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ABSTRACT

This paper presents a novel implementation of a numerical scheme for predicting complex flows of viscoelastic fluids using a finitely
extensible nonlinear elastic (FENE) transient network model. This model extends the FENE model by incorporating chain interactions and
accounting for the way in which the maximum chain length, drag, and relaxation time are influenced by entanglement and disentanglement
processes. Three different initial networks are considered (disentanglement, entanglement, and aleatory), and the influence of variables such
as the kinetic rate constants, elasticity, and chain length on the microstate concentration, stresses, and drag force is investigated. It is shown
that although the concentrations of the microstates are independent of the Weissenberg number and the maximum extension length, the
stresses and hence the drag are influenced by them.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0203787

I. INTRODUCTION

The flow around a cylinder confined between two plates (see
Fig. 1) and the flow around a sphere in a tube are two of the bench-
mark problems in computational rheology. The problems are used to
compare various discretization methods and numerical solution tech-
niques in terms of accuracy and stability and also to gain an improved
understanding of some of the phenomena associated with viscoelastic
fluids in complex flows. An early review of these two benchmark prob-
lems can be found in the monograph of Owens and Phillips.1 Most of
the contributions to the development of computational models for vis-
coelastic flows have been based on a description of viscoelastic fluids
using closed form constitutive equations such as the Oldroyd B,
Giesekus, Phan-Thien Tanner (PTT), and finitely extensible nonlinear
elastic (FENE)-P models. Stabilization techniques such as streamline
upwind Petrov–Galerkin (SUPG)2 or a reformulation of the constitu-
tive equation such as the discrete elastic viscous split stress (DEVSS)
scheme3 or using the logarithm of the conformation tensor4 are often

used to extend the range of the Weissenberg numbers for which con-
verged approximations are obtained.

Phan-Thien and Dou5 developed a parallelized unstructured
finite volume method (FVM) in conjunction with the elastic viscous
split stress (EVSS) formulation for this problem. They obtained drag
reduction for both the simplified PTT and upper convective Maxwell
(UCM) constitutive models. In a subsequent paper, Dou and Phan-
Thien6 studied an instability that occurs in the flow of an Oldroyd-B
fluid past a circular cylinder in a channel using their parallelized FVM.
They showed that the instability features stress oscillations on the top
of the cylinder, which occurs at a critical value of the Deborah number
in agreement with experiments. Claus and Phillips7 considered the
problem of flow of a viscoelastic fluid (Oldroyd-B and Giesekus)
around a confined cylinder using high-order spectral/hp element
methods [a class of methods that combines both mesh refinement (h)
with higher polynomial order (p)] and explored the causes for the
breakdown in numerical convergence beyond a critical value of the
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Weissenberg number. They predicted the instability identified by Dou
and Phan-Thien6 at the same critical value of the Weissenberg
number.

Hulsen et al.8 implemented the log-conformation formulation of
the constitutive equation within a finite element method using the
DEVSS/Discontinuous Galerkin (DEVSS/DG) approach. They per-
formed a 1D stability analysis to identify the failure of their original
numerical scheme to balance exponential growth, which was a possible
source of numerical instabilities at high Weissenberg numbers. The
new version of the model generated results for an extensive range of
Weissenberg numbers for the Oldroyd B and Giesekus models.

Oliveira and Miranda9 considered two-dimensional, inertia-free
flow of a constant viscosity viscoelastic fluid and investigated the con-
ditions under which the flow becomes unsteady using FVM. They
showed that the failure to obtain converged steady solutions for mod-
erate values of the Deborah number is due to the separation of the 2D
flow that becomes unsteady and is characterized by a small pulsating
recirculation region behind the cylinder. In a later publication, Afonso
et al.10 investigated the uniform steady flow of viscoelastic fluids past a
cylinder confined between two parallel moving plates using FVM for
five constitutive models [UCM, Oldroyd-B, FENE-Chilcott Rallison
(FENE-CR), PTT, and Giesekus]. Using very fine meshes, particularly
in the wake of the cylinder where large normal stresses are generated
at high Deborah numbers, they obtain converged solutions for
Deborah numbers that were in excess of those that had been reported
in the literature at that time.

Liu and Nithiarasu11 used a fully explicit, characteristic-based
split (CBS) method for the flow of an Oldroyd B fluid past a cylinder.
The combination of fractional solution stages used in the CBS scheme
and the higher-order time step-based convection stabilization reduced
the instability that was predicted above a Deborah number of around
0.6. They showed that by adding artificial diffusion to the discrete con-
stitutive equation, the conformation tensor remains positive definite
allowing higher Deborah numbers to be reached compared with other
numerical schemes.

Vargas et al.12 performed numerical simulations of the viscoelas-
tic flow past a cylinder in a channel and a sphere in a cylinder using a
micro-macro technique and kinetic models. The basis of the numerical
method employed is a micro-macro model in which the polymer
dynamics is described by the evolution of an ensemble of Brownian
configuration fields. The macroscopic equations are solved using an
extension of the spectral element method developed by Gerritsma and
Phillips13 for Stokes flow. The micro-macro approach can be used to

simulate models that do not possess an equivalent closed form
representation.

Ribeiro et al.14 performed a combined experimental and numeri-
cal study on the flow of a Newtonian fluid around a confined cylinder
placed in a rectangular duct to assess 3D effects on the flow patterns.
The flow visualizations were carried out using streak photography and
the velocity measurements by particle image velocimetry for different
aspect ratios (length to diameter of the cylinder) and Reynolds num-
bers until the flow becomes time-dependent. The numerical calcula-
tions were performed on 3D meshes using a finite volume scheme. For
large aspect ratios, unexpected velocity peaks near the cylinder end
walls downstream of the cylinder were observed, which were not
diminished when the aspect ratio was increased. Reducing the
aspect ratio eliminated flow separation as expected for Hele–Shaw type
flows.

Gardu~no et al.15 present a new dissipative viscoelastic model in
order to capture the levels of drag enhancement measured in experi-
ments on flow past a sphere using Boger fluids. They showed that, for
viscoelastic fluids with a large solvent component, an initial reduction
in drag is followed by drag enhancement when hybrid dissipative mod-
els based on the exponential PTT (ePTT) and FENE-CR models are
used. The dissipative ePTT model displays shear thinning and strain
hardening/softening behavior while the dissipative FENE-CR model
displays constant shear viscosity and strain hardening behavior that
attains a plateau.

Peng et al.16 have studied two-dimensional viscoelastic flow past
two side-by-side circular cylinders at a Reynolds number of 100 using
the FENE-P model. The aim of this study is to provide new insight
into multi-body dynamics. They studied the transitions in flow behav-
ior as the Weissenberg number and the spacing between the cylinders
is varied. In all cases, the drag on the cylinders increases with increas-
ing Weissenberg number, while the repulsive force between the two
cylinders gradually decreases for a lower spacing and increases for a
higher spacing.

