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Abstract: Background: The ability to predict a long duration of mechanical ventilation (MV) by
clinicians is very limited. We assessed the value of machine learning (ML) for early prediction
of the duration of MV > 14 days in patients with moderate-to-severe acute respiratory distress
syndrome (ARDS). Methods: This is a development, testing, and external validation study using
data from 1173 patients on MV ≥ 3 days with moderate-to-severe ARDS. We first developed and
tested prediction models in 920 ARDS patients using relevant features captured at the time of
moderate/severe ARDS diagnosis, at 24 h and 72 h after diagnosis with logistic regression, and
Multilayer Perceptron, Support Vector Machine, and Random Forest ML techniques. For external
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validation, we used an independent cohort of 253 patients on MV ≥ 3 days with moderate/severe
ARDS. Results: A total of 441 patients (48%) from the derivation cohort (n = 920) and 100 patients
(40%) from the validation cohort (n = 253) were mechanically ventilated for >14 days [median 14 days
(IQR 8–25) vs. 13 days (IQR 7–21), respectively]. The best early prediction model was obtained with
data collected at 72 h after moderate/severe ARDS diagnosis. Multilayer Perceptron risk modeling
identified major prognostic factors for the duration of MV > 14 days, including PaO2/FiO2, PaCO2,
pH, and positive end-expiratory pressure. Predictions of the duration of MV > 14 days showed
modest discrimination [AUC 0.71 (95%CI 0.65–0.76)]. Conclusions: Prolonged MV duration in
moderate/severe ARDS patients remains difficult to predict early even with ML techniques such as
Multilayer Perceptron and using data at 72 h of diagnosis. More research is needed to identify markers
for predicting the length of MV. This study was registered on 14 August 2023 at ClinicalTrials.gov
(NCT NCT05993377).

Keywords: acute respiratory distress syndrome; lung-protective ventilation; duration of mechanical
ventilation; machine learning; prediction models; observational studies; clinical trials

1. Introduction

Acute respiratory distress syndrome (ARDS) is a type of acute hypoxemic respiratory
failure associated with lung injury and impaired gas exchange [1,2]. Mechanical ventilation
(MV) is vital for most patients with moderate-to-severe ARDS managed in intensive care
units (ICUs), although MV for long periods of time may induce lung injuries and infec-
tion [3,4]. The number of MV days is a major driver of high healthcare costs in managing
critically ill patients [5]. Hence, a decrease in MV duration is an actionable research goal in
ARDS management. The successful prediction of MV duration may impact several clini-
cal decisions, such as the initiation of oral feeding, timing of performing a tracheostomy,
transferring to long-term ventilation facilities, alignment with patients’ goals of care, or
enrollment into clinical trials [6–8].

The prediction of the length of MV is important [6,7,9]. The mortality rate of patients
requiring prolonged MV is high [9]. The accuracy of clinicians in predicting MV duration
is very limited [6]. Usually, clinicians integrate multiple clinical features that are not well
elaborated and make implicit assessments about the possible duration of MV, which are
translated into routine medical practice with a wide margin of error [6]. Using logistic
regression models, predictions of the duration of MV provide moderate levels of overall
accuracy in critically ill patients and are insufficient to assist in clinical decisions [7,9,10].
Patients and clinicians require clinical prediction models to guide healthcare decisions in
an evidence-based and personalized manner.

MV duration in ARDS is dependent on both ICU factors and patient-related factors.
Advanced machine learning (ML) methods hold promise for enhancing accuracy in pre-
dicting MV duration [11,12]. ML is an exploratory process in which algorithms extract
knowledge from the data provided. ML flexibility detects relationships between potential
clinical features, physiologic parameters, and an outcome [13]. Despite extensive modeling
and a large number of clinically relevant features, the discrimination using ML approaches
for predicting responders to the prone position in mechanically ventilated patients with
COVID-19 [14] was very poor. Scarce studies have evaluated the role of ML in predicting
the duration of MV in ARDS patients [11,15–17]. Our primary goal was to compare the
performance of logistic regression and three powerful ML approaches for the development,
testing, and external validation of a model to predict the duration of MV > 14 days after di-
agnosis of moderate/severe ARDS. We hereto used a relatively large population of patients
with moderate/severe ARDS under three different scenarios over time.
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2. Methods

