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Abstract
Relapse following a short clinical response to therapy is the major challenge for the management of acute myeloid
leukemia (AML) patients. Leukemic stem cells (LSC), as the source of relapse, have been investigated for their
metabolic preferences and their alterations at the time of relapse. As LSC rely on oxidative phosphorylation
(OXPHOS) for energy requirement, reactive oxygen species (ROS), as by-products of OXPHOS, have been
investigated for their role in the effectiveness of the standard AML therapy. Increased levels of non-mitochondrial
ROS, generated by nicotinamide adenine dinucleotide phosphate oxidase, in a subgroup of AML patients add to the
complexity of studying ROS. Although there are various studies presenting the contribution of ROS to AML
pathogenesis, resistance, and its inhibition or activation as a target, a model that can clearly explain its role in AML
has not been conceptualized. This is due to the heterogeneity of AML, the dynamics of ROS production, which is
influenced by factors such as the type of treatment, cell differentiation state, mitochondrial activity, and also the
heterogeneous generation of non-mitochondrial ROS and limited available data on their interaction with the
microenvironment. This review summarizes these challenges and the recent progress in this field.
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INTRODUCTION
Acute myeloid leukemia (AML) is the most common acute leukemia and constitutes a significant portion of 

https://creativecommons.org/licenses/by/4.0/
https://www.oaepublish.com/cdr
https://dx.doi.org/10.20517/cdr.2023.125
http://crossmark.crossref.org/dialog/?doi=10.20517/cdr.2023.125&domain=pdf


Page 2 Khorashad et al. Cancer Drug Resist 2024;7:5  https://dx.doi.org/10.20517/cdr.2023.125

all leukemia with a poor outcome. Resistance to therapy, either primarily or following a remission period, is
the main challenge for the management of AML patients and, indeed, all cancers. Therefore, understanding
the mechanism of emerging resistance and relapse is one of the main research topics, especially for cancers
with high rates of relapse and mortality, such as AML. AML is characterized by the acquisition of gene
mutations or chromosomal abnormalities that induce proliferation and disturb differentiation of
hematopoietic progenitor cells (HPC), leading to the clonal expansion of myeloid stem and progenitor cells
in the bone marrow (BM)[1]. AML standard induction therapy is based on using cytosine arabinoside (ARA-
C) and anthracyclines such as daunorubicin (DNR) or idarubicin. This treatment has effectively remained
unchanged for decades, although within recent years, it has been combined with additional targeted
therapies depending on the clinical condition and leukemia genotype. Some of these therapies have been
approved by the FDA, such as inhibitors targeting FMS-like tyrosine kinase 3 (FLT3), B-cell lymphoma 2
(BCL-2) and isocitrate dehydrogenase 1/2 (IDH1 and IDH2) while many others are currently under
investigation through clinical trials such as the inhibitors of TP53, NEDD8-activating enzyme (NAE) and
cyclin-dependent kinase (CDK)[2].

Standard induction therapy leads to complete remission, determined clinically, morphologically,
immunologically, and sometimes at the molecular level, in 40% to > 90% of cases, depending on patient age
and the presence or absence of specific somatically acquired genetic alterations. However, at least 50% of
younger patients and 80% of those older than 60 years will experience relapse within 5 years[3-7]. Together
with post-remission therapy such as additional chemotherapy and/or hematopoietic stem cell (HSC)
transplantation, 5-year survival rates of < 5%-20% and > 40% are achieved for patients older and younger
than 60 years, respectively[8-10]. In most cases, it has been shown that the founder leukemic clone persisted
following chemotherapy and established the basis of relapse years later[11]. Understanding the operating
mechanisms that protect AML cells against induction therapy is essential for designing new therapies to
eradicate these cells in order to prevent relapse. Targeting leukemia stem cells (LSC) as the source of relapse
is a current topic of mainstream AML research. LSC refer to a subpopulation of leukemia cells that have a
self-renewal capacity, fail to properly differentiate into mature hematopoietic cells, exhibit quiescence and
survival signaling to support their viability, and are not eradicated by conventional chemotherapy[12-14]. LSC
may develop from HSC or HPC that acquire self-renewal capacity following genomic aberrations[15-18].
Because of the similarities to normal HSC, the specific cell surface markers have not been completely
defined for LSC. However, exploration of AML patients’ blasts has led to the identification of a variety of
markers, which are used for characterization of the cell populations enriched in LSC and are updated as new
discoveries emerge[19-21]. Various mechanisms have been proposed for drug resistance in LSC, including
quiescence to avoid targeting cell cycle[22], high self-renewal capacity to allow repopulation of leukemia cells
following therapy[23,24], expressing high levels of transporters to pump drugs out of cells[25,26], altering drug
metabolism to inactivate chemotherapy agents[27,28], activation of survival signaling pathways such as the
signals mediated by WNT/β-catenin, Hedgehog, BCL-2[29-31], and interacting with stromal cells in the
leukemic niche to receive signals that mediate adhesion-related drug resistance[32,33].

