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Abstract

In Vitro Fertilisation (IVF) is a treatment involving the fertilisation of human

egg cells in the laboratory to create embryos, which are transferred to the uterus

of the patient in the hope that they become pregnant. Only 19% of treatments

worldwide result in a live birth. This thesis involves interdisciplinary collabora-

tion with experimentalists and the London Women’s Clinic, to identify and tackle

a series of mathematical challenges and barriers to improving success rates in IVF

clinics.

We first explore the use of Differential Dynamic Microscopy (DDM) as a

non-invasive oocyte health assessment tool. Identifying challenges that limit the

clinical usefulness of DDM, we develop a methodology, using synthetic data, to

enhance and validate parameter fitting in DDM. We optimise the selection of

synthetic data parameters, and present a new pipeline for generating parameter

fitting. After showing existing non-linear curve fitting algorithms are inaccurate

in DDM applications, we establish a new machine learning parameter fitting

pipeline, trained exclusively on synthetic data and applied in real datasets.

We, subsequently, explore the application of DDM to phase-contrast micro-

scopy. Phase-contrast images exhibit shadowing, leading to anisotropy in the

DDM matrix and invalidating a key assumption of DDM. We derive an analytic

expression describing this anisotropy, and conclude for isotropic motions that

shadowing does not affect parameter fitting. For anisotropic motion, we also out-

line conditions on the microscope setup and imaged behaviour that affect fitting

error.

The second part of this thesis considers challenges related to cryopreserva-

tion of oocytes and embryos through a rapid-cooling technique, vitrification. We

numerically simulate the process of vitrification (rapid freezing) and show that

cooling rates are unaffected by the number or arrangement of embryos or oocytes

on the device, which validates current protocol. Additionally, the challenge of pre-

dicting embryo viability from time-lapse images of post-thaw embryo re-expansion

is tackled. We implement machine-learning image segmentation to measure the

cross-sectional area of the embryo, and identify non-linear re-expansion as a new
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metric indicating lower implantation rates by as much as 3% in a sample of clinical

data.
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Chapter 1

Introduction

Assisted reproductive technologies (ART) are treatments and procedures that

include the in vitro handling and manipulation of oocytes (egg cells), sperm or

embryos, with the purpose of achieving a pregnancy [1, 2]. One of the most well

known forms of ART is In Vitro Fertilisation (IVF) [3], a procedure in which

oocytes are fertilised with sperm in a laboratory to create an embryo, which

is then transferred to the uterus of the patient [4]. Since the first live birth

resulting from IVF treatment in 1978 [5], there have been over 8 million IVF

babies worldwide [6]. In the United Kingdom (UK) alone, 595,000 patients have

received IVF treatment since 1991, totalling over 1.3 million IVF treatments that

have resulted in 390,000 babies born [7]. ART is becoming increasingly common

[8], with medically assisted births accounting for 2.9% of all live births in the

UK, and as much as 5% of live births in countries such as Denmark, Austria and

Slovenia [3, 6, 9].

The objective of this thesis is to address some of the mathematical challenges

involved in the pursuit of improving IVF. This thesis is linked to a project led by

the School of Mathematics, Cardiff University (headed by Katerina Kaouri and

Thomas Woolley), and is funded by a Knowledge Economy Skills Scholarship

(KESS2). The project has been co-funded by, and was in collaboration with, the

London Women’s Clinic (LWC), who operate 14 fertility clinics across the UK

[10]. In particular, supervision was provided by Helen Priddle, Andrew Thomson

and Giles Palmer at LWC Wales and Bristol branch, based in Cardiff. The

project as additionally co-supervised by Professor Karl Swann in the School of

Biosciences, Cardiff University, who leads an experimental lab on oocyte and

fertilisation research. The project also involved collaboration with the School of

Physics and Astronomy, Cardiff University (more detail can be found in Chapter

5). We combine mathematical modelling and data analysis, the clinical expertise

of LWC, experiments at the Swann lab, and imaging experiments to tackle some

of the challenges limiting IVF success.
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We focus on three particular aspects of IVF; first, we introduce a set of new

methods for analysing time-lapse images of oocytes, in order to facilitate non-

invasive oocyte health assessment. Second, we construct computational models

to simulate the process of cryopreservation, testing how variations in oocyte and

embryo freezing protocol may affect the survival rates of preserved cells. Finally,

we explore the use of time-lapse imaging of thawing embryos after removal from

storage, identifying a marker which may predict poor IVF potential. Before

tackling these challenges, we will first introduce IVF in Section 1.1, alongside the

related technologies and practices of interest. In Section 1.2, we will discuss some

of the mathematical pursuits being explored in IVF research. Finally, in Section

1.3, we narrow our focus to a select number of challenges, providing an outline of

this thesis.

1.1 Overview of In Vitro Fertilisation (IVF)

A typical IVF cycle is described in Figure 1.1, using [4] as a guide. First, the

patient is given hormonal medication to encourage the development of multiple

oocytes, in a process called controlled ovarian stimulation (COS) [11]. Oocytes are

then retrieved from the ovary and fertilised in the laboratory, either by mixing

of the oocytes with sperm, or by intra-cytoplasmic sperm injection (ICSI), a

process in which a single sperm cell is injected directly into the cytoplasm of the

oocyte, usually when problems relating to the sperm prevent fertilisation [12].

After culturing the developing embryo for 3 or 5 days [13], one or more embryos

are transferred to the uterus of the patient (embryo transfer) in the hope of

establishing a pregnancy.

IVF is often used as a treatment for infertility, defined as a disease of the male

or female reproductive system, indicated by failure to achieve pregnancy after 12

or more months of regular unprotected sexual intercourse [14–16]. Infertility is

highly distressing [17], and is a growing, worldwide challenge [18], currently estim-

ated to affect one in six people of reproductive age [16]. Infertility can be caused

by a number of health conditions [19, 20], including sexually transmitted infec-

tions [21], polycystic ovarian syndrome (PCOS) [22] and damage to reproductive

function resulting from cancer treatment [23]. IVF is also being increasingly used

by single women [24, 25] and homosexual couples [26–28].

Fertility has become a booming global industry, estimated to be worth around

£19.8 billion worldwide in 2022, projected to increase to £32.4 billion by 2026 [29].

The number of clinics offering IVF is also increasing; in Europe in 2017, there

were 1382 clinics registered with the European Society of Human Reproduction
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Figure 1.1: Diagrammatic representation of a general IVF process, as described
in [4]. Freezing and thawing of oocytes and embryos are optional stages, with
cycles using cryopreserved embryos are known as frozen embryo transfers (FET).
Created with BioRender.com.

and Embryology (ESHRE) [30], increasing to 1552 by 2018 [9], of which 86 were

based in the UK [9].

As part of the modern IVF package, additional technologies and treatments

are frequently used to improve or augment the treatment pathway. Of these, we

wish to highlight cryopreservation and time-lapse microscopy.

1.1.1 Cryopreservation (oocyte or embryo freezing)

The objective of cryopreservation (see Figure 1.1) is to maintain the health of the

oocytes or embryos beyond their typical lifespan by storing them in extremely

cold conditions, achieved through the application of liquid nitrogen at −196◦C

[31] (other forms of cryopreservation may alternatively place samples in a deep

freezer at around −80◦C). IVF cycles using previously cryopreserved embryos are

referred to as frozen embryo transfers (FET), compared to ‘fresh’ IVF cycles.

Cryopreservation of embryos has been instrumental in maximising the use of a

single oocyte retrieval, by preserving ‘surplus’ embryos from fresh cycles to give

patients more attempts at pregnancy [32, 33]. Cryopreservation of oocytes and

sperm, meanwhile, is sometimes undertaken prior to treatments which might

damage fertility, such as chemotherapy or gender-affirming surgery. It has also

enabled the storage and transfer of donor oocytes and sperm, in cases where the
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those provided by the patient are not viable for IVF [34, 35], and for patients with

no sperm or egg provider, including single women [24, 25], homosexual couples

and people with transgender partners [24, 25, 36].

The importance of cryopreservation is growing with an increase in age-related

infertility, as more people in the developed world postpone childbearing until later

in life [37, 38]. Fuelled by a combination of changing economic status, education

levels and healthcare availability, more people are delaying the decision to have

children, resulting in the average age of parents at the time of birth increasing

[39]. For example, in England and Wales, the mean age of parents at the time of

birth has been steadily increasing since the 1970s, from 26.4 to 30.9 years of age

for women, and 29.4 to 33.7 for men [40]. This trend is also seen across the rest

of the developed world, including Spain, Japan, Russia and the United States

[3, 39]. As both maternal and paternal age increase, the quality of sperm and

oocytes decreases, resulting in a declining ability to conceive [37, 38, 41, 42].

In the UK, the number of oocyte freezing cycles has approximately doubled

every 3 years between 2010 and 2016, with 10253 oocytes frozen in 2016 as a

result of over 1300 oocyte freezing cycles [43]. The number of IVF cycles using

previously cryopreserved embryos has increased by 86% from 2014 to 2019, ac-

counting for 41% of all IVF cycles [7]. Embryo storage was the only form of ART

to increase during the Covid-19 pandemic [44], with freezing being undertaken

to avoid the risks of ovarian hyper-stimulation during fresh cycles, which would

add additional burden to the NHS at a time when it was already under enormous

strain [36]. The UK recently changed legislation to increase the maximum storage

period for cryopreserved oocytes, sperm and embryos from 10 to 55 years [45, 46],

and many major companies like Apple and Facebook (now Meta) have offered to

fund oocyte freezing to attract more women to the workforce [47].

1.1.2 Time-lapse imaging

Many fertility clinics now offer, for an additional cost, several ‘add-on’ options

that augment the typical IVF process outlined in Section 1.1 [48–52]. These treat-

ments are made available on the grounds that they may increase the likelihood

that treatment will result in pregnancy, although there is often little or conflict-

ing evidence for their efficacy [48–52], but the high emotional stakes at play in

infertility may lead to nevertheless proceeding with such options [50, 51]. In this

thesis, we will explore one of these add-ons, known as time-lapse microscopy.

‘Time-lapse’ refers to taking multiple images of a biological sample over time,

to provide data on how the sample changes [53]. Conventional time-lapse ap-

proaches in the context of IVF involve removing embryos from the incubator

at fixed time points to make static observations. Although such disturbance of
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the embryo from its culture medium is considered unsafe [54–56], the useful-

ness of the information gathered from such observations is considered to be a

worthwhile trade-off [36]. More recently, however, time-lapse has become more

common due to the commercial availability of new specialist incubators, such as

the Embryoscope®[57, 58] and Geri®[54, 58]. The benefit of these incubators is

that cameras and microscopes are integrated into the incubator, so imaging does

not require the removal of the oocyte or embryo, and is therefore more safe [54–

56]. The availability of more data may help guide evidence-based clinical decision

making [54, 56, 57, 59]. Currently, time-lapse analysis is mostly used to assess

embryo health by statistically correlating the timings of milestone events, such as

cell division or changes in appearance, with the likelihood of clinical pregnancy

or live birth (more detail is given in Sections 1.2.2.1 and 1.2.4 [57, 59–62].

We display a number of frames from a time-lapse image stack in Figure 1.2,

provided by LWC. These frames, captured using a Geri®incubator, display the

re-expansion of a human embryo after thawing from cryopreservation. More detail

on this image can be found in Chapter 7.

Figure 1.2: A collection of frames from a time-lapse movie obtained by the London
Women’s Clinic, Wales and Bristol. A single human embryo is depicted, which
re-expands after being thawed from cryopreservation. More detail on this image
stack, and analysis of similar movies, can be found in Chapter 7

1.1.3 The need for improving IVF

The goal of IVF is that every treatment results in the live birth of a healthy

child [63], but in reality, this is not the case. Evaluating the effectiveness of IVF
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treatments is made difficult, however, by the wide variety of ways that outcomes

can be reported. The multi-stage nature of IVF means that there are several

milestones which must be achieved before a healthy live birth is possible [64],

summarised in Figure 1.3, which is based on outcome reports from LWC (and is

a more general form of Figure 7.2 in Chapter 7). We will briefly elaborate on the

possible definitions of success in IVF, so that we may evaluate the current state

of treatments.

Figure 1.3: Flowchart of the reportable outcomes of IVF treatment. Whilst the
overall objective of IVF is live birth, success can be reported as reaching any of
the positive milestone stages that are pre-requisite for live birth, and statistics
on each stage can be complicated by the exclusion of patients who did not reach
the previous milestone.

Of the patients who receive an embryo transfer, a pregnancy test is admin-

istered to confirm pregnancy. Those who have a positive pregnancy test will

undergo an ultrasound scan to determine the existence of a clinical pregnancy,

defined by the established presence of a fetal heartbeat via ultrasound [65]. Fi-

nally, not all patients with a clinical pregnancy will result in a live birth. Success

has been defined by a number of different metrics in literature, including clinical

pregnancy rate [66–70], live birth rate [8, 71–73], live birth per embryo transferred

[7, 9], and cumulative live birth rate [74], defined by the number of patients with

at least one live birth over a course of repeated IVF cycles.

An additional measure commonly used to record success in IVF is ‘implant-

ation rate’, defined by the number of gestational sacs confirmed by vaginal ul-

trasound 3-5 weeks after transfer, divided by the number of transferred embryos

[75]. This is a measurement more commonly made in controlled studies than in
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retrospective datasets; the NHS only administers scans at weeks 10-14 and 18-21,

for example [76], so this metric cannot be used to measure success in these pa-

tients. Additionally, implantation rate has been reported to be problematic for

comparing groups, since it is often distorted by non-equal numbers of transferred

embryos [75].

The choice of success metric may depend on the aspect of IVF we wish to

study. For example, oocyte and embryo assessment (discussed further in Sections

1.2.2.1 and 1.2.4) aim to characterise the potential of the embryo to implant in

the uterus, so the success of these techniques is more commonly measured using

clinical pregnancy, as opposed to live birth [77, 78]. In this thesis, we will use

clinical pregnancy as the definition of success, taking care to specify when other

outcome measurements are considered.

Despite the considerable use and development of IVF in the last 40 years,

the majority of treatments do not result in clinical pregnancy, and improvements

in live birth rates have begun to stagnate at around 30% in Europe [79]. The

live birth rate per embryo transferred in the UK, plotted in Figure 1.4, has been

increasing steadily over the years for women using their own oocytes. However,

this rate is still only 32% for patients under 35, a figure which falls drastically as

patient age increases, down to only 3.7% in patients aged 45-50 [7]. Whilst using

donor eggs increases live birth rates to between 31-34% across all age ranges [7],

the majority of IVF treatments do not result in live birth.

Figure 1.4: The live birth per embryo transferred rate, reported by the Human
Fertility and Embryology Authority (UK) between 1991 and 2019. Reproduced
from [7].

Outside of the UK, some international IVF outcome statistics are collected in
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Table 1.1, which suggests that only around 19% of embryo transfers worldwide

result in a live birth, meaning patients are unlikely to get pregnant at their

first IVF treatment. Many patients undergo repeated IVF cycles with the hope

to get pregnant, but evidence suggests that the likelihood of clinical pregnancy

decreases with each unsuccessful cycle [80], implying many patients may never

get pregnant. Going through IVF can be incredibly difficult, both physically and

psychologically [81], and failed treatments can result in diminished self-esteem

and depression [82].

Location, year (reference) Outcome Notes
Africa, 2019 [83]. 38.4% clinical pregnancy

rate per embryo transferred.
Under 35s make up higher
demographic in Africa, in-
flating outcome [84].

Europe, 2022 [85]. 34.1% birth rate per embryo
transferred.

49.6% for donor embryos.

Latin America, 2020 [86]. 6.9-36.9.% delivery rate
per embryo transferred,
depending on patient age.

USA, 2020 [87]. 23.0% live birth rate per
cycle.

More specific reporting
available by state.

World, 2022. [85] 19% birth rate per embryo
transferred.

ESHRE estimate, older re-
ports suggest 5-29% live
birth per fresh cycle [88].

Table 1.1: IVF success rates reported across world-wide registries. No registry
exists for Asia to date [84]. Additionally, reporting differences such as the choice
of success metric and patient demographics may account for variation between
reporting bodies.

Another key challenge in IVF, compounded by the expectation that multiple

treatments are necessary, is the considerable expense incurred by each patient.

Treatment is often prohibitively expensive for many patients [89]. There is consid-

erable diversity in IVF funding models and policies across the world, motivated

by a combination of safety concerns, legal considerations and rationale on the

cost-effectiveness of treatments [90]. State-funded options exist, but do not cover

demand; in the UK, for example, the National Institute for Health and Care

Excellence (NICE) restricts state-funded IVF based on patient age and lack of

success in alternative treatments, and allows a maximum of 3 cycles [91]. The

proportion of publicly funded treatments in the UK was around 28% in 2020 [44],

although this value varies significantly by country, from 62% in Scotland to only

20% in some parts of England [7]. Even when public funding is available, long

waiting lists often lead patients to seek IVF treatment in private clinics [92–94].

Private funding thus forms the majority of treatments in the UK, as well as in

Europe [95] and the USA [29].
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The cost of a single IVF treatment varies depending on the clinic and country.

In 2010, ESHRE estimated the costs of a single fresh IVF cycle to range from

£2,114 in Belgium to over £8,591 in the USA [96]. These prices are increasing;

the average cost of an IVF cycle in the USA jumped from £9,781 in 2014 [97] to

£15,145 in 2021 [98]. In the UK, the HFEA estimates that a single IVF cycle

costs £5,000 [99]. The considerable cost of IVF treatments is a source of socio-

economic inequality between patients who can afford to treat their infertility, and

those who cannot [89].

Improving IVF success rates lies at the heart of ART research, with benefits

for patients and clinics. Understanding the cause of the embryo failing to im-

plant in IVF, and improving treatment for women who respond poorly to ovarian

stimulation during IVF, are listed as the top two priorities for research in ART

[100]. ESHRE announced in 2022 that interdisciplinary collaborations involving

the use of mathematics are key to innovation in reproductive medicine [101].

Having described some of the challenges faced in IVF, we will now present some

mathematical approaches to improving success rates in IVF.

1.2 Mathematical challenges in IVF

Attempting to discuss every mathematical challenge in IVF is beyond the scope of

this work, but equally, we aim to demonstrate the wide variety of challenges faced

in the pursuit of improving clinical pregnancy rates. Many of the mathematical

challenges in IVF focus on a specific stage of the IVF process (see Figure 1.1),

so we order our review chronologically by the stage of IVF being targeted. Of

these challenges, we highlight oocyte selection (Section 1.2.2.1), optimising cryo-

preservation protocol (Section 1.1.1) and post-thaw embryo selection (Section

1.2.6) to be relevant to the work undertaken in this thesis. To provide context

on additional challenges beyond the scope of this work, additional information is

presented on other topics, namely optimal COS strategy (Section 1.2.1), sperm

selection (Section 1.2.3), embryo selection (Section 1.2.4) and logistics and oper-

ations optimisation (Section 1.2.7).

1.2.1 Personalising controlled ovarian stimulation (COS)

Human females are born with all the oocytes capable of participating in repro-

duction during their life; this is referred to as the ovarian reserve, which decreases

with age [102]. These oocytes are found in the ovaries, in a stage of arrested de-

velopment and surrounded by a layer of pregranulosa cells in a structure called

the primordial follicle [103]. In a normal menstrual cycle, a follicle is recruited

from the reserve as a result of complex hormonal signalling [102–104], resulting
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in a single oocyte being released from the ovary. In IVF, however, a large number

of retrieved oocytes are required to maximise the success rate. The number of

retrieved oocytes is increased by COS, using hormonal medication that encour-

ages the release of multiple oocytes. Although COS has potentially detrimental

effects on oogenesis, embryo quality, endometrial receptivity and perinatal out-

comes [105], the need to retrieve multiple oocytes necessitates its implementation.

The comparison of oocytes retrieved following COS, with those released in nat-

ural cycles, is not relevant to the objectives of this thesis, as COS is a core aspect

of modern IVF treatment [105].

Good response to COS is a key factor for IVF success. Predicted pregnancy

rate increases when some optimal number of oocytes is retrieved, a value which

depends on the stimulation protocol used; for mild stimulation, the optimum is

5 oocytes, compared to 10 oocytes being optimal in conventional protocols [106].

Overstimulation results in ovarian hyper-stimulation syndrome (OHSS), which

lowers the number of good embryos available to transfer and, hence, reduces the

clinical pregnancy rate [106]. A number of different COS protocols have been

described as a result of varying the dosage of medication, the strategy used, and

even the production method of the hormonal medication [107, 108]. Achieving

the optimal response is difficult, because patients are heterogeneous and respond

differently to stimulation protocols [11].

A ‘one size fits all’ approach is not sufficient to increase IVF success rates

for all patients, so a key challenge in the clinic is developing personalised COS

protocols [107]. This has been cast as a mathematical optimisation problem, and

has been well described in [109]. COS protocols which are easy to manage, and

can ensure a sufficient number of oocytes, are desirable. These objectives must

be balanced by offering ‘patient friendly’ protocols that minimise side effects,

encourage compliance, and minimise the risk of OHSS.

Mathematical exploration of this challenge can be partitioned into two dis-

tinct approaches. The first approach is statistical [11, 110–113]; the success of

different strategies is evaluated in patients grouped by characteristics [11, 111] or

genetics [113]. A patient would then be assigned the strategy which has historic-

ally performed best in patients with similar characteristics. Statistical approaches

are limited, however, because the exact molecular mechanisms at play are poorly

understood, and the complex statistical interaction between a high number of

variables that affect COS response makes it difficult to quantify the significance

of each variable [113].

A second approach to optimise COS uses ordinary and delay differential equa-

tions to model hormone levels in patients [114–118]. These models can be used to
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experiment with different COS protocols, but current models do not match ex-

perimental data [118], which could be attributed to an incomplete model, poorly

selected parameters or inability to fully simulate realistic protocols [118]. In both

the statistical and modelling approaches, there is important and interesting work

to be done in order to maximise the potential of COS.

1.2.2 Health assessment and selection in IVF

In every IVF cycle, embryologists are required to select which oocytes, sperm and

embryos should be used. These decisions, which are fundamental to the success

of IVF [100], are all motivated by the assessment of quality, requiring knowledge

of which factors indicate ‘good quality’, and the correct tools to measure these

indicators. It is a great mathematical challenge to develop new tools with which

we can accurately assess the quality of oocytes, sperm and embryos.

Before exploring selection challenges in more detail, we highlight the import-

ant requirement that clinical assessment methods in IVF must be non-invasive,

meaning they have zero detrimental impact on the oocyte, fertilisation, sub-

sequent embryo development, ability to establish a pregnancy or the expected

lifespan and health of the offspring compared to non-ART conceived individuals

[119]. With this in mind, we will first review mathematical works in oocyte health

assessment.

1.2.2.1 Oocyte assessment

Following a successful COS protocol, a cohort of oocytes is available for fertil-

isation. Whilst fertilisation requires both sperm and oocyte, there is evidence

suggesting that the quality of the oocyte primarily determines the viability of

the resulting embryo [119–122]; this means oocytes must be carefully assessed in

order to identify those most likely to develop when fertilised, and information on

the quality of each oocyte may be useful in embryo selection later during treat-

ment. Identifying poor quality oocytes could also be a mechanism for avoiding

fertilising those which have a high risk of failure, reducing the number of excess

embryos and, therefore, reducing wasted resources [109].

A popular non-invasive method of oocyte assessment is through describing the

oocyte morphology, the physical appearance of the oocyte under a microscope

[109, 119, 122]. A schematic diagram of the human oocyte, taken from [123],

is given in Figure 1.5a, and microscope images of human oocytes in Figure 1.5b

taken from [124].

The visual identification of morphological features and anomalies is common

practice in the clinic [122, 125–127]. For example, grading of the cytoplasm is
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(a) Diagram of a human oocyte, taken from [123].

(b) Microscope images of human oocytes which have been stripped of the cumulus and
corona cells, taken from [124]. CPM is used as shorthand for cytoplasm, with CPM CC
on the left representing a healthy oocyte with a smooth, homogenous cytoplasm sur-
face. The middle and right images represent oocytes with morphological abnormality,
where CPM CGA demonstrates cytoplasmic granularity and CPM DC has a darkened
cytoplasm.

Figure 1.5: The human oocyte: (a) schematic diagram. (b) microscope images.

often considered [122, 124], as shown in Figure 1.5b, where the colour and texture

of the cytoplasm are assessed. Both [109] and [122] are comprehensive reviews of

the use of morphological oocyte assessment, which agree that studies reporting

on the correlation between abnormalities and outcome are often contradictory or

unclear. With the exception of very severe defects, abnormalities often do not

predict outcome when considered in isolation [109, 122]. The weak predictive

power of abnormalities is partly attributed to their high incidence rate, with one

study reporting at least one form of abnormality in up to 70% of retrieved oocytes

[125]. The clinical significance of these abnormalities remains, thus, uncertain;

studies of morphological assessment of oocytes seem to yield conflicting conclu-

sions on their relation to embryo viability [128–132]. For example, darkness and

discolouration of the oocyte have been reported as both detrimental [129] and

unrelated [130] to outcome. Furthermore, many oocytes with ‘normal’ morpho-

logy also do not result in pregnancy, despite leading to healthy-looking embryo

in the lab following fertilisation [125].
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Current oocyte morphology assessment methods appear to prioritise identi-

fying singular features which deviate from the expected morphology of a healthy

oocyte, before testing whether their correlation with clinical pregnancy rates.

Instead, we propose tackling this problem in reverse; statistical exploration of

large, labelled datasets to identify combinations of morphokinetic features which

correlate with improved, or diminished, clinical pregnancy outcomes. Such an

exploration is a form of pattern recognition, and would hence be well suited to

machine learning.

In general, despite morphological parameters remaining the main criteria by

which oocyte health is assessed, they are limited by being subjective and depend-

ent on the judgement and expertise of the embryologist [122]. A proposed, albeit

invasive, alternative is chemical analysis of both the contents of the cytoplasm,

and the material excreted by the oocyte into the surrounding media [119, 125],

which have a more firmly established relationship with the oocyte health. An-

other alternative, non-invasive approach is to use specialist imaging techniques,

such as fluorescent lifetime imaging [133] or Raman spectroscopy [134], which

can probe chemical markers inside the cytoplasm that may in turn be correl-

ated with oocyte health. Unfortunately, these chemical and imaging approaches

have not been implemented in the clinic thus far, since they either lack human

trials, use technology which is not available in the clinic, are too expensive or

time-consuming to incorporate into regular treatment protocol, or are invasive

[122].

There is a gap within current oocyte assessment techniques, since no tech-

nique proposed thus far is non-invasive, objective, reproducible and viable in the

clinic [122]. A new non-invasive approach proposed in [135] bridges this gap, how-

ever, by correlating the rate of visible movements in the cytoplasm of embryos

immediately after fertilisation, imaged using high speed cameras, with known

metabolic indicators of viability, which are not visible. Understanding this work

first requires that we introduce some biology of the cytoplasm.

The cytoplasm describes the contents inside the cell wall around the nucleus

[136], and is made up of membrane-enclosed organelles, such as the mitochondria

and endoplasmic reticulum, in addition to a concentrated aqueous gel known as

the cytosol. The cytosol is made up of a crowded system of particles of varying size

[136], from small molecules such as carbon compounds and monomers, to larger

particles such as proteins, nucleic acids and polysaccharides [136]. The cytoplasm

additionally contains a network of protein filaments called the cytoskeleton, which

are crucial to the shape, organisation and mechanical properties of the cell [136].

In oocytes, sperm entry triggers rhythmic spasms in the cytoplasm [135],

which can be observed under the microscope [135]. It was shown in experiments
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[135] that the pattern and speed of these movements are correlated with Ca2+

waves in the cytoplasm, which are indicative of embryo viability. Additionally, the

movement of the cytoplasm was related to cytoskeleton health in [135], through

the use of invasive experiments in which oocytes were injected with messenger

RNAs, which encode for two proteins that bind either to myosin or actin, which

together form a crucial element of the cytoskeleton. The proteins encoded by the

messenger RNAs were tagged with forms of Green Fluorescent Protein (GFP),

such that increased actin or myosin activity could be measured as an increase in

the intensity of fluorescence. Spikes in fluorescence were correlated with spikes in

the cytoplasmic movement speed, indicating that cytoplasmic movement could be

used as an alternative method to measure actin and myosin activity. Crucially,

direct measurements of Ca2+ waves or cytoskeletal properties usually requires

invasive techniques, such as potentially harmful dyes and excitation light [135].

The latter work is, thus, an exciting development, because imaging of the cyto-

plasm can be achieved using red light, which is known not to affect development

of the embryo and therefore is much less invasive than other methods of studying

properties of the cytoskeleton.

The movement of the cytoplasm therefore has the potential to be used as a

proxy variable for biological health markers in zygotes, with a proven relationship

to embryo viability. Mathematical modelling of the mechanochemical coupling

between the Ca2+ dynamics and the observed spasms in cytoplasm of the zygote

is therefore of interest, since understanding this coupling could lead to the de-

velopment of a day 1 assessment tool for IVF treatments. Whilst [135] focusses

on very early zygotes, immediately after fertilisation, even earlier analysis of the

movement in the cytoplasm of oocytes, prior to fertilisation, could be used to

select the highest quality oocyte for treatments.

For example, cytoplasmic movement profiles of mouse oocytes generated using

Particle Image Velocimetry (PIV) have been used to identify the absence of a ring

of Hoechst-positive chromatin surrounding the nucleolus, which leads to failure in

development of the resulting embryo [137]. Whilst this work demonstrates that

the movement of the oocyte cytoplasm contains predictive information which can

be used to identify poor quality embryos, we propose to extend this analysis to

explore whether we can rank-order oocytes by quality.

The cytoplasm of eukaryotic cells is in constant motion, held in a state of

non-equilibrium by active processes [138], where the term ‘active’ implies the

expenditure of energy by the cell. One of these processes is active diffusion [138],

a biological analogue of the random movement, known as Brownian motion, which

derives from thermal motion [139]. The term active diffusion has been coined

because particles in the cytoplasm move in a random directional manner, which
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is characteristic of diffusion, but over much larger distances than Brownian motion

would cause in a viscoelastic medium of such high viscosity [140, 141]. Active

diffusion primarily acts through the actin-myosin interactions in the cytoskeleton

[140, 142], as so called ‘myosin motors’ interact with actin filaments to create non-

thermal pulses which pull the cytoplasm, and the particles contained therein,

along with it. Detail of the exact mechanics of interaction between actin and

myosin is beyond the necessary information required for this work; we need only

be aware that as the filaments interact, motor molecules enact a directed linear

movement along the filament they interact with, resulting in cytoplasmic drag

which follows this movement.

There is a complex relationship between thermal and mechanical effects within

the definition of active diffusion, with thermal movement driving the likelihood of

interaction between actin and myosin filaments which, in turn, create mechanical

movement [140]. Active diffusion also exhibits a complex relationship with the

viscosity of the cytoplasm, which controls the response of the cytoplasm to the

short non-thermal pulses enacted by actin-myosin interactions. Elucidating the

exact nature of these interactions is beyond the scope of this thesis; we need

only know that considered over the scale of the entire cell, active diffusion is

characteristically equivalent to Brownian diffusion on a faster timescale. The

presence of active diffusion in the oocytes of various species is well documented,

including mice [143], Drosophila (fruit flies) [142, 144] and frogs [145].

A second process of interest is cytoplasmic streaming, in which a large-scale

net flow results in the mixing of the cytoplasm [146, 147]. It is a hypothesis

that cytoplasmic streaming is important to cell metabolism [148]. Streaming

is observed commonly in plants and algae [148, 149], as well as in the oocytes

of Drosophila [142, 150], mice [151] and humans [152]. Whilst the presence of

streaming in human oocytes is clearly significant in the context of IVF, we note

that understanding the streaming observed in mouse oocytes is also important,

since mouse models are used to inform human studies [153].

There are several types of cytoplasmic streaming [154], as shown in Figure

1.6; Drosophila oocytes, for example, demonstrate a semi-random pattern where

multiple flows in different directions can appear across the cell, although the

speed of the flows are faster at the anterior than the posterior of the cell, moving

down a gradient [142]. In mouse oocytes, the streaming takes on a bi-directional

circulatory flow [151], where the cytoplasm streams upwards through the centre

of the cell from some ‘drain’ pole to a ‘source’ pole, flowing down the sides of the

cell back to the drain again. Different types of streaming are seen in plant cells,

such as ‘spiralling’ flows in algae [147]. All three of these types of streaming are
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visualised in Figure 1.6, although of the three, we are primarily interested in the

mouse oocyte due to its applications in IVF research.

Figure 1.6: Schematics of the cytoplasmic streaming behaviour in various cells,
alongside annotated microscope images of each showing the direction of the local
velocity field.(a) Chara corallina algae, schematic adapted from [154] and micro-
scope image taken from [154], (b) mouse oocyte, schematic adapted from [151]
and microscope image taken from [155] (c) Drosophila (fruit fly) oocyte, schem-
atic adapted from [142, 154] and microscope image taken from [150].

Together, active diffusion and cytoplasmic streaming represent the combined

effects of diffusion and advection. Hence, advection-diffusion equations are used

to describe cytoplasmic streaming [147, 150, 156, 157],

∂C

∂t
+ v · ∇C = ∇ · (D∇C), (1.2.1)

where C is the concentration of some chemical component of the cytoplasm,

D (µm2/s) is an unknown (not necessarily constant) diffusion coefficient and v

(µm/s) is the velocity field. The cytoplasm is frequently modelled as an incom-

pressible Newtonian fluid [147, 150, 154], which allows the velocity field to be

modelled by the Navier-Stokes equations. The validity of this assumption has

been studied in depth; despite the cytoplasm being densely packed with poly-

mers, non-Newtonian behaviour is only observed in the cytoplasm of drosophila

oocytes at timescales less than 0.4 seconds. Whilst in depth study of conditions

precluding incompressible or compressible behaviour in oocytes is available [158],
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simulations based on the Navier-Stokes equations have accurately reproduced the

flows seen in the cytoplasm of the embryos of C. elegans.

In addition to the assumption that the cytoplasm is an incompressible Newto-

nian fluid, steady state flow is also assumed, and the system is initially considered

to be at rest [159]; boundary conditions are dependent on the cell type being mod-

elled [147]. A common and appropriate assumption is that cytoplasmic flows have

low Reynolds number. The Navier-Stokes equations then reduce to the (linear)

Stokes flow [147, 154], i.e

∇ · v = 0, η∇2v = ∇p, (1.2.2)

where η is the dynamic viscosity and p the pressure of the fluid. Given estimates

for D, Equations (1.2.1) and (1.2.2) can be numerically solved to determine v

and C, and hence the movement of the cytoplasm in an oocyte [151]. However,

we are interested in the inverse problem. Since active diffusion and cytoplasmic

streaming both require the expenditure of energy, it is possible that oocytes with

more energy display faster cytoplasmic movements. Hence, a new non-invasive

oocyte assessment method could be developed by measuring D and v from a given

time-lapse movie of an oocyte, and correlating these values with some measure

of metabolic activity, such as ATP concentration, with a known relationship to

embryo potential.

For this assessment method to be implemented in the clinic, the potentially

non-monotonic relationship between movement parameters and oocyte quality

should be elucidated, but investigating this correlation is only possible if we have

appropriate tools to extract movement parameters from the cytoplasm. Equations

(1.2.1) and (1.2.2) provide a model for the streaming behaviour we expect to see

in the cytoplasm, which can be compared with live imaging data which visualises

streaming. However, new mathematical tools are required to understand the

relationship between cytoplasmic movement and the images such movement will

generate. These tools, which will combine statistical-mechanical modelling of

cytoplasmic movement with mathematical descriptions of image formation and

image analysis techniques, may be used to work backwards and determine the

parameters which resulted in the observed data. More detailed exploration of

the importance of mathematical descriptions of image formation in the pursuit

of oocyte health assessment can be found in Chapter 5.

A number of image analysis methods have been previously used to track intra-

cellular movement in oocytes, namely single particle tracking (SPT) [160, 161],

particle image velocimetry (PIV) [135, 150, 152, 162], and more recently, dif-

ferential dynamic microscopy (DDM) [142]. More detailed descriptions of these

methods are presented in Chapter 2. Of these techniques, we are interested in
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DDM, which has performed well in classifying the velocity of advection-diffusion

processes [142, 163, 164]. In particular, DDM has been successfully used to

quantify the rates of active diffusion and cytoplasmic streaming in Drosophila

oocytes [142]. However, to date, the statistics reported from DDM have not been

used to predict oocyte health; this poses another exciting mathematical chal-

lenge, to probe the relationship between auto-correlative statistics returned by

DDM analysis, and measurements of oocyte health and viability. In Chapter

3, we introduce methods for simulating images, which are used in Chapter 4 to

explore the relationship between the statistics determined in DDM analysis, and

the parameters driving the simulated movements.

1.2.3 Sperm selection

The health of the sperm is also assessed in IVF [165]. The sperm cell is a highly

adapted DNA delivery system, essentially a ‘stripped down’ cell designed to pro-

pel itself through an aqueous medium using its flagellum [166]. These are the

smallest cells in the human body [167], lacking many of the typical cytoplasmic

organelles found in eukaryotic cells, such as ribosomes or endoplasmic reticulum.

Once the sperm has reached an oocyte, its purpose is to bind to the zona pel-

lucida and penetrate it [166, 168]. Sperm research could, thus, be broken down

into two stages; reaching the oocyte and penetrating the oocyte.

Mathematical modelling has been extensively used to study sperm motility.

Highly complex fluid-solid interactions dictate the coupling of biomechanics of

the sperm to the surrounding fluid [169–172]. We will not review these mod-

els in this work; we will instead focus on measurements from the clinic used to

assess sperm quality. These include semen volume, concentration, total sperm

count, motility, vitality (whether non-motile cells are alive or dead), pH and

morphology [165]. Together, these measurements influence whether or not to use

ICSI (intracytoplasmic sperm injection), by identifying cases where poor motil-

ity or inability to bind with the zona pellucida would prevent natural fertilisa-

tion. Mathematics also plays a role in this sperm classification process, through

computer-aided semen analysis [165], which uses automated cameras and software

to analyse microscopy images of semen, measuring parameters much faster than

humans [173]. However, computer-aided analysis is imperfect, with unreliable

results being reported in samples which have higher viscosity, are debris-filled

or clumped together [173]. Additionally, morphology appears difficult to classify

through automated means [173]. The solution to these challenges may be novel

AI approaches; despite these showing promising results [174, 175], they could still

benefit from further development. Additionally, coupling sperm microscopy with
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the available biomechanical models is not a current feature of semen analysis in

the clinic [165], but could provide new insight into semen analysis.

1.2.4 Embryo selection

Having assessed the quality of the oocytes and sperm, fertilisation can be un-

dertaken either by mixing of oocytes and sperm, or through ICSI. The average

number of oocytes retrieved per patient is between 10-12 [176, 177], and around

70% of oocytes are expected to fertilise successfully [178], which means a cohort

of 7-9 embryos can be expected. However, the transfer of more than one em-

bryo per cycle is strongly correlated with a significantly increased risk of multiple

pregnancy, with a reported 33.1% multiple birth rate in double embryo trans-

fer patients compared to 0.8% in single embryo transfer patients [179]. Multiple

pregnancy is associated with increased risk of serious medical conditions [180]

and increased mortality, particularly in older patients [181]. Subsequently, the

HFEA has set a directive that less than 10% of IVF pregnancies should result

in multiple births, leading to the prevalence of elective Single Embryo Transfer

(eSET) [182].

In reality, whilst eSET is strongly encouraged, multiple embryo transfer can

be undertaken when deemed appropriate, depending on factors such as patient

age and the quality of the available embryos [36]. We focus on the encouraged

practice of eSET, however, in which only one embryo is transferred in the first IVF

cycle, regardless of whether that cycle is fresh or frozen. The unselected embryos

can be cryopreserved if they are of good quality, and used in future cycles, as

discussed in Section 1.1.1. However, by improving the embryo selection criteria,

we may be able to identify the ‘best’ embryo, the one with the greatest potential

to implant. This may reduce the need for many IVF cycles, and improve clinical

pregnancy rates [183, 184].

In many ways, assessment of embryos resembles that of oocytes, since mor-

phological features are studied for both [184–186]. The typical morphology of an

embryo at the blastocyst stage is presented in Figure 1.7. The key features of a

blastocyst are [187, 188]:

• The inner cell mass (ICM), a dense ball of cells inside the trophectoderm

which will develop the embryo itself [187].

• The zona pellucida, a thick extracellular matrix that surrounds the embryo

[188].

• The trophectoderm, a thin layer of cells that will eventually contribute to

the placenta [187].
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• The blastocoel, a fluid filled cavity inside the trophectoderm [187].

• The perivitelline space, not shown in Figure 1.7, which describes the space

between the trophectoderm and the zona pellucida. Although the space

itself is not considered during embryo quality assessment [36], the abnor-

mal presence of extracellular cytoplasm in the perivitelline space has been

evaluated as a measurement of embryo quality [189].

Figure 1.7: The morphology of a typical embryo at the blastocyst stage. The cells
of the embryo are contained inside the zona pellucida, with the trophectoderm
surrounding the inner cell mass (ICM) and fluid-filled blastocoel. (Left) Diagram
produced using BioRender. (Right) Image of an embryo graded as 3AA using
the Veeck and Zaninovic system, a slightly modified form of the Gardner system
(using which, this embryo would be classified as 4AA [36]) . Taken from [190].

Embryo classification often takes the form of a standardised, categoric grading

system, which consists of a set of quality labels. The Gardner system is the most

well known classification scheme [77, 78, 191]; size and development stage are

assigned an integer from 1 to 6 (least to most developed), whilst embryos of grade

3 or above receive two additional classifications, for the ICM and trophectoderm

respectively. These grades, either A, B or C, reflect the number and arrangement

of cells, from highly dense to sparse [192]. Hence, the ‘top scoring embryos’ are

3AA and above. Although embryo grading is widely used in the clinic [193], it is

highly subjective. Studies that involved classifying the same embryos in different

clinics have highlighted this limitation [194, 195], which considerably weakens the

predictive power of assessment.

A further drawback of embryo grading is that the grade is based on morpho-

logy at a single time point [185], despite the growth of an embryo being a dynamic

process with dramatic changes observed during the 5-6 days of development be-

fore transfer or freezing [196, 197]. Research has, thus, moved away from studying

morphology at one time point, and focuses on an emerging set of non-invasive
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assessment techniques using time-lapse microscopy. Where morphology described

the structure of the embryo in a static image, the term ‘morphokinetics’ is used

to describe these time-dependent morphological observations and measurements

[57, 198, 199].

Morphokinetic studies have identified a number of potential indicators of em-

bryo viability, resulting in several hierarchical classifications of embryos which

propose to predict viability. Three implementations of time-lapse morphokinetic

analysis stand out. Chavez et al. [200] collected several morphokinetic paramet-

ers, including the time between mitosis (cell division) stages and the duration

of first cytokinesis (cell cleavage during cell division), to identify combinations

of measurements that correlate with genetic abnormality in the embryo, which

is negatively correlated with viability [200]. Additionally, automated boundary

detection was used to measure and categorise the level of cell fragmentation, the

appearance of membrane-bound extracellular cytoplasm in the perivitelline space

[189], which is considered a predictor of negative outcome.

Secondly, Meseguer et al. [57] proposed that a smaller variance in the timing of

key embryo developmental stages is an indicator of embryos more likely to implant

successfully, and provided a hierarchical classification that could be trialled as a

selection protocol in the clinic.

Similarly, Wong et al. [61] identified the duration of the first cytokinesis, in

addition to the timings of the P2 (time between 1st and 2nd mitoses) and P3

(time between 2nd and 3rd mitosis) events, as key development markers, using

automated tracking algorithms to determine the timing of the events [201, 202].

They concluded that normal embryos obeyed strict timing in all three events;

large deviations from these timings correlated with developmental failure. These

studies demonstrate that time-lapse imaging can be used as an extension of the

morphological assessment currently undertaken in IVF clinics, adding event tim-

ings to the collection of available methods used to select embryos.

Reviews of time-lapse incubation [55, 56, 60, 198, 203–205] paint a mixed pic-

ture of current practice. Integrating time-lapse incubators into the clinic has not

yielded immediate improvements to clinical outcomes, but whilst many identify

potential for time-lapse imaging to provide additional information for embryo se-

lection, the general consensus is that we lack the tools to currently make full use

of these data [56, 60, 198, 203–205]. One barrier to utilising time-lapse imaging

is a lack of randomised control trials, which are difficult to undertake due to

stringent ethical restrictions and lack of available human embryos, compared to

retrospective studies. Additionally, a significant number of confounding variables

such as patient age, the number of previous cycles and the variation in COS

protocols additionally determine clinical outcomes, making it more difficult to
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evaluate the effect of embryo selection. Finally, there is a shortage of reliable,

quantifiable measurements, related to embryo quality by a sound scientific basis,

that could be used to inform embryo selection [55, 56, 60, 203–205].

In the grading of both embryos and oocytes, there is emerging interest in

automation. One commercially available system, EEVA [206], claims to predict

viability from time-lapse imaging of Day 3 embryos, by measuring the timing of

P2 and P3 events [206, 207]. There is also great interest in AI-based tools for

embryo selection, summarised in [208], to perform a number of tasks including

embryo quality assessment [190] and counting the number of cells in the embryo

[209], as well as predicting genetic abnormality [210], implantation potential [211]

and pregnancy outcome [70].

Whilst these appear promising, AI implementation in the IVF clinic faces

several limitations. Given the success rate for IVF treatments is no greater than

30%, training data frequently has significant class imbalance (where the negative

outcomes significantly outweigh the positives), which can result in overestima-

tion of negative outcome by an AI model [212]. Furthermore, where different

studies use a variety of network architectures and evaluation metrics, comparing

studies can be challenging, so it is difficult to determine which AI approaches

show the greatest performance [212]. Many AI approaches, though apparently

successful in the data they are trained in, fail to perform well when generalised

to other datasets [213]. Overcoming the limitations of current AI approaches is

an important and interesting mathematical challenge; key hurdles include finding

effective methods for overcoming class imbalance, beyond simple downsampling

of the dominant class, and implementation of metrics to make AI decisions more

‘explainable’. Explainability is a crucial characteristic of AI models in medical

settings, which can highlight important flaws or bias in the AI decision making

process and improve reliability of trained networks. Many of the studies dis-

cussed here lack consideration of potential bias in the training dataset; these

approaches would benefit from even very simple analysis of the accuracy of the

network within subpopulations, to guard against discrimination. Furthermore,

mathematical understanding of the design and architecture of AI models may

yield new AI models which are robust to highly variable time-lapse image data

available to clinics.

Although these statistical challenges are beyond the scope of this thesis, we

explore the utility of AI in embryo selection in Chapter 7 in a different way.

Rather than using AI as a decision making tool, we instead train a neural network

to perform automated segmentation of time-lapse images, yielding measurements

which we correlate statistically with clinical pregnancy outcome to identify a new

potential metric of embryo viability.
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1.2.5 Optimal cryopreservation protocols

In this section, we will examine cryopreservation protocols in more detail. Modern

cryopreservation practice has a survival rate of around 90% for oocytes [214],

and over 95% for embryos [215, 216]. Though the risk is small, some oocytes

and embryos may not survive the cryopreservation process. Freezing is lethal

to most living systems [217], with a variety of mechanical and chemical factors

resulting in cell death at low temperatures [218, 219]. A key contributor to cell

death during cryopreservation is the presence of large ice crystals forming in the

cytoplasm [220], which expand during their formation and result in mechanical

damage to the cell. Cryopreservation techniques in IVF have therefore been

designed to minimise the formation of such crystals. There are two fundamentally

contrasting cryopreservation techniques, slow freezing and vitrification [31]. Both

techniques involve some form of Cryoprotective Agent (CPA). Slow freezing relies

on controlled cooling and the dehydration of cells over a large time, around 10

minutes [221], to minimise ice formation [31, 222], whereas vitrification uses high

cooling rates to cause the tissue to enter a glass-like state of thermodynamic

in-equilibrium [31, 222, 223], over a timespan of seconds [224]. Vitrification has

been used for cryopreservation of embryos and gametes for decades [225], and is

now the dominant method of cryopreservation in IVF [226].

