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Abstract—Precision horticulture is evolving due to scalable sensor deployment and machine learning integration. These 

advancements boost the operational efficiency of individual farms, balancing the benefits of analytics with autonomy 

requirements. However, given concerns that affect wide geographic regions (e.g., climate change), there is a need to 

apply models that span farms. Federated Learning (FL) has emerged as a potential solution. FL enables decentralized 

machine learning across different farms without sharing private data. Traditional FL assumes simple 2-tier network 

topologies and thus falls short of operating on more complex networks found in real-world agricultural scenarios. 

Networks vary across crops and farms, and encompass various sensor data modes, extending across jurisdictions. New 

hierarchical FL (HFL) approaches are needed for more efficient and context-sensitive model sharing, accommodating 

regulations across multiple jurisdictions. We present the RuralAI architecture deployment for tomato crop monitoring, 

featuring sensor field units for soil, crop, and weather data collection. HFL with personalization is used to offer localized 

and adaptive insights. Model management, aggregation, and transfer are facilitated via a flexible approach, enabling 

seamless communication between local devices, edge nodes, and the cloud. 

 
Index Terms— Internet of Things (IoT), sensor systems, sensor applications, federated learning, precision horticulture. 

1. I. INTRODUCTION 

Tomato (Solanum lycopersicum) is a popular and versatile 

crop widely cultivated worldwide. Tomato crop health 

monitoring is an important task for farmers, as it can help them 

optimize their resource use, improve their crop quality and 

yield, and prevent or mitigate plant disease [1]. However, 

current methods of tomato crop health monitoring are often 

labor-intensive, time-consuming and inaccurate, as they rely on 

manual inspection, visual assessment, or chemical analysis. 

Moreover, these methods do not capture the spatial and 

temporal variations of the crop conditions nor do they provide 

timely and actionable feedback to the farmers. Although some 

researchers have proposed using machine learning techniques 

to support plant health monitoring, most current work utilizes 

images of leaves and fruits [2], [3], [4], which may not provide 

instant or accurate predictions.  

We implement the RuralAI architecture [5]–a  novel approach 

using IoT sensors, distributed computing and serverless 

federated learning–for tomato crop health monitoring. Our 

approach aims to address the following research question: How 

can we design and deploy a sensor network using distributed 

computing and federated learning to achieve real-time tomato 

health monitoring for resource-constrained infrastructure? To 

answer this question, we make the following novel 

contributions: 

1) We design and configure an IoT sensor architecture that 

can collect data from various sources (e.g., soil, weather, and 

image data) and transmit these data to the edge and cloud 

server nodes for local and global model training and 

aggregation. We consider bandwidth, cost of transmission, and 

power consumption of the sensor network, and optimize data 

sampling and compression techniques accordingly. 2) We 

deploy a novel hierarchical federated learning framework built 

on a Function-as-a-Service (FaaS) platform that spans cloud, 

on-premise, and on-edge devices. In this manner, we benefit 

from the simple programming model of serverless computing 

and implement hierarchical federated learning to enable 

scalable, secure, and efficient distributed machine learning 

across heterogeneous devices and networks. 3) We develop a 

federated learning strategy that can preserve regional 

information. We use a hybrid approach of centralized and 

personalized hierarchical federated learning at local gateways 

using fuzzy logic to adapt the model to the local data distribution 

and preferences by customizing the fuzzy rule base and 

membership functions. 

The rest of the paper is organized as follows: Section II 

describes how we have implemented the RuralAI architecture 

for tomato crop health monitoring, covering the sensor design, 
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federated learning, software, and model  management. Section 

III discusses the experimental design and results of our 

prototype. Section IV presents future plans and deployment for 

the proposed prototype. 