One of the proposed metabolic pathways to be involved in resistance to therapy is the alteration in
redox metabolism and, in particular, oxidation. Malignancies including AML have been observed to be in a state
of redox imbalance where the homeostasis between oxidants and antioxidants has shifted, often to the
extent that cancer cells have increased oxidants within the cell. Oxidative phosphorylation (OXPHOS) is the
process by which nutrients such as carbohydrates, lipids, and amino acids are broken down into usable
energy within the mitochondria. OXPHOS is the target for Venetoclax (VEN), a potent and selective
inhibitor of BCL-2, which was approved in 2018 by the FDA in combination with either DNA
methyltransferase inhibitors or low-dose ARA-C for the management of older or unfit AML patients[34,35].
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VEN can impair oxidative phosphorylation in AML cells through mitochondrial effects and lowering amino 
acid uptake[36], which adds to its antileukemic activity beyond just BCL-2 inhibition. Despite promising 
responses in various studies, resistance to VEN-based combinations can emerge in AML patients. In phase 
1/2 trials of VEN and hypomethylating agents, the overall response (complete remission with or without 
complete hematology recovery) rate was around 60%-70% in treatment-naïve elderly AML patients. 
However, 30%-40% of patients exhibited primary resistance and did not respond to the combination 
therapy[37,38]. The majority of AML patients (70%-90%) who initially responded to VEN combination therapy 
relapsed within approximately 1 year of beginning treatment, indicating acquired resistance develops in 
many patients[38,39]. As a target of VEN, alterations to OXPHOS and its regulation in AML cells are expected 
to play a role in contribution to resistance. To understand the role of oxidation in the development of 
resistance to standard induction therapy or combined VEN in AML and other new inhibitors, an 
understanding of the role of oxidation in cell signaling, normal hematopoiesis, and the role played by 
different sources of reactive oxygen species (ROS), the mediator of oxidation, is required.

ROS GENERATION AND HOMEOSTASIS
ROS refers to various oxygen-containing free radical species and other reactive molecules that are more
reactive than dioxygen (O2). The main species include superoxide anion (O2

•-), hydrogen peroxide (H2O2),
hydroxyl radicals (OH•), and singlet oxygen (1O2). H2O2 is the most important intracellular ROS, which has
the capacity to cross the biological membrane by passive diffusion or facilitated transport via channels, such
as aquaporins, and reversibly oxidize the cysteine residues in proteins[40]. H2O2 exhibits lower overall
reactivity in comparison to O2

•- and has high selectivity for the thiol group of cysteine residues and displays
the greatest stability compared with other physiologically relevant ROS[41].

Physiologically, ROS are initially generated via the univalent reduction of O2, which generates O2
•-.

Superoxide subsequently dismutates to H2O2 through the catalytic activity of superoxide dismutase (SOD)
enzymes[42]. The main cellular sources of ROS generation include mitochondria, where O2

•- is generated
through the reaction of O2 with electron at complex I/III at electron transfer chain, endoplasmic reticulum,
and from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (also known as NOX)[42,43]. The
NOX family consists of family members NOX 1, 2, 3, 4 and 5 and dual oxidases (DUOX) 1 and 2. H2O2 is
mainly produced by NOX4, DUOX1, DUOX2, and SOD2[44]. The structural differences among the members
of the NOX family correlate to the specific functions. The presence of a calcium binding region in the N-
terminus of DUOX1, DUOX2, and NOX5 is a distinguishing feature of these proteins from the rest of the
NOX family, and the presence of a domain with similarity to the active site of peroxidase in DUOX1 and
DUOX2 distinguishes these two from NOX5[45]. Regarding the type of ROS generation, NOX1, NOX2,
NOX3 and NOX5 generate O2

•- while NOX4, DUOX1 and DUOX2 produce H2O2
[46]. Each member of the

NOX family is a protein complex composed of several components, for example, p22phox, gp91phox
protein (membrane proteins), p47phox, p67phox, p40phox (cytosolic proteins), and the GTP-binding
protein Rac1/2 forming the NOX2 complex. Once activated, cytoplasmic protein subunits translocate to the
membrane, undergo a conformational change, and form a complex with membrane subunits to activate the
enzyme complex. The components of the NOX complex influence the subcellular distribution and the
mechanism of regulation[45]. The other minor sources of ROS generation that do not contribute significantly
to the pool of the ROS in cells are from the activities of the following enzymes: cytochrome P450 (CYP),
aldehyde oxidase, glycolate oxidase, monoamine oxidase, xanthine oxidase, hydroxyacid oxidase, cyclo-
oxygenase (COX), and amino acid oxidase[47].

The main sources of ROS production in normal hematopoietic cells under physiological conditions are (i)
through conversion of 0.1%-0.2% of the consumed O2 to ROS in mitochondria; and (ii) through the activity
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of plasma cell membrane-bound protein NOX family (extramitochondrial)[48]. Members of the NOX family 
are found on CD34+ hematopoietic cell membranes, with NOX2 as the most abundantly expressed family 
member[49].

PROTEIN MODIFICATION BY ROS
In the previous two decades, it has become clear that in addition to its canonical role in cellular defense
against infection, ROS also play a significant role in cell signaling. It is important to note that extracellular
H2O2 is readily transported across the cell membrane via the transmembrane water permeable channel
protein family of aquaporins[41]. Either intracellular or extracellular ROS has the capacity to induce post-
translational modifications (PTM). These have been observed in proteins involved in all aspects of cellular
processes and could be exacerbated under oxidative stress when an imbalance between ROS generation and
antioxidant defense systems leads to the accumulation of ROS. The ROS-induced PTM can be either
reversible or irreversible and highly regulated under normal physiological conditions. The modifications of
the proteins by ROS influence key functions such as phosphorylation, acetylation, ubiquitination, etc.[50].
One of the two main ways that ROS alter the function of the involved proteins in cell signaling is by
oxidation of the thiol functional group of the cysteine residues[51,52]. The pattern of cysteine residues as an
active site or co-factor binding site in proteins is highly conserved, explaining its significance as a target for
ROS as a main player in various cellular processes[53]. The other way ROS alter protein function is to affect
intra- and inter-cysteine disulfide bond formation, which, depending on the affected protein, may lead to its
increased or decreased activity[50]. If the cysteine is involved in the formation of the active site in a protein,
ROS-induced disulfide bond formation may switch the activity on or off; alternatively, disulfide bond
formation may change the activity of a protein by changing its structure[54]. Among the mechanisms,
disulfide bond formation influences signaling pathways and cell cycle and their role in the shuttling of the
transcription factor from the cytoplasm to the nucleus in response to elevated H2O2 concentrations[55] and
remodeling of the cytoskeleton during phagocytosis[56]. In addition to protein modifications, ROS can have a
direct impact on the structure of DNA. Reactions of ROS with DNA can generate numerous oxidized bases,
including 8-hydroxy-2-deoxyguanosine (8-OHdG) which causes G:C to T:A DNA transversions and
particularly has been observed in association with relapse in AML and has an inverse relationship with the 
total antioxidant capacity of the cell[57]. Table 1 provides examples of cysteine modifications by ROS 
and the resulting effects on proteins, organized by protein functional category.