The key factors determining the success of vitrification are high cooling rates

[222, 224, 227], high rates of warming during oocyte/embryo thawing after storage

[228], the application of high concentration permeating CPAs [223, 229] in low

volumes (typically less than 1µl) [224, 230, 231], and minimising the distance

between the cells and the liquid nitrogen [232]. A number of different devices

and techniques have been developed to facilitate vitrification [233–235], but the

device we will focus on in this work is the Open Cryotop® [224], which is used in

over 2200 clinics distributed over more than 100 countries [236]. Further detail

on the Open Cryotop®device can be found in Chapter 6.

Whilst the Open Cryotop®protocol is very detailed and specific about the

timing of each vitrification stage, it allows flexibility on the number of embryos

or oocytes cryopreserved on a single device, with up to four being permitted

[237]. The optimal number of embryos or oocytes vitrified at once may therefore

be questioned. A retrospective study [238] reports that the post-thaw survival

rate of embryos is affected by the number of embryos vitrified simultaneously,

and states that further work is required to determine the optimum number.

When more than one embryo or oocyte is vitrified simultaneously, the relative

position becomes important. Hence, it is not only the number of embryos or oo-

cytes, but also their arrangement that may affect the cooling process. Embryos
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and oocytes are likely to affect the cooling rates of their near-neighbours more

so than those spaced far apart. Hence, it is possible that even with a constant

number of embryos or oocytes, there exists an optimal arrangement the embry-

ologist should aim for. Some examples of arrangements of four oocytes, based on

real clinical observations, are given in Figure 1.8.

Figure 1.8: An illustration by senior embryologist, Diana Tain, depicting some of
the observable patterns which groups of four oocytes have formed when vitrified
together on the same Cryotop®device. Taken with permission from [239].

Improving cryopreservation requires a multidisciplinary approach, drawing on

knowledge from Engineering, Biology, Chemistry, Physics and Mathematics. The

main mathematical approach to this date has been the development of com-

putational PDE models to predict the cooling and warming rates of different

cryopreservation devices [240–245]. Experimental work [217, 228, 229, 246] al-

lows cooling and warming rates to be related to the relative risk of damage to

the vitrified embryos and oocytes. Combining these experiments with mathem-

atical models allows for the design of in silico experiments, which can predict

the outcomes we would observe in real experiments. In Chapter 6, we use a

computationally-resolved mathematical model to demonstrate that there is no

optimal number or arrangement of oocytes or embryos on the Cryotop®device,

with respect to ensuring a sufficiently high cooling rate.

1.2.6 Post-thaw embryo assessment

In FET, the embryos used are often referred to as ‘frozen-thawed’ [53], which

reflects the process by which embryos are taken out of storage and warmed before

transfer [73, 247]. The warming protocol for the Open Cryotop®resembles the

vitrification process in reverse [248]. The embryos are removed from storage and
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warmed in a series of different chemical solutions, to resume their physical and

chemical processes. Thawed embryos are then transferred to the uterus in the

same way as fresh ones. So far, we have considered assessment of oocytes and

embryos, in order to choose the best candidate from a cohort. The selection

process in thawed embryos is subtly different, because when a number of frozen

embryos are available, clinicians will thaw only a single embryo for transfer. In the

event of cell death being identified by the embryologist following cryopreservation,

another embryo is thawed only when the first is damaged. The average clinical

pregnancy rates of FET in Europe is 22.3% [216], which is comparable with the

overall clinical pregnancy rates for all treatments (see Table 1.1); this suggests

that cryopreservation is not detrimental to success rates, and further suggests

that embryos which do not survive cryopreservation are identified correctly by

embryologists, since their use would reduce success rates.

Although an embryo may survive vitrification, this does not guarantee its

success in IVF treatments. Assessment of embryos following thawing from cryop-

reservation is therefore an interesting and important challenge, with the potential

to improve clinical pregnancy rates by identifying and discarding poor quality

embryos in favour of a second candidate. This selection process has different im-

plications than gamete or embryo selection, however; each embryo is the result of

considerable financial, psychological and time investment for the patient, so the

unnecessary waste of good quality candidates is an important factor to be con-

sidered. Therefore, designing reliable metrics that can measure the implantation

potential of a thawed embryo is critical to make the right decision at this stage.

Since FET occurs after oocytes and embryos have been assessed prior to cryo-

preservation, their respective grades at earlier stages can be used to choose which

embryo to thaw first. However, the assessment prior to vitrification cannot fully

determine the viability of the embryo post-thaw [66], due to the damage which

can be incurred through vitrification. During cooling, cells undergo significant

volume reduction as water is replaced with cryoprotectant; during warming, they

re-expand through rehydration [78, 249]. Shrinking, expansion or their combina-

tion can result in damage [78, 249, 250]. Therefore, we need to develop assessment

methods for accurately determining embryo viability after thawing.

Some efforts in this direction have been undertaken [67, 69, 71–73, 78, 247,

249–254]. These works utilise the same machinery involved in oocyte and embryo

assessment prior to cryopreservation, namely time-lapse or single-frame micro-

scopy. Time-lapse imaging generates complex spatio-temporal data, so many

studies tend to make simplifying assumptions by restricting the number of fea-

tures of interest, such as the formation of the blastocoel [67, 71, 73] (see Figure

1.7), as well as the complexity of each feature, and the number of time points
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sampled at. Below, we classify the literature by the method used to simplify and

analyse the time-lapse (or single frame) image data available in the clinic.

The most restrictive approach involves reducing the measurements on each

embryo down to only a small set of discrete classifiers, thus removing the depend-

ence on continuous measurements. These approaches wait until full re-expansion

stops, labelling embryos depending on whether they have expanded to reach their

original, pre-vitrification size within two to four hours [249, 252]. Failure to re-

expand within this time-frame is considered a negative indicator of the potential

to implant [69]. A slightly more complex method is adopted in [253], where a

hierarchical structure is defined based on a combination of two binary classifi-

ers, namely whether the embryo has re-expanded back to its original size at a

fixed cut-off time of 5-6 hours, and whether the blastocoel has formed or not.

Considering ‘good’ embryos to be those which developed to the hatching stage,

the four groups defined by the binary classifiers were shown to exhibit different

rates of development, and it was implied that this classification could be used to

distinguish viable embryos from those which have shrunken [253].

In other approaches, pairs of time points are sampled. In [251], the initial

cell area and zona pellucida thickness were measured, as well as the minimum

zona pellucida thickness, the maximal cell area and the time taken to begin re-

expansion. Each of these measurements was assigned a threshold (i.e. the zona

pellucida being less than, or greater than, 14µm in thickness), such that the

authors could compare implantation and survival rates of the embryos based on

each measurement. The results tended to suggest that embryos with thinner

zona pellucida and higher initial area implant more frequently, with the timing

of the re-expansion of the embryo not being a statistically significant indicator

of implantation rate. This work was further developed in another study [250],

which recorded the time after warming at which re-expansion begins, as well

as the initial and maximal area of the blastocyst during re-expansion. The key

development of this work was the creation of a scorecard, similar in style to the

Gardner criteria described in Section 1.2.4. A single grade from A to D is assigned

to each embryo, depending on a mixture of measurements of the ICM area and

trophectoderm morphology. It has been concluded in [250] that the assigned

label, and the time at which re-expansion begun, does not predict implantation

rate.

Another common approach using two time points is to consider either the

‘mean expansion rate’, by dividing the change in size of features the time elapsed

[247, 255], or an absolute change in embryo size over a fixed time [78]. In these

works, the cross-sectional area of the ICM is measured by treating the ICM

as an ellipsoid with perpendicular major and minor axes. These measurements
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give an approximation of the rate of re-expansion of each embryo. All three

works [78, 247, 255] suggest that faster re-expansion rates correlate with improved

implantation rate. A similar metric is the time taken for complete re-expansion

[69], which, unlike the previous expansion rate measurements, is independent of

initial and final embryo size. The study of 144 women suggested that shorter

expansion times correlate with increased clinical success, with a mean time to

re-expansion of 0.6 ±0.42 hours for live births, compared to 1.3 ± 1.19 for non-

pregnancy [69]. We note, however, that the high standard deviations of these

reported outcomes mean we cannot necessarily predict the outcome of an embryo

based on its re-expansion time .

Notably, by only considering the start and end time points for re-expansion,

the approaches in [69, 78, 255] cannot observe non-linear expansion rates. Ex-

amples of observations of non-linear behaviour are found in both [247] and [250],

which count the number of contraction events, where the blastocyst cross-section

decreases in size and pulls away from the zona-pellucida following re-expansion.

The final class of literature therefore considers continuous measurements of em-

bryo features during re-expansion, such as contractions. More frequent contrac-

tions were shown in [247] to correlate to poor embryo quality (organelle and

genetic abnormality). In contrast, [250] only measured whether one or more con-

tractions had occurred, concluding that the presence of a contraction does not

predict implantation rate.

In summary, much of the existing work on the morphology of post-thaw em-

bryos either does not consider morphokinetics during re-expansion [67, 69, 71,

73, 249, 250], or takes into account only a few time points [78, 247, 250, 255].

The only feature considered over multiple time points was contraction during

the re-expansion process [247]. The current state of time-lapse imaging in post-

thaw embryos shows that there is scope for more mathematical and statistical

analysis of post-thaw embryo behaviour during re-expansion, rather than after

re-expansion.

1.2.7 IVF logistics, planning and optimisation

So far, we have discussed a number of mathematical challenges related to the

protocols and decision making processes in IVF, motivated by the underlying

biological, chemical and physical forces that determine each stage. The IVF clinic

itself, however, is a complex organisation, requiring balance and synchronisation

of patient interaction and treatment, laboratory management and collaboration

with egg and/or sperm banks when donor cells are used. Logistics are important

to consider, in order to maximise efficiency and reduce costs.
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For example, the wait times involved in COS have been studied in [256].

Long wait times are detrimental to the patient experience, and reduce the num-

ber of patients who can be seen by the clinic. They may also increase the risk

of healthcare-associated infections [256]. A ‘lean management’ strategy is con-

sidered in [256], which allows a clinic to identify various causes of operational

inefficiency, such as repeated and unnecessary registration steps, poor utilisation

of nurses and even poorly designed office space, leading to reduced productivity.

Solving some of these challenges cut total waiting times by more than half in

the Yasmin Fertility Clinic in Jakarta, Indonesia, demonstrating the power of

logistics planning in the clinic [256].

Another important logistics consideration for the fertility industry is the trans-

port and storage of donor oocytes and sperm, addressed in [257]. Cells which have

been vitrified are highly sensitive to temperature changes, making it critical to

ensure temperatures never rise above a threshold of −180◦C. Despite stringent

safety steps being obeyed, a large difference in survival rates was observed in

[257] for oocytes transported using different means. The data from this study

came from real multi-centre oocyte transports, but future investigations would

benefit from predictive mathematical models that facilitate safer, cheaper in silico

experiments before moving into trials with human cells.

Whilst operations research for IVF clinics are few, other healthcare settings

have already been studied in detail [258–260]. Each healthcare setting is different,

however, so approaches considered in one field may not be suitable in another;

still, we do not need to reinvent the wheel. Hence, collaboration between opera-

tions research experts (mathematical modellers) and IVF clinics is an open and

exciting avenue in this field.

An increasingly important consideration is the environmental impact of IVF.

It is interesting to note that literature on the detrimental impact of pollution on

IVF success rates is well documented [68, 261–264], but the impact of IVF treat-

ments on the environment is less understood. Although we could not find any pub-

lished research on the impact of IVF on the environment, a lecture given as part

of the International IVF Initiative (i3) by the embryologist Roisin O’Raghallaigh

identified single use plastics, fuel emissions from transport, energy usage by the

clinic and more as factors to consider [265]. With the increased popularity of IVF,

the environmental impact of IVF will continue to grow, so there is an increasing

need to make treatment practices more sustainable.
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1.3 Thesis outline

In this thesis, we cannot hope to address every mathematical challenge discussed

above; we focus our efforts on a few key challenges. The thesis is divided into

two parts.

In the first part, we explore the use of Differential Dynamic Microscopy

(DDM) as a non-invasive oocyte health assessment tool. In Chapter 2, we define

the DDM algorithm, and apply it to a sample oocyte dataset in 2.3. Based on the

results of this analysis, we introduce simulation-driven methods of enhancing the

existing DDM algorithm to improve its performance in oocyte data. In Chapter

3, we introduce synthetic image data in the context of DDM, expanding on para-

meter choices for the appearance of simulated images which ensure the robustness

of DDM analysis. Then, in Chapter 4, we use simulated data to test the limit-

ations of current DDM analysis approaches, and propose new simulation-driven

fitting regimes which relax some of the assumptions required for DDM analysis,

overcoming some of the key challenges faced when applying DDM to oocyte data.

Finally, in Chapter 5, we explore a previously unknown interaction between the

output of DDM analysis, and image shadowing from the phase contrast micro-

scopy used to generate images in commercial time-lapse incubators. We derive

an analytic expression which describes the effect of phase contrast on DDM, from

which we conclude that shadowing does not affect parameter fitting when the

studied motion is isotropic. We further expand our analysis to consider aniso-

tropic advection-diffusion, highlighting potential challenges which could be faced

when implementing DDM in clinical oocyte data.

The second part of this thesis moves away from oocyte selection. In Chapter 6,

we develop a computational PDE model (heat equation) of the Open Cryotop®device,

to predict cooling rates and, hence, show that there is no variable risk of cryogenic

injury to vitrified embryos or oocytes in different numbers and arrangements. Fi-

nally, in Chapter 7, we tackle the challenge of predicting embryo viability from

time-lapse images depicting the re-expansion process after thawing from cryop-

reservation.

We summarise and discuss the work in this thesis, along with future directions,

in Chapter 8.
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Chapter 2

Differential Dynamic Microscopy
(DDM)

2.1 Introduction

Chapters 2-5 set out to evaluate and further develop Differential Dynamic Micro-

scopy (DDM), applied to time-lapse microscopy data, as a non-invasive oocyte

health assessment technique. This chapter has two objectives: to provide a formal

mathematical introduction to the theory of DDM, and to evaluate the validity of

current DDM analysis approaches when applied to time-lapse oocyte data. First,

we will introduce the time-lapse images we analyse in Section 2.1.1. Understand-

ing the data to be analysed is critical to motivating the selection of the analysis

technique; we discuss current available image-analysis techniques in Section 2.1.2,

drawing attention to their strengths and weaknesses, which justifies using DDM

on the available data.

We then provide a review of the theory of DDM in Section 2.2. Whilst we

are not the first to review DDM [164, 266, 267], justification of the steps taken

when handling equations is often omitted, and many of the important assump-

tions which must be considered when applying the technique are not discussed.

Therefore, our review of DDM aims to be the most comprehensive to date, be-

ginning in Section 2.2.1 with the relevant theory that relates the positions of

moving particles to the images that depict them. We then introduce the DDM

method in Section 2.2.2, with Sections 2.2.3-2.2.6 focussing on the analytic theory

of constructing the so-called ‘intermediate scattering function’ (ISF), whilst Sec-

tions 2.2.7-2.2.8.4 discuss algorithmic considerations such as parameter fitting.

We briefly summarise the important assumptions made during DDM in Section

2.2.9.

Finally, we apply the DDM technique to the available time-lapse image data

in Section 2.3. From this analysis, we conclude that whilst DDM analysis has po-

tential to provide new information related to oocyte health, there are a number of
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limitations to overcome, summarised in Section 2.3.5. Tackling these assumptions

forms the basis of the work in Chapters 3 and 4.

2.1.1 Time-lapse images of mouse oocytes

From our collaborators Emily Lewis and Karl Swann in the School of Biosciences,

Cardiff University, we have access to bright-field images of 11 mouse oocytes. De-

tails regarding experimental conditions for the retrieval of the oocytes, and ethics

related to animal work, can be found in Appendix A. Bright-field microscopy

passes light through a specimen, with the formation of the image depending on

the level of absorption of light by the sample [268]. These images, which are taken

once every second, are 2688×2192 pixels in size, where the length of a single pixel

is 230nm. A single frame depicting the oocytes is shown in Figure 2.1.

Figure 2.1: The first frame of a bright-field time-lapse movie depicting eleven
mouse oocytes. Analysis of this data is presented in Section 2.3. Images provided
by Emily Lewis and Karl Swann in the School of Biosciences, Cardiff University.

These oocytes are imaged under two different experimental conditions. The

first condition acts as a control experiment, depicting healthy oocytes under

standard incubation conditions. The second set of images show the same oocytes

30 minutes after the application of FCCP, a metabolic poison that inhibits the

production of ATP in the mitochondria [166]. Without ATP, neither active diffu-

sion or cytoplasmic streaming, described in Section 1.2.2.1, can take place. Hence,

cytoplasmic movement will no longer be described by the advection-diffusion

equation (Equation (1.2.1)). We therefore expect that the rate of movement in

the poisoned oocytes will be slower than in the control oocytes. Determining

whether DDM analysis applied to both datasets matches this expectation is a

useful way of evaluating the performance of current DDM approaches.
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Having introduced the context for the analysis we wish to undertake, we now

briefly review image analysis algorithms in Section 2.1.2.

2.1.2 Image analysis algorithms for quantifying movement
parameters

First introduced in 2008 [266], DDM probes the spatial cross correlation of

multiple particles over time. Applications of DDM include characterising diffu-

sion coefficients in colloidal dispersions [164, 266], measuring advection-diffusion

speeds of bacteria [163, 269] and sperm [270], as well as a host of soft matter

applications [271–273]. DDM is just one example of a set of image analysis al-

gorithms designed to extract statistical information about the movement of a

collection of particles or a fluid, depicted in a series of time-lapse images. When

choosing which algorithm to employ, one must consider the set of strengths,

weaknesses and conditions accompanying each approach, against the nature of

the data being considered. We discuss the two most commonly used alternatives

to DDM, single particle tracking (SPT) [274, 275] and particle image velocimetry

(PIV) [276, 277], which have both been successfully applied to extract the speed

of movement in the cytoplasm of oocytes [135, 150, 152, 160, 162]. By discussing

these techniques, we identify the niche that DDM can occupy in the classification

of oocyte health. Whilst only a brief account of SPT and PIV is provided here,

additional details are given in Appendix B.

2.1.2.1 SPT

SPT assigns a position to each particle in the image in every frame [274, 277].

Each particle is also assigned a unique identity, which means the position from

each frame can be collected to form a trajectory for that particle over time.

Knowing the position of every particle at every time is the most amount of in-

formation that can be extracted from a time-lapse movie, but this is only possible

when individual trajectories are identifiable. This first requires that the position

of all particles in the frame can be determined, known as localisation, excluding

systems where particles can move out of the focal plane, or are sub-pixel in size

and bulk movement is analysed.

Assuming particle localisation is possible, SPT further requires correct linkage

of locations to reconstruct the ‘true’ trajectory of each analysed particle. The

certainty with which we may correctly link particles across frames is a function

of the optical density, which is the distance between each particle, and the size

of the displacements between frames [274], with the exact trade-off being subject
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to the type of movement exhibited. This means SPT ceases to be appropriate in

optically dense, fast-moving systems.

SPT has been applied to oocyte images to track large endogenous particles in

the cytoplasm [160, 161], but the statistical validity of such analysis will be lim-

ited by the number of observable particles, with around 30 accessible in a single

Xenopus (frog) oocyte using epifluorescence microscopy [160]. This number may

be reduced further when considering non-invasive imaging techniques; it is noted

in [160] that when using Differential Interference Contrast (DIC) microscopy, en-

dogenous probes may be required to perform particle tracking. That means that

we are not extracting movement information from the majority of the cytoplasm,

wasting much of the available data. Additionally, in the bright-field images of

mouse oocytes shown in Figure 2.1, endogenous particles are not well visually

contrasted, so SPT will be unable to identify the position of each particle in the

frame. Hence, SPT is not suitable for our data.

2.1.2.2 PIV

PIV tracks local velocity fields which create bulk movement throughout the time-

lapse movie [277]. Each image is partitioned into a regular grid of ‘interrogation

windows’. If particles are subject to a locally coherent velocity field, then particles

in the same interrogation window will have approximately the same displacement

between consecutive frame. These displacements are estimated by sliding each in-

terrogation window from the first frame over the second frame, until the positions

of the particles contained match up.

If SPT yields very specific information, following the trajectory of every

particle individually, PIV can be thought of as a more general technique, since it

determines the average velocity over a grid on the image. The trade-off for losing

such specific information is the relaxation of the sparsity requirement of SPT

[277]. PIV is a very popular technique for studying cytoplasmic streaming [135,

150, 152, 162], and is highly appropriate for measuring flows, seeing extensive

use in fluid mechanics; a summary of such applications may be found in [278].

Whilst one of the strengths of PIV is its ability to describe vector fields which

are spatially anisotropic across the whole image, this still requires the assump-

tion that movement is locally coherent. This assumption is not true of Brownian

motion, and therefore also not true of active diffusion, as particles move inde-

pendently. Therefore, PIV may not be suitable for studying isotropic movement

of independently moving particles, particularly diffusion [279].
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2.1.2.3 DDM

SPT and PIV are both powerful techniques which offer unique insights into cyto-

plasmic movement and flows. However, features of the oocyte data we aim to

analyse violate key requirements of both SPT and PIV. SPT requires a sparse

distribution of particles, but the cytoplasm is a dense, crowded environment [136],

with no uniquely identifiable particles to act as tracers (see Figure 2.1). PIV

relaxes the assumption on low particle density, but in turn requires a locally co-

herent velocity field, violated by the active diffusion observed in the cytoplasm

[140–143]. Hence, we turn to DDM, which does not require low particle density,

and has been shown to perform well at characterising diffusive processes [164,

266].

Compared to the locally averaged information provided by PIV, DDM yields

movement statistics which are globally averaged across the whole image. Los-

ing this local information is necessary in order to relax the assumption of local

spatial coherence, even with particle densities too high for SPT. These averaging

processes utilised in DDM have associated conditions on the movement studied,

namely ergodicity [164, 266] and isotropy [266, 267] (although some work has been

undertaken to adapt DDM to specific anisotropic behaviours [280]). Of interest

to us is the application of DDM to classifying cytoplasmic advection-diffusion

in Drosophila oocytes [142], yielding comparable results to PIV analysis of the

oocyte [150]. Crucially, the strengths highlighted in this work are that DDM

is robust to noise, can be linked with prior understanding of the system being

modelled, and is capable of characterising both advection and diffusion simultan-

eously. We note, however, that DDM does not yield movement statistics directly

like SPT and PIV; it instead algorithmically determines the DDM matrix, DR

[266], which must be interpreted by either drawing inference from its shape, or

comparing its structure to some model determined by the distribution from which

displacements are drawn from [142, 164, 280–282].

High-quality, open source implementations of DDM are available, allowing

the user to convert any movie into a DDM matrix [164]. It is always possible to

apply parameter fitting to this matrix to determine some collection of movement

parameters. However, there are many potential sources of error. If the incor-

rect model choice is made, these fitted parameters will not correspond to any

observable phenomena in the movie. Also, even with the correct model, experi-

mental design conditions such as the image sampling rate, image size and relative

magnitudes of the underlying types of movement could affect the accuracy of

the parameter fitting. Heuristic arguments to combat these sources of error have

been developed [164, 266], but ultimately, the question of whether DDM can be
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used in a given dataset to produce accurately determined, meaningful movement

statistics remains open.

Before exploring whether DDM can be used in non-invasive oocyte health

assessment, we first provide a detailed overview of the theory of DDM, drawing

particular attention to the assumptions and requirements of DDM in current

practice.

2.2 DDM Theory

Before presenting our own review of the theory of DDM, we highlight some ex-

isting reviews which were instrumental in developing this work. A technical

overview of DDM is found in [267], whilst a more ‘hands-on’ pedagogical applic-

ation is given by [164]. Finally, [279] gives a thorough examination of recent

developments in the theory and application of DDM prior to 2017. Whilst these

works allow a practical understanding of DDM application, fundamental details

which justify the steps involved are often lacking or not widely discussed, and

many assumptions remain hidden or unjustified. Hence, this section will present

the most comprehensive summary of DDM to date. The steps presented in this

section are not novel, but rather represent the union of several source documents

to provide a single coherent explanation of the origin of DDM. We provide both

the theory which justifies the technique, including explicit statement of the as-

sumptions involved, and practical tips and advice for improving the performance

of DDM.

2.2.1 Inferring particle movement from image data

The input data for DDM is always a time-series image stack, which depicts a

collection of moving particles (or, if the particle number is sufficiently high, a

fluid). The displacements of the particles are assumed to be described by a

probability density function whose general form is known, but with undetermined

parameters we wish to quantify. We make two assumptions about the system we

study, drawing attention to why these assumptions are important as they become

relevant. The first assumption is that movement is ergodic [266], which means

a sufficiently large collection of particles can represent the average statistical

properties of the entire process [283]. Alternatively, ergodicity can be interpreted

as the property that a single particle, observed for a sufficiently long time, will be

sufficient to describe the behaviour of the whole system. The second assumption is

that the system is stationary [266], which means the laws which define movement

in the system are invariant in time [284], such that particle displacement is a

function only of the time between observations, and not the time of the initial
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observation. The importance of these assumptions will be highlighted as we

progress through the theory of DDM.

We first establish the relationship between a collection of particles, and the

corresponding images that depict them. Consider a collection of Np particles

which are assumed to be homogeneous, meaning they have the same size, shape

and visual appearance. Let r = (x, y) denote the 2D Cartesian coordinate system

parallel to the imaging plane, and let z denote the position in the axis orthogonal

to the imaging plane. We may describe the positions of a finite set of particles

at time t by the sample density function, [285]

c(r, z, t) =

Np∑
n=1

δ(r − rn(t))δ(z − zn(t)), (2.2.1)

where δ(r) is the Dirac delta function, whilst rn and zn denote the position of the

center of the nth particle in the imaging plane and orthogonal axis respectively.

Alternatively, if Np is sufficiently large and we divide by the domain volume,

we could consider the concentration of a chemical or compound within the fluid,

which we denoted by by C(r, z, t) in Equation (1.2.1).

The input image stack, labelled I(r, t), consists of Nt digital images that have

L×W pixels, where L is the length and W is the width of the image. We define

the set of times at which each frame is generated to be T = {t1, t2, ..., tNt}, where

without loss of generality, t1 = 0. We will assume for simplicity that images are

regularly spaced in time, such that tn+1−tn = ∆tmin for some constant ∆tmin. We

assume the relationship between the time-dependent image intensity distribution

I(r, t), and particle positions c(r, z, t), to be Linear Space-Invariant (LSI) [286],

i.e

I(r, t) = i0 +

∫ ∫
K(r − r′, z)c(r, z, t)d2r′dz, (2.2.2)

where i0 is an approximately constant background illumination and K(r−r′, z) is

known as the Point Spread Function (PSF) [267], which defines the appearance of

the image of a particle located at (r, z). We can break down the LSI relationship

into two parts, based on the function of each integral. The innermost integral

over r′ represents a convolution of the particle density c(r, z, t) with the PSF,

where the convolution operator ⋆ on two functions f and g is defined by [287,

288]

f ⋆ g =

∫
f(r)g(r− r′)dr′ (2.2.3)
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Convolution pairs the visual appearance of a particle defined by the PSF, with

the position of the particles defined by c(r, z, t). The second integral in Equa-

tion (2.2.2), over z, represents a flattening or projection of the 3D appearance

of particles into the 2D imaging plane, by taking the sum of the contributions

from the convolution of the PSF and particle density distribution through each

thin slice of the 2D sample, each of which has some corresponding depth z at-

tenuating the contribution to the resulting image. If we generate images which

are themselves only slices of the 3D appearance, then the domain of integration

over z is only a single point, corresponding to the height at which the slice is

taken. We note that in the LSI definition, the contribution of a particle at some

given position (r, z1) is unaffected by the existence of a particle located at (r, z2),

implying no shadowing or obscuring effects are seen. A graphic representation of

the creation of an LSI image is given in Figure 2.2.

Figure 2.2: Example of the construction of a Linear Space Invariant (LSI) image.
By definition, these images would exhibit no shadowing or obstruction when
objects appear above or below one another in the z axis. Reproduced from [267].

It is relevant to note here that the LSI definition is continuous, but images are

clearly discrete. This discretisation is typically performed by a Charge-Coupled

Device (CCD), which converts brightness to charge across small regions corres-

ponding to each pixel [289]. If the area denoted by a pixel is Ω, then one might

consider the brightness of the pixel to be proportionate to the integral of I(r, t)

over Ω. For our application, we will typically make the assumption that the

brightness is approximately constant over the area defined by each pixel, an as-

sumption which gets stronger when the pixel size is much smaller than the particle
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size. Clearly, as pixels become smaller and more numerous, we have a better res-

olution, and are able to describe the exact location and appearance of the particle

in further detail, which is advantageous for DDM.

When particles are much smaller than the pixel size (where particle size is

encoded within the PSF in this case, since the particles are treated as point

particles by the sample density function), we typically lose the ability to localise

particles, knowing only that they must be inside the pixel somewhere. Small

particle size can be offset by an increased number of particles, such that the

brightness of a pixel corresponds to the number of particles contained therein; we

refer to previous discussion of how Equation (2.2.1) can be converted to consider

particle concentration, rather than position. We have omitted a great deal of

complexity here regarding the transition from continuous to discrete by making

the assumption that information is not lost in the capture of a digital image;

additional insight into this topic is contained in Chapter 3, where we explore

conditions on the relationship between particle size and pixel size in order to

ensure the validity of DDM analysis.

The LSI condition is important to the context of DDM compared to imaging

alternatives that use laser-based inference to access the same information we

seek from images [267], although this is not relevant to our application. The

importance of the LSI condition here is that it is sufficient to justify that the

images contain information about the position of the particles we wish to study,

although whether that information is accessible or not is a separate consideration

that features prominently in our work.

Having defined the position of the studied particles, and the images which

depict them, we must also describe how the particles move. A convenient way to

do so is the van Hove function, derived from the Born approximation scattering

formula and defined by [290]

G(∆r,∆t) =
1

Np

〈
Np∑

i,j=1

∫
δ(∆r + r − rj(∆t))δ(r − ri(0))dr

〉
, (2.2.4)

where ⟨·⟩ denotes the ensemble average or temporal average, which are equivalent

for ergodic systems [285]. The van Hove function is a temporal extension of

the pair correlation function [290], which describes the distribution of objects

throughout a medium. The van Hove function is defined in 3D, but the direction

orthogonal to the imaging plane is not important to the next few steps, so we

omit the z-dependent features here for simplicity.

The function within the ensemble average queries the number of particles

separated in space by ∆r, and in time ∆t. Whilst for any given finite sample

this is essentially 0 everywhere, we draw attention here to the assumption of
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ergodicity, such that an ensemble average is sufficient to reproduce the average

behaviour of the system. The van Hove function therefore represents the average

correlation of particles in space and time. Another physical interpretation of

the van Hove function is that G(∆r,∆t)dr is equal to the expected number of

particles j located within the region dr about a point ∆r at time t, given a particle

i is located at the origin at time t = 0 [285, 291]. The van Hove function naturally

separates into the sum of the ‘self-correlating’ and ‘distinct’ parts, Gs(∆r,∆t)

and Gd(∆r,∆t), for i = j or i ̸= j respectively, as follows [290]:

G(∆r,∆t) = Gs(∆r,∆t) +Gd(∆r,∆t),

where

Gs(∆r,∆t) =
1

Np

〈
Np∑
i=1

∫
δ(∆r + r − ri(∆t))δ(r − ri(0))dr

〉
,

and

Gd(∆r,∆t) =
1

Np

〈
Np∑

j ̸=i=1

∫
δ(∆r + r − rj(∆t))δ(r − ri(0))dr

〉
,

The self-correlating term is normalised, describing the probability that any given

particle undergoes a displacement ∆r during the time period ∆t, which is the

main property we wish to extract from the images. However, the distinct term

is more complex to tackle, describing the number of particles we expect to find

separated by r in space and ∆t in time where the two particles considered are

different; when ∆t = 0, this is equal to the pair correlation function, g(r) [290].

Gd depends on both the particle movement and the manner in which particles are

distributed throughout the domain. For example, particles initially distributed

on a regular lattice will have a strong distinct correlation over distances equal to

the separation within the lattice than particles uniformly randomly distributed

throughout the system.

When particle trajectories are statistically independent, such that the dis-

placement of a particle is not affected by the position or displacement of any

other particle, the distinct part is dominated by the self-correlating part for all

∆r since there is no correlation between the positions of separate particles. We

therefore make the assumption throughout this work that Gd(∆r,∆t) = 0, such

that we need only consider the self-correlating term, Gs, which describes the

probability that any given particle undergoes a displacement ∆r during the time

period ∆t. Under this assumption, we can recast the aim of DDM analysis to

be characterising of the self part of the van Hove function. For more thorough
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insight into the properties of the van Hove function when the distinct part is

non-zero, see [285] and [290].

The reason for introducing the van Hove function is that the relationship

between the particle density, c(r, t), and the van Hove function, G(∆r,∆t), is

given by [285]

G(∆r,∆t) =
1

Np

〈
Np∑

i,j=1

∫
δ(∆r + r − ri(∆t))δ(r − rj(0))dr′

〉

=
1

Np

〈∫
c(∆r + r,∆t)c(r, 0)dr

〉
=

1

ρ
⟨c(∆r,∆t)c(0, 0)⟩ , (2.2.5)

where ρ = Np/V is the particle density describing the expected number of

particles found in a given volume V . The final step in Equation (2.2.5) requires

the assumption of ergodicity, which gives translational invariance, and stationar-

ity, which means we no longer depend on the time of the initial observation. We

note that the relationship in Equation (2.2.5) includes the distinct and self cor-

relating parts of the van Hove function; this underpins a critical element of DDM

analysis, that we cannot distinguish between the contributions of Gs and Gd in

any subsequent analysis of the image stack, explaining the need for dominance of

the self-correlating part over the distinct part.

If we could determine the location of particles in the image stack, Equation

(2.2.5) would immediately give us the van Hove function. However, when deal-

ing with optically dense samples, the particle density may not be immediately

available from the images [292]. Instead, we can extract information about the

van Hove function from images in the Fourier space, by introducing a structure

known as the normalised image intermediate scattering function (ISF) which acts

as a bridge between the van Hove function and image stack.

Let the spatial Fourier transform F of a given function f(x) be denoted by

f̃(q), where q represents the angular frequency variable, such that [293]

F (f(x)) =

∫ ∞

−∞
f(x)e−ixqd(x)

= f̃(q),

where we note the absence of a consideration of the normalisation factor. Denot-

ing the complex conjugate by ·∗, element-wise multiplication (Hadamard product)

by ⊙, and an average over time by ⟨⟩t, we define the normalised image ISF for

LSI images by [267, 285]

F (q,∆t) =
⟨Ĩ∗(q, t+ ∆t) ⊙ Ĩ(q, t)⟩t

⟨|Ĩ(q, t)|2⟩t
,
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which is a normalised Fourier transform of the autocorrelation of the images. We

can redefine the normalised ISF in terms of the particle positions, c(r, z, t), and

PSF, K(r − r′, z), by substituting the definition of an LSI image from Equation

(2.2.2) into the normalised ISF. Before doing so, it is useful to present the convo-

lution theorem. This states that for two functions, f and g, the Fourier transform

of their convolution given by f ⋆ g is equal to the Hadamard product of Fourier

transforms of f and g respectively. Formally, [294]

F(f ⋆ g) = F(f) ⊙F(g). (2.2.6)

We previously identified that the LSI definition in Equation (2.2.2) can be ex-

pressed as convolution of the PSF and particle density, implying that by the

convolution theorem (Equation (2.2.6)),

Ĩ(q, t) =

∫
K̃(q, qz) ⊙ c̃(q, qz, t)dqz. (2.2.7)

Hence,

F (q,∆t) =
⟨Ĩ∗(q, t+ ∆t) ⊙ Ĩ(q, t)⟩t

⟨|Ĩ(q, t)|2⟩t
,

=

∫
|K̃(q, qz)|2 ⊙ ⟨c̃(q, qz, t+ ∆t)∗ ⊙ c̃(q, qz, t)⟩t dqz∫

|K̃(q, qz)|2 ⊙ ⟨|c̃(q, qz, t)|2⟩t dqz
. (2.2.8)

Unless otherwise stated, throughout this work, matrix multiplication of Fourier

transformed values will be element wise, so we drop the explicit ⊙ notation. As-

suming the medium is homogeneous, we expect a uniform distribution of particles

throughout the system, and therefore the value of |c̃(q, qz, t)|2 should be time in-

variant; we can set t = 0 without loss of generality. When motion is confined

to a single 2D plane orthogonal to the z direction, or the PSF does not depend

strongly on z, Equation (2.2.8) simplifies to

F (q,∆t) =
⟨c̃(q, t+ ∆t)∗c̃(q, t)⟩t

|c̃(q, 0)|2
. (2.2.9)

Assuming truly 2D dynamics is not a particularly realistic assumption, but for-

tunately in [286] it has been shown that in many practical cases, relationship

(2.2.9) can be recovered for a range of q, under the condition that movement in

the z direction is small relative to displacement within the xy plane. Whether

this assumption is valid in oocytes is not necessarily known; whilst a practical

implementation of DDM in oocytes exists [142], for directed streams as shown in

Figure 1.6 it is possible that the stream is oriented in the axis orthogonal to the

imaging plane, potentially invalidating the assumption.
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We now observe that the right hand side of Equation (2.2.5) is the autocor-

relation of c, a specific case of convolution where both functions are the same.

Applying the convolution theorem in Equation (2.2.6), it follows that the Fourier

transform of Equation (2.2.5) yields

1

ρ
⟨c̃(q,∆t)c̃∗(q, 0)⟩ = G̃(q,∆t), (2.2.10)

Combining Equations (2.2.9) and (2.2.10), we derive the key relationship between

the van Hove function and the normalised image ISF, [267],

F (q,∆t) =
G̃(q,∆t)

G̃(q, 0)
.

We may further simplify this relationship when particle trajectories are independ-

ent; In this case, G(q, 0) = 1 [285], and we deduce

F (q,∆t) = G̃(q,∆t). (2.2.11)

Thus, the normalised image ISF defined on the image stack I(r,∆t) is equal

to the Fourier transformed van Hove function G(∆r,∆t). This relationship is the

key motivation for DDM analysis, which is described in section 2.2.2.

2.2.2 The DDM tensor, D(q,∆t)

The objective of DDM analysis is to numerically determine F (q,∆t) from our

image stack I(r,∆t), so that we may use Equation (2.2.11) to deduce unknown

constant parameters in G̃(q,∆t) if an analytic form of the van Hove function is

known. However, F (q,∆t) often may not be calculated from I(r,∆t) using the

relationship in Equation (2.2.8), due to the possible influence of static artefacts.

Stationary objects are clearly not the objective of our analysis, but will very

strongly correlate with themselves over time at small distances, and thus dominate

the calculated signal in F (q,∆t). For this reason, DDM analysis applies a series

of processing steps to convert the image stack into a useable form known as the

DDM matrix. An overview of this process is presented in Figure 2.3, with each

step fully explained below.

Static artefacts are removed in DDM analysis by using image differences (step

(I) in Figure 2.3), defined by

∆I(r, t,∆t) = I(r, t+ ∆t) − I(r, t),

where t ∈ T is the time of the first frame and t+ ∆t ∈ T is the time of the sub-

sequent frame. Next, the image differences are converted into a multi-dimensional

array which approximates the function we refer to as the DDM tensor, also known
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Figure 2.3: An overview of the algorithm which converts the image stack I(r, t)
into the DDM matrix DR(q,∆t), from which movement parameters in the van
Hove function G(∆r,∆t) may be determined. Step (I) constructs image differ-
ences over all pairs of images, which can be grouped by time lag. The time-
averaged absolute square of the spatial Fourier transform (Equation (2.2.12))
constructs the DDM tensor D(q,∆t), which is reduced to a matrix by radial av-
eraging (Equation (2.2.16)).

as the image structure function [295] (Step (II) in Figure 2.3), defined by the for-

mula

D(q,∆t) =
〈
|∆Ĩ|2

〉
t

=
1

M

M∑
k=1

∣∣∣∆Ĩ(q, tk,∆t)
∣∣∣2 , (2.2.12)

where M is the number of image pairs we choose to sample from our image stack,

satisfying the following relationship

0 < M ≤ max (T ) − ∆t

∆tmin

.

The DDM tensor can be expanded and written as [164, 266]

D(q,∆t) =
〈

∆Ĩ∆Ĩ∗
〉
t

=
〈(
Ĩ(q, t+ ∆t) − Ĩ(q, t)

)(
Ĩ∗(q, t+ ∆t) − Ĩ∗(q, t)

)〉
t

= 2

〈∣∣∣Ĩ (q, t)
∣∣∣2〉

t

1 −
ℜ
(〈
Ĩ∗ (q, t+ ∆t) Ĩ (q, t)

〉
t

)
〈
|Ĩ (q, t) |2

〉
t


= 2

〈∣∣∣Ĩ (q, t)
∣∣∣2〉

t

(
1 −ℜ

(
G̃(q,∆t)

))
, (2.2.13)
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where Equations (2.2.8) and (2.2.11), allow us to replace the term in the rightmost

bracket with the Fourier transformed van Hove function, and ℜ denotes the real

part. Equation (2.2.13) is most commonly expressed in the form

D (q,∆t) = A (q) (1 − f (q,∆t)) , (2.2.14)

where f(q,∆t) = ℜ
(
G̃(q,∆t)

)
, (2.2.15)

and A (q) = 2
〈
|Ĩ(q, t)|2

〉
t
is a scaling parameter that depends only on the Fourier

transform of individual frames in the image, and hence is defined by the PSF [266].

In addition to knowing the PSF, deriving an accurate analytical approximation

of A(q) would require knowing the concentration of particles within the frame,

as well having zero noise and static artefacts. For this reason, approximation of

A(q) from first principles is limited to synthetic image data [286, 292], and in

practice, numerical calculation of the scaling term is necessary.

The term f(q,∆t) is referred to in the literature interchangeably as the auto-

correlation [164, 292], correlation function [296] or normalized ISF [142, 270, 297].

We will adopt the term ISF. The ISF is the real part of the spatial Fourier trans-

form of the autocorrelation of the image differences [267, 286]. As such, it is a

measure of the similarity of two images separated by a time lag ∆t. Equation

(2.2.14) is defined by the negative of the ISF, and hence shows that D(q,∆t) is

a measure of the decorrelation between two images taken with time lag ∆t. The

more different the image pairs are, the smaller the ISF and the larger the DDM

tensor.

2.2.3 The radial average of the DDM tensor

In most applications of DDM, a radial average (Step (III) in Figure 2.3) is taken

on D(q,∆t) [142, 163, 270]. This operation leads to dimensional reduction and

improved statistical sampling [266] (see Figure 2.4). The analytic radial average

is evaluated as the integral of D(q,∆t) along a circular contour Γ centred at

q = (0, 0), divided by the contour length ||Γ||, i.e,

DR(q,∆t) =
1

||Γ||

∮
Γ

D(q,∆t)dΓ =
1

2πq

∫ π

−π

qD(q, θ,∆t)dθ, (2.2.16)

where

Γ = q(cos(θ), sin(θ)), θ ∈ [0, 2π) .

It is common in the literature [142, 164, 267] to distinguish between the

multi-dimensional array D(q,∆t), and the matrix formed by its radial average,

D(q,∆t), by dropping the vector notation on the frequency q. In order to avoid

confusion, however, we use a subscript R to denote the radial average.
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For image data, the discrete nature of I(r, t), and therefore D(q,∆t), re-

quires the radial average to be evaluated numerically by averaging over values of

D(q,∆t) contained within an annulus, with an inner radius q − ∆q/2 and outer

radius q+∆q/2, where ∆q is defined by the number of ‘bins’ we wish to discretise

over [164], i.e

DR(q,∆t) =

∑
q ζ (q)D (q,∆t)∑

q ζ (q)
,

where

ζ(q) =

{
1, if q − ∆q

2
< |q| ≤ q + ∆q

2
,

0 else.

A pixel thus belongs to a bin if it its centre lies within the annulus of width ∆q,

with inner radius q − ∆q/2. For an image which is L pixels long and has real

pixel length ν, the smallest bin size is

qmin =
2π

Lν
, (2.2.17)

We visually demonstrate the radial average on a slice of a DDM tensor in Figure

2.4, derived from simulated data described in Section 3.

Figure 2.4: (Left) The contour plot of D(q,∆t) for a fixed ∆t, for simulated
Brownian motion data, as described in Chapter 3. Each dashed circle represents
an annulus over which the radial average is applied. (Right) The curve generated
by the radial average, where the average over the smaller purple annulus produces
the circular point in the right hand figure, and the average over the larger red
annulus produces the diamond point.

The numerical azimuthal average is only truly accurate when ∆q ≫ qmin, but

the accuracy of the average can be improved by ‘oversampling’. This involves

splitting each pixel into a grid of smaller pixels of equal brightness, which increases
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Figure 2.5: Example of oversampling of pixels to improve the accuracy of the
radial average. (Left) The example image is made up of pixels of brightness 0,
1 or 2. In the original image, the 2 brightness pixels intersect the red circular
contour over a shorter distance than the 1 brightness pixels, but have equal weight
in the calculation of the average. (Right) Oversampling splits pixels into smaller
grids of equal brightness, allowing us to weight contributions towards the radial
average based on the length of the contour intersecting the original pixel. The
1 brightness pixels now have a greater contribution to the average than the 2
brightness pixels, resulting in a drop in the average brightness.

the level of refinement and makes the numerical average a better approximation

to the contour integral. We visualise this concept in Figure 2.5.

When applying the radial average to Equation (2.2.14), we notice that the

product of the ISF and scaling term can create non-trivial integrals. In literat-

ure, this concern is mitigated by always assuming that at least one of these terms

does not depend on the orientation of q [142, 163, 164, 280]. The ISF, f(q,∆t),

is independent of orientation when the observed movement is isotropic [142, 164,

267], whilst the scaling term A(q) is independent of orientation when the under-

lying images are radially symmetric, meaning there is no illumination gradient

and particles are uniformly distributed throughout the system. We can study

DDM when either the scaling term [292] or ISF [280] are radially asymmetric,

but there are no studies considering both.

We define the radial average of A(q) and f(q,∆t), respectively, as

A(q) =
1

||Γ||

∮
Γ

A(q)dΓ,

f(q,∆t) =
1

||Γ||

∮
Γ

f(q,∆t)dΓ.

Assuming at least one of these terms is independent of the orientation of q, the
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radial average applied to (2.2.14) gives

DR(q,∆t) = A(q)(1 − f(q,∆t)), (2.2.18)

In most applications of DDM, this relationship is presented with additional term

B(q) that accounts for imaging noise [142, 163, 164, 267], such that the DDM

matrix is described by

DR(q,∆t) = A(q)(1 − f(q,∆t)) +B(q), (2.2.19)

If an analytic form of f(q,∆t) is known, we can evaluate DR(q,∆t) numerically

by iterating Equation (2.2.12) over the image stack, and then employ numerical

fitting approaches to Equation (2.2.19) to determine the parameters A(q), B(q)

and those within f(q,∆t).

The standard fitting approach is to split the matrix DR(q,∆t) into vectors,

in which q is fixed and ∆t is variable. On each vector, A(q) and B(q) will be

constant, so we can probe the dependency of DR(q,∆t) on f(q,∆t) with respect

to only the time lag [142, 164]. The exact fitting approach will depend on the

type of motion expected within the image stack, however. We will outline the

approach taken when studying Brownian motion as an example.

2.2.4 Example: Brownian motion

Brownian motion is a form of random motion caused by collisions between the

molecules constituting a fluid and particles suspended in the fluid [139, 298, 299].

The verification and characterisation of Brownian motion is considered strong

evidence for the atomic description of matter [298]. It was shown by Einstein

that the van Hove function that describes the displacement caused by Brownian

motion, G(r,∆t), satisfies the diffusion equation on an unbounded domain [299],

as follows

∂G(∆r,∆t)

∂∆t
= D∇2G(∆r,∆t), (2.2.20)

G(∆r, 0) = δ(∆r),

where D (µm2s−1) is the (constant) diffusion coefficient. The initial condition

stipulates that all objects have zero displacement when ∆t = 0. In the one-

dimensional case, the solution of Equation (2.2.20) under this initial condition

is

G(∆x,∆t) = N (0, 2D∆t) =
1√

4πD∆t
e

−∆x2

4D∆t , (2.2.21)

where N is the Normal probability density function. Higher dimensional solu-

tions are immediately available from Equation (2.2.21) under the observation that
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Brownian motion acts in each dimension independently. Alternatively, we may

solve this PDE by taking the continuous spatial Fourier transform,

∂G̃(q,∆t)

∂t
= −q2DG̃(q,∆t),

G̃(q, 0) = 1,

which has the solution

G̃(q,∆t) = e−q2D∆t.

