-directed, that is, for some 𝑖 , the distinguished node is an 𝑟𝑖 -node,
all remaining nodes are 𝑟𝑖+1-nodes, and all edges are 𝑟𝑖 -edges originating in the distinguished
node.

For abstract frames we replace the first condition with
• for every component (𝜏𝑓 ,T𝑓 ,Θ𝑓 , 𝑄 𝑓), there is 𝑟 ∈ ΣT such that each 𝜏 ∈ Θ𝑓 contains 𝐶𝑟 , all
𝐶0,𝑟 ,𝐷 ∈ ΓT , and all 𝐶𝑠 with 𝑠 ∈ ΣT \ {𝑟 }.

Being role-alternating is a local property of a frame: it is inherited by locally isomorphic frames.

Lemma 6.4. For every role-alternating concrete frame 𝐹 , the span in 𝐹 of a simple 2RPQ that is not
a ΣT-reachability atom, is at most |ΣT |. [Proof: B.4]

Lemma 6.5. Consider a type 𝜏 , anALCQ TBox T , a set Θ of types, and a connected simple UC2RPQ
𝑄 . Type 𝜏 is realized in a finite graph that satisfies T , respectsΘ, and refutes𝑄 modulo ΣT -reachability
iff 𝜏 is realized in a productive role-alternating abstract frame that satisfies T , respects Θ, and weakly
refutes 𝑄 modulo (ΣT , ΣT)-reachability. [Proof: B.5]

The existence of witnessing abstract frame from Lemma 6.5 can be decided by a greatest fixed-
point procedure, as in Section 5 (see Appendix B.6). Testing productivity of the involved abstract
components reduces to an instance of finite entailment modulo ΣT . Each component of a role-
alternating abstract frame that satisfies T , effectively forbids some role 𝑟 indicated by the concept
name 𝐶𝑟 present in the type of the distinguished node. We can eliminate role 𝑟 entirely from the
TBox, arriving at an instance of finite entailment modulo ΣT with one role fewer. Apart from that,
the reduction only affects the type 𝜏 to realize and the set Θ of allowed types, which must account
for newly added concept names from ΓT . The size of ΓT is exponential in the size of the original
TBox (not the current TBox T that is the result of previous reductions). This allows us to use a
recursive call to our decision procedure, without additional blowup (see Appendix B.7).

7 DISCUSSION
In this paper we have made significant progress on the graph query containment problem modulo
schemas. Along the way, we also extended existing results on finite entailment of graph queries in
expressive description logics. We believe that our methods can be adapted to handle reasoning about
parallel edges with different labels and to multiple labels over edges, possibly at the cost of increased
complexity. Handling fullALCQI schemas, on the other hand, is much more challenging. Similarly,
handling full UC2RPQs, even for the basic logic ALC seems to require new ideas. Besides this, it
would also be interesting to develop techniques that are better suited for implementation, since
our current approach relies on automata- and type-based techniques which are always worst-case
complexity. Another direction is ontology-mediated query containment [11] of navigational queries.
In this setting, it would be already challenging to consider queries that only allow reachability.

ACKNOWLEDGMENTS
Albert Gutowski and Filip Murlak were supported by Poland’s NCN grant 2018/30/E/ST6/00042.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

Containment of GraphQueries Modulo Schema 77:19

REFERENCES
[1] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter, and Domagoj Vrgoc. 2017. Foundations

of Modern Query Languages for Graph Databases. ACM Comput. Surv. 50, 5 (2017), 68:1–68:40.
[2] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Alastair Green, Jan Hidders, Bei Li, Leonid

Libkin, Victor Marsault, Wim Martens, Filip Murlak, Stefan Plantikow, Ognjen Savkovic, Michael Schmidt, Juan
Sequeda, Slawek Staworko, Dominik Tomaszuk, Hannes Voigt, Domagoj Vrgoc, Mingxi Wu, and Dusan Zivkovic. 2022.
PG-Schema: Schemas for Property Graphs. CoRR abs/2211.10962 (2022).

[3] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith W. Hare, Jan Hidders, Victor E. Lee, Bei
Li, Leonid Libkin, Wim Martens, Filip Murlak, Josh Perryman, Ognjen Savkovic, Michael Schmidt, Juan F. Sequeda,
Slawek Staworko, and Dominik Tomaszuk. 2021. PG-Keys: Keys for Property Graphs. In SIGMOD Conference. ACM,
2423–2436.

[4] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Zakharyaschev. 2009. The DL-Lite Family and
Relations. J. Artif. Intell. Res. 36 (2009), 1–69.

[5] Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. 2017. An Introduction to Description Logic. Cambridge
University Press.

[6] Pablo Barceló Baeza. 2013. Querying graph databases. In PODS. ACM, 175–188.
[7] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. 2005. Reasoning on UML class diagrams. Artif. Intell.

168, 1-2 (2005), 70–118.
[8] Iovka Boneva, Benoît Groz, Jan Hidders, Filip Murlak, and Slawek Staworko. 2023. Static Analysis of Graph Database

Transformations. In Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
(Seattle, WA, USA) (PODS ’23). Association for Computing Machinery, New York, NY, USA, 251–261. https://doi.org/
10.1145/3584372.3588654

[9] Angela Bonifati, Wim Martens, and Thomas Timm. 2019. Navigating the Maze of Wikidata Query Logs. InWWW.
ACM, 127–138.

[10] Angela Bonifati, Wim Martens, and Thomas Timm. 2020. An analytical study of large SPARQL query logs. VLDB J. 29,
2-3 (2020), 655–679.