Ruan and Ouyang17 introduced a collocated FVM on unstruc-
tured meshes to simulate the viscoelastic flow of polymer melts with
viscous dissipation past a confined cylinder, using as a constitutive
equation a non-isothermal Peterlin approximation of the finitely
extensible nonlinear elastic dumbbell (FENE-P) model.

Norouzi et al.18 performed a numerical investigation of the lami-
nar viscoelastic shedding flow behind inclined square cylinders using
the Giesekus model and a parallelized finite volume method. The
Reynolds number is increased from Re¼ 60 to Re¼ 120 and different
angles of incidence are considered. Their computational results indi-
cate that the flow is destabilized either by increasing the Reynolds
number or by increasing the Weissenberg number. Increasing polymer
concentration accentuates the increase in the amplitude of the lift coef-
ficient and shedding frequency.

This paper presents the complex flow simulations of viscoelastic
fluids using a FENE transient network model19 to describe the polymer
dynamics. The model can be viewed as an extension of the FENE
model to more concentrated polymer solutions. Chain interactions are
accounted for in the FENE transient network model, whereas they are
ignored in the FENE model for dilute polymer solutions. As the poly-
mer concentration increases so does the maximum chain length, drag,
and relaxation time due to the processes of entanglement and disen-
tanglement. These are accounted for in the transient network model.

FIG. 1. Complex flow around a confined object. Cylinder radius R placed symmetri-
cally in a two-dimensional channel of half width Hi.
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Network models are characterized by creation and destruction pro-
cesses that determine the degree of entanglement of polymer chains
and how these change in response to flow and changes in energy. Sim
et al.20 studied the possible mechanisms of a network behavior com-
posed of segments and junctions. Classical transient network models
consider the creation of microstates as a thermal activation process,
while flow destroys the network.21–23 Rinc�on et al.24 proposed the for-
mation of a transient network through five microstates, using the
moments of the distribution function to calculate the rheological func-
tions.25 In the classical FENE model,26 the nonlinear dumbbell pos-
sesses a constant maximum extensibility. However, in the transient
network model,24 the maximum extensibility is not a constant but a
variable resulting from a kinetic process.

Rinc�on et al.24 show that the transient network model is able to
predict effects observed in associative polymers and wormlike surfac-
tants that cannot be reproduced by classical network models. For
example, the model predicts a power-law region between Newtonian
plateau regions at low and high shear rates. Furthermore, the model
predicts a shear-thickening regime between the first Newtonian pla-
teau and the shear-thinning region. In this regime, the rate at which
structure is rebuilt is shorter than the characteristic time of the flow
and so a flow-induced structure endures over a range of shear rates.
At larger shear rates, the rate at which deformation of the network
occurs is greater than the rate of reformation and this leads to shear-
thinning. These effects agree with the predictions of Vaccaro and
Marrucci.23 In predictions of stress relaxation after the cessation of
steady shear flow, very close agreement is obtained concerning the
stretched exponential region with experimental data for wormlike
micelles (see Berret et al.,27 for example). Subsequent developments
of the transient network model have included a study of the rheolog-
ical behavior of micellar solutions28 and a coupling of the model to a
rheological constitutive equation of state within an irreversible ther-
modynamics framework.29

Ferrer et al.19 coupled the FENE model with the transient net-
work of Rinc�on et al.24 to describe the behavior of a complex fluid
under simple shear flow. The novel contribution of this current paper
is the development and implementation of a micro-macro numerical
scheme for a FENE transient network model. This model is used to
predict the complex flow around a confined cylinder (planar) and
sphere (axisymmetric). Although many complex flow simulations
have been performed using the FENE model and its variants,12,15,17 the
numerical predictions presented in this paper are the first simulations
based on the FENE transient network model. This is the first complex
flow numerical simulation using this model for a benchmark problem
in computational rheology. The effect of the maximum extension
length, kinetic rate constants, and elasticity on the drag force and the
shear and normal stresses is investigated and analyzed.

The rest of the paper is structured as follows. Section II introdu-
ces the mathematical formulation of the governing equations for the
hybrid microscopic-macroscopic model and provides a description of
the FENE transient network model. Section III describes the non-
dimensionalization of the governing equations. Section IV provides a
description of the spatial and temporal discretizations of these equa-
tions. Section V provides a mathematical description of the benchmark
problems. Section VI presents results for planar flow past a cylinder in
a channel and axisymmetric flow past a sphere in a cylinder.
Concluding remarks are made in Sec. VII.

II. MATHEMATICAL MODEL

In this paper, a hybrid micro-macro model is used as the basis for
numerical predictions since the approach provides greater flexibility in
the modeling of polymeric fluids. Not all kinetic theory models have
closed form macroscopic equivalents, and the micro-macro approach
circumvents the need to implement closure approximations that are
not universally accurate. We assume that the fluid is incompressible.

A. Macroscopic Equations

The mathematical statement of conservation of mass for an
incompressible fluid is

r � v ¼ 0; (1)

where v is the velocity field. The mathematical statement of conserva-
tion of momentum, also known as the Cauchy equation of motion, is

q
Dv
Dt
� q

@v
@t
þ v � rv

� �
¼ �rpþr � r; (2)

where q is the density of the fluid, p is the pressure, and r is the extra-
stress tensor. The extra-stress tensor r is decomposed into solvent and
polymeric contributions, rs and rp, respectively, where r ¼ rs þ rp.
The solvent contribution is given by

rs ¼ 2gsd;

where gs is the solvent viscosity, and d is the rate-of-strain tensor
defined by

d ¼ 1
2
rv þ ðrvÞT
� �

: (3)

Using the decomposition of the stress just described, the momentum
equation can be written in the form

q
Dv
Dt
¼ �rpþ gsr2v þr � rp: (4)

The polymeric contribution to the stress tensor is traditionally calcu-
lated by means of a constitutive equation. However, there are kinetic
theory models that are able to provide an accurate representation of
polymeric fluids but which do not possess an equivalent closed form
constitutive equation. It is for this reason that in this paper the poly-
meric contribution to the stress is evaluated by means of a microscopic
description of polymer dynamics.