2. II. The RuralAI Architecture for Tomato Crop Health 
Monitoring 

The RuralAI testbed is a three-tier system made up of a cloud 

layer, an edge layer, and a local layer. The local layer consists 

of multiple field sensor units deployed on crops located in New 

Zealand and Australia that share data exclusively with their 

farm’s local gateway. Due to privacy restrictions, information 

sharing among the Farms is achieved by exchanging model 

parameters at the Edge FL server at the regional level. Both 

Edge FL servers and farm local gateways utilize lightweight 

models that are periodically updated from a globally aggregated 

model (Fig. 1). 

 
Fig. 1. Graphical representation of the sensors, local gateways, edge 

and cloud servers in the RuralAI tomato crop monitoring testbed 

1. A. Sensor: Mechanical and Electronic Design 

The RuralAI plant health monitoring sensor system (Fig. 2) 

forms the key interface between the physical environment and 

the digital world. Each sensor system can track vital plant 

health parameters by assessing soil components, plant well-

being, and atmospheric conditions. 

 
Fig. 2. The sensor system with multiple onboard sensors: soil NPK, 

air temperature and humidity, camera, and battery 
 

   The sensor system measures soil conditions integral for 

optimal plant health, including Nitrogen, Phosphorus, 

Potassium (commonly termed NPK), soil temperature, 

humidity, electrical conductivity (which indirectly measures soil 

salinity and pH levels). These sensors also measure air 

temperature and humidity, aiding in modeling current climate 

conditions to estimate precise plant care needs. For instance, 

if the prevailing weather suggests recent or imminent rainfall, 

the sensor disregards irrigation requirements indicated by soil 

moisture levels. This prevents waterlogging, safeguarding plant 

roots, and preserving yield. While soil and atmospheric 

parameters offer valuable insights into a plant's health, external 

elements like pests or inadequate lighting can also diminish 

crop yield. To monitor such external factors, we integrate a 

fixed field-of-view camera during deployment.  

 As optical sensors and image processing demand 

substantial computational resources, the camera node employs 

its onboard ESP32-S3 microcontroller. The soil and air 

monitoring sensors connect to a separate ESP32 

microcontroller. Both microcontrollers transmit processed data 

to their local gateways. Sensor nodes are designed for 

deployment in remote, power-constrained fields, necessitating 

power efficiency to ensure extended operational periods 

between recharges. Each sensor node is powered by two 

3500mAh Li-ion batteries. They interface various sensors and 

microcontrollers via a custom PCB, integrating data converters 

for compatibility and are encased for protection.  

2. B. Machine Learning: Hierarchical Federated 
Learning with Personalization 

Federated Learning (FL) is a decentralized method for 

training a machine learning model.  Individual nodes train on 

their local data, local models are then shared and aggregated 

to create a global model.  Personalized Federated Learning 

(PFL) extends FL by taking the extra step of adapting the global 

model to nodes’ local data. Hierarchical Federated Learning 

(HFL) is a generalization of FL that considers more complex 

networks wherein many  aggregation nodes are organized in a 

hierarchy. These  intermediate aggregation nodes can reduce 

the load at the FL cloud server. Additionally, personalization 

performs better in HFL when localization of the models is 

undertaken for a group of nodes associated with a local 

aggregation node (i.e., a personalized model is not generated 

for every node, but for a group of nodes [6]).  

 
Fig. 3. Fuzzy FL Controller 
 

A fuzzy FL controller (Fig. 3) is introduced at Edge FL servers 

to personalize regional group models based on the difference 

between the parameters of the region and the global model 

using cosine similarity. The controller considers this similarity 

measure, a data quality metric and personalization preference 

as input to calculate the group personalization index for every 
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group considering fuzzy rules. This index is used to aggregate 

global and group models to get group-based personalized 

models at each local gateway. 

3. C. Software: Federated learning using Function-as-
a-Service 

Our FL approach makes use of Function-as-a-Service 

(FaaS), a serverless computing paradigm that allows the 

execution of functions using a cloud-hosted platform. In this 

paradigm, pre-programmed functions are registered with a 

cloud registry and are then submitted as single tasks to remote 

computational resources (endpoints) for execution. FaaS 

requires that users pay only for the amount of computing 

resources used and significantly reduces the system 

configuration required for each user.  