[11] Pierre Bourhis and Carsten Lutz. 2016. Containment in Monadic Disjunctive Datalog, MMSNP, and Expressive
Description Logics. In KR. AAAI Press, 207–216.

[12] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. 1998. On the Decidability of Query Containment
under Constraints. In PODS. ACM Press, 149–158.

[13] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. 2000. Containment of Conjunctive
Regular Path Queries with Inverse. In KR. Morgan Kaufmann, 176–185.

[14] Diego Calvanese, GiuseppeDeGiacomo,Maurizio Lenzerini, andMoshe Y. Vardi. 2002. Rewriting of Regular Expressions
and Regular Path Queries. J. Comput. Syst. Sci. 64, 3 (2002), 443–465.

[15] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. 1998. Description Logics for Conceptual Data Modeling. In
Logics for Databases and Information Systems. Kluwer, 229–263.

[16] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. 1999. Unifying Class-Based Representation Formalisms. J.
Artif. Intell. Res. 11 (1999), 199–240.

[17] Diego Calvanese, Magdalena Ortiz, and Mantas Simkus. 2011. Containment of Regular Path Queries under Description
Logic Constraints. In IJCAI. IJCAI/AAAI, 805–812.

[18] Daniel Danielski and Emanuel Kieronski. 2019. Finite Satisfiability of Unary Negation Fragment with Transitivity. In
MFCS (LIPIcs, Vol. 138). 17:1–17:15.

[19] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin, Tobias Lindaaker, Victor Marsault,
Wim Martens, Jan Michels, Filip Murlak, Stefan Plantikow, Petra Selmer, Oskar van Rest, Hannes Voigt, Domagoj
Vrgoc, Mingxi Wu, and Fred Zemke. 2022. Graph Pattern Matching in GQL and SQL/PGQ. In SIGMOD Conference.
ACM, 2246–2258.

[20] Alin Deutsch and Val Tannen. 2001. Optimization Properties for Classes of Conjunctive Regular Path Queries. In DBPL
(Lecture Notes in Computer Science, Vol. 2397). Springer, 21–39.

[21] Diego Figueira. 2020. Containment of UC2RPQ: The Hard and Easy Cases. In ICDT (LIPIcs, Vol. 155). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 9:1–9:18.

[22] Diego Figueira, Adwait Godbole, Shankara Narayanan Krishna, Wim Martens, Matthias Niewerth, and Tina Trautner.
2020. Containment of Simple Conjunctive Regular Path Queries. In KR. 371–380.

[23] Daniela Florescu, Alon Y. Levy, and Dan Suciu. 1998. Query Containment for Conjunctive Queries with Regular
Expressions. In PODS. ACM Press, 139–148.

[24] Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor Marsault, Wim Martens, Filip Murlak,
Liat Peterfreund, Alexandra Rogova, and Domagoj Vrgoc. 2023. A Researcher’s Digest of GQL (Invited Talk). In ICDT
(LIPIcs, Vol. 255). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 1:1–1:22.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

https://doi.org/10.1145/3584372.3588654
https://doi.org/10.1145/3584372.3588654

77:20 Víctor Gutiérrez-Basulto, Albert Gutowski, Yazmín Ibáñez-García, and Filip Murlak

[25] Jakub Galgonek, Tomáš Hurt, Vendula Michlíková, Petr Onderka, Jan Schwarz, and Jiří Vondrášek. 2016. Advanced
SPARQL querying in small molecule databases. Journal of Cheminformatics 8, 1 (2016), 31. https://doi.org/10.1186/
s13321-016-0144-4

[26] Abraham Ginzburg. 1968. Algebraic Theory of Automata. Academic Press.
[27] Tomasz Gogacz, Víctor Gutiérrez-Basulto, Albert Gutowski, Yazmín Ibáñez-García, and Filip Murlak. 2020. On Finite

Entailment of Non-Local Queries in Description Logics. In KR. 424–433.
[28] Víctor Gutiérrez-Basulto, Albert Gutowski, Yazmín Ibáñez-García, and Filip Murlak. 2022. Finite Entailment of UCRPQs

over ALC Ontologies. In Proceedings of the 19th International Conference on Principles of Knowledge Representation and
Reasoning, KR 2022, Haifa, Israel. July 31 - August 5, 2022, Gabriele Kern-Isberner, Gerhard Lakemeyer, and Thomas
Meyer (Eds.). https://proceedings.kr.org/2022/19/

[29] Víctor Gutiérrez-Basulto, Yazmín Ibáñez-García, Jean Christoph Jung, and Filip Murlak. 2023. Answering regular path
queries mediated by unrestricted SQ ontologies. Artif. Intell. 314 (2023), 103808.

[30] David Harel, Jerzy Tiuryn, and Dexter Kozen. 2000. Dynamic Logic. MIT Press, Cambridge, MA, USA.
[31] Audrey Lee and Ileana Streinu. 2008. Pebble game algorithms and sparse graphs. Discret. Math. 308, 8 (2008), 1425–1437.

https://doi.org/10.1016/j.disc.2007.07.104
[32] Artem Lysenko, Irina A. Roznovăţ, Mansoor Saqi, Alexander Mazein, Christopher J. Rawlings, and Charles Auffray.

