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Building stock modelling often employs clustering techniques on the segmented stock data to identify 
representative archetypes, enabling cost-effective analyses while retaining the diversity and characteristics of 
the overall stock. However, the effectiveness of these archetypes in representing the original stock attributes 
remains under-explored, a factor essential for meaningful interpretations of the model outputs. This study 
investigated the influence of segmentation level, clustering evaluation metric and variable count on archetype 
representativeness by applying the k-prototype algorithm to the English Housing Survey data. Pre-clustering 
segmentation significantly influenced the outcomes, leading to the introduction of “minimum segmentation 
frequency” (MSF) to retain feature diversity in the segmented data. Sensitivity analysis revealed that lower MSF 
values improve building stock representation, while the choice of clustering evaluation metrics influences the 
optimal number of archetypes for a given MSF. The Davies-Bouldin index consistently identified more archetypes 
and achieved higher representativeness than the Calinski-Harabasz and Silhouette indices. A comprehensive 
archetype development framework was devised considering the influencing factors such as geographical and 
temporal scales, computational cost and research focus. This framework serves as a flexible guide for developing 
representative archetypes in future building stock modelling studies.
1. Introduction

Building stock modelling plays a vital role in the development and 
testing of solutions and policies for improving energy efficiency [1–3], 
reducing greenhouse gas emissions [4–6], adapting to climate change 
by reducing overheating risks [7–9], assessing the effects of building 
envelope modifications on indoor air quality [10] and optimising re-

source usage [11–13] for a resilient built environment. The modelling 
process can be classified into two main approaches: the “one-to-one” 
method, which involves modelling every building within the study area, 
covering a broad spectrum of its diverse geometric and construction 
features, and the “archetype-based” method, which focuses on mod-

elling only a representative subset of buildings. The former method has 
seen increased adoption in recent years, especially for smaller geogra-

phies with fewer buildings. This is primarily due to the declining cost 
of computation, and the advancement and increased availability of ac-

cessible building simulation tools [14]. However, their implementation 
remains challenging because “one-to-one” modelling requires signifi-

cant efforts in terms of human and financial resources [15]. On the 
other hand, in situations where many buildings need to be assessed 

* Corresponding author.

using detailed and resource-intensive modelling approaches, develop-

ing building archetypes based on statistical analyses of a representative 
sample is a more feasible alternative to “one-to-one” modelling.

Each archetype embodies a range of characteristics of a particular 
segment of the building stock, which are often simulated to evaluate 
performance across a range of similar buildings while managing com-

putational costs. Therefore, archetype-based stock modelling provides a 
pragmatic and time-efficient approach [16,17] while ensuring that the 
outcomes obtained adequately reflect the original larger set of buildings 
and are well-suited for their intended applications, spanning from dis-

trict, and urban energy and environmental modelling to national stock 
modelling.

Building archetypes are primarily developed through a three-step 
process involving data preprocessing, segmentation and clustering. 
First, the building stock dataset is analysed to identify relevant fea-

tures that are significant in the study context, typically using statistical 
methods [18]. Significant features are sometimes transformed depend-

ing on the nature of their distribution and the presence of outliers to 
improve clustering effectiveness [19]. Second, the selected subset is 
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segmented into homogeneous groups typically based on geography and 
building characteristics such as age and type. Third, clustering meth-

ods are applied on each of the segmented subsets to further divide 
the sub-population into clusters of building archetypes with similar 
attributes. The level of segmentation and the selection of clustering 
technique depends on several factors such as the scope of the analy-

sis, the availability and type of the variables required for modelling, 
and the computational complexity of the building model.

While the field of building stock modelling has seen various ad-

vancements, there remains a notable gap in the existing literature re-

garding a comprehensive understanding of how methodological choices 
affect representativeness. Representativeness can be defined as the sim-

ilarity in the distribution of relevant variables between the archetypes 
and original building stock data, measured by comparing the total 
dwelling count across various variables. This relates to how well the 
building archetypes represent the features of the building stock, which 
is essential for interpreting research results effectively. Moreover, the 
current state-of-the-art lacks a guiding framework for developing repre-

sentative building archetypes through the clustering of features relevant 
to specific research contexts. The absence of a systematic and adapt-

able framework in this regard can lead to oversimplified archetypes, 
potentially compromising their usability and the accuracy of simula-

tion results. While increased archetype complexity does not guarantee 
improved simulation accuracy, it is important to avoid oversimplifica-

tion which might overlook significant details pertinent to the building 
stock. An overly detailed archetype may introduce further challenges, 
often without a corresponding improvement in the accuracy of predic-

tions. The key lies in finding the ideal level of detail that captures the 
essential characteristics needed to achieve the objectives of the study.

To overcome the existing gaps in the literature, this research ex-

plores how segmentation level, clustering evaluation metric and vari-

able count influence the number and distribution of archetypes using 
the k-prototype clustering algorithm. Relevant variables for clustering 
were identified from the 2020 English Housing Survey (EHS) dataset 
[20] using multiple linear regression. Then, a pre-clustering partition-

ing strategy termed, “minimum segmentation frequency” (MSF), was 
introduced to retain feature diversity in the segmented data. The sen-

sitivity of archetype representativeness to various segmentation levels, 
clustering evaluation metrics and variable counts was subsequently in-

vestigated. Based on the outcomes of the sensitivity analysis, a frame-

work for representative archetype development was proposed. The 
framework aims to guide users in developing archetypes considering 
geographical and temporal scales, research focus and associated com-

putational cost for simulation, thereby enhancing the usability and rel-

evance of the resulting building stock model. The necessity for such a 
framework is underscored by the evolving nature of building stocks and 
increasing complexity of modelling requirements.

2. Previous works

Building archetypes have become fundamental in building stock 
models, serving as representative buildings that address a wide range 
of research objectives, from mitigating overheating risks [21,22] to 
reducing greenhouse gas emissions [4–6]. The characteristics of avail-

able data and specific study objectives influence the development of 
archetypes, emphasising the need for a systematic approach and a ro-

bust understanding of the complexities involved in their formulation.

2.1. Modelling principles

Various approaches have been adopted to develop building arche-

types, and can be broadly classified into: bottom-up and top-down. Re-

search using the bottom-up approach relies on the engineering models 
of the identified archetypes, the results from which are then extrapo-

lated to the building stock using weightings. On the other hand, top-
2

down approach often relies on statistical modelling techniques, applied 
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on the aggregated stock data, focusing on identifying broad patterns 
without necessarily categorising the building stock into archetypes. 
Engineering or physics-based modelling also varies depending on the 
underlying modelling principles such as steady-state, quasi-steady-state 
and dynamic [23]. Dynamic energy models enable the investigation 
of detailed scenarios, but are often associated with high computa-

tional costs— limiting the number of archetypes to less than a hundred 
[24–26]. In contrast, steady-state models are less resource-intensive, 
and can accommodate more archetypes [27,28], potentially with in-

creased building stock representation. However, it is essential to ac-

knowledge that not all building stock models use dynamic models, a 
decision that depends on the research focus and available resources.