 
Fig. 4. Graphical representation of distributed coordination for FL 

using Globus Compute. 
 

In prior work, we have developed FLoX, a framework for 

managing the FL process on remote FaaS endpoints [7]. FLoX 

is built on top of the Globus Compute, a federated FaaS 

platform that enables the execution of functions across an 

ecosystem of distributed endpoints. In Globus Compute, 

endpoints must first be deployed and configured, specifying 

local resources. A user launching an FL process from a 

controller node can then simply specify the list of endpoint 

UUIDs required to perform local training. Globus Compute is 

designed specifically to work with diverse computational 

system resources, from IoT nodes to high-performance 

computing nodes. A visualization of the FLoX system is shown 

in Fig. 4. 

4. D. Coordination: Model Management 

HFL requires coordination between the various endpoints. 

One advantage of HFL is that the aggregation and 

communication of the models across the network can be 

sequestered into localized clusters to better fit the topology of 

the data communication network. However, despite this 

advantage, there are several core challenges. One of these 

central challenges is the communication in HFL using a cloud-

hosted FaaS platform. While conventional FaaS relies on the 

cloud service and its communication with endpoints to transfer 

data, ML and FL present new challenges. Specifically, in HFL, 

it is more intuitive to communicate data using the natural 

topology of the network rather than have all data transmission 

done through a central cloud service which may require 

excessive network hops. To improve data transmission in 

FaaS, we can use direct endpoint-to-endpoint communication, 

such as via our recent work  using object proxies [8]. Proxies 

serve as a lightweight reference to remote data and can be 

used in FaaS as a “pass-by-reference” mechanism wherein the 

function is submitted to endpoints along with a reference to 

some remote data. Therefore, only this lightweight proxy is 

communicated to the cloud and large data transfer is performed 

endpoint-to-endpoint. 

3. III. Experimental Setup, Results and Discussion 

Our testbed (Fig. 1) consists of two sites: New Zealand and 

Australia. Within each physical site, we emulate 2 Farms, 

whereby Farms 1 and 2 are situated in New Zealand and Farms 

3 and 4 are in Australia. Farms 1 and 3 cultivate normal 

tomatoes, whereas Farms 2 and 4 focus on growing cherry 

tomatoes. This testbed includes only three crops per Farm. 

Each crop represents a sample from an ‘irrigation row’ within a 

production glasshouse. Given that the plants within an irrigation 

row share the same irrigation conditions, one sample per row 

is an adequate representation. 

 
      (a)                      (b)     (c)  (d) 

Fig. 5. Example of (a) a row of crops in a production glasshouse 

whereby (b) data is sampled from selected plants using (c) the sensor 

field units, which are (d) inserted into the planter box 
 

The probes within the sensor units are inserted into the soil 

of the planter box, while the camera is oriented towards the 

plant stem. Fig. 5 depicts the arrangement of the sensor field 

units and their placement. Images collected can provide 

insights into the current growth stage of the plant. At the initial 

stage, local models are exclusively trained using data from the 

crops within their respective Farms at the local gateway, 

following a centralized learning approach. Subsequently, model 

parameters undergo sharing and aggregation at both the edge 

and cloud layers through HFL, via FaaS. This distributed 

computing architecture allows for continuous model updates, 

promoting knowledge-sharing for enhanced performance and 

accuracy while ensuring the confidentiality of farm-specific 

data. 

Due to the large amount of data collected, we present a 

truncated example of air and soil humidity sensor data from 

New Zealand in Fig. 6. In our testbed, we intentionally disrupt 

the irrigation of one representative crop each in Farms 1 and 2. 

