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ABSTRACT To enhance the stability and reliability of the system, the converters’ parallel operation can
be cascaded to address the constraints posed by the substantial integration of renewable resources. Buck-
boost DC-DC converters are often controlled via a cascaded control approach to allow parallel operation.
The converter’s output current and its voltage will be controlled by nested loop control. This study proposes
adaptive droop control parameters that are updated and verified online using the principal current sharing
loops to minimize the fluctuation in load current sharing.When the converters in the microgrid are paralleled,
load sharing will be accomplished using the droop control approach in addition to nested proportional-
integral-based voltage and current control loops. To restore the correct voltage across the DC microgrid,
an outer addition voltage secondary loop will be used, rectifying any voltage disparities caused by the droop
management strategy. Several common load resistances and input voltage variations are used to test the
suggestedmethod. Using a linearizedmodel, this work assesses the stability and performance of the proposed
method. It then confirms the findings with an adequate model created in MATLAB/SIMULINK, Real-Time
Simulation Fundamentals, and hardware-based experiments.

INDEX TERMS Adaptive droop control, distribution generator, DC microgrid, droop control, distributed
energy resources, discontinuous conduction mode.

I. INTRODUCTION
Microgrids MGs are becoming more and more popular as
a means of resolving energy and environmental problems
because of their ability to effectively integrate distributed
generators that are interfaced with converters, including
fuel cells, batteries, wind, solar, and solar power. Many
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applications have been found for power electronics convert-
ers. DC-based distribution systems are being used widely
due to the growth of distributed energy resources, electronics
loads, electric vehicles, and energy storage devices in micro-
grid systems [1]. Due to its ability to effectively incorporate
distributed generation and eliminate complicated frequency
and reactive power regulation concerns, as well as the AC/DC
and DC/AC conversion phases, DC microgrids have recently
attracted increased interest [2]. DC-DC converters are among
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the most efficient power electronic devices for regulating
DC voltage and enhancing the performance of renewable
energy systems. An essential component that significantly
affects the power systems’ overall performance is the choice
of DC-DC converter, in a buck-boost converter, however, the
output voltage is controlled in relation to the input voltage
both less and greater [3].

When compared with more modern buck-boost converter
topologies, the traditional buck-boost converter could not per-
form as well [4]. The advantages of the traditional buck-boost
converter include its easy construction, cost-effectiveness,
and ability to achieve both voltage step-up and down, as well
as features that are typical of more modern buck-boost
converters [5]. In recent years, traditional buck-boost con-
verters have been the subject of extensive research and
are used in a variety of systems, including PV produc-
tion, DC power supply, and motor drive systems. Therefore,
to investigate the suggested techniques for DC microgrid
control [6], the traditional buck-boost topology is used in this
work.

In contrast to alternative systems of cascading converters,
the output voltage as well as the voltage and current sharing
of each module are controlled by the dynamical effects of the
buck-boost converter [7]. In [8], the goals of the dynamic
droop control are to meet the DC microgrid’s needs for
voltage management and current sharing. It suggests config-
uring large-signal PI controllers in a way that can maintain
optimum power sharing even when power stage parameters
change and realize near-time optimal transient improvement
in single converters. To manage the output voltage of the
buck-boost converter, a sliding mode controller has been
constructed [9]. This controller only uses one voltage control
loop and is not capable of controlling the inductor’s current.
Additionally, the switching frequency is changeable, making
filter design challenging and potentially causing unwanted
current harmonics [10]. For controlling the outer voltage
loop, a linear controller is utilized, while the inner current
loop is controlled by a hysteresis controller based on sliding
mode control [11]. The sliding mode control technique for
independent microgrid voltage and frequency regulation has
been implemented in real time employing a digital signal
processor controller. However, because of the oscillations on
a switching surface, this control approach exhibits consider-
able ripple. Sliding mode control-based control techniques
have been used extensively in industry in recent decades
because of their remarkable durability [12], [13]. In subse-
quent studies, the impacts of communication on the stability
and performance of the microgrid will be examined, along
with distributed control of a suggested predictive control by
proximal processes [14].