THE ROLE OF ROS IN NORMAL HEMATOPOIESIS
Cell differentiation and proliferation are intimately linked and associated with enhanced metabolic activity 
and higher ROS levels. In contrast, HSCs have a low-oxidative metabolism leading to low production of 
ROS and clearly have a less phenotypic differentiation state[49]. The association of HSC with lower levels of 
ROS is linked with their location in the BM as the non-dividing HSC reside in the hypoxic 
microenvironment of the BM which contributes to their maintenance, and their metabolism which is based 
on anaerobic glycolysis rather than OXPHOS. The hypoxic microenvironment of the BM includes a large 
proportion of the extravascular compartment, and in particular, peri-sinusoidal region is the most hypoxic 
region[49]. In addition to the peri-sinusoidal region, most of the endosteal niches are also hypoxic due to being
relatively far from blood vessels[70]. Hypoxia through activation of hypoxia-inducible factor (HIF)-1α 
induces a quiescence phenotype and metabolism switching to glycolysis in HSC[71]. The level of ROS 
remains low in HSC and common myeloid progenitors (CMP) but increases during differentiation to 
granulocyte-monocyte progenitors (GMP). In contrast, intracellular levels of ROS remain as low as HSC in 
megakaryocyte-erythrocyte progenitor cells (MEP)[72]. The regulation of ROS levels is essential for the 
maintenance of HSC as increased levels of ROS induce cell cycling and differentiation through activation of 
p38MAPK and mTOR pathway, which has a negative impact on self-renewal of HSC, and if it is not controlled, 



Khorashad et al. Cancer Drug Resist 2024;7:5  https://dx.doi.org/10.20517/cdr.2023.125 Page 5

Table 1. Cysteine modification by ROS and the resulting effect on protein function

Protein/Pathway Effect

PTP Oxidation of the catalytic cysteine inactivates PTPs, allowing sustained tyrosine phosphorylation and cell signaling. 
PTEN[58], PTP1B[59], and SHP-2[60] are among the known PTPs whose activities are inhibited through this mechanism

Transcription factors Cysteine oxidation can inhibit DNA binding activity. One of the well-known proteins for having altered function due to this 
mechanism is TP53[61]

Ion channels and 
receptors

Cysteine oxidation has been shown to modulate the activity of some protein channels such as Ryanodine receptor[62] and 
NMDA receptor[63]

Metabolic enzymes Oxidation provides redox control over certain metabolic fluxes. For example, cysteine residues of certain PRX undergo 
reversible oxidation to sulfinic acid (Cys-SO2H) which contributes to regulation of its function[64] or oxidation of the 
cysteine residue (Cys358) by H2O2 inhibits the activity of PKM2, an enzyme that catalyzes the final rate-limiting reaction 
in glycolysis[65]

Protein kinases Oxidation may regulate the activity of some kinases. For example, it has been shown to increase the activity of ASK1[66,67]

Regulator proteins Oxidation may control the function of some proteins by inhibiting their interactions with other molecules; for example, 
oxidation of cysteine residue (Cys374) in actin prevents the interaction of G-actin subunits and this disrupts filament 
formation[68]

Signaling proteins Oxidation can modify the structure of a protein by forming intermolecular disulfide bonds between conserved cysteine 
residues within a protein, leading to the change of function and subsequently downregulation or upregulation of the 
downstream signaling pathways. For example, JNK is a family of stress-activated protein kinases that play important roles 
in regulating cell proliferation, differentiation, apoptosis, and other cellular processes. High ROS induces intermolecular 
disulfide bonds between conserved cysteine residues in the activation loop of JNK. This prevents the access of 
phosphatase to activation loop, leading to sustained JNK activation[69]

ROS: Reactive oxygen species; PTP: protein tyrosine phosphatases; PTEN: phosphatase and tensin homolog; PTP1B: protein tyrosine phosphatase 
1B; SHP-2: SRC homology 2 (SH2), refers to protein Tyrosine-protein phosphatase non-receptor type 11, also known as PTPN11; NMDA: N-methyl-D-
aspartate; PRX: peroxiredoxins; H2O2: hydrogen peroxide; PKM2: pyruvate kinase, isoform 2; ASK1: apoptosis signal-regulating kinase 1; JNK: c-Jun 
N-terminal kinase.

it leads to premature exhaustion of HSC[71]. To keep the ROS levels under control, aerobic organisms 
employ the following defense mechanisms: (i) glutathione peroxide; (ii) peroxiredoxin; (iii) catalase; and 
(iv) thioredoxins[73]. HSCs protect themselves against ROS mainly through FOXO transcription factors, in 
particular FOXO3, which activates antioxidant molecules such as dismutase and catalase[49]. By provoking 
base excision repair of oxidative DNA damage and regulation of mitochondrial oxidative metabolism, 
FOXO3 protects HSC[74]. Through a different pathway, FOXO3 acts as a major regulator of autophagy and 
mitophagy, and this protects hematopoietic cells as these processes remove damaged mitochondria and 
toxic proteins[75]. In addition, FOXO1, FOXO3, FOXO4, and FOXO6 induce transcription of genes that 
eliminate ROS such as SOD2, CAT, PRDX3, and SENP[76]. Furthermore, they decrease the level of free 
transition metal ions by elevating metallothionein and ceruloplasmin[77] and also have a role in the 
regulation of the genes involved in cell-cycle arrest and apoptosis[76].