Approval of this study was permitted by the Ethics Committee at Hospital Univer-
sitario Dr. Negrin, Spain (CEI/CEIm #2021-321-1). Informed consent was waived based
on Royal Decrees 1090/2015 and 957/2020 under the Spanish legislation for biomedical
research, based on the retrospective nature of this comprehensive analysis, the anonymiza-
tion/dissociation of data, and no potential harm or benefit to the patients. This study
respected the TRIPOD (Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis) guidelines for reporting prediction models [18].

2.1. Patient Population and Study Design

This study is an extension of the Spanish SIESTA program [19,20] (Supplementary
Materials). We performed a comprehensive analysis, termed the “PredictION of the du-
ration of mEchanical vEntilation in aRds” (PIONEER) study on an unrestricted dataset
from 1303 adult (>17 years) patients with moderate/severe ARDS [21] managed with lung-
protective MV in a network of Spanish ICUs (Supplemental Materials). None of our ARDS
patients had COVID-19. This study was performed in three steps. For the first two steps
(model development and testing), we analyzed 1000 patients included in three prospective,
multicenter, observational studies (see Supplemental Materials), admitting consecutive
patients meeting the definition of moderate/severe ARDS [21]. In the third step, we tested
the model performance in an independent cohort of moderate/severe ARDS patients [20]
for reliable external validation [22,23].

For the purpose of this study and to avoid selection bias, we only analyzed pa-
tients with data from the first 3 ICU days on MV after the diagnosis of moderate/severe
ARDS: data captured at the time of diagnosis (T0), data captured at 24 h (T24), and data
captured at 72 h (T72). As a result, we excluded patients on MV < 3 days as follows:
80 patients from 1000 patients were included in the development/testing cohort, 50 pa-
tients from 303 patients were included in the validation cohort and finally analyzed data
from 1173 patients. T0 was defined as the time and day in which the patient first met
moderate/severe ARDS criteria, irrespective of the day of ICU admission or the initiation
of MV, as mandated by the Berlin definition [21]. All patients had arterial blood gases at the
study’s inclusion (Supplementary Materials). At T24, the values of gas-exchange and lung
mechanics variables [including PaO2, PaCO2, PaO2/FiO2, and inspiratory plateau pressure
(Pplat), among others] were evaluated under standardized ventilator settings [positive
end-expiratory pressure (PEEP) of 10 cm H2O and FiO2 of 0.5)] [20]. When patients required
PEEP > 10 or FiO2 > 0.5 and could not tolerate a reduction in PEEP or FiO2, the rules for
setting PEEP and FiO2 were applied during the standardized evaluation, as validated by
our group [24,25]. At other times, PEEP and FiO2 were set at the discretion of attending
clinicians. We did not collect data from day 2. For T72, we used representative data at
72 h after the diagnosis of moderate/severe ARDS. We only included patients with mod-
erate/severe ARDS. We excluded patients < 18 years old with acute heart failure, severe
chronic pulmonary disease, do-not-resuscitate orders, brain death, or patients on MV for
<24 h (see Supplementary Materials).

2.2. Variables and Outcomes

The selection of potentially clinically relevant variables was based on prior
studies [25–28]. We included demographics, comorbidities, ventilator settings, lung
mechanics [respiratory rate (RR), tidal volume (VT) as mL/kg predicted body weight
(PBW), PEEP, Pplat, driving pressure (calculated as Pplat minus PEEP)] and gas-exchange
(FiO2, PaO2, PaCO2, PaO2/FiO2, pH) at T0, T24, and T72. We also recorded the Acute
Physiology and Chronic Health Evaluation II (APACHE II) [29] score during the first
24 h of ARDS diagnosis, the Sequential Organ Failure Assessment (SOFA) score [30],
and the prevalence of extrapulmonary organ failures (OFs) included in the SOFA scale
(Supplementary Materials). In each patient, we recorded data from 165 variables during
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their ICU stay (Supplementary Materials). We collected the date and status (alive/dead) of
patients in the ICU and at hospital discharge.