2.2. Segmentation and clustering

The selection of an appropriate clustering algorithm is an impor-

tant consideration, guided by both the research objectives and nature 
of the dataset [29]. Past research on archetype development has typi-

cally employed unsupervised machine learning techniques for cluster-

ing building stock data. Two of the most popular techniques reported 
in the literature are k-means [30–36] and k-medoids [32,33,37], which 
are partitional clustering techniques that assign each instance to ex-

actly one of k mutually exclusive partitions. The former method is not 
well-suited to concurrently handle building data comprising both nu-

merical and categorical variables. While k-medoids clustering handles 
heterogeneous data, its computational efficiency can be affected for 
large datasets [38], typical of building stocks. Similarly, hierarchical 
clustering also has been used to develop building archetypes [30,32]. 
On the other hand, the k-prototype algorithm can simultaneously man-

age categorical and numerical data, and although recognised as one of 
the most effective methods for handling heterogeneous data [39] such 
as building stocks, its application for developing building archetypes 
remains largely unexplored.

Pre-clustering segmentation1 or partitioning of the primary dataset 
has been found to capture the diversity of the building stock better 
than without [31], thus enhancing the representativeness of resulting 
archetypes. Borges et al. [34] used a deterministic method followed 
by k-means clustering to investigate the intricacies of Andorra’s build-

ing stock. Similarly, Ali et al. [31] first developed typologies through 
segmentation and subsequently employed k-means for clustering on the 
Irish building stock. However, the k-means algorithm, while effective in 
many cases, can fail to handle categorical variables and not account for 
aspects such as the total number of dwellings of each archetype. Tardioli 
et al. [32] explored multiple clustering algorithms on segmented sub-

sets but did not consider k-prototype clustering. Furthermore, Borges 
et al. [34] and Tardioli et al. [32] did not partition the segmented ty-

pologies into smaller datasets, which could have potentially enhanced 
the stock representation achieved through clustering.

2.3. Representativeness

A key factor when determining the representation of a building stock 
is the number of archetypes, which typically ranges from two to sev-

eral thousand in previous works. Lechtenböhmer and Schüring [40]

1 The terms segmentation and clustering are sometimes used synonymously 
in the literature as they both involve grouping of cases, but differences exist 
between them. In the context of archetype development, segmentation is an 
analysis-driven process that involves grouping cases into segments based on the 
scope and objectives of the study. Segmentation is usually applied on the pri-

mary dataset before clustering. On the other hand, clustering is a statistical 
technique that uses machine learning algorithms to group cases or data points 
into clusters based on their similarities. One of the key differences between 
segmentation and clustering is that segmentation is typically driven by human 
knowledge and expertise, while clustering is driven by machine learning algo-
rithms.
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used only two archetypes, one 120 m2 single/two family and one 1457 
m2 large apartment building, to represent the European Union (EU) 
residential building stock. The authors acknowledged significant uncer-

tainties arising from their choice of two archetypes. Nevertheless, the 
research offered approximate estimations of the potential, suitability 
and cost associated with upgrading the EU building stock. Portella [41]

developed a building stock model for France using 45 non-residential 
and 54 residential archetypes. The final energy demand was estimated 
at 435.5 TWh/year for the residential and 179.4 TWh/year for the 
non-residential sectors, which were 1.1-7.4% lower than the official 
statistics. Famuyibo et al. [18] developed 13 archetypes to represent ap-

proximately 65% of the Irish housing stock, indicating that some studies 
might choose fewer archetypes even if they offer limited representation 
of the building stock.

Research by Molina et al. [42] on the residential building stock of 
Chile demonstrated that a set of 496 archetypes represented the entire 
stock comprising 6.5 million dwellings while 90 of these archetypes 
represented 95% of the stock. The difference of 406 archetypes be-

tween the two thresholds indicated the presence of a large number of 
outlier archetypes. A 𝜒2 analysis in the same research revealed that 
the return on representativeness diminishes with increasing number of 
archetypes. The suitable number of archetypes was found to be depen-

dent on the level of detail in the information sources and the desired 
outcomes or research questions. These findings highlight the variability 
in archetype selection, often influenced by different levels of segmenta-

tion, indicating the importance of methodological decisions in building 
stock modelling research.

In larger, national-scale investigations, a broader range of archetypes 
is needed to account for the diversity in building characteristics and re-

gional disparities, as highlighted in previous studies [27,28,43]. On the 
other hand, studies focused on a geographically limited, district-scale 
scope can achieve satisfactory representation of the building stock with 
fewer archetypes, owing to the more uniform set of characteristics in 
such areas [13,30,36]. However, it’s important to note that even studies 
of the same geographic scale may require varying range of archetypes 
[44,45], reflecting the diverse goals and subtleties of each research. 
While geographic scale often serves as a determinant for the number of 
archetypes, the distinct objectives of each study can further influence 
their selection, emphasising the complexities involved in archetype de-

velopment.

The archetypes developed by Ballarini and Corrado [46] utilised 
averaged values of building features based on heating systems and con-

struction typologies. This approach can be helpful in contexts with 
limited data but may fail to account for the variability that exists in 
the building stock. A more granular approach, such as clustering each 
typology subset, could leverage the available data more effectively 
than average values, leading to archetypes that reflect stock diversity 
more closely. Using information theory and cluster analysis, Geraldi and 
Ghisi’s [47] advanced approach attempts to overcome such limitations 
by incorporating real-world parameter variability into their archetypes. 
Nevertheless, the approach requires extensive computational resources 
and depends on subjective decision factors such as spatial configura-

tions.

3. Methodology

The proposed four-step methodology for developing building arche-

types, illustrated with an example for better contextualisation, is shown 
in Fig. 1. The process begins with the identification of variables fre-

quently employed in previous research. Subsequent steps involve the 
identification, selection, cleaning, cross-referencing and transformation 
of pertinent datasets. Key variables are then identified via regres-

sion analysis followed by the partitioing of the primary dataset into 
frequency-based subsets. A clustering algorithm is subsequently applied 
to each subset to generate representative archetypes. A case number 
3

is assigned to each archetype through the algorithm to determine the 
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distribution of each archetype within the EHS. These case numbers are 
then used to link the archetypes to their corresponding cases in the EHS. 
This allows for obtaining the total dwelling count each archetype repre-

sents. The innovation of this methodology resides in the incorporation 
of MSF during segmentation, procedures for data transformation and 
variable selection, and the adoption of a suitable clustering evaluation 
metric and variable count— collectively contributing to an enhanced 
representation. The involved steps are discussed in detail in the follow-

ing sub-sections.