This solution is radially symmetric, so under the radial average, we can reduce

the solution to the one dimensional case,

G̃(q,∆t) = e−q2D∆t.

Since G̃ is already real valued, Equation (2.2.15) gives us immediately that

f(q,∆t) = e−q2D∆t, (2.2.22)

which may be substituted directly into Equation (2.2.19) in order to determine

an estimate of the diffusion coefficient, D (see Section 2.2.7).

2.2.5 Example: Bacterial advection-diffusion

In addition to experiencing Brownian motion, bacteria have flagella that enable

self-propulsion. We will describe the ISF for a collection of active swimmers,

ignoring Brownian motion for now. A single swimmer is considered to have

velocity given by an incompressible velocity field v ∈ R3, such that it acts as

a ballistic projectile. The position of such a projectile is deterministic; the van

Hove function Gv for this single swimmer is given by the indicator function,

Gv(∆r,∆t) = δ(∆r − v∆t).

This satisfies the continuity equation for an incompressible velocity field v,

∂Gv(r,∆t)

∂∆t
= v · ∇Gv(r,∆t),

from which we derive the solution in Fourier space

∂G̃v(q,∆t)

∂∆t
= iq · vG̃v(q,∆t),

=⇒ G̃v(q,∆t) = eiq·v∆t.

Hence,

fv(q,∆t) = cos(q · v∆t).
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Although fv is the ISF for a single population of swimmers, in reality not all bac-

teria will have the same velocity magnitude or direction. A common assumption

is that the speeds of the collective swimmers follow a Schulz distribution, plotted

in Figure 2.6 and given by [163, 164, 281, 300]

Sch(v) =
vZ

Z!

(
Z + 1

v

)Z+1

e−v(Z+1)/v,

where v is the mean velocity and Z is a measure of spread, related to the standard

deviation σ by

Z =

(
v

σ

)2

− 1.

Figure 2.6: A plot of the Schulz distribution for v = 5, when Z = 0.2 (blue solid
line) and 4 (red dashed line).

To calculate the ISF for a collection of ballistic objects, which we denote by

fbact(q,∆t), we must consider the average of fv(q,∆t) over all possible velocities,

[300]

fbact(q,∆t) =

∫
Sch(v)eiq·v∆tdv, (2.2.23)

where we integrate over all three-dimensional v ∈ R3. The consideration of

the third dimension is a notable difference compared to the approach taken for

Brownian motion. We assumed in Equation (2.2.9) either that movement in the

axis orthogonal to the imaging plane is negligible, or the PSF K(r − r′, z) does

not depend on z. When making either of these assumptions, we cannot observe

movement in the orthogonal axis. Instead, we observe a projection of the particle

locations onto into the imaging plane, from three to two dimensions. This has

no effect when generating the ISF for Brownian motion, since the displacement

in each Cartesian axis is independent, so the orthogonal axis is not needed to
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accurately describe the diffusion coefficient. For bacterial motion, however, the

projected displacement observed depends not only on the magnitude of the velo-

city vector, but also on its orientation.

To tackle the integral in Equation (2.2.23), we can convert to polar co-

ordinates, setting v = v(cos(θ) sin(ϕ), sin(θ) sin(ϕ), cos(ϕ)) where θ ∈ [0, π] and

ϕ ∈ [0, 2π). We assume that the velocity is isotropic, such that the direction

of the velocity is uniformly distributed in ϕ and θ. The integral is therefore in-

dependent of the orientation of q, and as before in the Brownian case, we can

reduce the solution to the one dimensional case for spatial frequency magnitude,

such that the ISF is given by [300]

fbact(q,∆t) =

∫ 2π

0

∫ π

0

∫ ∞

0

sin(θ)v2Sch(v)eiqv∆t cos(θ)dvdθdϕ

= 4π

∫ ∞

0

v2Sch(v)
sin(qv∆t)

qv∆t
dv,

=
sin (Z tan−1(η))

Zη(1 + η2)Z/2
,

where

η =
qv∆t

Z + 1
.

This is purely real valued and independent of the orientation of q, so therefore

fbact(q,∆t) =
sin (Z tan−1(η))

Zη(1 + η2)Z/2
. (2.2.24)

At the start of this example, we noted that Brownian motion was momentarily

neglected. In Section 2.2.6, we introduce some helpful properties of the ISF that

allow us to construct an ISF for behaviours composed of several different types

of independent motion, allowing us to reintroduce Brownian motion.

2.2.6 Constructing ISFs for multiple independent processes

Particle movement often originates from more than one independent process.

For example, bacteria and sperm move by beating their flagella, but are also

small enough that random Brownian fluctuations within a fluid influence their

trajectory [163, 270]. Bacteria are an example of a system in which there is more

than one van Hove function determining the displacement of observed particles,

but in Equation (2.2.19), the DDM matrix is described with only a single ISF.

The following lemma allows us to define a single ISF for particles affected by

more than one process.
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Lemma 2.2.1. Let the displacements ∆r ∈ R3 of some collection of N particles

be the sum of two independent statistical processes A and B, with van Hove func-

tions GA(∆r,∆t) and GB(∆r,∆t) respectively. If the corresponding ISFs for

processes A and B are fA(q,∆t) and fB(q,∆t), respectively, then the ISF for the

sum of the two processes is given by

fA+B(q,∆t) = ℜ (F(GA(∆r,∆t))F(GA(∆r,∆t)))

.

If at least one of either process A or B is radially symmetric, then this sim-

plifies further to

fA+B(q,∆t) = fA(q,∆t)fB(q,∆t).

Proof. To describe fA+B, we need to describe the joint probability distribution

given by the van Hove function GA+B(∆r,∆t). To do so, consider a single

particle, which has made a displacement ∆r during the time lag ∆t. The displace-

ment ∆r is achieved when the displacement due to the distribution A is equal

to rA, and the corresponding displacement under B is ∆r − rA. This particular

trajectory occurs with probability GA(rA,∆t)GB(∆r− rA,∆t). Integrating over

all possible rA yields the joint probability distribution, namely

GA+B(∆r,∆t) =

∫
R3

GA(rA,∆t)GB(∆r − rA,∆t)drA

= GA(∆r,∆t) ⋆ GB(∆r,∆t) (2.2.25)

where ⋆ denotes the convolution operator (see Equation (2.2.3)). Recalling the

convolution theorem in Equation (2.2.6),

F(f ⋆ g) = F(f)F(g),

and additionally from Equation (2.2.11) that the Fourier transform of the van

Hove function gives the ISF, the Fourier transform of the Equation (2.2.25) gives

us immediately that

GA+B(q,∆t) = GA(q,∆t)GB(q,∆t).

This property holds, inductively, for any finite number of independent van Hove

functions. Taking the real part of the Fourier transform of this joint van Hove

function returns the desired result immediately. When A and B are not both

anisotropic, we expect radial symmetry in the ISF in one of these functions,

which implies only one ISF contains a complex part. In this case, the product

of the ISFs of the van Hove functions will be equal to ISF function of the joint

process.
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In addition to particles which are acted on by multiple independent sources

of motion, we also consider cases where the displacement of different particles

may not be described by the same van Hove function. For example, in bacteria,

a subset of the imaged cells may perish and thus no longer be subject to ballistic

motion [163, 164]. Bacteria are therefore an interesting population to study,

because they can be split into an active and inactive population, each of which

is described by a different ISF. For populations which can be partitioned into a

finite number of subgroups, where each group is associated with a different van

Hove function, the linearity of the Fourier transform gives us the following rule

to construct the ISF.

Lemma 2.2.2. Let a set of particles be divided into N ∈ N partitions, such that

the probability of a particle belonging to partition i ∈ N is αi. Let each element

of the partition have an associated van Hove function, denoted Gi(∆r,∆t), with

corresponding ISF fi(q,∆t). Then, the ISF for the collection of all particles is

given by

f(q,∆t) =
N∑
i=1

αifi(q,∆t).

Proof. Bayes theorem gives us immediately that the probability of displacing by

∆r over time lag ∆t is the weighted sum of the probability of displacing by ∆r

given the particle belongs to partition i ∈ N , where the weights are the respective

probabilities of belonging to partition i, i.e.

G(∆r,∆t) =
n∑

i=1

αiGi(∆r,∆t).

Taking the Fourier transform of both sides, the linearity property immediately

yields the desired result.

Combining Lemmas 2.2.1 and 2.2.2 allows us to construct a single ISF for a

behaviour that can be described as the union of a set of independent processes.

For example, when studying bacteria, all particles undergo Brownian motion, but

only those which are active will undergo ballistic motion. The ISF of the active

bacterial population is defined by the product of the ballistic ISF defined in Equa-

tion (2.2.24) and the ISF for Brownian motion, whilst the inactive population is

described by the Brownian ISF alone. If the motility fraction is equal to α, the

ISF for a population of bacteria will be given by [163, 164]

f(q,∆t) = αe−q2D∆tfbact(q,∆t) + (1 − α)e−q2D∆t,

= e−q2D∆t (αfbact(q,∆t) + (1 − α)) . (2.2.26)
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Now that we can describe the ISF for a given system, we need some way of

comparing the expected ISF to the DDM matrix, in order to quantify movement

statistics. In Section 2.2.7, we review literature approaches to parameter fitting,

including optimisation steps taken to increase accuracy and efficiency.

2.2.7 Parameter fitting

Once we have numerically generated the DDM matrix DR(q,∆t), we wish to

interpret its shape by comparing it to some model of the ISF, f(q,∆t). The

relationship between the two is given in Equation (2.2.19), reproduced here for

clarity.

DR(q,∆t) = A(q) (1 − f(q,∆t)) +B(q).

There are several unknowns in this relationship, namely the scaling term A(q),

the noise term B(q), and some set of parameters inside of f(q,∆t) that corres-

pond to rates of movement within the observed system. We find these unknowns

through parameter fitting, finding values which minimise the distance between

the numerically determined left hand side of Equation (2.2.19), and the model

function on the right.

It is important to note that although there is a correct choice for f(q,∆t) based

on the behaviour being imaged, we can always determine some set of parameters

that minimises the distance between these curves, regardless of our choice of

f(q,∆t). If we choose a model equation for f(q,∆t) that does not match the

imaged behaviour, the parameters we determine will not correspond to any of

the observed phenomena we are trying to study. For example, if we use the

ISF for Brownian motion to try and describe the movement of bacteria, we will

successfully fit a numerical value for the diffusion coefficient. However, this value

would not reflect the real rate of Brownian motion observed in the bacteria,

since the bacterial motility will also contribute to the fitting of D. Hence, we

currently have to work under the assumption that we have chosen the correct

model function to represent the ISF. Later, in Chapter 4, we will show that it

is possible to conduct parameter fitting without a model for the ISF if we can

describe the behaviour of individual particles. Furthermore, in Chapter 5, we will

also show that for some behaviours, it is possible to find different models for the

ISF which will converge to the same, or similar, parameter fits.

Assuming, for now, that we have the correct model for the ISF, we can progress

with parameter fitting. This fitting approach in DDM depends on the type of

movement we are trying to study, but in general, is performed in two stages [142,

164, 266]. The first stage determines A(q), B(q) and some frequency-dependent

parameters inside of f(q,∆t), by fixing the frequency as a constant and fitting
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curves over variable time lag. The second stage extracts constant movement

parameters from the frequency-dependent results of the first stage. It is easier

to understand why this approach is necessary once we have seen an example; we

will present the fitting approach taken for Brownian Motion, where the ISF was

given in Equation (2.2.22) as

f(q,∆t) = e−q2D∆t.

The parameter we want to extract is the diffusion coefficient, D, but we also need

to classify the scale and noise terms to satisfy Equation (2.2.19). Trying to de-

termine D immediately from this relationship is difficult, because there will exist

some large and small frequencies for which Equation (2.2.19) does not hold. At

high frequencies, the signal-to-noise ratio in the DDM matrix becomes poor [164,

266]. For very small frequencies, which correspond to large distances, observed

displacements may be too small to yield any information at these frequencies

[164]. Additionally, at small q, the radial average is performed over a small num-

ber of pixels and becomes unstable [164] (see Figure 2.5). As such, there is some

optimal frequency region to perform fitting over, which can be identified when

fitting is performed over each frequency independently first.

In Brownian motion, the first stage of fitting normally attempts to fit three

unknowns by fitting the following model function to DR(q,∆t),

a1(q)
(
1 − e−∆t/τD(q)

)
+ a2(q),

where we expect to fit

a1(q) = A(q),

a2(q) = B(q),

τD(q) =
1

q2D
.

Fitting 1/τD(q) instead of the reciprocal is common practice [142, 164], and has

numerical stability benefits, in our experience. It is also often more numerically

stable to fit the log of the DDM matrix, log (DR(q,∆t)). This is permissible since,

by Equation (2.2.12), D(q,∆t) is non-negative and the log is always well defined.

For Brownian motion, since the shape of the DDM matrix is exponential (see

Equation (2.2.22)), fitting the logarithm reduces to a linear fitting regime.

The second stage of the fitting algorithm takes the parameters determined

from the first stage, and explores their dependency on the frequency q in order

to extract some set of constant scalar values describing the rate of motion in

the images. For example, in Brownian motion, we wish to extract the diffusion
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coefficient, D, from τD(q). This is most easily achieved by rewriting τD as the

linear regression,

log τD = −2 log q − logD. (2.2.27)

For motile micro-organisms such as bacteria, the process is similar. We fit the

DDM matrix to the ISF in Equation (2.2.26), where fbact is given in Equation

(2.2.24). In addition to fitting the motility fraction α and Schulz distribution

variance Z at each frequency, we also seek to determine the value of the parameter

group τv = 1
qv

for the average velocity v. Hence, the average velocity can be

extracted by fitting the linear regression

log τv = − log q − log v. (2.2.28)

A typical diagram we observe during this fitting process is given in Figure 2.7,

taken from [164]. In this example, the diffusion coefficient is fit by plotting

τD (called τd in the original work) on a log-log scale against spatial frequency,

identifying the region where the plot is linear with gradient -2 (region (2)) and

finding the vertical intercept of the curve. Often, the fitted scaling and noise

terms are displayed below. These plots are useful because they allow us to quickly

identify the optimal fitting region based on the shape of τD and the signal-to-noise

ratio, and to highlight any problematic fitting results. For example, in region (3),

the scale term A(q) (red dashed line) is of the same order of magnitude as the

noise term (blue dotted line), implying a poor signal to noise ratio.

We now outline some practical considerations for improving the speed and

accuracy of DDM.

2.2.8 Algorithm optimisation

Practical applications of DDM frequently require the inclusion of additional steps

which are not derived from the well-established underlying theory of the tech-

nique. Instead, these considerations are computational in nature, relating to op-

timising the various algorithms included in DDM analysis, with respect to both

run-time and numerical accuracy. Whilst not related to the theory of DDM,

these considerations have significant consequences in any analysis undertaken of

the DDM matrix, and will therefore be detailed in this section.

2.2.8.1 Time lag sampling

Consider an image stack with Nt frames, which are uniformly spaced in time such

that the time lag between consecutive frames is equal to ∆tmin. In such movies,

the time lag between any two frames is equal to m∆tmin, where m ∈ N with m <

55



Figure 2.7: A typical parameter fitting diagram, taken from [164], which shows
the fitting results obtained when attempting to classify Brownian motion in a
colloidal dispersion. (a) The parameter τD(q) is plotted as a function of spatial
frequency. Fitting is performed over region (2), where the log-log plot of τD is
linear with gradient -2. (b) The fitted values of A(q) (red dashed line) and B(q)
(blue dotted line) are plotted, alongside estimates of these parameters obtained
by taking short and long time behaviours of DR(q,∆t).

Nt. Hence, a bijective map exists between the actual time lag between frames,

∆t, and the number of frames m. Although we can determine the DDM matrix

for all time lags m < Nt, this is unnecessary for two reasons. First, the long-time

dynamics of the particles in the frame may be completely spatially decorrelated,

such that we cannot extract useful information from the DDM matrix for large

∆t. In Brownian motion, where the ISF is e−q2D∆t, there is a negative exponential

decay with respect to time, so the ISF decays quickly and large time lags are not

needed to extract the diffusion coefficient. Secondly, as m increases, the number

of image pairs separated by m frames decreases. The DDM matrix is an average

over the contribution from each pair of images, which mean for large times and,

hence, small values of m, our statistical sample may not be a good representation

of the underlying distribution of particle displacements.

To deal with both issues, we sample over a non-uniformly spaced subset of all

available time lags, such that small ∆t are sampled more frequently. We adopt
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the scheme proposed by [164], namely

m ∈
{⌊

10k/b
⌋}

, k ∈
{

1, ..,
log(Nt)

log(101/b)

}
, (2.2.29)

for some suitable choice of b ∈ N [164] (for example, b = 12 in [164], which would

reduce an image stack of Nt = 900 to a sample of only 31 unique time lags). The

choice of b balances sampling rate with computational speed: a larger b means

more time points are sampled, but as this is more computationally expensive, so

the complexity of the ISF with respect to the time lag should be considered when

deciding which time points to sample. We plot the sampling rate for b up to 20 in

a movie of length M = 900 in Figure 2.8, which shows that with increasing b, the

largest sampled m increases, as does the density of sampling for smaller m. In

this work, we choose b = 12 to be consistent with literature [164]. A consequence

of such time lag sampling is that the model function given in Equation (2.2.18)

may over-fit to the DDM matrix at smaller time lags.

Figure 2.8: In movies with equally spaced frames, such that the time lag can be
mapped to a natural number m denoting frame difference, we plot the sampling
rate of time lags when using the logarithmic spacing given in Equation (2.2.29).
As b increases, both the maximum sampled time and the density of time sampling
increase.

2.2.8.2 Choosing a spatial frequency interval for fitting

An additional consideration in DDM analysis is that the quality of the first fitting

step in Section 2.2.7 is known to be poor for very small and very large frequencies

[266]. Hence, in general, there exists some frequency interval [ql, qu] on which the

second fitting step is applied. In Figure 2.7, for example, the vertical dashed

line dividing regions 1 and 2 denotes ql, and the same line between regions 2
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and 3 denotes qu. This frequency band is not particularly well characterised, so

it is often subjectively chosen by visualising the fit of parameters, e.g. τD, and

manually selecting an interval where the fit is good. The optimal selection is

the largest interval for which the residuals remain small, so automating interval

selection is possible if we define some cost function to quantify this heuristic. For

example, a proposed cost function to optimise the fitting region when tackling

Brownian motion is given by [301]

loss(ql, qu) =

∑ql
ql

(
∂ log τD

∂q
− (−2)

)2
(ql−qu)
qmin

,

where qmin is the smallest frequency available. The numerator is minimised

by finding the interval which gives the closest gradient to −2, as expected by

Equation (2.2.27), whilst the denominator is maximised by choosing larger inter-

vals. Hence, the proposed cost function balances using as much data as possible,

without including data which does not conform to the expected fitting pattern.

By iterating over possible combinations of ql and qu, we aim to find an appro-

priate interval, although care must be taken to prescribe a minimum number of

points to prevent selection of excessively small fitting intervals for which the loss

is low. The choice of fitting interval has direct consequences on the fit of the

key output parameters we seek to determine during DDM, so choosing a sensible

interval is highly important.

2.2.8.3 Image windowing

Image windowing is the practice of multiplying the image by some filter, in order

to force the edges of the image to gradually fade to zero, whilst preserving the

centre of the image. We illustrate the benefits of windowing in Figure 2.9, using

diagrams reproduced from [295], who first showed that windowing is good practice

in DDM.

When particles are located at the image boundary (top left of Figure 2.9),

the spatial Fourier transform performs poorly when trying to approximate dis-

continuities, resulting in a characteristic ‘smearing’ in the direction of the crossed

boundary (top right). To mitigate this, we apply a so-called ‘window’ function,

a matrix with the same shape as the image, which has brightness 1 at the centre

and tapers off towards the edges of the frame. Element-wise multiplication of

the image differences ∆I with the window function reduces the contribution of

particle displacement at the edge of the frame to zero, whilst preserving the dy-

namics closer to the centre of the frame (bottom left of Figure 2.9). When the

Fourier transform is taken of the windowed function, smearing is reduced (bottom

58



Figure 2.9: Visualising the benefit of image windowing, reproduced from [267].
When particles touch the boundary of the image (top left), the discontinuity in
brightness causes smearing in the Fourier transform (top right). If we premultiply
by a window function such Equation (2.2.30) (Bottom left), smearing is reduced
(bottom right).

right). In this work, we use a window function W (x, y) ∈ RL×W derived from the

Blackman filter, given in MATLAB by

W (x, y) = w(x)w(y), (2.2.30)

where w(x) =

(
0.42 − 0.5 cos

(
2πx

L− 1

)
+ 0.08 cos

(
4πx

L− 1

))
,

We visualise the brightness of the filter when L = 100 in figure 2.10. Whilst

windowing has been shown to improve the performance of DDM [295], taking a

window clearly affects the brightness of the images considered, and will therefore

affect the scale term A(q). Hence, any analysis of the scale term should account

for the effect of windowing; for example, if the image intensity for a single particle

is given by ψ(r, z), the scale term for a synthetic image dataset containing an

average N̄p particles per frame, using an image window W (r), is given by [295]

A(q) = 2N̄p|W̃ (q)|2 ⋆
〈∣∣∣ψ̃(q, z)

∣∣∣〉 .
2.2.8.4 Assuming the absence of boundaries

Consider the ISF presented for Brownian motion in Equation (2.2.22). We ob-

serve that the partial differential equation we solved to determine the ISF has
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Figure 2.10: Contour plot of the Blackman-Harris window given in Equation
(2.2.30), for a square image of length L = 100. The brightness is 1 at the centre
and 0 at the edges, with a continuous slope between.

an associated initial condition, but no boundary condition. This highlights an

important, though often unstated, assumption of DDM that there are no bound-

ary effects, or that the boundaries of the system are sufficiently far away from

the imaged domain that they have little to no effect on the observed displace-

ments. To validate this assumption, DDM is often applied only on a subsection

of the available images [142, 280, 302]. For example, in an application of DDM

to Drosophila oocytes [142], images were cropped to different sections inside of

the cytoplasm which do not include the cell wall, as shown in Figure 2.11. In the

application of DDM to oocytes, this means we must discard image data close to

the cell wall, which means we limit the amount of useable data available. This

concern is addressed in more detail in Chapter 4.

2.2.9 Summary of assumptions

To summarise, we have now introduced the DDM technique, a method of numer-

ically quantifying the rate of movement within time series image data. DDM is

a powerful tool, which has performed well in a variety of applications [142, 280].

By providing the mathematical theory behind DDM, we have also highlighted

a number of assumptions we needed to justify particular steps. In brief, these

were:

• The motion being studied must be distributed by some probability density

function which is stationary, to justify taking time averages.

• This distribution must also be ergodic, so that the study of an ensemble

can be used to reconstruct the original distribution.
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Figure 2.11: Subdomains of the cytoplasm of a Drosophila oocyte, over which
DDM was applied in [142], in order to avoid imaging the nucleus (labelled n) and
the cell walls. Taken from [142].

• We must be able to infer the position of particles in the frame from their

appearance in the image stack. The LSI condition in Equation (2.2.2) is

sufficient, but not necessary, to meet this assumption.

• The ISF, f(q,∆t), and the scaling term, A(q), cannot both be anisotropic,

in order to prevent a product integral forming in the radial average.

• Movement in and out of the frame through the direction orthogonal to the

imaging plane is limited. This prevents images changing their appearance

over time, enforcing the time-independence of A(q).

• The images do not contain boundaries with which the particles might inter-

act. This assumption prevents displacement in the frame from depending

on the initial position of the particle.

• We need to know the ISF of the underlying behaviour before we can attempt

fitting.

Some of these assumptions are highly limiting in reality, and in particular, may

not be satisfied when dealing with images of oocytes. Two features of oocytes

which are particularly challenging in this context are that the vast majority of

molecules and particles imaged are sub-pixel in size (see Figure 2.1), and that the

high concentration of these molecules and particles means that inter-particle in-

teraction is highly likely. Overcoming these features relies on replacing the sample
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density function in Equation (2.2.1) with the sample concentration, by dividing

by domain volume for sufficiently high particle number. This means that we

are not tracking individual particles; we are instead tracking visible shifts in the

brightness of the cytoplasm, driven by bulk movements in molecules. This allows

us to overcome the lack of localisation of particles, and makes the assumption

that particle interactions have minimal effect on the bulk movements described

by the combination of active diffusion and cytoplasmic streaming.

Additionally, without validation steps and confidence that the DDM ana-

lysis output matches the observable input, statistics determined from DDM will

be no better than existing morphokinetic parameters in the IVF clinic. How-

ever, designing reliable, reproducible validations is practically very challenging.

Without seeing a dataset, it is difficult to decide if the unique combination of bio-

logy and microscopy involved in its generation is conducive to accurate analysis.

Therefore the first step in our exploration of the problem, in Section 2.3, is to

implement DDM analysis in an example dataset, in order to determine exactly

the kinds of problem we might face in the pursuit of non-invasive oocyte health

assessment through DDM.

2.3 Preliminary exploration of DDM in oocyte

data

In this section, we outline the challenges a user in the lab might face when per-

forming DDM analysis on oocyte data, highlighting whether the particular chal-

lenges faced arise from features of the biology being studied, or are inherent in the

theory of DDM. We approach this task as a typical new user of DDM would, ap-

plying pre-packaged code to an unconditioned dataset, so that we might emulate

the same problems and outcomes expected within the lab. The data we analyse

was introduced at the beginning of this chapter in Figure 2.1.

Pre-packaged DDM code, for both generation of the DDM matrix and sub-

sequent analysis, is taken from a repository made available by Germain et al.

[164]. This code was chosen because it was designed to teach new users how to

implement DDM, and hence is well documented and accessible for non-expert

users. Alongside code to generate the DDM matrix, the parameter fitting code

available can consider one of two behaviours, each with its own corresponding

ISF:

• Brownian motion, with the ISF given in Equation (2.2.22).

• Bacterial ‘run and tumble’ dynamics, consisting of a mixture of inactive

and active swimmers, with velocities drawn from a Schulz distribution. All
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particles, regardless of their active status, are additionally subject to ran-

dom Brownian motion. The ISF for the collection of particles is given in

Equation (2.2.26), with fbact in Equation (2.2.24) describing the ISF for

active swimmers.

Neither of these behaviours matches the proposed models for cytoplasmic stream-

ing given in Section 1.2.2.1, but the bacterial model has been used to fit cyto-

plasmic streaming and active diffusion in Drosophila oocytes [142], reasonably

suggesting we could use the same approach when studying the control oocytes.

In the poisoned oocytes, however, since active processes are inhibited, we ex-

pect movement to be attributed exclusively to Brownian motion, implying the

Brownian ISF should be suitable. Regardless of which behaviours we think are

appropriate, once we have generated a DDM matrix, it is trivial to perform ana-

lysis using both choices of ISF, allowing us to compare how fitting of the same

matrix looks given two different models.

DDM is applied to each oocyte individually, rather than over the whole image,

allowing us to compare the variation between individual oocytes. The image stack

is thus divided into a series of 11 smaller image stacks, each defined by a square

subdomain centred on each oocyte. The length of the subdomain, L = 200

pixels, is chosen so that each square is contained within the cytoplasm, and does

not include the boundaries of the oocyte, to respect the assumption outlined in

Section 2.2.8.4 that no boundary effects exist within the imaged domain. We

will consider this assumption further in Chapter 4. The approach of taking a

subdomain is consistent with the previous application of DDM to oocyte data

[142].

A Blackman filter is also applied, as defined in Equation (2.2.30), to remain

consistent with literature approaches to DDM [295]. One might observe that there

is some interaction between cropping of the image and application of a filter; a

filter could be applied in such a way that the image brightness goes to zero at

the cell boundary. However, considering a cropped image reduces the size and,

therefore, computational cost associated with performing Fourier transforms on

the image data. The interaction between image windowing and cropping of the

image is further explored in Section 4.2, but for now, we consider the standard

approach of applying both windowing and cropping of the image.

Subsequent analysis will generate, for each oocyte and experimental condition,

two graphs. The first graph, an example of which is given by the top plot in Figure

2.12a, visualises the fitted characteristic timescales τD = 1/(q2D) to describe

Brownian motion, and τv = 1/(qv) to describe the mean velocity of advection

when using the bacteria model. To interpret these characteristic timescales, we
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observe that by Equations (2.2.27) and (2.2.28), both τD and τv are linear when

plotted against the frequency q on log-log scales, with gradient −2 for τD and −1

for τv. In these equations, D and v can be found by linear regression of log(τD)

and log(τv) against log(q) to find the intercept term, the exponential of which

returns the diffusion coefficient and mean velocity, respectively. The interval on

q for which we undertake fitting is given by the two dashed vertical lines in each

plot; the same fitting region 3 < q < 6 µm−1 is chosen for all oocytes for fair

comparison, where we estimate the upper and lower bounds by inspection for this

dataset.

The second graph, for example the bottom plot in Figure 2.12a, shows the

fitted scaling term, A(q), and the noise term, B(q), allowing us to estimate the

signal to noise ratio in the DDM matrix. Since there are two experimental con-

ditions, two choices of ISF and 11 oocytes, there are a total of 44 graphs, all of

which are given in Appendix C. Within this chapter, however, we will present

only a small selection to illustrate the findings from our analysis, summarised

below.

2.3.1 Brownian motion describes cytoplasmic movement
in FCCP treated oocytes, but active diffusion is in-
sufficient to describe healthy oocytes

In Figure 2.12, using the Brownian model for the ISF, we plot the parameter

fitting output for a single oocyte (numbered 7 in Appendix C), for both the

control and FCCP experiment. As both image stacks depict the same oocyte, we

expect equivalent fitted scale and noise parameters, A(q) and B(q) respectively;

this expectation is met within the fitting region denoted by vertical dashed blue

lines. The fit of these terms is dependent on the quality of the fit of τd, however;

under-estimation of the diffusion timescale can be somewhat accounted for by

under-estimation of the noise and scale terms. This is evidenced in 2.12 by small

local fluctuations in all three parameters; in particular, just below the lower

bound of the fitting region in Figure 2.12b. Hence, in depth comparison of the

scale and noise terms will not be informative, and we continue to the comparison

of the fitted values of τd in each case.

For the FCCP poisoned oocyte, the parameter τD shown in 2.12b follows the

linear relationship given in Equation (2.2.27). This matches our expectation that,

in the absence of any active processes, the dominant driving force is Brownian

motion. However, in the control experiment in the same egg prior to poisoning,

Figure 2.12a shows τD to be fit with the incorrect gradient.

The patterns observed in Figure 2.12 can be seen across the rest of the oo-

cytes (see Figures C.1 and C.2 in Appendix C). The poor quality of the fitting
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(a) Control, Brownian model.

(b) FCCP, Brownian model.

Figure 2.12: Fitting results for a given oocyte (7 in Appendix C), using the
Brownian model in both the control condition 2.12a and the FCCP condition
2.12b. The FCCP condition yields better fitting quality under the Brownian
model than in control conditions.

parameters in the healthy oocytes could be attributed either to the incorrect ISF

being chosen, or poor conditioning of the studied images leading to a breakdown

of the relationship between the image appearance and the particle density in the

frame. For example, we previously highlighted the LSI condition in Equation

(2.2.2) as a sufficient, but not necessary, condition for DDM to be viable in a

dataset. Under this condition, the image can be represented in terms of a convo-

lution of the particle locations c(r, z, t) and the PSF K(r−r′, z). If no equivalent

condition holds in our dataset, the relationship between DDM and the ISF would

no longer hold, and parameter fitting would fail. However, we were able to fit

Brownian motion to the poisoned oocytes, which tells us the relationship between

the particle position and image brightness holds. Therefore, the incorrect choice

of the ISF is the cause for the poor performance of the Brownian model in the

healthy oocyte data.

If cytoplasmic movement cannot be described solely by active diffusion, then
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we require a new model for the ISF. We next consider the application of the

bacteria model to the oocyte data.

2.3.2 The bacteria model performs poorly in both control
and FCCP oocytes.

Replacing the Brownian fitting model with the bacterial ISF, we can replot the

curves in Figure 2.12 under our new fitting regime. The same oocyte is considered

to allow comparison between the Brownian and bacteria models. We plot the new

fitted parameters in Figure 2.13.

(a) Control, bacteria model.

(b) FCCP, bacteria model.

Figure 2.13: Fitting results for the an oocyte (7 in Appendix C), using the bac-
terial model in both the control experiment (2.13a) and the FCCP condition
2.13b. The solid and dashed red lines represent the curves fit to τd and τv re-
spectively, generated by linear regression as presented in Equations (2.2.27) and
(2.2.28). The performance of the bacterial model is poor in both cases.

In the control oocyte, Figure 2.13a, the fit of both parameters is poor, with

both τD and τv being fit as flat curves with high amounts of noise. This suggests

that the model is a poor fit for the observed movement of the cytoplasm. In the
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FCCP dataset, Figure 2.13b, the diffusive term τD is well fit, but the velocity

term τv is not.

When discussing the fit of the velocity term, we highlight that the bacteria

model has a variable parameter α controlling the motile fraction of the moving

particles, where α = 0 means no particles in the frame are subject to advection.

Hence, when α is fitted to be approximately zero over the fitting interval, the

parameter τv can be ignored, because it no longer effects parameter fitting al-

gorithms. In Figure 2.14, we show that the fitted motility fraction for this oocyte

in both the FCCP and control condition is approximately 20% for both the con-

trol and FCCP cases. This means a possible suggestion for the poor quality fit

of τv is that advection may affect only a small fraction of the objects within the

cytoplasm, and the DDM matrix is dominated by contributions from diffusive

movement. An alternative explanation is that, since α is not fit as a constant,

the motility fraction has no true biological meaning for the observed movement,

and therefore we still do not have the correct model for the ISF.

Referring to Appendix C, the patterns observed in the fitting of τD under

the bacteria model vary significantly. Considering healthy oocytes, τD is well

fit in some cases, (Figures C.3b and C.3j), in others the general linear trend

is observed but with a large amount of noise (Figures C.3c and C.3g), and in

some oocytes, the diffusion fit term demonstrates no correlation at all with the

frequency q (Figures C.3d, C.3f, C.3h and C.3j). The fit of τv likewise varies from

good (Figures C.3e and C.3k), to noisy (Figures C.3i and C.3j) to completely

decorrelated with no observable relationship between frequency and τv (Figures

C.3b and C.3f). This inconsistency in the type of error we see between oocytes

makes it difficult to identify exactly why our model ISF performs poorly. It

may even be that different oocytes are subject to different ISFs; any defect or

alteration in the quality of the cytoskeleton could generate variations on the

expected movement from within the cytoplasm. Such differences may be difficult

to detect by eye due to the optical density of the cytoplasm, but would cause our

chosen model to perform differently across the oocyte cohort.

If the ISF itself can vary from oocyte to oocyte, we would need to construct a

‘global’ ISF as the weighted sum of each possible choice. In theory this is possible,

treating parameters like the motility fraction α as binary variables which switch

each type of behaviour on or off. However, in practice, numerical constraints mean

that we will likely not fit these weights to be exactly one or zero to identify which

behaviour we observe. This can cause currently well-fit parameters to deprecate

as we add more possible behaviours to the system. An example of this effect can

be see by comparing the diffusion coefficients fitted by the Brownian and bacteria

models in the control oocyte discussed in Figures 2.12 and 2.13. In the Brownian
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(a) Control.

(b) FCCP.

Figure 2.14: The motility fraction α fitted at each frequency q for oocyte 7 under
both the control (2.14a) and FCCP (2.14b) conditions. Vertical dashed bars
correspond to the lower and upper bounds of the fitting region, as in Figures 2.12
and 2.13.

model, we fit D = 0.99 × 10−3µm2/s, whilst in the bacteria fitting regime we fit

D = 1.6 × 10−3µm2/s. These values are of a similar order of magnitude, but

as we show later in Section 2.3.4, this difference is significant compared to the

variance expected between different eggs using the same model. Choosing a more

complex model with (optional) additional terms has led to a different diffusion

coefficient being extracted from the same dataset, calling the reliability of our

DDM analysis into question in these datasets.

We can provide further evidence that the available ISFs do not account for the

observed motion in the cytoplasm, by highlighting anisotropy within the DDM

tensor.

68



2.3.3 Cytoplasmic movement is anisotropic

In addition to performing fitting of the DDM matrix, we can also generate contour

plots of the DDM matrix prior to radial averaging, as seen previously in Figure

2.4, to check for anisotropy. Choosing the smallest time lag available, we plot

D(q,∆t) in Figure 2.15 for the same oocyte (2 in Appendix C) in the control

and FCCP datasets. Comparing the positive and negative diagonal slopes, we

observe a slight anisotropy in the control oocyte. This anisotropy is also observed

in the FCCP images, although to a lesser extent. The source of this anisotropy

is unknown; it could be a drift of the entire oocyte over the plate, resulting in

a very slow overall velocity emerging. Alternatively, there could be a directional

bias in the movement of the cytoplasm which cannot be accounted for by either

of the models available. Combined with the previous analysis, that both the

Brownian motion and active-diffusion model fails to account for some aspect of

the cytoplasmic movement, this leaves us to question what the best model for

cytoplasmic movement is for these oocytes.

So, we have shown that we lack a good model for the ISF that would allow

us to extract accurate and reliable parameters from these oocytes. Can we still

extract any meaningful information from the DDM matrix? We now show that

although the diffusion coefficients extracted from the oocytes have been shown to

not necessarily correlate exactly with the movement of the cytoplasm, they still

correlate with the underlying oocyte health.

2.3.4 Diffusion coefficients fall following poisoning, but
not significantly

Whilst we have shown the performance of our current fitting approaches to be

questionable in the control oocytes, we can still extract out a diffusion coefficient

for each oocyte considering only the Brownian model, and compare between the

control and FCCP datasets. These diffusion coefficients are given as box plots

in Figure 2.16, with connecting lines denoting which points come from the same

oocyte. The diffusion coefficient drops following poisoning, which matches the

expectation that in the absence of active processes, cytoplasmic movement be-

comes slower. This suggests that the DDM matrix does contain information

that informs us in the change in activity between the FCCP and control data-

sets. However, since the error bars of the box plots for the control and FCCP

groups overlap, the diffusion coefficient cannot be used to identify which group

the oocyte originated from. If we cannot predict this rather extreme difference

between an alive or dead oocyte based on the parameters extracted from DDM,
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(a) Control, Brownian model.

(b) FCCP, Brownian model.

Figure 2.15: Contour plots of the DDM tensor D(q,∆t) for t = 1s, for the same
oocyte (2) in both the control (2.15a) and FCCP (2.15a) datasets. A slight
anisotropy is observed in the control dataset, with the positive diagonal axis
achieving lower values than the negative diagonal. This effect is reduced in the
FCCP dataset, but still present.

this would make DDM unviable in the clinic to differentiate between oocytes with

more subtle changes in activity levels.
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Figure 2.16: Box plots of the fitted diffusion coefficients extracted from the control
and FCCP mouse oocyte datasets, using a Brownian model to describe cytoplas-
mic movement. The diffusion coefficients all drop following poisoning with FCCP.

2.3.5 Identifying areas of improvement for DDM in oo-
cyte data

In summary, it appears that DDM has the potential to inform us about the rate of

activity inside of oocytes, but current practices for interpreting the DDM matrix

are insufficient. We now outline some of the challenges faced when performing

DDM analysis on these oocytes, motivating the work of this chapter.

The first challenge we face is that we need a suitable model for the van Hove

function, and therefore ISF, which describes cytoplasmic movement and allows

us to interpret the shape of the DDM matrix. This challenge is based on our

understanding of the biology of the system. For example, the van Hove function

for Brownian motion is defined by the physics that drive it [299], and for bacterial

swimmers, the behaviour of an individual swimmer is described from experimental

observation [281, 300]. In both of these cases, a single model exists for the

behaviour of all particles or cells, allowing us to derive summary statistics for

the ensemble. As discussed in Section 1.2.2.1, models of cytoplasmic movement

do exist, but these models are spatially heterogeneous and, thus, difficult to

reduce to a set of summary statistics. Additionally, these models are defined via

computational fluid dynamics, rather than some analytic solution to the Stokes

flow, which means they cannot be substituted into the current parameter fitting

pipeline. We therefore need to create a method to insert these fluid mechanical

models into the fitting process.

As an extension to this challenge, we face difficulty not only in finding the

correct van Hove function, but also in cases where the van Hove function changes

between two instances of the same dataset. We showed that whilst the Brownian

model performed well in the FCCP data (see Figure 2.12b), the bacterial model
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did not (Figure 2.13b), despite the potential for us to fit the motility fraction

parameter α = 0 and reclaim the Brownian fit. It is possible that varying health

in the oocytes will be expressed as different van Hove functions distributing the

movement of the cytoplasm, but current DDM analysis approaches would fail to

identify these changes. In order to classify which behaviour the oocyte follows,

we would need to rerun DDM analysis for each different van Hove function in

our library, and somehow enumerate the goodness of fit for each method. Each

ISF would likely have a different number of parameters, so comparison between

models is challenging, e.g. what do we do when some parameters are well fit,

but others are not? Additionally, more complex behaviours require more para-

meters, increasing the likelihood of finding a local error minimiser away from

the true estimate of the parameters governing the cytoplasmic movement. It is

a challenge to balance choosing the most simple fitting function, with the most

reliable numerical outputs, against choosing the most accurate model that best

approximates the behaviour of the oocyte cytoplasm.

Another challenge is that current parameter fitting approaches lack mechan-

isms for validating their performance. Given any DDM matrix and a model for

the ISF, we can always undertake parameter fitting and extract some number for

each desired parameter, such as the diffusion coefficients in Figure 2.16. However,

assuming we have the correct model for the ISF and a set of parameters is re-

turned, how is the accuracy of the fit of these parameters measured? For example,

although the Brownian model appeared to well approximate the behaviour of the

FCCP oocytes, there was variation in the diffusion coefficients between oocytes,

despite all being driven by the same Brownian motion. This variation could re-

flect a true difference in the speed of cytoplasmic movement between the oocytes,

but equally, this variation could be the result of noise in the fitting data, or the

fitting function not matching the distribution of the fitting data as a result of

choosing the wrong model for the ISF. We therefore need to introduce methods

which allow us to quantify the accuracy of the fitting algorithms employed, to

give confidence in the values they return.

For some behaviours, validation is possible by comparing the derived move-

ment parameters to a value determined theoretically, or by another technique.

In Brownian motion of colloidal dispersions, a theoretical diffusion coefficient is

given by the Stokes-Einstein formula [164], whilst in bacteria, experiments can

be designed where the density of the population is sufficiently small that tracking

is permissible [281], allowing reconstruction of the summary statistics extracted

by DDM. However, in oocytes, validation can only be performed in idealised ex-

periments. These experiments would use injected tracer particles, such as gold

nanoparticles [303, 304], which can then be imaged and followed using SPT or
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PIV, providing a second estimate of movement statistics which can be compared

with those determined by DDM. This process is invasive, however, and requires

the use of human oocytes, for which the demand vastly outweighs supply. Minim-

ising the volume of data needed for validation relies on designing new mathemat-

ical approaches to determine causes and signs of error in DDM analysis, allowing

us to identify and, where possible, mitigate such error before real data is even

required.

The variation in fitted diffusion coefficients between oocytes under the same

condition in Section 2.3 highlights the need for validation in DDM. The Brownian

model performed well in the FCCP dataset, but despite this, there is a large

variation in the fitted diffusion coefficients amongst the FCCP treated oocytes.

We cannot say, however, whether this variation is due to the stochastic nature of

the cytoplasmic movement, numerical fitting error, or reflects a variable rate of

intra-cytoplasmic movement between the oocytes. By the Stokes-Einstein formula

[164], variable kinematic viscosity of the cytoplasm, or a different distribution of

particle size in the cytoplasm of different oocytes, could result in variable diffusion

coefficients. In turn, these measurements could be indicative of oocyte health. It

is therefore a critical challenge in DDM to pair analysis with robust validation

methods that guarantee the accuracy of the fitted parameters, so that we can be

confident that varying output statistics are accounted for solely by the biology of

the studied system.

A final challenge, which is described independently of the previous analysis,

is that we must discard large amounts of data from the edges of the oocyte in

order to satisfy the boundary assumption in Section 2.2.8.4. The oocytes in

Figure 2.1 have a diameter of approximately 320 pixels, but to stay away from

the cell wall to satisfy this assumption, we performed DDM over only a square

region with length 200 pixels. This means discarding approximately 50% of the

cytoplasm image data, which could be critical to understanding the health of the

oocyte. Furthermore, limiting the size of the domain reduces the available range

of frequencies over which we can perform fitting, since for very large and small

frequencies, noise and numerical errors dominate the fitting regime [164, 266]. We

therefore hope to adapt the DDM algorithm in such a way that we can include

the oocyte cell wall in the construction of the DDM matrix.

These challenges are primarily concerned with the precision of the analysis

undertaken in DDM- namely, we expect that there is some movement parameter

we wish to approximate as closely as possible. However, one might also consider

that precision and usefulness may not be equivalent in the context of DDM applied

to oocyte analysis. For example, if we wish to use DDM only to rank-order oocytes

within a single cohort, then there may be some acceptable error in our estimation
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for which the same rank-ordering is preserved. In this case, further optimisation

of the accuracy of DDM provides no benefit to the clinic. Understanding the

appropriate level of accuracy to maintain usefulness is a fascinating challenge

itself.

Many of these challenges are highly specific to the data in question; to de-

cide what ISF is appropriate for the average oocyte, we must observe a sufficient

number of oocytes. Similarly, we cannot quantify the accuracy with which DDM

predicts the movement of the cytoplasm or health of the oocyte, without com-

paring our analysis to invasive experiments that measure the behaviour of tracer

particles or biological health markers. This would be expensive and impractical

to generate, so tackling many of these challenges head on is beyond the scope

of this thesis. For this reason, we also cannot begin to quantify the trade-off

between precision and usefulness of DDM analysis in the clinic. However, whilst

large volumes of real data are beyond our reach, synthetic data is significantly

easier to acquire. In the next chapter, we introduce synthetic data in the context

of DDM.

First, we will briefly discuss the current role that synthetic data plays in

DDM in Section 3. We also identify that generation of synthetic data introduces

several new parameters that, despite being critical to the performance of DDM,

currently have no guidelines to motivate their selection. We hence undertake

some analysis to determine sensible bounds for these parameters to use when

generating synthetic data, supported by simulated experiments. In Section 4, we

tackle the challenge of determining the ISF in an unknown system, by introducing

a pipeline that enables the numerical approximation of the ISF where an analytic

expression is not accessible, such as in oocyte data. A key feature of this pipeline

is that it allows us to account for boundary effects, as demonstrated through an

application of the pipeline to a Brownian process confined to a circular domain.

Although this pipeline performs well, it still uses the same two-stage fitting

process as ‘classical’ DDM. In Section 4.3, we use simulations to tackle the chal-

lenge of validating the results of this fitting approach in DDM, by exploring

the codependent sensitivity of advection and diffusion behaviours using synthetic

data. We identify parameter regions in which the fitting performance suffers,

highlighting a weakness of current fitting methods. This motivates the work of

Section 4.4, where we introduce a new supervised machine-learning approach to

DDM parameter fitting, which can be trained on synthetic data and applied in

real data. This brings together the previous results, by numerically generating

our fitting function, whilst relying on machine learning to cover the unreliable

fitting performance of previous curve-fitting methods. Finally, we discuss our

results in Section 4.5.
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Chapter 3

Optimal design of synthetic data
in DDM

In Section 2.3, we identified a number of challenges we face when performing DDM

analysis in oocyte data. Overcoming these challenges will require changes to the

current approaches taken in DDM, alongside a large bank of oocyte data to verify

that these changes have yielded a significant improvement to the performance of

DDM. Acquiring such data is expensive, time consuming, and impractical. We

propose, instead, to use synthetic images to drive the creation of new approaches

to DDM. Synthetic data, once the initial theory and machinery is introduced, is

cheap and fast to produce, allowing us to construct more robust approaches to

DDM analysis that can be tested in smaller real datasets. We begin this chapter

by first introducing the role synthetic data currently plays in DDM analysis in

Section 3.1. We identify several key parameters which must be carefully chosen

to ensure the simulated data we generate is suitable for use in DDM analysis. In

particular, we optimise the combined selection of the particle brightness αn and

size σ in Section 3.2, and the combined selection of the particle number Np and

number of frame pairs per time lag, M , in Section 3.3.