From Fig. 6, this can quite easily be observed in Sensors A1 

and B1. Data collection is ongoing until Feb 2024 and will serve 

as the foundation for forthcoming research. We aim to explore 

novel personalization strategies and identify model distribution 

variances using this platform. 
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Fig. 6. Example of soil and air humidity data, where a ratio of soil to 

air humidity below 0.5 indicates possible water supply issues 

4. CONCLUSION 

This article presents a functional tomato crop management 

system using the RuralAI architecture. Real-time data from field 

sensor units forms the basis for initial health models for the 

tomato crop. Each farm constructs a local model deployed on 

our edge computing node, using FLoX. These models are 

aggregated into a global model, facilitating sharing among 

farms. This approach enables the development of locally 

reflective models while allowing sharing among farms to identify 

common trends. It ensures data remains decentralized, 

addressing privacy concerns associated with centralized cloud 

servers. 

We believe federated learning with on-farm processing and 

data capture is pivotal in precision horticulture. Empowering 

farm owners and operators to manage and process their data 

is a critical step towards meeting the demands for economic 

and operational autonomy within this community. 

ACKNOWLEDGMENT 

This work was supported in part by the University of Waikato-University of Newcastle 

Partnership Seed Fund, the New Zealand Royal Society under the Rutherford Discovery 

Fellowship program, and the US Department of Energy (DOE) under Contract DE-AC02-

06CH11357 

 

.REFERENCES 
 

[1] V. Jindal, V. Kukreja, S. Mehta, M. Manwal and K. Joshi, 

“Emerging Paradigms: A Federated Learning CNN Approach for 

Tomato Leaf Disease Detection,” 2023 3rd Asian Conference on 

Innovation in Technology (ASIANCON), Ravet IN, India, 2023. 

[2] Y. Liu et al., “High-Precision Tomato Disease Detection Using 

NanoSegmenter Based on Transformer and Lightweighting,” 

Plants, vol. 12, no. 13, p. 2559, Jul. 2023. 

[3] S. Mehta, V. Kukreja and S. Vats, “Bean Leaf Disease Diagnosis 

in the Age of Federated Learning and CNN: A Severity Analysis 

Approach,” 2023 Second International Conference on Augmented 

Intelligence and Sustainable Systems (ICAISS), Trichy, India, 

2023. 

[4] U Shruthi, V. Nagaveni, C. Arvind, and G. Sunil, “Tomato Plant 

Disease Classification Using Deep Learning Architectures: A 

Review,” Algorithms for intelligent systems, pp. 153–169, Jan. 

2022, doi: https://doi.org/10.1007/978-981-16-7389-4_15. 

[5] P. Patros, M. Ooi, V. Huang, M. Mayo, C. Anderson, S. 

Burroughs, M. Baughman, O. Almurshed, O. Rana, R. Chard, K. 

Chard, “Rural AI: Serverless-powered Federated Learning for 

Remote Applications,” IEEE Internet Computing, vol. 27, no. 2, 

pp. 28-34, Sept 2022. 

[6] Y. He, D. Yan and F. Chen, “Hierarchical federated learning with 

local model embedding”, Engineering Applications of Artificial 

Intelligence, vol 123, p. 106148, 2023.  

[7] N. Kotsehub, M. Baughman, R. Chard, N. Hudson, P. Patros, O. 

Rana, I. Foster, and K. Chard, “FLoX: Federated Learning with 

FaaS at the Edge,” in the Proceedings of the IEEE International 

Conference on e-Science, Oct 2022. 

[8] J. G. Pauloski, V. Hayot-Sasson, L. Ward, N. Hudson, C. Sabino, 

M. Baughman, K. Chard, I. Foster, “Accelerating 

Communications in Federated Applications with Transparent 

Object Proxies,” in the Proceedings of the ACM/IEEE 

International Conference on High Performance Computing, 

Network, Storage, and Analytics (Supercomputing), Nov 2023. 