B. Microscopic equations

Consider an elastic dumbbell comprising two identical beads and
a connecting elastic spring immersed in a Newtonian solvent. The
FENE dumbbell model is a particular case of the general elastic dumb-
bell model (see Fig. 1) in which the spring has finite extensibility.
Suppose that the configuration of the dumbbell is represented by the
end-to-end vector Q as shown in Fig. 1. The vector Q provides infor-
mation about the stretch and orientation of the dumbbell. The equa-
tion of motion for the beads in the dumbbell can be derived by
considering the following forces: the forces due to Brownian motion,
the elastic spring force, and the viscous drag force. This is the starting
point for the derivation of the Fokker–Planck equation, for the details
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of which the reader is referred to €Ottinger,30 for example. The Fokker-
Planck equation for the FENE dumbbell model is

@

@t
w ¼ � @

@Q
jðtÞ �Q� 2

1
fðQÞ

� �
w

� �
þ 2kbT

1
@

@Q
@

@Q
w; (5)

where w is the configuration probability density function (PDF) and
wðQ; x; tÞdQ represents the probability of finding a dumbbell with
configuration in the range Q to Qþ dQ at ðx; tÞ, where jðtÞ is the
velocity gradient, 1 is the friction coefficient, kb is Boltzmann’s con-
stant, T is the absolute temperature, and f represents the spring force
which for FENE dumbbells is given by

fðQÞ ¼ HQ

1� Q
Q0

� �2 ; (6)

where H is the spring constant and Q0 is the maximum extension of
each spring. The high-dimensional nature of the Fokker–Planck equa-
tion means that it is expensive to solve computationally. However, one
can use the equivalence between the Fokker–Planck equation5 and the
stochastic differential equation,

dQðtÞ ¼ jðtÞ �Q� 2
1
fðQÞ

� �
dt þ

ffiffiffiffiffiffiffiffiffiffi
4kbT
1

s
dUðtÞ; (7)

as the basis for deriving computationally tractable numerical schemes.
In this equation, UðtÞ is a multi-dimensional Wiener process [see
€Ottinger,30 €Ottinger et al.,31 Lozinski and Chauviere,32 for details]. It is
possible to establish a relation between the material constants at the
microscopic and macroscopic levels: k ¼ 1=4H and gp ¼ nkbTk,
where k, gp, and n are the relaxation time, polymeric viscosity, and the
number of dumbbells per unit of volume, respectively. Every dumbbell
is characterized by k and Q0. Once the configuration vector field is
defined, Kramers expression is used to determine rp:25,31

rp ¼ �nkbTIþ nQfðQÞ ¼ gp
k
ð�IþQfðQÞÞ: (8)

C. Transient network model

In the FENE dumbbell model, a single dumbbell represents the
behavior of a large number of chain molecules. Many of these chain
molecules tend to get entangled or disentangled as a result of flow or
due to energy conditions, which cause a local change in properties such
as the maximum chain length, drag coefficient, elastic constant, and
relaxation time, all of which vary with time. In the dilute regime, it is
possible to consider a low number of interactions and low or negligible
changes for every dumbbell. As the concentration increases, those
changes are not negligible. In order to model these changes in behavior,
it is possible to define some characteristic states termed “microstates.”24

These are shown in Fig. 1. These microstates can be defined by the num-
ber of chain segments and the number of nodes needed to produce it.24

In this framework, it is possible to consider different ways to determine
what constitutes a microstate. For this reason, we only consider states
that are more likely to appear and ones that provide information about
the system. Every microstate, xi; i ¼ 0; 1; 2; 3; 4, that defines a chain
arrangement is identified as shown in Table I, where li represents the
fraction of maximum extension length for every microstate.19,24,33 As
mentioned before, the formation and destruction of microstates depends

on the available energy of the system to create or destroy a node. From a
kinetic scheme analogous to that of a chemical reaction, the creation or
destruction of each microstate can be determined as a function of free
energy and viscous dissipation as follows:

2x0

kA1 exp � E0
kbT

� �
 !

kB1r : _c

x1; (9)

3x1

kA2 exp � E0
kbT

� �
 !

kB2r : _c

2x2; (10)

3x1 þ x2

kA3 exp � 4E0
kbT

� �
 !

kB3r : _c

3x3; (11)

2x2 þ 2x3

kA4 exp � 2E0
kbT

� �
 !

kB4r : _c

3x4; (12)

where kAi ; k
B
i represent the formation and destruction constants,

respectively, for every microstate, and E0 is the energy needed to create
a node. The numerical values assigned to the kinetic constants are
based on the assumption that the ratio between them is equal to the
energy ratio of each kinetic equation, which means that

kA ¼ kA1 e
�E0=KT ¼ kA2 e

�E0=KT ¼ 4kA3 e
�4E0=KT ¼ 2kA4 e

�2E0=KT

and

kB ¼ kB1 ¼ kB2 ¼ 4kB3 ¼ 2kB4 ;

which leads to the following simplified system of ordinary differential
equations:

dC0

dt
¼ kB r : _c C1ð Þ � kA C2

0

	 

; (13)

dC1

dt
¼ kB r : _c �C1þC2

2 þ
1
4
C3
3

� �
þ kA C2

0 �C3
1 �

1
4
C3
1C2

� �
; (14)

dC2

dt
¼ kB r : _c

1
4
C3
3 þ

1
2
C3
4 � C2

2

� �
þ kA C3

1 �
1
4
C3
1C2 � 1

2
C2
2C

2
3

� �
;

(15)

TABLE I. Microstate properties.

Microstate
Number
of nodes

Number of
segments

Number of
chains li

x0 0 1 1 1

x1 1 4 2
1
2

x2 2 7 3
3
7

x3 3 9 3
1
3

x4 4 12 4
1
3
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dC3

dt
¼ kB r : _c

1
2
C3
4 �

1
4
C3
3

� �
þ kA

1
4
C3
1C2 � 1

2
C2
2C

2
3

� �
; (16)

dC4

dt
¼ kB

2
r : _c �C3

4

	 
þ kA

2
C2
2C

2
3

	 

; (17)

where Ci is the concentration of microstructure xi. Note that it is
important that the total length of all microstates, Lp, remains constant
in time i.e.,

Lp ¼ C0 þ 4C1 þ 7C2 þ 9C3 þ 12C4: (18)

In the present paper, every microstate xi in a region of space defines a
microstructure, which behaves as a dumbbell with its own properties:
partial viscosity fraction �i, relaxation time si, and maximum extension
length bi, as shown in Table II. Under these assumptions, the stress
produced by each microstructure is obtained by the Kramers
expression

ri ¼ �CikbTIþ CihQif iðQiÞi; (19)

which can be expressed as

ri ¼ gi
ki
�Iþ 1

kbT
hQif iðQiÞi

� �
; (20)

where gi ¼ CikbTki is the partial viscosity, and ki is the relaxation
time associated with the microstate xi. The polymeric contribution to
the stress is then obtained as

rp ¼
X4
i¼0

ri: (21)

III. DIMENSIONLESS EQUATIONS

Let L and U denote the characteristic length and velocity scales.
Define the following dimensionless variables,

x� ¼ x
L
; v� ¼ v

U
; t� ¼ t

L=U
; p� ¼ p

g0U=L
; r� ¼ r

g0U=L
;