The NOX family is important in normal hematopoiesis as it has been shown that the deficiency in some 
members of this family, such as NOX2 and GTPase RAC proteins, disturbs the balance between self-
renewal and differentiation of hematopoietic cells and leads to damaged hematopoiesis[78-81]. The study by 
Hole et al. demonstrated the induction of excessive ROS, generated by NOX2 in normal HSC, promoted 
growth factor-independent proliferation[82], and the report from Adane et al. showed the deficiency of 
NOX2 in HSCs led to loss of their self-renewal capacity, and impaired differentiation with a tendency 
towards myeloid lineage[78]. As the current methodologies are not entirely reliable for distinguishing NOX2-
derived ROS from mitochondrial-derived ROS, the contribution from each of these sources (NOX or 
mitochondria) to ROS generation in HSC and their significance in the maintenance of stemness, 
proliferation and differentiation remains to be discovered. The mechanisms through which ROS contribute 
to stemness maintenance in HSC and also proliferation and differentiation remain to be understood. It can 
be hypothesized that there is a ROS concentration-dependent mechanism where low ROS levels alter 
residues in proteins (resulting in higher activity) that are involved in stemness, but when ROS levels 
increase, residues in proteins involved in proliferation are modified with subsequent functional 
activation[42]. FOXO transcription proteins are examples of the proteins in HSC that can be activated by 
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ROS, and their activity contributes to stemness[83] while ROS-mediated alterations to a protein such as 
PTPMT1 may block HSC differentiating[84]. The investigations, focusing on measuring ROS level 
fluctuations and correlating them with the modified functions of various proteins in HSC, would provide 
evidence to verify this hypothesis. This hypothesis is further supported by a recent leukemia model-based 
study that AML cells with low ROS were enriched within the leukemia-initiating cells that had higher 
percentages of CD34+CD38- cells, reflecting the reverse association between ROS level and differentiation[85].

STRESS RESPONSE TO ROS IN HEMATOPOIETIC CELLS
The regulatory antioxidant mechanisms that keep ROS levels under control depend on the cell type and 
amount of ROS required for the activity of certain signaling pathways. If the produced ROS exceeds the 
capacity of antioxidant systems in the cell, oxidative stress occurs[71]. In cancer cells, a high proliferative state 
requires enhanced metabolism, which in return requires higher production of ATP. The increased 
production of ATP through OXPHOS in the mitochondria is accompanied by increased levels of ROS as a 
result of this process. ROS as mediators in certain signaling pathways have pro-tumor activity and their 
elevation contributes to the pro-survival and proliferation of cancer cells. As ROS are toxic to cells beyond a 
certain threshold, the cancer cells increase their antioxidant capacity to combat the deleterious effects of 
excessive ROS, which include DNA damage. ROS may act as oncogenic or tumor-suppressive molecules 
depending on the balance between ROS and antioxidants. In some cancer cells, by activating the signaling 
pathways that regulate proliferation and survival, ROS contribute to the initiation and progression of cancer 
and, therefore, are considered oncogenic[86-88]. However, ROS induce cell cycle arrest or apoptosis when 
exceeding a certain level and therefore can be considered tumor-suppressive[89,90]. ROS accumulation can 
damage cells and lead to cell death through several pathways, such as damaging DNA and subsequent G2/M 
phase arrest through the activation of ATM[91], MAPK-mediated induction of mitochondrial-dependent 
apoptosis, and activation of the proapoptotic proteins of the BCL2 family leading to mitochondrial 
membrane permeabilization and cell death[92-95]. To maintain the ROS levels within oncogenic activity range 
and avoid death, the cancer cells upregulate antioxidant pathways[96]. If the ROS levels exceed the 
antioxidant capacity, then a stress response to survive is initiated and this includes a short-term metabolic 
[Figure 1] or a long-term genetic reprograming[97] [Table 2].

The most abundant antioxidant molecule in the cell is glutathione (GSH), which is used by GSH-S 
transferases and GSH peroxidases to reduce ROS. There are two other significant antioxidant networks, 
sulfiredoxin (Srx) and thioredoxin (Trx), which have a role in the clearance of ROS, but they are less 
abundant[98,99]. During oxidative stress, GSH and Trx serve as the major defensive molecules to protect cells. 
For these molecules to function effectively, they need to be in their reduced state, which is facilitated by 
NADPH (nicotinamide adenine dinucleotide phosphate). In times of oxidative stress, when NADPH is 
consumed to maintain GSH and Trx in their reduced state, the production of NADPH is stimulated by 
activating glucose-6-phosphate dehydrogenase (G6PD). This is a key enzyme in the pentose phosphate 
pathway (PPP). The inhibitory effect of NADPH on G6PD is removed when its level is reduced, and glucose 
metabolism shifts from glycolysis through the oxidative arm of the PPP towards nucleotide synthesis, 
thereby generating NADPH[97]. It has been shown that ROS can modify various cysteine residues within 
protein subunits of the mitochondrial respiratory chain complex. This modification has been observed to 
result in a reduction of OXPHOS, and it has been suggested as one of the mechanisms involved in the 
cellular stress response[97,100,101]. When the levels of ROS remain elevated for an extended period, the cell 
responds by modifying the transcription of genes involved in controlling intracellular redox balance. Key 
regulatory genes in this process include NRF2 (the first-tier defense), AP-1, NF-κB (the second-tier defense), 
HSF1, HIF-1α, and TP53[97,102].
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Table 2. Transcription factors that are activated as a genetic reprograming adaptive response to chronic exposure to ROS

Gene

NRF2 First-tier defense (The principle inducible defense against oxidative stress)
Downregulation of ROS production by suppressing the expression of NOX4, IL-1B, IL-6, etc.
Upregulation of serine synthesis which leads to the production of GSH

AP-1 Second-tier defense
Induction of the genes that: (1) scavenge ROS; (2) synthesize GSH; and (3) suppress the level of free iron