We examined the performance of each method at T0, T24, and T72. For the purpose
of our study, prolonged MV was defined as being ventilated for more than 14 days after
the diagnosis of moderate/severe ARDS [6], independently of the number of patients who
died between day 3 and day 14.

2.3. Predefined Rules and Statistical Analysis

We focused on variables collected during the first 3 MV days after the diagnosis of
moderate/severe ARDS to estimate the probability of MV duration > 14 days, independent
of the cause of death or the underlying disease (Figure S1 and Table S1). For variable
selection, our aim was to identify clinically relevant variables while avoiding redundant
variables. We first analyzed the following features as potential predictors of prolonged
MV: age, sex, comorbidities, SOFA score, number of extrapulmonary organ failures, PaO2,
PaO2/FiO2, PaCO2, pH, FiO2, VT, RR, PEEP, Pplat, and driving pressure. To avoid mul-
ticollinearity [31], we performed matrices at T0, T24, and T72 to assess the correlation
between variables in the dataset [32,33]. We also performed a principal component analysis
to summarize the information content that could be easily visualized and analyzed [33,34]
(Figures S3 and S4, Supplementary Materials).

We specified an a priori statistical analysis plan (Supplementary Materials). We
identified potential variables that could be considered in the prediction model based on
predefined rules and the contribution to the area under the receiver operating characteristic
curve (AUC) in relation to MV duration. We assessed differences in the values of clinically
relevant features at T0, T24, and T72 and across the development/testing cohort and
the external validation cohort. We reported the odds ratio and 95% confidence intervals
(CIs) and standard classification metrics (sensitivity, specificity, false positives, and false
negatives) for each model.

Feature Selection Method

Since the inclusion of all available variables in ML can lead to complex models that are
difficult to interpret, we screened variables employing a genetic algorithm (GA) variable
selection method [34] to achieve parsimony and identify a subset of relevant variables
while excluding noise/redundant variables. GA variable selection is a technique that helps
to identify a subset of the measured variables that are, for a given problem, the most useful
for a precise and accurate regression model. Although many variables may be of use in
prediction, several considerations may preclude measuring all the variables originally
considered for a prediction model. It is useful to identify a subset of variables that allow
sufficient prediction accuracy and precision while minimizing the number of variables to
be measured. GAs provide a straightforward method based on a “survival of the fittest”
approach to modeling data. GAs create random populations of artificial individuals that
are evaluated by a mathematical fitness function and have been successfully applied to
solve optimization problems, both for continuous and discrete functions (more details in
Supplementary Materials). Our findings indicate that, for the purpose of our study, the
GA approach is appropriate for finding an efficient subset of variables for combinations
that are optimal for solving high-dimensional classification problems. The duration of MV
can be treated as a classification problem. The selection of an optimized set of variables
in our three early scenarios (T0, T24, T72) is key to the PIONEER study for predicting
the prolonged duration of MV, especially when the search is large, complex or poorly
understood, as in the setting of moderate/severe ARDS. We applied GA to optimize the
subset of selected variables by reducing the Akaike information criterion (AIC) and the
Bayesian information criterion (BIC) [35]. Lower values of both criteria are preferable.

We performed statistical analysis using R (version 4.3.1, R Foundation for Statistical
Computing, Vienna, Austria). A two-sided p < 0.005 was considered a real effect size [36].
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We built the PIONEER prediction model by considering the lowest number of variables
obtained by GA and providing the best performance of the three scenarios in the devel-
opment database. We optimized the quality of models based on a 5-fold cross-validation
approach for randomly splitting the development/training dataset and repeated this pro-
cess 100 times (Supplementary Materials). We assessed the final lowest number of variables
model using logistic regression and three supervised ML algorithms, Random Forest, Sup-
port Vector Machine, and Multilayer Perceptron [37,38], to generate prediction models
for MV duration > 14 days after moderate/severe ARDS diagnosis. We also assessed the
validity of the prediction models according to calibration and discrimination in an external
validation cohort [39,40] (Supplementary Materials).