2016. Representing and querying disease networks using graph databases. BioData Mining 9, 1 (2016), 23.
[33] Martin Otto. 2010. Highly Acyclic Groups, Hypergraph Covers and the Guarded Fragment. In LICS. IEEE Computer

Society, 11–20.
[34] Vaughan R. Pratt. 1979. Models of Program Logics. In FOCS. IEEE Computer Society, 115–122.
[35] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar, Renzo Angles, Walid G. Aref, Marcelo

Arenas, Maciej Besta, Peter A. Boncz, Khuzaima Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf Hartig,
Bernhard Haslhofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana Iamnitchi, Vasiliki Kalavri, Hugo Kapp, Wim
Martens, M. Tamer Özsu, Eric Peukert, Stefan Plantikow, Mohamed Ragab, Matei Ripeanu, Semih Salihoglu, Christian
Schulz, Petra Selmer, Juan F. Sequeda, Joshua Shinavier, Gábor Szárnyas, Riccardo Tommasini, Antonino Tumeo,
Alexandru Uta, Ana Lucia Varbanescu, Hsiang-Yun Wu, Nikolay Yakovets, Da Yan, and Eiko Yoneki. 2021. The future
is big graphs: a community view on graph processing systems. Commun. ACM 64, 9 (2021), 62–71.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

https://doi.org/10.1186/s13321-016-0144-4
https://doi.org/10.1186/s13321-016-0144-4
https://proceedings.kr.org/2022/19/
https://doi.org/10.1016/j.disc.2007.07.104

Containment of GraphQueries Modulo Schema 77:21

A PROOFS FOR SECTION 5: ENTAILMENT OF ONE-WAY QUERIES
A.1 Proof of Lemma 5.3
For the left-to-right implication, consider graph 𝐺 that realizes 𝜏 , satisfies T , and refutes 𝑄 . Let
ΣT be the set of role names used in T . For a node 𝑢 in 𝐺 and 𝑟 ∈ ΣT , let 𝐺𝑟

𝑢 be the pointed graph
obtained by taking a fresh copy of 𝐺 , adding label 𝐶→ to all nodes and taking the copy of 𝑢 for
the distinguished node. Pointed graph 𝐺𝑟 −

𝑢 is defined similarly, but all nodes are labelled with 𝐶←.
Consider a frame with a node 𝑓 𝑟𝑢 labelled with 𝐺𝑟

𝑢 and node 𝑓 𝑟 −𝑢 labelled with 𝐺𝑟 −
𝑢 for each node 𝑢

in 𝐺 and role 𝑟 ∈ ΣT . Whenever there is an 𝑟 -edge from 𝑢 to 𝑣 in 𝐺 with 𝑟 ∈ ΣT , add an edge from
𝑓 𝑠
−

𝑤 to 𝑓 𝑟𝑣 with label (𝑢𝑠−𝑤 , 𝑟) and from 𝑓 𝑠𝑤 to 𝑓 𝑟 −𝑢 with label (𝑣𝑠𝑤, 𝑟−) for every node𝑤 in𝐺 and every
𝑠 ∈ ΣT , where𝑢𝑠

−
𝑤 is the copy of𝑢 in𝐺𝑠−

𝑤 and 𝑣𝑠𝑤 is the copy of 𝑣 in𝐺𝑠
𝑤 . The resulting concrete frame

𝐹 is alternating by construction and obviously realizes 𝜏 . Up to labels𝐶← and𝐶→, every component
of 𝐹 is isomorphic to 𝐺 , and every connector of 𝐹 is isomorphic to the one-step unravelling of a
subgraph of 𝐺 formed by a node and all its successors, or a node and all its predecessors, over
role names from ΣT . It follows that all components and connectors refute 𝑄 , which means that 𝐹
refutes 𝑄 . It also follows that all components satisfy T , and in each connector the distinguished
node satisfies either {⊤ ⊑ 𝐶→} ∪ T← or {⊤ ⊑ 𝐶←} ∪ T→; this means that 𝐹 satisfies T .

Next, we turn the concrete alternating frame 𝐹 into an abstract alternating frame 𝐹 ′ that represents
𝐹 . Let Γ𝐹 ′ be the set of labels used in 𝜏 , T , or 𝑄 , plus 𝐶→ (recall that 𝐶← = 𝐶→). We modify 𝐹 as
follows. Consider a frame node 𝑓 in 𝐹 . For each maximal type 𝜎 over Γ𝐹 ′ realized in𝐺 𝑓 , choose an
arbitrary node 𝑣𝜎 of type 𝜎 in 𝐺 𝑓 . Adjust edges originating in 𝑓 to ensure that 𝐺 𝑓 ,𝜎 is isomorphic
to 𝐺 𝑓 ,𝑣𝜎 : edges with labels of the form (𝑣𝜎 , 𝑟) should be relabelled with (𝜎, 𝑟), the remaining ones
should be removed. Let 𝑣 𝑓 be the distinguished node in 𝐺 𝑓 . Relabel 𝑓 with (𝜏𝑓 ,T𝑓 ,Θ𝑓 , 𝑄 𝑓) where

• 𝜏𝑓 =
{
𝐴 ∈ Γ±

𝐹 ′

�� 𝑣 𝑓 has label 𝐴 in 𝐺 𝑓

}
;

• T𝑓 is T→ if 𝑣 𝑓 has label 𝐶→ in 𝐺 𝑓 , and T← if it has label 𝐶←;
• Θ𝑓 is the set of maximal types over Γ𝐹 ′ realized in 𝐺 𝑓 ;
• 𝑄 𝑓 = 𝑄 .

The resulting abstract alternating frame 𝐹 ′ is obviously productive:𝐺 𝑓 is awitness for (𝜏𝑓 ,T𝑓 ,Θ𝑓 , 𝑄 𝑓).
Also, 𝐹 ′ realizes 𝜏 , satsfies T , and refutes 𝑄 , because so does 𝐹 .