3.1. Data preparation

Primary datasets for archetype development usually consist of both 
numerical and categorical variables. For instance, geometric attributes 
such as floor area are numerical, whereas technical features such as 
heating systems and fuel types fall into the categorical category. The 
type of variable not only affects the selection of clustering algorithm 
and evaluation metrics but also impacts domain-specific modelling at 
the end of the clustering process. Data preparation and transformation 
are, therefore, important steps for archetype development.

The EHS [20] was selected as the primary dataset for this study due 
to various considerations: (a) the comprehensiveness and reliability of 
the dataset, (b) its status as one of the most extensively studied building 
stock and (c) the opportunity it offers for a more substantial contextual-

isation of research findings. The EHS is a national survey of the energy 
efficiency and condition of housing, and people’s housing circumstances 
in England [48]. The survey is commissioned by the Department for 
Levelling Up, Housing and Communities (DLUHC) and has been run 
since 1967. Data is collected via a household interview and a physi-

cal inspection of a sample of properties by a qualified professional. The 
independent categorical variables from the EHS were transformed into 
binary variables to satisfy the prerequisites for multiple linear regres-

sion [49,50]. Additionally, clustering outputs can be biased by skewed 
distributions and outliers [51], thus, scalarising data prior to clustering 
is essential to provide uniform weighting. Given its robust performance 
with various clustering methods [32], the Min-Max scalarisation was 
used to convert the floor area variable into a common scale ranging 
from 0 to 1 to improve the clustering performance.

3.2. Variable selection

Variables used in previous archetype development works are shown 
in Fig. 2. Dwelling type and age emerged as the most frequently used 
variables. Some household characteristic variables such as household 
size [52] and tenure [35], have seen comparatively limited utilisation. 
This might be attributed to the prevalent assumption of standardised 
occupancy profiles for dwelling archetypes, which consequently leads 
to excluding these variables from clustering algorithms. Variables such 
as ventilation systems [31] and the thickness of domestic hot water 
cylinders [18], are rarely included, primarily because they are absent 
from most datasets. The omission of ventilation systems in analyses is 
often due to the limited variation in building stock. For instance, the 
majority of the UK homes rely on natural ventilation. Additionally, 
modelling challenges associated with ventilation [53], may also con-

tribute to its exclusion. An important variable implemented is energy 
data [34,35,52], which associates each dwelling type with its total en-

ergy consumption to establish a suitable benchmark.

A multiple linear regression model was used to examine the energy 
efficiency of the building stock. Energy efficiency rating (sap12) was 
chosen as the dependent variable to serve as a proxy indicator for the 
wide range of features that influence energy use and indoor conditions 
across the building stock. Its relationship with the independent vari-

ables is demonstrated in Equation (1), where the dependent variable 
and independent variables are on the y-axis and x-axis respectively. In-

dependent variables were first identified by cross-referencing variables 

from the EHS dataset with those commonly used in previous works. The 
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Fig. 1. Overview of the methodology. Example application is given on the right to illustrate the progressive selection of variables and building count.
identified variables and their EHS symbols (in bracket) are: floor area 
(floory), loft insulation thickness (loftins4), number of storeys (storeyx), 
boiler system (boilerx), fuel type (fuelx), system age (sysage), dwelling 
age (dwage5x), type of wall and insulation (wallinsz), dwelling type (dw-

typenx), double glazing percentage (dblglaz2), heating system (heat4x), 
number of rooms (nrooms1a), number of bedrooms (nbedsx), income 
(hhinc5x), number of occupants (hhsizex), household age (agehrp2x) and 
tenure groups (tenure2). The coefficient of determination (𝑅2) was used 
to evaluate the regression model, executed using IBM SPSS Statistics 
(Version: 27.0.1.0). The 𝑅2 value of the regression model was 0.753, 
predicting roughly three-quarters of the variance in the building stock’s 
energy efficiency ratings. This agrees with the results of earlier research, 
which found that dwelling geometry, heating system efficiency and wall 
U-value together account for 75% of the energy efficiency rating [54].

𝑦 = 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑛𝑥𝑛 + 𝜖 (1)

where 𝑦 is the dependent variable, 𝑥1...𝑥𝑛 are the independent variables 
𝛽0 is the constant term when all predictors are zero, 𝛽1...𝛽𝑛 are the 
regression coefficients of the independent variables and 𝜖 is the residual 
term.

Household-related variables such as hhsizex and agehrp2x achieved 
low regression coefficients, resulting in their exclusion from the final re-

gression model, presented in Table 1. Only heat4x and fuelx were found 
to be insignificant, having 𝑝-values (Sig.) ≤ 0.05. Hence, it was decided 
to keep fuelx only since retaining it may act as a substitute for both 
variables boiler and heat4x. For example, if fuelx is gas, the associated 
heat4x will likely be central heating systems, while if fuelx is electric, 
4

the corresponding heat4x would be electrical heating systems. Hence, 
this approach allows for an optimised variable selection without com-

promising the representation of the building stock features. In addition, 
multicollinearity was investigated using variance inflation factors (VIFs) 
to verify the validity of the regression outputs. An average VIF score of 
1.95 suggests a moderate level of multicollinearity between the vari-

ables, thereby indicating minimal influence of multicollinearity on the 
regression outputs [55].

3.3. Segmentation

Pre-clustering segmentation is an important step in ensuring repre-

sentativeness of the resulting archetypes by avoiding imbalances in the 
distribution of variables. To achieve this, two segmentation approaches 
were implemented: knowledge- and frequency-based partitioning.

3.3.1. Knowledge-based

Knowledge-based segmentation groups buildings based on their in-

herent characteristics, such as dwelling type and region, to account for 
regional variations. In this study, the EHS data was segmented into 63 
distinct subsets based on seven dwelling types (end-terrace, mid-terrace, 
semi-detached, detached, bungalow, converted flat, and purpose built 
flat) and nine regions (North East, North West, Yorkshire and the Hum-

ber, East Midlands, West Midlands, East of England, London, South East 
and South West).

3.3.2. Frequency-based

Variables in the segmented data from the previous step often have 

uneven distributions, with certain features being dominant. This bias 
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Table 1

Multiple linear regression estimates of influencing variables on the indoor environment.

Independent variables Unstd. coefficients Std. coefficients t-statistics Sig.