(22)

where g0 denotes the zero shear viscosity defined by g0 ¼ gs þ gp in
the initial state. The dimensionless macroscopic equations are then

r � v� ¼ 0; (23)

Re
Dv�

Dt�
¼ �r�p� þ br�2v� þ r� � rP�; (24)

where Re ¼ qUL=g0 is the Reynolds number and b ¼ gs=g0 is the vis-
cosity ratio. The end-to-end vector Q is made dimensionless usingffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kbT=H

p
so that the dimensionless stochastic differential equation7 is

dQ� ¼ j� �Q� � 1
2kH

fðQ�Þ
� �

dt þ 1ffiffiffiffiffiffi
kH
p dU; (25)

where kH ¼ 1=ð4HÞ is the relaxation time and the dimensionless force is

fðQ�Þ ¼ Q�

1� ðQ�=Q0Þ2
:

The polymeric stress is evaluated using the Kramers expression

rp� ¼ 1� bð Þ
Wi

X4
i¼0

aiCi
�i
si
hQ�i � f iðQ�i Þi � I
	 


; (26)

where Wi ¼ kHU=L is the Weissenberg number, and si ¼ ki=kH and
�i ¼ gi=gp are the relaxation time and viscosity of the ith microstruc-
ture, respectively. The parameter ai in (26) is given by

ai ¼ bi þ d þ 2
bi

; (27)

where d is the spatial dimension of the problem, and bi ¼ bl2i is the
dimensionless maximum extension length of the ith microstructure
xi, where b ¼ HQ2

0=kbT . The dimensionless form of the stochastic dif-
ferential equation for the transient network model is

dQ�i ¼ �v� � r�Q�i þ j� �Q�i �
1

2siWi
f iðQ�i Þ

� �
dt� þ

ffiffiffiffiffiffiffiffiffiffi
1

siWi

r
dW;

(28)

where W represents the dimensionless Wiener process. The quantity
siWi ¼ kiU=L may be viewed as the Weissenberg number associated
withxi.

For the concentration, the dimensionless equations are in term of
the kinetic constants for construction and destruction A and B, which
are related to kA and kB in Eqs. (13)–(17) by

A ¼ kAL
U

; B ¼ kBg0U
L

;

as follows:

dC0

dt�
¼ B r� : _c� C1ð Þ � A C2

0

	 

; (29)

dC1

dt�
¼ B r� : _c� �C1 þ C2

2 þ
1
4
C3
3

� �
þ A C2

0 � C3
1 �

1
4
C3
1C2

� �
;

(30)

dC2

dt�
¼ B r� : _c�

1
4
C3
3 þ

1
2
C3
4 � C2

2

� �
þ A C3

1 �
1
4
C3
1C2 � 1

2
C2
2C

2
3

� �
;

(31)

dC3

dt�
¼ B r� : _c�

1
2
C3
4 �

1
4
C3
3

� �
þ A

1
4
C3
1C2 � 1

2
C2
2C

2
3

� �
; (32)

TABLE II. Microstructure coefficients.

Microstructure �i si li

x0

1
4 1 1

x1

1
2

1
2

1
2

x2

3
4

1
3

3
7

x3

3
4

1
3

1
3

x4 1
1
4

1
3

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 043117 (2024); doi: 10.1063/5.0203787 36, 043117-5

VC Author(s) 2024

 22 April 2024 14:31:31

pubs.aip.org/aip/phf


dC4

dt�
¼ B

2
r� : _c� �C3

4

	 
þ A
2

C2
2C

2
3

	 

: (33)

In order to simplify the notation, the symbol � is omitted from here
onward.

IV. NUMERICAL SCHEME

The system is solved using a decoupled approach in which the
velocity and pressure (macroscopic step) are solved separately from
the stress (microscopic step) at each time step. Within each time step,
Eq. (28) is solved using a predictor and corrector method to determine
the stress while the conservation equations are solved using an implicit
method. The spectral element method is used for the spatial discretiza-
tion. The physical domain X is partitioned into K nonoverlapping
spectral elements Xk, 1 � k � K , such that [Kk¼1Xk ¼ X. The space of
all polynomials of degree � N on Xk is denoted as PNðXkÞ, and we
define

PNðXÞ ¼ / : /jXk
2 PNðXkÞ

� �
: (34)

Every spectral element is mapped onto a parent element
D ¼ ½�1; 1� 	 ½�1; 1�, using a transfinite mapping technique that
associates each point ðn; gÞ 2 D with a point ðxðn; gÞ; yðn; gÞÞ 2 Xk.

34

Lagrangian interpolants of degree N in both spatial directions are used
to approximate the dependent variables on D, based on the Gauss–
Lobatto–Legendre (GLL) points creating a GLL grid inside the spectral
elements.13 The general algorithm is summarized in the flow chart
shown in Fig. 2.

A. Macroscopic equations

In the macroscopic stage of the time evolution of the equations,
the polymeric contribution to the extra-stress is known. The velocity
and pressure at the new time level are then obtained by solving the fol-
lowing semi-discrete problem:

r � vnþ1 ¼ 0; (35)

Re
Dt

vnþ1 � ~vnþ1ð Þ ¼ �rpnþ1 þ br2vnþ1 þr � rpn: (36)

This is an implicit treatment of the conservation equations where ~vnþ1

corresponds to the solution of the following pure convection problem
at time t ¼ tnþ1:

@~v
@t
¼ �vn � r~v ; t 2 tn; tnþ1

 �
; ~vðx; tnÞ ¼ vðx; tnÞ: (37)

This is a first-order operator integration factor splitting (OIFS) tech-
nique.35 The pure convection problem is solved using a fourth-order
Runge–Kutta method. The solution spaces at each time level are
P ¼ L20ðXÞ for pressure, T ¼ ½L2ðXÞ�4s for stress where s indicates the
space of symmetric tensors and a subspace V of ½H1ðXÞ�2 for veloc-
ity.13 The subspace V contains vectors that satisfy the given Dirichlet
boundary conditions for velocity.