For the right-to-left implication, take such a productive abstract frame and consider some concrete
frame 𝐹 it represents. As we have argued, because 𝐹 is alternating, each RPQ has span at most
1 in 𝐹 . Applying Lemma 4.3, we obtain a frame 𝐹 ′ that actually refutes 𝑄 and preserves all local
properties of 𝐹 . As these include being alternating, satisfying T , and realizing 𝜏 , by Lemma 5.2 it
follows that 𝐺𝐹 ′ realizes 𝜏 , satisfies T , and refutes 𝑄 .

A.2 Finding witnesses guaranteed by Lemma 5.3
In order to prove Theorem 5.1, it remains to show that the existence of a productive alternating
abstract frame that realizes type 𝜏 , satisfies TBox T , and weakly refutes query 𝑄 , can be decided in
2EXPTIME. Whether an abstract frame satisfies all these conditions depends exclusively on the set
of isomorphism types of components and connectors it is build from. And of course it has to be a
frame: for every type allowed in a component, we need a connector with the distinguished node of
this type, and conversely, for every non-distinguished node in a connector, we need a component
with distinguished node of the same type.

Keeping in mind that 𝐶← = 𝐶→, we can restrict our attention to abstract frames involving only
types over Γ0, defined as the set of concept names containing 𝐶→ and all concept names used in 𝜏 ,
T , and𝑄 . Consider the set ΨT,𝑄 of all maximal types over Γ0 realized in concrete alternating frames
that satisfy T and weakly refute 𝑄 . The set ΨT,𝑄 coincides with the set of maximal types over Γ0

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

77:22 Víctor Gutiérrez-Basulto, Albert Gutowski, Yazmín Ibáñez-García, and Filip Murlak

that are realized in a component of such a frame, not necessarily in the distinguished node. Indeed,
for a type 𝜎 realized by a node 𝑣 in a component𝐺 𝑓 , we can add a fresh frame node 𝑒 labelled with
𝐺 𝑓 with the distinguished node changed to 𝑣 , copying all the outgoing edges from 𝑓 , and the result
will still be an alternating concrete frame that satisfies T and weakly refutes 𝑄 .

For a set Ψ of maximal types over Γ0, let Ψ→ and Ψ← denote the sets of types from Ψ that contain
𝐶→ and 𝐶←, respectively. The set ΨT,𝑄 is the greatest (wrt. inclusion) set Ψ of maximal types over
Γ0 such that for each 𝜎 ∈ Ψ:
• if 𝜎 ∋ 𝐶→, then the component (𝜎,T→,Ψ→, 𝑄) is productive, and there is a directed con-
nector refuting 𝑄 whose distinguished node is of type 𝜎 and satisfies T←, and whose non-
distinguished nodes are of types from Ψ←;
• if 𝜎 ∋ 𝐶←, then the component (𝜎,T←,Ψ←, 𝑄) is productive, and there is a directed con-
nector refuting 𝑄 whose distinguished node is of type 𝜎 and satisfies T→, and whose non-
distinguished nodes are of types from Ψ→.

Note that, for a fixed 𝜎 , the conditions are monotone w.r.t. Ψ: that is, if they hold for Ψ, they
also hold for each Ψ′ ⊇ Ψ. Consequently, we can compute ΨT,𝑄 by a simple greatest fixed point
procedure. For 𝑖 = 0, 1, 2, . . . , we iteratively compute sets Ψ𝑖 of maximal types 𝜎 over Γ0 that satisfy
the conditions above with Ψ = Ψ𝑖−1, starting from the set Ψ0 of all maximal types over Γ0. We stop
when Ψ𝑖+1 = Ψ𝑖 and let ΨT,𝑄 = Ψ𝑖 . Then, it suffices to check whether ΨT,𝑄 contains a type 𝜎 such
that 𝜎 ⊇ 𝜏 .
For a given 𝜎 and Ψ = Ψ→ ∪ Ψ←, the conditions can be verified in 2EXPTIME. Indeed, testing

if an abstract component is productive amounts to solving the corresponding instance of finite
entailment; it either is an instance with ALC TBox, or it can be easily turned into one, as we
have explained in the main part of the paper. (In the latter case, we also need to adjust the query:
reverse the transitions in the underlying semiautomaton and replace each atom A𝑠,𝑠′ (𝑦,𝑦′) with
A𝑠′,𝑠 (𝑦′, 𝑦).) Moreover, we can eliminate tests from 𝑄 , by encoding node types in the labels of the
outgoing edges. Hence, we can apply the algorithm from [28]. While this algorithm has doubly
exponential complexity, it is in fact only doubly exponential in the maximal size of any involved
CRPQ. Each of our instances involves a union of exponentially many CRPQs of polynomial size, and
a TBox of exponential size (due to the elimination of tests). It follows that the overall complexity
of each productivity test is still doubly exponential. The existence of a suitable connector for 𝜎
and Ψ = Ψ→ ∪ Ψ← can also be decided in 2EXPTIME. Indeed, observe that it suffices to consider
connectors with at most one non-distinguished node for each participation constraint in T . There
are doubly exponentially many such connectors (despite the number of available types already
being doubly exponential). Checking that a given connector refutes 𝑄 amounts to evaluating 𝑄
over the connector, which can be done in time𝑂 (|𝑄 | ·𝑚𝑛 · 𝑛 ·𝑚 · 𝑘), where 𝑛 is the maximal size of
a CRPQ in𝑄 (linear in the maximal size of a CRPQ in𝑄),𝑚 is size of the connector, and 𝑘 is the size
of the semiautomaton underlying 𝑄 . Checking the remaining conditions is straightforward. Hence,
each iteration of the greatest fixed point procedure takes doubly exponential time. The number of
iterations is also at most doubly exponential, because we begin from a doubly exponential set of
types, and in each iteration at least one type is eliminated.