Symbol Name Category 𝛽 Std. error 𝛽

𝛽0 Constant 67.462 .0342 197.137 .000

floory Floor area .023 .001 .119 17.041 < .001

dwtypenx Dwelling type End-terrace 1.778 .212 .054 8.404 < .001

Mid-terrace 6.019 .197 .229 30.495 < .001

Semi-detached 2.063 .173 .090 11.944 < .001

Converted flat 9.115 .379 .166 24.046 < .001

Low rise purpose built flat 8.444 .266 .317 31.794 < .001

High rise purpose built flat 7.509 2.057 .104 3.651 < .001

dwage5x Dwelling age Pre-1919 -9.349 .225 -.366 -41.548 .000

1919 to 1944 -8.527 .182 -.304 -46.961 .000

1945 to 1964 -7.480 .152 -.303 -49.081 .000

1965 to 1980 -5.891 .144 -.245 -40.776 .000

dblglaz2 Double glazing percentage 80% or more double glazed 3.192 .192 .089 16.592 < .001

heat4x Heating system Storage heater 1.327 .787 .027 1.687 .092

Fixed room heater -9.454 .822 -.136 -11.505 < .001

sysage System age Less than 3 years 1.343 .177 .058 7.573 < .001

More than 12 years .990 .159 .051 6.225 < .001

fuelx Type of fuel Not identified - communal system 1.427 1.245 .020 1.146 .252

Oil fired system -7.473 .268 -.147 -27.932 < .001

Solid fuel -5.805 .970 -.031 -5.987 < .001

Electric -7.952 .926 -.198 -8.587 < .001

boilerx Boiler type No boiler -3.765 1.184 -.107 -3.179 .001

Standard boiler (floor or wall) -7.016 .230 -.199 -30.535 < .001

Back boiler (to fire or stove) -10.520 .513 -.111 -20.509 < .001

Combination boiler -4.030 .284 -.079 -14.166 < .001

Condensing boiler -.692 .134 -.029 -5.161 < .001

loftins4 Loft insulation thickness No roof above -.617 .229 -.021 -2.697 .007

None -11.499 .332 -.178 -34.684 < .001

Less than 100 m -3.166 .181 -.090 -17.451 < .001

100 to 150 mm -1.673 .123 -.071 -13.607 < .001

storeyx Number of storeys 1 -.878 .225 -.025 -3.906 < .001

3 1.701 .153 .063 11.106 < .001

4 4.011 .315 .070 12.731 < .001

5 4.679 .509 .047 9.191 < .001

6 8.285 2.022 .117 4.097 < .001

wallinsz Type of wall and insulation Cavity uninsulated -5.198 .127 -.216 -40.779 .000

Solid with insulation 1.799 .298 .031 6.040 < .001

Solid uninsulated -6.935 .178 -.298 -38.976 .000

Other 3.973 .397 .050 10.006 < .001
can cause clustering algorithms to overlook less frequent but impor-

tant features. For instance, given the prevalence of cavity insulated 
walls in the wallinsz variable, the clustering algorithm may only iden-

tify archetypes with cavity insulated walls and overlook wall types such 
as solid walls with insulation. Hence, “minimum segmentation frequen-

cy” (MSF) was introduced to retain feature diversity in the segmented 
data before clustering is applied. The approach divides the segmented 
data into smaller subsets, each containing a number of cases close to 
the specified MSF value. For example, MSF-15 represents the division 
of each of the 63 segmented subsets from the previous step into further 
subsets, each comprising approximately 15 cases. To examine the in-

fluence of MSF on the number and representativeness of the resultant 
archetypes, a sensitivity analysis was conducted. This involved repeat-

ing the frequency-based segmentation step eight times with different 
MSF values, ranging from 15 to 50, in increments of five.

3.4. Clustering

Clustering is a multivariate classification technique that groups ob-

jects into distinct clusters based on their intrinsic characteristics. Ob-

jects within the same cluster share comparable characteristics, reflect-

ing a high level of within-cluster coherence while retaining unique 
distinctions between clusters.

Standard k-means and k-modes are clustering algorithms for nu-

merical and categorical data respectively. They are not suitable for 
mixed data because they use different dissimilarity measurements [56]. 
5

k-means uses the Euclidean distance, which measures the distance be-
tween two points in a numerical space. On the other hand, k-modes 
uses the Hamming distance, which is a measure of the difference be-

tween two binary vectors. Huang [56] proposed k-prototype, which 
clusters mixed data types using k-means’ Euclidean distance and k-

mode’s Hamming distance, the first and second expressions in Equation 
(2) respectively. The algorithm utilises the mean and mode of numerical 
and categorical variables respectively to minimise dissimilarity between 
cluster points. Clusters are formed randomly based on the predeter-

mined number of clusters 𝑘, the algorithm is then iterated until each 
cluster’s mean and mode values are adjusted and minimised based on 
the distance between cluster points.

𝑑(𝑥, 𝑦) =
𝑝∑

𝑖=1
||𝑥𝑖 − 𝑦𝑖||2 + 𝛾

𝑞∑
𝑖=𝑝+1

𝛿(𝑥𝑖, 𝑦𝑖) (2)

where the first term represents the Euclidean distance between two nu-

merical datapoints, the second term represents the Hamming distance 
between two categorical datapoints, and 𝛾 and 𝛿 are weighting factors 
to balance numerical and categorical distributions.

3.4.1. Cluster evaluation

The performance and efficacy of clustering techniques are deter-

mined using evaluation metrics, which quantify the quality of cluster 
formations by assessing the cohesiveness of the groupings and how dif-

ferent they are from one another. Clustering evaluation metrics can 
be divided into two categories: internal and external. Internal metrics 
measure the quality of the clusters themselves, while external metrics 

measure the accuracy of the clustering algorithm against known ground 
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Fig. 2. Variables used in previous building stock modelling works.

truth labels. Internal metrics are commonly used for unsupervised clus-

tering, where ground truth labels are not available. This research inves-

tigated the following three most commonly used metrics:

• Davies-Bouldin index (𝐼DB) quantifies cluster quality by balanc-

ing its compactness and separation, enabling the comparison of 
solutions and optimisation of cluster numbers [57], as defined in 
Equation (3). Separation measures the distance between clusters, 
and compactness measures data point proximity within clusters. 
Lower values of 𝐼DB indicate well-separated, condensed clusters.

𝐼DB = 1
𝑘

𝑘∑
𝑖=1

max
𝑖≠𝑗

(
𝑠𝑖 + 𝑠𝑗

𝑑𝑖𝑗

)
(3)

where 𝑘 is the number of clusters, 𝑖 and 𝑗 represent cluster labels 
where 𝑠𝑖 and 𝑠𝑗 are cluster samples with respect to their centroids 
and 𝑑𝑖𝑗 denotes the distance between the centroids.

• Silhouette index (𝐼SIL), also known as Silhouette coefficient, de-

scribes the cohesiveness and separation of clusters by comparing 
the similarity of an object within its cluster to that of the objects in 
other clusters [58]. Equation (4) is used to calculate 𝐼SIL, which 
ranges from −1 to 1. 𝐼SIL > 0.5 signifies robust clustering [58]

where higher values denote a more distinctive and compact cluster.