3.1 Introduction

Synthetic data currently plays several important roles in DDM. Since we know

what parameters and statistics were used to build the simulation, we know what

to expect from DDM analysis applied to simulated images, which gives us a

‘true value’ against which to compare the performance of DDM. This has led to

simulations being used to test new theories in DDM, before being implemented

in experiments. For example, simulated images of Brownian particles suggested

that DDM remains valid in dark field microscopy, but only where particle dis-

placement is small relative to the gradient of heterogeneous illumination [292].
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Simulations have also been used to support statistical analysis when compar-

ing different methods for characterising the noise term in DDM [305]. In these

applications, simulations provide supporting evidence for theoretical arguments,

and can even be used to explore new applications of DDM before real data is

available, saving time and expense on generating real data.

Synthetic data can also be used alongside real data in DDM analysis, as a

validation step [163, 281]. For the mouse oocytes analysed Section 2.3, despite

having a set of images from an experiment and some model for the ISF, it was

difficult to decide whether our model was suitable or not. For some oocytes, the

model seemed to be performing well, but for others the performance was poor,

and we cannot immediately discern why this happens. The model could be ap-

propriate for some, but not all, oocytes, or there could be numerical problems

such as high image noise skewing our results. It is also possible that the good

performance in some oocytes could be the result of random chance. Simula-

tions are therefore useful because they can clarify that the results we see in real

data match what we see in simulations, where we have prescribed the underlying

mechanics of the system. Good performance of DDM analysis in simulated data

suggests we have the correct model for the ISF, and good agreement between the

performance in simulated and real data suggests that the same ISF holds in both

datasets, giving confidence that DDM is performing well in the real dataset too.

Examples of simulation validation include characterising bacterial motility [163,

281], as well as confirming the ISF for helical and oscillatory swimmers [306],

such as spermatozoa [270].

In this work, we aim to use synthetic data to quantify the performance of

current analysis methods, and to drive the development of new alternatives to

existing fitting methods. Before we can do so, we must first define how simulations

are constructed.

3.1.1 Simulation construction

Here we describe the prevailing simulation method in DDM literature [163, 281,

292, 305, 306]. For some finite number of particles Np, we generate a set of particle

trajectories rn(t), where n ∈ {1, ..., Np} denotes the particle number and t the

time of observation. The initial position of particles can either be determined

randomly [306], or placed on a fixed grid [292], with subsequent displacements

drawn randomly from the chosen van Hove function. In Brownian motion, for ex-

ample, each orthogonal axis has displacements drawn from a normal distribution

as follows,

xn(t+ ∆t) − xn(t) ∼ N(0,
√

2D∆t). (3.1.1)
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Next, particle trajectories must be converted into images. The most common

approach is to define the PSF such that each particle appears as a Gaussian

intensity profile [292, 295, 305, 306]. The contribution to the image brightness

from each particle is typically considered as additive, meaning the image intensity

at any given pixel is equal to the sum of the contributions from all of the particles.

The image stack can thus be expressed as

I(r, t) =
N∑

n=1

ane
−

((x−xn(t))2+(y−yn(t))2)
2σ2

n , (3.1.2)

where an describes the brightness of a particle at its centre, and σn describes an

effective beam spread, or particle size. Comparing to the definition of a Linear

space Invariant (LSI) image in Equation (2.2.2), the simulated image defined takes

background brightness i0 = 0 and a Point Spread Function (PSF) of a Gaussian

beam. In an ergodic system, we want every particle to be representative of the

sample, which is made easier when the particles have a homogeneous appearance.

Hence, we will simplify our simulations by considering all particles to have the

same brightness and size, a and σ, respectively.

An alternative approach to constructing images considers particles to be dis-

crete objects, with brightness ‘spread’ across a local neighbourhood of pixels

around each particle centre [163, 281]. A key disadvantage of this method is that

particles may have sharp edges, which are problematic under the Fourier trans-

form, so we choose to use Equation (3.1.2) to generate images. Many approaches

also account for the position of the particle in the axis orthogonal to the imaging

plane, before projecting the particle location back into the imaging plane [163,

281, 306], although in this work we will remain within the 2D imaging plane for

simplicity.

An image must have finite size, but we have not discussed any measures which

bound the movement of the simulated particles. Given a sufficiently large time,

particles can therefore move outside of the image edges. If enough particles leave

the image, the assumption that |Ĩ(q, t)|2 is constant in time is violated, since later

images will have less particles contributing to the overall brightness. To maintain

an approximately constant particle number within the frame, simulations can be

conducted over a finite domain with periodic boundaries [281, 306], such that

particles passing one boundary re-enter the domain on the opposite boundary.

This is geometrically equivalent to performing simulations on a torus, a concept

we visualise in Figure 3.1. However, if the boundaries are placed at the edge

of the image, such that particles moving out of the image immediately re-enter

on the opposite side, the positions of these particles will correlate in space when

in reality, they should considered as two different particles. A simple solution
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to this problem is to generate images that are smaller than the domain of the

simulation, as shown by the dashed red region in Figure 3.1. If the distance

between the borders of the image and simulation domain are large enough, spatial

decorrelation of the position of particles should occur in the time between leaving

the image and rejoining. The number of particles within the image will now no

longer be constant, but the combination of uniform distribution of initial particle

positions and independent movement should ultimately preserve the homogeneous

distribution of particles throughout the frame. As such, we expect only minor

variation in particle numbers per frame, and hence only minor effects on DDM

analysis..

Figure 3.1: Simulations are performed over a larger simulation domain (solid
black) with periodic boundaries to maintain a constant image brightness. The
images themselves are taken as a central region of the simulation domain (red
dashed square), to minimise the correlation of particles which exit the frame and
on side and rejoin on the other. The simulation and image domain can be mapped
onto a torus.

Given this simulation methodology, we now have a list of variable parameters:

• The image length, L, and simulation domain length, which we define as Ls,

in pixels.

• The length of a pixel in real space, ν.

• The brightness, a, and the standard deviation, σ, which controls particle

size.

• The number of particles, Np.

• The movement parameters determining the motion within the movie, such

as diffusion coefficients or velocity fields.

• The number of frames within the movie, Nt.

• The imaging frequency, or equivalently, the real time between images, de-

noted ∆tmin.
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When emulating an experiment, these parameters can be matched to qualities

of the real data. However, there is currently no investigation in literature that

determines constraints on these parameters that ensure the validity of DDM ap-

plied to these simulated datasets. It is easy to see that such constraints exist, by

considering very extreme cases. For example, if there was only one particle in the

simulation, Np = 1, the simulation would be too dilute to study bulk movement

(although SPT would be appropriate). Equally, if the simulation is too concen-

trated, the image brightness will become uniform, and we will lose the ability to

identify the position of particles within the frame. Since we allow particle over-

lap and have no maximum brightness, we will reach this over-saturation point

at higher particle numbers than in real images where there is typically some

maximum exposure, but nonetheless we can still reach state when the particle

number is too high. This implies there is an optimal number of particles needed

to well characterise the behaviour of the system through DDM, even though the

dynamics themselves in the simulated images are independent of particle number.

Similar heuristics can be made for other parameters, and hence we will attempt

to explore, briefly, some reasonable conditions on the construction of images that

maximise the validity of DDM. We will only consider Brownian motion as the

source of particle movement here, noting that different parameter choices may be

suitable in other types of motion.

Before trying to optimise parameter selection, we can remove some parameters

from the system by considering a rescaling of the distance and time variables.

Converting from real distance (µm) to pixels (px for brevity), and from time (s)

to the number of frames m, we can rescale our movement parameters to achieve

the same DDM matrix with new variables. For example, in the case of Brownian

motion, we can rescale the diffusion coefficient by

D̂ =
D∆tmin

ν2
,

where the DDM matrix would be expressed as

D(qν,m∆tmin) = A(qν)
(

1 − e−(qν2)D̂m/∆tmin

)
.

Varying the imaging frequency and pixel size has the same effect as tuning the

diffusion coefficient, so under this non-dimensional parameter grouping, we can

consider the imaging frequency and pixel size to both be equal to 1. We will

drop the hat from D̂ for simplicity, and hence, there are only four key parameters

remaining which relate specifically to the construction of the simulation, and not

to the movement of the particles within the frame: a, σ,Nt and Np, denoting the

brightness, beam spread, number of frames and number of particles respectively.
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A natural split exists within these parameters; a and σ control how particles

look, whilst Nt and Np control how many statistical samples of particle traject-

ories we take. We will hence approach these two parameter groups separately,

aiming to identify some parameter region for which DDM performs well.

3.2 Controlling a and σ to optimise the appear-

ance of simulated images

We wish to identify some parameter region for a and σ where the performance

of DDM is optimised. Fortunately, a needs little consideration, following the

linearity of the Fourier transform. Consider two simulated image stacks, I1 and

I2, that depict the same simulated trajectories and differ only by the brightness

of the depicted particles, a1 and a2 respectively. The relationship between the

two stacks can be expressed as

I2 =
a2
a1
I1. (3.2.1)

For each image stack, a DDM tensor can be generated by the definition in Equa-

tion (2.2.12). In particular, let D2(q,∆t) be the DDM tensor generated from I2.

Substituting the relationship between I1 and I2 from Equation (3.2.1) into the

definition of D2(q,∆t) from Equation (2.2.12), we show that

D2(q,∆t) =
〈
|∆Ĩ22 |

〉
t

=

〈∣∣∣∣a2a1∆Ĩ21

∣∣∣∣〉
t

=

(
a2
a1

)2

D1(q,∆t).

Changing the brightness a therefore results in a rescaling of the entire DDM

tensor, without changing its shape. Parameter fitting would thus only affected

by the choice of brightness when a is very large or small, where floating point

errors may occur.

To choose a sensible brightness, we may desire images which have similar

properties to real biological image data, which are commonly stored in an unsigned

integer format [307]. For example, in uint8 images, each pixel has brightness

equal to an 8-bit non-negative integer, given by the set Z ∩ [0, 28 − 1]. Since

particle brightness is additive in our simulated images, we want to choose a such

that the maximum brightness in the image stack remains within same range as

these unsigned integer images; we opt to therefore use the value a = 50 to achieve

this, although we note that the choice of a is unimportant.
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In contrast to the flexibility in the brightness, there are immediately identifi-

able poor choices for the beam width, σ. If σ ≪ 1, particles are treated as point

masses. Taking the limit of Equation (3.1.2) as σ tends to zero, we find

lim
σ→0

Np∑
n=1

ae−
((x−xn(t))2+(y−yn(t))2)

2σ2 =

Np∑
n=1

aδ(i− xn(t))δ(j − yn(t)).

Under this problematic expression for the image appearance, a particle can only

be seen in a given pixel if its trajectory passes through a small neighbourhood

around the centre of the pixel at time t. As particles move across the image, they

will spontaneously appear and disappear depending on their location, flickering

over time and violating the requirement for constant image brightness. The po-

sition of particles which spontaneously appear and disappear cannot be tracked

using DDM, so any movement parameters derived from such a movie would have

so physical meaning.

There is clearly a need to prescribe some minimum value of σ. To motivate

a choice of lower bound, we note that the issues caused by excessively small σ

arise due to a loss of conservation of mass of the particles. The appearance of the

particle should not depend on its location within the frame, but if σ is too small,

particles gain and lose mass depending on their position within a pixel. We

demonstrate this effect in Figure 3.2, where we construct an image containing

two particles. The first is located at the centre of a pixel, whilst the other is

placed at a corner junction between four pixels. On the left, when σ = 3, the two

particles look the same, but when σ = 0.5, the appearance of the particle changes

significantly depending on it’s location. Although we could artificially weight the

contribution of the beams to ensure equal contribution, with dependence on its

location within the frame, this would require some additional post-processing

which we hope to avoid through careful selection of σ.

We can hence make a heuristic argument to fix σ in such a way that as a

pixel moves throughout the frame, it maintains its mass spread across the image.

For a very rough approximation, consider a particle initially located at the centre

of a pixel, which has the Cartesian coordinate (i, j). Currently, this pixel has

brightness a. Now, let the particle displace by half a pixel length in the horizontal

direction, without loss of generality, such that its new position is (i+1/2, j). If the

central brightness of the particle was originally a, and the particle now straddles

the border between the pixels (i, j) and (i+ 1, j), we might expect that the sum

of the brightness in these two adjacent pixels is equal to a. Hence, we can fix the

brightness of the beam to be a/2 at a distance of 1/2 a pixel away from the beam

centre. More generally, we can seek σ satisfying

e
−x2

2σ2 > ϵ,
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Figure 3.2: Diagram showing loss of conservation of mass in simulated particles
when the beam spread parameter, σ, is too small. The left and right images use
the same particle brightness, a = 50, and the same particle locations. The top
left particle is located at the centre of a pixel, whilst the bottom right particle is
located at a corner between four pixels. When σ = 3.0, the particle appearance
is invariant of the particle position, but when σ = 0.5, the particle appearance
changes depending on the location within the frame.

where x is the distance in pixels from the beam centre and 0 < ϵ < 1 is some

tolerance, which denotes the rate of brightness drop experienced moving away

from the centre of the particle. Rearranging,

σ >

√
−x2

2 ln(ϵ)
.

Taking x = 1/2 and ϵ = 1/2 gives us σ > 0.6. This value is not necessarily an

optimal choice for σ, but is sufficient to guarantee the particle is wide enough to

track across the frame.

To numerically validate our exploration of these parameters, we perform a

single simulation of Brownian motion, generating a DDM matrix for different pair

combinations of a and σ. We use D = 0.5 px2/frame, matching the approach

taken in [292], iterating over 2000 frames with 150 particles. For each DDM

matrix, we perform fitting over the interval q ∈ [0.2, 0.4] px−1, determining some

output diffusion coefficient. We plot the error between the fitted and expected

diffusion coefficients for each set of image parameters in Figure 3.3. For σ < 0.1,

the error is unpredictable and large, but as σ increases, the error quickly converges

to −0.05 px2/frame for all combinations of an and σ. Under-estimation the

diffusion coefficient is problematic, but clearly is not a result of the selection of

a and σ; we address the cause of this fitting error later. To guarantee that we

are outside of the problematic small σ region, we should pick σ well above the

value proposed by our heuristic argument, and within the convergent range of σ

proposed in Figure 3.3.
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Figure 3.3: The error observed when fitting the diffusion coefficient, D, for dif-
ferent combinations of particle brightness, a, and beam spread, σ, in the same
simulated Brownian motion. Error is constant everywhere, except for σ < 0.1,
where the error is large and has high variance.

Having found a suitable lower bound, σ > 0.6, we turn our attention to de-

termining whether there is a suitable upper bound. Whilst the lower bound was

necessary to ensure particle appearance remains invariant of position throughout

the frame, the upper bound is needed to ensure that particle movement over small

distances can be tracked effectively. Consider the example given in Figure 3.4,

which shows the image difference ∆I for a single particle undergoing a displace-

ment of 10 pixels to the right. On the left hand side, the particle beam width is

σ = 3, and on the right, σ = 50. For the higher value of σ, where the beams are

large and relatively flat in the middle, the brightness gradient over small distances

in ∆I is smaller than when the beams are sharply defined by a small value of σ.

This weakens the signal over small distances, resulting in poor quality fitting over

large frequencies. As such, selecting too large a value of σ may cause restriction

in the size of the fitting region, which can result in an increased contribution of

noise to key fitting parameters.

To demonstrate this detrimental shortening of the fitting region, we per-

form a new simulation of Brownian motion with D = 0.5px2/frame, setting

the brightness to a = 50, and consider the set of beam spread values σ ∈
{0.1, 0.5, 1.0, 3.0, 5.0} px. For each value of σ, we generate the DDM matrix and

perform parameter fitting to determine the characteristic timescale τD, which we

plot in Figure 3.5. Choosing σ = 0.5 ensures τD is fit well, which shows that our

lower bound σ > 0.6 may be too weak. Starting at σ = 0.5 px, as we increase

σ, the lower bound ql remains constant whilst the upper fitting bound qu var-

ies, attaining its maximum when σ = 1.0 px and subsequently decreasing with
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Figure 3.4: Visualisation of the image differences ∆I for a single particle under-
going a displacement of 10 pixels. In the left hand side, σ = 3, and in the right
hand side, σ = 50. As the beam spread increases, the brightness gradient in the
image difference decreases over small distances, resulting in insensitivity of DDM
at higher frequency.

increasing σ. High frequencies correspond to smaller distances, so the retreat of

the upper limit of the fitting interval is fuelled by the increasing insensitivity to

small distances within the simulations.

In summary, the selection of a is not particularly important, but σ is. We

choose σ = 3 for the rest of this work, unless otherwise stated, since this parameter

is safely large enough to not violate the conservation of mass requirement, but

small enough that the upper bound of the fitting interval remains high.

3.3 Balancing the particle number, Np, and num-

ber of frames, Nt

The remaining parameters to control in our synthetic data are the number of

particles contained in the simulation, Np, and the total number of frames which

make up the movie, Nt. We have grouped analysis of these parameters because

they are linked by their relationship with a fundamental principle of DDM, that

averaging |∆Ĩ(q, t,∆t)|2 over a large number of image pairs allows us to capture

the average behaviour of particles depicted within the movie. In order to describe

the ISF from the DDM matrix (and, therefore, the van Hove function), we need to

sample a sufficient number of particle displacements at each time lag. The more

particles contained within the frame, the more displacements we can sample at

each image difference ∆t. Similarly, the longer the movie is, the more image

difference pairs are available to average over.

In our synthetic data, we can control both particle number, Np, and the num-

ber of frames generated, Nt. Determining what combination of these parameters
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Figure 3.5: Plots of the fitting parameter τD for the same simulation, performed
using a = 50 at different values of σ ∈ {0.1, 0.5, 1.0, 3.0, 5.0} px. When σ ≥ 0.5
px, a suitable fitting region can be drawn, but the upper limit of the fitting
interval (right-hand grey dashed line) begins to decrease with increasing σ.

is suitable will depend primarily on the van Hove function, since movement with

a higher variance will require a larger number of sampled displacements to de-

scribe. Consider Brownian motion, where the displacement of a given particle

over a time lag ∆t is drawn from a Normal distribution with mean 0 and vari-

ance 2D∆t (see Equation (2.2.21)). The variance depends on both D and ∆t,

so as both of these parameters increase, a larger ensemble is needed to generate

a sufficient sample of the expected motion. In particular, the dependence on D

makes the task of predetermining what constitutes a sufficient sample more dif-

ficult. Designing tests or heuristics which predict the optimal combination of Nt

and Np for every choice of D is beyond the scope of this thesis, but we will instead

identify a suitable choice of these parameters which guarantees the validity of the

synthetic data used in this work. In particular, this challenge can be simplified
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by fixing either Np or Nt, and identifying a suitable value for the other variable.

In this work, it is more approachable to consider a fixed value of Nt, rather

than Np. This is in contrast to the approach taken in real biological datasets, for

which the particle number cannot be controlled (for example, we cannot interfere

with the cytoplasm of the oocyte), and neither can the van Hove function, such

that we may only control the movie length, Nt. If we attempt to identify the

minimum Nt for a given Np, we first observe that for a movie made of Nt frames,

there are only Nt −m possible image difference pairs to sample over for a time

lag of m frames. This means that increasing Nt not only increases the maximum

number of time lags we may sample over, but also increases the validity of all

sampled time lags. The optimal choice of Nt is therefore motivated by first

choosing the maximum time lag to be sampled over, and then finding the number

of image pairs needed at that time lag.

This problem could be equivalently classed as identifying the optimal value

of M , the maximum number of image differences sampled at each stage. This

maximum is imposed to optimise DDM performance at small time lags, where the

variance is small and the number of samples needed is, therefore, also small. If

M is taken to be the smallest number of image pairs needed to generate a sample

at the desired ∆t, we can create a test to determine the maximum time lag which

can be described by DDM in a given image stack, since if M(m) > Nt−m for any

given m, then there are insufficient available image pairs to generate an average.

Choosing the optimal M is an interesting challenge, but it is as complex to tackle

as the original problem of balancing Np and Nt, so fixing Np provides no real

benefit. Hence, it is preferable to fix Nt, and consider a variable particle number.

Before we undertake any analysis, we consider some extreme choices of Np

to demonstrate the negative effects of poor selection. In DDM analysis, the as-

sumption of ergodicity means that the ISF may be reconstructed by considering

a single particle, given a sufficiently long observation time Nt. In practice, how-

ever, modelling only a single particle is not representative of the spatially dense

arrangement of particles in the cytoplasm. As such, our generated DDM matrices

would be ‘too perfect’, containing none of the contributions of the distinct parts

of the van Hove function that measure the correlation between different particles

in space. New methods and theory that work in our simulated datasets would

therefore be likely to fail when employed on real data.

A second, more important consideration is that we would need a large number

of frames to study a single particle. The computational complexity of the one

dimensional Fast Fourier Transform (FFT) is (L log2(L)) for a square image L

pixels in length [308] (the two dimensional FFT performs the one dimensional

algorithm for each row and column, and hence has complexity equal to the square
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of the one dimensional case). If the FFT is applied to every frame in the movie,

this multiplies the complexity by a factor of Nt, which means that the DDM

algorithm becomes very slow for long movies. Additionally, as Nt increases, so

too will the computational requirement for storage of larger image stacks. There

is, thus, a clear incentive to reduce the required length of the movie.

The solution to bringing down these costs is to consider more particles per

frame, such that image difference ∆I contains more information. This reduces

the number of Fourier transformed pairs needed, and importantly, does not in-

crease the complexity of the transforms themselves. The drawback of adding more

particles per frame is, however, is that the spatial correlation between different

particles contributes more strongly to D. When we introduced the van Hove

function in Equation (2.2.4), we presented a partition into the ‘self-correlating’

and ‘distinct’ parts, making the assumption that the self-correlating part domin-

ates the van Hove function as a result of particle trajectories being independent.

However, as more particles are added to the system, the number of distinct terms

grows. We can see this immediately by substituting the definition of the simu-

lated image (Equation (3.1.2)) into the definition of the DDM tensor (Equation

(2.2.12)). First, we note that we can rewrite the definition of the simulated image

as the sum of Np individual images, containing one particle each, as follows:

I(r, t) =

Np∑
n=1

In(r, t),

where

In(r, t) = ae
((i−xn(t))2+(j−yn(t))2)

2σ2 .

The DDM tensor is therefore equal to

D(q,∆t) =
〈

∆Ĩ∆Ĩ∗
〉
t

=
〈

(Ĩ(q, t+ ∆t) − Ĩ(q, t))(Ĩ(q, t+ ∆t) − Ĩ(q, t))∗
〉
t

=

〈(
N∑

n=1

Ĩn(q, t+ ∆t) − Ĩn(q, t)

)(
Np∑
n=1

Ĩn(q, t+ ∆t) − Ĩn(q, t)

)∗〉
t

= 2

〈∣∣∣∣∣
(

Np∑
n=1

Ĩn(q, t+ ∆t)

)∣∣∣∣∣
2〉

t

− 2

〈
ℜ

( Np∑
n=1

Ĩn(q, t+ ∆t)

)(
Np∑
n=1

Ĩn(q, t)

)∗〉
t

.

The term inside the real brackets can be split into a self part, where n is the

same in both sums, and the remaining distinct part. There are Np self-correlating
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terms, and N2
p −Np distinct terms, so the number of distinct contributions grows

faster than the number of self-correlating terms. We assumed in the theory of

DDM that the self part of the van Hove function dominates the distinct part,

because particles are independent, but for large Np this assumption becomes less

appropriate. This effect can be seen more clearly by taking the limit as Np tends

to infinity; if particles are initially placed with a uniform random probability, for

sufficiently large Np, the brightness in the frame will be uniform at all time points.

Hence, the image differences tend to zero, and DDM will fail to characterise the

observed motion.

This once again suggests the existence of some ‘Goldilocks’ region where the

number of particles, Np, and the length of the movie, Nt, are chosen to balance the

computational requirement for Fourier transforms during DDM, whilst preserving

the ability to extract particle movements from the frame. The exact nature of

this balance depends on the computational resource available to the individual;

use of GPU acceleration or parallel computing can allow for a significant volume

of data generation and processing, which may facilitate the use of lower particle

numbers. For example, generating and analysing a single DDM matrix with

150 particles, 2000 frames and image length 600 pixels takes 71.1 seconds on

a Windows Desktop PC using a Intel(R) Core(TM) i9-9900 CPU @ 3.10GHz

(16 CPUs), 3.1GHz processor with 64GB RAM, using parallel processing. For

images larger in both space and time, or with less computational resource, the

process of generating simulations may become infeasible. For this work, rather

than develop this task in detail, we instead simplify this problem by considering a

fixed number of image differences, denoted M , and seek to determine the number

of particles needed to generate a good approximation of the ISF.

We design a synthetic experiment where we fix M = 500 image difference

pairs, in a movie of length Nt = 2000, and vary the particle number, Np, to

identify the minimum value where good fitting is achieved. We simulate first

only 10 particles to generate an image stack, on which we apply DDM, and then

iteratively add new particles to the image in multiples of 10, until we reach a

total of 300 particles. A diffusion coefficient is generated for each stack. Re-

peating this experiment 10 times, we plot the mean diffusion coefficients, and

their corresponding standard deviations, for each particle number in Figure 3.6.

A fitting region of q ∈ [0.45, 1.1]px−1 is chosen based on the results of Figure

3.5, which highlight this to be an acceptable frequency range for the choice of

σ used. The mean diffusion coefficient remains fairly constant at approximately

0.48 px2/frame, but as Np increases, the standard deviation decreases steadily.

We suggest that a sufficiently high accuracy is achieved using Np ≥ 150.
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Figure 3.6: Plots of the mean diffusion coefficient, D, fitted to simulated Brownian
motion images containing varying numbers of particles, with error bars showing ±
one standard deviation. The mean diffusion coefficient stays constant at around
0.48 px2/frame, but with increasing particle number, the standard deviation de-
creases.

We note that, even for sufficiently large Np where diffusion coefficients are

fitted consistently with low variation, the diffusion coefficient is under fit. For

Np ≥ 150, the standard deviation of these experiments is small, implying this

under-fitting is not a result of random sampling error. Instead, this consistent

under-fitting arises due to localisation error [292]. Whilst the movement we wish

to study is continuous, images are a discrete form of data. This limits how

exactly we can identify the location of each particle within the image. Any

displacement we measure within the frame is therefore subject to a degree of

uncertainty, with a tendency to under-estimate how far particles have travelled.

By under-estimating the magnitude of observed displacements, we hence under-

estimate the magnitude of the movement statistics sought by DDM, such as the

diffusion coefficient. Whilst this error does cause separation between the ‘true’

and observed movement statistics in DDM analysis, we observe from Figure 3.6

that localisation error causes the fitted diffusion coefficient to be fit as a constant

fraction of the true value. So long as there exists an injective map between the

estimated diffusion coefficient and its true value, localisation error has no negative

implications for DDM analysis in oocyte health assessment. Determining whether

such an injective map exists is therefore important work, which would require

systematic study, although this is beyond the scope of this thesis; we know from

literature approaches to the application of DDM in synthetic data that for well

conditioned images, the diffusion coefficient is accessible [292], and our work in

this chapter is sufficient to verify that the images are well conditioned.
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3.4 Summary and conclusion

In Section 2.3, we identified several challenges faced when using DDM as a form

of non-invasive oocyte assessment. Overcoming these challenges using current

approaches to DDM would require a large amount of oocyte data. Performing

experiments to retrieve this data is an expensive and time consuming process,

and, when progressing from mouse studies to human, is complicated further by

strict ethical guidelines. As such, we seek to design techniques that use synthetic

data, which is easy to generate, in order to answer these questions. Simulation

methodology is widely available in literature [163, 281, 292, 305, 306], but in-

troduces several new parameters that currently have no associated guidelines to

motivate their selection.

In this chapter, we explored optimal parameter selection for generation of syn-

thetic image data to be used in DDM analysis. Using a combination of numerical

experiments and heuristic arguments, we have determined a suitable set of sim-

ulation parameters, given in Table 3.1, which balance computational complexity

with performance in our subsequent work in Chapter 4. These parameters will,

unless otherwise stated, be used throughout the rest of our simulations: In par-

Parameter Description Chosen value
a Particle brightness (of beam centre) 50
σ Particle size (beam spread standard deviation) 3
Np The number of particles 150
M The maximum number of image pairs per time lag 500

Table 3.1: Parameter selection for generation of synthetic image data of the form
given by Equation (3.1.2), which has been shown to yield well-conditioned images
for DDM application.

ticular, we have identified that the most sensitive parameters to control were the

width of the particles, σ, and the particle number Np. We can propose a rough

rule of thumb, suggesting that once both Np and σ surpass their respective min-

imum viable values, smaller is better; minimising Np saves on some small amount

of computational workload during simulation, and minimises the distinct contri-

bution from different particles correlating with each other, whilst minimising σ

maximises the length of the fitting region.

Whilst the parameters we have identified are suitable for our current explora-

tion, there is still work to be done in further optimising the selection of paramet-

ers. For example, whilst our proposed minimum value of σ = 0.6 px is a sufficient

choice, it is likely not the optimum, with σ = 0.5 px achieving good performance

in Figure 3.5. More thorough numerical exploration may be able to further refine

our bounds on the parameters explored in this work.
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Additionally, the choice of Np was made given a fixed number of image dif-

ference pairs, M = 500. There is a complex relationship between the image

difference pair number, M , the number of particles, Np, and the van Hove func-

tion which describes displacement in the frame. Investigating this relationship

in detail, though unnecessary in our application, would make this work more

generalisable to other DDM applications.

Further to this point, a more thorough exploration of the relationship between

the appearance of a synthetic image stack, I(r,∆t), and the DDM matrix,

D(q,∆t), may have important implications for real image data applications.

Given an image stack, there are a number of factors which may have a neg-

ative impact on the quality of DDM analysis, such as excessive image noise [164,

266], particle size being excessively large (Figure 3.4) or small (Figure 3.2), or

the spatial density of the particle number being too high or low (Figure 3.6).

Without expert knowledge of how DDM works, however, it may be difficult to

decide whether a given dataset is suitable for DDM or not. Exploration of the

relationship between image construction and DDM performance in synthetic data

could help to define guidelines and automated validation steps, informing users of

potential pitfalls. For example, in PIV analysis, automated validation steps can

detect anomalous velocity vectors, whose direction and magnitude are incoherent

with the surrounding field, helping prevent users from drawing spurious conclu-

sions from their data. Similar mechanisms in DDM would be vital to integration

of the technique into regular biological image analysis.

An effective starting point for this exploration could be Approximate Bayesian

Computation (ABC), a family of algorithms which sample the posterior distribu-

tion of input parameters by finding values for which the simulated data resembles

real data [309]. This statistically-enhanced trial and error approach would allow

us to identify the parameter space for which our synthetic image data yields DDM

matrices that, when analysed, return accurate estimates of the input parameters

of the van Hove function. These synthetic data parameters can then be related

to properties of real images, hence providing guidance to assess the quality of

biological image data with respect to potential DDM analysis.

For now, however, this chapter has achieved the purpose of identifying a

synthetic image parameter set, which will allow us to create simulated images

suitable for DDM analysis. In Chapter 4, we will use these parameters to generate

large volumes of synthetic image data, in order to create new fitting approaches in

DDM which overcome the current limitations and challenges faced when tackling

oocyte data.
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Chapter 4

Simulation-guided approaches to
Differential Dynamic Microscopy
in IVF

4.1 Introduction

In Section 2.2, we explored the performance of DDM in an example time-lapse

oocyte dataset, identifying a number of key challenges faced when using DDM as

a form of non-invasive health assessment. First, the library of ISFs available to

analyse the DDM matrix did not describe the movement observed in the cyto-

plasm. Second, in order to justify the assumption that there are no boundary

interactions in the time-lapse images, we needed to discard large amounts of im-

age data by taking subsets of the central region of the cytoplasm. Finally, we lack

validation to guarantee that the reported statistics from DDM are a true reflec-

tion of variable movement rates in the cytoplasm. In this chapter, we present two

new approaches to overcoming these challenges using the synthetic data described

in Chapter 3.

Given an image stack, one can always generate the DDM matrix, DR(q,∆t),

by following the protocol outlined in Section 2. The matrix must then be inter-

preted with respect to the underlying motion. The shape of the matrix, partic-

ularly along trajectories with fixed spatial frequency q where the scale and noise

terms A(q) and B(q) in Equation (2.2.18) can be decoupled, can inform the user

of properties of the images; for example, a DDM matrix exhibiting oscillation

within fixed q transients is likely to have ballistic or oscillatory properties, or the

timescale over which the DDM matrix converges to some constant may be used

to interpret the timescale of the underlying behaviour [310]. However, the more

common application method by which the DDM matrix is interpreted is through

numerical fitting to some model, determined by the type of movement expected

to be observed within the images. These models typically take parameters which
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can be interpreted through one of three standard measurements used to analyse

DR [311];

1. The Intermediate Scattering Function (ISF), f(q,∆t), which describes the

autocorrelation of particles in the system at specific time and frequency

combinations. Examples can be found in [142, 280, 312–314]. For Brownian

motion, f(q,∆t) = e−q2D∆t in any dimension.

2. The relaxation rate, Γ(q), which describes the timescale for which a system

perturbed at frequency q will return to its original equilibrium state. Ex-

amples can be found in [282, 305, 311]. For Brownian motion, Γ(q) = q2D

in any dimension.

3. The Mean Square Displacement, ⟨∆r2(∆t)⟩, a measure of the average dis-

tance a particle is expected to travel in a given time interval. Examples can

be found in [282, 315]. For Brownian motion in N dimensions, ⟨∆r2(∆t)⟩ =

2ND∆t [281].

These measurements are not stand-alone; they are mutually defined as different

lenses through which we can study the same displacements. There is no significant

advantage to choosing one measurement over another, although as an ensemble,

they provide a more complete characterisation. Determining any of these listed

quantities from the DDM matrix requires being able to estimate the scale and

noise terms defined in Equation (2.2.19), A(q) and B(q), respectively [311].

Additionally, extracting specific parameters from any of these listed quantities

requires a model function to interpret the DDM matrix in terms of the chosen

measurement. The types of data we can approach using DDM are therefore lim-

ited either by our ability to determine a model function, or by the library of

model functions available in literature. We are interested in the ISF, for which a

considerable number of models exist for very complex behaviours, including dif-

fusion [266], bacteria swim speed distribution [163], rotation [316], stochastically

switching two state dynamics [317] and more. The ISF describing motile bacteria

has been previously used to characterise cytoplasmic movement in Drosophila

oocytes [142], but in Section 2.3, we showed that the same approach cannot be

applied to the mouse oocytes studied in this work. Since there is no ISF available

in literature for this specific application, we must formulate one ourselves in order

to use DDM as a predictor of oocyte health.

Although our focus is on characterising cytoplasmic movement in oocytes, the

challenge of picking an ISF is not exclusive to this application. The library of

currently defined ISFs will never be exhaustive, so it is likely that for a given

new application of DDM, it will be necessary to create a new model for the
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ISF. This requires some level of mathematical training, which presents a possible

barrier to entry for the technique. More importantly, this requires that a suitable

analytic form of the ISF exists. In Section 1.2.2.1, we described how the cytoplasm

is subject to spatially heterogeneous fluid-mechanical models which are solved

numerically, not analytically, and hence are currently inaccessible with DDM.

The second challenge we discussed in the context of DDM applied to oocytes

was boundary interaction. Depending on the nature of the boundary, this can be

considered a subset of the challenge of determining a new ISF. For example, in

[318], DDM was used to quantify the rate of diffusion of particles, where the do-

main featured a regular lattice of nano-posts, small cylindrical plastic protrusions

into the domain with a diameter of 500nm, compared to particles with diameter

ranging from 200-500 nm. The diffusive movement of the particles is inhibited

by collision with the nano-posts, which becomes more extreme as the post array

becomes more densely arranged. It was shown in [318] that this confined diffusion

was well described by the Kohlrausch–Williams–Watts model, which is equivalent

to the Brownian motion ISF with an additional stretching exponent term, i.e.

e−q2D∆t →
(
e−q2D∆t

)Υ(q)

.

The same approach can be taken to describe diffusion in crowded domains

[319], where collisions between particles result in sub-diffusive movement. In both

of these applications, the newly introduced interaction, either with the boundary

or with other particles, is homogeneously spread throughout the domain. In

oocytes, however, the boundaries exist on the outside of the domain, which means

that displacement of a given particle in the cytoplasm depends on the initial

position of the particle, as well as the time lag between observations. We, hence,

cannot adopt the same stretching strategy in our application.

A further example of DDM in a bounded domain can be found in [320], in

which a variant of DDM is used to probe the relaxation times of the formation of

a constrained ferrofluid in the presence of a magnet. This application does not

use DDM for parameter fitting, however, instead estimating the time at which

the DDM matrix stops changing to gauge the timescale of movement. As such,

no alternative strategy for defining the ISF is needed.

With no alternative method of describing the ISF, boundary effects are cur-

rently mitigated by cropping the image to remove the boundary from the time-

lapse images [142, 280, 302]. This approach removes boundary interaction, res-

ulting in the distribution of displacement throughout the frame being drawn from

a single, spatially homogeneous process which DDM analysis can be used to char-

acterise. However, this also results in throwing away important data which could
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provide new or complementary information on the health of the oocyte. For ex-

ample, consider the cytoplasmic streaming model in mouse oocytes we presented

in Figure 1.6, where the cytoplasm flows down the the sides of the cell. Missing

this behaviour could limit the information we derive from DDM analysis. Fur-

thermore, by cropping the image stack, we limit the size of the imaged domain.

The assumption that edge interactions are negligible becomes stronger as the

size of the subdomain increases, but smaller images increase the likelihood that

we cannot capture a sufficient sample of the observed motion to approximate

the ISF, as well as increasing the risk that poor performance at small and large

frequencies may distort the fitting of key movement parameters [164].

There is, thus, an incentive to account for boundary effects in the ISF, as

opposed to cropping the image data. However, we now demonstrate in Section

4.1.1 that even when boundary effects can be included in the analytic form of the

ISF, the resulting form of the ISF may be unsuitable for the parameter fitting

algorithms required to extract movement parameters from the DDM matrix. We

do so by presenting a relatively simple ‘toy’ problem, of Brownian motion inside

a finite square domain with reflective boundaries..

4.1.1 Example: Brownian motion in a square domain with
reflective boundary conditions

Before approaching a two-dimensional domain, it is easier to consider the one-

dimensional case first. Let the domain be a line of length L with reflective bound-

aries at 0 and L. The PDE system solved by the van Hove function is the same

as in standard Brownian motion, given in Equation (2.2.20), with the addition of

a zero-flux Neumann condition on each end of the domain,

∂G(∆x,∆t, x0)

∂t
= D∇2G(∆x,∆t, x0),

∂G(∆x,∆t, 0)

∂n
=
∂G(∆x,∆t, L)

∂n
= 0,

G(∆x, 0, x0) = δ(∆x).

An analytic solution to this system can be found by the method of images [321].

This considers the release of ‘ghost’ particles outside of the boundary, at positions

2mL± x0, where m ∈ Z. The real and artificial particles each have a respective

probability of being found at any point in the domain, represented by a Gaussian,

and the van Hove function, given the initial position of the particle in the bounded

domain, is therefore equal to the sum of the contributions from each Gaussian

over the interval [0, L]. This can be written as

G(∆x,∆t, x0) =
1√

4πD∆t

∞∑
m=−∞

e
−(∆x−2mL−x0)

2

4D∆t + e
−(∆x−2mL+x0)

2

4D∆t .
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For large L, with x0 sufficiently far from boundaries, this rapidly decays to the

infinite boundary case. In order to determine the van Hove function, we must

average this PDF over all possible positions x0, i.e

G(∆x,∆t) =
1

L

∫ L

0

G(∆x,∆t, x0)dx0.

For a square domain with side length L, since the x and y displacements are in-

dependent, we can trivially generate the van Hove function by taking the product

of the one-dimensional van Hove function with its transpose, i.e.

G(∆x,∆y,∆t) =
1

L2

∫ L

0

∫ L

0

G(∆x,∆t, x0)G(∆y,∆t, y0)dx0dy0.

However, even for such a simple example, the van Hove function and correspond-

ing ISF are given by an infinite series expansion. Whilst we can take only leading

order terms for simplicity, parameter fitting would involve numerically resolving

the van Hove function for a given choice of D, before numerically integrating over

all potential initial conditions. There are now several steps in which we might

introduce numerical error into the fitting process, increasing uncertainty around

the validity of the output of DDM. Furthermore, slight changes to the dynamics

or boundary could easily result in an ISF which cannot be analytically expressed

at all. We therefore require some new approach to characterising the ISF in such

a system.

4.2 Simulation-determined fitting functions in

DDM analysis.

We introduce a new method for generating an analytic expression of the ISF,

by first numerically approximating it using synthetic data, and using polynomial

interpolation to reclaim the continuous expression for the ISF. This new method,

which requires none of the cumbersome analysis or integral handling of previous

analytic approaches, works well in behaviours where the trajectory of a single

particle can be well described, even if the average behaviour cannot. Simulations

may be constructed using the methodology outlined in Chapter 3.

It is easier to introduce this workflow through a toy problem, for which we

choose Brownian motion confined to a circular domain with reflective boundaries.

This is a more complex version of the problem introduced in Section 4.1.1, where

the boundaries were straight and parallel to each respective axes, allowing the

problem to be decoupled into the product of one-dimensional Brownian motions.

The general workflow, also outlined in Figure 4.1, is as follows:
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1. First, simulate a large number of particle trajectories. Displacements are

drawn from the corresponding van Hove function using a fixed set of para-

meters ( in this case, constant diffusion coefficient D), to create trajectories

in the unbounded domain. These are mapped back into the bounded do-

main, by calculating the effect of boundary interactions. These simulations

are repeated for a range of input movement parameters.

2. The simulated trajectories can then be binned into a histogram to numer-

ically approximate the self-correlating van Hove function G(∆r,∆t)|D for

the bounded process at every time lag, ∆t, where the subscript D denotes

the van Hove function is evaluated at a fixed diffusion coefficient.

3. By Equation (2.2.15), which states that the real part of the Fourier trans-

form of the van Hove function is equal to the ISF, we can convert each

numerically approximated van Hove function into a numerical approxima-

tion of the ISF, by the relation f(q,∆t)|D = ℜ
(
G̃(q,∆t)|D

)
.

4. We apply the radial average to each ISF, assuming that the observed mo-

tion isotropic and the domain is radially symmetric, such that we have

f(q,∆t)|D.

5. During the DDM fitting process outlined in Section 2.2.7, we aim to fit a

continuous diffusion coefficient over a continuous time lag, at each discrete

spatial frequency. In order to do the same, we observe that each numerically

approximated f(q,∆t)|D forms a matrix, which can be stacked together to

form a tensor. This tensor can be sliced into a different set of matrices,

which evaluate the ISF at a fixed values of q for variable D and ∆t. Each

matrix is assigned a label f(D,∆t)|q. This process is visualised in Figure

4.2.

6. A continuous spline is fitted to each f(D,∆t)|q, resulting in a collection of

continuous polynomial fitting functions labelled P(D,∆t)|q ≈ f(D,∆t)|q.

Critically, the polynomials P(D,∆t)|q satisfy the following relation,

DR(q,∆t) = A(q) (1 − P(D,∆t)|q) +B(q), (4.2.1)

implying that they can directly replace the ISF in the fitting stage of DDM

analysis.

An important difference between the two-stage fitting approach typical of

DDM, and the spline fitting in Equation (4.2.1), is that the diffusion coefficient

is output as a function of q. In order to extract a single diffusion coefficient, we
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Figure 4.1: The process flow for the simulation-driven pipeline to fit the diffusion
coefficient from Brownian motion in a circular domain with reflective boundaries.
The objective is to create a continuous numerical polynomial approximation of
the ISF, by first generating it numerically from simulated particle trajectories.
These polynomials can be used to extract the diffusion coefficient from the DDM
matrix.

Figure 4.2: Re-ordering allows us to express the ISF at a single frequency q, with
varying time and diffusion coefficient, ∆t and D respectively.

must consider the average of D(q) over some reasonable fitting interval [ql, qu]

where D(q) is flat.

To demonstrate the validity of the proposed workflow, we apply it to a sim-

ulated, bounded Brownian motion inside a circular domain. Particle trajectories
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forming both the synthetic data from which we approximate the ISF, as well as

the images used for DDM, are determined using a pre-existing MATLAB func-

tion from the Central File Exchange [322]. We consider a circular domain with

diameter 500 pixels, inlaid at the centre of a square image with side length 512

pixels. To numerically approximate the ISF, we perform Brownian motion simula-

tions with diffusion coefficients sampled between 0.01 and 3 px2/frame at regular

intervals 0.1 pixels2/s apart. We simulate 1000 particles for each diffusion coef-

ficient, over a timespan of 2000 time steps at a non-dimensional frequency of 1.

Cubic splines are fit to the numerically approximated ISF values f(D,∆t)|q in

MATLAB.

The images used to validate our technique use the same code to generate

trajectories, with diffusion coefficients between 0.05 and 3 px2/frame, regularly

spaced 0.15 apart. These images consider only 150 particles, consistent with

our recommendations from Chapter 3. To benchmark the performance of our

new approach to generating the ISF, we also use the current standard fitting

approach of taking subdomains of the original image. The purpose of this work

is not to optimise the size of the subdomain over which DDM analysis is applied,

but having noted that such an optimum may exist, we must consider multiple

subsets of the image to ensure we do not negatively bias our comparison against

the new fitting pipeline. To define the size of the image subsets considered,

if the circular boundary of the system has radius R, the first image subset is

defined by the largest square inscribed within the circular domain, which has

side length L1 =
√

2R2. Subsequent refinements are found by taking the square

subset inscribed in the circle whose diameter equals the side length of the previous

subset. Hence, the ith image subset has side length

Li =

√
L2
i−1

2k
, k ∈ N\1.

We also consider the i = 0 refinement, where the subdomain is the whole image.

We visualise the refinement scheme in Figure 4.3.

When we apply our new pipeline to fit the diffusion coefficient from the DDM

matrix, we also note that we must remove the image windowing described in Sec-

tion 2.2.8. The image window makes the assumption that dynamics are invariant

of position in the image, and in particular, that the dynamics in the centre of the

window are equivalent to those at the edge. This is not true for the dynamics we

study here, since particles behave differently near the boundary of the domain.

Windowing would reduce the contribution of particles near the boundaries, which

will skew our ISF towards that of classical Brownian motion. We retain the win-
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Figure 4.3: Visualisation of the scheme used to refine the image domain length
iteratively, defining subdomains (squares) that inscribe circles which, in turn,
inscribe the squares defining the previous subdomain.

dow when applying standard DDM approaches, however, since this is consistent

with literature recommendation [295].

To each DDM matrix generated, we fit the diffusion coefficient using the

new numerically-guided pipeline, as well as using the unaltered DDM code for

each consecutively smaller image subdomain, displaying the results in Figure 4.4.

All approaches underestimate the diffusion coefficient, but the spline method

achieves a consistently closer estimate than standard DDM approaches, regardless

of subdomain size. This demonstrates that there is an accuracy benefit achieved

by employing this new approach. Underestimation of the diffusion coefficient

might be reasonably expected with classical DDM approaches applied to bounded

domains; the presence of boundaries limits the displacement any particle may

undertake, which means particles appear to move less inside the bounded domain,

which is interpreted by DDM as slower movement.