B PROOFS FOR SECTION 6: ENTAILMENT OF TWO-WAY QUERIES
B.1 No roles
We need to solve the following problem: given a type 𝜏 , a TBox T mentioning no roles, a set Θ of
types, a connected simple UC2RPQ 𝑄 , and Σ1 ⊆ Σ, decide if 𝜏 is realized in a graph that satisfies T ,
has only nodes of types from Θ, and does not satisfy 𝑄 mod Σ0. Because T does not mention any

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

Containment of GraphQueries Modulo Schema 77:23

roles, we can restrict our attention to graphs consisting of a single isolated node. Moreover, we can
assume that the graph uses only node labels mentioned in 𝜏 , T , Θ, and 𝑄 . As the number of labels
is exponential, the number of such graphs is doubly exponential. Checking if one such graph is a
witness we are looking for can be done in time exponential in the size of the input.

B.2 Proof of Lemma 6.3
Before proving Lemma 6.3, we need to lift Lemma 4.1 to refuting modulo Σ0 reachability.

Lemma B.1. If a concrete frame 𝐹 is a tree and weakly refutes a connected simple UC2RPQ𝑄 modulo
(Σ0, Σ0)-reachability, then 𝐺𝐹 refutes 𝑄 modulo Σ0-reachability.

Proof. Just like for 𝑄 , we can prove that 𝑄 mod Σ0 is factorized. Given that, the claim follows
immediately from Lemma 4.2 for 𝑃 = 𝑄 mod Σ0. □

Proof of Lemma 6.3. For the left-to-right implication, consider a graph𝐺 that realizes 𝜏 , satisfies
T , has only nodes of types fromΘ, and refutes𝑄 modulo Σ0-reachability. Without loss of generality
we can assume that 𝐺 only uses edge labels from ΣT .

For each node 𝑣 in 𝐺 let 𝐺𝑣 be a pointed graph obtained by taking a fresh copy of the strongly
connected component of 𝐺 that contains 𝑣 , with 𝑣 as the distinguished node. Consider a graph 𝐹0
with a node 𝑓𝑣 labelled with 𝐺𝑣 for each node 𝑣 in 𝐺 . Whenever there is an 𝑟 -edge from 𝑢 to 𝑣 , add
an edge from 𝑓𝑤 to 𝑓𝑣 with label (𝑢𝑤, 𝑟) for every𝑤 whose SCC in 𝐺 contains 𝑢, with 𝑢𝑤 being the
copy of 𝑢 in 𝐺𝑤 . Graph 𝐹0 need not be a tree. In fact, it may not even be a concrete frame, because
it may contain parallel edges that share the first component of the label. However, because 𝐹0 is
acyclic, we can turn it into a tree by unravelling it from any component whose distinguished node
is of type 𝜏 (acyclicity ensures that the unravelling is finite), and adjusting the labels so that all
components are disjoint. The resulting graph 𝐹 is a concrete frame and also a tree. It obviously
realizes 𝜏 and all its components only contain nodes of types in Θ. In each component of 𝐹 we add
labels 𝐶𝑛,𝑟,𝐷 in the unique way that ensures that 𝐹 satisfies T . As the added labels are fresh, this
does not affect Θ.

Up to labels𝐶𝑛,𝑟,𝐷 , every component of 𝐹 is isomorphic to an SCC in𝐺 , and every connector of 𝐹
is isomorphic to the one-step unravelling of a subgraph of𝐺 formed by a node and all its successors.
It follows that all components and connectors refute 𝑄 modulo Σ0-reachability. Moreover, because
each component of 𝐹 is strongly connected via edges with labels from ΣT ⊆ Σ0, it actually refutes
𝑄 modulo ΣT-reachability. That is, 𝐹 refutes 𝑄 modulo (ΣT , Σ0)-reachability.

To conclude the proof of the left-to-right implication, we turn 𝐹 into a suitable abstract frame 𝐹 ′
as in the proof of Lemma 5.3, with the following differences. For Γ𝐹 ′ we take the set of node labels
used in 𝜏 , T , Θ, and 𝑄 , plus all node labels of the form 𝐶𝑛,𝑟,𝐷 used in T= and T+. For each frame
node 𝑓 , we let T𝑓 = T= and 𝑄 𝑓 = 𝑄 mod ΣT .

For right-to-left implication, take such a productive abstract frame and consider some concrete
frame 𝐹 it represents. Obviously, 𝐺𝐹 realizes 𝜏 and contains only nodes of types from Θ. Because 𝐹
refutes𝑄 modulo (ΣT , Σ0)-reachability and ΣT ⊆ Σ0, 𝐹 also refutes𝑄 modulo (Σ0, Σ0)-reachability.
By Lemma B.1, 𝐺𝐹 refutes 𝑄 modulo Σ0-reachability. By Lemma 6.2,𝐺𝐹 |= T . This completes the
proof of the right-to-left implication. □

B.3 Finding witnesses guaranteed by Lemma 6.3
It remains to test if an abstract frame satisfying the conditions from Lemma 6.3 exists. This time
we use a least-fixed-point algorithm. We compute the set ΨT,Θ,𝑄 of types of distinguished elements
in components of abstract frames satisfying the conditions of Lemma 6.3. This set coincides with
the set of all unary types that occur in interpretations represented by such abstract frames. We