NF-κB Second-tier defense

It not only regulates the expression of antioxidant genes but also the expression of pro-oxidant genes such as CYP2E1, NOX2, XOR,
NOS2, COX2, ALOX5, and ALOX12

FOXO Induction of the genes that (1) eliminate ROS; (2) improve the mitochondrial Redox; and (3) suppress free transition of metal ions

HIF1-α Regulate the expression of the antioxidant genes under hypoxia
By inducing the genes encoding for lactate dehydrogenase and pyruvate dehydrogenase kinase, the reactions shift from TCA in
mitochondria to lactate production and, as a result, reduction of ROS production by mitochondria

PGC-1α It can increase antioxidant capacity and decrease the production of ROS by mitochondria through mitochondrial biogenesis and also
activate uncoupling proteins

HSF1 Induction of antioxidant gene and also induction of heat shock protein

TP53 Through regulation of various genes with a wide range of activity from scavenging ROS, supporting GSH, to the third-tier defense which
is apoptosis
Under mild oxidative stress: TP53 induces gene expression leading to adaptation
Under high oxidative stress: TP53 activates the pathways leading to apoptosis

ROS: Reactive oxygen species; GSH: glutathione; HIF: hypoxia-inducible factor; TCA: tricarboxylic acid cycle.

Figure 1. Short-term response to oxidative stress. The initial response to oxidative stress primarily relies on the activity of antioxidant 
molecules, which donate electrons to ROS to reduce the oxidative state. To continue functioning as antioxidants, these molecules must 
be replenished, by receiving electrons from NADPH. ROS, through the oxidation of cysteine residues on the ATM protein, leads to 
increased ATM activity. In turn, ATM activates the G6PD enzyme, which enhances the production of NADPH from NADP+. This 
process has two immediate consequences: the generation of more NADPH and the redirection of glucose-6-phosphate from oxidative 
phosphorylation in the mitochondria to the nucleotide synthesis pathway. Consequently, this results in reduced ROS production. 
Additionally, ROS has a direct impact on mitochondria by oxidizing cysteine residues in complexes I, III, and IV, leading to decreased 
oxidative phosphorylation. ROS: Reactive oxygen species; NADPH: nicotinamide adenine dinucleotide phosphate; ATM: Ataxia 
Telangiectasia Mutated; G6PD: glucose-6-phosphate dehydrogenase; NADP+: nicotinamide adenine dinucleotide phosphate.

THE ACTIVITY OF ROS IN AML
In contrast to normal hematopoiesis, OXPHOS is the main source of energy production in AML cells[103]. 
LSC and their progeny have a greater mitochondrial mass and a higher rate of O2 consumption compared to 
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normal HPC[104]. Compared to normal HSC, AML cells produce higher levels of ROS[105]. CD34+ AML blasts 
were shown to be categorized as high and low-level ROS[106] (similar to normal marrow) with different 
characteristics in regard to gene expression, absolute mitochondrial content (reduced in low-ROS), ATP 
content (reduced in Low-ROS), cell size (reduced in Low-ROS), sensitivity to VEN (enhanced in Low-ROS), 
and percentage of CD38- marker (high in Low-ROS)[107]. LSC in AML patients are mainly enriched in low-
ROS CD34+ cells[106,108]. Transcriptome analysis of Low-ROS CD34+ cells in AML patients demonstrated gene 
expression patterns associated with increased stemness and reduced differentiation and apoptosis pathways 
compared to high-ROS CD34+ cells[107].

The increased levels of ROS (mainly O2
•-) in AML patients have been shown to be a product of NOX family 

activity rather than mitochondria[49]. Increased NOX2 activity was reported in 60% of AML cells from 
patients, attributed to enhanced ROS. In AML cells, NOX2-induced ROS promote proliferation[105] and also 
alter transcription of the genes involved in carbohydrate metabolism due to enhanced glucose uptake[109]. 
According to the latter study, NOX2-induced ROS increased the intermediate metabolites required for the 
glycolysis and enhanced glucose uptake by upregulating the expression of 6-phosphofructo-2-kinase/
fructose-2,6-bisphosphatase (PFKFB3).

Among the NOX family, NOX2 expression mainly correlates with superoxide generation in primary AML 
blasts. RAS or FLT3-ITD mutations have been associated with high levels of ROS in AML, although this 
association is not specific to these mutant genes and higher levels of ROS have been correlated with other 
oncogene driver mutations in myeloid malignancies[105,110]. NOX-generated ROS appear to be a primary 
source of ROS in FLT3-ITD-expressing AML cells as these cells produce increased levels of NOX2 and 
NOX4 and their partner protein p22phox compared to wild-type FLT3 cells[111]. The enhanced ROS formation 
in FLT3-ITD-expressing AML cells promotes proliferation and migration and thereby contributes to 
leukemic cell transformation[112,113]. The recent investigation of the mechanism through which FLT3-ITD 
increases ROS by Germon et al. suggests that FLT3-ITD activity modifies and activates the regulatory units 
of NOX2, leading to enhanced activity of NOX2 and consequently increases ROS levels. The increased ROS, 
in turn, oxidizes certain residues on FLT3 (Cys828 and Tyr842) and other kinases, leading to enhanced 
feedback[114] [Figure 2]. A positive correlation between the increasing levels of ROS within the mitochondria 
and enhanced sensitivity of AML cells to FLT3 inhibitors is in line with this defective positive regulation 
loop connecting FLT3 activity and ROS production[115]. Animal studies by Aydin et al. indicated that the 
generated ROS in KRAS mutant leukemia cells derive from the activity of NOX2 and contribute to the 
progression of KRAS-induced leukemia[116]. The key role of NOX2 in energy metabolism was investigated 
further in a recent study by Ijurko et al., where the removal of NOX2 in an in vitro AML model led to 
reduced glycolysis and mitochondrial respiration, while enhancing fatty acid metabolism as a source of 
energy production indicating the generated ROS by NOX2 has a regulatory influence on the metabolic 
pathway in mitochondria[117].

