
Received: 12 October 2023 - Revised: 21 January 2024 - Accepted: 6 March 2024 - IET Cyber‐Systems and Robotics
DOI: 10.1049/csy2.12113

OR I G INAL RE SEARCH

Learning to bag with a simulation‐free reinforcement learning
framework for robots

Francisco Munguia‐Galeano1 | Jihong Zhu2 | Juan David Hernández3 | Ze Ji4

1Cooper Group, University of Liverpool, Liverpool, UK
2School of Physics Engineering and Technology, University of York, York, UK
3School of Computer Science and Informatics, Cardiff University, Cardiff, UK
4School of Engineering, Cardiff University, Cardiff, UK

Correspondence

Ze Ji.
Email: jiz1@cardiff.ac.uk

Funding information

Engineering and Physical Sciences Research Council,
Grant/Award Number: EP/X018962/1; Consejo
Nacional de Humanidades, Ciencias y Tecnologías
(CONAHCyT)

Abstract
Bagging is an essential skill that humans perform in their daily activities. However,
deformable objects, such as bags, are complex for robots to manipulate. A learning‐based
framework that enables robots to learn bagging is presented. The novelty of this
framework is its ability to learn and perform bagging without relying on simulations. The
learning process is accomplished through a reinforcement learning (RL) algorithm
introduced and designed to find the best grasping points of the bag based on a set of
compact state representations. The framework utilises a set of primitive actions and
represents the task in five states. In our experiments, the framework reached 60% and
80% success rates after around 3 h of training in the real world when starting the bagging
task from folded and unfolded states, respectively. Finally, the authors test the trained RL
model with eight more bags of different sizes to evaluate its generalisability.

KEYWORD S
reinforcement learning, robot learning, robotics

1 | INTRODUCTION

Robots with human‐level dexterity that can handle deformable
objects may encourage smoother integration of robots in daily
and industrial activities [1]. In practice, daily activities depend
on more than manipulating rigid objects. In this context, the
robots' capacity to manipulate deformable objects to operate in
human environments is a necessity [2]. Among deformable
objects, bags are used in several relevant tasks, such as trans-
porting objects, packing, and shopping. Even though there
have been studies on how to manipulate deformable objects,
such as paper [3–6], fabrics [7–9], ropes [10–12], cables [13, 14]
and meat [15], the problem of learning to bag with robots is
still under‐explored.

Bagging is a complex task for robots because there exist
challenges related to perception, occlusions, modelling of the

bag's dynamics, ambiguity related to finding the opening, and
how to grasp one or two layers of the bag depending on the
current state of the task. Reinforcement learning (RL) has the
potential to deal with the problems mentioned above. How-
ever, RL agents are commonly trained in simulation, which
brings more challenges when implementing the agent in real‐
world tasks [16]. One challenge is that before simulating the
bag, the model must be as similar as possible to the real object
[17, 18]. On the other hand, when switching from simulation
to real world, the agent must deal with occlusions, incomplete
information, and noises. These are vital factors that make the
generalisation of RL difficult [19].

This paper presents a learning framework for robot‐
bagging tasks with compact state representations and primi-
tive actions, aiming to efficiently train a robot to learn bagging
in the real world [20]. The framework identifies five possible

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2024 The Authors. IET Cyber‐Systems and Robotics published by John Wiley & Sons Ltd on behalf of Zhejiang University Press.

IET Cyber‐Syst. Robot. 2024;e12113. wileyonlinelibrary.com/journal/csy2 - 1 of 15
https://doi.org/10.1049/csy2.12113

https://doi.org/10.1049/csy2.12113
https://orcid.org/0000-0001-8397-3083
mailto:jiz1@cardiff.ac.uk
https://orcid.org/0000-0001-8397-3083
http://creativecommons.org/licenses/by/4.0/
https://ietresearch.onlinelibrary.wiley.com/journal/26316315
https://doi.org/10.1049/csy2.12113

states and utilises eight primitive actions related to several
grasping points on the bag. The task is solved in four steps
(Figure 1): unfolding, opening, placing the piece, and carrying.
The main contributions of this paper are as follows: (i) an RL
algorithm is introduced, allowing robots to efficiently learn
how to bag in the real world (simulation‐free), (ii) a versatile
state representation for the bagging task and (iii) a framework
that provides a reliable perception of the bag state for learning.

The problem domain to empirically validate the framework
encompasses textile bags and a red cube (Figure 1). The
framework first learns to perform the task through a different
number of steps, as explained in Section 5. Then, the trained
model is used to perform the task using eight more bags with
different sizes and positions to test the framework's general-
isation capabilities.

The rest of this article is structured as follows. First, Sec-
tion 2 summarises related works in RL and manipulation of
deformable objects. The problem formulation is described in
Section 3. Then, Section 4 formally introduces the framework,
followed by Section 5, which describes the experimental setup.
Section 6 presents the results, while Section 7 discusses them.
Finally, Section 8 concludes this paper.

2 | RELATED WORK

One way to tackle the challenge of handling deformable ob-
jects with robots is by using simulated environments that are
valuable resources for training agents to learn how to solve a
given task. For example, Seita et al. [21] used transporter
networks to learn how to rearrange deformable objects, where
3D deformable structures such as bags are included. Bahety
et al. [22] proposed a method to rearrange, which is based on
two policies learned in simulation. The first policy rearranges
the objects, and the second policy learns to lift them. A
disadvantage of this approach is that it assumes that the bag is
always open. Therefore, in a simulated environment, all the
information regarding the opening of the bag and the objects is
available, which is useful when training an agent requires a
large number of episodes to learn the task. However, when
running the agent in the real world, the differences between the
simulation and the real‐world tasks may lead to undesirable and
dangerous behaviours.

In the literature, methods exist to transfer the knowledge
obtained during simulation to the real world (sim‐to‐real). Ma
et al. [23] utilised a method that sets several grasping points on
a cloth surface. A graph neural network uses these points to
learn their dynamics. Subsequently, when the task is transferred
to the real world, it is easier to track the points than to track the
whole cloth. Wang et al. [24] introduced a method in which an
agent is trained to learn how to wrap boxes in a simulated
environment. The actual texture of the deformable object is
taken from the real object such that the transition from sim‐to‐
real is smoother than when taken from the pure simulation.

In the context of bagging, Iterative Interactive Modelling
for Knotting Plastic Bags [25] is an approach that focuses on
the bag's handles, learns from demonstrations, and uses a set of
primitive actions to knot the handles. A disadvantage of this
approach is that the detection of the handles relies on a large
dataset. The approach proposed by Chen et al. [26] is of
particular relevance to this paper. Their algorithm, AutoBag, is
built upon a set of primitive actions that involve reorienting
plastic bags until the opening becomes visible, allowing objects
to be placed inside. The authors' research primarily focuses on
plastic bags. Plastic bags tend to keep their shape after
manipulation, where the mechanical characteristics are utilised
in favour of the manipulation task. For example, when the
opening is visible, the bag tends to maintain its shape. In
contrast, with a textile‐based bag, once the layer is no longer
gripped, it falls, necessitating modifications to the AutoBag
algorithm to accommodate this behaviour. In this context, this
work aims to investigate a bagging process involving textile‐
based bags and a learning‐based solution performed in the
real world.

Despite the vast literature exploring several RL approaches
in simulation, less attention has been given to RL in the real
world due to several problems [27], such as costly robot time,
motion constraints, or stochastic behaviours of objects sur-
rounding the robot. Although training RL in simulation is
effective, transferring the trained policies to the real world is a
challenge that must be taken seriously, often resulting in

F I GURE 1 The robot, in four steps performs the bagging task. In the
first step, the robot unfolds the bag. In the second step, the bag is opened
by the robot. The robot places the red cube in the bag's opening in the third
step. In the fourth step, the robot carries the bag completing the task.

2 of 15 - MUNGUIA‐GALEANO ET AL.

significant performance degradation due to the simulation‐to‐
reality gap [28]. Therefore, tackling complex problems such as
bagging in the real world may open the door to addressing
further challenges in robotics and RL.