In order to incorporate the sources into the utility grid and
EV applications, there were more parts and they were all
part of a time-sharing plan [15]. The issues with conventional
droop control are addressed by hierarchical or centralized
control techniques, which leverage communication links
between the converters. For the centralized controller, local

DC-bus voltage cannot be restored if the communication link
or the central control unit malfunctions. As a result, the hybrid
control method a blend of hierarchical, centralized, decentral-
ized, and droop is used for both concurrent power-sharing and
regulation of DC-bus voltage [16]. For the system to become
more reliable overall, planning and protection must be well
coordinated. Two primary reasons for this necessity are the
erratic nature of renewable energy supply and the dynamic
load profiles [17]. Figure 1 shows a DC microgrid consisting
of DC-DC converters in the parallel buck-boost converter
configuration.

FIGURE 1. Power sources structure of buck-boost converter parallel
interface.

The fundamental goal of DC microgrid control is to
regulate the voltage output of the current sharing among
the converters by using a method that is both acceptable
and efficient [18]. The effectiveness of traditional droop is
significantly impacted by line impedance. Both linear and
non-linear modes can be employed with the droop control
technique [19], [20]. It was decided to use the non-linear
droop mechanism since line impedance negatively affects the
linear droop mechanism. It has been noted that the non-linear
properties of droop control cause a delay in the trade-off
between voltage regulation and current sharing [21], [22].
Because the converters communicate more effectively and
transfer data more quickly, the distributed control approach
can provide adaptive droop control at the secondary and
primary control levels [23]. The droop coefficient can be
softly adjusted under different loading scenarios thanks to the
adaptive droop gain technique [24], [25]. At the secondary
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level, regulators of voltage and current are used to provide
terms for voltage and impedance adjustment. The primary
current-sharing loops were used formodifying the parameters
of droop control and checking them online to reduce the vari-
ance of current sharing in the load [26], [27]. To remove the
bus voltage fluctuations in the DCmicrogrids, the buck-boost
converter uses a second loop in addition to shifting the droop
lines [28]. To make sure that every converter in DC micro-
grids shares load appropriately, The virtual resistances in the
previous section are continuously updated by using the main
loop [29], [30].

This paper presents a unique adaptive control system for
the buck-boost converter that provides correct current sharing
and enhances the corresponding droop gains with increas-
ing load, contingent on the loading state and variable input.
The creative and innovative adaptive droop controller does
this by transferring the droop lines to minimize fluctuation
of the DC-bus voltage of the DC microgrid and by check-
ing and changing the droop parameters online, utilizing the
main current-sharing loops, to lessen the variation of cur-
rent sharing in load. A computed time vector and a step
change in the input voltage and load, from 10 to 5 and
3.33 ohm, respectively, are utilized to evaluate the proposed
approach with variable input, load resistances, and a range
of input voltages. MATLAB/SIMULINK steps the model.
Establishing a connection, the OPAL-RT OP4510 Real-Time
Simulation workflow starts with instantaneous testing and
simulation.

The method and outcomes also demonstrate how the sug-
gested improved buck-boost converter adaptive droop control
strategy:

• Preserves the DC microgrid’s power balance under sig-
nificant disturbances with effectiveness.

• Enhances energy sharing and precisely controls DC-DC
bus voltages under a variety of operating conditions.

• Improves the DC-DC microgrid’s capacity for stability
and its ability to react quickly to disturbances.

• Enhances modularity, scalability, adaptability, and
dependability of DC-DC microgrids.

II. MATERIALS AND METHODS
A. SYSTEM CONFIGURATION FOR THE BUCK-BOOST
DC-DC CONVERTER
The DC microgrids seen in Figure 1 are made up of many
parallel connection converters to share current between scat-
tered sources at a common DC bus. The main objective of
DC microgrid control is to achieve a reasonable and effective
regulated output voltage for the converters’ shared current.
With changeable input voltage and load resistance as shown
in Figure 2 (A), and fixed input voltage and changeable
load resistance as shown in Figure 2 (B), the Buck-Boost
converters configuration is shown in Figure 2. This research
presents a novel adaptive control technique for the buck-boost
converter that improves the equivalent droop gains.

FIGURE 2. Configuration for buck-boost DC-DC converter with (A) Change-
able input voltage and changeable load resistance and (B) Fixed input
voltage and changeable load resistance.