The weak formulation of Eqs. (35) and (36) is discretized using
appropriate approximation spaces for velocity, pressure, and stress (see
Vargas et al.12 for details). To guarantee that the corresponding dis-
crete problem is well-posed, the LBB condition must be satisfied by the
discrete approximation spaces. Maday et al.35 have shown that for
spectral elements the LBB condition is satisfied when the velocity
approximation space is the polynomial space PNðXÞ and the pressure

approximation space is PN�2ðXÞ. A Gauss–Lobatto quadrature rule is
used to integrate the velocities, while a Gauss quadrature rule is used
to integrate the pressure. The stress is approximated by polynomials in
the space PNðXÞ with the difference being that the stress components
are allowed to be discontinuous across the element boundaries.13 The
discrete version of the weak formulation of the problem is

DNv
nþ1
N ¼ 0; (38)

bAN þ Re
Dt

� �
BN

� �
vnþ1 � DT

Np
nþ1
N ¼ �CNr

n
N þ gnN ; (39)

FIG. 2. Flow chart of the micro-macro numerical algorithm.
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where DN and CN denote the discrete divergence operators acting on
the velocity and stress, AN, DT

N , and BN are the discrete Laplace, gradi-
ent, and velocity mass matrix operators, respectively, and gN is a vector
that contains boundary data. Using the discrete continuity equation,
the velocity is eliminated resulting in the pressure equation:

DNH
�1
N DT

Np
nþ1
N ¼ �DNH

�1
N ðgN � CNr

n
NÞ; (40)

whereHN is a discrete Helmholtz-like operator, defined as

HN ¼ bAN þ Re
Dt

� �
BN : (41)

The operator UN ¼ DNH�1N DT
N is the Uzawa operator. The pressure

equation may be written as

UNp
nþ1
N ¼ bN ; (42)

where bN stands for the right-hand side of Eq. (40). To solve Eq. (42), a
nested solver is required for the pressure solution, because it is neces-
sary to invert both the Uzawa operator and the Helmholtz operator.
Schur’s complement method has been used to reduce the size of the
Helmholtz operator. An efficient preconditioner for the Uzawa opera-
tor, based on the finite element mass and stiffness matrices on the local
finite elements, MFE

k and EFE
k , respectively, was proposed by Gerritsma

and Phillips13 and is given by

P�1U ¼ FE�1U ¼
XK
k¼1

RT
k

MFE
k

b
þMlE

FE
k

 !�1
Rk; (43)

where Rk is the restriction operator, mapping a global vector to a vector
of length equal to the number of GLL nodes of the spectral element,
for full details of the method, see Ref. 12.

B. Microscopic equations

The Brownian configuration fields method (BCFM) is a method
for solving stochastic partial differential equation using a variance
reduction technique.12,36,37 The main idea of BCFM is to assume that
the same initial ensemble of dumbbells is located at every spatial dis-
cretization point instead of independent ensembles, which enables the
same sequence of random numbers to be used to build the trajectories
of many groups of dumbbells. The conformation fields are denoted by
Qmðx; tÞ, withm ¼ 1;…;Nf .

The Eulerian version of Eq. (7) is obtained by adding a convective
term to the right-hand side (see Lozinski et al.38),

dQmðtÞ ¼ �v � rQm þ jðtÞ �Qm �
1
2k

fðQmÞ
� �

dt þ
ffiffiffi
1
k

r
dUmðtÞ:

(44)

Since the Wiener process second moment is OðtÞ and using the prop-
erties ofUðtÞ described previously, Eq. (44) becomes

dQmðtÞ ¼ �v � rQm þ jðtÞ �Qm �
1
2k

fðQmÞ
� �

dt þUm

ffiffiffiffiffi
dt
k

r
:

(45)

At each point ðX; tÞ in space and time, a set of conformation vectors is
generated that experience the same deformation history, with different

stochastic processes. The polymeric stress rp can be determined from
the conformation vectors as follows:

rpðX; tÞ ¼ gp
k
�Iþ 1

Nf

XNf

m¼1
QmðX; tÞQmðX; tÞ

0
@

1
A

0
@

1
A: (46)

As the fluid is initially stationary, then rp ¼ 0 at t¼ 0. Every initial
conformation fieldQmðX; t0Þmust satisfy

lim
Nf!1

XNf

m¼1
QmðX; t0ÞQmðX; t0Þ ¼ hQQi ¼ I (47)

for an initial state. For sufficiently large Nf, the central limit theorem
states that the statistical error is proportional to 1=

ffiffiffiffiffiffi
Nf

p
, which means

the numerical convergence is order O 1=
ffiffiffiffiffiffi
Nf

p� �
. Equation (45) can be

generalized to be applicable for each microstate:

dQijðtÞ ¼ �v � rQij þ jðtÞ �Qij �
1

2siWi
fðQijÞ

� �
dt

þUij

ffiffiffiffiffiffiffiffiffiffi
dt

siWi

s
; i ¼ 0;…; 4; j ¼ 1;…;Nf ; (48)

in which case the polymeric contribution to the extra-stress tensor at
the new time level tnþ1 is then computed using

ðrpÞnþ1 ¼ 1� bð Þ
Wi

X4
i¼0

Ciai
�i
si
�Iþ 1

Nf

XNf

j¼0
hQij � f iðQijÞi

0
@

1
A:

(49)

where the subscript i denotes the microstructure and j denotes the
trajectory so that i ¼ 0;…; 4; and j ¼ 1;…;Nf . The temporal dis-
cretization of the evolution equation for the configuration fields
(48) is performed using a second-order predictor-corrector
scheme that is based on a forward Euler predictor and trapezoidal
corrector:

�Qnþ1
ij ¼ Qn

ij þ �vn � rQn
ij þ jnQn

ij �
1

2siWi
fðQn

ijÞ
� �

Dt

þ
ffiffiffiffiffiffiffiffiffiffi
1

siWi

r
dWn

j ; (50)

Qnþ1
ij þ

Dt
4siWi

fðQnþ1
ij Þ ¼ Qij �

1
2

vnþ1 � �Qnþ1
ij þ vn �Qn

ij

� �
Dt

þ 1
2

jnþ1 �Qnþ1
ij þ jnQn

ij

� �
Dt

� Dt
4siWi

fðQn
ijÞ þ

ffiffiffiffiffiffiffiffiffiffi
1

siWi

r
dWn

j : (51)

The right-hand side of Eq. (51) gives the orientation of the conforma-
tion vectorQnþ1

ij , with an arbitrary length. In order to obtain the length
ofQnþ1

ij , Eq. (51) is expressed as

1þ 1
4siWi

Dt
1� x2=bi½ �

� �
x ¼ L; (52)

or
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gðxÞ :¼ x3 � Lx2 � 1þ 1
4siWi

� �
bix þ Lbi ¼ 0; (53)

where L stands for the right-hand side of Eq. (51) and x ¼ jQnþ1
ij j.