RESISTANCE TO THERAPY AND THE ROLE OF ROS
Remission in AML patients refers to the reduction or absence of signs and symptoms of the disease 
following treatment and can be either a complete remission (CR) or partial remission (PR). CR is defined by 
a reduction of BM blasts to less than 5%, no blasts in peripheral blood (PB), full recovery of PB cell counts, 
and no signs or symptoms of disease, while in PR, blasts are decreased by more than 50% in BM compared 
to pre-treatment counts, also reduced in PB and there is some improvement in blood counts. Resistance 
refers to when leukemia cells do not respond to anti-cancer treatments and can be categorized into primary 
and secondary. Primary resistance (or refractory AML) is defined by the failure of AML blast cells to 
respond to initial treatment and, under the ELN criteria, refers to patients who fail to meet the CR criteria 
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Figure 2. Mutant FLT3 and its role in ROS generation through the NOX2 complex. The membrane (p22phox and NOX2) and cytoplasm
(p47phox, p67phox, p40phox) components and the GTP-binding protein Rac1/2 form the NOX2 complex upon activation. FLT3-ITD
phosphorylates JAK/LYN, which subsequently phosphorylates and activates PKC. The activated PKC phosphorylates serine residues
303 and 304 on p47, leading to its activation. As a regulator of the NOX2 complex, the phosphorylated form of p47 activates NOX2,
resulting in the generation of superoxide and subsequent ROS via NOX2 activity. The generated ROS oxidizes cysteine 828 on FLT3-
ITD (and possibly other serine residues). Cysteine 828 has been shown to play a significant role in enhancing the transforming activity
of FLT3, and its oxidation is expected to further increase FLT3 activity. This series of events creates a feedback loop, resulting in
elevated FLT3 activity and increased ROS production as outcomes. *: plasma membrane; **: cytoplasm; O2

•-: superoxide anion; P:
phosphorylation. FLT3: FMS-like tyrosine kinase 3; ROS: reactive oxygen species; GTP: guanosine triphosphate; ITD: internal tandem 
duplication; JAK: janus kinase; LYN: LYN proto-oncogene; PKC: protein kinase C.

after receiving the standard 2 cycles of anthracycline/ARA-C double induction chemotherapy[118]. Secondary 
or acquired resistance develops when a patient who previously responded to treatment relapses. In 
secondary resistance, leukemia cells become resistant to therapies that initially worked. The ELN defines 
secondary/acquired resistance in AML as leukemic relapse after having initially responded to treatment and 
achieved CR, with relapse timeframes varying based on cytogenetic risk profile[118]. There is no universally 
accepted standard definition for drug/therapy resistance in AML mouse models. However, drug resistance 
in AML mouse models is generally determined by failure to achieve a reduction in BM blast counts and no 
improvement in survival compared to untreated mice. The initial response to treatment followed by 
eventual progression or repopulation of leukemia cells is considered relapse in mouse models. Specific 
quantitative criteria depend on the applied model system and the treatments.

LSC are suspected to be the main cell population which are not affected by chemotherapy, leading to relapse 
months or years later[119]. The contribution of ROS to drug resistance is thought to be influenced by its 
concentration, the underlying source of production, or the type of treatment, and therefore, it is complex.

ROS level
Failure to generate ROS was shown as a contributing factor to the development of resistance using a 
xenograft mouse model by Bossis et al.[120]. According to their findings, ROS-dependent inhibition of the 
SUMO-conjugating enzymes was shown to induce apoptosis in chemo-sensitive AML cells, but in chemo-
resistant cells, chemotherapeutics failed to activate the ROS/SUMO axis, and as a result, apoptosis through 
this pathway was not activated. In this study, diphenyleneiodonium (DPI), a NOX inhibitor (when used at 
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low doses; otherwise, it has the propensity to inhibit other flavoproteins), prevented both DNR-induced loss
of SUMO conjugates and apoptosis, and therefore, the activity of NOX was considered crucial for the
success of chemotherapy. The following study demonstrated that suppression of oxidative stress by AMP-
activated protein kinase (AMPK) protected murine AML cells, which provides further evidence supporting
the correlation between low ROS and resistance[121]. Using a H2O2-sensitive marker and a murine animal
model, Huang et al. demonstrated that the closer AML blasts are located to endosteal niche (and further
from the vascular niche) and have low ROS, the AML cell population is enriched in CD34+CD38- and
enriched further following ARA-C treatment[85]. The gene expression pattern of these cells was associated
with increased levels of enzymes leading to increased antioxidant molecules. As chemotherapy induces
oxidative stress, it is logical to hypothesize that the AML cells with low ROS levels have an advantage for
survival and show resistance to chemotherapy. Analysis of ARA-C-resistant cells from AML patient-derived
xenografts (PDX) treated with ARA-C revealed high levels of ROS, increased mitochondrial mass, and a
high OXPHOS status. The high ROS in these resistant cells was either a surrogate marker of resistance and
elevated as a consequence of increased OXPHOS or had a direct role in resistance to ARA-C. The latter
would be in contrast with the model from the aforementioned studies, where insufficient ROS was
associated with resistance. In this AML PDX model of resistance, elevated OXPHOS and mitochondrial
activity and increased reliance on fatty acid metabolism were demonstrated as the mechanism of resistance.
Using a limited number of AML cell line models, Robinson et al. also demonstrated the significant ROS-
specific metabolic alterations in sphingolipid metabolism, fatty acid oxidation, purine metabolism, amino
acid homeostasis, and glycolysis which supported the role of ROS in directing metabolic changes in
AML[122]. A group of AML patients with ARA-C resistance had high mitochondrial OXPHOS and were
highly sensitive to VEN and ARA-C[123-125]. Following VEN and ARA-C treatment, a subpopulation of these
cells developed an adaptive resistance associated with new alterations in OXPHOS mediated by the
activation of alternative regulators of OXPH, such as TP53 and MITF[126]. The alteration of ROS following
the new adaptation of OXPHO and its direct contribution to resistance was not investigated; however,
targeting mitochondria through the inhibition of mitochondrial fusion, which damaged ROS production,
led to cell cycle arrest[127]. As the inhibition of ROS is not separated from OXPHOS damage in
mitochondrial fusion targeting, determining a specific role for ROS as a contributor to adaptive resistance is
a task for future investigation. Based on these studies, it can be hypothesized that cells recruit protective
measures to reduce the high production of ROS as they increase their OXPHO as a mechanism of
resistance.