3 | PROBLEM FORMULATION

We formulated the bagging task as a Markov decision process
(MDP) [29] and aimed to find a solution using a learning policy
π. In an MDP, the agent executes a valid action a from the set
of actions A in the current state s and transitions to a valid state
s0, where s and s0 belong to the set of states S, according to the
unknown dynamics of the bag. The environment provides a
reward according to the reward function R(s, a) upon tran-
sitioning to a new state. The set of states S is given using the
following equation:

S ¼ s0; s1; s2; s3; s4; s5f g; ð1Þ

where s0 represents the folded bag, s1 is the representation of
the bag expanded, s2 represents the bag opened, s3 shows when

the red object is on the bag, s4 is the success state, and s5 is the
fail state. More specifically, the states are denoted as follows:

� For s0: Folded bag.
Condition: the bag's area is small and the opening is not
visible (Figure 2a).

� For s1: Expanded bag.
Condition: The bag is unfolded, the opening is visible, and
the green labels can be seen (Figure 2b).

� For s2: Opened bag.
Condition: The opening area of the bag is large enough to
accommodate an object (Figure 2c).

� For s3: Red object on the bag.
Condition: The object is in the opening of the bag, which
distinguishes this state from the others (Figure 2d).

� For s4: Success state.
Condition: No visible objects were left on the table, indi-
cating that the robot carried both the bag and the object
(Figure 2e).

� For s5: Fail state.
Condition: The robot took the bag, but the red cube was
still on the table (Figure 2f).

F I GURE 2 This figure illustrates the five states that comprise the bagging task, where the red and blue dots represent the grasping points the robot can
select. In (a), the bag is folded such that its area is small, and the opening is not visible. In (b), the bag is unfolded, and the opening is visible. In (c), the bag's
opening area is large enough to put an object inside. In (d), the object is in the bag's opening, distinguishing this state from the others. In (e), the task succeeded
because no visible objects were left on the table, meaning that the robot carried both the bag and the object. Lastly, (f) shows a failure case when the robot took
the bag, but the red cube was still on the table.

MUNGUIA‐GALEANO ET AL. - 3 of 15

Hence, the current state can be calculated as follows:

s¼

s0; Abag < Ath
� �

^ Ao ¼ 0ð Þ ^ Acube ¼ 0ð Þ

s1; Abag > Ath
� �

^ Ao > 0ð Þ ^ Acube ¼ 0ð Þ

s2; Abag > Ath
� �

^ Ao > Aothð Þ ^ Acube ¼ 0ð Þ

s3; Abag > Ath
� �

^ Ao > Aothð Þ ^ Acube > 0ð Þ

s4; Abag ¼ 0
� �

^ Ao ¼ 0ð Þ ^ Acube ¼ 0ð Þ

s5; Abag ¼ 0
� �

^ Ao ¼ 0ð Þ ^ Acube > 0ð Þ;

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð2Þ

where Abag is the bag's area, Ath is a threshold value indicating
a small area, Ao is the area of the opening, Aoth is the threshold
value indicating a large enough opening and Acube stands for
the area of the cube. The robot can select among a set of
primitive actions executed in pairs. Let

Φ¼ 〈τgrasp; μlift〉; 〈τscract; μdrag〉;
n

〈τpick; μplace〉; 〈τclose; μcarry〉
o
;

ð3Þ

be the set of tuples that contains the primitive actions, τ that
represents the primary primitive action executed by the robot
and μ the complementary primitive actions (Figure 3). The
primitive action τgrasp is the robot action to grasp two layers of
the bag, and μlift is when the bag is raised above the table and
drops the bag aiming to unfold it. τscratch is the action to grasp
only one layer of the bag, and the primitive action μdrag takes
place when the robot moves a grasped layer point to a placing
point. The τpick and μplace actions refer to picking and placing
the red object. τclose grasps one layer of the bag when the object
is placed in the opening, and μcarry lifts the bag to grab the
object. This paper aims to find an optimal policy π* that

computes the correct sequence of primitive actions to transi-
tion through the states S until solving the bagging task.

4 | REAL‐WORLD LEARNING ROBOT‐
BAGGING FRAMEWORK

This section presents a framework that aims to solve the
problem of learning to bag in the real world with RL (Figure 4).
The framework comprises three modules: perception, learning
and robot controller.

4.1 | Perception

The perception module plays a crucial role in extracting rele-
vant information from the bag, including its area, opening area,
grasping points, and current state. It receives data from an
Intel® RealSenseTM camera, which provides RGB and depth
images. To process these data, the module utilises the OpenCV
library. By filtering colours from the black background and

F I GURE 3 The left side of the figure illustrates the experimental setup comprising an object to be bagged (red cube), a Kuka® iiwa 1400TM robot, and an
Intel® RealSenseTM. On the left side are the nine bags used during the experiments.

F I GURE 4 Proposed framework for learning to bag using
reinforcement learning.

4 of 15 - MUNGUIA‐GALEANO ET AL.

obtaining the bag's contours, the module can calculate the Abag
value.

Algorithm 1 Opening area's calculator.

Require: points: A list of 2D points
Ensure: Ao: The area of the opening
1: if COUNTPOINTS(points) < 3 then
2: Ao ← 0
3: return Ao
4: end if
5: triangles ←
6: nodes ← COUNTPOINTS(points)
7: centre ← GETCENTER(points)
8: while True do
9: pts ← points[]
10: i, n ← FINDCLOSESTNODE(centre, pts)
11: j, m ← FINDCLOSESTNODE(n, pts)
12: triangles.append([centre, n, m])
13: pts.pop(j)
14: k, o ← FINDCLOSESTNODE(n, pts)
15: triangles.append([centre, n, o])
16: points.pop(i)
17: ifCOUNTPOINTS (points) < 3 then
18: break
19: end if
20: end while
21: Ao ← 0
22: for each triangle in triangles do
23: Ao = Ao þ GETAREA(triangle)
24: end for
25: return Ao

In order to assist with the automatic classification of bag
states, green labels have been added around the bag's opening
(refer to Figure 2b). It is worth mentioning that perception is
not the main focus of this work. Hence, we simplify the
experimental configurations in order to reliably obtain the
states from observations. Specifically, green markers were used
to facilitate the detection of the bag opening. Algorithm 1 is
utilised to calculate the opening area. This is achieved by
providing an array of points containing the pair of coordinates
obtained from the labels. Then, through the generation of
triangles, it is possible to sum all their areas and, in this way,
obtain the opening area Ao.

This information enables the module to determine whether
the bag is on the table, folded, or unfolded. To differentiate the
bag from the background, we use a black canvas as the
background to make it easier to extract the bag, which is white.
Similarly, the object for bagging is a red cube. In brief, the
primary functions of the perception module are as follows:

� To determine the current state of the task;
� To provide pose points depending on the state;
� To measure the bag's current area; and
� To measure the current opening's area.

The perception module generates multiple pose points
denoted by g = ζ2, where g represents the number of pose
points and ζ is the griding parameter. For instance, Figure 2
illustrates a configuration with g = 9 and ζ = 3. Increasing the
value of g results in more points available for grasping and
lifting the bag, consequently leading to a larger set of actions to
explore. Thus, the position of the grasping points can be
determined.

The s0 state (Figure 2a) can be distinguished from the
others because the opening is not visible, and the bag area is
small compared to when it is unfolded. In this state, there are
g = 9 grasping points (red dots in Figure 2a) whose position
can be obtained with the RealSense camera. These points are
stored in the set Ps0. Before unfolding the bag and reaching the
next state, the robot must explore which of these grasping
points is the best to grasp the bag, lifting it at a given height
stored in the Ds0 set and dropping it.

In the s1 state (Figure 2b), the opening is visible, and the
bag's area has reached a feasible value for opening the bag.
Besides, since the opening area is small, s1 can be distinguished
from the other states based on the criteria of the opening area.
In this state, the perception module provides g = 9 grasping
points close to the opening (red dots in Figure 2b) which are
stored in the set Ps1, and g placing points (blue dots in
Figure 2b) stored in the set Ds1. Consequently, the robot's goal
in this state is to find which combination of actions over the
grasping point maximises the opening area.