Contrary to expectation, however, the accuracy of the classical DDM approach

decreases as we reduce the size of the subdomain, with the optimal choice of

subdomain being the entire image. This suggests that the trade-off between

information loss from taking sub-images, and the negative effect of including the

boundary in the model, does not exist in these simulations. It could be argued

that this is because the circular domain diameter (500) is approximately equal

to the image length (512), and the Blackman-Harris filter is fairly aggressive;

application of the filter may essentially remove the boundary effects by weighting

the centre of the domain considerably more than the edges, even when considering

the whole image. In this case, there is no benefit to reducing the size of the

subdomain, since boundary effects are already accounted for. This theory can be

tested by repeating the simulations using a significantly smaller circular domain

of diameter 250 pixels, for the same image size (512 pixels long). In this repeated

set of simulations, the domain is much farther from the edges of the image, so will

not be removed by the Blackman-Harris filter. We use the same subdomain sizes,
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Figure 4.4: Fitted diffusion coefficients from simulated Brownian motion inside
of a reflective circular domain of diameter 500 pixels, contained within an image
window with length 512 pixels. Fitting is performed both using a classical win-
dowed DDM approach (black-pink gradient denoting varying window size), and
using the spline interpolation method proposed (x curve). The ‘true value’ curve
is also given (red dash).

as opposed to re-applying the scheme outlined in Figure 4.3 to redraw smaller

subdomains. Determining a new set of fitted diffusion coefficients, we show in

Figure 4.5 that the same pattern emerges, with the magnitude of under-fitting

increasing as the subdomain size decreases.

Making the circular bounded domain smaller should make the boundary ef-

fects more significant, but we still achieve the optimal fitting performance by not

taking subsets of our image. Therefore, a new explanation is needed to understand

why sub-setting results in worse fitting of the diffusion coefficient. The perceived

benefit of sub-setting images is that particle interactions with the boundary are

unobserved, but we will now show that the probability of boundary interaction

is very low in our toy problem, such that we gain little benefit from taking im-

age subsets. In this way, only the negative consequences of considering smaller

images are incurred, in that we discard useful image data and restrict the range

of frequencies over which we may fit the diffusion coefficient.

To calculate the probability of a particle interacting with a boundary, we

observe that if the displacement of a given particle is known, we can determine

for which initial locations in the domain the trajectory would intersect with a

boundary. Given the distribution of initial locations is uniformly random, this

allows us to estimate the probability of a boundary interaction occurring at any

given time. Assume that particles are uniformly distributed throughout a circular

domain of radius R, centred at (0,0). Furthermore, we assume that after a time

period ∆t, the displacement a given particle would have made without a boundary
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Figure 4.5: Fitted diffusion coefficients from simulated Brownian motion inside
of a reflective circular domain of diameter 250 pixels, contained within an im-
age window with length 512 pixels. Comparing to Figure 4.4, almost the exact
same distribution of diffusion coefficients is observed despite the diameter of the
bounded domain being halved. Additionally, the spline fitting under-estimates
the diffusion coefficients more significantly, particularly when D > 2.25, com-
pared to Figure 4.4.

is ∆x, which, due to the radial symmetry of the domain, can be assumed to be

in the horizontal direction without loss of generality, as shown in Figure 4.6.

Figure 4.6: For a particle located inside a circular domain which undergoes a
horizontal displacement of ∆x, collision occurs if the particle was initially located
inside of the mono-colour ‘crescent moon’ area.

Boundary interaction occurs when the horizontal distance between the particle

and boundary is less than or equal to ∆x. The area of the domain for which this

condition is met, shown by the peach coloured ‘crescent moon’ shape in Figure

4.6, has area equal to the circular domain, minus the area of the circle with equal
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radius centred at (−∆x, 0). The area where the particle would not interact with

a boundary is equal to

A = 2R2 cos−1

(
∆x

2R

)
− ∆x

√
4R2 − ∆x2

2
.

The probability of a boundary interaction given a displacement of ∆x, plotted in

Figure 4.7a, is the ratio of the non-intersection area over the area of the domain,

i.e

πR2 − A

πR2
.

We additionally know that the probability of an orientation-independent displace-

ment ∆x occurring is normally distributed, with mean 0 and variance equal to

the MSD, 2D∆t (where orientation-independence reduces the displacement to

one dimension). The product of the probability of collision given ∆x, and the

probability of displacement ∆x, integrated over all ∆x, yields a general collision

probability distribution depending on the variance 2D∆t. We plot the collision

probability against the MSD in Figure 4.7b. In our simulations, MSD < 12000

px2 (calculated by considering the largest time lag and diffusion coefficient), but

we can see from Figure 4.7b that even for this MSD, the collision probability is

less than half for both sizes of circular domain considered.

Even when a collision does occur, we can also consider how significantly the

particle trajectory is affected by that collision. For particles located initially very

close to a boundary, the displacement before collision is very small, which means

only a small amount of displacement is ‘lost’ relative to an unbounded domain.

Similarly, particles colliding with a boundary towards the end of their displace-

ment will only lose a small proportion of their displacement. So, even when

boundary interactions occur, the size of the interactions can be comparatively

small.

To conclude, boundary interactions in these simulations are both unlikely, and

may have a minimal impact on the trajectory for short time lags. This means

that the boundary does not contribute significantly to the shape of the DDM

matrix. As such, including the boundary in the image domain does not have

a strong effect on the output statistics from DDM analysis, which means that

taking smaller image subdomains has no particular benefit. However, this may

not be true if we studied faster-acting Brownian motion, different types of move-

ment, or even different boundary condition (such as a combination of sources and

sinks). The uncertainty associated with the choice of subdomain presents a sig-

nificant benefit of our alternative, simulation-guided approach to fitting bounded
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(a) The probability of a boundary interaction occurring for
a particle which displaces by a distance ∆x/R , where R is
the radius of the bounded domain.

(b) The probability of a boundary interaction occurring as
a function of the Mean Square Displacement, 2D∆t, for two
different domain radii R ∈ {125, 250}.

Figure 4.7: Visualisations of the probability of boundary interactions for particles
undergoing Brownian motion inside of a circular domain. These plots demon-
strate that, for the small time lags investigated during DDM, collision is unlikely.

domain behaviours, since it can be applied regardless of how significant the im-

pact of boundary interactions is. This mitigates the requirement to estimate the

significance of boundary interactions, in order to motivate selection of optimal

subdomain size.

Before discussing limitations of our new approach to generating the ISF, we

will make a general comment about the performance of DDM in bounded do-

mains, such as our toy problem. When the domain is bounded, the van Hove

function will converge to a uniform distribution much faster than in an unboun-

ded domain. When this happens, the DDM becomes constant with increasing
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time lags; this shortens the optimal range on ∆t for which DDM provides useful

information about the spatial autocorrelation of particle positions. For bounded

domains, it is therefore recommended to consider a shorter movie length, imaged

at a higher frequency. This comment holds true regardless of the technique used

to analyse the DDM matrix, and hence affects classical fitting approaches in the

same way as our new proposed pipeline. However, we raise this important com-

ment to demonstrate that our new approach does not negate all of the issues

we face in bounded domains. We now address some limitations of our analysis

approach.

First, simulation and spline generation is slow, computationally expensive

and requires the storage of a large simulated ISF bank. In hardware-limited

environments, such as the IVF clinic, performing simulations like these may not

be viable. If the objective is to automate DDM analysis for one particular kind

of problem, spline generation need only be performed once, and simulation work

could therefore be performed elsewhere, outside of the lab or clinic, and the splines

themselves can be imported. For more variable applications, however, where the

domain size or ISF is not fixed, the user would be required to have access to

sufficiently powerful hardware.

Another limitation is that when generating splines, we naturally assume there

is some upper bound on the input movement parameters. Our proposed pipeline

uses polynomial interpolation to fit the diffusion coefficient, which means that if

the upper bound on D in the simulated data is smaller than the true value of D

in a real dataset, we will be unable to extrapolate and accurately evaluate the

diffusion coefficient. In practice, we may not have reasonable bounds for the ex-

pected movement parameters before undertaking parameter fitting, so this limits

the usefulness of our proposed pipeline when applied to new, poorly understood

datasets.

Similarly, we not only had to decide the maximum bound for the diffusion

coefficient, but also the grid refinement on D for which we generate simulations.

Sampling more diffusion coefficients improves the quality of interpolation, but

increases computational costs for generating the splines. Additionally, the grid

refinement defines the smallest values of diffusion which we may capture. Know-

ing what range of movement parameters is appropriate to simulate over before

undertaking analysis requires physical intuition about the studied system, which

may not be available.

Another limitation of our proposed pipeline is that it will become impractical

when fitting more than one parameter. Our implementation contained only one

movement parameter, the diffusion coefficient, but for more complex systems with

more parameters, the spline interpolation method may fail to well characterise the
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studied system. The size of the polynomial used to interpolate these parameters

grows rapidly with an increasing number of variables, with the appearance of

mixed terms of varying order that will make parameter fitting more challenging.

It would be a useful direction for future work to explore the limits of our approach,

to identify the number of parameters we can accurately account for.

Despite these limitations, the new pipeline introduced in this section has

shown a significant improvement in the ability to fit the diffusion coefficient from

a bounded domain. However, it is important to note that the fitting algorithms

used to generate the diffusion coefficient from the numerically determined ISF are

the same as in classical DDM. In Section 4.3, we demonstrate that in when fit-

ting more than one movement parameter from the system, the accuracy of these

fitting algorithms can vary strongly depending on the true value of the movement

statistics driving motion in the image stack.

4.3 Simulations highlight poor performance of

fitting algorithms when some movement sources

dominate others

When applying DDM to oocyte data previously in Section 2.3, we identified

that both available models for the ISF, Brownian motion and an undirected

‘bacteria’ advection-diffusion, resulted in poor quality parameter fitting. A new

model is therefore required, the construction of which must be motivated by the

underlying oocyte biology. The strategy proposed in Section 4, for example,

could be used to generate this ISF numerically, from simulations which match

experimental observations of movement in the cytoplasm of the oocyte. However,

even when applying our new ISF generation methodology to synthetic Brownian

motion data, we observed a consistent fitting error, showing that even when the

ISF is chosen correctly, numerical constraints may play a significant role in the

performance of DDM.

If true, the correlation between the output parameters from DDM analysis

and the ‘true’ movement statistics of the observed system may be weakened.

This would have problematic consequences for the application of DDM in fertility

applications, preventing the prediction of oocyte quality. There are many well

documented numerical constraints which can cause the output statistics from

DDM to become unreliable, but in this section, we show that even when these

constraints are controlled for, it is possible to construct ‘well-conditioned’ images

that DDM characterises poorly. In order to define a ‘well-conditioned’ image set,

we will first briefly review the current suite of additional constraints which must

be met in order for DDM to be applicable.
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Perhaps the most well known numerical constraint faced in DDM is that

it is necessary to decouple the image noise and scaling terms, B(q) and A(q)

respectively, from the DDM matrix in order to fit movement parameters. This is

only possible when there is a sufficient amount of long and short time lag data

available [164, 266]. One method for controlling this numerical error is through

experimental design, combining high frequency and long exposure movies [164].

In commercially available bench-top incubators, the imaging frequency is often

fixed, which can make controlling for this constraint more challenging. A second

strategy is to adopt an altered form of DDM named ‘cross-differential dynamic

microscopy’ (c-DDM) [323], where multiple cameras are used to capture copies of

the image stack. Image differences are taken to compare frames not only acquired

at different times, but from different cameras. This reduces the noise contribution

in the DDM matrix by cancelling the different levels of noise from each camera,

and also increases the range of viable fitting frequencies.

In this work, we do not add noise to the simulated images generated, so only

the scaling term must be decoupled from the DDM matrix. This constraint can

therefore be mitigated by sampling at a sufficiently high time lag [164]. Even

in the absence of imaging noise, the inclusion of a fitted noise term appears to

improve the fitting performance in DDM; this can be attributed to reducing over-

fitting [305], by allowing a small error-tolerance. This fitted noise is always several

orders of magnitude smaller than A(q), and hence the decoupling of noise and

scale need not be considered.

A second numerical constraint arises due to the fact that the DDM matrix is a

statistical sample, and will hence always be subject to an element of randomness.

This results in fluctuations that can manifest as distortion in the observed pattern

of the ISF, outliers and over-fitting, where the model attempts to capture the

noise as part of the model [305]. Considerations for robust validation steps to

overcome this numerical error have been proposed in the ‘DDM with Uncertainty

Quantification’ method (DDM-UQ), enabling the detection of bias from image

noise during fitting of the diffusion coefficient in Brownian motion [305]. Following

the work in Section 3.3, we have already controlled for this constraint by ensuring

our simulated images contain a sufficiently high particle density, which minimises

the variation between DDM matrices with the same input movement parameters.

Finally, in Section 3, we discussed localisation error [292], where uncertainty

in the estimation of particle position due to the discrete nature of images causes

an underestimation of movement parameters. Whilst this is a form of numerical

error, we note that this error can be accounted for by an injective, multiplicative

mapping of the fitted output of DDM to the true output. Hence, we need not

control for this form of error.
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We have discussed several sources of numerical error, some of which are con-

trolled for, and others which we justify that no mitigating action is required. We

now introduce a new form of error not presently discussed in literature. In order

to describe movement of the cytoplasm, we have previously discussed the need to

characterise two independent forms of motion, active diffusion and cytoplasmic

streaming. When considering more than one source of movement, DDM has to

indirectly partition the observed displacement of particles into contributions from

each type of motion. This task is theoretically possible, so long as the two forms

of motion act on different timescales; for example, in bacterial motion, the decor-

relation over short timescales is dominated by diffusive-type motion, but at longer

timescales, advection dominates, resulting in two distinct regions in the ISF that

guide parameter selection [164]. However, there will exist some central region for

which both behaviours act over similar timescales. In this region, similar DDM

matrices may be observed for a range of different input movement parameters.

When attempting to determine movement parameters from the DDM matrix, this

can cause one parameter to be over-estimated, whilst the other is underestimated.

An important challenge is therefore to explore this source of numerical er-

ror, identifying when it happens, how significant the error is, and whether it can

be mitigated or controlled for. Tackling this challenge is highly difficult in real

datasets, as there is often no ‘true value’ against which we may compare fit-

ted parameters. A notable exception is Brownian motion, where we can use the

Stokes-Einstein relation to approximate the theoretical diffusion coefficient [164,

266, 270]. To compare other fitted parameters, however, one often requires an

additional image analysis technique. For example, fitted velocity fields have been

compared between DDM and PIV when studying cytoplasmic streaming in Dro-

sophila oocytes, despite observing that the accuracy of PIV is diminished when

the displacements due to diffusion and streaming are of a similar order of mag-

nitude [142]. Another example can be found when using DDM to characterise the

motility of bovine semen samples, where the mean velocity derived from DDM is

compared against SPT experiments [270]. The outcome of the study in [270] was

that the predicted movement parameters from DDM and SPT experiments were

not identical, but were of the same order of magnitude, implying that error from

combining estimates of parameters is bounded.

In the IVF lab, it is not sufficient to evaluate movement parameters up to

the correct order of magnitude; DDM may only be used to discriminate between

oocytes if the error with which we estimate movement parameters is smaller than

the natural variance between two different oocytes. It is therefore crucial to

determine how sensitive DDM analysis is to the parameters driving the move-

ment of the cytoplasm. Other sources of numerical error, as described, can be
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mitigated by controlling the way images are generated, but if fitting becomes

inaccurate for particular combinations of parameters, this type of error cannot

be controlled for, and would highlight a limitation of current DDM approaches

in oocyte assessment.

Simulations provide a perfect medium for exploring this phenomena, be-

cause we already know the ‘true value’ parameters driving movement of particles,

against which we may compare the fitting results from DDM. In order to observe

this new type of numerical error, we need to define a system in which there are two

forms of independent motion. Hence, we consider a simplified advection-diffusion

motion, where advection is represented by a homogenous, constant velocity field

v applied to all particles. For a directed, constant velocity field, the van Hove

function is given by

G(∆r,∆t) = δ(∆r − v∆t),

for which the Fourier transform is

G̃(q,∆t) = eiq·v∆t. (4.3.1)

Since the advection and diffusion effects are independent, the theorems out-

lined in Section 2.2.6 allow us to construct a fitting function by multiplying the

individual ISFs for each process. The real part of Equation (4.3.1) is equal to

ℜ
(
G̃(q,∆t)

)
= cos(q · v∆t).

Defining q = q(cos(θ), sin(θ)) and v = v(cos(ϕ), sin(ϕ)), the radial average of the

ISF (see Section 2.2.3) is equal to

1

||Γ||

∮
Γ

cos(q · v∆t) =
1

2π

∫ π

−π

cos(q · v∆t)dθ

=
1

2π

∫ π

−π

cos(qv∆t cos(θ − ϕ))dθ.

The symmetry of the Fourier transform implies the integrand is periodic with

period π, so we are integrating over twice the period. We can therefore consider

the equivalent integral

1

2π

∫ π

−π

cos(qv∆t cos(θ − ϕ))dθ =
1

π

∫ π

0

cos(qv∆t cos(θ − ϕ))dθ.

This integral, with domain equal to the period of the integrand, is invariant under

a constant shift in θ. Since ϕ is constant, for the new parameter Θ = θ − ϕ, the

following integral is equivalent to the radial average,

1

||Γ||

∮
Γ

cos(q · v∆t) =
1

π

∫ π

0

cos(qv∆t cos(Θ))dΘ.
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By definition of the zero-order Bessel function of the first kind [324],

1

π

∫ π

0

cos(qv∆t cos(Θ))dΘ = J0(qv∆t). (4.3.2)

The ISF for the joint advection-diffusion process is the product of the ISF for

each independent process (see Section 2.2.6), yielding the ISF to be equal to

f(q,∆t) = e−q2D∆tJ0(qv∆t). (4.3.3)

We generate simulations of the described advection-diffusion behaviour for

diffusion coefficients sampled at intervals of 0.1 between 0.1 and 2 px2/frame,

and sample the velocity over the same interval, units px/frame. Each simulation

considers a stack of 2000 images containing 150 particles. These simulations are

converted to image stacks, as described in Chapter 3, from which the DDM matrix

is generated. To each DDM matrix, standard fitting algorithms are applied, using

Equation (4.3.3) as the model of the ISF, to determine the characteristic values

τD = 1/q2D and τv = qv at each frequency. These fitted values are then plotted

against frequency, to determine the velocity field and diffusion coefficients. We

expect the absolute approximation error to increase with the size of the displace-

ments observed in the frame; hence, to allow comparison of the fitting error for

different input parameter values, we express error as a percentage of the true

value. For example, the percentage error of the diffusion coefficient is equal to

Dfitted −Dtrue

Dtrue

.

We visualise the fitting error achieved over these simulations in Figure 4.8.

In general, the percentage fitting error for both the diffusion coefficient (Figure

4.8a) and velocity magnitude (Figure 4.8b) is relatively constant for both para-

meters, with the diffusion coefficient being under-estimated by approximately

8-10% and the velocity being under-estimated by around 5%. Such consistent

error, previously attributed to localisation error in Section 3.3, can be adjusted

in post-processing, and is therefore not problematic.

Non-constant fitting error does occur in the diffusion coefficient and velocity

magnitude, however, when the true value of the parameter in question is ap-

proximately zero, whilst the opposite parameter is high. For simulations with

approximately zero diffusion and v > 1, we overestimate D with increasing sever-

ity as the velocity increases. Meanwhile, when the velocity field is approximately

zero and D > 1, the velocity fit becomes increasingly unstable as D increases,

with a tendency to under-estimate the velocity. When one motion becomes dom-

inant, the ISF becomes insensitive to the slower-moving behaviour. For example,

when the diffusion is very high, the ISF in Equation (4.3.3) decays to 0 quickly.
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(a) Error in fitted diffusion coefficient, D
px2/frame.

(b) Error in fitted velocity magnitude, v
px/frame.

Figure 4.8: Fitting error for simulations of advection-diffusion behaviour, ex-
pressed as a percentage of the true value of each parameter. Input diffusion
coefficients and velocity magnitude range between 0.1 ≤ D ≤ 2 px2/frame and
0.1 ≤ v ≤ 2 px/frame, respectively.

As such, small changes in the velocity will have minimal effect on parameter

fitting.

We also note that whilst the diffusion coefficient is over-estimated for systems

with high v and low D, the velocity is under-estimated when D is high and

v is low. This result initially appears counter-intuitive, since we expect that

when the ISF is insensitive to a parameter, we should over-estimate and under-

estimate with equal probability. However, this clear trend towards prioritising

fitting the diffusion coefficient over the velocity magnitude is a result of the ISF

being generally more sensitive to diffusion than advection. Referring to Equation

(4.3.3), the ISF has an exponential dependence on the diffusion coefficient, which

will dominate the rate of decay of the ISF in comparison with the Bessel function

depending on v. As such, changes in the diffusion coefficient have a much stronger

effect on the shape of f(q,∆t) than changes in the velocity. This can cause the

fitting algorithm to converge to an approximately correct solution more quickly

by controlling the diffusion coefficient, rather than the velocity. This imbalance in

the significance of each parameter in the ISF thus causes a detrimental distortion

in the approximation of the parameters themselves.

This analysis demonstrates that current parameter fitting methods in DDM

struggle to characterise systems where the displacement from one form of motion

is dominant over the total displacement. When this occurs, gradient descent

methods to fitting movement parameters will prioritise the dominant signal, and

hence the weaker parameter is less accurately fit. Returning to the motivating
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example of oocytes, this problem can occur when there is an imbalance between

the rates of cytoplasmic streaming and active diffusion. A common way to express

the balance between these two terms is the Péclet number, defined by

Pe =
vR

D
, (4.3.4)

where R is some characteristic length scale, such as the radius of the tracer

particles used, or the length of a bacteria [147, 154]. In our case, we use R = σ,

since this parameter defines the effective width of the particle. A Péclet number

of around 1 corresponds to dynamics where velocity and diffusion are matched.

Analysis of the particle size inside the cytoplasm of plant cells indicates Pe ≈ 50,

suggesting dominance of the streaming behaviour over active diffusion [147, 154].

Equivalent analysis remains to be conducted for eukaryotic cells, and in particular,

oocytes.

For our simulations, we can observe the effect of variable Péclet number on the

fitting error of both velocity and diffusion. Taking R = σ, we plot the percentage

error from our previous simulations against the Péclet number in Figure 4.9.

Figure 4.9: Scatter plot of the percentage error for fits of the velocity v and
diffusion coefficient D in simulations, as a function of the Péclet number, Pe,
defined in Equation (4.3.4). As Pe increases, the fit of the velocity improves,
whilst D is fit optimally for Pe ≈ 10.

As Pe increases, the accuracy of the velocity fit increases; this matches our ex-

pectation that with increasing Pe, the system is dominated by advection, and the

112



relative effect of the diffusive term decreases. The velocity is still under-estimated,

even for the largest Pe, by around 5%. In contrast, the fitting accuracy for the

diffusion coefficient is not maximised when diffusion dominates. When Pe < 10,

the diffusion coefficient is consistently under-estimated, which can be attributed

to the localisation error described in Section 3.3. When Pe ≈ 10, the fit of the

diffusion coefficient is optimal. When Pe > 10, however, the diffusion coefficient

is over-estimated. This is likely related to under-estimation of the velocity ob-

served at high Pe. The movement of each particle can be split into the movements

derived from advection and diffusion separately, so when one form of movement

is under-estimated, the other form must be over-estimated to generate approx-

imately the same level of displacement. Hence, DDM cannot always separate the

two forms of motion accurately, particularly when one dominates the other.

The dependence of the accuracy of DDM analysis on the Péclet number leaves

us in a precarious position. The rate of active processes in the oocyte depends on

the kinesin activity and cytoskeleton structure [150], which may be indicative of

oocyte quality. Therefore, the Péclet number may depend on oocyte quality, such

that each oocyte has a different Péclet number. This would imply that the fitting

error depends on the qualities we are trying to assess, casting doubts over the

usefulness of current fitting methods in DDM. If oocytes are an example of life

at high Péclet number, then current fitting methods may be able to account for

cytoplasmic streaming, but not active diffusion. Similarly, when active diffusion

dominates cytoplasmic movement, we may lose the ability to determine a slow

moving cytoplasmic stream.

One direction for future research is, therefore, to more clearly quantify the

Péclet number for particles contained in the cytoplasm of oocytes, since this will

determine whether we expect DDM to yield accurate, consistent results. This

would require experimental evidence, however, so is out of the scope of this thesis.

We also note that the simulations performed to generate Figure 4.9 would need

to be repeated with real image data, since movement of particles in our simulated

images is not dependent on particle size, although Péclet number is. For example,

we could double σ to get a wider particle, and obtain the same results from from

Figure 4.9 at higher Péclet numbers. This does not invalidate the conclusions

drawn from Figure 4.9, since our simulations still allow for exploration of fitting

performance as diffusion and advection magnitudes vary. This does, however,

mean that the Péclet numbers reported in this work do not correlate exactly

with the Péclet numbers of real biological samples.

Another direction for further work is to develop new, more robust fitting

methods which are less prone to error in the desired parameter region. In the

next section, we introduce a new parameter fitting pipeline, which incorporates
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synthetic-data driven machine learning to develop fitting algorithms which can

be applied in real data.

4.4 Introducing a simulation-driven machine learn-

ing pipeline for parameter fitting in DDM

In Section 4.2, we outlined a new pipeline for parameter fitting in DDM by gen-

erating the ISF numerically from particle simulations, enabling parameter fitting

where analytic expression of the ISF is difficult or impossible, but individual

particle simulation is approachable. This could be paired with fluid dynamic

simulations of cytoplasmic streaming and active diffusion, in order to generate

the ISF which best describes movement in the cytoplasm of oocytes. However,

we also considered that when approaching complex problems such as cytoplas-

mic movement, which depend on several movement parameters, using splines to

approximate the ISF may be ineffective due to the high complexity of the mul-

tivariate polynomials required.

Fitting these numerically generated ISFs is made even more difficult in light

of the results of Section 4.3, where we demonstrated that the standard parameter

fitting algorithms used in DDM suffer from instability and bias that depend on the

underlying parameters defining the movement. In particular, when displacement

from one type of motion dominates another, the parameter corresponding to the

slower movement is fit poorly. This is a particularly challenging feature of current

analysis methods in the context of IVF, since we want to use differences in the

rate of cytoplasmic movement to predict health. If slower cytoplasmic movement

is an indicator of poor quality, but also results in numerical instability, DDM

cannot be used as a discriminant of oocyte viability.

Together, these two bodies of work show that whilst we can in theory gen-

erate ISFs numerically for analytically challenging behaviours, parameter fitting

concerns will still be a limiting factor in the performance and usefulness of DDM

in the IVF clinic. This motivates the search for a new approach to parameter

fitting. The problem is one of pattern recognition, interpreting the shape of a

DDM matrix in terms of the parameters that generated it, which naturally leads

us to consider the application of supervised machine learning in the parameter

fitting stage.

Machine learning refers to the class of algorithms and approaches in which

the algorithm ‘learns’ to identify patterns from raw data [325]. Whilst machine

learning is a broad term covering a vast array of algorithms, we are interested in

artificial neural networks [325], whose name is derived from their resemblance to

models of the brain, having the appearance of many layers of connected ‘neurons’.
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An example of a very basic network is presented in Figure 4.10, reproduced from

[326]. The network is formed by a series of layers of neurons, where each neuron

from one layer feeds into every neuron of the subsequent layer.

Figure 4.10: A very simple neural network architecture, featuring four layers
of neurons. The first layer is determined by the input into the network, and
subsequent layers are defined defined sequentially by summing weighted contri-
butions from previous layers, with an additional bias.

A single layer of the network, containing n nodes, can be expressed as a vector

a ∈ Rn. To define the values of the next layer, an arc connects every neuron in

the current layer with every neuron in the next. Each arc is assigned a ‘weight’,

such that each layer after the first admits a weight matrix W ∈ Rn×m, where each

of the n rows corresponds to the neuron that we map from, and the m columns

relate to the neuron being mapped to. Finally, we may add to each neuron in the

current layer some bias, given for each layer as a vector b ∈ Rn, which allows us to

tune the relative importance of a given node independently of the contributions

it receives from the nodes in the previous layer.

In the brain, a neuron only fires if the input is large enough to surpass an

activation threshold [326]. To mimic this effect in the neural network, we define

some activation function ς, which controls how much of the input signal from

one layer is transferred to the next. Hence, the lth layer a[l] is defined from the

previous layer by the equation

a[l] = ς(W [l]a[l−1] + b[l]).

The output layer is typically defined by the purpose of the network. In classi-

fication tasks, each class has a node, and the value of each node represents the

predicted probability of the input being assigned to that class. In regression

problems, a single node can be used as the output.

Training the network is equivalent to changing the weights and biases in such

a way that the network improves its ability to perform the desired task [326].
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This requires training data from which we learn, and some way of measuring per-

formance. In supervised learning, the training data is labelled with some ‘true

value’ corresponding to the output we want the network to reproduce. Perform-

ance is assessed by defining a cost function that measures the distance between

the network output and the ground truth label.

For example, the MNIST dataset consists of images of handwritten digits, each

with a corresponding label denoting the digit depicted in the image. A neural

network can be trained to identify which digit is depicted in each image. The

output layer such a network consists of ten neurons, representing the ten digits,

and the value of each neuron corresponds to the probability that the input image

contains that digit. The label for each image is a vector with 1 in the correct

position, and 0 elsewhere, so a suitable cost function could be the Euclidean

distance between the true value and the output data. The cost function is chosen

to be continuous, in order for the weights and biases to be tuned by taking partial

derivatives of the cost function with respect each weight and bias in the network.

Training can be equivalently considered as determining the direction to perturb

each weight and bias in order to decrease the cost function.

Whilst we have given only a brief overview of artificial learning here, there is a

great wealth of knowledge available around artificial intelligence, machine learn-

ing and deep learning [325–327], spanning many varieties of algorithm. However,

only one application of machine learning exists in DDM analysis [310]. This work

embeds bacteria into a silk hydrogel construct, giving the material new biolo-

gical properties, such as pH sensitivity. The design of these hydrogels depends

on a number of physical parameters, which result in different properties of the

final material. The particular desired property for this study was ‘gel time’, the

timescale over which the material develops solid-like mechanical properties, at

which point the MSD of particles contained in the gel becomes constant. The

objective of the study was to train a neural network to identify which combina-

tions of physical parameters would produce hydrogels that had gel time within

a given interval. DDM was used to determine the gel time for the training set

of hydrogels, by finding the time at which the DDM matrix plateaus. Next, su-

pervised machine learning was used to predict whether a combination of physical

parameters relating to the construction of the gel would give a gel time within the

desired time interval, using the actual gel time of real experiments as a labelled

training set.

This approach does not integrate machine learning into DDM directly, but

instead uses parameters determined by DDM as the label for supervised learning.

We propose to use machine learning as an alternative method of parameter fitting,

by using the DDM matrix itself as the input, and setting the network output to
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be the desired movement parameters, such as the diffusion coefficient. To train a

neural network to perform parameter fitting, we need a wealth of labelled training

data; generating real data to suit this purpose is time-consuming and expensive,

and in many cases may simply be practically impossible. Hence, we propose using

synthetic data as the training set, since it is cheap and easy to produce. Despite

being trained on synthetic data, we demonstrate that the trained network is

capable performing parameter fitting in DDM matrices derived from real, unseen

time lapse images.

Before describing the approach taken to using machine learning as a para-

meter fitting tool, we wish to discuss the value of using the DDM matrix as

the input of the network, as opposed to the original images. There are some

clear disadvantages to doing so; for example, generating the DDM matrix is com-

putationally expensive, which can make development of the training set a slow

process. Additionally, since the DDM matrix is subject to both a time and radial

average, the DDM matrix loses all information which is heterogeneous in time

and space. As such, by using the DDM matrix instead of the original image, we

limit the scope of what can be measured from the original image stack. Despite

these disadvantages to using the DDM matrix as the network input, there are a

number of significant benefits to doing so which outweigh these considerations.

First, using DDM matrices as an input means that we do not need to produce

simulations that look like the real data. A network trained to extract parameters

from a set of simulated images will not perform well in real data, unless the

simulations match the visual appearance of the real data; attempting to produce

images which look like real data is a considerable challenge. The DDM matrix is

far simpler, and can also be described using only three terms, as given in Equation

(2.2.19); the scale term, A(q), the noise term, B(q) and the ISF, f(q,∆t). If we

simulate data that has the same movement as our real data, then f(q,∆t) is

equivalent in both the real and simulated DDM matrices, and we only have to

consider reconciling the different values of A(q) and B(q) expected between the

simulated and real images.

Additionally, a neural network trained on raw image data can potentially learn

from features of the images that we do not wish to consider, such as morphokinetic

parameters. Whilst these features may actually be indicative of the viability of

the oocyte, their consideration may make the algorithm less interpretable, putting

distance between the output of the network and our understanding of the biology

that caused it. The objective of this thesis was to create tools and metrics that are

scientifically motivated, and explainable to patients. Machine learning, however,

can often appear to be a ‘black box’, where we do not understand how the output
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was determined. Since we know, from Equation (2.2.19) that the DDM matrix

can be expressed in the form

DR(q,∆t) = A(q) (1 − f(q,∆t)) +B(q),

by using the DDM matrix as an input, we are able to discard confounding vari-

ables by limiting the available information from which we might learn. This leads

us onto an additional benefit of using the DDM matrix; we achieve a significant

dimensional reduction when comparing DR to the original image stack. Reducing

the size of the input layer of the network allows us to potentially reduce the num-

ber and size of layers in the network. This means there are fewer parameters to

train, which can expedite the training process considerably. Furthermore, more

complex networks are at greater risk of over-fitting, since they have more degrees

of freedom. Hence, there are considerable advantages to using the DDM matrix

as the network input rather than the raw image data.

There is an important difference between the machine learning parameter fit-

ting we propose, and pre-existing fitting methods available for DDM analysis,

which we must highlight. In classical methods, even when using a numerically

approximated ISF as in Section 4, we could run the same parameter fitting al-

gorithm on any different DDM matrix, regardless of the type of images from

which the DDM matrix was generated. In our machine learning approach, this

is more difficult. Supervised learning, particularly in biological applications, is

known to perform badly when the dataset we apply the algorithm to has different

properties than the training data [328]. Hence, in order for the network to learn

to decouple the ISF from the scale and noise, some portion of the training data

supplied must be similar in appearance to the real image data we wish to process.

We therefore require some method to make the DDM matrices in our training set

more similar to those generated by the target data.

The first, and most obvious, option available to ensure that the neural network

performs well outside of the training data is to train on a sample of real data,

although this is an unrealistic option in the IVF clinic, due to the lack of available

labelled image data. Another alternative is to train the network in one dataset,

and then retrain some, or all, of the network with a small portion of real data.

For example, the network could be trained in a mouse oocyte dataset, and then

retrained in a small human oocyte sample. This lowers the data requirement,

but would still require more human oocyte data than we have available. In the

absence of any real data, we only have access to synthetic image data; we therefore

propose two alternative, although not necessarily mutually exclusive, strategies to

training a network which can tackle real image data using exclusively simulated

training images:
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1. Transform each simulated DDM matrix under a random perturbation of the

scaling and noise terms, so that the neural network can learn to decouple

these q-dependent terms from the ISF we wish to classify.

2. Use some reasonable approximation of A(q) and B(q) to transform the

DDM matrix into the ISF, so that the input layer takes in f(q,∆t) instead

of DR(q,∆t).

The first approach is theoretically more ideal, since it would not require any

knowledge of the shapes of A(q) and B(q), but in reality this approach is highly

impractical. Both terms are vectors of length L − 1 for a square image L pixels

in side length, since there is one frequency per pixel distance in the image. This

means we have 2(L− 1) parameters to randomise for an image of length L. We

do not have an upper bound for A(q), or B(q), without knowing what our real

data might look like, so each of the new parameters that randomise the scale and

noise terms belong to a large interval. As such, we would need a significantly

increased training set size to implement this approach.

We therefore choose the second strategy. We can approximate A(q) and B(q)

for our simulated datasets either from knowledge of the PSF used to visualise

images [292], or by considering high-frequency and long time lag elements of the

DDM matrix [164]. For example, when ∆t→ ∞, the DDM matrix reduces to

lim
∆t→∞

DR(q,∆t) = A(q) +B(q). (4.4.1)

For very small time lags, as ∆t→ 0,

lim
∆t→0

DR(q,∆t) = B(q). (4.4.2)

Together, these estimates can be used to decouple A(q) and B(q). It may be

that the maximum imaging frequency of the camera limits our ability to apply

Equation (4.4.2) estimate B(q), in which case, the noise can be approximated

by imaging an empty frame. Similarly, if we are limited on the maximum time

lag we can image over, or if it is difficult to estimate how large ∆t must be for

Equation (4.4.1) to hold, the scaling can be roughly approximated by taking the

average

A(q) = 2⟨|Ĩ(q, t)|2⟩t.

The downside to approximating the scale and noise by analysing single frames in

this way is that the estimates would be affected by static artefacts in the image,

such as scratches or defects in the microscope lens.
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Having discussed some important considerations when applying machine learn-

ing to parameter fitting in DDM, we now describe the pipeline from which para-

meter fitting can be achieved in real image data, using a network trained on

synthetic data.

1. Randomly generate a large set of movement parameters (diffusion coeffi-

cients and velocity magnitudes, for example). Then, generate correspond-

ing simulated particle trajectories by drawing displacements from the van

Hove function of the process being observed. For example, Brownian mo-

tion displacements are drawn from a normal distribution, as in Equation

(3.1.1).

2. Convert trajectories into images, I(r,∆t), using Equation (3.1.2).

3. Apply the DDM algorithm to each image to generate a set of DDM matrices

DR(q,∆t).

4. Transform each DDM matrix to the ISF using the following rearrangement

of Equation (2.2.19):

f(q,∆t) =
DR(q,∆t) −B(q)

A(q)
,

where for our simulated images, which are noiseless by definition,

B(q) ≈ 0,

A(q) ≈ 2⟨|Ĩ(q, t)|2⟩t.

5. Perform training of the neural network, using the input movement para-

meters for each ISF as a training label.

6. Once trained, the network is ready to be applied to real images. The real

image stack should be converted into a DDM matrix, and the same maps

defined in step 4 are applied to reduce the DDM matrix to an ISF, where

approximations of A(q) and B(q) are available in Equations (4.4.1) and

(4.4.2) respectively.

To demonstrate that this approach can be used to tackle real data challenges,

we will start by approaching only Brownian motion. We consider images depict-

ing colloidal dispersions, which have been produced and imaged in the Cardiff

University School of Physics and Astronomy by Emily Lewis. A colloidal sus-

pension of Polystyrene (PS) beads is used with a nominal radius of 100 nm, with

less than 3% coefficient of variance (cv) (Alpha Nanotech Colloidal PS Beads

NP-PA07CPSX78). These PS beads were dispersed in mixtures containing water
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and either 10, 20 or 30% glycerol. The diffusion coefficient of the suspended beads

is given by the Stokes-Einstein relation, [164, 266],

D =
KBu

6πηr
,

where KB J/K is the Boltzmann constant, u = 291.25K is absolute temperat-

ure, η mPa s is the dynamic viscosity of a the glycerol solution depending on its

percentage concentration, and r the particle radius. Varying the glycerol content

of the mixture varies the dynamic viscosity and, therefore, the diffusion coeffi-

cient. We can measure the success of our new pipeline by comparing the output

diffusion coefficients from the neural network with the ‘true value’ estimates yiel-

ded by the Stokes-Einstein relation. The three dispersions imaged, with varying

glycerol concentrations of 10, 20 and 30%, have corresponding dynamic viscosit-

ies of 1.46, 2.10 and 3.20 mPaṡ, respectively, resulting in diffusion coefficients of

1.80, 1.23 and 0.83 µm2/s.

We construct a simple neural network using Tensorflow (Python). The spe-

cific choices regarding the number and size of layers, and choice of activation

and optimisation methods, formed the basis of a Cardiff Undergraduate Research

Opportunities Programme (CUROP), undertaken by Thomas Greatrix, and su-

pervised by Timothy Ostler, Joshua Moore, Thomas Woolley and Katerina Ka-

ouri. The input layer takes the DDM matrix, flattened into a vector, whilst

there are 5 inner layers, with a monotonically non-increasing number of nodes

per layer given by {512, 256, 256, 128, 64}. The inner layers all use a Rectified

Linear Unit (ReLU) activation function, that takes only positive contributions

from the previous layer, defined by [329]

ς(x) = max(0, x).

This activation function has several benefits, such as allowing sparse representa-

tion of the network where specific activations achieve true zero, as well as linear

behaviour when activated [329]. The final output layer has only a single node,

with the value corresponding to the diffusion coefficient. This layer takes on a

linear activation,

ς(x) = x.

For training, we adopt the Adam optimiser [330], which has been shown to per-

form well in regression problems and is computationally efficient.

We generate 1500 DDM matrices from simulations of Brownian motion, with

diffusion coefficients sampled from a uniform random distribution between 0 and

3. The simulations must match the meta-parameters of the image datasets, so we

simulate movies 3310 frames long, at a frequency of 7680/900 frames per second,
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for a pixel size of 322.5 nm/pixel. Of this dataset, 80% is assigned to training

(1200) and 20% for validation (300). After training, we apply the same network

to the DDM matrix of the real images.

To estimate the noise and scaling terms of the real images, we assume that

the largest sampled time lag in the DDM matrix is sufficiently large to satisfy

Equation (4.4.1). Although this assumption may not be necessarily good in our

case, it is easy to make this assumption stronger when designing an experiment,

by imaging for a longer period of time. We also note that

lim
q→∞

A(q) = 0,

since larger q relate to smaller distance, and we expect the decorrelation of the

particle position to be high at small distances. The noise should be constant in

q, so an alternative estimate of B(q) instead of Equation (4.4.2) is to consider

the value of the DDM matrix at its greatest frequency and time lag. As such, we

estimate A(q) and B(q) by the following,

B(q) = DR(max(Q),max(T )),

A(q) = DR(q,max(T )) −B(q),

where Q and T are the sets of frequencies and time lags, respectively. Using these

estimates, we can transform the DDM matrices for the real datasets into ISFs,

and apply the neural network to extract a diffusion coefficient.

First, we compare the performance of the neural network against the classical

fitting method, outlined in Section 2.2.7, in Figure 4.11. In the centre of the

interval of D considered, around 0.5 < D < 2.5µm2/s, the fitting performance

is comparable between the two methods. The machine learning method begins

to break down close to the edges of the domain, however; for D < 0.5µm2/s,

over-estimation occurs, whilst for D > 2.5µm2/s, we under-estimate the diffusion

coefficient. Poor performance at the end of the intervals is to be expected, since

the network cannot extrapolate outside of the training data, and hence maps

input data at the extreme ends of the training interval inwards. This results in

a sigmoidal relationship between the true and fitted parameter values, which can

be mitigated by increasing the sampling rate of the training data at the extreme

ends of the interval.

Having verified the performance of the neural network in the validation data-

set, we now show that this network, trained exclusively on synthetic data, can be

applied to real data. For each of our real colloid datasets, with varying kinematic

viscosity due to the variable concentration of glycerol, we can predict the diffusion
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Figure 4.11: Plot of the fitted diffusion coefficients, D, in the test set of simulated
Brownian motions, fitted by either both classical fitting approaches outlined in
Section 2.2.7 (purple filled square) or machine learning (open circle).

coefficient by the Stokes-Einstein relation. We plot the Stokes-Einstein relation-

ship in Figure 4.12 as a function of ν, where the other parameters remain constant.

We also plot the diffusion coefficients fitted using classical approaches, and our

machine learning approach. Our new method of parameter fitting achieves the

correct decreasing relationship between ν and D, and is relatively close to approx-

imating the Stokes-Einstein relationship. However, particularly for the colloidal

dispersion at a 20% concentration with ν = 2.10 mPa s, the machine learning

approach is less accurate than the classical fitting methodology.

Although the neural network does not outperform classical fitting methods,

the results in Figure 4.12 are positive, showing a proof of concept that a network,

purely trained on synthetic data, can be applied to real data and achieve relatively

low error rates. The actual performance of this network could easily be improved

by increasing the size of the training set, using a small amount of real data to

‘retrain’ the network, or pruning the frequencies used in the input of DDM to

reduce the amount of ‘bad’ data considered. Additionally, we could optimise the

architecture used in this network, either by improving on the number of, and

size of, layers used, or by using an altogether different architecture. Despite the

relatively simple approach we have taken, using only a few layers with relatively

few nodes and a minimal training set, we have still been able to approach a real

dataset using only synthetic data to inform our parameter selection, and obtain

respectable results, implying this fitting framework has potential.

In conclusion, we have created a new framework to fit parameters from DDM

matrices using supervised machine learning, where training is performed on syn-
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Figure 4.12: Plot of the diffusion coefficients fitted to the three colloidal image
datasets with varying kinematic viscosity (ν ∈ {1.46, 2.10, 3.20} mPa s), using
the classical fitting approach (purple filled square) and machine learning (open
circle). The Stokes-Einstein relation, showing the expected diffusion coefficient
for each dataset, is given by the blue line.

thetic data. The power of this approach lies in its generality, since it can be im-

plemented in any dataset in which the behaviour of an individual tracer particle

can be simulated. For some behaviours, such as cytoplasmic movement in oo-

cytes, the ISF might be inaccessible or prone to numerical instability, but this

new methodology has the potential to tackle a wide variety of problems. A more

general pipeline can be defined, allowing us to employ this machine learning ap-

proach tailored to a specific problem.

The first step towards this goal is to design experiments in which tracer

particles, injected into the cytoplasm, can be used to derive movement statistics

using SPT or PIV approaches. This data can then be used to motivate the design

of fluid mechanical models, such as those discussed in Section 1.2.2.1, which will

generate the synthetic data required to train the neural network. We visualise

this workflow in Figure 4.13. This pipeline is flexible, and allows for effective

analysis of complex systems using only a very small amount of real image data.

However, a more desirable pipeline is one in which no pre-requisite knowledge

of the system we wish to study is needed at all. In this theoretical pipeline,

we could train the network on a vast synthetic dataset, containing combinations

of a large pool of different behaviours. In this way, the network can learn not

only to fit parameter values for a set combination of movement types, but also

to identify the type of motion observed within a supplied image stack. Such a

neural network would be expected to output non-zero values corresponding to

the parameters which govern the motion in that data, and 0 for absent effects,

thus allowing DDM to be used as a diagnostic tool, as well as for parameter
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Figure 4.13: A proposed future workflow for designing new DDM fitting methods
for use in the IVF clinic. A small amount of real data is studied using invasive
imaging techniques with injected tracer particles, to motivate fluid mechanical
models from which synthetic particle trajectories may be generated. The syn-
thetic data may be sued to train a neural network, which may then be applied to
the real data for non-invasive extraction movement statistics.

fitting. If such a network could be trained, the positive implications would be

significant, since any biologist wishing to analyse a dataset with DDM could

use the network to immediately summarise their data. However, this is not an

immediately achievable goal; there are several limitations, even of our much more

simple approach, which must be overcome first, taking us step by step towards a

more general and powerful clinical assessment.

Many limitations of this machine learning approach are shared with the new

ISF generation method we proposed in Section 4. Training the network requires

a large amount data and computational power; training the network may not be

viable in resource-constrained environments such as an IVF lab. Choosing the

correct size for the training dataset is itself a challenge, as we must use enough

data to effectively train the model, without over-fitting the training data. The

amount of training data needed also depends on the parameter range over which

we simulate. As shown in Figure 4.11, the network performs poorly around the

extreme values the range of simulated input parameters, so it may be necessary

to simulate movement parameters over a wider interval than we expect to see in

reality. However, the wider the range of the simulated parameters, the larger the

training set we need to guarantee sufficient performance of the model.

An additional concern with parameter fitting through machine learning is that
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when fitting fails, it is much harder to diagnose than in the existing curve-fitting

methods. In Section 2.3, we were able to see when the quality of curve fitting

was low, which gave an indication that the results from DDM analysis may be

inaccurate. However, when using machine learning, it is far more difficult to

identify when or why the model performs poorly. This is a concern in the clinic,

where it is crucial that we are confident in the fitted output of the model. It

can be difficult to justify the application of a neural network to patients, as well

as industry regulators, when we do not understand how the output parameter is

achieved. This limitation can prevent even highly effective neural networks from

seeing practical application.

Finally, in its current state, the chosen architecture for the neural network de-

mands that the input takes the same shape as real data, which makes it inflexible

when applied to different problems. Different clinics using different incubators,

with variable image stack sizes and imaging frequencies, would require a bespoke

trained network, limiting the ability to create a single ‘master’ network which can

be exported to all clinics. This limits the generality of the model in its current

state, since for every new size of problem, we would need to repeat the training

strategy.

4.5 Summary and Discussion

Oocyte health is critical in determining the viability of embryos in IVF [119–122].