The solutions of Eq. (53) give possible values for the length of the
conformation vector Qnþ1

ij . €Ottinger30 has shown that there exists a
unique solution of this cubic equation in the interval ½0; ffiffiffiffi

bi
p � so there

is precisely one physically admissible solution. This scheme circum-
vents difficulties that may arise using other temporal schemes in
which unphysical extensions can be generated during the iterative
process. The semidiscrete stochastic differential equations (50) and
(51) are discretized in space using the discontinuous Galerkin (DG)
method.12 The convection term is integrated by parts twice. In the
forward step, the condition Q ¼ Qin is applied weakly along inflow
portions, cin, of Xk. The inflow portion of the boundary is character-
ized by the condition v � n < 0, and Qin is the value of Q in the
neighboring upwind spectral element or the prescribed condition at
the inflow to the domain, and n is the unit outward normal to the
boundary of Xk. In the backward step, the new boundary terms are
left unchanged. Therefore, in the weak formulation of Eqs. (50) or
(51) over each spectral element Xk, terms of the form ðvn � rQi; SÞXk

are replaced by

ðvn � rQi; SÞXk
þ ðvn � vðQin

i �QiÞ; SÞcin ; (54)

for i ¼ 1;…;Nf ,.
12 The spatial discretization of the configuration

fields is performed using discontinuous approximations in PNðXÞ.

V. PROBLEM DESCRIPTION

The complex flow past a cylinder placed symmetrically in a
channel is considered. The aspect ratio is defined by K ¼ R=H,
where R is the cylinder radius and H is the half-width of the chan-
nel. In this paper, K ¼ 0:5. The computational domain is extended
a distance 25 units upstream and 25 units downstream of the cyl-
inder, thus the assumption of fully developed flow conditions at
the inlet and outlet is valid. Figure 3 shows a close-up of the spec-
tral element mesh used in this work. The number of spectral ele-
ments is K¼ 20, the order of the spectral approximation is N¼ 6,
and the time step is Dt ¼ 2	 10�3. The dimensionless drag coeffi-
cient is used to verify the numerical accuracy of the solution of the
flow through a cylinder by comparing with results published in
the literature. The expression for the dimensionless drag on the
cylinder is

F ¼ 2
ðp
0
�pþ 2b

@vx
@x
þ rxx

� �
cos h

�

þ b
@vy
@x
þ @vx

@y

� �
þ rxy

� �
sin h

�
dh: (55)

A. Initial conditions

Initially, the fluid is assumed to be at rest, so that vð0Þ ¼ 0.
Additionally, we require an equilibrium distribution for the configura-
tion fields at time t¼ 0. At equilibrium, the polymeric contribution to
the extra-stress tensor should be zero. The equilibrium distribution,
weq, must satisfyð

Rd
Qi � f iðQiÞweqðQiÞ dQi ¼ I; i ¼ 1;…; 4; (56)

where the integral is over configuration space. For the FENE model,
the initial configuration fields are generated using the equilibrium dis-
tribution function which is a Gaussian distribution with zero mean
and a covariance matrix which is bi=ðbi þ dÞ times the unit matrix.

B. Boundary conditions

A fully developed velocity profile with a mean velocity of unity is
imposed at entry and exit:

u ¼ 3
4

1� y2

4

� �
; v ¼ 0: (57)

No-slip and no-penetration conditions are imposed on the surface of
the cylinder. Furthermore, symmetry conditions are imposed along
the axis of symmetry.

VI. NUMERICAL RESULTS

The numerical results obtained were generated using a code
developed by the group of Phillips at the School of Mathematics at
Cardiff University. The transient network model developed by Rinc�on
et al.24 and improved by Ferrer et al.19 and G�omez-L�opez et al.39 was
incorporated into this numerical code. This represents the novel addi-
tion to this software from the current contribution.

A. Validation—Flow past a cylinder

To validate the numerical scheme, the benchmark problem of
flow past a cylinder is considered, and a comparison is made with
results in the literature. In this benchmark problem, fluid flows past a
cylinder confined symmetrically in a channel. The dimensionless drag
coefficient is calculated for a Newtonian fluid with Re¼ 0.01 and used
to evaluate the accuracy of the numerical approximation. For example,
Hulsen et al.8 calculated a drag of F¼ 132.358, which is in excellent
agreement with the value of F¼ 132.351 determined by Vargas et al.12

and reproduced in this paper.

B. FENEmodel

The FENE model is used as a starting point to analyze the effect
of the discretization parameters on the evolution of the drag on the cyl-
inder for a viscoelastic fluid with Re¼ 0.01, Wi ¼ 1, b ¼ 0:1, b¼ 50
and the number of spectral elements remains constant. Since the tran-
sient network model has been developed for concentrated polymer sol-
utions, a value of b ¼ 0:1 was chosen for the viscosity ratio
throughout this numerical study since these fluids are characterized by
small values of b. The dependence of the evolution of the drag on the
cylinder on polynomial orderN for Nf¼ 2000, and the number config-
uration fields Nf for N¼ 6 is shown in Figs. 4(a) and 4(b), respectively.
Increasing the value of N with Nf¼ 2000 results in minor variability in

FIG. 3. Sample mesh used to simulate the flow around a cylinder or a sphere with
K¼ 20 and N¼ 6.
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the drag as can be seen in Fig. 4(a), and therefore, N¼ 6 is used in sub-
sequent computations. In Fig. 4(b), we observe that increasing Nf

reduces the fluctuations in the evolution of the drag and that there is
not a significant improvement beyond Nf¼ 2000 and so this value is
used in subsequent computations. For further results for the FENE,
FENE-P, and Hookean dumbbell models, the reader is referred to
Vargas et al.12 where mesh convergence of the evolution of the drag
and the stress components along the axis and around the cylinder/
sphere are presented. This validates the numerical solution procedure
in the case of viscoelastic flows.

C. FENE transient network model

In this subsection, the numerical simulation of a complex fluid
around a cylinder using the FENE-transient network model is analyzed
for three networks with different initial conditions. The initial condi-
tions are: (i) disentanglement, characterized by x0 ¼ 1 and xi ¼ 0 for
i ¼ 1; 2; 3; 4, (ii) entanglement, characterized by x4 ¼ 1 and xi ¼ 0
for i ¼ 0; 1; 2; 3, and (iii) aleatory, where all the microstates are pre-
sent (xi 6¼ 0 for i ¼ 0; 1; 2; 3; 4). In addition to the mesh convergence
studies showing the convergence of the drag force using the FENE
model, we present a corresponding study for the FENE network
model. In Fig. 5, we show the dependence of the evolution of the drag
force on the cylinder on polynomial order N in the case of the disen-
tanglement configuration with Re¼ 0.01, b ¼ 0:1, b¼ 50, A¼ 1,
B¼ 1, and Nf¼ 2000. This figure demonstrates that convergence with
increasing polynomial order has been achieved and the close agree-
ment between the results generated with N¼ 6 and N¼ 8 validates the
choice of N¼ 6 used for the rest of the paper.