It can be argued that the inability of a subclone of AML cells to upregulate the generation of ROS results in
resistance to chemotherapy. Alternatively, while the main mechanism of resistance is due to the high
activity of mitochondria and altered metabolic pathways such as a shift to fatty acid metabolism, the
emerging resistant clone produces high levels of ROS, but the contribution of high ROS levels is not well-
characterized[128]. This was also illustrated in a xenograft mice model by Ma et al., where chemotherapy
resistance was associated with increased dependence of metabolism on OXPHOS in mitochondria and the
inhibition of drug-induced ROS. According to this study, the metabolic reprograming by SIRT3 increased
the reduced glutathione/oxidized glutathione ratio which reflects the enhanced antioxidant capacity[129]. In
addition to controlling ROS levels, SIRT3 promotes fatty acid oxidation in LSC, and therefore, its inhibition
leads to fatty acid accumulation in LSC, which could be cytotoxic. However, LSC can still protect themselves
by upregulating cholesterol metabolism, and combined suppression of SIRT3 and cholesterol metabolism
are required to overcome the SIRT3-dependent resistance to chemotherapy[130]. By increasing fatty acid
metabolism, SIRT3 has been associated with resistance to VEN[125] and therefore targeting SIRT3 could be
considered one of the targets in VEN-resistant LSC. SIRT1, a cellular stress sensor, a deacetylase, and a
negative regulator of TP53, has been shown to contribute to chemotherapy resistance in AML cells by
reducing the intracellular level of O2

•-[131,132]. FOXP1, a member of the FOXO transcription family, selectively
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enhances the expression of SIRT1 in committed but not HSC-enriched myeloid progenitors. FOXP1/SIRT1 
pathway promotes the survival of AML cells, and in FLT3-ITD AML patients, SIRT1 expression level has 
been correlated with poor prognosis[133]. Another member of the SIRT family, SIRT2, increases G6PD 
activity by deacetylating its Lys403 residue which subsequently leads to the production of NAPDH through 
the PPP pathway. NADPH contributes to fatty acid synthesis and antioxidant process[134,135]. The high level 
of SIRT2 in clinical AML samples has been correlated with poor overall survival[136]. A potential role 
suggested for SIRT5, another member of the SIRT family, is by regulation of OXPHOS through 
enhancement of glutamine metabolism and as a potential therapeutic target in the AML cells which depend 
on SIRT5 for glutamine metabolism[137].

Source of ROS generation
The source of ROS generation in AML cells may influence the mechanism through which ROS contributes 
to pathogenesis and response to therapy. The role of ROS in the context of production source was described 
recently by Paolillo et al., who reported a large increase in ROS in chemo-resistant AML cells and 
demonstrated the strong correlation with the increased level of the NOX2 subunits such as CYBA, NCF1, 
NCF2, NCF4, and RAC2 along with elevated expression of NOX2 (CYBB) on the cell surface of these 
cells[138]. Using an AML cell line model (HL60), this group showed that upon development of resistance to 
DNR, NOX2 expression increased, and the resistance could be overcome by inhibiting NOX2 either 
chemically or through gene targeting[138].

Higher activity of NOX2 requires increased activity of other genes which provide co-factors or substrates 
for NOX2 activity. One of these factors is Nicotinamide phosphoribosyl transferase (NAMPT), which 
encodes an essential enzyme in the recycling of NAD, a critical co-factor for NADPH oxidase activity. In 
the analysis of the LSC in VEN/AZA-resistant patients compared to LSC from untreated AML patients, an 
increase in the activity of NAMPT was observed, which enabled the cells to use fatty acids to enhance 
oxidative phosphorylation to overcome sensitivity to VEN/AZA[139]. In an AML murine model, the 
generated superoxide by NOX2 stimulated BM stromal cells to transfer their mitochondria to AML blast 
cells through AML-derived tunneling nanotubes, resulting in increased AML cells survival[140], indicating the 
generated ROS from non-mitochondrial source can boost OXPHOS by increasing the mitochondrial 
content of the AML cells.

Interaction with microenvironment
The suppressive effect of the generated ROS on the immune system[141] might be one of the mechanisms of 
enhanced resistance to therapy, although the damaging effect of ROS on DNA and aberrations of the DNA 
repair mechanisms have also been suggested as a potential mechanism of resistance to therapy[142,143]. One of 
the potential mechanisms of developing resistance by AML cells is to alter the metabolism and reliance of 
the pathways that are not targeted by the inhibitor. A recent in vitro study demonstrated that AML cells can 
acquire their substrate for metabolism from the mesenchymal stromal cells by the mediation of ROS. The 
generated ROS from AML cells were shown to enter the stromal cells through gap junctions and increase 
the glycolysis in the stromal cells, resulting in increased production of acetate and its release to their 
microenvironment. The released acetate was used by AML for the tricarboxylic acid cycle (TCA) and lipid 
biosynthesis[144]. This mechanism helps the AML cells to enhance the resources when extra energy is 
required.