Methods of assessing oocyte health are in high demand, but are limited by the

requirement that they must be non-invasive [119]. Attempts to infer health from

embryo and oocyte morphology have had mixed results [128–132], but with the

emergence of commercially available time-lapse incubators [54, 57], attempts to

incorporate timings of morphological changes during embryo development, given

the term ‘morphokinetics’, have been a prevalent direction of research in this

field [57, 59–62]. Despite some promising results, these new morphokinetic con-

siderations have failed to yield significant clinical improvement in success rates,

attributed to the lack of biological explanation for how morphokinetic features

relate to embryo quality [55, 56, 60, 203–205]. Furthermore, these methods are

embryo-centric, resulting in a lack of more advanced time-lapse approaches to

classifying oocyte quality.

Motivated by [135], we propose that the rate of movement in the cytoplasm

could have the potential to be a non-invasive indicator of oocyte quality. In order

for this metric to be useable in the clinic, we need tools capable of accurately

extracting movement statistics from image data of oocytes. In particular, we set

out to explore the use of Differential Dynamic Microscopy (DDM) [266], since

126



this method is has been shown to perform well at extracting movement statistics

from the mixture of active diffusion [140, 141] and cytoplasmic streaming [146,

147] expected in the cytoplasm.

In Chapter 2.3, we identified some of the challenges faced when using DDM

for oocyte quality assessment. We demonstrated in Section 2.3.1 that DDM

can capture Brownian motion in poisoned oocytes, but neither of the available

advection-diffusion or Brownian models were a good fit for healthy oocytes, so the

first challenge we identified is to find a suitable model for the ISF that describes

movement of the cytoplasm in oocytes.

The second challenge we identified in Section 2.3.4 is that, without additional

validation steps to evaluate the accuracy of DDM, we cannot be confident that

the output parameters from DDM reflect variable health between oocytes. By

making the imperfect assumption that active diffusion dominates the movement

of the cytoplasm, we showed in Figure 2.16 that poisoning is reflected by a drop in

the diffusion coefficient of each oocyte, but high variation in D between oocytes

meant that we could not discriminate between healthy and poisoned oocytes

from diffusion coefficient alone. Identifying whether intra-egg variance indicates

differences between the rate of movement of the cytoplasm in each egg, or is

attributed to numerical error, is critical to ensuring the validity of the results

from DDM analysis.

Finally, we identified in Section 2.3.5 that in order to respect the assumption in

DDM that boundary effects are negligible, we had to remove approximately 50%

of the oocyte from the analysed image by taking a subset of the original image.

Spatial heterogeneity of the cytoplasm means that the information determined

from movement at the cell wall may be important in determining oocyte quality,

so we need to adapt the fitting functions used in DDM to enable the potential

description of boundary effects.

Using the synthetic data described in Chapter 3, we tackled the challenges

outlined by our exploration of the mouse oocyte dataset. First, in Section 4.2, we

outlined a new methodology for numerically approximating the ISF in behaviours

where the trajectory of individual particles can be described more easily than the

ensemble. This new strategy for generating the ISF serves two purposes. First, it

can be used to generate the ISF for complex, spatially heterogeneous behaviour

as seen in the cytoplasm of oocytes. Second, this new approach is capable of

dealing with boundary effects, so that we may image the entire domain and are

no longer required to discard significant portions of the available images in order

to apply DDM analysis.

This new method for generation of the ISF uses the same curve fitting ap-

proaches as before, however. In Section 4.3, we showed that there exists particular
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parameter regions for which these curve fitting methods are prone to error. In

particular, we were able to show that the accuracy when fitting Brownian mo-

tion with a constant, directed advection was dependent on the non-dimensional

Péclet number, Pe, which balances the relative rates of advection and diffusion.

For Pe > 50, a velocity-dominated regime, the velocity field is well fit but the

diffusion is poorly characterised, whilst for Pe < 1, a diffusion-dominated regime,

the velocity is poorly characterised. This fitting insensitivity means that if the

Péclet number is a function of oocyte quality, then so to will be the error of DDM

analysis, resulting in diminished ability to assess oocytes using DDM.

To mitigate this concern, we introduced a new fitting approach in Section 4.4

that uses synthetic data to generate DDM matrices, which are used to train a

machine learning model to perform parameter fitting. We demonstrated that this

model can then be applied to real image datasets, despite being trained purely

with synthetic data. Compared to previous curve-fitting, which required us to

perform fitting iteratively over slices of the DDM matrix, machine learning can

use information at all times and frequencies to make decisions, resulting in a

more powerful fitting approach. We demonstrated the success of this method

when applied to colloidal images, achieving within an order of magnitude of the

correct diffusion coefficients.

Collectively, the results from this work set out a basic framework for how

we might explore the use of DDM in real datasets, detailed in Figure 4.13. Us-

ing synthetic images depicting simulated trajectories, we can either construct a

numerical approximation of the ISF as in Section 4.2, and use curve-fitting tech-

niques to extract movement parameters, or instead train a neural network as in

Section 4.4 which removes the requirement for a model altogether. Our long-

term vision for DDM analysis is driven by machine learning, but there are many

hurdles to clear before such a technique can be clinically viable.

Even when only describing Brownian motion, the accuracy of the parameter

fitting through a neural network was less than the accuracy achieved through

curve-fitting approaches. We expect this can be improved by increasing the size

of the training set, or by the use of a different architecture, both of which would

require further research to optimise. When moving away from Brownian motion,

we would then need to train a new network, repeating the optimisation of the

training set and architecture for each new application. This is cumbersome and,

in some ways, less flexible than the current DDM fitting approach, in which we

need only change the model of the ISF, assuming it is known.

Additionally, our current work makes the strong assumption that parameter

fitting is even possible from the DDM matrix presented. Behaviour which evolves

too quickly, or slowly, within a given image stack cannot be assessed accurately
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using DDM, as well as behaviours which are non-stationary and change over time.

There are likely also limits on the complexity of the behaviour we can consider,

where the parameter space can become large and the ISF becomes dominated

by non-linear interactions. The combination of these factors means that when

applying DDM analysis to an image stack, the output statistics may have no

correlation with the underlying behaviour of the system, but as shown in Section

2.3, diagnosing these issues can be difficult. An important avenue for future work

is to develop guidelines which can inform prospective users of the limitations of

DDM, identifying features of their data which could cause problems in DDM.

Assessing the power of DDM in the IVF clinic is difficult without a sufficiently

large dataset on which to experiment, however. In the absence of real image data,

we propose a realistic direction for future work would be to benchmark DDM

against other similar image analysis techniques when applied to synthetic image

data. Such analysis would provide insight into the suitability of each technique

in different problems, such that when real image data becomes available, we

may suggest which technique to apply. These other techniques, namely SPT and

PIV, access movement directly from the image stack, and rely on post-processing

to reconstruct movement distributions. SPT is the ideal approach to use when

individual trajectories can be traced, since it allows for the reconstruction of any

parameters derived from DDM or PIV. SPT is also the most restrictive of the

three techniques, however, since we require a low particle density and individually

discernable trajectories. Hence, we only really need to compare PIV and DDM,

which occupy a similar role in image analysis.

DDM is essentially a more general form of PIV. In PIV, we can access the

velocity field evaluated over a grid on the domain, allowing us to characterise flow

which is spatially heterogeneous. Since PIV does not use any time averaging, we

can also resolve a velocity field which changes over time, such as characterising

the spasms of a fertilised oocyte [135]. However, PIV requires localised bulk flow,

which means objects in the same location need to move in the same direction

with the same speed. DDM is the opposite in all three of these descriptions;

information is accessed over the whole image, the van Hove function must be

stationary, particles need not be subject to localised bulk flows. Hence, although

DDM and PIV access similar information, they do so in different ways.

PIV and DDM are therefore complementary techniques, covering each others

weaknesses. Whilst PIV is well adapted to characterise cytoplasmic streaming,

and fails when in diffusion-dominated environments (where Péclet number is low)

[142], we have shown DDM to characterise diffusion well in low Péclet number en-

vironments. As such, it is likely that some combination of the two approaches will
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allow us to extract the most accurate movement parameter from our system, val-

idating the output from one method using the other. Determining measurements

which identify the technique most suitable to analyse a given dataset would be

a useful contribution to image analysis in biological datasets. Alternatively, the

combination of the two techniques could provide a robust and effective method

for classifying both ballistic and diffusive properties of image data. In this poten-

tial multi-scale approach, applying PIV over longer time periods where ballistic

motion is dominant could provide accurate estimates of the local velocity field

within the system. Over the same interrogation windows, DDM may then be

applied, where the pre-determined local velocity field is supplied to the fitting

model in order to increase the accuracy of the estimation of the diffusion coef-

ficient. Pairing these techniques presents an exciting opportunity to expand on

the strengths of each method and approach more complex systems which combine

sources of directed and undirected motion.
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Chapter 5

Differential Dynamic Microscopy
can be applied to Differential
Interference Contrast images
despite shadowing effects

5.1 Introduction

In Chapter 4, we discussed several complex interactions between experimental

design factors and the accuracy of DDM, but we did not discuss the choice of mi-

croscopy technique used to generate the time lapse image stack. DDM has been

successfully applied in a wide variety of different microscopy settings, including

bright field [266], fluorescence [331], confocal fluorescence [332], dark-field [292],

and phase-contrast [163, 281], a particular form of which is Differential Interfer-

ence Contrast (DIC) [142].

Phase-contrast imaging is of interest in this work, because LWC uses the

Embryoscope® bench-top incubator, which generates time-lapse images using a

form of phase-contrast imaging known as Hoffman Modulation Contrast (HMC)

[333]. Images generated by HMC are considered functionally equivalent to those

generated by DIC [334], despite the mechanism for image generation being differ-

ent between the two techniques. Due to this equivalence in the resulting image,

we will limit ourselves to discussing DIC for brevity, noting that our analysis

will likewise apply in HMC setting too. A thorough explanation for the theory

of DIC imaging, provided by Wolfgang Langbein of the School of Physics and

Astronomy, Cardiff University, can be found in the related work [335], in which

we presented some of the results of this chapter. The explanation of the theory

of DDM is also reproduced in Appendix C.1 for convenience. This thesis does

not aim to advance the theory on this topic, so we will summarise some of the

basic concepts behind the formation of a DIC image here.
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A light wave is a periodic signal, where the phase is defined as the relative

position of the wave in its cycle at any given time [268], equivalent to the angle

of the oscillation as a fraction of 2π. When light is passed through an object, the

emergent wavefront experiences a phase shift ϕ, defined by

ϕ = 2π
(n2 − n1)t

T
,

where T is the period of the wave, t is the time over which the wavefront passes

through the sample and n2, n1 are the refractive indexes of the object and back-

ground, respectively [268]. In DIC, a single beam is split into closely spaced

polarised beams before being passed through the sample, separated in space by

the so-called shear vector, s, which is typically similar to the optical resolution

in the focal plane [268]. Each of the separated beams passes through a different

part of the imaged object and, therefore, experiences a different amount of phase

shift. The difference in phase shift is denoted δ(r), and is converted into image

intensity via the following formula [336],

It(r, ψ) =
Ie
2

[1 − cos (ψ − δ(r))] , (5.1.1)

where Ie is the excitation intensity, r is the position in the imaging plane and

ψ ∈ [0, π/2] is the phase offset, a parameter derived from the experimental setup

that controls the contrast. When ψ = 0, a dark-field type image is observed,

whereas for ψ = π/2, a bright-field type image is observed [336].

A simple way to understand DIC is that it visualises gradients in the Optical

Path Length (OPL), defined by [337]

OPL = d
c

v
,

where d is the distance travelled by the beam through the sample, c is the speed

of light in a vacuum and v is the speed of light through a particular homogeneous

medium. The brightness in the image at each location is approximately determ-

ined by the local difference in OPL, or ∇(OPL), between the beams passing

through that element of the sample. This approach allows imaging with very

high resolution and contrast [338], even at very large magnification [336]. How-

ever, the directional nature of ∇(OPL) means that particles often appear dark on

one side, and light on the other, resulting in DIC images appearing ‘shadow-cast’

[268], as if a directed light source is applied. In Figure 5.1, we sketch the rough

idea behind the formation of the shadow in an idealised semi-spherical object.

We also illustrate the shadowing effect observed in DIC in real data in Figure

5.2, which depicts a mouse oocyte obtained from experiments in the Swann lab

in the School of Biosciences at Cardiff University. Imaging is performed using
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Figure 5.1: An example of the relationship between OPL and its spatial gradient
∇(OPL) in a homogeneous semi-spherical particle. The OPL and ∇(OPL) are
plotted along a single line oriented parallel to the DIC shear direction, with the
square and diamond on the plots corresponding to the location on the image of
the particle. Where ∇(OPL) is positive on the left of the particle, the particle is
light, and gets darker as it approaches the right hand edge. Based on a similar
diagram from [268].

a custom-built DIC system in the School of Physics and Astronomy at Cardiff

University, further details for which can be found in [336], and experimental

information regarding mice is given in Appendix A.

In the mouse oocyte in Figure 5.2, the cytoplasm of the oocyte appears to

have a rough texture, interspersed with a few larger objects. This roughness

corresponds to changes in the phase gradient across the cytoplasm, meaning we

observe movement not only of the larger particles in the frame, but of the cyto-

plasm itself. The level of detail these images can provide make them ideal for

studying the relationship between DDM-determined parameters and oocyte vi-

ability, since we can track even the smallest movements within cytoplasm to a

highly accurate degree. However, shadowing as a result of DIC gives the illusion

of heterogeneous illumination along the direction of the shear within the images.

This is a source of anisotropy in the image, which violates a key assumption of

DDM [164, 266].
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Figure 5.2: Image of a single mouse oocyte taken with a DIC microscope setup.

To demonstrate this anisotropy, we perform DDM analysis on two image

stacks of colloidal dispersions, and plot a slice of the DDM tensor D(q,∆t) at the

smallest time lag available in Figure 5.3. Figure 5.3(a) shows the DDM tensor

derived from bright field images [164], with concentric rings demonstrating that

the underlying process is isotropic [164]. However, Figure 5.3(b) is derived from

DIC images of a similar colloidal dispersion, as used previously in Section 4.4,

and displays an asymmetric ‘kidney bean’ shape, where the highest peaks align

along the orientation of the shear s in the DIC image, and the lowest peaks are

orthogonal to it.

(a) Bright field, images from [164].
(b) DIC, images from Emily Lewis in
School of Biosciences, Cardiff University.

Figure 5.3: Isocontours of D(q,∆t) for (5.3a) bright field [164] and (5.3b) DIC
images of colloidal dynamics. Both sets of images are displayed for the smallest
available time separation: ∆t = 2.5 ms for bright field and 0.12s for DIC. The
bright field images yield concentric circular isocontours, but in DIC images, there
is a clear asymmetry aligned with the direction of the DIC microscope shear,
denoted by the white arrow s.

Since we know that colloidal dispersions involve only Brownian motion, which

is isotropic [339], the anisotropy in Figure 5.3 is an artefact of the DIC imaging
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process. This anisotropy raises the question of how to interpret output statistics

from DDM in terms of the underlying object motion. Although DDM has been

used for phase-contrast microscopy in various studies [142, 163, 280, 281], at the

time of writing we are not aware of investigations into how shadowing affects the

output statistics from DDM.

There are a number of approaches to dealing with similar forms of spatial

anisotropy. In [292], simulated dark-field images were used to show that DDM is

robust to non-uniform background brightness, an inherent form of anisotropy, un-

der the condition that gradients in the background illumination are small relative

to the length scale of the imaged motion. This condition is equivalent to saying

that when particles remain in areas of relatively constant local illumination, het-

erogeneous illumination does not skew the DDM analysis. In DIC, anisotropy in

the particle appearance is not dependent on particle’s location within the frame,

however, so we cannot apply the same logic to our problem.

Another anisotropic setting in which DDM has been successfully applied is

found in [340], in which ‘Janus’ particles were studied. These particles are spher-

ical, with different chemical coatings applied to each half in such a way that the

the particles themselves can be made to be visually anisotropic (see Figure 5.4),

which draws a parallel with the asymmetric particle appearance expected in DIC

microscopy. Although each individual Janus particle may be visually heterogen-

eous, the particles are free to rotate in space; the study in [340] makes use of this

freedom to rotate, by coating the particles in such a way that rotational dynam-

ics are induced. DDM is then used to characterise the speed of this rotation. In

[340], no consideration is needed to account for the anisotropic appearance of the

particles because they may rotate independently of one another, such that the en-

semble average of all particles within the frame will remain isotropic. Hence, this

application is not directly comparable with the DIC case, where the anisotropic

appearance of particles is oriented across the whole image.

The most relevant application of DDM to the challenge of applying DDM in

DIC images is [280], which explored the movement of ovoid silica-coated spindle

type haematite particles. These particles diffuse at varying speeds along and

orthogonal to their long axis. The particles were aligned through the use of

a magnetic field, which resulted in anisotropy in the appearance of the image,

as well as the displacements observed. The proposed solution in [280] was to

apply the radial averaging step over small directed bands coinciding with the

major and minor axes of the particles, rather than the entire circular contour Γ.

This approach could be applied to phase-contrast images; whilst the orthogonal

axes where chosen to align with the major and minor axis of the magnetically

oriented particles in [280], the axis in a DIC application could be chosen parallel
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Figure 5.4: A schematic for a series of rotating Janus particles, each half coated
with two chemicals ‘A’ and ‘B’. It is possible to tether these particles in such a way
that rotation occurs only in the axis parallel to the imaging plane, ensuring that
in the resulting images, each particle has exactly half its visible surface coated
with each type of chemical [340].

to, and perpendicular with, the shear direction. In particular, perpendicular to

the direction of the shear, the shadowing effect should disappear. However, this

solution is imperfect, since the accuracy of the radial average is diminished by

restricting the orientations over which the average is applied. This is important

in cases where we expect the motion to be isotropic; we should be able to use

data for all orientations of the spatial frequency q, since the underlying movement

itself has no preferred direction. Furthermore, this solution brings us no closer to

understanding what effect, if any, phase-contrast shadowing has on DDM analysis.

The above approaches in [280, 292, 340] show that there are several approaches

to dealing with forms of anisotropy in DDM, but none directly solve the problem

we would like to tackle in DIC microscopy. We aim to extract motility parameters

from time-lapse images of visually heterogeneous particles, whose displacement

distributions are independent of the asymmetry observed in the images of the

particles. Despite the heterogeneity induced by DIC images, which should violate

the isotropic assumption required in DDM analysis, previous applications of DDM

to DIC images have been shown to be highly successful, yielding parameters

validated by Particle Image Velocimetry (PIV) [142]. We will therefore explore

the effect of DIC on DDM analysis, to understand any conditions required in

order to justify good use of DDM in this setting.

5.2 An analytic expression for the DDM matrix

of a DIC image stack for isotropic motion

A single DIC image is generated by the interference between two beams separated

by the shear vector s, where a change in the optical path of each beam results

in a phase difference that is converted into image intensity [341]. Since the shear

distance is small relative to the optical limit of the microscope, we can make a
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rough approximation that the difference in optical path between the beams is

linear, which means the DIC image can be expressed as the difference between

overlapping identical offset images [341–343], where each polarised beam in the

pair generates a different image. For a DIC image stack I(r, t), we define image

stacks generated by each beam to be X(r, t) and Y (r, t), respectively, such that

I(r, t) = Y (r, t) −X(r, t), (5.2.1)

where

Y (r, t) = X(r + s, t), (5.2.2)

for a shear s = (x0, y0). This approximation does not take into account refraction

of the beam, or birefringence [341], and, further, it does not hold when changes

in the phase gradient occur on a scale smaller than the optical resolution of the

microscope. However, for now, we restrict ourselves to an idealised set of particles

meeting this assumption.

For some initial time, t, and some time displacement ∆t, let I2 = I(r, t+ ∆t)

and I1 = I(r, t), with the relation Ij = Yj −Xj, j ∈ {1, 2}. We may then write

the image difference ∆I(r, t,∆t) as

∆I = I2 − I1,

= ∆Y − ∆X.

Given this decomposition of ∆I, we can now construct the DDM matrix for the

DIC image, which we denote by DI , in terms of only one of the constituent images,

X. By the linearity of the Fourier Transform,

∆Ĩ = ∆Ỹ − ∆X̃.

So the definition of the DDM tensor from the image stack I, reproduced below

from Equation (2.2.12), can be expressed as

DI(q,∆t) =
〈
|∆Ĩ|2

〉
t

=
〈

(∆Ĩ)(∆Ĩ∗)
〉
t
,

=
〈

(∆Ỹ − ∆X̃)(∆Ỹ ∗ − ∆X̃∗)
〉
t

=
〈

∆Ỹ∆Ỹ ∗ + ∆X̃∆X̃∗ − ∆Ỹ∆X̃∗ − ∆X̃∆Ỹ ∗
〉
t

=
〈
|∆Ỹ |2 + |∆X̃|2 − ∆Ỹ∆X̃∗ − ∆X̃∆Ỹ ∗

〉
t

=
〈
|∆Ỹ |2

〉
t
+
〈
|∆X̃|2

〉
t
−
〈

∆Ỹ∆X̃∗
〉
t
−
〈

∆X̃∆Ỹ ∗
〉
t
.

(5.2.3)

It is reasonable to assume that
〈
|∆Ỹ |2

〉
t
≈
〈
|∆X̃|2

〉
t
, since these are both

statistically averaged quantities of two image stacks depicting the same type of
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movement. In the case of X and Y arising from DIC imaging, this assumption is

even more reasonable, since shear distances are typically around 0.2-0.3 µm [268,

343, 344], meaning the shear is small relative to the size of the image. Hence, X

and Y do not just depict the same type of motion; they depict the same particles

exactly.

Next, we expand the final two terms of Equation (5.2.3), dropping the time

average brackets for simplicity, as

∆Ỹ∆X̃∗ + ∆X̃∆Ỹ ∗

= (Ỹ2 − Ỹ1)(X̃2
∗ − X̃1

∗
) + (X̃2 − X̃1)(Ỹ2

∗ − Ỹ1
∗
)

= (Ỹ2X̃2
∗

+ X̃2Ỹ2
∗
) + (Ỹ1X̃1

∗
+ X̃1Ỹ1

∗
) − (Ỹ2X̃1

∗
+ X̃1Ỹ2

∗
) − (Ỹ1X̃2

∗
+ X̃2Ỹ1

∗
).

(5.2.4)

Both Ỹ2X̃2
∗

and Ỹ1X̃1
∗

describe the correlation between an image taken at the

same time, before and after it is shifted by the DIC shear, whilst Ỹ2X̃1
∗

and Ỹ1X̃2
∗

describe the correlation between an image and its shifted partner at different

times. By the definition of Y in Equation (5.2.2), the translation property of the

Fourier transform states that for some known shear s,

Ỹj(q) = X̃j(q)e−i(s·q), (5.2.5)

or for the analogous discrete Fourier transform case [345],

Ỹj(qx, qy) = X̃j(qx, qy)e
−2πi( lx0+my0

L ),

where l,m are references to the index of the pixels in the horizontal and vertical

axis respectively. Thus, Equation (5.2.5) gives

ỸjX̃j
∗

+ X̃jỸj
∗

= X̃jX̃j
∗
e−i(s·q) + X̃jX̃j

∗
ei(s·q)

= |X̃j|2
(
e−i(s·q) + ei(s·q)

)
= 2|X̃j|2 cos(q · s). (5.2.6)

The assumption that the process is stationary implies that |X̃j|2 is constant with

respect to time, so Equation (5.2.6) holds for all initial times, and

Ỹ1X̃1
∗

+ X̃2Ỹ2
∗

= Ỹ1X̃1
∗

+ X̃1Ỹ1
∗
.

An alternative derivation of Equation (5.2.6) can be made by finding the auto-

correlation of particles moving with a constant velocity v = s/∆t [267], which

can be seen by solving the Fourier transform of the advection equation,

∂u

∂(∆t)
= v∇u,

u(r, 0) = δ(r),

(5.2.7)

138



solved by

=⇒ ∂ũ(q,∆t)

∂(∆t)
= (−iqv) ũ(q,∆t),

=⇒ ũ(q,∆t) = e−iq ·v∆t. (5.2.8)

Applying Equation (5.2.5) to the final two terms in Equation (5.2.4), we get

Ỹ1X̃
∗
2 + Ỹ2X̃

∗
1 + X̃1Ỹ

∗
2 + X̃2Ỹ

∗
1 = X̃1X̃

∗
2e

−is·q + X̃2X̃
∗
1e

is·q + X̃1X̃
∗
2e

is·q + X̃2X̃
∗
1e

−is·q

= X̃1X̃2
∗ (
eis·q + e−is·q)+ X̃2X̃1

∗ (
eis·q + e−is·q)

=
(
X̃1X̃2

∗
+ X̃2X̃1

∗
)

(2 cos(s · q)) (5.2.9)

We note that X̃2X̃
∗
1 is the Fourier transform of the autocorrelation of the images,

which we can express in terms of the Fourier transform of the underlying van

Hove function [290], describing the probability of displacement within the image

stack, G(q,∆t) (see Equation (2.2.11)),

X̃∗
2X̃1 = |X̃1|2G̃(q,∆t),

Hence, Equation (5.2.9) becomes

Ỹ1X̃
∗
2 + Ỹ2X̃

∗
1 + X̃1Ỹ

∗
2 + X̃2Ỹ

∗
1

= |X̃1|2G̃∗ (q,∆t)
(
eis·q + e−is·q)+ |X̃1|2G̃(q,∆t)

(
eis·q + e−is·q)

= |X̃1|2
(
eis·q + e−is·q) (G̃(q,∆t) + G̃∗(q,∆t)

)
= 4|X̃1|2 cos(s · q)f(q,∆t). (5.2.10)

Substituting (5.2.6) and (5.2.10) into (5.2.3),

⟨|∆Ĩ|2⟩t = 2|∆X̃|2 − 4|X̃|2 cos (q · s) + 4|X̃|2f(q,∆t) cos(q · r),

= 2|∆X̃|2 − 4|X̃|2 cos (q · s) (1 − f(q,∆t)) . (5.2.11)

Recalling Equation (2.2.13),

DX(q,∆t) = |∆X̃|2

= 2|X̃|2(1 − f(q,∆t)),

so we can express Equation (5.2.11) as

DI(q,∆t) = 4|X̃|2(1 − f(q,∆t))(1 − cos(q · s)) (5.2.12)

= 2DX(q,∆t)(1 − cos(q · s)). (5.2.13)

We now make the assumption that we are dealing with isotropic motion, and take

a radial average on DI to find DI,R. Let us assume that the underlying particle
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motion in the images we want to analyse, and therefore the ISF, is isotropic i.e

constant on a circular contour centred on q = (0, 0). Taking the radial average

of DI in Equation (5.2.12), as described in Section 2.2.3, we find

DI,R(q,∆t) =
1

|Γ|

∮
Γ

DI(q,∆t)dΓ (5.2.14)

=
1

|Γ|

∮
Γ

4|X̃|2(1 − f(q,∆t))(1 − cos(q · s))dΓ

=
(1 − f(q,∆t))

|Γ|

∮
Γ

4|X̃|2(1 − cos(q · s))dΓ (5.2.15)

= AI(q)(1 − f(q,∆t)), (5.2.16)

where

AI(q) =
1

|Γ|

∮
Γ

4|X̃|2(1 − cos(q · s))dΓ, (5.2.17)

is a time independent scaling term. Hence, the form of the DDM matrix DI,R(q,∆t)

given in Equation (5.2.16) matches that of Equation (2.2.18), which expresses that

the DDM matrix as

DR(q,∆t) = A(q) (1 − f(q,∆t)) .

Despite the shadow in DIC images, when the analysed motion is isotropic, the

only change from shadowing occurs within the scaling parameter A(q), and the

ISF remains unchanged. This means that parameter fitting applied to either DX

or DI will yield equivalent motility parameters. A more specific form of AI(q)

arises when |X̃|2 has no dependence on the orientation of q. This is a realistic

assumption when the underlying particle motion is ergodic, since we expect a

large enough number of particles to be uniformly distributed throughout the

sample, such that there is no directional bias in the image appearance. Evaluating

the contour integral in Equation (5.2.15) is simplified by observing that, as a

consequence of the images being real valued,

∆I(r,∆t) ∈ R =⇒ ∆Ĩ(−q,∆t) = ∆Ĩ(q,∆t)∗.

Hence,

D(−q,∆t) = D(q,∆t),

showing that the circular contour along Γ in the integral of Equation (5.2.14)

along DI(q,∆t), centred on q = (0, 0), is periodic with period π. This can be
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easily verified from Equation (5.2.13). Applying this π-periodicity to the radial

average allows us to express the contour integral in Equation (5.2.14) as

1

||Γ||

∮
Γ

DI(q,∆t)dΓ =
1

||Γ||

∮
Γ

4|X̃|2(1 − f(q,∆t))(1 − cos(q · s))dΓ,

= 4|X̃|2(1 − f(q,∆t))
1

||Γ||

∮
Γ

(1 − cos(q · s))dΓ

= 4|X̃|2(1 − f(q,∆t))

(
1 − 1

||Γ||

∮
Γ

cos(q · s)dΓ

)
= 4|X̃|2(1 − f(q,∆t))

(
1 − 1

2πq

∫ π

−π

q cos(qs cos(θ − ϕ))dθ

)
= 4|X̃|2(1 − f(q,∆t))

(
1 − 1

2π

∫ π−ϕ

−π−ϕ

cos(qs cos(Θ))dΘ

)
= 4|X̃|2(1 − f(q,∆t))

(
1 − 1

π

∫ π

0

cos(qs cos(Θ))dΘ

)
,

(5.2.18)

where Θ = θ− ϕ and s = s(cos(ϕ), sin(ϕ)). By definition of the zero-order Bessel

function of the first kind [324],

J0(x) =
1

π

∫ π

0

cos(x cos(z))dz, (5.2.19)

so the specific form of the scaling term AI(q) in Equation (5.2.17) reduces to

AI(q) = 4|X̃|2(1 − J0(qs)) = 2AX(q) (1 − J0(qs)) . (5.2.20)

Comparing with the definition of DX in Equation (2.2.12), we determine that

DI(q,∆t) = 2(1 − J0(qx0))DX . (5.2.21)

We therefore conclude that for isotropic motion, there exists a time-independent

map between the DDM matrix of the phase images, DX,R, and the DDM matrix

of the DIC images, DI,R. Critically, the anisotropy due to the DIC shadow can

be accounted for exclusively by the q-dependent scaling parameter 2(1− J0(qs)),

leaving the ISF unchanged. This means DDM applied to DIC microscopy of

isotropic particle motions can be used without needing to account for the artificial

anisotropy introduced by DIC, since the same motility statistics will be derived

from the DIC image stack as would be determined in another form of imaging

without shadowing. This justifies the previous application of DDM to DIC images

of Drosophila oocytes, which did not adjust analysis to account for shadowing

from the choice of microscopy [142]. In order to validate our findings, we now

present both simulated and real data, which allow us to confirm the relationship

(5.2.21).
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5.2.1 Verifying the use of DDM in DIC through simula-
tions and colloid images

5.2.1.1 Validation with simulations

We generate simulations of 150 particles following Brownian motion inside a

490× 490 window, with diffusion coefficient D = 0.5µm2/s. One pixel represents

1 µm, for a duration of 4000 frames, at a frequency of 8 frames per second. From

these simulations, we generate the phase image stack X(r, t), and the correspond-

ing DIC image stack I(r, t) using a DIC shift of 1 pixel to the right, i.e s = (1, 0),

which is small compared to the size of the image. The first frame of each image

stack is visualised in Figure 5.5. From each image stack, we generate the cor-

responding DDM matrices DX,R and DI,R, respectively. The code is available at

https://github.com/OstlerT/DIC_DDM_Ostler.git.

Figure 5.5: The first frame of the simulated phase image, X, and the correspond-
ing DIC image, I, which is generated by X(r + s, t)-X(r, t).

In Figure 5.6, we demonstrate that the decomposition in Equation (5.2.21)

holds for all frequencies q < 2µm−1, by evaluating the left and right hand sides

of (5.2.21) and comparing them. For different sets of simulation parameters, the

agreement can deteriorate at very high and very low frequencies, but, as discussed

in Section 2, it is standard practice in DDM to restrict fitting to some q-interval

away from the low frequencies, where statistical sampling of the radial average

is poor, and away from large frequencies, where the signal to noise ratio is poor

[164]. This interval, called the range of accessible frequencies, is where τD can be

fit. In this simulation, we choose conservative estimates for these limits, choosing

the lower limit on the fitting region to be ql = 0.5µm−1, and the upper limit to

be qu = 1.2µm−1, as shown in Figure 5.7. As long as the relationship holds over

accessible frequency range, we can conclude that the analysis of DX,R and DI,R

will yield equivalent results.

We now show that the diffusion coefficients generated by fitting DX and DI

are equivalent. We generate 150 movies of diffusing particles, choosing the diffu-

sion coefficient to be D = 0.5µm2/s following [292], and perform fitting over the
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Figure 5.6: Snapshots of DI,R(q,∆t) and the rescaled form 2(1 −
J0(qs))DX,R(q,∆t), plotted at fixed times over all spatial frequencies. There is
excellent agreement for all frequencies q < 2µm−1 hence the relationship (5.2.21)
is valid over this interval.

frequency interval 0.5µm−1 < q < 1.2µm−1, where the bounds are chosen to be

sufficiently far from noisy regions as seen in Figure 5.7. The average diffusion coef-

ficients generated by the simulations of X and I are DX = 0.481 ± 0.009µm2/s,

and DI = 0.482 ± 0.010µm2/s, respectively, with the distribution of the fitted

diffusion coefficients plotted in Figure 5.8a. Although a wide spread of fitted

diffusion coefficients occur, plotting the values DX − DI as a histogram in Fig-

ure 5.8b shows the fitting difference is small between DX and DI . Hence, DIC

shadowing has a minimal effect on the fitted diffusion coefficient.

143



Figure 5.7: The upper plot depicts the fitted values of τDX
and τDI

for the
image stacks X and I, respectively, in a single simulation, on a logarithmic scale.
The linear regression (2.2.27) is also plotted, and agreement of the intercepts
demonstrates equivalent diffusion coefficients are determined. The lower plot
visualises the fitting parameters A(q) and B(q) for each stack.

5.2.1.2 Validation with experimental data

Additionally, we show that DDM is accurate in real DIC images. We consider a

single image stack formed of 7680 DIC images of a colloidal dispersion, taken by

Emily Lewis in the School of Physics and Astronomy, Cardiff University. This

suspension uses Polystyrene (PS) beads with a nominal radius of 100 nm, with

less than 3% coefficient of variance (cv) (Alpha Nanotech Colloidal PS Beads

NP-PA07CPSX78). These PS beads were dispersed in 30% v/v glycerol/water

mixtures to a particle concentration of 0.1 mg/mL, and 13 µl were pipetted into

a 0.12 mm high and 13 mm diameter chamber made of a Grace Bio-Labs (Bend,

US) SecureSeal imaging spacer on a (76 × 26 × 1) mm3 microscope slide (Menzel

Gläser). The chamber was then sealed with a (24 × 24) mm2 #1.5 coverslip

(Menzel Gläser), and stored in a 100% humidity environment at 7 until use.

The corresponding images of the colloidal dispersion are 1344 × 1024 pixels

representing a 433.44×330.24 µm real region (pixel length 322.5 nm), from which

we take a square subset with a side length of 1024 pixels. The shearing distance

is measured to be 238 ± 10 nm [344], with a shear angle of ϕ = π/4 and a phase

offset of 90◦. We note that whilst the spheres themselves are sub-pixel in size, and

therefore violate the linearity assumption required for separating the DIC image

into separate components X and Y , the high volume of spheres means we can

study the bulk movement of the sample rather than individual sphere locations.
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(a) Distributions of the diffusion coefficients fitted from DX,R. and
DI,R.

(b) Distribution of the difference DX −DI for each simulation, with
mean 6.9× 10−4.

Figure 5.8: For 150 simulations of Brownian motion, we generate phase stacks
X(r, t) and corresponding DIC images I(r, t). DDM analysis on each stack yields
a diffusion coefficient, DX and DI , respectively. (5.8a) Although the fitted dif-
fusion coefficients have some spread around the true value D = 0.5µm2/s, (5.8b)
the difference DX−DI is small, so the DIC shear has minimal effect on the fitting
accuracy.

From the corresponding DDM matrix, DI , we fit a diffusion coefficient of

0.676µm2/s. Comparing this to the Stokes-Einstein relation [164, 266],

D =
KBu

6πηr
,

the expected diffusion coefficient is 0.667 µm2/s, where KB J/K is the Boltzmann

constant, u = 291.25K is absolute temperature, η = 3.20 mPa s is the dynamic

viscosity of a 30% glycerol solution, and r the particle radius. Hence, D is

comparable to the fitted value. We visualise τDI
, A(q), B(q) and the fitting

regime in Figure 5.9.
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Figure 5.9: DDM analysis of the diffusion coefficients for fitted DIC images,
from colloidal suspensions, yields a fitted diffusion coefficient of 0.676µm2/s. The
fitting region 1.1µm−1 < q < 3.3µm−1 , marked between the vertical blue dashed
lines, is chosen so that the signal (AI(q)) to noise (BI(q)) ratio is sufficiently high.

We note that at no point have we used prior knowledge on the DIC shear

length or direction in analysing this colloidal data. In practice, the shear orienta-

tion is determined by the setup of the microscope, and the shear distance may be

computed based on information about the magnification and focal length of the

lenses used [342, 344]. We consider now the interesting question of whether DDM

can provide an alternate derivation of this information. In the next section, we

show that this is theoretically possible, but limited by numerical constraints.

5.2.2 DDM in isotropic motion can extract the direction,
but not the magnitude, of the shear

Consider a DIC image stack I, for which no corresponding image stacks X or Y

exist, with an associated shear, s = s (cos(ϕ), sin(ϕ)). From Equations (5.2.20)

and (2.2.19), we have the relation

DI,R(q,∆t) = 2AX(q)(1 − J0(qs))(1 − f(q,∆t)) +B(q).

Since both AX(q) and (1−J0(qs)) are functions of q only, we can fit their product,

but cannot determine which parts of the scaling term are attributed to the under-

lying DIC shear and which arise from the brightness of the image stack I(r,∆t).

Thus, when dealing with the radially averaged DDM matrix, DI,R, we cannot say

anything about s, so we must instead approach the DDM tensor, DI .
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Consider a circular contour inscribed into D(q,∆t). Assuming that |X̃|2 is

isotropic, along this circular contour we may write

DI(q, θ,∆t) = 4|X̃|2(1 − f(q,∆t))(1 − cos(qs cos(θ − ϕ))) +BI(q), (5.2.22)

where θ and q are the direction and magnitude of the spatial frequency vector,

respectively. DDM analysis of the radially averaged DDM matrix allows us to

generate the noise term BI(q), and to describe f(q,∆t). Therefore, if we rewrite

Equation (5.2.22) in the form

DI(q, θ,∆t) −BI(q)

1 − f(q,∆t)
= 4|X̃|2(1 − cos(qs cos(θ − ϕ))),

the left side of the equation is made up of parameters which are known or may be

derived, and the right hand side contains three unknown parameters, 4|X̃|2, qs
and ϕ. Hence, we can consider the following model function to be fit , depending

on some vector of unknowns b as follows:

DI(q, θ,∆t) −BI(q)

1 − f(q,∆t)
= b1(q)(1 − cos(b2(q) cos(θ − b3(q)))) (5.2.23)

where

b(q) = (b1, b2, b3) = (4|X̃|2, qs, ϕ).

Since the right hand side of (5.2.23) does not depend on ∆t, and so neither should

the left hand side, we may average its value over all time lags. Consequently, for

each q, Equation (5.2.23) generates a single curve, on which we may apply fitting

algorithms to determine the three parameters in b(q).

In practice, however, it is necessary to add a q dependent noise term to the

right hand side of Equation (5.2.23), because the fit of BI(q) is not exact, and for

small frequencies, 1−f(q,∆t) is close to 0. Any error created by incorrect fitting

of b(q) is therefore amplified when dividing through by 1 − f(q,∆t), blowing up

the left side of (5.2.23). Therefore, we should instead fit

DI(q, θ,∆t) −BI(q)

1 − f(q,∆t)
= b1(q)(1 − cos(b2(q) cos(θ − b3(q)))) + b4(q) (5.2.24)

b(q) = (b1, b2, b3, b4) = (4|X̃|2, qx0, ϕ, b4).

Using the DIC colloid image data, we attempt to determine the unknowns

in b(q) by iterating over the frequency q. In Figure 5.10, we plot some of the

curves generated by the right side of (5.2.24), with numerically determined b(q),

which are shown to describe the average behaviour of the left side of (5.2.24)

well. However, there is a large spread of data about these curves, due to noise
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Figure 5.10: Scatter plots of the left hand side of (5.2.24), with fitted curves
as described in the right hand side of Equation (5.2.24), applied to the
DDM tensor generated by DIC colloidal data. Curves are plotted for q ∈
{0.40, 0.78, 1.16, 1.54}.

that would normally be mitigated by a radial average. This error is likely carried

through in the fit of the parameters in b(q), which are plotted in Figure 5.11.

In Figure 5.11a, we plot b2 and b3, which are intended to approximate qs and

ϕ respectively. Whilst it is clear that the shear angle, ϕ, is very well fit for all q,

b2 does not approximate s well; it under fits the expected value, and is subject

to a large amount of noise. This suggests that although ϕ is a very sensitive

parameter in this system, s is much less sensitive, so may be more challenging to

fit.

We now turn our attention to the parameters b1 and b4, which approximate

the scale of the plotted contour of the DDM matrix, and the level of noise in

the fit, respectively, plotted in Figure 5.11b. The fitted noise term b4 is shown

to be non zero, and depends on q. This agrees with our previous assertion, that

any error in fitting the frequency-dependent noise term B(q) will become larger

when dividing by 1 − f(q,∆t) in (5.2.24), and as such, the additional noise term

is needed to improve the quality of fit. However, comparing the magnitude of

b4 to the scale term b1, the signal amplitude is orders of magnitude greater than

the noise, such that the signal-to-noise ratio is sufficiently high to assume noise

is not important in this system. The fit of the scaling term b1 is also poor,

however, when compared with the expected value plotted by the red dashed line.

In summary, DDM is too insensitive to the shear distance to be of any use in

classifying this parameter.
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(a) Fits of the parameters b2 and b3 in Equation (5.2.24), compared to
their known true values, qx0 and ϕ, respectively. In particular, the fit
of ϕ is excellent, but fitting x0 by a linear regression on the left hand
figure would be unreliable due to the large amount of noise present.

(b) Fits of the parameters b1 and b4 in (5.2.24). In the left plot, we also plot
the expected value of b1 (dashed red line) as given by rearranging (5.2.20) to
solve for 4|X̃|2, which shows b1 is not fit accurately. In the right plot, for a
noiseless system, b4 should be equal to zero everywhere, but is clearly non-zero
here. The signal b1 is orders of magnitude greater than the noise b4, however,
so there is a good signal to noise ratio.

Figure 5.11: Plots of the fitted parameters b(q) in (5.2.24), compared to the
known parameter values given by the magnitude and directions of the DIC shear,
x0 and ϕ respectively.

A corollary to this conclusion is that using known information about the DIC

shear during analysis will not improve fitting performance. One might consider

that when fitting the DDM matrix of a DIC image stack, supplying known inform-
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ation about the DIC shear to the fitting process could help improve the quality of

parameter fitting. However, we may only use known information about the shear

direction, ϕ, when fitting parameters from the DDM tensor, since DI,R(q,∆t) is

invariant under the shear angle. When trying to fit any parameters from the

DDM tensor, as shown in Figure 5.10, we lose the noise-reducing benefit of the

radial average. Thus, knowing the angle of the DIC shear provides no benefit

to parameter fitting. Furthermore, supplying the known shear distance s when

fitting the DDM matrix has no particular benefit, since we still have to fit the

coefficient A(q). In fact, it should be easier to fit this coefficient if we do not sup-

ply s, since (1 − J0(qs)) < 1 when qs is sufficiently small, a condition easily met

due to the small DIC shear size. This means that AI(q) is expected to be smaller

than A(q), meaning the domain over which we must search for AI(q) is smaller

and, thus, the numerical stability of the parameter fitting should be improved

when fitting AI(q) compared to A(q) in DIC images.

In conclusion, we have shown that using DIC images adds artificial anisotropy

to DDM analysis. However, we have shown that in isotropic motion, DDM applied

to the DIC images yields equivalent results to DDM applied to the phase images

constructing the DIC image stack. We have additionally shown that in cases

where we do not have any prior knowledge of the shear, we can use DDM to

extract the shear direction, but not the shear magnitude. Although we have only

verified our results for Brownian motion, relationship (5.2.20) holds for all forms

of isotropic motion. Does this conclusion extend beyond isotropy, however? It

is possible that some new relationship replaces Equation (5.2.20) when motion

is anisotropic, or perhaps no such relationship exists at all. In the next section,

we relax the assumption of isotropy, focussing on a directed advection-diffusion

process to explore the problem.

5.3 Anisotropy

For anisotropic processes, the derivation of DI,R(q,∆t) follows the same argument

as in Section 5.2, up until taking the radial average in Equation (5.2.12). For this

section, we will assume that the underlying images have no spatial heterogeneity,

such that the scaling term |X̃|2 has no dependence on the orientation of q, for

simplicity. Applying the azimuthal average to Equation (5.2.12) yields the DDM
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matrix as

DI,R(q,∆t) =
4|X̃2|
||Γ||

∮
Γ

(1 − f(q,∆t)) (1 − cos(q · s)) dΓ

=
4|X̃2|
||Γ||

∮
Γ

1 − f(q,∆t) − cos(q · s) + f(q,∆t) cos(q · s)dΓ

= 4|X̃2|
(

1 − f(q,∆t) − J0(qs) +
1

||Γ||

∮
Γ

f(q,∆t) cos(q · s)dΓ

)
.

(5.3.1)

The only difference between the isotropic case in Equation (5.2.18), and the

anisotropic case in Equation (5.3.1), is how we deal with the final term,

1

||Γ||

∮
Γ

f(q,∆t) cos(q · s)dΓ.

When the ISF is isotropic, such that f(q,∆t) = f(q,∆t), we can take the ISF

out of the radial average, evaluate the contour integral of the cos(q · s) term,

and factorise out a q-dependent scaling factor to reclaim the standard DDM

format in Equation (2.2.19). When the ISF depends on the orientation of q,

however, this final term must be evaluated as a product integral. This means

that we cannot immediately recover the generic DDM fitting form of Equation

(2.2.19), and must evaluate some new ISF which defines the DDM matrix. This

new expression of the DDM matrix will depend on the specific form of f(q,∆t),

making it challenging to explore a general anisotropic motion. Instead, we will

study a specific advection-diffusion behaviour below, motivated by cytoplasmic

streaming as presented in [142] and [154]. In this simple example, we consider a

constant, directed advection applied to all particles.

Deriving the ISF for a directed advection-diffusion process follows the same

argument as Section 2.2.5, where we discussed the ISF for bacterial advection.

The van Hove function G(r,∆t) that describes the distribution of displacements

of particles as they both diffuse and move with velocity v, satisfies the advection-

diffusion equation given in Equation (1.2.1),

∂G(r,∆t)

∂(∆t)
= ∇ (D∇G(r,∆t)) − v · ∇G(r,∆t),

where D is the diffusion coefficient, as in Section 2, and v (µm−1) is assumed to

be a constant velocity vector. The solution to the Fourier transformed advection-

diffusion equation with a constant diffusion coefficient is

G̃(q,∆t) = e−q2D∆te−iq·v∆t,

and taking the real part gives the ISF to be [267]

f(q,∆t) = e−q2D∆t cos(q · v∆t).
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Substituting the new ISF into the definition of DI(q,∆t) yields

DI(q,∆t) = 4|X̃|2(1 − e−q2D∆t cos(q · v∆t) − cos(q · s) + e−q2D∆t cos(q · v∆t) cos(q · s))).

We now consider the azimuthal average on DI , for which it is convenient to

convert to polar coordinates, using

v = v (cosϕv, sinϕs) , s = s (cosϕs, sinϕs) , q = q (cos θ, sin θ) ,

and

1

||Γ||

∮
Γ

D(q,∆t)dΓ =
1

2πq

∫ π

−π

D(q, θ,∆t)qdθ =
1

2π

∫ π

−π

D(q, θ,∆t)dθ.