Figures 1 and S2 summarize the study design.
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Figure 1. Flow chart representing the study design of the PIONEER study. The diagram illustrates
the scheme for the database with 1173 patients with moderate-to-severe acute respiratory distress
syndrome (ARDS), the selection of variables for final analysis, machine learning approaches, and
comparison among the prediction models. Once the most relevant variables were selected by genetic
algorithms in the dataset of 920 patients, and the model with the best performance (the highest
area of the receiver characteristic curve, AUC) was identified, this dataset was divided into five
folders to perform 5-fold randomized cross-validation repeated 100 times using machine learning
techniques. Abbreviations: AUC: area under the receiver operating characteristic curve; GA: genetic
algorithm: LR, logistic regression; MLP, Multilayer Perceptron; RF, Random Forest; SVM, Support
Vector Machine; T0, time zero (at the time of diagnosis of moderate/severe ARDS; T24, at 24 h after
diagnosis under standardized ventilator settings; and T72, at 72 h after diagnosis.

3. Results

The baseline demographics, etiology, degree of severity, and outcome data of our
patient population are reported in Table S2. The most common etiologies were pneumonia,
sepsis, aspiration, and trauma in both cohorts (development and external validation).
Most patients had moderate ARDS based on stratification by the Berlin criteria at T0.
A total of 1173 patients [920 patients from the derivation cohort and 253 patients from
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the validation cohort] (Table 1) received MV for ≥3 days after moderate/severe ARDS
diagnosis (Supplementary File), and their ICU mortality rate was similar (307/920, 33% vs.
77/253, 30%, respectively, p = 0.420) (Table S3). A total of 49% (441/920) patients from the
derivation cohort and 40% (100/253) patients from the validation cohort were mechanically
ventilated for >14 days [median 14 days (IQR 8–25) vs. 13 days (IQR 7–21), respectively]. A
similar ICU mortality rate was found in patients ventilated for 3–14 days and for >14 days
[155/479 (32%) vs. 152/441 (35%)] in the derivation cohort (Tables 2 and S3).

Table 1. Descriptive characteristics of 1173 patients with moderate/severe ARDS at the time of
diagnosis (T0) at 24 h (T24) and 72 h (T72) after diagnosis of moderate/severe ARDS.

Variable
Development Cohort Testing Cohort

T0
n = 920

T24
n = 920

T72
n = 920

T0
n = 253

T24
n = 253

T72
n = 253

SOFA score 8.9 ± 3.3 8.9 ± 3.5 7.9 ± 3.9 9.7 ± 3.5 9.4 ± 3.9 8.3 ± 4.4
FiO2 0.79 ± 0.19 0.65 ± 0.17 0.63 ± 0.20 0.76 ± 0.20 0.62 ± 0.16 0.57 ± 0.19

PaO2, mmHg 85.9 ± 25.8 91.8 ± 26.8 108.1 ± 35.2 86.6 ± 25.3 98.3 ± 30.5 107.6 ± 32.9
PaO2/FiO2, mmHg 114.4 ± 37.5 150.2 ± 57.3 196.0 ± 81.7 120.8 ± 40.3 170.0 ± 65.9 221.5 ± 84.6

PaCO2, mmHg 49.1 ± 12.5 46.6 ± 10.1 48.1 ± 9.5 50.3 ± 13.7 47.1 ± 9.9 47.2 ± 9.2
pH 7.31 ± 0.11 7.35 ± 0.08 7.40 ± 0.08 7.30 ± 0.11 7.35 ± 0.08 7.40 ± 0.07

VT, ml/kg/PBW 6.9 ± 1.0 6.8 ± 0.9 6.9 ± 1.1 6.7 ± 1.1 6.5 ± 1.1 6.6 ± 1.2
Respiratory rate 21.4 ± 4.9 23.3 ± 5.0 24.7 ± 5.2 22.3 ± 4.4 23.4 ± 4.8 24.2 ± 4.9
PEEP, cmH2O 12.1 ± 3.3 12.5 ± 3.0 11.5 ± 3.3 11.1 ± 3.0 11.8 ± 2.8 10.7 ± 3.0
Pplat, cmH2O 26.4 ± 4.9 26.6 ± 4.6 24.5 ± 4.7 25.0 ± 4.9 24.7 ± 4.5 22.4 ± 4.4