In parallel to understanding the role of ROS in cancer development, relapse, and drug resistance, efforts are 
in progress to develop drugs that can target cancer cells by either inhibiting ROS in cancer cells when they 
depend on ROS for proliferation and viability or increasing ROS to toxic levels in cancer cells with poor 
buffers against oxidative damage. Table 3 summarizes some strategies for manipulating the redox 
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Table 3. Clinically approved and under-investigation agents targeting oxidative stress

Inhibitor Mechanism of action Drug

NOX inhibitors Target NOX enzymes involved in ROS generation GKT137831[145], 
GKT136901[146], apocynin[147]

Mitochondrial 
antioxidants

Mitochondrial antioxidants are a class of compounds that selectively accumulate within the 
mitochondria to exert antioxidant effects

MitoQ[148], MitoVitE[149], 
MitoTempol[150]

SOD mimetics SOD mimetics are synthetic compounds that mimic the activity of the endogenous 
antioxidant enzyme SOD

GC4419[151], MnIIITE-2-PyP5+[152]

Peroxiredoxin 
inhibitors

The inhibitors of antioxidant peroxiredoxin enzymes lower the cell’s ability to neutralize 
endogenous hydrogen peroxide and lead to accumulation of ROS and oxidative stress which 
can trigger cancer cell apoptosis and enhance cytotoxic oxidative damage

Conoidin A[153], Adenanthin[154]

TrxR inhibitors TrxR regulates the antioxidant thioredoxin system that controls intracellular ROS levels. 
Inhibition of TrxR leads to oxidative stress due to attenuation of this cytoprotective system. 
This mechanism of induction of redox imbalance makes auranofin and other potential TrxR 
inhibitors attractive as anti-cancer drugs

Auranofin[155]

Lipid 
antioxidants

These antioxidants scavenge ROS and reactive nitrogen species Polydatin[156], quercetin[157], 
ferulic acid[158]

PARP inhibitors PARP enzymes detect DNA damage and synthesize PAR polymers to recruit repair factors. 
Oxidative stress results in single-strand DNA breaks activating excessive PARP. PARP 
inhibitors prevent this process, leading to an accumulation of DNA lesions. This excessive 
genomic instability triggers replication fork collapse and eventual apoptosis and cell death. 
The cancer cells with HR defects are selectively killed by PARP inhibition as they rely heavily 
on remaining backup repair mechanisms that are blocked

Olaparib[159], veliparib[160]

NF-κB 
inhibitors

H2O2 has been shown to induce NF-κB through IKK activation, but the underlying molecular 
mechanisms for this activation have been proposed to be highly cell-type specific and involve 
different mechanisms[161,162]. Strategies directed against individual targets in the NF-κB 
signaling pathway, including antioxidants and pharmacological inhibitors of IKK or the 26S 
proteasome complex, have shown considerable efficacy in improving and recovering tissue 
injury in animal models[163]

Thiol antioxidants (N-
acetylcysteine, lipoic acid)[164], 
curcumin[165]

Nrf2 activators Nrf2 activators are indirect antioxidants, as by activating Nrf2 signaling, they can stimulate 
the intrinsic cellular antioxidant defenses through ARE-driven gene expression

Sulforaphane[166]

ROS-activated 
prodrugs

ROS-activated prodrugs are activated by ROS inside cancer cells to release cytotoxic drugs. 
The prodrug itself is non-toxic and contains a redox-sensitive linker region that can be 
cleaved by ROS. As cancer cells intrinsically generate higher oxidative stress and ROS, 
prodrugs are cleaved and activated within cancer cells and release the active cytotoxic drug. 
Meanwhile, in normal cells with lower ROS, the prodrug remains inactivated and therefore 
causes little toxicity

Boron-based ROS-activated 
prodrugs, ROS-activated 
nitrogen mustard prodrugs, 
ROS-activated quinone methide 
prodrugs[167]

NADPH: Nicotinamide adenine dinucleotide phosphate; NOX: NADPH oxidase; ROS: reactive oxygen species; SOD: superoxide dismutase; TrxR:

thioredoxin reductase; PARP: poly (ADP-ribose) polymerase; IKK: I   B kinase; ARE: Antioxidant Response Element.

(reduction/oxidation) balance to selectively target cancer cells.

CONCLUSION
The role of ROS in the pathogenesis of AML, as well as their influence on responses to chemotherapy and 
the likelihood of relapse, remains to be better understood. This knowledge gap can be attributed to the 
diverse roles that ROS play in cell metabolism and signaling pathways. Current data suggests that both high 
and low levels of ROS can contribute to therapy resistance and the potential for relapse. Furthermore, the 
sources of ROS production may affect AML cell survival following chemotherapy. Lower levels of ROS are 
associated with the maintenance of leukemia stemness, reduced sensitivity to chemotherapy, and a higher 
risk of future relapse. In contrast, NOX2-mediated ROS generation may enhance AML cell survival by 
providing an additional source of energy. This occurs through mediating the transfer of mitochondria and 
essential metabolites from stromal cells in the microenvironment to AML cells. The ROS generated by 
NOX2 may also induce metabolic alterations in AML cells, favoring alternative pathways to protect against 
the harsh environment created by chemotherapy. Moreover, ROS generated by AML cells can alter the 
microenvironment and suppress the immune components within it, further promoting AML cell survival. 
The complexity and diversity of ROS generated by AML cells make directly targeting ROS a challenging 

κ
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task for therapeutic purposes. Recent increasing evidence highlights the significance of NOX2 in therapy 
resistance. Preliminary data even suggest a predictive role for NOX2 expression in resistance to therapy. The 
availability of specific NOX2 inhibitors makes it an attractive target for further in vitro and in vivo 
investigations as a potential therapeutic option. Alternatively, conducting a detailed analysis of the signaling 
pathways altered by ROS and exploring them as potential therapeutic targets, rather than directly targeting 
ROS or their substrates, offers alternative avenues for research in the development of additional therapeutic 
targets in AML.
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