Since the contour on which we take the azimuthal average of D(q, θ,∆t) is π-

periodic, we restrict ϕv, ϕs ∈ [−π/2, π/2) and take the azimuthal average as

DI(q,∆t) =
4|X̃|2

π

∫ π
2

−π
2

(
1 − e−κ cos (λ cos (θ − ϕv)) − cos (ξ cos (θ − ϕs))

+e−κ cos (λ cos (θ − ϕv)) cos (ξ cos (θ − ϕs))
)
dθ, (5.3.2)

where we have introduced the non-dimensional parameters

λ = qv∆t, ξ = qs, κ = q2D∆t.

We consider |X̃|2 constant in θ since we assume no visual asymmetry or spatial

heterogeneity exists in the phase images X. We will deal with this integral term-

wise, defining the following terms.

T1 =
4|X̃|2

π

∫ π
2

−π
2

1dθ = 4|X̃|2. (5.3.3)

T2 =
4|X̃|2

π

∫ π
2

−π
2

e−κ cos (λ cos (θ − ϕv)) dθ, (5.3.4)

T3 =
4|X̃|2

π

∫ π
2

−π
2

cos (ξ cos (θ − ϕs)) dθ, (5.3.5)

T4 =
4|X̃|2

π

∫ π
2

−π
2

e−κ cos (λ cos (θ − ϕv)) cos (ξ cos (θ − ϕs)) dθ. (5.3.6)

Each of these terms has a physical interpretation, which we explain through Fig-

ure 5.12. The image difference ∆I, formed by a pair of DIC images of a single

particle, will show 4 ‘spots’. These correspond to the position of the particle

before and after shearing, at times t1 and t2. The DDM tensor is the sum of

all spatial correlations in ∆I, with each term T1 to T4 corresponding to the spa-

tial correlation between different pairs of spots. The term T1 (Equation (5.3.3))
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corresponds to the self correlation of each spot, which has no spatial or time

dependence, and is therefore constant. The spatial correlation between spots

at different times both before shearing, or both after shearing, gives rise to T2

(Equation (5.3.4)), which would be the ISF in bright-field imaging (see Equation

(4.3.3)). The spatial correlation between DIC-shifted spot pairs at the same time

give rise to T3 (Equation (5.3.5)). Finally, T4 is generated by the spatial correla-

tion of pairs of spots formed by particles at different times, where one is sheared

and the other is not.

Figure 5.12: The image difference ∆I of one DIC imaged particle will contain four
spots, corresponding to the position of the particle at times t1 and t2, both before
and after shearing. The DDM tensor is formed by the spatial correlations between
spots, which can be broken down into terms T1-T4 in Equations (5.3.3)-(5.3.6).
The vectors between spot pairs at different times and shearing are described by
R±.

An important observation from Figure 5.12 is that the magnitude and dir-

ection of the vectors between spots at different times and shears, denoted R+

and R− and shown by red dashed arrows, will be dependent on both s and v. In

isotropic motion, where the direction of particle movement is uniformly randomly

distributed, the ensemble average of these red dashed vectors will also be uni-

formly randomly distributed, whereas in directed movement, their orientations

will always be the same. It is this distinction which causes the product integral

to form in Equation (5.3.1).

The terms T2 and T3 in Equations (5.3.4) and (5.3.5), by the definition of the

zero-order Bessel function of the first kind in Equation (5.2.19), evaluate to

T2 =
1

π

∫ π
2

−π
2

e−κ cos(λ cos(θ − ϕv))dθ = e−κJ0(λ), (5.3.7)

T3 =
1

π

∫ π
2

−π
2

cos(ξ cos(θ − ϕs))dθ = J0(ξ). (5.3.8)
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To evaluate T4 in Equation (5.3.6), we use the trigonometric identity

cos(λ cos(θ − ϕv)) cos(ξ cos(θ − ϕs)) =
1

2
cos(λ cos(θ − ϕv) + ξ cos(θ − ϕs))

+
1

2
cos(λ cos(θ − ϕv) − ξ cos(θ − ϕs)).

Hence, the final term in (5.3.2) can be written as

e−κ

π

∫ π
2

−π
2

cos (λ cos (θ − ϕv)) cos (ξ cos (θ − ϕs)) dθ

=
e−κ

2π

∫ π
2

−π
2

cos (λ cos (θ − ϕv) + ξ cos (θ − ϕs)) dθ

+
e−κ

2π

∫ π
2

−π
2

cos (λ cos (θ − ϕv) − ξ cos (θ − ϕs)) dθ

=
e−κ

2π

∫ π
2

−π
2

cos (λ (cos θ cosϕv + sin θ sinϕv) + ξ (cos θ cosϕs + sin θ sinϕv)) dθ

+
e−κ

2π

∫ π
2

−π
2

cos (λ (cos θ cosϕv + sin θ sinϕv) − ξ (cos θ cosϕs + sin θ sinϕv)) dθ

=
e−κ

2π

∫ π
2

−π
2

cos (cos θ (λ cosϕv + ξ cosϕs) + sin θ (λ sinϕv + ξ sinϕs)) dθ

+
e−κ

2π

∫ π
2

−π
2

cos (cos θ (λ cosϕv − ξ cosϕs) + sin θ (λ sinϕv − ξ sinϕs)) dθ. (5.3.9)

Using the identity,

R± cos(θ − ψ±) = R± cos(θ) cos(ψ±) +R± sin(θ) sin(ψ±),

and comparing to Equation (5.3.9), we derive

R± cos(ψ±) = λ cos(ϕv) ± ξ cos(ϕs),

R± sin(ψ±) = λ sin(ϕv) ± ξ sin(ϕs),

where

R± =
√
λ2 + ξ2 ± 2λξ cos(ϕv − ϕs), (5.3.10)

and

tanψ± =
λ sin(ϕv) ± ξ sin(ϕs)

λ cos(ϕv) ± ξ cos(ϕs)
. (5.3.11)
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Hence, we can express Equation (5.3.9) as

T4 =
e−κ

2π

∫ π
2

−π
2

cos (cos θ (λ cosϕv + ξ cosϕs) + sin θ (λ sinϕv + ξ sinϕs)) dθ

+
e−κ

2π

∫ π
2

−π
2

cos (cos θ (λ cosϕv − ξ cosϕs) + sin θ (λ sinϕv − ξ sinϕs)) dθ

=
e−κ

2π

(∫ π
2

−π
2

cos(R+ cos(θ − ψ±)) + cos(R− cos(θ − ψ±))dθ

)
. (5.3.12)

The representation of T4 in Equation (5.3.12) is useful, because it has split T4

into two terms, corresponding to each of the red dashed arrows in Figure 5.12.

We only needed one term to describe T2, because the vectors which contribute

to it (black vectors v in Figure 5.12) have equal magnitude and are parallel; the

same is true of the terms forming T3 (blue vectors s). However, the T4 terms will

only be parallel when s and v are, or equivalently, ϕv = ϕs. Similarly, these terms

only have the same magnitude when v = s. When these conditions are not met,

each red dashed vector requires its own term in T4. The values of R± denote the

length of these vectors, whilst ψ± denotes their orientations.

To simplify Equation (5.3.12), since neither R± or ψ± depend on θ, both are

constant on the circular contour Γ. Also, the integral in the definition of the

Bessel function of the first kind in Equation (5.2.19) is invariant under a constant

shift in θ, since the domain of integration is equal to the period of the integrand.

Therefore, Equation (5.3.12) can be written as

T4 =
e−κ

2
(J0(R+) + J0(R−)) . (5.3.13)

Combining (5.3.3)-(5.3.8) and (5.3.13), we can express the radial average of DI

for advection-diffusion problems as

DI = 4|X̃|2
(

1 − e−κJ0(λ) − J0(ξ) +
e−κ

2
(J0 (R+) + J0 (R−))

)
, (5.3.14)

which, by Equation (2.2.18), gives us the ISF for the DDM matrix DI as

fI(q,∆t) = J0(ξ) + e−κJ0(λ)

− e−κ

2

(
J0

(√
λ2 + ξ2 + 2λξ cos(Φ)

)
+ J0

(√
λ2 + ξ2 − 2λξ cos(Φ)

))
,

(5.3.15)

where Φ = ϕv − ϕs. Unlike the case of isotropic motion, the ISF now depends on

the DIC shear parameters ξ and ϕs, and we cannot immediately conclude that

the DDM analysis on DIC images will yield accurate fitting parameters for an

advection-diffusion process. In Section 5.3.1, we consider what happens when we

attempt to include these parameters in the fitting stage of DDM.
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5.3.1 Fitting the DDM matrix to a simulated advection-
diffusion process

The new ISF stated in Equation (5.3.15) is more complex than the ISF for the

same process in bright-field images, so we aim to evaluate the practicality of its

use in parameter fitting. We simulate image data in the same way as Section

5.2.1, with the additional feature that each particle has velocity v = 1µm s−1

with angle ϕv = 0. For this simulation, we generate three DIC image stacks, with

the intention of testing how DDM performance varies with the angle difference

Φ. Each image stack uses the same shear distance s = 0.238µm, reflecting the

realistic shear condition of the DIC microscope used to image the colloidal data

in Section 5.2.1, but has a different shear angle ϕs ∈ {0, π/4, π/2}, such that

Φ ∈ {0, π/4, π/2}.

With the addition of the velocity term, and the dependence of the ISF on the

DIC shear, we must adapt the DDM fitting approach if we hope to determine the

unknown movement parameters in our images, namely the diffusion coefficient,

D, the velocity magnitude, v, and the velocity direction ϕv, where we assume

that the shear s is known through experimental design. Although we would like

to fit ϕv directly, this is not possible, since Equation (5.3.15) is even with respect

to the angle difference Φ = ϕv − ϕs. That means for a fixed shear orientation ϕs,

the velocity orientations ϕv and 2ϕs−ϕv will yield same equivalent ISF. We may

therefore only fit the angle difference Φ, where we restrict the domain for Φ to

non-negative angles.

The first stage of fitting will therefore aim to determine the following three

parameter groups,

τD(q) =
1

q2D
, (5.3.16)

τv(q) = 1/qv, (5.3.17)

Φ(q) = ϕv − ϕs, (5.3.18)

An additional adaption we implement is normalisation of the DDM matrix,

by dividing though by its largest value. This reduces the size of the parameter

search domain for the scaling term A(q), which improves the efficiency of the

fitting algorithm. Normalisation was not implemented in Section 5.2.1, because

the parameter space was much smaller, and good quality fitting was achievable

without rescaling. We plot the fitted parameters in Figure 5.13.

Based on Figure 5.13, regardless of the angle between the DIC shear and

advection, the critical movement parameters τD and τv are generally well fit,

although they suffer from small noisy regions. The approximation of Φ, however,

is very poor. To understand why, we visualise the ISF for a range of parameters
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(a) Fitting diffusion from τD(q).

(b) Fitting velocity from τv(q).

(c) Fitting the absolute angle between the DIC shear and the
velocity, Φ.

Figure 5.13: Fits of the three key parameters in Equation (5.3.14); (5.13a) τq
(5.3.16), (5.13b) τv (5.3.17) and (5.13c) Φ (5.3.18), each at different true values
of the angle difference Φ. The fit for τD and τv is universally good, but Φ is
always poorly fit.

in Figure 5.14. When the shear is small, the ISF appears to be only weakly

dependent on Φ, so fitting is insensitive to the Φ. However, as the shear distance

increases, for example s = 5, the ISF demonstrates a non-linear relationship on Φ,

which could result in the existence of several values of Φ which locally minimise

fitting residuals.

In summary, we have shown that for a directed advection-diffusion problem,

the anisotropy of the observed movement interacts with the artificial anisotropy
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Figure 5.14: The expected ISF fI(q,∆t) (5.3.15) in our simulated data for DIC
shear values of s ∈ {0.238, 1.000, 2.000, 5.000}. For small shears, the functions
are tightly constrained and indiscernible from one another, but both the function
range and the significance of Φ increase as the shear increases.

induced by the DIC shadow. This interaction, described entirely within the term

T4 in Equation (5.3.6), results in the need to adapt the ISF to account for shad-

owing. This DIC-adjusted ISF, fI(q,∆t) in Equation (5.3.15), can be used in

parameter fitting in order to accurately approximate the velocity and diffusion

coefficient. However, we have also shown that the non-linearities and large para-

meter space in the DIC-adjusted ISF cause parameter fitting to become unstable,

so caution is advised when undertaking DDM analysis of DIC image data to

ensure error is avoided.

Whilst our approach to generating the DIC-adjusted ISF can theoretically be

adopted in other problems than advection-diffusion, this is likely to be challen-

ging. In more complex problems, an analytic expression DIC-adjusted ISF may

be difficult to determine, or may not exist if the term T4 has no analytic solution.

Even when such a function does exist, it may not be useable; although we have

been able to well approximate the diffusion coefficient and advection velocity in

our example cases in Figure 5.13, we cannot assume this will be true for all com-

binations of D, v, Φ and s due to the non-linearity of the ISF as shown in Figure

5.14. These problems with DIC-adjustment would be naturally mitigated by the

machine learning pipeline proposed in section 4.4, however, since the DIC shadow

can be simulated in the training data.

Since we are the first to observe interactions with DDM as a result of artificial

anisotropy induced by phase-contrast shadowing, it is likely that DDM analysis,
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without adjustment for the phase-contrast shadow, has already been applied to

phase-contrast images of anisotropic movement. If true, this could raise concerns

that the inference drawn from this analysis is flawed. However, in Section 5.3.2,

we will demonstrate that it is possible to determine a good approximation of

the ‘correct’ diffusion coefficient and advection velocity by fitting the ‘incorrect’

non-adjusted ISF to DI,R, under the realistic assumption that the shear size is

small.

5.3.2 Approximating advection and DIC shears as separ-
able effects

In this section, we will describe a condition for which parameter fitting, without

adjusting the ISF for phase-contrast shadowing, will still result in a reasonable

approximation of the diffusion coefficient and advection velocity. This condition

is true when the shear distance is small compared to the distance over which

particles move under advection.

Briefly recapping our description of the DIC microscope in Section 5.1, images

are formed by finding the difference in phase shift between two closely separated

beams [268]. The size of this separation must be small in order for the difference

in phase shift to correspond to local changes in optical path length, and hence,

generate high resolution images. The DIC shift is typically 0.2-0.3 µm [268,

343, 344], approximately equal to the length of a pixel (optical resolution) [344].

We compare the size of the shear to the size of the displacements resulting from

advection, equal to v∆t at time lag ∆t. If the displacement resulting from velocity

is smaller than one pixel length at all time lags, then the velocity can scarcely be

said to exist; in this case, we can ignore advection, and movement is reduced to

the isotropic diffusion behaviour studied in Section 5.2.1.

We therefore consider the case where the displacement from advection is

greater than the DIC shear. It is reasonable to assume, more strongly, that

v∆t >> s, since we can choose to record images for a longer period of time to

enforce this assumption. Under this assumption, we can use Taylor approxim-

ations to simplify the ISF in Equation (5.3.15). In Appendix C.2, we use such

Taylor approximations to show that for DIC images, small shear distances mean

the ISF can be bounded above and below by it’s behaviour when Φ = 0 and

Φ = π/2, which enhances our understanding of the ISF behaviour in DIC images

and demonstrates that the ISF is only weakly dependent on the angle difference

Φ. More importantly, we now present an approximation of the ISF, from which

we conclude that DDM analysis of advection-diffusion behaviour in DIC images
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may be undertaken without consideration of shadowing effects, under the con-

dition that displacements from advection are much greater than the DIC shear

distance.

To motivate the following approximation, we refer back to the radial average

applied to DI in Equation (5.3.1), where the key difference in the isotropic and

anisotropic case is the integral of the product∮
Γ

f(q,∆t) cos(q · s).

In the isotropic case, f does not depend on the orientation of q and can be taken

outside of the integral, whilst in the anisotropic case, the product must be dealt

with in more detail. Before this work, however, there was no indication that the

shear from DIC might even affect the DDM tensor. A misguided user, unaware of

this issue, might assume that the DDM matrix can still be defined by Equation

(2.2.18), that is,

DR(q,∆t) = A(q) (1 − f(q,∆t)) ,

for some scaling term A(q). By fitting Equation (2.2.18) to DI , the user is un-

knowingly making the assumption that

1

||Γ||

∮
Γ

f(q,∆t) cos(q · s)dΓ ≈
(

1

||Γ||

∮
Γ

f(q,∆t)dΓ

)(
1

||Γ||

∮
Γ

cos(q · s)dΓ

)
.

(5.3.19)

In general, Equation (5.3.19) is clearly not true when f depends on the orientation

of the spatial frequency vector q. However, we can use the small-shear properties

of DIC to argue that when q · s ≈ 0 for all q, cos(q · s) is approximately constant

on the whole contour. In this case, the product integral would once again be

treated as separable, and we could rewrite the DDM matrix as given in Equation

(5.3.1) as

DI(q,∆t) = 4|X̃2|
(

1 − f(q,∆t) − J0(qs) +
1

||Γ||

∮
Γ

f(q,∆t) cos(q · s)
)

≈ 4|X̃2| (1 − f(q,∆t) − J0(qs) + f(q,∆t)J0(qs))

= 4|X̃2| (1 − J0(qs)) (1 − f(q,∆t)) ,

and hence, we can account for the DIC shear through only a scaling term once

more. This argument is not as strong as the isotropic case, where f had no

dependence on orientation at all. However, we will show that for small DIC

shears, the approximation in Equation (5.3.19) holds in the case of advection-

diffusion behaviours, for which we can undertake DDM analysis using the original,
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unaltered fitting approach as stated in Chapter 2.2. We do so taking the Taylor

series of the left and right hand sides of Equation (5.3.19) about s = 0, and

matching up leading order terms.

The left-hand side of Equation (5.3.19) is equal to T4, i.e.

T4 =
e−κ

2

(
J0(
√
λ2 + ξ2 + 2λξ cos(Φ)) + J0(

√
λ2 + ξ2 − 2λξ cos(Φ))

)
.

The Taylor expansion of T4(λ, ξ,Φ) around ξ = 0 is equal to,

T4 = e−κ

(
J0(λ) − 2 sin2(Φ)J1(λ) + λ cos2(Φ)(J0(λ) − J2(λ))

4λ
ξ2 + O(ξ4)

)
,

which by the recurrence relation on the Bessel Functions [324],

2a

x
Ja(x) = Ja−1(x) + Ja+1(x), (5.3.20)

can be expressed as

T4(λ, ξ,Φ) = e−κ

(
J0(λ) +

J2 (λ)
(
cos2(Φ) − sin2(Φ)

)
− J0(λ)

4
ξ2 + O(ξ4)

)
.

(5.3.21)

meanwhile, the right hand side of Equation (5.3.15) is equal to(
1

||Γ||

∮
Γ

f(q,∆t)

)(
1

||Γ||

∮
Γ

cos(q · s)
)

= e−κJ0(λ)J0(ξ),

with the Taylor expansion about ξ = 0 equal to

J0(λ)e−κ

(
1 − 1

4
ξ2 + O(ξ4)

)
. (5.3.22)

The approximation error is found as the difference between Equations (5.3.21)

and 5.3.22, equal to

e−κξ2

4
J2(λ)(2 cos2(Φ) − 1) + O(ξ4), (5.3.23)

which is maximised when Φ = 0 or Φ = π/2 and minimised when the O(ξ2) terms

vanish at Φ = π/4. The error is small when the quadratic term is small, i.e

ξ2

4
J2(λ)

(
2 cos2(Φ) − 1

)
≪ 1 (5.3.24)

Since |J2(λ)| < 0.5 [346], and |(2 cos2(Φ) − 1)| < 1, ξ ≪ 8 gives us a weak bound

on the size of ξ.

When ξ is sufficiently small for this approximation to hold, DI(q,∆t) as stated

in Equation (5.2.13) can be fitted without consideration of the DIC shear, i.e

DI = A(q)
(
1 − e−∆t/τDJ0(τv∆t)

)
+B(q), (5.3.25)
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We fit Equation (5.3.25) to the same simulation from Figure 5.13, where s =

0.238 µm and q < π means ξ = 0.75, which means the condition on the size

of the approximation error in Equation (5.3.24) is satisfied. We plot the results

of our parameter fitting in Figure 5.15, which demonstrates excellent agreement

between the expected and fitted diffusion coefficients. The fitted velocity curves

derived in Figure 5.15b are smoother than when fitting the full, correct form of the

ISF as in Figure 5.13. This is likely because the simplified ISF in (5.3.25) contains

fewer terms, and is thus easier to fit. The velocity fits are generally good, although

when Φ = π/2, we slightly under-estimate the velocity, and slightly over-estimate

the velocity parameter when Φ = 0.

(a) Fitting diffusion from τD(q).

(b) Fitting velocity from τv(q).

Figure 5.15: Fits of the movement parameters τD and τv as in Figure 5.13 using
the simplified Equation (5.3.25) to fit the DDM matrix as if no DIC shear existed.
Diffusion is well fit in all cases,but although the velocity curves are fitted more
smoothly then using other fitting functions, the gradients are less accurately fit
when Φ = 0 or π/2.
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In conclusion, we have shown that it is possible to approximate both the dif-

fusion coefficient and velocity magnitude from DDM analysis of DIC images of

an advection-diffusion behaviour, without adjusting the ISF for phase-contrast

shadowing as presented in Equation (5.3.15). This is a useful result that consid-

erably simplifies DDM analysis in real advection-diffusion systems, since we can

use a much more simple form of the ISF with fewer parameters, which is easier

to fit.

There are, however, some challenges associated with the approximation in

Equation (5.3.19). First, we observe in Figure 5.15 that the accuracy with which

we fit the velocity term varies with respect to Φ. If you can choose Φ = π/4,

the approximation becomes more accurate, but in the context of time-lapse oo-

cyte assessment, we cannot control Φ; the DIC shear direction ϕs is fixed, whilst

the velocity direction ϕv is unknown until the oocyte is placed into the incub-

ator. Rotating the oocyte would require opening the incubator, which is invasive.

Therefore, different oocytes will have different associated values of Φ, which may

compromise comparison of fitted velocities between oocytes. If the effect of Φ on

velocity fitting is consistent and predictable, however, we may be able to adjust

our fitted velocities accordingly to mitigate the Φ-induced error. It is therefore an

important challenge to describe how parameter fitting accuracy varies in DDM

when we ignore the DIC shear.

A second challenge is that we have yet to quantify for what range of shear

sizes s the approximation in Equation (5.3.19) holds. Although small ξ justifies

our assumption, as ξ → 0, we note that

lim
ξ→0

DI,R(q,∆t) = 0,

because with no shear, there is no image. Hence, if the shear (and therefore ξ)

is too small, parameter fitting will be compromised by numerical instability, as

we try to fit curves which are approximately zero everywhere. There is, hence, a

lower bound on the range of viable ξ for which we may undertake fitting. There

will also be an upper bound on ξ for which the approximation in Equation (5.3.19)

holds, above which we cannot justify ignoring phase-contrast shadowing on based

on approximating T4 (Equation (5.3.6)) as the product of two contour integrals.

Hence, we wish to explore the range of ξ for which this approximation is viable.

Furthermore, we observe that the approximation in Equation (5.3.19) is not

the only condition which justifies ignoring the shadowing effect during fitting.

For very large ξ,

lim
ξ→∞

J0(ξ) = 0,

and the term R± in Equation (5.3.10) is dominated by ξ, which means
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lim
ξ→∞

J0(R+) + J0(R−)

2
= 0.

Taking the limit of Equation (5.3.14) as ξ tends to infinity,

lim
ξ→∞

DI,R(q,∆t) = 2DR(q,∆t).

That means for sufficiently large ξ, we can once more ignore the shadow during

fitting. This demonstrates that there are other conditions on the input parameters

of the studied data which can justify parameter fitting without considering the

DIC shadow, particularly for larger ξ. Although we are not currently aware of

any data which is equivalent to DIC images with a large shear, such data may

one day be available, which justifies exploring the behaviour of DDM analysis in

larger shear datasets.

These challenges, collectively, can be summarised as the requirement to de-

termine when we can fit the non-DIC ISF in DDM analysis of a DIC dataset,

and to quantify the fitting error we expect when doing so. We will briefly explore

these challenges further in Section 5.4, once again through the simple example of

a directed advection-diffusion problem.

5.4 Exploring the use of the ‘bright-field’ ISF in

DDM analysis of DIC images

In this section, we aim to describe when we can accurately fit the diffusion

coefficient D and the velocity magnitude v from phase-contrast images of an

advection-diffusion process, when ignoring shadowing effects. Furthermore, when

parameter fitting becomes inaccurate, we aim to explore whether we can predict

and quantify this inaccuracy, and therefore still achieve accurate fitted move-

ment statistics through post-processing. We could explore this problem through

simulation, by generating DDM matrices using randomly chosen values for D,

v and s, from which we may fit the diffusion coefficient and velocity using the

non-DIC ISF. The random variation in particle trajectories, however, would be

a confounding variable in our analysis. Additionally, generating and analysing

DDM matrices is slow. We therefore present a formal analytical description of

parameter fitting which allows us to simplify our exploration.

The objective of the first stage of DDM parameter fitting, as introduced in

Section 2.2.7, is to determine the values of a set of variables which minimise the

distance between some model curve, given by the ISF, and the data available,

given by the DDM matrix DR(q,∆t). These curves are plotted for fixed spa-

tial frequency q, over variable time lag ∆t. For a directed advection-diffusion
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behaviour, we have previously stated the ISF in Equation (4.3.3), without DIC

adjustment, to be

f(q,∆t) = e−q2D∆tJ0(qv∆t),

Considering the ‘noiseless’ definitions of the DDM matrix and ISF in Equation

(2.2.18), parameter fitting in images not generated by phase-contrast is equivalent

to finding the values of D, v and A(q) which minimise the frequency-dependent

residual function

E(q) =

∫ ∞

0

∣∣∣DR(q,∆t) − A(q)
(

1 − e−q2D∆tJ0(qv∆t)
)∣∣∣2 d∆t. (5.4.1)

When Equation (2.2.18) describes the DDM matrix, then there exists a ‘cor-

rect’ choice of D, v and A(q) for which E ≡ 0, and the residual achieves its

minimum. When considering DIC images of an advection-diffusion behaviour,

we observed the DDM matrix DI(q,∆t) was described by Equation (5.3.14) in-

stead of Equation (2.2.18). Despite this, in Section 5.3.2 we showed that when

the DIC shear is small, we can approximate the diffusion coefficient and velocity

magnitude by fitting DI,R to the ‘incorrect’ ISF model in Equation (2.2.18). This

means that the same values of D and v that minimise the residual in Equation

(5.4.1) would additionally minimise the residual

EI =

∫ ∞

0

∣∣∣DI,R(q,∆t) − A(q)
(

1 − e−q2D∆tJ0(qv∆t)
)∣∣∣2 d∆t. (5.4.2)

where A(q) in Equation (5.4.2) may not be equal to A(q) in Equation (5.4.1).

It is important to note that EI will not be equal to zero for the ‘correct’ choice

of D and v, but will be minimised at some non-zero value. Critically, we have

found two possible fitting functions which, when the small DIC shear condition is

met, minimise their distance to the DDM matrix at the same values of D and v.

This gives an alternative interpretation of the validity of ignoring phase-contrast

shadowing effects in DDM analysis; we can fit the DDM matrix using the non-DIC

ISF if both E and EI are minimised by the same values of D and v.

This alternative expression of parameter fitting allows us to numerically ex-

plore the validity of ignoring the phase-contrast shear, without needing to gener-

ate DDM matrices. Substituting the definition of DI,R from Equations (5.3.14)

and (5.3.15) into Equation (5.4.2),

EI =

∫ ∞

0

∣∣∣4|X̃|2 (1 − fI(q,∆t)) − A(q) (1 − f(q,∆t))
∣∣∣2 d∆t.

Taking the constant 4|X̃|2 outside of the integral,

EI = 16|X̃|4
∫ ∞

0

∣∣∣∣(1 − fI(q,∆t)) −
A(q)

4|X̃|2
(1 − f(q,∆t))

∣∣∣∣2 d∆t.

= 16|X̃|4
∫ ∞

0

∣∣∣(1 − fI(q,∆t)) − Â (1 − f(q,∆t))
∣∣∣2 d∆t. (5.4.3)
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where for simplicity we define

Â =
A(q)

|X̃|2
.

The constant outside of the integral does not affect the minimisation problem

and may therefore be discarded. Our ‘data’ to be fit, therefore, does not have

any scaling term, whilst our model function is scaled by the constant Â. We can

therefore find the parameters D and v which minimise EI by instead minimising

Equation (5.4.3), which does not require the DDM matrix DI . The parameters

we need to assign in order to plot fI(q,∆t) are D, v, s, q and Φ, as well as

choosing an interval for the time lag ∆t. We can remove the frequency and

time lag consideration, and hence further simplify our exploration, by using the

non-dimensional parameter groups introduced in Section 5.3, namely

κ = q2D∆t, λ = qv∆t, ξ = qs.

If the maximum time-lag simulated is ∆tmax, we can define the following

parameters,

κin = q2D∆tmax, (5.4.4)

λmax = qv∆tmax, (5.4.5)

such that we may consider time lag to belong to the unit interval, ∆t ∈ [0, 1].

Hence, we only need to randomly generate κin, λin, ξ and Φ. We simulate 10,000

simulated ISFs fI(q,∆t), where parameters are drawn from the following uniform

distributions

κin = q2D ∼ U(0, 10), (5.4.6)

λin = qv ∼ U(0, 10), (5.4.7)

ξ = qs ∼ U(0, 30), (5.4.8)

Φ ∼ U(0, π/2). (5.4.9)

We then perform non-linear least squared curve fitting to identify the parameters

κout, λout and Â which minimise the distance between 1−fI(q,∆t) and the model

function

Â
(
1 − eκout∆tJ0(λout∆t)

)
.

We plot the pairwise distributions of our four input parameters (Equations (5.4.7)-

(5.4.9)) to our two output parameters κout and λout in Figure 5.16. We also plot

the distribution of the scaling parameter Â against ξ in Figure 5.17. The scal-

ing term Â very strongly approximates the curve 1 − J0(ξ), which would be the
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Figure 5.16: For 10,000 simulated instances of the DIC ISF, fI(q,∆t), with ran-
domly generated input parameters (Equations (5.4.7)-(5.4.9)), we fit the output
parameters κout and λout by minimising the residual function EI in Equation
(5.4.3).

Figure 5.17: Scatter plot values of the fitted scaling term Â, alongside the curve
1 − J0(ξ).

expected value Â takes when Equation (5.3.19) holds under the small-shear ap-

proximation.
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There is a linear correlation between κout and the input parameter κin, as

well as between λout and λin. Furthermore, κout and λout depend only on their

corresponding input parameter, being uniformly distributed with respect to each

other parameter. In particular, we note that the spread about the linear κout =

κin curve is greatest for small values of κin, whilst the opposite is true for the

relationship between λout and λin, suggesting that this fitting regime is optimal

in low Péclet number regimes (see Section 4.3).

It is also illuminating to study the error in our parameter estimation, i.e.

κout − κin and λout − λin, shown in Figure 5.18.

Figure 5.18: Paired distribution histograms of estimation errors κout − κin and
λout − λin, against the input parameters κin, λin and Φ. On the right-most plots
where ξ is on the horizontal axis, vertical bars denote the values of ξ for which
J2(ξ) = 0, coinciding with the minimisation of both estimation errors.

Again, we see that the optimal regime for fitting both κout and λout coincides

with small λin and larger κin, but there are several new features we will highlight.

The first is that there is a clear subset of simulations for which κout and λout

scale linearly with the negative of their respective input parameter, representing

simulations where either κout or λout are fitted as zero incorrectly. Comparing

with the right-hand graphs where error is plotted against the value of ξ, we see

that these points occur when ξ ≈ 0. This validates our claim that for excessively

small ξ, numerical instability prevents us from achieving a good approximation
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of the diffusion coefficient and velocity magnitude. These points appear to occur

only when ξ < 0.3.

For ξ > 0.3, the diffusion error κout − κin is low for all ξ, distributed mostly

between ±1. The spread of the velocity error term, λout − λin, is initially very

high at low ξ, however. Comparing to the error distribution with respect to λin

and Φ, we can see that the combination of high λin, low ξ and Φ being close to

0 or π/2 result in poor quality fitting. The wide spread of error for high λin is

likely a product of reduced sensitivity, but the high error variation even at small

ξ is has interesting implications for our small-shear approximation. This does

not contradict our conclusion from Section 5.3, that a small-shear approximation

justifies ignoring the DIC shear; instead, high spread of fitting error implies the

range of ξ for which the approximation does hold may be highly restricted.

We additionally note that the error in both λout and κout decreases to almost

0 when J2(ξ) = 0, shown by black vertical bars in right-most plots in Figure 5.18.

This unexpected observation, which is significantly more pronounced in the fit

of λout than κout, is not predicted by the small-shear approximation argument in

Section 5.3. This feature will be explained in Section 5.4.2.

Away from the regions where J2(ξ) = 0, we finally observe that as ξ increases,

the spread of the error in λout decreases. We previously discussed that as ξ →
∞, DI,R → 2DX,R. Our numerical exploration appears to suggest that this

relationship may hold for ξ as low as 10.

In conclusion, our numerical exploration has allowed us quantify the para-

meter regions for which we can accurately approximate the diffusion coefficient

and velocity magnitude when ignoring the DIC shadow. This region is charac-

terised by the following conditions:

• High κ, particularly κ > 3.

• Low λ, particularly λ < 5.

• Φ ≈ π/4.

• ξ chosen such that J2(ξ) ≈ 0, or ξ > 10.

We additionally may conclude that the spread of the fitting error for the ve-

locity is maximised when ξ < 5, Φ is close to 0 or π/2, and λ is large. This

may imply that the small-shear approximation that justifies Equation (5.3.19)

may only be valid in very small parameter region, outside of which, fitting the

non-DIC ISF to DI induces error. Alternatively, the poor accuracy with which

we fit λ in this region may be a result of λ being very large, resulting in rapid

decay of the ISF to zero and a resulting numerical instability in the fitting al-

gorithm. Understanding exactly how the choice of λ and Φ affects the small shear
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approximation is an important consideration if the simplified form of the ISF is

to be used in practice.

We now show that the fitting error is predictable for some combinations of

parameters, which may allow us to reclaim the correct velocity, even when the

small-shear approximation does not hold.

5.4.1 Finding parameter regions where error in the fitted
velocity is predictable

In order to prove that fitting error is predictable for some combinations of input

parameters, we will first need to simplify the residual EI in Equation (5.4.3).

We observe that κout and Â are much easier to fit than λout. We propose that

this is because these parameters both control a unique aspect of the shape of

the ISF, such that they may almost always be approximated regardless of the

input parameter. The scaling term, Â, controls the long term behaviour of the

ISF, and therefore can be fit so long as the velocity and diffusion parameters are

sufficiently high that the ISF decays to zero.

Meanwhile, κout uniquely determines the rate of convergence to the long-term

behaviour of the ISF. For sufficiently large λ, the Bessel function of the first kind

of order 0 is approximated by [324].

J0(λ) ≈
√

2

πλ

(
cos
(
λ− π

4

))
.

Hence, the rate at which J0(λ) converges to 0 with increasing ∆t is approx-

imately 1/
√
λ, which is slower than the rate of decay of e−κ unless v ≫ D. In

general, the diffusion coefficient strongly determines the rate of convergence of

the DDM matrix, which helps us to fit κout well regardless of input parameters.

If the fit of κout and Â is invariant of our input parameters, we can make

the assumption that these parameters are known and constant, in order to fur-

ther simplify the residual FI to explore how the final parameter λout will be fit.

Assuming κout = κin and Â = 1 − J0(ξ), Equation (5.4.3) may be expanded as

follows,

EI = 16|X̃|4
∫ ∞

0

∣∣∣∣ (1 − e−κin∆tJ0(λin∆t) − J0(ξ) +
e−κin∆t

2
(J0(R+) + J0(R−))

)
−(1 − J0(ξ))(1 − e−κin∆tJ0(λout∆t))

∣∣∣∣2d∆t,
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which may be simplified to

EI = 16|X̃|4
∫ ∞

0

e−2κin∆t

∣∣∣∣ (J0(λout∆t) − J0(λin∆t))

+

(
J0(R+) + J0(R−)

2
− J0(λout∆t)J0(ξ)

) ∣∣∣∣2d∆t, (5.4.10)

Only λout remains to be fit, but determining the value of λout that minimises

this residual is not a trivial task, because the terms inside the absolute value

are all oscillatory. Pairing the terms as we have in the brackets of Equation

(5.4.10) feels natural; the first bracket is equal to zero when λin = λout, and

the remaining residual is equal to the error of the approximation in Equation

(5.3.19). In practice, however, we cannot treat these brackets separately because

positive contributions from one bracket can balance negative contributions from

the other, leading to the possible existence of multiple local minimum points of

the residual.

Despite the complexity of Equation (5.4.10), we will demonstrate that for

some input parameter values, we can predict the error with which we fit λout. In

particular, we assume the error can be described by some multiplicative constant

that relates λin and λout, namely

λout = γλin,

where γ is the ‘adjustment factor’ which predicts the error with which we fit

the velocity, such that γ = 1 corresponds to an accurate parameter fit. Substi-

tuting this definition into Equation (5.4.10), the residual can be expressed as

EI = 16|X̃|4
∫ ∞

0

e−2κin∆t

∣∣∣∣ (J0(γλin∆t) − J0(λin∆t))

+

(
J0(R+) + J0(R−)

2
− J0(γλin∆t)J0(ξ)

) ∣∣∣∣d∆t, (5.4.11)

We study an asymptotic expansion of Equation (5.4.11), that allows us to identify

particular cases where γ is guaranteed to be not equal to 1. We first consider an

asymptotic expansion of J0(R±), given by [347],

J0(
√
λ2 + ξ2 − 2λξ cos(Φ)) = J0(λ)J0(ξ) +

∞∑
n=1

2Jn(λ)Jn(ξ) cos(nΦ). (5.4.12)

Noting that Bessel functions of the first kind of odd order are themselves odd,

1

2
(J0(R+) + J0(R−)) = J0(λ)J0(ξ) +

∞∑
n=1

2J2n(λ)J2n(ξ) cos(2nΦ). (5.4.13)
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We also consider an asymptotic expansion of J0(γλ) [324],

J0(γλ) =
∞∑
n=0

1

n!

(
(1 − γ2)λ

2

)n

Jn(λ), (5.4.14)

valid when |γ2 − 1| < 1. The n = 0 term of (5.4.14) is equal to J0(λ). Substi-

tuting Equations (5.4.14) and (5.4.13) into the residual in Equation (5.4.11), we

define an asymptotic expansion of the residual as

EI =

∫ ∞

0

e−2κin∆t

∣∣∣∣∣
∞∑
n=1

2J2n(λin∆t)J2n(ξ) cos(2nΦ)

+
1

n!

(
(1 − γ2)λin∆t

2

)n

Jn(λin∆t)(1 − J0(ξ))

∣∣∣∣2 . (5.4.15)

We therefore have an expansion of the residual in terms of Bessel functions of order

greater than 0, where changing the value of γ can increase or decrease the residual.

Using this asymptotic expansion, we may prove that specific combinations of

parameters will result in fitting γ incorrectly. In particular, we consider two

cases where Φ = 0 and Φ = π/2

5.4.1.1 Case 1: Φ = 0

Let the kth positive zero of the Bessel function of order n be denoted by jn,k. Let

ξ < j2,1 and λ < j0,1. Since the Bessel function zeros are monotone increasing for

increasing order n, we can say that

J2n(λ)J2n(ξ) > 0.

Hence, the signs of the terms in the expansion in Equation (5.4.13) are defined

by cos(2nΦ). If we take Φ = 0, every term in Equation (5.4.13) is positive over

the region of λ observed. Meanwhile, considering the sum,

∞∑
n=1

1

n!

(
(1 − γ2)λ

2

)n

Jn(λ)(1 − J0(ξ)).

When γ = 1, these terms are identically equal to zero. We note that if γ > 1,

then 1 − γ2 is negative, whereas for γ < 1, 1 − γ2 is positive. Therefore, we may

use γ to tune not only the size of each term in the sum, but also the sign. If we

can make the terms of the sum negative, these would reduce the positive terms

from the first sum and therefore result in a smaller residual. Unfortunately, this

is not immediately possible; although Jn(λ)(1 − J0(ξ)) > 0 when λ < j1,1, such
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that for γ > 1 and odd n the terms of this sum are negative, all even n terms are

positive. However, we can instead show that the sum of each pair of consecutive

terms is negative, by showing that the absolute size of each term is monotone

decreasing. The absolute ratio of terms in the sum can be written as

∣∣∣∣∣∣∣
1

(n+1)!

(
(1−γ2)λ

2

)n+1

Jn+1(λ) (1 − J0(ξ))

1
n!

(
(1−γ2)λ

2

)n
Jn(λ) (1 − J0(ξ))

∣∣∣∣∣∣∣ =

∣∣∣∣ 1

n+ 1

(
(1 − γ2)λJn+1(λ)

2Jn(λ)

)∣∣∣∣ .
By the recurrence relation in Equation (5.3.20),

2Jn(λ)

λ
=
Jn−1(λ) + Jn+1(λ)

n
,

which is permissible since neither n nor λ is equal to zero. Hence,∣∣∣∣ 1

n+ 1

(
(1 − γ2)λJn+1(λ)

2Jn(λ)

)∣∣∣∣ =

∣∣∣∣ n

n+ 1

∣∣∣∣ ∣∣(1 − γ2
)∣∣ ∣∣∣∣ Jn+1(λ)

Jn−1(λ) + Jn+1(λ)

∣∣∣∣ .
The expansion in Equation (5.4.14) required that |1− γ2| < 1. Since λ < j0,1,

then Jn−1(λ) and Jn+1(λ) are both positive, and hence

Jn+1(λ)

Jn−1(λ) + Jn+1(λ)
< 1

The ratio of terms is therefore strictly monotone decreasing. Hence, each consec-

utive pair of terms in the sum is negative, such that the whole sum is negative.

If we therefore take γ > 1, the contribution of these negative terms will cancel

some of the positive terms from the first sum. As such, the residual is minimised

for some value of γ strictly less than 1, in the parameter region denoted by

λ < j0,1, ξ < j2,1, Φ = 0,

5.4.1.2 Case 2: Φ = π/2

When Φ = π/2, the expansion in Equation (5.4.13) becomes an alternating series,

∞∑
n=1

J2n(λ)J2n(ξ) cos
(

2n
(π

2

))
=

∞∑
n=1

(−1)nJ2n(λ)J2n(ξ).

By a similar argument as the Φ = 0 case, we can show that pairs of terms in

the series expansion of h are negative. When λ < j0,1 and n ≥ 1,∣∣∣∣Jn+1(λ)

Jn(λ)

∣∣∣∣ < 1.
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Recursively, this implies ∣∣∣∣Jn+2(λ)

Jn(λ)

∣∣∣∣ < 1,

and thus ∣∣∣∣J2(n+2)(λ)

J2n(λ)

∣∣∣∣ < 1.

This result holds for λ < j1,1. As such, when λ, ξ < j1,1,∣∣∣∣J2(n+1)(λ)J2(n+1)(ξ)

J2n(λ)J2n(ξ)

∣∣∣∣ < 1,

which means successive pairs of terms in the expansion of Equation (5.4.13) from

n = 1 sum to a negative value, since the first term in the sum is negative. When

λ < j1,1, choosing γ < 1 ensures that every term in the expansion in Equation

(5.4.14) yields only positive terms in the sum, allowing us to reduce the residual.

Hence, it is beneficial to under-estimate the velocity (take γ <1) when

λ < j1,1, ξ < j1,1, Φ =
π

2
.

5.4.2 Estimating the error factor γ

We have shown that when Φ = 0 or Φ = π/2, we can supply conditions on the size

of λ and ξ which cause the velocity term to be over or under-estimated, respect-

ively. This shows that for some input parameter combinations, the existence of

error in the fit of the velocity is predictable. We now pose the question of whether

the size of this error is also predictable, which would allow for the extraction of

accurate velocity through post-processing.

We can approximate the value of γ which minimises Equation (5.4.15) by

considering only leading order terms. Immediately, this explains why the velocity

term is fit perfectly when J2(ξ) ≈ 0, as observed in Figure 5.18. When J2(ξ) ≈ 0,

the smallest order term in the left hand sum in Equation (5.4.15) is J4(λin∆t).

Hence, the leading order terms in Equation (5.4.15) all belong to the second sum.

Setting γ = 1 removes all leading order terms up to J4(λin∆t), and therefore

minimises the residual.

When J2(ξ) ̸= 0, we propose to approximate γ by identifying the value it must

take so that the J1(ξ) terms are equal to zero. Using the recurrence relation in

Equation (5.3.20), we can rewrite

2J2(λ)J2(ξ) cos(2Φ) =
λ

2
(J1(λ) + J3(λ)) J2(ξ) cos(2Φ).

Hence, we can set all the J1(ξ) terms to be equal to zero in the residual to

determine
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γ =

√
1 − J0(ξ) + J2(ξ) cos(2Φ)

1 − J0(ξ)
. (5.4.16)

In Figure 5.19a, we plot this predicted value of γ for ξ ∈ [0, j1,1], such that the

conditions for both cases in Sections 5.4.1.1 and 5.4.1.2 should hold. Addition-

ally, we perform numerical fitting for these combinations of ξ and ϕ to determine

the value of γ which minimises the residual EI in Equation (5.4.11) before taking

the asymptotic expansion, plotted in Figure 5.19b, for κ = 0. There is excellent

agreement between the predicted and numerically determined values of γ in Fig-

ures 5.19a and 5.19b, respectively. This means that for some of the parameter

combinations where the velocity is fit poorly when using the non-DIC fitting

model, we can estimate the fitting error. Following post-processing, we can still

therefore determine the velocity magnitude v for these parameter spaces.

To conclude, we investigated the validity of fitting advection-diffusion para-

meters from the DDM matrix DI,R when using the non-DIC ISF, rather than the

DIC-adjusted form in Equation (5.3.15). We have highlighted in Figures 5.16,

5.17 and 5.18 that small λ, Φ ≈ π/4 and J2(ξ) ≈ 0 are conditions for which the

diffusion coefficient and velocity magnitude are fit with high accuracy. However,

when these conditions are not met, the velocity magnitude can be poorly fit. We

have shown that for a limited parameter space, namely λ < j0,1 and ξ < j1,1, the

velocity fitting error can be predicted, which means that post-processing could

restore the ‘correct’ velocity magnitude.

Previously in Section 5.3, we proposed that we can fit DI,R using the non-DIC

ISF if the approximation in Equation (5.3.19) holds. However, Figures 5.16 and

5.18 show that conditions on λ and Φ may mean that Equation (5.3.19) may

only provide an approximation of the desired fitting parameters, even when ξ is

small, with some parameter regions yielding a constant and predictable error in

the fit of the velocity term. However, if this error can be predicted for all λ and

ξ, then Equation (5.3.19) is only a sufficient, not necessary, condition to justify

using the non-DIC ISF during parameter fitting. Instead, the justification for

using the simplified ISF is derived from the knowledge that whilst the residual

between the DDM matrix and fitting function is minimised at some non-zero

value, the output from parameter fitting can be used to identify the true velocity

and diffusion coefficients, even if the output parameters are, themselves, not an

accurate estimate of their true counterparts. Although we have shown that it is

possible to predict the true velocity from the fitted velocity in some parameter

regions, we cannot claim that this is always true; predicting the error is a difficult

task, because the residuals in Equation (5.4.11) are non-linear, but this remains

an interesting direction for future work.
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(a) Predicted scaling values γ calculated by Equation
(5.4.16).

(b) Numerically determined values of γ which minimise the
residual in Equation (5.4.11).

Figure 5.19: For the limited parameter region λ < j0,1 and ξ < j1,1, the predicted
value of the velocity scaling term γ (Figure 5.19a) aligns with the numerically
determined scaling term (Figure 5.19a).

5.5 Discussion

When applying image analysis techniques to time-series images, we make the

unspoken assumption that the results of our analysis depend exclusively on the

underlying movement within the movie. This is not always true; for example, we

know that when the scale of the displacement in the image stack is greater than

the gradient of the heterogeneous background illumination in dark field imaging,

different fitting functions are potentially required for accurate analysis in DDM

[292]. It is important to understand how features of the technique used to generate
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images could affect subsequent analysis, either to improve our confidence that our

analysis is accurate, or to identify potential problems and mitigate them.