𝐼SIL = 1
𝑛

𝑛∑
𝑖=1

𝑏𝑖 − 𝑎𝑖

max{𝑎𝑖, 𝑏𝑖}
(4)

where 𝑎𝑖 is the average distance between the data point 𝑖 and all 
other data points in the same cluster and 𝑏𝑖 is the smallest aver-

age distance between the data point 𝑖 and all other data points in 
the other clusters. Therefore, 𝑎𝑖 represents the cohesiveness of the 
cluster containing the data point 𝑖 and 𝑏𝑖 denotes the extent of sep-

aration from the other clusters.

• Calinski-Harabasz index (𝐼CH) determines the optimal number 
of clusters by measuring the separability of clusters, and is calcu-
6

lated using Equations (5) to (7), dividing the total between-cluster 
Energy & Buildings 311 (2024) 114111

dispersion (𝐵k ) by the total within-cluster dispersion (𝑉k ) [59]. A 
greater value of 𝐼CH indicates that the clusters are more distinct 
from one another and more dense within themselves.

𝐵k =
𝑘∑
𝑖=1

𝐶𝑖||𝑚𝑖 −𝑚||2 (5)

𝑊k =
𝑘∑
𝑖=1

∑
𝑥∈𝐶𝑖

||𝑥−𝑚𝑖||2 (6)

𝐼CH =
𝑉B
𝑉W

× 𝑛− 𝑘

𝑘− 1
(7)

where 𝑘 is the number of clusters, 𝑛 is the total number of data 
points, 𝐶𝑖 is the size of cluster 𝑖, 𝑚 is the total mean of the dataset, 
𝑚𝑖 is the mean of cluster 𝑖, 𝑥 is a data point in cluster 𝑖, 𝑉B is 
the average between-cluster sum of squares and 𝑉W is the average 
within-cluster sum of squares.

3.4.2. Determining the number of clusters

k-prototype clustering algorithm was implemented on the seg-

mented subsets with the value of k ranging from 2 to 15. This range 
allowed a balanced examination of cluster possibilities while preserv-

ing computational feasibility. To determine the number of archetypes 
for each subset, optimal values of 𝐼SIL, 𝐼CH and 𝐼DB were considered.

3.4.3. Post-processing of clustering outputs

The clustering algorithm assigns each case in the segmented subset 
to a specific cluster. The algorithm also identifies the centroid of each 
cluster. Where modelling is relatively straightforward and requires only 
the variables used in clustering, the centroid can act as the archetype, 
representing the cluster. In cases where modelling should ideally be 
based on real cases, the archetype is the closest case from the centroid. 
The matching of the centroid to a real case allows access to all variables 
in the original EHS dataset, not just the variables used for clustering. 
Corresponding dwelling count is then found by aggregating the rounded 
dwelling weight (aagpd1920) values of EHS cases sharing the same clus-

ter number or ID. This step is repeated for all segmented subsets (63 in 
this research) to identify all archetypes in the EHS dataset.

Modelling the identified representative archetypes in appropriate 
simulation programs is the next step. Depending on the study objectives, 
more information than the variables utilised for clustering may be re-

quired for modelling individual cases. For example, floor area was used 
as a clustering variable in this study because of its importance in inves-

tigating energy and environmental performance of buildings. However, 
3D geometric modelling for energy simulation requires the translation 
of floor area into building height, width and depth. Instead of mak-

ing assumptions about the geometry parameters, i.e. width, depth and 
height, further EHS variables such as ground floor width (Fdhmwid1), 
depth (Fdhmdep1) and ceiling height (cheight0) can be used to effec-

tively create the 3D geometry of the ground floor of the selected EHS 
case. Cross-linking the cluster number with the EHS ID (serialanon) 
thus affords the user to extend downstream simulation capabilities in 
terms of purpose and scope, which is one of the strengths of data-driven 
archetype identification.

Representative archetype development also offers the benefit of ex-

tending the analysis time horizon. For example, future energy and en-

vironmental performance under a changing climate can be evaluated 
using archetypes derived from the current building stock features. As-

sumptions about the evolution of the building stock such as the changes 
in heating systems from gas-fired boilers to heat pumps can be encap-

sulated in multiple scenarios with varying replacement rates, which 
can then be simulated to investigate the effects of their installation. 
Assuming that the core features of the current building stock remain 
unchanged, the representative archetypes can be suitable for assessing 
how existing buildings might perform under future warming conditions. 

However, the applicability of the archetypes may be limited in scenar-



M. Alrasheed and M. Mourshed

ios that involve changes to the core building stock features, i.e. the 
changes to the variables used for clustering. For instance, if a future 
scenario considers that a significant share of the new buildings by 2050 
will be purpose-built flats with smaller floor area than the present, the 
characteristics of the building stock will change. In such cases, the base-

line archetypes, which are based on the current data, serve as a starting 
point but may require adaptation or the development of new archetypes 
to reflect these changes.

3.4.4. Estimating representativeness

The representativeness of the archetypes was determined by com-

paring the total number of dwellings per variable between the clustering 
models and EHS using the Mean Absolute Percentage Error (MAPE). 
The MAPE of the variables was then averaged to indicate the cluster-

ing model’s overall representativeness, where lower MAPE indicated 
greater representativeness. The MAPE equation is defined as:

MAPE = 100
𝑛

𝑛∑
𝑖=1

||||
𝑦𝑖 − �̂�𝑖

𝑦𝑖

|||| (8)

where 𝑛 represents the total number of cases, and 𝑦𝑖 and �̂�𝑖 are the 
total dwelling count for the variables of the EHS and clustering models 
respectively.

4. Results and discussion

This section critically discusses the process of clustering for arche-

type development, using the results from the sensitivity analysis con-

ducted with different minimum segmentation frequencies, clustering 
evaluation metrics and variable counts. Discussion focuses on repre-

sentativeness, i.e. the similarity in the distribution of variables between 
the clustering outputs and EHS dataset.

4.1. Evaluation metric

Different clustering evaluation metrics identified varying number of 
archetypes, each offering distinct levels of representativeness. Fig. 3

illustrates the number of archetypes and their corresponding repre-

sentativeness for different clustering evaluation metrics. Across vary-

ing levels of MSF, 𝐼SIL consistently identified the fewest number of 
archetypes. This observation may suggest that 𝐼SIL tends to identify 
more uniform clusters, potentially overlooking variations within the 
building stock, making it less suitable for a comprehensive stock anal-

ysis. On the other hand, 𝐼DB detected the most archetypes, which can 
be preferable for studies requiring a thorough representation of build-

ing characteristics. While 𝐼CH identified fewer archetypes than 𝐼DB, 
it nonetheless demonstrated satisfactory representativeness, attempting 
to balance the number and representativeness of the archetypes. Thus, 
while each clustering evaluation metric has its intrinsic strengths and 
limitations, its strategic selection and application depend on the spe-

cific goals and granularity required in the research. By carefully tuning 
the choice of metric and MSF, researchers can achieve their desirable 
archetype representativeness, whether they seek a broad overview or a 
detailed portrayal of the building stock.