B. STATE-SPACE FORMULAS
Assuming that every component is perfect, the circuit should
have no internal resistance and energy-efficient components.
By utilizing the average approach, the following may be
determined:
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1) BUCK CONVERTER
When the switch is closed
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ẋ1
ẋ2
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ẋ1 = A2x+B2µ (4)

The average model is obtained by taking the means of the
state space matrices of the two distinct operating modes.
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where Ā and B̄ as shown in equation 6 and 7.
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where Îl (t) , Îc (t), Îin (t), d̂, Vin (t)and v̂0 (t)minimal ac fluc-
tuations surrounding the quiescent values of the input voltage,
duty cycle, output voltage, inductor current, and capacitor
current, correspondingly. The equivalent circuit buck con-
verter as shown Figure 3, can be made simpler to produce
the version that produces the necessary transfer functions.

LdÎl (t)
dt

= Dv̂in + d̂vin−v̂0 (t) (8)

Îc (t) =
cdv̂o (t)

dt
= Îl (t) −

v̂o (t)
R

(9)

Îin (t) = DÎl (t) + d̂Il (10)

FIGURE 3. Simplified small signal equivalent circuit buck converter.

Obtained by applying the mathematical model formu-
las for linearized tiny signals, which are provided by
Equations (8), (9) and (10).

Îl (s)

d̂
=

Vin (SCR + 1)
S2CLR + SL + R

(11)

v̂o (s)

Îl (s)
=

R
SCR + 1

(12)

The transfer functions of the duty cycle to the induc-
tor current and the inductor current to the output voltage
can be determined by converting the small signal math-
ematical model equations to the s-domain and utilizing
the small signal equivalent circuit, which are provided by
Equations (11) and (12).

2) BOOST CONVERTER
When the switch is closed

[
ẋ1
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ẋ2

]
=

 0 −
1
L

1
c

−
1
Rc

 [
x1

x2

]
+

[ 1
L
0

]
vin (15)

ẋ1 = A2x+B2µ (16)

The average model is obtained by taking the means of the
state space matrices of the two distinct operating modes.
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where Ā and B̄ as shown in equation 18 and 19.
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The equivalent circuit boost converter as shown Figure 4,
can be made simpler to produce the version that produces
the necessary transfer functions. Where Îl (t) , Îc (t), Îin (t), d̂,
Vin (t) and v̂0 (t)minimal ac fluctuations surrounding the qui-
escent values of the input voltage, duty cycle, output voltage,
inductor current, and capacitor current, correspondingly.

LdÎl (t)
dt

= v̂in + Dv̂0 (t) + d̂vo (20)
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FIGURE 4. Simplified small signal equivalent circuit boost converter.

Îc (t) =
cdv̂o (t)

dt
= −

v̂o (t)
R

+DÎl (t) − d̂Il (21)

Îin (t) = Îl (t) (22)

By applying the mathematical model formulas for linearized
tiny signals, which are provided by Equations (20), (21)
and (22).

Îl (s)

d̂
=

SCRVo + Vo + IlRD
S2CLR + SL + RD2 (23)

v̂o (s)

Îl (s)
=

DRVo−SLRIl
SCRVo + Vo + IlRD

(24)

By converting the small signal mathematical model equations
to the s-domain and utilizing the small signal equivalent
circuit, which are provided by Equations (23) and (24).

3) THE ADAPTIVE CONTROL TECHNIQUE
DC microgrid system. Achieving equal nominal voltages for
the converter leads to the most accuracy in current sharing.
The local control modifies each converter’s nominal voltage
to ensure precise current sharing error. Reduced current value
sharing is found in converters with reducedmaximum voltage
deviation and nominal voltage. Therefore, the controller is
configured to increase the nominal DC voltage based on the
bus voltage deviation and the current load sharing. To do this,
each converter’s reference voltage is adjusted using a virtual
resistance, R droop. R droop can be adjusted to control the
power-sharing and reference voltage of any converter. Higher
nominal voltage values are associated with converters with
lesser voltage deviations. As the low voltage converter’s nom-
inal voltage approaches the second one, the current-sharing
error decreases. In addition, the secondary loop reduces the
voltage variation.

4) THE PRIMARY CONTROL LOOP
The primary loop’s objective is to guarantee precise load
sharing among all converters in DC microgrids. The pro-
posed adaptive droop is elucidated using the droop diagram,
as shown in Figure 5, which provides a flowchart sequence
for the suggested approach. The Rd , values must be precisely
adjusted to control the source converters and increase the
bus voltage to guarantee that every converter generates an
identical output voltage. Based on the bus voltage’smaximum
deviation from the DCmicrogrids, the suggested control must
then distribute the load current nearly equally, which means
that the converters’ output voltages must be aligned.