Driving pressure, cmH2O 14.4 ± 4.9 14.2 ± 4.5 13.0 ± 4.4 14.0 ± 4.5 12.9 ± 4.2 11.6 ± 3.8
No. extrapulmonary OF 1.6 ± 1.1 1.7 ± 1.1 1.5 ± 1.2 1.9 ± 1.1 1.9 ± 1.2 1.6 ± 1.3

ARDS: acute respiratory distress syndrome, OF: organ failures, PBW: predicted body weight, PEEP: posi-
tive end-expiratory pressure, Pplat: inspiratory plateau pressure, SOFA: sequential organ failure assessment,
T0: time of diagnosis of moderate/severe ARDS, T24: at 24 h of moderate/severe ARDS diagnosis, T72: at 72 h of
moderate/severe ARDS diagnosis, and VT: tidal volume.

From twenty clinically relevant variables collected at T0, T24, and T72 (Table S1), four
variables were excluded for multicollinearity as follows: the PaO2, FiO2, SOFA score, and
driving pressure. (Figure S3 and Tables S4–S6, Supplementary Results). Few characteristics
remained associated with the duration of MV > 14 days in multivariable logistic regression
analysis. The performance of the model with all 16 clinical variables had a cross-validated
AUC of 0.61 at T0, 0.61 at T24, and 0.66 at T72. Principal component analysis showed that
patients differed more at T72 than at T0 or T24 (Figure S4). When applying GA for variable
selection and optimizing AIC and BIC (for both criteria, lower values are preferred), the
resulting models reduced the number of predictors from 16 to 9, 6, 11, and 4 variables,
respectively (Tables S7–S10).

Among the variables with higher importance for predicting the duration of
MV > 14 days at T72 were PaO2/FiO2, PaCO2, pH, and PEEP (Figure S5). The performance
of ML methods and logistic regression for the scenarios in the development database is
shown in Table 3. Multilayer Perceptron (MLP) provided the highest AUC values, and data
collected at T72 provided better performance than data at T0 or T24.

Starting from 11 variables in the PIONEER model, the MLP technique was most
promising for predicting MV duration > 14 days using data at T72 with the MLP technique
(AUC 0.71, 95%CI 0.65–0.76). Models developed at one time period were not transferable
to other time periods. The external validation of the best prediction models at T72 obtained
from the derivation cohort for the duration of MV prediction is reported in Table S11. The
ML models had poor calibration, implying the poor reliability of absolute risk predictions
(Figure S6).
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Table 2. Comparison of clinically relevant variables at the baseline (T0) in 920 patients of the
development cohort in relation to the duration of mechanical ventilation from the time of diagnosis
of moderate/severe ARDS.

Variable MV 3–14 Days
n = 479

MV > 14 Days
n = 441

Mean Difference
(95%CI) p

Age, yr, mean ± SD 56.0 ± 16.8 57.1 ± 15.0 1.1 (−1 to 3.2) 0.292 *

Sex, n (%) 0.050 ¶

Male 311 (64.9) 313 (71.0) 6.1 (0.1 to 12.0)
Female 168 (35.1) 128 (29.0) 6.1 (0.1 to 12.0)

Etiology, n (%) 0.124 ¶

Pneumonia 226 (47.2) 232 (52.6) 5.4 (−1.6 to 11.8)
Sepsis 142 (29.6) 104 (23.6) 6.0 (0.3 to 11.6)

Aspiration 51 (10.6) 39 (8.8) 1.8 (−2.1 to 5.6)
Trauma 37 (7.7) 35 (7.9) 0.2 (−3.3 to 3.8)
Others 23 (4.8) 31 (7.0) 2.2 (−0.9 to 5.4)