4.2. Variable count

The sensitivity analysis also explored the influence of variable count 
on archetype representativeness. Five variable groupings were investi-

gated, as illustrated in Fig. 4. Across all metrics, a reduction in variable 
count typically resulted in higher representativeness, suggesting that 
using fewer clustering variables would result in a smaller number of 
building archetypes with higher representativeness. 𝐼SIL showed the 
biggest reduction in MAPE with decreasing variable count, followed by 
𝐼CH, then 𝐼DB. The difference in the MAPE between 𝐼DB and 𝐼CH was 
considerably smaller than the difference between 𝐼DB and 𝐼SIL. In ad-
7

dition, 𝐼CH identified more archetypes than 𝐼DB as the variable count 
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Fig. 3. Representativeness and the number of resulting archetypes with differ-

ent clustering evaluation metrics and segmentation levels. Lower MAPE on the 
secondary axis denotes higher representativeness.

decreased. These findings suggest that 𝐼DB can be suitable for studies 
with a variety of variable counts or limited data availability, as it can 
achieve satisfactory representativeness with a relatively low variable 
count. Given that 𝐼DB demonstrated better performance than 𝐼SIL and 
𝐼CH in identifying archetypes across different variable counts and MSF, 
it was selected as the primary metric for further investigations. This 
decision enables a more focused exploration of how similar the distri-

butions of variables in clustered outputs are to that of the EHS data.

4.3. Segmentation level

Segmentation level influences the number of resulting archetypes 
and their representativeness. Fig. 3 presents the results of the sensitiv-

ity analysis of different segmentation levels, illustrating the trade-off 
between granularity and representativeness. Decreasing the MSF (i.e. 
increasing the segmentation level) increased the representativeness of 
the building stock features, but also produced more archetypes, poten-

tially increasing downstream computational costs for simulations. The 
increased level of representativeness associated with higher segmenta-

tion levels is due to the partitioning of the data into incrementally finer 
subsets, each of which is subjected to clustering. Therefore, users need 
to carefully select the segmentation level, depending on the granularity 
and representativeness required for their specific study.

The distribution of variables in the clustering outputs varied con-

siderably for different segmentation levels. Fig. 5 highlights the impact 
of segmentation level on the distribution of the categorical variables 
in the clustering outputs. Significant deviations can be observed be-

tween the No-MSF and MSF-15 models. The No-MSF model consistently 
overestimated the share of the dominant features at the expense of 
less-dominant ones. Hence, the resulting distribution was noticeably 
different from the distribution in the EHS. On the other hand, the dis-

tributions of all seven categorical variables in the MSF-15 outputs were 
almost similar to that of the distributions in the EHS. The No-MSF model 
overestimated the categories of sysage, loftins4 and wallinsz by 22.5%, 

14.5% and 12.5%, respectively. The model overestimated systems aged 
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Fig. 4. Representativeness and the number of resulting archetypes with dif-

ferent variable count in clustering. The bar plot represents the number of 
archetypes while the line plot represents MAPE. A lower MAPE denotes higher 
representativeness. The analysis consists of the variables floory (floor area), 
loftins4 (loft insulation thickness), storeyx (number of storeys), dblglaz2 (double 
glazing percentage), dwage5x (dwelling age), wallinsz (type of wall and insula-

tion), fuelx (type of fuel) and sysage (system age).

more than 12 years, buildings with loft insulation thickness of 150 mm 
or more and cavity insulated buildings. The tendency of the No-MSF 
model to overestimate building stock characteristics can have signif-

icant implications, especially if it is used to inform policy-making or 
strategic planning. For example, overestimating the prevalence of older 
systems (as indicated by sysage) could suggest that there are more inef-

ficient systems than is the case, which could lead to the misallocation of 
resources for system replacements. Moreover, misrepresenting the num-

ber of buildings with substantial insulation could lead to policymakers 
believing that buildings are better insulated than they are, delaying es-

sential energy efficiency measures.

The floor area distributions from the clustering outputs are shown 
in Fig. 6, where the MSF-15 model’s distribution was similar to that 
of the EHS, with an average difference of around 0.66%. In contrast, 
the No-MSF model’s floor area distribution considerably deviated from 
the EHS. This model particularly underestimated the area of detached 
houses by approximately 45.5% and, conversely overestimated the area 
of other dwelling types, with converted flats being the most affected. 
The No-MSF model’s limited ability to accurately represent the build-

ing stock’s floor area could result in miscalculations of energy demands 
and efficiency, leading to inadequate or excessive provisions for heat-
8

ing, cooling and lighting. Within the EHS, detached dwellings showed 
Energy & Buildings 311 (2024) 114111

significant variance in floor area distribution, potentially causing the 
clustering algorithm to focus on the most common sizes, overlooking 
larger dwellings. Furthermore, the limited sample size of converted 
flats may have constrained the algorithm’s ability to effectively learn, 
possibly increasing its sensitivity to anomalies and skewing the over-

all representation. Therefore, adopting frequency-based segmentation, 
e.g. MSF-15, is essential to mitigate these discrepancies observed in the 
No-MSF model, and to provide a more accurate representation of the 
building stock’s floor area distribution.

The MSF-15 model’s ability to represent the building stock is fur-

ther demonstrated by its close alignment with the EHS’s distribution of 
dwelling types across different regions, as shown in Fig. 7. For exam-

ple, in London, the MSF-15 model’s distribution of end- and mid-terrace 
dwellings differed from the EHS by less than 0.1%, while its distribu-

tion of purpose-built flats differed by approximately 0.43%. In contrast, 
the No-MSF model underrepresented London flats by 3.94% and incor-

rectly identified the South West region as having the most purpose-

built flats. Misidentifying regions with predominant dwelling types can 
skew regional development plans, potentially causing overcrowding or 
under-utilisation, which may lead to ineffective housing and urban de-

velopment strategies.

5. Archetype development framework

Insights gained from the sensitivity analysis informed the develop-

ment of a comprehensive framework for guiding the creation of building 
archetypes. The framework allows the user to consider the interaction 
between influencing and decision factors during the archetype develop-

ment process. As presented in Table 2, the framework comprises four 
influencing factors: geographical scale, research focus, temporal scale 
and computational cost. Given a set of influencing factors pertinent to 
the specific archetype development study, a user can choose the corre-

sponding recommended values of the three decision factors: minimum 
segmentation frequency (MSF), evaluation metric and variable count.