In the s2 state (Figure 2c), the opening's area serves as a
trigger to identify this state. First, the perception module stores
the object's position to be bagged in Ps2. Then, the perception
module sets g = 9 placing points (red dots in Figure 2c) and
stores them in the set Ds2. The robot can place the object to be
bagged on one of those placing points and get a reward
depending on the closeness with the centre of the bag's opening.

In the s3 state (Figure 2d), the red object is placed in the
opening. In this state, the robot is required to explore more
grasping points. For this reason, the number of pose points is
g = 81 (red dots in Figure 2d). Then, the pose points are stored
in the set Ps4 while the lifting poses corresponding to the
complementary primitive action in this state are stored in the
set Ds4. Therefore, the robot can interact with the bag and
decipher which grasping point allows it to finish the task.
When the robot lifts the bag and the module cannot detect any
object left, as shown in Figure 2d, state 4 s4 is identified, and
the task is finished. On the other hand, when there are still
objects on the table, the module identifies state 5 s5, which is a
failed attempt to bag the object (Figure 2f).

4.2 | Learning

The learning module seeks to find the optimal combination of
grasping points on the bag and primitive actions from the
robot. Additionally, this subsection aims to motivate the
problems with current RL approaches and explain the func-
tionality principle of our algorithm Π‐learning.

MUNGUIA‐GALEANO ET AL. - 5 of 15

In RL, the Bellman equation [30] is a fundamental concept
that allows the computation of the value function V(s). In this
context, the Bellman equation can be expressed as follows:

V ðsÞ ¼ R s; a; s0ð Þ þ γV s0ð Þ ð4Þ

here, V(s) is the value of the state s, R(s, a, s0) is the reward for
transitioning from s to s0 while taking action a, γ is a discount
factor and V(s0) is the value of the next state. When a policy π
is given, then the value function can be expressed as follows:

VπðsÞ ¼ R s; a; s0ð Þ þ γVπ s0ð Þ ð5Þ

This form of the Bellman equation works when the envi-
ronment is deterministic. However, when the environment
presents stochastic behaviours, such as the behaviour pre-
sented by the bag, it is necessary to add the probability func-
tion P(s0|s, a):

VπðsÞ ¼
X

s0
P s0js; að Þ R s; a; s0ð Þ þ γVπ s0ð Þð Þ ð6Þ

Despite the above equation, which includes the stochas-
ticity of the environment, it still needs to be considered when
the policy is stochastic and not deterministic. Hence, to include
a stochastic policy,

VπðsÞ ¼
X

a
πðajsÞ

X

s0
P s0js; að Þ R s; a; s0ð Þð þ γVπ s0ð ÞÞ ð7Þ

The equation above is known as the Bellman expectation
equation, and it can be rewritten in its expectation form:

VπðsÞ ¼ E s0 � P
a� π

R s; a; s0ð Þ þ γVπ s0ð Þ½ �
ð8Þ

According to Equation (8), it can be observed that V(s)
evaluates the whole value of the state. However, it does not
evaluate each action independently, and this is a limitation that
can be solved by calculating the quality Q(s, a) of every action–
state pair. Then, the Bellman equation of the Q function can
be expressed as follows:

QðsÞ ¼ R s; a; s0ð Þ þ γQ s0ð Þ ð9Þ

here, Q(s, a) is the Q value of an action–state pair, R(s, a, s0) is
the reward for transitioning from s to s0 while taking action a, γ
is a discount factor and Q(s0, a0) is the Q value of the next
state's action a0. When a policy π is given, the Q‐function can
be expressed as follows:

Qπðs; aÞ ¼ R s; a; s0ð Þ þ γQπ s0; a0ð Þ ð10Þ

This form of the Bellman equation works when the envi-
ronment is deterministic. However, when the environment

presents stochastic behaviours such as the one presented by
the bag while being manipulated, it is necessary to add the
probability function P(s0|s, a):

QπðsÞ ¼
X

s0
P s0js; að Þ R s; a; s0ð Þð þ γQπ s0; a0ð ÞÞ ð11Þ

Despite the equation above, which includes the stochas-
ticity of the environment, it still needs to be considered when
the policy is stochastic and not deterministic. Hence, to include
a stochastic policy:

Qπðs; aÞ ¼
X

s0
P s0js; að Þ R s; a; s0ð Þð þ γ

X

a
πðajsÞQπ s0; a0ð Þ

�

ð12Þ

The equation above is known as the Bellman expectation
equation of the Q‐function, and it can be rewritten in its
expectation form:

QπðsÞ ¼ Es0�P R s; a; s0ð Þ þ γEa0�πQπ s0; a0ð Þ½ � ð13Þ

In general, the value and Q function Bellman equations are
used for calculating the value of the state and the quality of the
Q value's state–action pairs, respectively. These equations are
based on the environment dynamics given by P(s0|s, a), a policy
π, and the reward function R(s, a, s0). The Bellman optimality
equation expresses the expected maximum or total reward that
can be achieved from a given state based on the value function
(Equation 7). The equation defines the relationship between
the value of a state and the values of its neighbouring states.
The Bellman optimality equation of the value function is given
using the following equation:

V ∗ðsÞ ¼max
a

X

s0
P s0js; að Þ R s; a; s0ð Þ þ γV ∗ s0ð Þð Þ ð14Þ

The preceding equation states that the optimal value of a
state is the maximum expected value obtained by taking the
best action in the current state. Moreover, this equation con-
siders the expected values of the resulting states. On the other
hand, the Bellman optimality equation of the Q function can
also be calculated under the same logic and is denoted as
follows:

Q∗ðs; aÞ ¼
X

s0
P s0js; að Þ R s; a; s0ð Þð þ γmax

a0
Q∗ s0; a0ð ÞÞ ð15Þ

Additionally, the relationship between the value and Q
functions is that the value function can be derived from the Q
function by selecting the maximum Q value for each state. In
order to calculate the value function based on theQ function, the
maximum Q value over all possible actions in a given state is
selected. Consequently, for each state, the action that maximises
the Q value is selected, which becomes the value of that state.
Therefore, V(s) equals the maximumQ value for a given state s.
Then, the relationship can be expressed as follows:

6 of 15 - MUNGUIA‐GALEANO ET AL.

V ∗ðsÞ ¼max
a
Q∗ðs; aÞ ð16Þ

Following the logic from the previous sentence, if the
maximum value of V*(s) corresponds to the maximum value of
Q*(s, a), then the Q function can be derived from the value
function by substituting Equation (16) with Equation (15),
then:

Q∗ðs; aÞ ¼
X

s0
P s0js; að Þ R s; a; s0ð Þ þ γV ∗ðsÞð Þ ð17Þ

In general, the relationship between the value and Q
functions is that the value function can be derived from the Q
function by selecting the maximum Q value for each state. At
the same time, the Q function can be derived from the value
function by using the Bellman equation. However, as
mentioned earlier, the model of the bag is unknown. Aiming to
solve these sorts of problems, Mote Carlo (MC) methods are
algorithms designed to estimate the value function and find the
dynamics of the environment through interaction (model‐free)
[31]. The expected value of the value function of a given state
can be approximated by visiting that state N times and
obtaining the total return:

V stð Þ ≈
1
Nt

XNt

i
Ri ð18Þ

here, Ri is the total return, st corresponds to the step t when
that state was visited, and Nt denotes the number of times the
st state in a given step t has been visited. In order to establish a
balance between computational efficiency and memory re-
quirements, instead of using the arithmetic mean as in Equa-
tion (18), the incremental mean is more commonly used, and it
is expressed as follows:

V stð Þ ¼ V stð Þ þ α Rt − V stð Þð Þ; ð19Þ

where α¼ 1
Nt
. MC methods also focus on solving the problem

of estimating the Q function for a given policy. Hence, the
following expression can be deduced:

Q st; atð Þ ¼Q st; atð Þ þ α Rt − Q st; atð Þð Þ ð20Þ

Despite the potential of MC methods, their working
principle design relies on reaching a terminal state to approx-
imate a value function. A drawback is that if the episode is too
long, it means costly computation. Consequently, any MC
method would not be a proper fit for the bagging task. In this
context, Sutton [29] proposed an alternative that balances
Bellman equation methods and MC methods. This approach is
known as temporal difference (TD). These approaches learn by
bootstrapping, meaning that instead of waiting till the end of
an episode, they updated their value estimation based on the
following:

V ðsÞ ≈ Rðs; aÞ þ γV s0ð Þ; ð21Þ

where R(s, a) is the immediate reward obtained after per-
forming action a from state s. The reward function used in this
work is given using the following equation:

Rðs; aÞ ¼

Abmax
Abag

; s¼ s0 or s¼ s1

Aomax
Ao

; s¼ s2

1; s¼ s3; and the object is

at the center of the opening

1; s¼ s4

−0:1 s¼ s5

0; otherwise;

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð22Þ

where Abmax is the maximum area of the bag when it is
unfolded, Abag is the area of the bag after executing an action,
Aomax is the maximum area that the bag's opening can reach,
and Ao is the bag's opening area after executing an action.