1. Influence of the kinetic rate constants A and B

The influence of the kinetic rate constants A and B on the three
different initial entanglement networks, from highly structured
(A¼ 100, B¼ 1) to weakly structured (A¼ 1, B¼ 100) on the princi-
pal variables, is analyzed. First, Fig. 6 shows the evolution of the con-
centration of the microstates for each of the starting conditions that

were defined previously, i.e., disentanglement, entanglement, and alea-
tory. The network with disentanglement initial conditions is the most
sensitive to changes in the kinetic rate constants. For this case, the
available energy in the system is used to produce more entangled struc-
tures, as can be seen when B is kept constant and A is changed. Rinc�on
et al.24 have shown that at low shear rates for both highly structured
(A¼ 100, B¼ 1) and weakly structured (A¼ 1, B¼ 100) systems, l(t),
the non-dimensional distance between nodes, is close to 1/3, which
corresponds to a more entangled microstate x4 (see Table I). In Fig. 6,
the concentrations of microstates x2 and x4 increase in time. There is
negligible effect on the evolution of the microstate concentrations in
varying B keeping A¼ 1. For the network with entanglement initial
conditions, the change in concentrations is very small for all the values
of A and B considered, which indicates that a highly structured net-
work requires more energy to produce simpler microstructures.

FIG. 4. Evolution of the drag force on the cylinder (a) as a function of polynomial order N with Nf¼ 2000 configuration fields and (b) as a function of Nf for N¼ 6, with
Re¼ 0.01, Wi¼ 1, b ¼ 0:1, b¼ 50.

FIG. 5. Dependence of the evolution of the drag force on the cylinder on polynomial
order N for the disentanglement configuration with Re¼ 0.01, b ¼ 0:1, b¼ 50,
A¼ 1, B¼ 1, and Nf¼ 2000.
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Finally, for the network with aleatory initial conditions, the concentra-
tions of the microstates exhibit minor modifications, and for all values
of A and B, the behavior is basically the same. For this initial condition,
the microstates are close to an equilibrium concentration, which
requires the minimum amount of energy.

The effect of changes to the microstructural kinetics on the shear
and normal stresses for networks characterized by the first two initial
conditions, disentanglement and entanglement, is shown in Fig. 7. The
network with disentanglement initial conditions is the most sensitive
to changes in the kinetic rate constants giving rise to higher stresses.
For the network with entanglement initial conditions, no significant
changes are found. The drag force experienced by the cylinder is an
overall macroscopic indicator of the different microscopic processes
taking place during the flow of a complex fluid around the cylinder.
Figure 8 shows the influence of the microstructural kinetics on the evo-
lution of the drag force. For an initially disentangled network, the
energy available from the system is used to produce more complex
structures (see Fig. 6) increasing the shear and normal stresses and
hence the drag force. For the entanglement and aleatory networks,
there are no significant changes. Since there is very limited rebuilding
of the structure in these networks, the corresponding stresses and drag

force are smaller than for the initially disentangled configuration. For
both cases, modifying the kinetic rate constants generates average drag
values of approximately 50 and 45, respectively. For the aleatory net-
work, there was a loss of convergence for the case A¼ 1 and B¼ 100
at t 
 3, and this is not shown in the figure.

2. Effect of the elasticity (Wi)

In this subsection, the effect of elasticity (Wi) on the main varia-
bles is investigated for networks with the three different initial condi-
tions with: A¼ 1, B¼ 1, Re¼ 0.01, b ¼ 0:1, b¼ 50, N¼ 6, and
Nf¼ 2000. Figure 9 presents the influence ofWi on the evolution of all
microstates concentrations. No significant changes in the concentra-
tions for any of the different initial network configurations are
observed, i.e., the evolution of the microstructural kinetics appears to
be independent of elasticity. Note that the expression for the polymeric
stress in Eq. (26) involves the reciprocal of Wi, and therefore, one
would expect a decrease in stress with increasing Wi as shown in
Fig. 10. This is the case for the disentanglement and entanglement net-
works. The largest absolute values of stress are found for the disentan-
glement network. For the aleatory network, the stress profiles are not

FIG. 6. Influence of the kinetic rate constant A and B on the evolution of microstate concentrations for different initial networks around a cylinder with: Re¼ 0.01, Wi¼ 1,
b ¼ 0:1, b¼ 50, N¼ 6, and Nf ¼ 2000.
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well-defined. Figure 11 shows the effect of elasticity on the evolution of
the drag force. It is confirmed that increasing Wi decreases the drag
force uniformly for the networks with disentanglement or entangle-
ment initial conditions. For the network with disentanglement initial
conditions, there is a sharp decrease in the drag force as Wi is
increased from Wi¼ 1 to Wi¼ 2. This behavior has been reported by
Vargas et al.12 In the aleatory network, the trend is not exactly the
same, but in general terms, there is a reduction in the drag force.
Further simulations were performed for higher Weissenberg numbers
(up to Wi¼ 20) for the initial disentanglement configuration and no
convergence problems were experienced. The dependence of the evo-
lution of the drag force on Wi is shown on a log–log scale in Fig. 12.

The drag decreases monotonically with respect to increasing Wi. The
steady-state value of the drag is reached by t¼ 2 for Wi � 8. For
Wi> 8, the steady-state drag value has not quite been reached by
t¼ 5.

Since the flow past a cylinder is a benchmark problem in compu-
tational rheology, there is much available data showing the dependence
of drag on Wi for different viscoelastic models. For the Oldroyd B
model, extremely fine meshes are required to obtain convergence at
the maximum attainable Weissenberg number Wi 
 1 for
b ¼ 0:59.7,10,40 In this, the drag decreases monotonically to around
Wi¼ 0.7 before increasing ever so slightly. However, the lack of con-
vergence of the stress in the wake of the cylinder for values of Wi

FIG. 7. Effect of the kinetic rate constant A and B on the shear and normal stresses along the central line for different initial network configurations around a cylinder with:
Wi¼ 1, Re¼ 0.01, b ¼ 0:1, b¼ 50, N¼ 6, and Nf ¼ 2000.

FIG. 8. Effect of the kinetic rate constants A and B on the drag force evolution for different initial network configurations around a cylinder with: Wi¼ 1, Re¼ 0.01, b ¼ 0:1,
b¼ 50, N¼ 6, and Nf¼ 2000.
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FIG. 9. Effect of Wi on the evolution of microstate concentrations for different initial network configurations around a cylinder with: Re¼ 0.01, b ¼ 0:1, A¼ 1, B¼ 1, b¼ 50,
N¼ 6, and Nf ¼ 2000.