Influencing factors are broadly categorised into features. The geo-

graphical scale is divided into district, city and national, based on stock 
homogeneity. Research focus is classed into specific and broad, de-

pending on how focused the study objectives are. The specific research 
focus is linked with the investigation into specific characteristics of the 
building stock, typically within a single domain, e.g. energy efficiency. 
Whereas the broad research focus is typically multi-domain and requires 
the modelling of interdependent factors, e.g. energy and environmental 
performance and the cost of retrofitting. Another way to differentiate 
between ‘specific’ and ‘broad’ research focus is to look at the num-

ber of dependent variables needed to identify significant variables for 
use in clustering using regression analysis. Specific research would nor-

mally require one dependent variable, whereas the broad focus might 
involve multivariate regression analysis with two or more dependent 
variables. Temporal scales range between short- and long-term, refer-

ring to instantaneous to monthly and annual to decadal respectively. 
Computational cost depends on the detail and number of domains be-

ing modelled. Hence it is characterised by two features: low and high, 
with the assumption being that simplified or steady-state models are 
computationally less expensive than detailed and dynamic models to 
simulate the building archetypes.

MSF is inversely linked with segmentation level, i.e. the number 
of resulting data partitions from frequency-based segmentation. In this 
framework, MSF is divided into low, moderate and high with corre-

sponding values of less than 25, between 25 and 40, and more than 
40 respectively. There are three clustering evaluation metrics in the 
framework: Calinski-Harabasz (𝐼CH), Davies-Bouldin (𝐼DB) and Silhou-

ette (𝐼SIL). Variable count refers to the number of variables selected 
for clustering. Even though the regression results may suggest a higher 
number of significant variables within the building stock data, the user 
may opt to use fewer variables to handle multicollinearity and reduce 

computation time during clustering. In the framework, low, moderate 
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Fig. 5. Comparison of the distribution of categorical variables in the clustering outputs and EHS.
and high variable count refers to between 2 and 3, between 4 and 6, 
and more than 6 variables respectively.

5.1. Geographical scale

The methodological approach to archetype development is signif-

icantly influenced by the geographical context [31]. Neighbourhoods 
and homogeneous districts are often characterised by limited data avail-

ability [60]. In such cases, simplified models with few variables are 
generally more applicable than detailed models that require disaggre-
9

gated data. A low segmentation level, i.e. high MSF, is often sufficient 
for neighbourhoods and districts due to the homogeneity in building 
characteristics such as age, materials, construction and usage. This re-

duced complexity avoids the unnecessary partitioning of data, as the 
buildings are likely homogeneous enough to be adequately represented 
with fewer archetypes. 𝐼SIL can be ideal in these circumstances, as 
demonstrated in Fig. 3, as the index consistently identified the fewest 
archetypes. However, if increased representativeness is desired within 
the scope of the available computational resources, 𝐼DB can be em-

ployed to provide a more comprehensive portrayal of the building stock.

Conversely, the likelihood of the existence of high-quality data is 

higher for urban and national contexts, which supports the use of more 
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Table 2

Framework for developing building archetypes considering different influencing factors.

Influencing factor Feature MSF1 Evaluation metric2 Variable count3

Geographical scale District High 𝐼SIL or 𝐼DB Low

City Low to moderate 𝐼DB or 𝐼CH Moderate to high

National Low 𝐼DB or 𝐼CH Moderate to high

Research focus Specific Moderate to high 𝐼SIL or 𝐼DB Low

Broad Moderate to high 𝐼DB or 𝐼CH Low to moderate

Temporal scale Short-term Low 𝐼DB or 𝐼CH Moderate to high

Long-term Moderate to high 𝐼DB Low

Computational cost Low (e.g. steady-state simulation) Low 𝐼DB or 𝐼CH Moderate to high

High (e.g. dynamic simulation) Low to moderate 𝐼DB Low to moderate

1 Minimum segmentation frequency (MSF): Low (MSF: < 25), Moderate (MSF: 25-40), High (MSF: > 40).
2 Evaluation metric: 𝐼CH (Calinski-Harabasz), 𝐼DB (Davies-Bouldin), 𝐼SIL (Silhouette).
3 Variable count: Low (2-3), Moderate (4-6), High (> 6).
Fig. 6. Floor area distribution of the clustering outputs and EHS.

complex modelling. Higher levels of segmentation, i.e. low MSF, can be 
adopted in such cases. In heterogeneous larger geographies, 𝐼CH and 
𝐼DB indices are more applicable as they are better suited in identifying 
a broader range of representative archetypes, as shown in Fig. 3. Repre-

sentativeness is crucial in large-scale studies for accurately representing 
the variety of building characteristics found in heterogeneous building 
stocks, to ensure a detailed and encompassing view of the urban and 
national building landscapes.

5.2. Research focus

Research focus in building stock modelling varies from specific stud-

ies targeting a single domain to broader analyses considering multiple 
domains. The particular needs of the study, regardless of the geograph-

ical scale, often leads to the adoption of varying number of archetypes. 
For instance, a specific research on the effects of increasing cavity wall 
insulation on internal temperatures, a low to moderate segmentation 
level is often sufficient, particularly as the dataset tends to be uniform 
in insulation characteristics. The homogeneity of the data in this case 
10

facilitates the adoption of fewer variables. 𝐼SIL is an ideal choice for 
evaluation metric because it identifies the fewest archetypes, as shown 
in Fig. 3. However, for studies that target all types of wall insulation, 
𝐼DB may be more appropriate, as it can handle more variables and is 
capable of identifying archetypes with high representativeness.

Modelling complexity increases in studies with a broader research 
focus and multiple objectives. For instance, studies on indoor overheat-

ing due to climate change and corresponding energy demand require 
the consideration of complex interactions between two interconnected 
domains: building thermal dynamics and energy systems. To effectively 
address this dual focus, the study would likely require a multivariate re-

gression analysis to identify relevant clustering variables, using at least 
two dependent variables: indoor temperature and energy consumption. 
Hence, higher segmentation levels and more variables may be needed 
to adequately model the variations in building thermal characteristics, 
and energy and environmental systems to study their influence on in-

door temperature and energy demand. When high segmentation levels 
are required, the choice between 𝐼CH and 𝐼DB can be guided by the vari-

able count and availability of computational resources. 𝐼CH appeared 
to be more effective for high variable counts, as shown in Fig. 4, as 
it identifies fewer archetypes than 𝐼DB, albeit at the expense of rep-

resentativeness. However, in cases where computational cost is not a 
concern, 𝐼DB can be a better choice for enhanced representativeness.