In a similar manner in which the average mean was
replaced with the average mean from Equation (19), then
Equation (21) can be expressed as follows:

V ðsÞ ¼ V ðsÞ þ α Rðs; aÞ þ γV s0ð Þ − V ðsÞð Þ ð23Þ

The last expression, known as the TD estimation rule, can
be used to estimate the value of the state. It is also possible to
apply the same logic to the Q function in order to have an
optimal policy based on that estimate. The TD estimate rule of
the Q function is given using the following equation:

Qðs; aÞ ¼Qðs; aÞ þ α Rðs; aÞð

þ γQ s0; að Þ − Qðs; aÞÞ
ð24Þ

As previously described, this work proposes using several
primitive actions, meaning that the action space is discrete.
Among several approaches, Q‐learning (QL) is a popular off‐
policy RL algorithm that learns an MDP in environments
with discrete action and state spaces [32]. This algorithm is also
model‐free because it does not require any previous model of
the environment. QL is designed to update the quality valuesQ
of a state–action combination, given using the following
equation:

Q : A� S → R; ð25Þ

where Q are the Q‐values (usually stored in a table), and they
represent the quality of the state–action pair. In other words,
the higher the Q‐value, the better the action for that state.

MUNGUIA‐GALEANO ET AL. - 7 of 15

Then, a Q‐table is necessary to represent each Q‐value such
that QL updates the state–action pair by using the following
equation:

Qðs; aÞ)Qðs; aÞ þ α Rðs; aÞ½

þ γmax
a0
Q s0; a0ð Þ − Qðs; aÞ�; ð26Þ

where α is the learning rate and γ is the discount factor. The
discount factor is usually a value between 0 and 1 (0 ≤ γ ≤ 1)
that balances the importance the agent puts on future rewards
rather than immediate rewards. According to Equation (26),
the state–action pair is updated based on the next state s0 even
when that state has not been explored, which is why QL is
considered an off‐policy method.

Despite the popularity of QL and its successful imple-
mentation in multiple fields, in regard to the problem defined
in Section 3, there exist several drawbacks. The first one is
related to the size of the exploration space, where considering
eight primitive actions, 81 pose points, and four possible states
in the case of Figure 2, it would be necessary to explore a total
of 2592 primitive action–pose point pairs. This approach lacks
practical significance because it involves a long training time in
the real world.

Additionally, the dependency of QL on the next state value
would also involve significant exploration to achieve stable
convergence. This is because of the dynamics of the bag,
which, despite executing the best action, would take repeating
the same action until the bag's state transitions. More specif-
ically, while for the best action a given the state st, the bag may
transition to st þ 1, it may also stay in the same state st due to
the manner in which the problem was defined (see Equation 2)
and for the characteristics of the environment, which also
include failures in the real world that could contaminate the
training.

Aiming to solve the drawbacks, the authors propose the
following. First, the exploration space is reduced by imple-
menting affordances that define what primitive actions are
suitable given the current state. The use of affordances has
proven to be an efficient method for reducing the exploration
space [33, 34]. In this work, the affordances are obtained from
a manually defined set of rules denoted with Ψ. Then, the
robot executes actions with probability e, also known as e‐
greedy policy (the value of e controls the exploration of the
environment), and gets a reward. The process is repeated for n
steps till the training is completed. Let

Ψ¼ 〈s0; τgrasp; μlift〉; 〈s1; τscratch; μdrag〉;
n

〈s2; τpick; μplace〉; 〈s3; τgrasp;μcarry〉
o
;

ð27Þ

be the set of rules that contains the tuples in which each state s
is related to its valid actions. Then, the primary affordable
actions of the states are given as follows:

Λsj ;primary¼Ψ2 � Psj; ð28Þ

where sj ∈ Ψ1 and j ∈ (0, |S|). The affordable complementary
actions are given using the following equation:

Λsj ;complementary¼Ψ3 �Dsj; ð29Þ

where sj ∈ Ψ1. The set of affordable action pairs is given using
the following equation:

A¼ Λsj ;primary� Λsj; complementary ð30Þ

Aiming to avoid confusion with the QL notation algo-
rithm, we utilise Π. Algorithm 2 has a function that calculates
the state–action value Π, representing the quality value of an
action a given a state s:

Π : S � A → R ð31Þ

At the beginning of the learning, all Π values are initialised
to zero and stored in a Π‐table. During the training process, it
is updated with the following equation:

Πðs; aÞ)
Πðs; aÞ þ Rðs; aÞ

m
; ð32Þ

where m is the number of times that action–state pair Π(s, a)
has been selected by the agent,m > 0 and a ∈ A. Here, it is not
necessary to utilise α as in Equation (20) because the compact
state representation combined with the Π‐table allows us to
know the number of times m that state has been visited.
Hence, the bootstrapping technique is not necessary. In
contrast to classical QL, which requires exploring a total of
2592 primitive action–pose point pairs (considering 8 primitive
actions, 81 pose points, and 4 possible states in the case of
Figure 2), Π‐learning is tailored to handle these conditions,
particularly in the context of the bagging task. This is because
many actions do not result in state changes due to factors such
as incomplete unfolding in state 0 or failure to open the bag in
state 1. As a result, the robot must repeat the same action until
a transition occurs. To this end, the optimal policy is extracted
from Π(s, a) with the following equation:

π∗ðsÞ ¼ arg max
a
½Πðs; aÞ� ð33Þ

Unlike QL, Π‐learning incorporates Equation (32), which
is independent of the next state. It also reduces the exploration
space by defining rules and pairs of primitive actions using
Equation (30). For instance, in the scenario depicted in
Figure 2, QL would require exploring 2592 actions, while Π‐
learning would only necessitate exploring 81 actions. This
significant reduction in exploration space aims to reduce
training time for Π‐learning. Furthermore, the Π‐table remains
unaffected by the next state. This is crucial because the bag
assumes different shapes after each action and may or may not
transition into the next state. This behaviour may cause
instability for QL because of its dependence on the next state
information. Consequently, the perception module detects

8 of 15 - MUNGUIA‐GALEANO ET AL.

state transitions and allows Π‐learning to concentrate on
maximising the reward solely based on the current state.

Algorithm 2 takes the number of training steps n and the
set of actions A as the input. First, a Π‐table is generated.
Then, after n steps of training, the algorithm returns the
optimal policy π*(s). The Π‐learning algorithm is specifically
designed to enable learning with a reduced number of states
while dealing with a wide range of actions.

Algorithm 2 Π-learning.

Require: Training steps n, set of actions A
Ensure: Optimal policy π*(s)
1: Initialise a Π-table with zeros
2: for n steps do
3: With probability e, select a valid

action a from A
4: Perform a and calculate the reward

with Equation (22)
5: Update Π-table with Equation (32)
6: end for
7: Extract the optimal policy from the

Π-table with Equation (33)

4.3 | Robot controller

The robot controller module coordinates the continuous ac-
tions of the robot in a precise manner. To accomplish this, the
module inputs any primitive action and translates it into
continuous actions that the robot can handle. Since the
perception module provides the grasping points of the bag and
the learning module generates a sequence of primitive actions
given a state, the robot controller module can make the robot
interact with the environment. This information is managed
through the robot‐operating system (ROS).