Degree of severity, n (%) 0.195 ¶

Severe 183 (38.2) 187 (42.4) 4.2 (−2.1 to 10.5)
Moderate 296 (61.8) 254 (57.6) 4.2 (−2.1 to 10.5)

APACHE II score 20.2 ± 6.6 20.6 ± 6.1 0.4 (−0.4 to 1.2) 0.352 *
SOFA score 8.7 ± 3.5 9.1 ± 3.1 0.4 (−0.01 to 0.8) 0.055 *
FiO2 0.79 ± 0.19 0.79 ± 0.19 0 (0 to 0) 1.0 *
PaO2, mmHg 87.8 ± 26.8 83.7 ± 24.5 −4.1 (−7.5 to −0.8) 0.016 *
PaO2/FiO2, mmHg 117.3 ± 38.4 111.4 ± 36.3 −5.9 (−10.7 to −1.1) 0.017 *
PaCO2, mmHg 48.4 ± 12.5 49.8 ± 12.4 1.4 (−0.1 to 3.1) 0.074 *
pH 7.31 ± 0.11 7.31 ± 0.10 0.0 (−0.01 to 0.01) 1.0 *
VT, ml/Kg PBW 6.9 ± 1.0 6.9 ± 1.0 0.0 (−0.1 to 0.1) 0.770 *
Respiratory rate, cycles/min 21.1 ± 4.9 21.7 ± 4.9 0.6 (−0.1 to 1.2) 0.093 *
PEEP, cmH2O 11.8 ± 3.3 12.3 ± 3.4 0.5 (0.03 to 0.9) 0.036 *
Plateau pressure, cmH2O 26.2 ± 5.0 26.6 ± 4.7 0.4 (−0.1 to 1.1) 0.119 *
Driving pressure, cmH2O 14.4 ± 4.9 14.4 ± 4.9 0 (−1.0 to 1.0) 0.852 *
No. extrapulmonary OF 1.5 ± 1.1 1.7 ± 1.0 0.2 (0.01 to 0.29) 0.030 *
All-cause ICU mortality, n (%) 155 (32.4) 152 (34.5) 2.1 (−4.0 to 8.2) 0.500 ¶

APACHE: acute physiology and chronic health evaluation, ARDS: acute respiratory distress syndrome, MV:
mechanical ventilation, OF: organ failures, PBW: predicted body weight, PEEP: positive end-expiratory pressure,
SD: standard deviation, SOFA: sequential organ failure assessment, VT: tidal volume. (*) Student’s t-test; and
(¶) Fisher’s exact test.

Table 3. Comparison of analysis of performance using Random Forest, Support Vector Machine, Mul-
tilayer Perceptron, and logistic regression of the optimum model at T0, T24, and T72 in 920 patients
with moderate/severe ARDS.

Time Methods Model AUC (95%CI) Sensitivity Specificity Accuracy PPV NPV

T0
(minimizing

AIC)

Multilayer Perceptron 9-variable 0.66 (0.60–0.72) 0.60 0.63 0.62 0.60 0.63
Random Forest 9-variable 0.54 (0.47–0.60) 0.46 0.60 0.53 0.51 0.55
Support Vector

Machine 9-variable 0.51 (0.43–0.59) 0.37 0.66 0.52 0.50 0.53

Logistic regression 9-variable 0.58 (0.52–0.64) 0.63 0.55 0.59 0.58 0.64

T24
(minimizing

AIC)

Multilayer Perceptron 6-variable 0.63 (0.56–0.69) 0.76 0.44 0.59 0.56 0.67
Random Forest 6-variable 0.54 (0.47–0.61) 0.47 0.59 0.53 0.51 0.55
Support Vector

Machine 6-variable 0.51 (0.43–0.59) 0.40 0.64 0.52 0.50 0.54

Logistic regression 6-variable 0.58 (0.52–0.64) 0.66 0.52 0.59 0.57 0.64
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Table 3. Cont.