FIG. 10. Effect of Wi on the shear and normal stresses along the centerline for different initial network configurations around a cylinder with: Re¼ 0.01, b ¼ 0:1, A¼ 1, B¼ 1,
b¼ 50, N¼ 6, and Nf ¼ 2000.
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much beyond this value means that the predictions are not useful or
reliable.8 Afonso et al.10 showed that for viscoelastic models that
exhibit shear-thinning behavior such as FENE-CR, PTT, and
Giesekus, converged solutions can be obtained over a much larger
range of values of the Deborah number, De, since the stress in the
wake is weaker. For these models, the drag decreases monotonically
with De. The steady-state predictions of drag shown in Fig. 11 are in
agreement with this trend.

3. Effect of the maximum extension length b

The effect of the maximum extension length b for networks with
different initial conditions with: A¼ 1, B¼ 1, Re¼ 0.01, Wi¼ 1, and
b ¼ 0:1 on the main variables is presented. Figure 13 shows the influ-
ence of b on the evolution of all microstates concentrations. There are
no appreciable changes in any of the entanglement scenarios, i.e., the
microstate kinetics are also independent of extension length. In terms
of magnitude, the disentangled network shows a higher evolution of all

microstructure concentrations. This is in contrast to the entangled net-
work, where the concentration of more entangled structure dominates.
The effect of extension length is manifested on the shear and normal
stresses for different initial network configurations as shown in Fig. 14.
Increasing b results in an increase in the stresses presenting a greater
magnitude in the disentangled network. For large values of the extensi-
bility parameter, the behavior of the simplest microstructures
described by the FENE model behaves like the Hookean
model.12,25,30,36 Figure 15 shows the effect of b on the drag force. Drag
fluctuations increase as b is smaller, due to the small molecular chains
and the increased tension between the beads. The drag force increases
with increasing b; a behavior that is present in all cases, with the largest
drag attained for the network with the initial disentanglement configu-
ration, confirming that an entanglement network requires more energy
to destroy it.

D. Flow past a sphere

For the flow around a sphere, the steady-state Stokes problem is
solved. The drag is calculated by integrating the total stress over the
surface of the sphere, F, given by

F ¼ �2pa2
ðp
0
�pþ 2b

@vx
@z
þ rzz

� �
cos h

�

þ b
@vy
@x
þ @vx

@r

� �
þ rrx

� �
sin h

�
sin hdh; (58)

the dimensionless drag factor F�, which is used for comparison of
numerical solutions, defined as the ratio between the drag experienced
by a sphere and the drag that the same sphere would experience in a
Newtonian fluid without boundaries, given by

F� ¼ F
6pgUa

: (59)

Using the same mesh (20 spectral elements and N¼ 6) as for the cylin-
der case, a dimensionless drag of F� ¼ 5:947 64 was determined,
which compared to the value of F� ¼ 5:9474 reported in the litera-
ture12,41 is a very good approximation. Figure 16 shows the evolution
of drag force around a sphere by modifying the kinetic rate constants,
the maximum extension length and elasticity, respectively, for

FIG. 11. Effect of Wi on the evolution of the drag force for different initial network configurations around a cylinder with: Re¼ 0.01, b ¼ 0:1, A¼ 1, B¼ 1, b¼ 50, N¼ 6, and
Nf ¼ 2000.

FIG. 12. Effect of Wi on the evolution of the drag force for flow past a cylinder for
the disentanglement configuration for Re¼ 0.01, b ¼ 0:1, A¼ 1, B¼ 1, N¼ 6,
and Nf¼ 2000 (log-log plot).
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FIG. 13. Effect of b on the evolution of microstate concentrations with different entanglement scenarios around a cylinder for: Re¼ 0.01, Wi¼ 1, b ¼ 0:1, A¼ 1, B¼ 1,
N¼ 6, and Nf ¼ 2000.

FIG. 14. Effect of b on the shear and normal stresses along the central line with different entanglement scenarios around a cylinder for: Re¼ 0.01, Wi¼ 1, b ¼ 0:1, A¼ 1,
B¼ 1, N¼ 6, and Nf ¼ 2000.
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Re¼ 0.01. For all cases, the same trends analyzed for the flow around
the cylinder are present.

VII. CONCLUSIONS

This paper presents the first complex flow simulations of visco-
elastic fluids using a FENE transient network model24 to describe the
polymer dynamics. The model can be viewed as an extension of the
FENE model to more concentrated polymer solutions for which chain
interactions cannot be ignored as they are in the dilute regime. As the
polymer concentration increases, so does the maximum chain length,
drag, and relaxation time due to the processes of entanglement and
disentanglement. These are accounted for in the transient network
model. The numerical simulation of the flow of a complex fluid past a
confined object is considered. In particular, two benchmark problems
in computational rheology are considered, viz., flow past a cylinder
and flow past a sphere. The blockage ratio is 2:1 in both cases. The spa-
tial discretization is based on the spectral element method. This
method is used to solve both the macroscopic governing equations and
the microscopic equations based on the method of Brownian configu-
ration fields that serves to determine the polymeric contribution to the
extra stress tensor. The numerical approach is validated by making
comparisons with the literature for the Oldroyd B and FENE models,
and the convergence of the drag force is investigated with respect to

polynomial order and the number of configuration fields. This infor-
mation is used as the basis for choosing the discretization parameters
for the remainder of the paper. For the FENE transient network
model, three different initial network configurations were considered:
disentanglement, entanglement, and aleatory. The influence of the
main variables on these different initial networks is summarized as
follows:

• The influence of the kinetic rate constants A and B is strongly
dependent on the initial network configurations, from highly
structured (A¼ 100, B¼ 1) to weakly structured (A¼ 1,
B¼ 100). The disentanglement network is the most sensitive net-
work to changes in the kinetic rate constants leading to larger
stresses, and a correspondingly larger drag force. The change in
concentrations is very small for the entanglement network, which
indicates that a highly structured network requires more energy
to produce simpler microstructures. Finally, in the case of the ale-
atory network, the concentrations of the microstates exhibit
minor modifications, since the microstates are close to an equilib-
rium concentration.

• The evolution of the microstate concentrations is independent of
elasticity. The influence of the elasticity is manifested on the
shear and normal stresses; it is also confirmed that increasing Wi
decreases the drag force.

FIG. 15. Effect of b on the drag force evolution with different entanglement scenarios around a cylinder for: Re¼ 0.01, Wi¼ 1, b ¼ 0:1, A¼ 1, B¼ 1, N¼ 6 and Nf ¼ 2000.

FIG. 16. Dependence of the evolution of the drag on a sphere on (a) kinetic rate constants, (b) b, (c) Wi, with Re ¼ 0:01; b ¼ 0:1, b¼ 50, A¼ 1, B¼ 1, Nf¼ 2000, N¼ 6,
and disentanglement initial conditions.
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• The microstate kinetics are also independent of the maximum
extension length. The effect of the extension length is manifested
on the shear and normal stresses for different networks and drag
fluctuations increase as b is reduced.

The same trends are observed in the investigation of flow past a
sphere.
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