4.4 | Bagging task implementation

This subsection aims to provide a more exhaustive description
of the bagging task, focusing on how primitive actions are
implemented and how positions are determined within the
perception module. The following is a point‐by‐point
description of the processes that allow the robot to perform
the bagging task:

� The primitive actions are steps taken by the robot to
interact with the bag and achieve the overall task. The
primitive actions are hard‐coded commands and depend on
the perception module's output, which interprets data from
an Intel® RealSenseTM camera and provides a set of possible
grasping points. These actions are available as services
running under ROS.

� The grasping points are necessary for the robot to
securely hold the bag, depending on the current state. The
perception module generates multiple pose points denoted
by g = ζ2, where g represents the number of pose points and
ζ is the griding parameter. These points are automatically
positioned around the bag's opening and body. If more
grasping points are required, the value of ζ must be
increased. Depending on the state of the bag given by the
perception module, the framework calls an ROS service
corresponding to the current state and feeds the grasping
points as parameters.

� The position determination of grasping points is
important for the execution of primitive actions. The algo-
rithm presented in Algorithm 1 calculates the opening area
Ao by generating triangles from an array of points obtained
from green labels around the bag's opening. This informa-
tion is used to determine the positions for grasping and
placing points. When it comes to the body of the bag, the
perception module retrieves the bag's body as a 4‐sided
geometry with sides F, G, H, and I (refer to Figure 5).
The objective is to evenly distribute ζ2 points inside the
described geometry based on the reference point (x0, y0),
corresponding to the upper right corner of the 4‐sided ge-
ometry surrounding the bag. Each side of the geometry can
be expressed as follows:
1. Side F represented by the coordinates (p11, p21) and

(p31, p41).
2. Side G represented by the coordinates (p12, p22) and

(p32, p42).
3. Side H represented by the coordinates (p13, p23) and

(p33, p43).
4. Side I represented by the coordinates (p14, p24) and

(p34, p44).

The reference point (x0, y0) corresponds to the upper right
corner of the 4‐sided geometry. The objective is to distribute ζ2

points inside this geometry evenly. Hence, the ith point on
sides F, G, H, and I can be represented as follows:

F I GURE 5 Implementation of the real‐world learning robot‐bagging
framework.

MUNGUIA‐GALEANO ET AL. - 9 of 15

xi; yið Þ ¼ x0 þ
i
ζ

⋅ pn1 − pn−3ð Þ; y0 þ
i
ζ

⋅ pnþ1 − pn−1ð Þ

� �

ð34Þ

here, i ranges from 0 to ζ − 1, (xi, yi) represents the evenly
distributed points and n represents the side of the 4‐sided
figure. If n is equal to 1, it corresponds to side F. If n equals
2, it corresponds to side G, and so on. With these points, a grid
can be generated inside the geometry. Hence, the grasping
points are at the centre of each grid cell.

The implementation of primitive actions relies on the
perception module's analysis of RGB and depth images from
the RealSense camera. Algorithm 1 contributes to determining
the bag's opening area, and Equation (34) determines the
evenly distributed points on the sides of the 4‐sided geometry
for the body of the bag. With these points, a grid can be
generated inside the geometry. Hence, the grasping points are
at the centre of each grid cell. This integration of perception
and primitive actions defined as services in ROS allows the
robot to execute the bagging task defined in this paper.1

5 | EXPERIMENTAL SETUP

The experimental setup to empirically validate our framework
includes three bags (Table 1), the object to be bagged (red
cube), a Kuka® iiwa 1400TM robot, and an Intel® RealSenseTM

camera (Figure 3). The task's goal is to train the robot to learn
to bag the object (red cube). The experiments start by training
several agents to learn how to handle ‘Bag 1’ in the real world
for 10 (Ours (10)), 30 (Ours (30)), 50 (Ours (50)), and 100
(Ours (100)) training steps for each state of the task (unfolding,
opening, placing the piece, and carrying), totaling 40, 120, 200
and 400 total training steps, respectively. Then, we compare the
performance of our framework against the following state‐of‐
the‐art algorithms using the implementations from the stable
baselines [35]: duelling deep Q‐network (DQN) [36] and

asynchronous actor–critic (A2C) [37], two robust and well‐
tested algorithms for discrete action spaces. When the
training is finished, we run 10 attempts for each agent and
count the number of times the bagging task is successfully
finished for each step. Additionally, 10 attempts are performed
to calculate the success rate of all the algorithms when starting
from the unfolding and opening steps. With this experiment,
we aim to discover if our framework can learn better than the
baseline algorithms.

The trained agent with the highest success rate is used to
test the generalisation capacities of the framework. To evaluate
the framework's proficiency in handling the task from a
different starting position, we change the position and orien-
tation of ‘Bag 1’ twice. Then, the framework is tested on the
rest of the bags for 10 attempts.

6 | RESULTS

This section presents the results of the experiments previously
described. Firstly, the learning progress of the framework and
the state‐of‐the‐art algorithms for each step of the task
(unfolding, opening, placing the piece, and carrying) are illus-
trated in Figure 6. Secondly, Table 2 shows the total reward
obtained by each algorithm, followed by Table 3, which con-
tains the reward obtained by all the approaches for each step of
the bagging task. Table 4 shows the success rates from per-
forming the bagging task 10 times with ‘Bag 1’ for each step of
the task as well as the success rates starting from step 1
(opening) and from step 2 (unfolding). Then, Figure 7 shows
the robot performing the task in different initial positions with
‘Bag 1’. Lastly, the success rates of handling all the bags are
summarised in Table 5.

The learning curves in Figure 6a show the progress of the
agent learning to unfold the bag, which consists of selecting a
grasping point, lifting the bag, and dropping it till it is unfolded.
Our framework running for 100 training steps converged in
around 50 training steps, while DQN and A2C demonstrated
unstable learning behaviour because they struggled to converge.
The framework running 10 and 30 training steps shows that the
agent requires more exploration. On the other hand, our

TABLE 1 Characteristics and parameters of the bags used in the experiments.

Name Opening length Bag width Material Ath Aoth Abmax Aomax

Bag 1 30 cm 35 cm Cotton 25,000 150 34,000 3900

Bag 2 25 cm 25 cm Polyester 18,000 50 28,000 3200

Bag 3 33 cm 26 cm Cotton 25,000 150 34,000 3900

Bag 4 27 cm 40 cm Polyester mesh 20,000 50 25,000 3900

Bag 5 47 cm 75 cm Plastic 25,000 150 34,000 3900

Bag 6 36 cm 26 cm Plastic 25,000 150 30,000 3900

Bag 7 31 cm 40 cm Cotton 25,000 150 34,000 3900

Bag 8 29 cm 32 cm Cotton 22,000 90 25,000 3900

Bag 9 46 cm 76 cm Linen 25,000 150 34,000 3900

1
For further technical details, the reader is encouraged to visit: https://github.com/
FranciscoMunguiaGaleano/LearningToBag.

10 of 15 - MUNGUIA‐GALEANO ET AL.

https://github.com/FranciscoMunguiaGaleano/LearningToBag
https://github.com/FranciscoMunguiaGaleano/LearningToBag

framework learning for 50 training steps indicates that 50 is the
minimum number of training steps required to find the best
grasping and lifting positions for our approach.

The learning curves in Figure 6b illustrate the learning
progress of the agents for the opening step, which involves
grasping one layer of the bag and dragging it to another point
of the bag. The reward during this step is equal to the total area
of the opening. The framework that ran for 100 training steps
converged in approximately 80 training steps, while the one
that ran for 50 training steps found the best solution in around
40 training steps. This is due to the stochastic nature of the
exploration, which randomly found a better action in an early
stage of the learning process for the 50‐training steps experi-
ment. DQN and A2C fell into a local minimum, and their
learning could not progress. Our framework running for 10
and 30 training steps could not explore the environment
enough to find an optimal policy.

The learning curves in Figure 6c show the progress of the
agent learning to place the goal object (red cube) in the bag's
opening such that the closer the robot places the goal object,
the higher the reward. Our framework running for 10, 30, 50
and 100 training steps converged faster than the previous
steps because this step is more straightforward than the pre-
vious steps by including only nine placing points in the bag's
opening. The frameworks running for 10, 30, 50 and 100
could converge, while DQN and A2C could not find a
solution.