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

77:24 Víctor Gutiérrez-Basulto, Albert Gutowski, Yazmín Ibáñez-García, and Filip Murlak

compute it iteratively: the set Ψ1 of types appearing in leaves of such abstract frames; the set Ψ2 of
types appearing in leaves or their parents, etc.
Let Γ0 be the set of concept names in 𝜏 , T , 𝑄 , Θ, and CT . Let Ψ0 = ∅. For 𝑖 > 0, Ψ′𝑖 is defined as

the set of maximal types 𝜎 over Γ0 such that there 𝜎 contains a type from Θ and there is a connector
with the distinguished element of type 𝜎 , non-distinguished elements of types from Ψ𝑖−1, and
satisfying all requirements for connectors in witnessing abstract frames from Lemma 6.3. It suffices
to look for connectors with at most 𝑁 distinguished elements per participation constraint in T .
Like in Section A.2, whether such a connector exists can be decided in 2EXPTIME. The set Ψ𝑖 is
defined as the set of types 𝜎 such that the abstract component (𝜎,T=,Ψ′𝑖 , 𝑄 mod ΣT) is productive.
That is, we must ensure that 𝜎 is realizable in a finite graph that satisfies T=, respects Ψ′𝑖 , and
refutes 𝑄 modulo ΣT-reachability atoms, which is precisely the problem we want to reduce to. We
compute Ψ𝑖 iteratively for 𝑖 = 1, 2, . . . until Ψ𝑖 = Ψ𝑖+1 = Ψ. Then, it suffices to check whether the
resulting set Ψ contains a type 𝜎 such that 𝜎 ⊇ 𝜏 .

B.4 Proof of Lemma 6.4
Each simple 2RPQ is either of the form 𝑟 (𝑥,𝑦) or 𝑅∗ (𝑥,𝑦) for a set 𝑅 ⊆ Σ±. A 2RPQ of the form
𝑟 (𝑥,𝑦) has span at most 1. Recall that the balance of an undirected path is the difference between
the number of edges traversed forward and backward by the path. Note that for very label (𝑣, 𝑟) of
an edge in a role-alternating frame, 𝑟 is a role name, as each connector is role-directed. If a simple
2RPQ 𝑅∗ (𝑥,𝑦) is not a ΣT-reachability atom, there exist role names 𝑟, 𝑠 ∈ ΣT such that 𝑟 ∉ 𝑅 and
𝑠− ∉ 𝑅 (since otherwise ΣT ⊆ 𝑅 or Σ−T ⊆ 𝑅). Let 𝜎 be an undirected path in a role-alternating
frame 𝐹 induced by a path witnessing such a 2RPQ in 𝐺𝐹 . Consider the sequence of roles in the
labels of edges traversed by 𝜎 , putting 𝑡 if an edge with label (𝑣, 𝑡) is traversed forward, or 𝑡− if
it is traversed backward. Two consecutive elements in the sequence are always one of (𝑟𝑘 , 𝑟𝑘+1),
(𝑟−
𝑘+1, 𝑟

−
𝑘
), (𝑟𝑘 , 𝑟−𝑘) or (𝑟

−
𝑘
, 𝑟𝑘) for some 𝑘 ∈ {1, . . . , 𝑛}. The latter two pairs do not contribute to the

balance of the path; let us iteratively remove all such pairs from the sequence until none are left.
We remain with a sequence of only role names, or only inverse roles; the length of the sequence
is exactly the absolute value of balance of 𝜎 . Since the role name 𝑟 and inverse role 𝑠− are not
mentioned by the 2RPQ, the length of the sequence is bounded by |ΣT | − 1. We can apply the same
reasoning to every infix of 𝜎 , proving that the span of 𝜎 is at most |ΣT | − 1.

B.5 Proof of Lemma 6.5
Before proving Lemma 6.5, we need to generalize Lemma 4.3 to refuting modulo Σ0-reachability.

Lemma B.2. Let 𝐹 be a concrete frame all of whose nodes are reachable from a single node 1 and let
𝑄 be a connected simple UC2RPQ. If 𝐹 weakly refutes𝑄 modulo (Σ0, Σ0)-reachability and all 2RPQs in
𝑄 that are not Σ0-reachability atoms have bounded span in 𝐹 , then there is a frame locally isomorphic
to 𝐹 that actually refutes 𝑄 modulo Σ0-reachability.

Proof. There exists 𝑘 > 0 such that, for each 2RPQ 𝑝 in 𝑄 that is not a Σ0-reachability atom,
the span of 𝑝 in 𝐹 is at most 𝑘 . Let𝑚 = max{|𝑞 | : 𝑞 ∈ 𝑄}.
A locally isomorphic frame that actually refutes 𝑄 is obtained by converting the generalized

frame Coil(𝐹, 𝑘𝑚 + 𝑑) to a frame, where 𝑑 is the number of nodes in 𝐹 . Let 𝑓0 be a node in 𝐹 from
which all nodes in 𝐹 are reachable. By Property 2, there exists a subgraph 𝑇 of Coil(𝐹, 𝑘𝑚 + 𝑑)
isomorphic with Unravel(𝐹, 𝑘𝑚 + 𝑑 − 1, 𝑓0). Since every node in 𝐹 is reachable from 𝑓0 by a simple
path of length at most 𝑑 − 1, the tree𝑇 contains a subtree isomorphic to Unravel(𝐹, 𝑘𝑚, 𝑓) for each
node 𝑓 in 𝐹 .
1The lemma holds also if 𝐹 is only assumed to be connected, but the present statement is sufficient and a bit easier to prove.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