FIGURE 5. The suggested droop control method strategy’s flowchart
sequence.

1) Difference AT Vdifferance = (Vdc1 − Vdc2) is positive
value, VO1 > VO2 > Rd2 > Rd1, IO,2 < IO,1, the
value for Rd droop is given as follows:

Rd1,new =
(
Rd1,old±1R

)
(25)

1) Difference AT Vdifferance = (Vdc1 − Vdc2) is negative
value, VO1 < VO2 > Rd1 > Rd2, IO,1 < IO,2, the
value for Rd droop is given as follows:

Rd1,new =
(
Rd1,old∓1R

)
(26)

1) Difference AT Vdifferance = (Vdc1 − Vdc2) is zero
value, the value for Rd droop is given as follows:

Rd1,new =
(
Rdi,old

)
(27)

5) THE SECONDARY CONTROL LOOP
In order to ensure that every converter in DC microgrids is
properly distributing the load, the virtual resistance value
from the previous section is continuously updated via the
primary loop. The load influences the variance of the bus
voltage, as does any malfunction in the current or voltage
feedback. Figure 6 shows how the bus voltage variance from
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TABLE 1. DC-DC buck-boots converter parameters in DC microgrids.

TABLE 2. DC-DC buck-boots converter operating parameters in DC
microgrids.

the DCmicrogrids is compensated for by using a second loop.
Table 1 shows DC-DCBuck-Boots converter parameters, and
table 2 shows the operating parameters in DC microgrids.

As shown in Figure 4, the secondary loop adjusted the
voltage reference of the drooping line to manage and increase
the bus voltage while maintaining the same current sharing
for each converter in the microgrid. The PI controller will be
used to compare the needed value, VMG with the measured
bus voltage VMG to obtain the voltage deviation signal.

1vmG = Kρi
(
vMG,ref−VMG

)
+ ki1 ∫

(
vMG,ref−VMG

)
dt (28)

The voltage deviation value 1VMG shifts each converter
to bring the bus voltage back to the necessary level. Updates

FIGURE 6. Adaptive control technique with a parallel buck-boost
converter control scheme.

to the droop characteristic reference voltage look like this:

vdc1 = v∗

dc+1vMG1 − i0,i×Rd1 (29)

vdc2 = v∗

dc+1vMG2 − i0,i×Rd2 (30)

With the equation, For DC microgrids, bus voltage measure-
ments can be computed rather than measured.

vMG = vload = vdci − i0,i×(Rd1 + Rline2) (31)

The bus voltage variation is determined by the load and/or
error in the current or voltage feedback. To counteract the bus
voltage divergence from the DC microgrids, a second loop is
employed, as illustrated in Figure 4. The restoration voltage is
added to the output voltage Voequation in the following way:

V0 = Vref + Vres − RdroopiL (32)

Measures of the performance of the suggested adaptive
controller can therefore be greatly enhanced by Real-Time
Simulation OPAL-RT OP4510 during its creation and evalu-
ation when the suggested algorithm is assessed utilizing an
Increasing trust in the power grid operator with changing
input voltage and variable load resistance, as well as constant
input voltage and variable load resistance. To verify the extent
to which the suggested control system is operational, Figure 7
illustrates the presentation of voltage and current waveforms
along with the performance of actual findings. When the load
is varied in steps from 10 to 5 and 3.33 ohm when the input
voltage is altered and constant input voltage and variable
load resistance, MATLAB/SIMULINK step the model using
a computed time vector. After determining the previous time
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FIGURE 7. (A) Show simulation buck-boost model. (B) Configuration for
real-time OPAL-RT OP4510.

value, Simulink quickly computes the outputs for the subse-
quent time value. This process is repeated until the stop time

FIGURE 8. The transient response droop voltage for variable input
voltage and variable load resistance MATLAB/SIMULINK from 10 � to 5 �

and 3.33 �.

FIGURE 9. The transient response for variable input voltage and variable
load resistance MATLAB/SIMULINK from 10 � to 5 � and 3.33 �.

is reached. Regarding Instantaneous Simulation Real-time
simulation and testing, connecting to the DSOX3034A
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FIGURE 10. The transient response droop voltage for constant input
voltage and variable load resistance MATLAB/SIMULINK from 10 � to 5 �

and 3.33 �.