The learning curves in Figure 6d show the learning prog-
ress of the agents for the carrying task. In this step, if the robot
executes the carrying action and the red cube is not on the
table after that, the reward is equal to 1 and −0.1 otherwise.
The framework that runs for 50 and 100 training steps could
converge to a stable plateau, while running for 10 and 30 could
not result in the right grasping point for carrying the bag.
DQN fell into a local minimum and could not find a solution.
A2C could find a better grasping point to carry the bag.
However, the learning curve shows that A2C struggles to
converge.

The success rates of all the approaches are summarised in
Table 5, in which 10 attempts were performed for each step of
the bagging task. For step 1, Ours (100) and Ours (50) reached
the highest success rate (70%), followed by DQN (40%). The
lowest success rates were achieved by Ours (30) and A2C with
0% and 20%, respectively. For step 2, A2C, DQN, and Ours
(10) presented the lowest success rates, which demonstrates
that step 2 is the most difficult to learn. For step 3, all the
approaches reached a success rate equal to or superior to 90%,
which demonstrates that this step is the easiest to learn. In the
last step, Ours (10) had the lowest performance with 60%
while the rest of the approaches reached a success rate equal to
or superior to 90%. Additionally, 10 attempts were carried out
from step 1 (unfolding) and step 2 (opening), which for ours
(100) resulted in 60% and 80% of success rates, respectively. It
can be observed that the low success rates of ours (10), DQN,
and A2C are because of getting stuck on step 2. Moreover, the
difficulty increases when the task starts from step 1, which is
reflected in the performance of all the agents.

The total average reward obtained by all the approaches is
summarised in Table 2, where the three approaches that
collected the highest rewards are ours (100), ours (50), and

F I GURE 6 The learning curves above display the results of our
experiments. In (a), the learning curve progress of the unfolding step
demonstrates that our approach converges after 100 training steps while
duelling DQN and A2C struggle to do so. In (b), our approach was the only
one to converge after training for 100 and 50 training steps. In (c), A2C and
DQN failed to find a solution while our approach converged. Lastly, in (d),
our approach trained for 100 steps and converged to the highest value.
A2C, asynchronous actor‐critic; DQN, deep Q‐network.

MUNGUIA‐GALEANO ET AL. - 11 of 15

DQN with 1.9608, 1.7 and 1.03, respectively. When it comes to
the total average reward collected for each step, Table 3 shows
that for step 1, DQN collected the highest reward of 0.51,
followed by ours (100), which collected 0.5. For step 2, ours
(50) collected the highest reward of 0.28, followed by ours
(100) with 0.241. In step 3, the highest reward was obtained by
ours (100). For step 4, the highest reward was obtained by ours
(100), followed by ours (50) and DQN. In general, the stable
baselines DQN and A2C presented problems learning step 2
(opening), while the rewards collected for all the approaches in
step 1 are almost the same.

The last experiment tested the generalisation capabilities of
the framework. The success rates are summarised in Table 4.
Figure 7 illustrates the robot performing the bagging task with

‘Bag 1’ starting from two different positions and orientations.
Despite the change in the initial position, the framework was
capable of finishing the task. This is because our approach
focuses on the state and grasping points with respect to the
bag, which is independent of the pose of the bag in the global
workspace frame. The robot performed the bagging task with
‘Bag 2’ with a success rate of 20% when starting from step 1%
and 50% when starting from step 2. The robot performing the
bagging task with ‘Bag 3’ had a success rates of 30% and 70%
when starting from step 1 and step 2, respectively. Most of the
failures are caused by the robot not being able to open or
unfold the bag.

For ‘Bag 4’, the framework fails to complete the task when
starting from steps 1 and 2. The main reason is that the
gridded fabric does not allow air to unfold the bag as it falls,
and it also causes the gripper to grasp two layers instead of
one. Nevertheless, when starting from step 3, the robot solves
that state with an 80% success rate and a 20% success rate
when attempting step 4. In the case of ‘Bag 5’, a large plastic
bag, the unfolding strategy is ineffective since the large area of
the bag does not allow it to be completely unfolded. Conse-
quently, when starting the task from step 1, the framework
performed with a 0% success rate. However, when starting the
task from step 2, the framework reached a success rate
of 50%.

When the robot performed the task with ‘Bag 6’, it failed to
complete the task in steps 1 and 2. This poor performance was
due to the robot's inability to hold the bag while opening it.
Since the plastic bag is too light, the robot drags it instead of
opening it. However, when placing the object in the opening
and lifting the bag in steps 3 and 4, respectively, the robot
managed to complete the task with a 10% success rate for step
3 and 80% for step 4. For ‘Bag 7’, despite being of a similar
size to ‘Bag 1’, the layer thickness provoked a reduction in the
overall success rate, which was 10% when starting from step
1% and 50% when starting from step 2.

When the robot performed the bagging task with ‘Bag 8’, it
failed to complete it when starting from step 1 due to a similar
reason as ‘Bag 7’, which is that the thickness of the layers did
not allow the robot to grasp the bag properly. Lastly, while
performing the task with ‘Bag 9’, a linen‐made and large‐sized
bag, the robot reached a 40% success rate when starting from
step 2 but failed when starting from step 1 for the same reason
explained for ‘Bag 5’.

TABLE 2 Total reward obtained by our framework and stable
baselines after training.

Approach
Total
reward

Training
time Total training steps

Ours (100) 1.9608 173 min 400 (100 for each step of the task)

Ours (50) 1.7000 95 min 200 (50 for each step of the task)

Ours (30) 0.9900 62 min 120 (30 for each step of the task)

Ours (10) 0.2475 18 min 40 (10 for each step of the task)

DQN 1.0300 198 min 400 (100 for each step of the task)

A2C 0.6488 186 min 400 (100 for each step of the task)

Abbreviations: A2C, asynchronous actor‐critic; DQN, deep Q‐network.

TABLE 3 Reward obtained by our framework and stable baselines
after training per step.

Approach
Reward
step 1

Reward
step 2

Reward
step 3

Reward
step 4

Ours (100) 0.500 0.241 0.490 0.730

Ours (50) 0.460 0.280 0.440 0.520

Ours (30) 0.390 0.248 0.430 0.220

Ours (10) 0.366 0.014 0.500 0.110

DQN 0.510 0.020 0.120 0.380

A2C 0.470 0.070 0.100 0.009

Abbreviations: A2C, asynchronous actor‐critic; DQN, deep Q‐network.

TABLE 4 Success rate of the framework and stable baselines after training.

Experiment ‘bag 1’ Step 1 Step 2 Step 3 Step 4 Success rate from step 1 Success rate from step 2

Ours (100) 7/10 9/10 9/10 10/10 6/10 8/10

Ours (50) 7/10 7/10 9/10 10/10 5/10 6/10

Ours (30) 2/10 4/10 10/10 10/10 1/10 4/10

Ours (10) 0/10 0/10 10/10 6/10 0/10 0/10

DQN 4/10 1/10 10/10 9/10 0/10 2/10

A2C 2/10 1/10 10/10 10/10 0/10 1/10

Abbreviations: A2C, asynchronous actor‐critic; DQN, deep Q‐network.

12 of 15 - MUNGUIA‐GALEANO ET AL.

7 | DISCUSSION

Prior to the current work, we implemented the DQN and A2C
algorithms aiming to solve the problem of learning bagging in
the real world. However, we observed low performance during
the bagging task with DQN and A2C (refer to Table 2), which
we attribute to the limited number of training steps (400
training steps in total). Achieving better results with these al-
gorithms would likely require implementing them in a simu-
lated environment. However, this approach presents
challenges, such as the sim‐to‐real problem discussed in Sec-
tion 2 and the need to accurately simulate the physical prop-
erties of the bag. Furthermore, DQN and A2C algorithms
typically require thousands to millions of steps to achieve
stable learning. For instance, Hester et al. [38] demonstrated
that the Deep Q‐Network from Demonstrations required
1 million steps to achieve satisfactory scores in their experi-
ments. DQN took 84–85 million steps for similar performance
in the same application. This problem led to the design of the
Π‐learning algorithm.