Containment of GraphQueries Modulo Schema 77:25

Every match of𝑄 mod Σ0 in Coil(𝐹, 𝑘𝑚+𝑑) is a match of some C2RPQ 𝑞 ∈ 𝑄 mod Σ0, which can
be seen as a collection of matches of connected components of 𝑞. Every match of such a connected
component, by Lemma 2, visits at most 𝑘𝑚 levels; by Property 3, it maps to Unravel(𝐹, 𝑘𝑚, 𝑣)
for some node 𝑣 in 𝐹 . Thus, every match of 𝑄 mod Σ0 in Coil(𝐹, 𝑘𝑚 + 𝑑) maps homomorphically
to 𝑇 . By converting 𝑇 to a frame we obtain a tree-shaped frame that weakly refutes 𝑄 modulo
(Σ0, Σ0)-reachability; by Lemma B.1, �̃�𝑇 refutes 𝑄 modulo Σ0-reachability, which proves that there
is no match of 𝑄 mod Σ0 in Coil(𝐹, 𝑘𝑚 + 𝑑). □

Proof of Lemma 6.5. For the left-to-right implication, consider a graph𝐺 that realizes 𝜏 , satisfies
T , has only nodes of types fromΘ, and refutes𝑄 modulo ΣT-reachability. Without loss of generality
we can assume that 𝐺 only uses edge labels from ΣT .

Suppose first that |ΣT | > 1. Let 𝑟1, 𝑟2, . . . , 𝑟𝑚 be an enumeration of ΣT and let 𝑟𝑚+1 = 𝑟1. Because
𝑚 > 1, 𝑟𝑖 ≠ 𝑟𝑖+1. For each node 𝑣 in 𝐺 and each 𝑟𝑖 , let 𝐺𝑣,𝑟𝑖 be a pointed graph obtained by taking
a fresh copy of 𝐺 with all 𝑟𝑖-edges removed, label 𝐶𝑟𝑖 added to each node, and 𝑣 chosen for the
distinguished node. Consider a graph 𝐹 with a node 𝑓𝑣,𝑟𝑖 labelled with 𝐺𝑣,𝑟𝑖 for each node 𝑣 in 𝐺
and each 𝑟𝑖 . Whenever there is an 𝑟𝑖-edge from 𝑢 to 𝑣 , add an edge from 𝑓𝑤,𝑟𝑖 to 𝑓𝑣,𝑟𝑖+1 with label
(𝑢𝑤,𝑟𝑖 , 𝑟𝑖) for every𝑤 in𝐺 , where 𝑢𝑤,𝑟𝑖 is the copy of 𝑢 in𝐺𝑤,𝑟𝑖 . Because 𝑟𝑖+1 ≠ 𝑟𝑖 , graph 𝐹 contains
no self-loops. By construction, 𝐹 does not contain parallel edges with the same first component in
the label. Hence, 𝐹 is a concrete frame.

Label each component in 𝐹 with 𝐶𝑛,𝑟,𝐷 in the unique way that ensures that 𝐹 is role-alternating
and satisfies T . Frame 𝐹 obviously realizes 𝜏 and all its components have only nodes of types
from Θ (node labels 𝐶𝑛,𝑟,𝐷 are fresh, so they do not matter for Θ). Up to labels 𝐶𝑛,𝑟,𝐷 and 𝐶𝑟 , every
component of 𝐹 is isomorphic to a subgraph of 𝐺 , and every connector of 𝐹 is isomorphic to the
one-step unravelling of a subgraph of 𝐺 formed by a node and all its successors. It follows that all
components and connectors refute 𝑄 modulo ΣT-reachability.
To conclude the proof of the left-to-right implication in the case when |ΣT | > 1, we turn 𝐹 into

a suitable abstract frame 𝐹 ′ as in the proof of Lemma 6.3, with the following differences. For Γ𝐹 ′
we take the set of node labels used in 𝜏 , T , Θ, and 𝑄 , plus all node labels 𝐶𝑛,𝑟,𝐷 ∈ ΓT and all node
labels of the form 𝐶𝑟 with 𝑟 ∈ ΣT . For each frame node 𝑓 such that the distinguished node in 𝐺 𝑓

has label 𝐶𝑟 , we let Θ𝑓 be the set of all maximal types over Γ𝐹 ′ that contain some type from Θ and
include 𝐶𝑟 , all 𝐶0,𝑟 ,𝐷 ∈ ΓT , and all 𝐶𝑠 with 𝑠 ∈ ΣT \ {𝑟 }.

Suppose now that ΣT = {𝑟 }. This time, for each 𝑣 in𝐺 , and each 𝑖 ∈ {0, 1}, we let𝐺𝑖
𝑣 be a pointed

graph consisting of a single isolated fresh node 𝑣𝑖 , with labels inherited from 𝑣 , plus an additional
label 𝐶𝑟 . We let 𝐹 be a a graph with nodes 𝑓 0

𝑣 and 𝑓 1
𝑣 for each node 𝑣 in 𝐺 , labelled with 𝐺0

𝑣 and 𝐺1
𝑣 ,

respectively. Whenever there is an 𝑟 -edge from 𝑢 to 𝑣 in 𝐺 , we add an edge from 𝑓 0
𝑢 to 𝑓 1

𝑣 labelled
with (𝑢0, 𝑟) and an edge from 𝑓 1

𝑢 to 𝑓 0
𝑣 labelled with (𝑢1, 𝑟). Thanks to alternating between the two

sets of components, 𝐹 contains no self-loops. It follows easily that 𝐹 is a concrete frame. From there,
we continue like in the case with |ΣT | > 1.