Time Methods Model AUC (95%CI) Sensitivity Specificity Accuracy PPV NPV

T72 (mini-
mizing

AIC)

Multilayer Perceptron 11-variable 0.71 (0.65–0.76) 0.53 0.74 0.64 0.65 0.63
Random Forest 11-variable 0.61 (0.55–0.68) 0.46 0.68 0.57 0.57 0.58
Support Vector

Machine 11-variable 0.55 (0.40–0.65) 0.24 0.84 0.55 0.60 0.55

Logistic regression 11-variable 0.63 (0.57–0.69) 0.64 0.61 0.62 0.61 0.66

T72 (mini-
mizing BIC)

Multilayer Perceptron 4-variable 0.63 (0.57–0.70) 0.49 0.69 0.60 0.60 0.60
Random Forest 4-variable 0.58 (0.50–0.65) 0.48 0.62 0.55 0.54 0.57
Support Vector

Machine 4-variable 0.53 (0.41–0.63) 0.50 0.58 0.54 0.52 0.56

Logistic regression 4-variable 0.62 (0.56–0.68) 0.65 0.58 0.61 0.60 0.66

AIC: Akaike information criterion, AUC: area under the receiver operating characteristic curve, BIC: Bayesian
information criterion, CI: confidence intervals, NPV: negative predictive value, and PPV: positive predictive value.

4. Discussion

In our study, the MLP technique predicted prolonged MV duration in patients with
moderate-to-severe ARDS with modest accuracy. As expected, data captured at the baseline
or at T24 were less predictive than data obtained at T72. Our findings highlight 4 out of 11
clinical features collected at T72 (Table S9) as follows: PaO2/FiO2, PaCO2, pH, and PEEP.
Although these variables have been recognized as risk factors of prolonged MV, our study
illustrates that absolute risk prediction based on these variables remains limited.

The PIONEER prediction model could contribute to addressing some of these risk
features for reducing the duration of MV in moderate/severe ARDS. We recognize that
MV duration in ARDS is also dependent on ICU factors. Our study confirms that it is
difficult to predict the time of ending MV in moderate/severe ARDS, even with modern ML
techniques. Evolving clinical practice has led to the clinical use of non-invasive ventilation
in mild and moderate ARDS [1,41]. Furthermore, organizational culture, staffing pressure,
and various quality improvement initiatives implementing evidence-based management
could be more important than patient-related factors. Our multicenter study cannot answer
these issues since we would need data on all ICU-related factors, which are contextual,
variable, and probably do not exist in an interpretable format. Given the available data,
patients who would benefit the most from “actionable” timely therapeutic interventions
or the early warning of possible adverse events [42] are those with the highest risk for
prolonged MV duration [43]. The current ARDS framework [2] limits our ability to fully
determine which patients need MV for >14 days. We do not know whether updating the
ARDS definition addresses any of the existing limitations related to other aspects impacting
ARDS recognition and management. A more refined prediction model that captures high-
risk patients and ICU-related features in a timely manner could be beneficial. This would
have the potential to guide clinicians in therapeutic choices in specific ARDS groups.

The early assessment of MV duration > 14 days may be important for evidence-
based interventions that accelerate MV discontinuation [44]. Our findings suggest that
MV duration only can be modestly predicted as early as T72. The selection of patients
with a high risk of prolonged MV might affect significant clinical decisions, including
referral to other centers, transfers to long-term ventilator units, the timing of performing
a tracheostomy [8] or alignment with goals of care [6]. In addition, an early prediction
model for the prolonged duration of MV could optimize ICU resource use [45]. Our model
could determine with modest accuracy if a patient remains intubated after 14 days of
ARDS diagnosis using commonly accessible variables during the first three MV days after
diagnosis. In general, the requisite for a successful ML application is the presence of “useful
patterns” in the data. In the current environment, it is far from optimized (if not unrealistic)
to enable ML to provide a precise early prediction of prolonged MV duration in ARDS for
clinicians. A comparison with previous ML studies on MV duration is difficult because
investigators used different ML techniques, different timeframes, different ML metrics, or
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different populations [5,9,23,46]. Since the definition of prolonged MV is inconsistent, the
performance assessment of related prediction models is not applicable to all situations [47].
We believe that using input criteria that maximize the measurement of variables commonly
available to clinicians and minimize subjective clinician judgement is a preferable strategy.