Additionally, after completing the learning phase with our
framework, the robot performed 100 attempts using each
approach for the bagging task with ‘Bag 1’. The success rates
are summarised in Table 2 in which it can be appreciated that
the main reason for the failures was the robot's inability to
complete the unfolding (step 1) or opening of the bag (step 2).
This highlights the need for further improvements, such as a
more robust unfolding strategy and enhanced camera mea-
surement accuracy. The improved accuracy of the camera's
measurements would allow the robot's gripper to reach the
surface of the bag's layer more precisely, as the lack of precise
measurements of the camera caused the robot to grasp both
layers or failed to grasp any layer at all.

The decision to not use continuous RL algorithms, such as
Deep Deterministic Policy Gradient [39] or Soft Actor‐Critic
[40], is motivated by the aim of preventing dangerous behav-
iours of the robot in our experimental setup, particularly during
the learning stage. Unlike continuous RL algorithms, which
may lead to collisions and undesired behaviours due to their
inherent exploration process, defining primitive actions and

F I GURE 7 The robot performing the bagging task with two different bags. In (a), the bag's opening faces the camera's view. In (b), the bag's opening is
facing the opposite direction of the camera's view. The robot successfully completed the tasks in both cases with different bag orientations.

TABLE 5 Success rate of the framework and stable baselines after training per step.

Experiment Step 1 Step 2 Step 3 Step 4 Success rate from step 1 Success rate from step 2

Bag 1 6/10 8/10 9/10 9/10 6/10 8/10

Bag 2 4/10 6/10 10/10 8/10 2/10 5/10

Bag 3 5/10 8/10 10/10 9/10 3/10 7/10

Bag 4 0/10 0/10 8/10 2/10 0/10 0/10

Bag 5 0/10 5/10 10/10 8/10 0/10 4/10

Bag 6 0/10 0/10 10/10 9/10 0/10 7/10

Bag 7 2/10 7/10 10/10 9/10 1/10 5/10

Bag 8 1/10 8/10 9/10 9/10 0/10 6/10

Bag 9 0/10 5/10 10/10 9/10 0/10 4/10

MUNGUIA‐GALEANO ET AL. - 13 of 15

employing a discrete action–selection approach helped to
prevent such incidents specifically for the task proposed in this
paper. To summarise, the following list encompasses the main
limitations of the proposed framework and, therefore, poten-
tial challenges that require further research:

� Unfolding difficulty: The current approach faces chal-
lenges when it comes to unfolding the bag. Problems such
as the bag being too large or the opening not being visible
after following our approach prevent the framework from
generalising to a wider set of bags.

� Opening difficulty: The robot encounters issues in open-
ing the bag after the unfolding step. This is due to the
resistance of the same bag's material to change its initial
configuration such as in the case of plastic bags or because
the robot grasps two layers instead of one.

� Accuracy of the camera: The camera's accuracy is not
sufficient for the robot to distinguish between layers. Even a
difference of 1 mm causes the robot to grasp both layers or
fails to grasp any layer.

� Automatically recognise the bag's opening with no
markers: For the cases presented in this paper, the bags had
no handles, making it ambiguous and challenging to find the
opening using only a camera. This process is difficult even
for humans who often need to rotate the bag several times
before finding the opening.

Some potential solutions to the challenges listed above are
proposed as follows:

� Improved unfolding and opening strategy: Adding a
second arm or using a human‐like gripper would allow the
implementation of more robust strategies involving dexter-
ity or simply adding more resources to the robot to hold the
bag while attempting more actions.

� Incorporating tactile sensing: The camera's low accuracy
limitations can be overcome by adding fingers with tactile
feedback. This would allow the robot to localise the real
position of the layers, and in this manner, know when the
gripper has held one or two layers of the bag.

� Enhanced exploration strategy: To overcome the ambi-
guity regarding how to find the opening of the bag without
markers, it would be necessary to implement a process that
involves robustly unfolding the bag. Then, one side of the
bag was explored. If that side does not open, continue with
the next side if the bag is still unfolded. These actions are
repeated until the robot finds the opening of the bag.

8 | CONCLUSION

This paper presented a learning framework for a robot manip-
ulator to acquire the bagging task.Our real‐world learning robot‐
bagging framework has been empirically validated. Leveraging
our novel RL algorithm Π‐learning, this framework enables
efficient learning of the bagging task on a simulation‐free basis.
After training for a total of 400 steps, which took approximately

3 h, the framework achieved success rates of 60% and 80%when
starting from the unfolding or opening step, respectively.
Additionally, the framework demonstrated potential generalisa-
tion capabilities across different bags.

However, there are certain limitations to the proposed
framework. For instance, the framework was shown to be
more reliable with bags made from specific materials, such as
textile‐based bags, and had a poor performance while handling
plastic bags. Moreover, the framework is designed to handle
only one object smaller than the bag's opening. Additionally,
there is room for improvement in the primitive actions of
unfolding the bag (τgrasp) and grasping only one layer of the
bag (τscratch) as these actions were the primary causes of the
robot's failure in the bagging tasks. Despite these limitations,
our framework exhibits the potential to tackle challenging
problems such as bag manipulation.

In future work, we have plans to enhance the unfolding
and opening routines by incorporating bi‐manual robotic
manipulation techniques. This advancement would enable the
bagging of multiple objects, expanding the framework's capa-
bilities beyond a single object. Additionally, we aim to explore
the integration of supervised learning methods and the inte-
gration of tactile sensing, which would facilitate the general-
isation of the perception module to a wider range of bag types.
This extension would enhance the framework's versatility and
applicability.

ACKNOWLEDGEMENTS
This work was partially supported by Consejo Nacional de
Humanidades, Ciencias y Tecnologías (CONAHCyT) and the
Engineering and Physical Sciences Research Council (grant No.
EP/X018962/1).

CONFLICT OF INTEREST STATEMENT
The authors declare no known competing financial interests or
personal relationships that could influence the work reported
in this paper.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no datasets were
generated or analysed during the current study.

ORCID
Francisco Munguia‐Galeano https://orcid.org/0000-0001-
8397-3083

REFERENCES
1. Culleton, M., McGinn, C., Kelly, K.: Framework for assessing robotic dex-

terity within flexible manufacturing. J. Intell. Rob. Syst. 87, 507–529 (2017)
2. Zhu, J., et al.: Challenges and outlook in robotic manipulation of

deformable objects. IEEE Robot. Autom. Mag. 29(3), 67–77 (2022).
https://doi.org/10.1109/mra.2022.3147415

3. Balkcom, D.J., Mason, M.T.: Introducing robotic origami folding. In:
IEEE International Conference on Robotics and Automation, 2004, vol.
4, pp. 3245–3250. IEEE (2004). https://doi.org/10.1109/ROBOT.2004.
1308754

4. Balkcom, D.J., Mason, M.T.: Robotic origami folding. Int. J. Robot Res.
27(5), 613–627 (2008). https://doi.org/10.1177/0278364908090235

14 of 15 - MUNGUIA‐GALEANO ET AL.

https://orcid.org/0000-0001-8397-3083
https://orcid.org/0000-0001-8397-3083
https://orcid.org/0000-0001-8397-3083
https://doi.org/10.1109/mra.2022.3147415
https://doi.org/10.1109/ROBOT.2004.1308754
https://doi.org/10.1109/ROBOT.2004.1308754
https://doi.org/10.1177/0278364908090235
https://orcid.org/0000-0001-8397-3083

5. Elbrechter, C., Haschke, R., Ritter, H.: Bi‐manual robotic paper
manipulation based on real‐time marker tracking and physical modelling.
In: 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 1427–1432. IEEE (2011)

6. Elbrechter, C., Haschke, R., Ritter, H.: Folding paper with anthropo-
morphic robot hands using real‐time physics‐based modeling. In: 2012
12th IEEE‐RAS International Conference on Humanoid Robots (Hu-
manoids 2012), pp. 210–215 (2012)

7. Borràs, J., Alenyà, G., Torras, C.: A grasping‐centered analysis for cloth
manipulation. IEEE Trans. Robot. 36(3), 924–936 (2020). https://doi.
org/10.1109/tro.2020.2986921

8. Hoque, R., et al.: Visuospatial foresight for physical sequential fabric
manipulation. Aut. Robots 46(1), 175–199 (2022)