For the right-to-left implication, take such a productive abstract frame and consider a concrete
frame 𝐹 it represents. Frame 𝐹 realizes 𝜏 , satisfies T , weakly refutes 𝑄 modulo ΣT-reachability,
and its components only contain nodes of types from Θ. Lemma 6.4 allows us to apply Lemma B.2
to the frame obtained from 𝐹 by restricting to frame nodes reachable from an arbitrarily chosen
frame node 𝑓 such that the distinguished element of 𝐺 𝑓 is of type 𝜏 . The graph represented by the
concrete frame resulting from Lemma B.2 has all the properties we need. □

B.6 Finding witnesses guaranteed by Lemma 6.5
The algorithm is very similar to the one described in Section A.2. Let Γ0 be the set containing
all concept names used in 𝜏 , T , Θ, and 𝑄 , as well as those from ΓT and all 𝐶𝑟 with 𝑟 ∈ ΣT .

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

77:26 Víctor Gutiérrez-Basulto, Albert Gutowski, Yazmín Ibáñez-García, and Filip Murlak

We aim to compute the set ΨT,Θ,𝑄 of maximal types over Γ0 that are realized in abstract frames
with properties specified in Lemma 6.5. For a set Ψ of types over Γ0 and a role name 𝑟 ∈ ΣT , let
Ψ𝑟 =

{
𝜎 ∈ Ψ

�� 𝐶𝑟 ∈ 𝜎
}
. Let 𝑟1, 𝑟2, . . . , 𝑟𝑚 be an enumeration of ΣT . The set ΨT,Θ,𝑄 is the greatest set

Ψ of maximal types over Γ0 such that
Ψ = Ψ𝑟1 ∪ Ψ𝑟2 ∪ · · · ∪ Ψ𝑟𝑚

and for each 𝑖 ∈ {1, 2, . . . ,𝑚} and 𝜎 ∈ Ψ𝑟𝑖 ,
• 𝜎 contains all concept names 𝐶0,𝑟𝑖 ,𝐷 ∈ ΓT and 𝐶𝑟 𝑗 with 𝑗 ≠ 𝑖;
• 𝜎 ⊇ 𝜎 ′ for some 𝜎 ′ ∈ Θ;
• abstract component (𝜎,T=,Ψ𝑟𝑖 , 𝑄 mod ΣT) is productive;
• there is a connector with distinguished element of type 𝜎 and non-distinguished elements of
types from Ψ𝑟𝑖+1 , that satisfies all properties required for connectors of witnessing frames in
Lemma 6.5.

We can compute it using a greatest fixed-point procedure, as in Section A.2, starting from the set of
all maximal types over Γ0 that, for some 𝑖 ∈ {1, 2, . . . ,𝑚}, contain 𝐶𝑟𝑖 , all 𝐶0,𝑟𝑖 ,𝐷 ∈ ΓT , and all 𝐶𝑟 𝑗

with 𝑗 ≠ 𝑖 . Checking if there exists a suitable connector is done exactly as in Section B.3. Let us
look closer at testing productivity of (𝜎,T=,Ψ𝑟𝑖 , 𝑄 mod ΣT). Because it is always guaranteed that
all types in Ψ𝑟𝑖 contain all 𝐶0,𝑟𝑖 ,𝐷 ∈ ΓT , we can drop from T= all CIs that involve role 𝑟𝑖 . This way
we reduce the productivity test to finite entailment modulo ΣT , but the involved TBox has one role
name fewer. This allows us to use a recursive call to our decision procedure.

B.7 Overall complexity
Overall, our recursive procedure has the depth twice the number of roles used in the original
TBox. At each depth of recursion we perform doubly exponential computation and make doubly
exponentially many recursive calls. When passing from depth 0 to depth 1 of the recursion, the
original TBox T is replaced with T=, which has exponential size and introduces exponentially many
fresh concept names ΓT . Deeper in the recursion, we re-apply the same construction to T=. What
this does is replace previously introduced concepts 𝐶𝑛,𝑟,𝐷 with their fresh copies, effectively giving
an identical TBox, just over a different set of concept names. The construction also produces the
TBox (T=)+, that is still of exponential size; this TBox is only used to find suitable connectors, and
is not passed down the recursion. The new rounds of concepts𝐶𝑛,𝑟,𝐷 introduced at each level of the
reduction do accumulate in the type 𝜏 to realize and set Θ of allowed types, but the total number of
added concept names is still only exponential in the size of the original TBox. The algorithm for
the case without roles, described in Section B.1, can handle this within 2EXPTIME.

Received June 2023; revised August 2023; accepted September 2023

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 77. Publication date: May 2024.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Containment and Entailment
	4 Assembling countermodels
	5 Entailment of one-way queries
	6 Entailment of two-way queries
	7 Discussion
	Acknowledgments
	References
	A Proofs for Section 5: Entailment of One-Way Queries
	A.1 Proof of Lemma 5.3
	A.2 Finding witnesses guaranteed by Lemma 5.3

	B Proofs for Section 6: Entailment of Two-Way Queries
	B.1 No roles
	B.2 Proof of Lemma 6.3
	B.3 Finding witnesses guaranteed by Lemma 6.3
	B.4 Proof of Lemma 6.4
	B.5 Proof of Lemma 6.5
	B.6 Finding witnesses guaranteed by Lemma 6.5
	B.7 Overall complexity