Clinicians are interested in actionable and modifiable variables for improving out-
comes. It seems unrealistic that ventilated moderate/severe ARDS patients can be weaned
quickly. We think that the following targets are reasonable within the first three days
and beyond ARDS management to decrease MV duration as follows: improving oxy-
genation for PaO2/FiO2 > 150 mmHg [48], the use of high PEEP [49] while keeping
Pplat < 29 cmH2O [50], and aiming to reduce extrapulmonary organ dysfunction [51].
Of note, the best strategies to reduce MV duration in patients with ARDS have not been
identified yet and require further research.

Of note, there is divergence in the use of invasive MV across countries [52], and patient
characteristics vary markedly. This divergence highlights the need to better understand
patient-, clinician-, and system-level choices associated with the use of MV. The impact
of higher PEEP levels on ARDS has long been debated [53]. Available evidence suggests
that high PEEP could be beneficial for moderate/severe ARDS. In the ALIVE epidemio-
logical study [54], ICU mortality increased as the PaO2/FiO2 ratio was <150 mmHg and a
pH ≤ 7.30. Permissive hypercapnia is sporadically required to allow lung-protective MV.
After the induction of hypercapnia, pH decreases markedly and gradually moves toward
normalization at 72 h. The clinical effects of hypercapnia are conflicting since metabolic
acid-base adaptation triggered by hypercapnia is a complex process. pH compensation
makes the VT reduction more acceptable in ARDS; however, concurrent infections could
influence the metabolic adaptation to hypercapnia [55]. In a recent systematic review [56],
permissive hypercapnia was associated with increased survival, although hypercapnia
was imposed under lung-protective MV, and it was associated with a worse outcome.
Changes in pH, PaCO2 or the PaO2/FiO2 ratio are strong predictors for disease progression
in ARDS [57]. PaCO2 value is required for the calculation of alveolar dead space. We did
not include dead space in the PIONEER model (end-tidal CO2 was not regularly measured
in our patients throughout the first three days of MV), but we acknowledge that temporal
variations in dead space during MV are associated with ICU outcomes [58] in addition to
the early time-course of gas exchange in ARDS [59].

The strengths of our study include the fact that we analyzed a large number of patients
from a multicenter network, reflecting the current clinical practice and contemporary
case mix in moderate/severe ARDS. Starting from prior clinical knowledge represents
an important strength leading to clinically relevant interpretations that are less likely to
generate unreasonable predictions [60]. The use of general practices in ARDS across ICUs
provides comparative data to support conclusions about the PIONEER model, allowing
the potential utility to improve timely clinical interventions for ARDS. On the other hand,
we also acknowledge some limitations of our study. First, we only investigated patients
from the Spanish healthcare system managed with lung-protective MV; hence, the data
might not be valid in other settings or in patients ventilated with large VT. Second, we
ignored whether the model worked for each etiology, although they were manifested by the
same syndrome. We felt that minimal exclusion criteria and a relatively large sample size
attenuated these concerns. Third, our data were collected before the COVID-19 pandemic,
and it is plausible that ARDS ventilator management might have changed since then [1].
Fourth, we trained our algorithms using only three ML techniques; others might lead to
better prediction models. Fifth, we did not collect precise information on factors associated
with weaning difficulties, such as sedatives, neuromuscular blocking agents, fluid balance,
the level of consciousness, secondary infections, and muscle function. Sixth, our definition
of prolonged MV excluded those who died before 14 days. Finally, the ML methods
provided poorly calibrated predictions, implying that absolute risk predictions are not
reliable for individual patients.
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5. Conclusions

We confirmed that predicting MV duration in ARDS is complex, even with data
captured at T72 compared to the baseline or at T24. ML techniques are promising but
insufficient to provide reliable patient-level predictions. Clinical determinants of MV
duration in ARDS are multifactorial and should be studied further to support the timely
management and treatment of ARDS, focusing on optimizing gas exchange, lung strain, and
variations in pH secondary to the natural evolution of the disease process. More research
is needed to identify clinical and organizational variables that might help to recognize
patients who are likely to have prolonged MV.
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