9. Jangir, R., Alenya, G., Torras, C.: Dynamic cloth manipulation with deep
reinforcement learning. In: 2020 IEEE International Conference on
Robotics and Automation (ICRA), pp. 4630–4636. IEEE (2020)

10. Nair, A., et al.: Combining self‐supervised learning and imitation for
vision‐based rope manipulation. In: 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 2146–2153. IEEE (2017)

11. Shi, L., et al.: Reactive motion planning for rope manipulation and
collision avoidance using aerial robots. In: 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 3384–3391.
IEEE (2022)

12. Sundaresan, P., et al.: Learning rope manipulation policies using dense
object descriptors trained on synthetic depth data. In: 2020 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp.
9411–9418. IEEE (2020)

13. Zhou, H., et al.: A practical solution to deformable linear object
manipulation: a case study on cable harness connection. In: 2020 5th
International Conference on Advanced Robotics and Mechatronics
(ICARM), pp. 329–333. IEEE (2020)

14. Zhu, J., et al.: Robotic manipulation planning for shaping deformable
linear objects with environmental contacts. IEEE Rob. Autom. Lett. 5(1),
16–23 (2019). https://doi.org/10.1109/lra.2019.2944304

15. Jørgensen, T.Bo, et al.: An adaptive robotic system for doing pick and
place operations with deformable objects. J. Intell. Rob. Syst. 94(1),
81–100 (2019). https://doi.org/10.1007/s10846‐018‐0958‐6

16. Sharma, S., et al.: Learning switching criteria for sim2real transfer of
robotic fabric manipulation policies. In: 2022 IEEE 18th International
Conference on Automation Science and Engineering (CASE), pp.
1116–1123. IEEE (2022)

17. Polydoros, A.S., Nalpantidis, L.: Survey of model‐based reinforcement
learning: applications on robotics. J. Intell. Rob. Syst. 86(2), 153–173
(2017). https://doi.org/10.1007/s10846‐017‐0468‐y

18. Culleton, M., McGinn, C., Kelly, K.: Framework for assessing robotic
dexterity within flexible manufacturing. J. Intell. Rob. Syst. 87(3‐4),
507–529 (2017). https://doi.org/10.1007/s10846‐017‐0505‐x

19. Nguyen, H., La, H.: Review of deep reinforcement learning for robot
manipulation. In: 2019 Third IEEE International Conference on Robotic
Computing (IRC), pp. 590–595. IEEE (2019)

20. Francisco Munguia Galeano: Learning to bag. https://github.com/
FranciscoMunguiaGaleano/LearningToBag (2024). Accessed 6 March
2024

21. Seita, D., et al.: Learning to rearrange deformable cables, fabrics, and bags
with goal‐conditioned transporter networks. In: 2021 IEEE International
Conference on Robotics and Automation (ICRA), pp. 4568–4575. IEEE
(2021)

22. Bahety, A., et al.: Bag all you need: learning a generalizable bagging strategy
for heterogeneous objects. arXiv preprint arXiv:2210.09997 (2022)

23. Ma, X., Hsu, D., Lee, W.S.: Learning latent graph dynamics for visual
manipulation of deformable objects. In: 2022 International Conference
on Robotics and Automation (ICRA), pp. 8266–8273. IEEE (2022)

24. Wang, X., et al.: Learning‐based fabric folding and box wrapping. IEEE
Rob. Autom. Lett. 7(2), 5703–5710 (2022). https://doi.org/10.1109/lra.
2022.3158434

25. Gao, C., et al.: Iterative interactive modeling for knotting plastic bags. In:
Conference on Robot Learning, pp. 571–582. PMLR (2023)

26. Chen, L.Y., et al.: Autobag: learning to open plastic bags and insert ob-
jects. In: 2023 IEEE International Conference on Robotics and Auto-
mation (ICRA), pp. 3918–3925. IEEE (2023)

27. Dulac‐Arnold, G., et al.: Challenges of real‐world reinforcement learning:
definitions, benchmarks and analysis. Mach. Learn. 110(9), 2419–2468
(2021). https://doi.org/10.1007/s10994‐021‐05961‐4

28. Zhao, W., Queralta, J.P., Westerlund, T.: Sim‐to‐real transfer in deep
reinforcement learning for robotics: a survey. In: 2020 IEEE Symposium
Series on Computational Intelligence (SSCI), pp. 737–744. IEEE (2020)

29. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, vol.
135. MIT Press, Cambridge (1998)

30. Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966).
https://doi.org/10.1126/science.153.3731.34

31. Browne, C.B., et al.: A survey of Monte Carlo tree search methods. IEEE
Trans. Comput. Intell. AI Games 4(1), 1–43 (2012). https://doi.org/10.
1109/tciaig.2012.2186810

32. Watkins, C.J.C.H., Dayan, P.: Q‐learning. Mach. Learn. 8(3/4), 279–292
(1992). https://doi.org/10.1023/a:1022676722315

33. Munguia‐Galeano, F., Tan, A.‐H., Ji, Z.: Deep reinforcement learning
with explicit context representation. IEEE Transact. Neural Networks
Learn. Syst., 1–14 (2023). https://doi.org/10.1109/tnnls.2023.3325633

34. Munguia‐Galeano, F., et al.: Affordance‐based human–robot interaction
with reinforcement learning. IEEE Access 11, 31282–31292 (2023).
https://doi.org/10.1109/access.2023.3262450

35. Hill, A., et al.: Stable baselines. https://github.com/hill‐a/stable‐
baselines (2018). Accessed 22 Feb 2023

36. Wang, Z., et al.: Dueling network architectures for deep reinforcement
learning. In: International Conference on Machine Learning, pp.
1995–2003. PMLR (2016)

37. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning.
In: International Conference on Machine Learning, pp. 1928–1937.
PMLR (2016)

38. Todd, H., et al.: Deep Q‐learning from demonstrations. Proc. AAAI Conf.
Artif. Intell. 32(1) (2018). https://doi.org/10.1609/aaai.v32i1.11757

39. Lillicrap, T.P., et al.: Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971 (2015)

40. Haarnoja, T., et al.: Soft actor‐critic: off‐policy maximum entropy deep
reinforcement learning with a stochastic actor. In: International Con-
ference on Machine Learning, pp. 1861–1870. PMLR (2018)

How to cite this article: Munguia‐Galeano, F., et al.:
Learning to bag with a simulation‐free reinforcement
learning framework for robots. IET Cyber‐Syst. Robot.
e12113 (2024). https://doi.org/10.1049/csy2.12113

MUNGUIA‐GALEANO ET AL. - 15 of 15

https://doi.org/10.1109/tro.2020.2986921
https://doi.org/10.1109/tro.2020.2986921
https://doi.org/10.1109/lra.2019.2944304
https://doi.org/10.1007/s10846-018-0958-6
https://doi.org/10.1007/s10846-017-0468-y
https://doi.org/10.1007/s10846-017-0505-x
https://github.com/FranciscoMunguiaGaleano/LearningToBag
https://github.com/FranciscoMunguiaGaleano/LearningToBag
https://doi.org/10.1109/lra.2022.3158434
https://doi.org/10.1109/lra.2022.3158434
https://doi.org/10.1007/s10994-021-05961-4
https://doi.org/10.1126/science.153.3731.34
https://doi.org/10.1109/tciaig.2012.2186810
https://doi.org/10.1109/tciaig.2012.2186810
https://doi.org/10.1023/a:1022676722315
https://doi.org/10.1109/tnnls.2023.3325633
https://doi.org/10.1109/access.2023.3262450
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://doi.org/10.1609/aaai.v32i1.11757
https://doi.org/10.1049/csy2.12113

	Learning to bag with a simulation‐free reinforcement learning framework for robots
	1 | INTRODUCTION
	2 | RELATED WORK
	3 | PROBLEM FORMULATION
	4 | REAL‐WORLD LEARNING ROBOT‐BAGGING FRAMEWORK
	4.1 | Perception
	4.2 | Learning
	4.3 | Robot controller
	4.4 | Bagging task implementation

	5 | EXPERIMENTAL SETUP
	6 | RESULTS
	7 | DISCUSSION
	8 | CONCLUSION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