FIGURE 11. The transient response for constant input voltage and
variable load resistance MATLAB/SIMULINK from 10 � to 5 � and 3.33 �.

Oscilloscope serial trigger and analysis, and segmentedmem-
ory testing at any time are the first steps in the OPAL-RT
OP4510 workflow.

III. RESULTS
This paper offers a practical examination apparatus for
verifying the proposed algorithm control. For example,
applications, such as the cascaded control method for
parallel operation of buck-boost DC/DC converters, MAT-
LAB/SIMULINK and Real-Time Simulation OPAL-RT

FIGURE 12. Variable input voltage and output bus voltage, and output
voltage of two Buck-Boost converters at 10 � to 5 � and 3.33 � load
variations.

FIGURE 13. Output bus current, and output current of two buck-boost
converters at 10 � to 5 � and 3.33 � load variations and input voltage
changes.

OP4510 were used to simulate and analyze test proce-
dures of the proposed control algorithm. Figure 8 shows the
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FIGURE 14. Both the constant input voltage and output bus voltage, and
output voltage of two Buck-Boost converters at 10 � to 5 � and 3.33 �

load variations.

transient response drop voltage for changeable input voltage
and changeable load resistance MATLAB/SIMULINK from
10 � to 5 � and 3.33 � and Figure 9 shows the transient
response for variable input voltage and variable load resis-
tance MATLAB/SIMULINK from 10 � to 5 � and 3.33 �.
In the results of the MATLAB program, there is some distor-
tion in the voltage and current waves, but in the laboratory
results there is no effect of the voltage and current waves,
as the circuit was operated at switching frequency 100 k Hz.
Figures 10 and 11 shows the transient response Droop
Voltage and input voltage and variable load resistance for
constant input voltage and variable load resistance MAT-
LAB/SIMULINK from 10 � to 5 � and 3.33 �, com-
pared with the result from Real-Time Simulation OPAL-RT
OP4510 as shown figures 12, 13, 14 and 15.

IV. DISCUSSION
The suggested cascaded control method improves the per-
formance of current sharing in droop control DC microgrids
and removes bus voltage variation. Two loops are suggested:
one improves current sharing, while the other keeps the bus
voltage at its presumptive level. There are no measurements
or communication linkages needed between the source con-
verters when using the straightforward suggested control
mechanism. Various operating situations are used to exam-
ine and assess the control methodology. The strength of the
proposed technique is validated by considering the effect of
the line impedance on the two Buck-Boost converters. The
proposed controllers’ experimental results agreed with the

FIGURE 15. Output bus current, and output current of two Buck-Boost
converters at 10 � to 5 � and 3.33 � load variations and constant input
voltage.

TABLE 3. Advantages and disadvantages of the control technique
proposed.

modelling results. Under various operational situations, the
suggested technique performs better and is easier to exe-
cute. Table 3 shows the advantages and disadvantages of the
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control technique proposed, dynamic performance, current
sharing accuracy and resolution capability.

V. CONCLUSION
This paper proposes a novel cascaded control method for
the concurrent operation of buck-boost DC/DC converters.
Adaptive droop control settings have been validated online
and adjusted utilizing the major current sharing loops to
reduce load current sharing fluctuations. The droop con-
trol method will be used to provide load sharing once
the converters in the microgrid are paralleled. Furthermore,
a voltage synchronization controller that can accommodate
the requirements of a buck-boost converter as well as layered
proportional-integral based voltage and current control loops
will be constructed. The effectiveness and improved perfor-
mance of the proposed control technique are confirmed and
demonstrated with a hardware experimental setup that con-
sists of two parallel buck-boost converters operating within
a DC microgrid. To test the suggested approach, different
input voltages and typical load resistances are employed. Fur-
thermore, the same design process as the proposed cascaded
voltage- and current-loop control method can be used to
regulate the output voltage of a variety of DC-DC converters.
As a result, the recommended control strategies must have a
good reference value and flexibility. In the next study, we will
investigate the applicability of the proposed control strategies
for different kinds of DC-DC converters and DC microgrid
management with complex DC-DC converter topologies. but
the system requires more sensors, and Sensitive current shar-
ing with inadequate noise immunity.
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