5.3. Temporal consideration

Building stock modelling studies focusing on short-term analysis 
may require archetypes that comprehensively represent existing build-

ing characteristics. Hence, representative archetypes are essential for 
ensuring relevant analyses to inform effective decision-making and pol-

icy formulation. Figs. 3-7 demonstrate how higher segmentation levels 
are well-suited to achieving high representativeness of variables such 
as “type of wall and insulation” (wallinsz), and are capable of ade-

quately capturing different building typologies with a floor area vari-

ation closely resembling that of the original building stock, i.e. the EHS 
data. Among all clustering evaluation metrics, 𝐼DB is found to be par-

ticularly effective for such comprehensive analyses as it achieved the 
highest representativeness with a low variable count, as shown in Fig. 4.

For long-term building stock analyses that anticipate changes in 
building characteristics, a low to moderate level of segmentation, and a 
low variable count are recommended to minimise computational costs 
and avoid the risk of archetypes becoming inconsistent or irrelevant 
over time. For instance, referring to Fig. 5, it is observed that the 
No-MSF (i.e. no frequency-based segmentation) model tends to overes-

timate the prevalence of cavity-insulated dwellings within the existing 
building stock. However, this overestimation might be considered less-

critical when projecting future (e.g. by 2050 or 2100) scenarios for 
indoor overheating assessment, given the anticipated rise in newly con-
structed dwellings featuring cavity wall insulation.
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Fig. 7. The distribution of dwelling types and regions between the clustering outputs and EHS.
5.4. Computational cost

Simplified modelling such as steady-state simulations, due to their 
relatively lower computational demands [61], are well-suited for build-

ing stock studies comprising a wide range of archetypes. Simplified 
models are often able to deal with diverse variables from multiple 
domains. A high level of segmentation is, therefore, recommended to 
account for the diversity of variables. 𝐼DB is typically preferred in these 
scenarios for its ability to handle a variety of clustering variables, as 
shown in Fig. 4. However, 𝐼CH can also be used, especially when fewer 
archetypes are sufficient, offering flexibility in archetype development.

In contrast, detailed modelling such as whole-building dynamic 
simulations are computationally expensive [62], requiring careful con-

siderations of the impact of the selected segmentation level on the 
number of resulting archetypes. While a larger number of archetypes 
can fully leverage the capabilities of dynamic simulations to provide 
11

detailed temporal insights, researchers often face limitations in com-
putational power. This consideration becomes particularly crucial as 
the geographical scope increases and the building stock becomes more 
diverse. When less resources, both time and computation, are avail-

able to the user, adopting a moderate to low segmentation level can 
be a practical approach to acquiring meaningful insights while dealing 
with resource constraints. This approach limits the dataset from being 
overly segmented, thereby reducing the number of archetypes needed 
for individual dynamic simulations. The combination of 𝐼DB and low 
variable count can be advantageous for representative clustering, as 
demonstrated in Fig. 4, especially when dynamic simulations are used 
as the analysis tool.

6. Limitations and future works

The use of MSF improved archetype representativeness noticeably. 
However, its effectiveness is sensitive to the distribution of the vari-
ables, being less pronounced for skewed distributions. Future research 
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can explore alternative segmentation approaches to account for the 
skewness in the data. Clustering can also be investigated without set-

ting thresholds on the number of cases per segmented subset. Further 
research could also look into the application of MSF in conjunction with 
clustering algorithms other than k-prototype. These investigations may 
enable the exploration of further objectives, including minimising the 
number of archetypes while maintaining sufficient representativeness, 
even with increasing variable counts.

Compared with the larger geographies such as the United States and 
China, English housing stock can be considered homogeneous, despite 
noticeable regional variations. On the other hand, dense cities in the 
developing Asia are often characterised by a larger share of multifam-

ily buildings that are more homogeneous in nature than the English 
housing stock. The generalisability of the proposed approach for the 
development of representative archetypes can be investigated in other 
contexts of varying homogeneity and stock characteristics.

The physical, thermal and system characteristics of non-domestic 
buildings vary significantly depending on building type, use and loca-

tion. Although the use of MSF for pre-clustering segmentation resulted 
in higher representativeness for the investigated dwelling stock, further 
research should be conducted on how well the combined MSF and k-

prototype work on non-domestic building stock, particularly focusing 
on the effects of knowledge- and frequency-based segmentation on rep-

resentativeness.

7. Conclusion

This study addressed an important research gap in the building stock 
literature by investigating the effects of segmentation level, clustering 
evaluation metric and variable count on archetype representativeness. 
The research introduced the concept of “minimum segmentation fre-

quency” or MSF as a pre-clustering partitioning strategy to improve 
archetype representativeness. Based on a review of the suitability and 
effectiveness of clustering algorithms used in past research on build-

ing stock modelling, the k-prototype algorithm was chosen as the most 
appropriate method. The widely studied 2020 English Housing Survey 
(EHS) was chosen as stock data, which was partitioned using MSF be-

fore applying the k-prototype algorithm on each segmented subset. The 
findings have important implications for the development of simulation-

based building stock and urban modelling, where achieving representa-

tiveness with the fewest possible archetypes is a primary objective.

The choice of segmentation level, clustering evaluation metric and 
variable count influenced the representativeness of the archetypes. In-

creased segmentation levels led to more archetypes generated through 
clustering, often with higher representativeness at each level. The 
Davies-Bouldin index consistently identified the most archetypes and 
achieved the highest representativeness, followed by the Calinski-

Harabasz and Silhouette indices. When a low variable count was 
adopted, all the indices typically identified fewer archetypes with 
higher representativeness than when higher variable counts were used 
for clustering.

The insights gained through the sensitivity analysis facilitated the 
development of a comprehensive framework for generating represen-

tative archetypes. The framework considers factors influencing the de-

velopment of building archetypes such as geographical and temporal 
scales, computational cost and research focus. Researchers working 
on representative archetype development may find the following rec-

ommendations useful, for selecting the segmentation level, clustering 
evaluation metric and variable count:

• Lower segmentation levels can be suitable for district-scale stud-

ies with homogeneous building stock and when more resource-

intensive dynamic simulations are needed. Whereas higher seg-

mentation levels are better suited for more heterogeneous city- and 
national-level stocks, and when steady-state simulations are suffi-
12

cient.
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• If computational resources are not a limiting factor, the Davies-

Bouldin index can be an effective metric for achieving high 
archetype representativeness. For resource-limited scenarios, the 
Calinski-Harabasz index offers a viable alternative, achieving a bal-

ance between representativeness and computational cost by identi-

fying fewer archetypes. However, the Calinski-Harabasz index may 
not be ideal for clustering with few variables. The Silhouette in-

dex can be suitable for building stocks with one or more dominant 
variables, or for studies with specific objectives, as it consistently 
identified the least number of archetypes in this study.

• For national-scale studies with specific objectives that require dy-

namic simulations over a long-horizon, reducing the number of 
variables used for clustering can be beneficial. This approach sim-

plifies the complexities of national landscapes, reduces computa-

tional cost, and avoids producing overly detailed archetypes that 
may become less relevant in the future as building trends and tech-

nologies evolve.
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