In this chapter, we considered Differential Interference Contrast (DIC) micro-

scopy (and thus, due to their similarity, Hoffman Modulation Contrast [334]), due

to its application in oocyte imaging and use in IVF clinics. We identify that the

characteristic shadowing in these microscopy settings introduces anisotropy into

the DDM tensor (Figure 5.3), potentially violating assumptions in DDM that

enable the use of the azimuthal average [164, 266]. We thus set out to determine

exactly what effect shadowing has on DDM analysis.

By presenting an approximation of DIC images as the difference between

spatially shifted pairs of identical phase images, X and Y , we determined a

new expression for the DDM tensor of a DIC image stack, DI(q,∆t) in (5.2.13).

For isotropic motion, Equation (5.2.21) gives a time-independent map between

the DDM matrix on the DIC image, DI,R(q,∆t), and the DDM matrix on the

phase image, DX,R(q,∆t), following an azimuthal average. This map, validated

in simulated and real data in Section 5.2.1, implies that the shadowing effect in

DIC imaging has no effect on fitting results when undertaking DDM analysis,

since it can be accounted for by a q-dependent scaling term.

This powerful result ensures that existing DDM implementations are imme-

diately useable in DIC image stacks without adaption, so long as the underlying

motion is known to be isotropic, allowing confidence that the output statistics

from DDM analysis match the underlying dynamics observed. Furthermore, an

extension of this conclusion in Section 5.2.2 demonstrates attempting to adapt

the technique by accounting for the anisotropy in the DDM tensor will likely

reduce the accuracy of subsequent analysis, due to the weak dependence of DI,R

on the DIC shear and the increased effect of noise when foregoing the use of a

radial average.

When we no longer assume isotropy, however, the picture becomes much less

clear. Section 5.3 demonstrates that the ISF for anisotropic processes is depend-

ent on the DIC shear, and not exclusively on the underlying motion. We derive a

new specific form the ISF for advection-diffusion which can be used for parameter

fitting in Equation (5.3.15), verifying in Figure 5.13 that its use in simulations

yields approximately correct solutions. However, this new ISF has additional

non-linear dependencies on the velocity term compared to the ISF expected in

non-DIC images, resulting in diminished numerical stability during fitting.

Users of DDM who are unfamiliar with the effect of phase-contrast shadowing

on DDM would perform fitting using the non-DIC ISF, rather than the new ISF

model we propose in this work. Whilst such an approach might initially appear

misguided, we identified a condition in Section 5.3 for which approximations of
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the correct diffusion coefficient and velocity magnitude can be determined when

using this overly simple approach. Namely, we showed that the product integral in

Equation (5.3.6) can be approximated as the product of two contour integrals (i.e

Equation (5.3.19)) when the shear distance s is much smaller than the distance

over which particles travel by advection. Under this assumption, which is realistic

in DIC imaging, we have shown in Figure 5.15 that it is possible to approximate

D and v in this way.

Whilst Figure 5.15 is a working example, we showed in Figure 5.18 that al-

though ignoring the shadowing effect during parameter fitting allows us to estim-

ate the diffusion coefficient well, the error in the velocity fit depends not only on

the input velocity, but also on Φ and ξ, as predicted by analysis of the Taylor

approximation error in Equation (5.3.24). We have therefore made some efforts

to understand the exact nature of this dependence in Section 5.4. By considering

an asymptotic expansion of the residual error during this fitting process, we iden-

tified that for a restricted parameter space, we could not only predict whether we

would under or over-estimate the velocity magnitude (Cases 5.4.1.1 and 5.4.1.2),

but that we could also predict how large this error would be. This means that,

for this restricted parameter region, post-processing would allow us to extract the

exact velocity magnitude, despite the error we encounter by using the ‘incorrect’

ISF.

The phase-contrast shadow in anisotropic motion is a complex consideration.

There are some datasets where, due to the combination of input parameters

which define the studied images, fitting without consideration of the shadowing

effect will yield the correct movement statistics. However, there are also datasets

where such fitting will yield incorrect estimates of the velocity v. Although the

velocity fit may develop some additional error when using the non-DIC ISF, doing

so reduces the complexity of the model function and improves the stability of

parameter fitting algorithms, and may therefore be beneficial. Neither approach is

ideal, since one must choose to have either a numerically unstable approximation

of the true velocity, or a stable fitting algorithm which can return the incorrect

movement parameters. Until we have more tangible guidelines which can inform

us of where this ‘simplified’ approach is suitable, we would recommend using the

full, DIC adjusted form of the ISF in fitting to avoid error.

We are the first to explore DDM parameter fitting in the context of DIC, high-

lighting issues which were previously unexpected. However, much work remains

to be done to fully understand how parameter fitting performs in DIC images.

In the context of advection-diffusion, we have primarily focussed on determining

whether the ‘incorrect’ non-DIC ISF can be used to extract the true velocity and

diffusion coefficient from DIC image data. Based on our recommendation that
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the DIC adjusted ISF should be used preferentially, we have yet to explore the

effect of different input parameters on the performance of the DIC-adjusted ISF.

It is important to quantify how the interaction between λ, ξ and Φ might affect

the accuracy of parameter fitting, so that we can ensure the validity of DDM

analysis in real data. For example, if we discover that convergence to the true

velocity is slower in the DIC-adjusted ISF, we can propose guidelines to increase

the number of iterations used by curve-fitting algorithms, or to reduce the error

tolerance to improve fitting quality.

A key limitation of this work is that we only address one specific form of

anisotropic movement, namely diffusion paired with a constant, directed velo-

city field. This particular type of motion is even more simple than the typical

advection-diffusion behaviour studied in DDM literature, which assumes that ve-

locity magnitudes are drawn from an underlying Schulz distribution [142, 163,

164]. Expanding on this analysis for more complicated behaviours may identify

even more unpredictable interactions between the imaging mode, and the under-

lying motion within the movie.

The complex and non-linear interaction between DIC imaging and DDM ana-

lysis provides further incentive to pursue machine-learning fitting approaches in

DDM. In Chapter 4, we showed that even in behaviour as simple as directed

advection-diffusion, parameter fitting already suffers from error and instability,

problems which will only become worse with adaption of the ISF to account for

DIC shadowing. Furthermore, for other behaviours, adapting the ISF to account

for shadowing may not even be analytically possible. All of these problems would

be mitigated using the pipeline we proposed in Section 4.4, however, since the

shadowing in DIC would be built into the images forming the training dataset.

Whilst further exploring the interaction between DIC and DDM would form an in-

teresting direction for future work, this may be unnecessary if a machine-learning

approach to DDM analysis is developed successfully.
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Chapter 6

Modelling the effect of
vitrification protocols on oocyte
or embryo cooling rates

Whilst Chapters 2-5 were concerned with the application of DDM in oocyte

health assessment, Chapters 6 and 7 instead focus on aspects of cryopreserva-

tion. In this chapter, we explore optimal vitrification protocols, concerning the

number and arrangement of embryos or oocytes simultaneously placed onto the

cryopreservation device. The work discussed in this chapter has been published

in the Journal of Cryobiology [348], with accompanying code made available at

https://github.com/OstlerT/MultipleEmbryoModels.

6.1 Cryopreservation and vitrification protocols

We will briefly recapitulate some of the key concepts relayed in the Introduction

which relate to this work here. Cryopreservation is used to maintain oocytes or

embryos for use in future cycles, by cooling them to the point at which cessation

of intracellular metabolic processes occurs. Freezing is typically lethal to most

living systems for many reasons [217–219]. The formation of ice crystals is the

predominant cause of cell damage during freezing [220]. Vitrification avoids this

by combining high cooling rates [222, 224, 227] with small < 1µl volumes [224,

230, 231] of concentrated high concentration permeating cryoprotectant agents

(CPAs) [223, 229]. Together, these cause biological material to enter a glass-

like state of thermodynamic non-equilibrium [31, 222, 223]. There are several

commercially available cryopreservation devices onto which the oocyte or embryo

can be placed [233–235]. The device we focus on in this Chapter is the Open

Cryotop® [224], which is reported by the manufacturer, Kitazato®, to be used

in over 3000 clinics and egg banks, making it the most widely used vitrification

protocol in the world [349]. In particular, this device is also used by LWC, the IVF
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clinic we collaborate with. We will briefly outline the protocol for vitrification of

oocytes and embryos using the Open Cryotop®device, which is shown in Figure

6.1. We note that although LWC uses the Open Cryotop®device, they use a

proprietary variant of the standard manufactures protocol. Hence, the following

description represents a generic approach to vitrification, and may not reflect the

exact procedure used in the clinic.

Figure 6.1: A labelled image of the Open Cryotop® device used to vitrify oocytes
and embryos, modified from the Kitazato website [350]. The blue plastic part on
the right hand is the handle of the device. The embryo is mounted onto the
thin transparent plastic (polypropylene) plate on the left, just below the black
diamond-shaped tip of the device.

In order to perform vitrification, the oocyte or embryo is suspended in a

droplet of a concentrated CPA. However, CPAs are toxic, and changing the CPA

concentration too quickly results in rapid loss of water from cells, causing damage

[351]. A continuous and smooth increase in CPA concentration would be the

safest protocol, but this is not feasible in the clinic [351]; hence a two-stage

protocol is most commonly followed [224, 226]. Alongside the Cryotop®device,

Kitazato®additionally provides 3 different mixtures, named in the protocol as

the ‘basic solution’ (BS), ‘equilibration solution’ (ES) and ‘vitrification solution’

(VS) [248]. Both ES and VS contain CPAs, whilst BS is used to prepare oocytes

for vitrification.

The first stage, equilibration [248], is used to bring the concentration of CPA

up slowly in the oocyte or embryo. This stage is different for oocytes and embryos;

oocytes are transferred to 20µl of BS, after which an additional 20µl is added

immediately. After three minutes, 20 µl of ES is added (the first introduction

181



of CPA), followed by 240µl of ES at the six minute mark. The oocyte is then

left until the 12-15 minute mark, depending on when equilibration is complete;

this is when the perivitelline space width becomes equal to the width before

immersion in ES. The equilibration stage is more simple for embryos, which are

placed directly into 300µl of equilibrating solution and left for 10-15 minutes.

The protocol is subsequently the same for oocytes and embryos, which from now

on, we will refer to as ‘samples’ for simplicity.

The second stage is vitrification. Two wells in a well plate are filled with 300

µl of VS, denoted VS1 and VS2 respectively. The sample is placed into VS1,

an undergoes a repeated process of stirring, aspiration and blowing out to wash

out any remaining ES from the previous stage. This process should last no more

than 30 seconds, after which the sample is transferred to VS2 and the previous

process is repeated for a further 30 seconds. Having reached the required CPA

concentration, the sample is loaded onto the Open Cryotop® device, pictured in

Figure 6.1. The Open Cryotop®device consists of a plastic (polypropylene) plate

with a depth of 0.1mm and a width of 0.7mm [248], attached to a blue plastic

handle. The samples are transferred onto the plastic plate, just to the right of

the black diamond-shaped tip. Particular care must be taken with loading to

ensure a minimal amount of CPA is transferred alongside the sample, as shown

in Figure 6.2. Once excess media is aspirated, the plate and mounted embryo are

plunged directly into a bath of liquid nitrogen, to achieve rapid cooling. During

equilibration and treatment in the VS solution, embryologists work on a bench

top which is warmed to maintain a temperature of 310.15 K (37◦C) [352], whilst

the liquid nitrogen at standard atmospheric pressure has temperature 77.15 K

(-196◦C) [242].

Figure 6.2: Diagram depicting the process of transferring a sample from a
dish onto the plate of the Open Cryotop®, and removing excess cryoprotect-
ant through aspiration to leave a ‘minimal droplet’. Adapted from the Open
Cryotop®user manual [248].
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Whilst the Open Cryotop®protocol is very detailed and specific about the

timing of each stage, there is flexibility about the number of samples cryopreserved

on a single device; up to four samples can be vitrified simultaneously [237]. Since

clinical practice is flexible, questions arise about the existence of an optimal

protocol. A retrospective study reports that post-thaw survival rates of embryos

are affected by the number of embryos vitrified simultaneously, but also states

that further work is still required to determine the optimum number, without

offering further insight [238].

Another question arises about the optimal arrangement of samples vitrified

simultaneously. With more than one sample on the plate, the relative positioning

of the samples becomes important; samples positioned closer together are likely

to affect the cooling rate of their neighbours more than those spaced far apart.

Hence, it is likely that even within a constant number of samples, there exists an

optimal arrangement that embryologists should aim for.

It is important to determine whether the variability in vitrification protocols

between different clinics, embryologists and even different procedures by the same

embryologist affects survival rates for the samples. However, answering this ques-

tion through mathematical modelling is a complex challenge, due to the significant

number of confounding variables and uncertainty relating to survival during vit-

rification. We can, however, model the effect of different sample arrangements on

cooling rates, which, as previously discussed, are strong indicators of survival. We

focus on modelling the vitrification protocol for the Cryotop®device, as described

in the user manual [248].

Some mathematical models of vitrification in the Cryotop®, as well as other

cryopreservation devices, have already been presented in the literature. A series

of papers by Santos, Sansinena, Zaritzky and Chirife present a number of math-

ematical models of cryopreservation, used to estimate model parameters such as

heat transfer coefficients [242, 244] and predict cooling rates [243]. In their model,

they reproduce the 3D geometry of the cryopreservation device using COMSOL

Multiphysics. The CPA is modelled as a stationary fluid. The heat equation is

solved numerically, with Robin boundary conditions modelling the relative cool-

ing of the liquid nitrogen. The models predict the temperature at any given point

within the device over time, which allows estimating of the cooling rate of the

sample. The model is validated by experimental data and the parameter choices

are well evidenced [224, 226, 229, 233, 246, 353]. However, none of these models

deals with several oocytes or embryos; therefore, our work here is novel.

We also highlight work on modelling the warming process after vitrification

[245]. These works use similar techniques to the vitrification process, but switch
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Figure 6.3: A cross section of the model geometry.

the initial and external temperatures. Whilst important in the context of under-

standing current thermal modelling of cryopreservation, these models care not

directly relevant to the cooling process, because warming and cooling are funda-

mentally different processes. Where relevant, we will highlight the differences in

these processes when justifying our assumptions.

6.2 Mathematical model of the vitrification pro-

cess

We model the Open Cryotop® device, which is made of a polypropylene plate

[237]. A schematic of the model geometry is displayed in Figure 6.3 with labelled

domains, interfaces and boundaries. A sample placed onto the plate, contained

within a droplet of CPA, and the system is assumed to be submerged into a liquid

nitrogen bath. We, thus, define the following domains (see Figure 6.3):

• The liquid nitrogen, denoted by Ln,

• The CPA droplet, denoted by F , assumed to be a spherical cap with a

contact angle, θ,

• The sample. We have a disjoint set Si for i ∈ {1, 2, 3, 4}, assuming up to

four samples modelled as per [248],

• The polypropylene plate, denoted by P .

The shared interface between two domains A and B is denoted ∂ΩA,B.

The spatiotemporal evolution of temperature, u = u(x, y, z, t), for each model

component determined is determined by solving the heat equation [354],

∂u

∂t
= Du(u)

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
, (6.2.1)
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with initial temperature of u(x, y, z, 0) = 310.15K (37◦C), to match the temperat-

ure of the warmed bench-top [352]. The thermal diffusion coefficient, Du(u) (µm2/s),

is defined by [354]

Du(u) =
k(u)

ρ(u)c(u)
, (6.2.2)

where:

• c(u) is the specific heat capacity of the component, at temperature u,

(J/(kg K)),

• k(u) is the thermal conductivity of the component, at temperature u, (W/mK),

• ρ(u) is the density of the component, at temperature u, (kg/m3).

We note that the same equation is used to describe Brownian motion (2.2.20)

and heat transfer (6.2.1), although the diffusion coefficient in each context has

different interpretation and scale. This explains our choice to differentiate the

diffusion coefficient in each context by applying the subscript u to the thermal

case, denoting temperature. A general comment can be made that the diffusion

coefficients in each context are related; one can compare the Stokes-Einstein rela-

tion [164, 266] with the definition of the thermal diffusion coefficient in Equation

(6.2.2) for more insight into this relation, although such detail is not relevant to

this work.

A second comparison to be drawn between this chapter and Chapters 2.2-5

is the omission of cytoplasmic streaming, which would couple with the thermal

physics of the system. We do not consider this behaviour due to vitrification being

a much faster process than cytoplasmic streaming; the average rate of cooling

in vitrification is reported to be typically over 10,000 °C/min (see Table 6.1),

whilst the velocity of cytoplasmic streaming in mice is reported to be less than

1µ/min. Hence, complete cooling will occur well before any significant movement

of the cytoplasm is seen. The local cytoplasmic velocity will further decrease

as cooling progresses, strengthening the assumption that cytoplasmic movement

plays almost no role in intracytoplasmic heat transfer.

Whilst Du(u) is a function of temperature [245], other models assume k, ρ

and c (and thus D) are constant [240]. We further examine this assumption in

Section 6.2.1.3. Additionally, the rate of temperature change at the surfaces in

contact with liquid nitrogen is described by Robin heat flux boundary condition

[354],

−k∂u
∂n

= h(u− uext), (6.2.3)
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where uext is the temperature of the liquid nitrogen, ∂u/∂n is shorthand for the

directional derivative ∇(u) · n with n the normal vector to the boundary, and h

(W/m2K) denotes the surface heat transfer coefficient, which defines the rate at

which the CPA, or the plate, transfers heat to the surrounding liquid nitrogen.

The thermal conductivity, k, features in both the definition of the thermal dif-

fusion coefficient Du (Equation (6.2.2)) and the boundary condition (Equation

(6.2.3)), whilst the specific heat capacity is only present in the definition of Du.

Whilst the thermal conductivity represents the ability of the material to receive

thermal energy, the specific heat capacity represents the materials ability to hold

the same energy; this explains why the thermal diffusion coefficient scales as a

ratio of the two parameters, whilst the boundary condition is only concerned

with how readily the material gains thermal energy from some external source.

In practice, whilst the two parameters are indistinguishable from one another

throughout the bulk of the domain, they are not indistinguishable at the bound-

ary, implying that we need to know both values in order to solve the heat equation

over this system.

It can be assumed with good accuracy that uext is constant; we assume the

same here, and examine the validity of the assumptions related to the boundary

conditions in Section 6.2.1.1.

Let uP = uP (x, y, z, t), uF = uF (x, y, z, t) and uSi
= uSi

(x, y, z, t) be the

temperatures in the plate, cryoprotectant fluid and the ith sample, respectively,

at location (x, y, z) and time t. The temperature in the system is described by

the following system of equations:

∂uP
∂t

= Du,P

(
∂2uP
∂x2

+
∂2uP
∂y2

+
∂2uP
∂z2

)
in P, (6.2.4)

∂uF
∂t

= Du,F

(
∂2uF
∂x2

+
∂2uF
∂y2

+
∂2uF
∂z2

)
in F, (6.2.5)

∂uSi

∂t
= Du,Si

(
∂2uSi

∂x2
+
∂2uSi

∂y2
+
∂2uSi

∂z2

)
in Si, (6.2.6)

kP
∂uP
∂n

= h(uP − uext) on ∂ΩP,Ln, (6.2.7)

kF
∂uF
∂n

= h(uF − uext) on ∂ΩF,Ln, (6.2.8)

kSi

∂uSi

∂n
= kF

∂uF
∂n

on ∂ΩF,Si
, (6.2.9)

kSi

∂uSi

∂n
= kP

∂uP
∂n

on ∂ΩP,Si
, (6.2.10)

kP
∂uP
∂n

= kF
∂uF
∂n

on ∂ΩP,F , (6.2.11)

uP (x, y, z, 0) = uF (x, y, z, 0) = uSi
(x, y, z, 0) = 310.15K, (6.2.12)

uext = 77.15K. (6.2.13)
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Equations (6.2.4)-(6.2.6) govern the temperature in the three domains. Equa-

tions (6.2.7) and (6.2.8) describe heat conduction through the boundaries of the

plate and cryoprotectant into the liquid nitrogen. Equations (6.2.9)-(6.2.11) de-

scribe conduction between the samples and cryoprotectant, samples and plate,

and plate and cryoprotectant, respectively (where sample/sample conduction is

not included as the contact surface would be much smaller than the interface

between sample and droplet, resulting in minimal effect on heat transfer). Equa-

tions (6.2.12) and (6.2.13) describe the initial temperature (assumed constant

throughout the system) and the external liquid nitrogen temperature, respect-

ively.

Our objective is to study how the rate of temperature change in the samples

during vitrification is affected by the arrangement and number of samples on the

Open Cryotop®device. To compare arrangements, we need to choose how sample

temperature is measured. We can either use the maximum temperature within

the sample, or the average temperature. The maximum temperature informs us

about the hottest part of the sample, and hence gives us a lower bound on the

cooling rate, whilst the average temperature gives a more general picture of the

rate of cooling in the sample. We choose the average temperature, noting that

the high cooling rates and small sample volume prevent these metrics from from

differing significantly. The average temperature within the samples is calculated

as a volume average, by integrating the temperature within the sample domain,

and dividing by the sample volume [355]. The average temperature is denoted

by [354]

u(t) =

∫
u(x, y, z, t)dV∫

dV
, (6.2.14)

where V is the sample volume. Regardless of the choice of measurement of sample

temperature, comparison of models in literature often focusses on ‘cooling rate’,

defined by the difference in temperature over the time elapsed i.e

u(t2) − u(t1)

t2 − t1
(6.2.15)

with units ◦/min (or equivalently, K/min). Whilst the upper temperature, u(t2),

is usually fixed at 20◦C [229, 240, 243, 246], there is no consensus for the choice of

the final temperature u(t2), with values of −120◦C (153.15K) [229, 246], −130◦C

(143.15K)[240] and −150◦C (123.15K)[242] reported. This variable definition is

problematic, because heat transfer is a non-linear process, which can be seen

by considering a separable variables approach to solving the heat equation in

Equation (6.2.1). We propose a solution of the form

u(r, t) = R(r)T (t),

187



Reference Temperature interval (◦C/min) Cooling rate (◦C/min)
[243] Not reported 37,500
[242] [-150,20] 41250

[224](used by the manufacturer, Kitazato®[350]) [-100, -20] 22,800
[229] [-120,20] 69,250 ± 4285
[246] [-120,20] 69,250 ±4285
[240] [-130,20] 10,465-60,000

Table 6.1: Reported cooling rates of the Open Cryotop®device. In particular,
[224] is used by the manufacturer, Kitazato®as the official reported device cool-
ing rate [350]. The interval over which cooling rate is defined varies, which by
the exponential temperature decay predicted in Equation (6.2.16), may affect re-
ported cooling rates. The variable cooling rates reported in [240] correspond to
different definitions of the heat transfer coefficient, see Section 6.2.1.3. Cooling
rates are equivalent in K/min.

where r = (x, y, z) denotes the Cartesian spatial coordinates, whilst R(r) and

T (t) denote some functions to be determined, depending only on r and t respect-

ively. Substituting this solution form into Equation (6.2.1), we derive

R(r)T ′(t) = DR′′(r)T (t),

=⇒ R′′(r)

R(r)
=

T ′(t)

DT (t)
.

Since the left and right hand sides depend on different variables, they must both

be equal to some constant, which we call ϱ. Ignoring the spatial component

R(r), we consider the time-dependent solution, from which we derive a first order

ordinary differential equation,

T ′(t) = DϱT (t),

which has the solution

T (t) = c1e
Dϱt. (6.2.16)

where c1 is another constant, which like ϱ, depends on the domain geometry, ini-

tial condition and boundary conditions. Hence, temperature decays exponentially

with time, up to an equilibrium temperature [354]. Choosing a larger temperature

interval over which the cooling rate is evaluated will therefore decrease the cooling

rate significantly. We present some of these reported cooling rates from literature

in Table 6.1, alongside the interval over which they are defined, demonstrating a

general lack of agreement between reports. An additional concern with reporting

cooling rate is that the timescale over which cooling occurs is very small. An ana-

lytical estimate of this timescale requires that we first define the parameters in

Equations (6.2.4)-(6.2.13), and is hence later provided in Equation (6.2.18) after

we discuss the assumptions made in our model. For now, we plot experimental
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measurements of the temperature of the Open Cryotop®once plunged into liquid

nitrogen in Figure 6.4, taken from [356]. During this experiment, the device is

initially at room temperature ( 23◦C, or 296.15K), but reaches the temperature

of the liquid nitrogen (−196◦C, or 77.15K) within less than half a second. The

change in temperature during vitrification is on the order of hundreds of degrees

centigrade, whilst the timescale for this change is thousandths of minutes; com-

bined, this makes the defined cooling rate, in C/Min, highly sensitive to small

changes in time, which can make comparison between models with very similar

cooling times misleading.

Figure 6.4: Experimental temperature reading of the Open Cryotop®device after
being plunged into liquid nitrogen, taken from [356]. Initially at ambient room
temperature, the device is first submerged in liquid nitrogen at around 4 seconds,
cooling completely within less than half a second.

Despite the issues we report with the use of cooling rate as a comparison

between our model and others, it is nonetheless the current standard measure-

ment. We therefore also report cooling rates, although our temperature interval

is again different to those reported in Table 6.1, because we take the upper tem-

perature to be 310.15K (37◦C), in accordance with our initial condition, and a

lower limit of 143.15K (-132◦C), which is consistent with previous literature [240,

246]. The lower limit coincides with the glass transition temperature (Tg) of the

material, which is the temperature at which vitrification is considered to occur,

as reported for similar cryoprotectant solutions [241].

Before proceeding to analyse the model, we will first examine some key as-

sumptions made in the model.

6.2.1 Assumptions

6.2.1.1 Liquid nitrogen is a stationary, isothermal liquid

Liquid nitrogen is assumed here to be a stationary and isothermal liquid with

a fixed temperature of 77.15K, as assumed recently in a vitrification model of

the Open Cryotop®in [240]. Assuming the liquid nitrogen to be isothermal is
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reasonable, because the liquid nitrogen is actively boiling, which buffers against

temperature increase. The volume of liquid nitrogen in the bath is large enough

that the bath will not ‘boil dry’ over the course of vitrification; this means that the

Cryotop®device remains submerged in the isothermal domain for the duration

of the protocol.

However, the assumption that the liquid nitrogen is stationary is less accurate,

in light of the active boiling. Boiling itself can be characterised as being in one

of two different regimes: Nucleate boiling is where bubbles form at specific sites

on the heated object, growing in size until they detach once buoyancy exceeds

cohesive surface tension forces [357]. Film boiling, meanwhile, is a more extreme

case where bubble formation is so rapid on the surface that bubbles do not have

time to detach, instead coalescing into a vapour film which insulates the surface

[357]. These two regimes are fundamentally opposed, since nucleate boiling helps

to cool the surface, whilst film boiling prevents cooling. Therefore, it is important

to know which regime we are in. Plunging the device directly into liquid nitrogen

has been shown to favour film boiling in oocyte vitrification [242], but in this

work, it is also shown that one can account for this film boiling by assuming a

stationary isothermal domain, and tuning the heat transfer coefficient h to match

experimental cooling data. Our assumption is therefore justified, although more

complex models of fluid dynamics and boiling could be developed to better rep-

resent the state of liquid nitrogen. In such a model, explicit modelling of the film

boundary layer whose width and thermal properties vary with the temperature

gradient could be undertaken.

6.2.1.2 Samples are spheres

Human oocytes can vary in size and shape, but are typically spherical, with a dia-

meter of approximately 0.12mm [358]. Including the Zona Pellucida and perivi-

telline space, the total oocyte diameter is approximately 0.15mm [359]. Cumulus

cells are not included, as these are removed according to the Open Cryotop®

user manual [248]. Only spherical samples are modelled here, as deviation from a

spherical shape is considered a form of dysmorphia [360], and hence poor oocyte

quality. We choose 0.1mm as a conservative size estimate; this accounts for loss

of water volume [361] and artificial collapse [362] during the vitrification process.

Assuming this size estimate allows more samples to fit together in dense arrange-

ments that are more likely to have slower cooling rates, so this assumption offers

conservative estimates of the time taken for vitrification.

For simplicity, we assume the same model may be used to describe oocytes and

embryos. This makes the assumption that oocytes and embryos have the same

size, and thermal properties. In comparison to oocytes, embryo size remains
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constant throughout the early development stages, with the mean diameter of

early blastocysts being reported to be 140 ± 9µm in [363]. During the latter stages

of the development of the blastocyst, a small expansion occurs, with expanded

blastocysts having a diameter of 190 ± 9 µm [363]. Hence, the validity of our

assumption varies depending on the stage of development of the embryo at the

point of vitrification.

6.2.1.3 Thermophysical properties and parameters

To develop a good mathematical model, parameter values must be chosen for

c, k and ρ, for the plate and for the CPA These values are ‘characteristic of,

and measured by, different experimental situations’ [354], and can only be accur-

ate if measured for the specific case examined. The vitrification solution contains

15% ethylene glycol and dimethyl sulphoxide (DMSO) v/v each, as well as a 0.5M

sugar solution [237]. The concentration of solutions of ethylene glycol in water has

a documented effect on the thermal properties of the system [364]. Although ex-

perimental derivations of temperature-dependent thermophysical properties exist

for various compounds and tissues [365], parameters for the VS solution supplied

by Kitazato®are not well documented, so it is necessary that some simplifying

assumptions are made [240, 245]. First, we assume that the pressure within the

liquid components of the system remains constant, such that the thermophysical

properties of the modelled materials depend only on temperature. This assump-

tion is consistent with similar models [240, 243], although discussion of the use of

increased pressure to expedite the vitrification process can be found here [366].

Where temperature-dependent data is available for similar compounds, it is

possible to assume that the CPA is made up of this compound, and interpolate

between recorded parameter values, an approach which has been taken for the

separate ‘reverse’ problem of sample warming [245]. Experimental measurements

of chemical and tissue thermophysical properties are often incomplete, however,

with only a few experimentally derived temperatures over a smaller temperature

range than the cooling observed during vitrification [365]. The most complete

dataset available is for the temperature-dependent thermophysical properties of

water [365, 367, 368]. Therefore, we can undertake our simulations here assuming

that the CPA is water. This assumption is not imperfect, but as this is the

best data available, this assumption allows us to explore the effect of variable

thermophysical parameters on the vitrification model.

In general, k(u) increases as temperature decreases, whilst c(u) and ρ(u) de-

crease [365]. Hence, Equation (6.2.2) implies that D(u) increases as temperat-

ure decreases. This increase in D(u) leads to overestimation of cooling rates if
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parameters are assumed constant [365]. In the absence of suitable temperature-

dependent data for CPA mixtures, we could alternatively assume that thermo-

physical parameters are constants [240]. Hence, in this work, we use three sets

of thermophysical parameters. First, we assume that the CPA is comprised of

ethylene glycol only, as it is reasonable to assume that the vitrification solution

behaves more similarly to the CPA it contains than to water (otherwise, the

CPA would serve no purpose in the vitrification process). The solution is still

water-based, however, so we consider a second case in which the CPA consists of

vitreous water, as in [240]. Thirdly, to compare, we consider the case where the

CPA is purely water, with variable thermophysical parameters.

Values for c, ρ and k are reported in Table 6.2, for ethylene glycol and vitreous

water, whilst the thermophysical properties of water are shown in Table 6.3.

During simulations, linear interpolations are used to generate parameters between

these recorded values. Outside the reported temperature range, thermophysical

parameters are assumed to be extrapolated as constant. Based on the reported

parameter values, we can plot the diffusion coefficient for all three cases, shown

in Figure 6.5.

Figure 6.5: The diffusion coefficient for each the different thermophysical para-
meter choices in Section 6.2.1.3: ethylene glycol, vitreous water and water (with
variable thermophysical parameters), under the assumption of constant pressure.
The vertical axis is on a log scale. For water, the sharp transition occurs at the
freezing point, when water will solidify into ice during cooling. Since we model
the cooling problem, temperature goes from right to left.

Another parameter of interest is the surface heat transfer coefficient, h, which

along with thermal conductivity, affects the rate of heat transfer at a boundary

with a fluid. The boundary conditions in equations (6.2.7)-(6.2.11) arise from

Newton’s Law of Cooling, for objects being cooled by forced convection [354],
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so h is dependent on the fluid dynamic behaviour at the interface between the

polypropylene plate/CPA droplet and the liquid nitrogen. As previously dis-

cussed, the interface between the plate/CPA and liquid nitrogen is, first, subject

to insulating film boiling [357], and subsequently, as the system cools, nucleate

boiling re-establishes itself [242]. In computational thermal models, these differ-

ent boiling regimes are often represented by changing the value of h [244, 369].

Choosing appropriate values of h that are determined experimentally can there-

fore justify the assumption 6.2.1.1, since we can, in this way, replicate realistic

results without needing to model the fluid mechanics of liquid nitrogen. It is

critical that we choose the correct value of h, however, since this determines the

rate at which the boundary controls the cooling rate. At very extreme cases,

h ≈ 0, which corresponds to an insulated system with no cooling, whilst h→ ∞
corresponds to a Dirichlet condition in which the boundary is set to a fixed tem-

perature with cooling rates then maximised. We will show that the results of the

model depend strongly on the choice of h.

Choosing h accurately is difficult given the wide variety of reported values.

These values reflect specific details of the experiment modelled, such as the choice

of device, or whether the device is being warmed or cooled. For example, a dif-

ferent type of cryopreservation device, known as an open pulled straw, has been

shown to be subject to nucleate boiling, with the heat transfer transfer coeffi-

cient reported to be h = 1, 355W/m2K [245], yet for warming of the same device

in a sucrose solution, the range for h is given as 1800 − 2200W/m2K depend-

ing on the loading volume. For the Open Cryotop®, numerical solutions taking

h ≈ 2000W/m2K match experimentally determined cooling rates [240, 246], al-

though separate experimental measurements suggest a vastly different range of

9000 < h < 10000W/m2K [227]. In this work, we choose h = 2000 W/m2K as

in previous similar models of cooling of the Open Cryotop® [240], as well as to

match experimental cooling rates [246].

One explanation for the variability in h arises from the variable definition of

the cooling rate, as shown in Table 6.1. The choice of h is often made in order

to make the model in question achieve target cooling rates [240, 246], but this

means that different definitions of cooling rate will hence result in different heat

transfer coefficients. Hence, choosing h to match cooling rates in literature res-

ults is a selection that depends not only on the thermophysical properties of the

system, but also on an arbitrary definition within the system; this is a limita-

tion of our model, and previous models. Nonetheless, our model constitutes a

framework, in which any choice of thermophysical parameters can be easily and

quickly implemented and simulated. As more accurate and applicable thermo-
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physical parameter data become available, our model could be quickly rerun to

yield more accurate temperature values.

Material Parameter Value Source

Ethylene glycol

ρ 1.11 × 103 kg/m3

COMSOL Multiphysics [355]
c 3140 J/kg K
k 2.58 × 10−1 W/mK
D 7.40 × 10−8 m2/s

Vitreous water

ρ 0.983 × 103 kg/m3

[240]
c 4218 J/kg K
k 5.0 × 10−1 W/mK
D 1.21 × 10−7 m2/s

Polypropylene

ρ 9.46 × 102 kg/m3

[370]
c 1900 J/kg K
k 1.50 × 10−1 W/mK
D 8.35 × 10−8 m2/s

Liquid nitrogen boundary h 1850 W/m2K [245]

Table 6.2: The thermophysical properties for the materials involved in the Open
Cryotop®system.

Temperature k(W/mK) ρ (kg/m3),×102 c (J/kg K),×102 D (m2/s),×10−5

93.15 7.00 9.34 8.30 0.90
113.15 5.70 9.33 9.70 0.63
133.15 4.90 9.31 1.10 0.48
153.15 4.20 9.31 1.23 0.37
173.15 3.70 9.29 1.36 0.29
193.15 3.30 9.27 1.5 0.24
213.15 3.00 9.25 1.65 0.20
223.15 2.80 9.24 1.72 0.18
233.15 2.60 9.23 1.80 0.16
243.15 2.50 9.22 1.88 0.14
253.15 2.40 9.20 1.96 0.13
263.15 2.30 9.19 2.03 0.12

273.14 (ice) 2.14 9.17 2.11 0.11
273.16 (water) 0.56 10.0 4.22 0.01

283.15 0.58 10.0 4.19 0.01
293.15 0.60 9.98 4.18 0.01
303.15 0.62 9.96 4.18 0.01
313.15 0.63 9.92 4.18 0.02

Table 6.3: Thermophysical properties of water [368]. Two values are reported at
273.15K for ice or water; with linear interpolation, we determine the values of ice
at 273.14K and the value for water at 273.16K.
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6.2.1.4 Cryoprotectant droplets are hemispheres

In the Open Cryotop
®

user manual, a configuration shown in Figure 6.2 depicts

the CPA droplets as concave after the aspiration of excess media. Additionally,

the motion of sliding the pipette back may have an effect on the shape of the

droplet [371]. In our work, aspiration and pipette motion are ignored, and it is

assumed that droplets are spherical caps, as spheres minimise the surface tension

in a droplet (as a result of the isoperimetric inequality in three dimensions [372]).

Observations from the clinic suggest spherical caps are a good assumption [371].

If the droplet is a spherical cap, the contact angle of the droplet must be

described. The contact angle, θ, is the angle formed between the plate and the

tangent plane to the sphere surface at the point of contact, such that θ ∈ (0, π).

This contact point is the meeting place of three domains in Figure 6.3: the fluid

droplet, F , the solid plate, P , and the liquid nitrogen, Ln. A tension force κA,B

exists at the interface of any two domains, A and B, and these tension forces may

be used to define the contact angle through the Young’s Equation [373],

κP,Ln − κP,F − κF,Ln cos θ = 0.

The tension forces depend on the chemical properties of each domain, and en-

vironmental factors such as temperature; this makes it difficult to model them

accurately. However, since the droplet acts structurally as a solid during vitri-

fication [223], the contact angle should not change as a function of temperat-

ure and we, thus, assume it to be constant. The droplet must have a height

greater than 0.2mm above the plate in order to cover the samples, and for a

fixed droplet height, the droplet volume decreases with increasing θ. The Open

Cryotop®protocol desires a minimal droplet, and so we take the highest realistic

value of θ. Clinical observation suggests that droplets do not actually appear

concave at the base, so θ = π/2. We assume a radius of 0.21mm to ensure the

sample is fully covered in CPA. A droplet with this particular contact angle and

radius has volume 0.019µl, which satisfies the condition given in the Open Cryotop

manual [248] that droplet volume is less than 0.1µl. Similar modelling approaches

use a droplet whose volume is equal to 0.1µl [245], but choosing a smaller volume

allows us to increase the number of samples used without exceeding this upper

volume limit.

Now that we have defined the dimensions and parameter values for each com-

ponent of the domain, we present a schematic diagram of the system in Figure

6.6. The Open Cryotop® plate has a depth of 0.1mm and a width of 0.7mm

[237]. We do not model the handle of the device, which is held above the surface

of the liquid nitrogen, since it is sufficiently far away from the vitrified sample
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to have no effect on cooling. We additionally simplify the shape of the plate to

be rectangular, rather than ‘diamond-shaped’ as shown in Figure 6.1. This is

justified since the shortest diffusion pathway for the sample is through the top of

the CPA droplet, or the bottom of the plate, so the effect of the diamond-shaped

tip on cooling is minimal.

Figure 6.6: A schematic diagram of the Cryotop®system, including dimensions
of the three key domains: the sample, the plate and the cryoprotectant droplet.
The entire system is submerged in liquid nitrogen.

6.2.1.5 Samples have the same chemical properties as the cryopro-
tectant solution

During vitrification, much of the water volume is removed from the sample by

osmosis, falling to as low as 5% within two minutes [229]. Additionally, in

blastocysts, artificial collapse of the blastocoel may be used to reduce the wa-

ter volume [362]. During the water loss process, the sample replaces some of its

volume with the surrounding CPA solution, and its chemical composition becomes

similar to that of the CPA [374]. We, therefore, assume that the sample has the

same thermal properties as the CPA solution. Since samples are not insulators,

or conductors, and have a very small volume compared to the total volume of

liquid nitrogen that surrounds the Open Cryotop®, this assumption is justified.

Note that this assumption has been made indirectly in previous literature, since

only a droplet without a suspended sample was modelled [240, 245].

6.2.1.6 The transition from liquid to glass-like state occurs instant-
aneously, no moving boundary effects

Vitrification is a complex problem to model, because in reality, the phase change

from a liquid to a glass-like solid does not happen instantaneously when the tem-

perature of the medium reaches the vitrification point. During a typical freezing

process, the particles in the fluid lose entropy as they enter their new crystalline

structure, resulting in a release of latent heat energy [375]; this energy counteracts
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Figure 6.7: The moving boundary problem encountered during modelling of a
cooling problem where phase change occurs in the domain. As the temperature
falls to the freezing point um of the liquid, parts of the domain solidify, resulting
in a solid-liquid interface, with position X(t) at time t and fixed temperature
u = um. The interface moves through the domain as more of the liquid solidifies.

the temperature drop and slows the movement of the solid-liquid boundary [375].

This results in a the formation of a moving solid-liquid interphase, positioned at

X(t) at time t. We visualise the moving boundary problem in Figure 6.7.

It is possible to model the position of the solid-liquid interface, known as a

Stefan front [375], by adding to the system of PDEs in equations (6.2.4)-(6.2.13)

a new set of equations referring to the interface position X(t) at time t. First,

the temperature at the interface is equal to the freezing temperature um,

u(X(t), t) = um.

Additionally, the Stefan condition [376] must be satisfied, given in one dimension

as

ρℓ
∂X(t)

∂t
= −kliquid

∂u(X(t)+, t)

∂x
+ ksolid

∂u(X(t)−, t)

∂x
(6.2.17)

where kliquid and ksolid are the thermal conductivities of the material in its li-

quid and solid phases respectively, ℓ is the latent heat of freezing and the posit-

ive/negative superscript refers to the liquid/solid phase respectively. The Stefan

condition represents energy conservation across the boundary of the interface,

and gives an expression for the velocity of the Stefan front.

In this work, we make the simplifying assumption that there is no moving

boundary between the liquid CPA and the vitrified part of the droplet, equivalent

to assuming there is no delay between the material reaching freezing point and the

interface moving into this region. The strength of this assumption can be tested

if parameter values for ksolid, kliquid, ρ and ℓ can be determined [376, 377], by
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comparing the timescales of diffusion and front propagation. The characteristic

timescale of diffusion is given by

tD =
L2

D
,

where L is the characteristic length scale, for example the CPA droplet radius.

The characteristic timescale of the Stefan front propagation, tS, can be determ-

ined from the Stefan condition in (6.2.17), which determines the speed at which

the boundary moves. Our assumption that we do not need to model the moving

boundary problem is valid when tD ≫ tS, since the position of the solid-liquid

interface follows the changing temperature predicted by the heat equation. If

tD ≈ tS or tD ≪ tS, however, then the interface moves more slowly, and our

assumption will not be valid. Since the thermophysical and chemical properties

of the VS CPA provided by Kitazato®are not publicly available, we cannot un-

dertake the outlined analysis to test our assumption. However, we observe that

the moving boundary problem is not included in previous modelling approaches

[240, 242, 244, 245], which match experimental results [229, 246], suggesting this

is a good assumption to make in this problem.

6.2.2 Computational modelling

A Finite Element Method (FEM) is used to simulate the temperature throughout

the models, solving Equations (6.2.4)-(6.2.13). Employing COMSOL Multiphys-

ics 5.5, adaptive meshes are constructed for each given geometry to balance ac-

curacy and computational cost. A mixture of triangle and tetrahedral elements

are used, as determined by the solver. A ‘fine’ element discretisation is employed,

which uses a minimum of 2182 tetrahedral elements and 1320 triangular elements

across each of the models developed. Before solving the model, we first must

determine the time interval over which we run simulations. This is aided by

determining the characteristic timescale,

t̃ =
L2

D
, (6.2.18)

where L is the ‘characteristic length’ of a system and D is the diffusion coefficient.

The characteristic timescale gives an approximation of the timescale for the sys-

tem to reach equilibrium, which in this case is 77.15K. Taking the characteristic

length to be the droplet radius, L = 0.21mm, and using the D values for ethylene

glycol and vitreous water in Table 6.2, a timescale of approximately t̃ = 0.59s is

reported for ethylene glycol, and 0.36s for vitreous water. The diffusion coefficient

is even higher in the variable water case (see Figure 6.5), implying the timescale
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will be even smaller in if these parameters are used. This approximation in-

forms us equilibrium is likely reached on the order of seconds, demanding that

we simulate temperatures at time steps much smaller than one second to achieve

a smooth approximation of the temperature. This approximation also suggests

that the timescale for equilibrium to be reached is on the order of a second, al-

lowing us to limit the length of time over which we simulate. As such, we choose

to simulate only over 2 seconds, which is shown later in Figures 6.12 and 6.13 to

be more than long enough for the temperature everywhere in the domain to reach

equilibrium. COMSOL automatically determines the time-stepping involved in

the system, which we will discuss now, but we interpolate the temperature at

0.02 second intervals to ensure we record a smooth temperature change over time

at each point.

In COMSOL, we use a backwards differentiation formula (BDF) solver, which

is a linear multistep method suitable for solving stiff initial value problems [378],

which have the general form [379]

u′ = f(t, u), (6.2.19)

u(t0) = u0, (6.2.20)

with the implicit BDF scheme given by [379]

s∑
k=0

akun+k = hβf(tn+s, un+s), (6.2.21)

where h denotes the ‘step size’ and tn = t0 + nh. The parameter s denotes

the order of the scheme, with s = 1 reducing the BDF scheme to a backward

Euler method, up to s = 6, after which the scheme becomes unstable [380]. In

COMSOL, the order is determined automatically at each iteration, with only

order one or two being used. COMSOL documentation highlights that at low

orders, solvers are known to have dampening effects which smooth out sharp

gradients [355], but this does not present a problem in this work, since our initial

condition in Equation (6.2.12) is uniform and the heat equation generates smooth

solutions.

Numerical performance of the model can be partially measured using the

convergence of the automatically-determined step size. Adaptive stepping helps

to balance computational workload and numerical error [381]. Whilst smaller step

sizes can provide more accurate approximation of the solution, making larger steps

improves the speed of the solver [381]. Hence, the adaptive solver only increases

step size when doing so is not detrimental to accuracy [381]. Since heat transfer is

exponential in time (see Equation (6.2.16)), we expect that step size will increase
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over throughout the duration of the simulation, as the temperature becomes more

uniform throughout the domain and, hence, changes more slowly. Since step size

is often very small initially, it can be more helpful to plot the reciprocal, and

look for convergence of to a small reciprocal step size. In Figure 6.8, we show

an example COMSOL-generated geometry, which depicts the ‘Triangle’ embryo

configuration described in Section 6.2.3, and show the convergence plot in Figure

6.9 which demonstrates the solver is stable. This stability is reflected in the rest

of the models.

Figure 6.8: A snapshot of the model rendered in COMSOL for the three sample
‘Line’ arrangement described in Section 6.2.3. The snapshot is taken at 0.3
seconds into the simulation, with temperature in Kelvin, corresponding to colour,
determined by solving Equations (6.2.4)-(6.2.13). The sample in centre is lighter
than those on either side, implying it is warmer, which demonstrates that sample
arrangement does affect cooling.

We can also discuss numerical performance by estimating the error. Our

numerical solution is an approximation of the solution to Equation (6.2.21), but

will in practice generate some small numerical error. COMSOL uses iterative

refinement to minimise this error, which we briefly describe here [382]. Since the

BDF scheme is linear, the derived temperatures satisfy systems of linear equations

throughout the domain. The true temperature, u⋆, satisfies the linear system of

equations given by

Au⋆ = b,

whilst our numerical solution, u, approximates u⋆. Iterative refinement defines a

set {u1, u2, u3, ...} which converges to u⋆, with u1 = u. Each refinement in the

sequence is determined by finding the residual error,

rm = b− Aum,

and then solving the system for some correction term cm that would remove the

residual error,

Acm = rm.
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Figure 6.9: The reciprocal of the automatically-determined step size for the three
sample ‘Line’ arrangement shown in Figure 6.8. The step size converges, implying
stability. Similar convergence is observed for all arrangements, which suggests the
model is stable.

Adding the correction term to the current solution generates the next solution,

um+1 = um + cm.

During iterative refinement, COMSOL reports a relative error estimate, defined

by

LinErr = Tol
||cm||2
||um||2

,

where Tol is some constant factor used to weight the relative error (in this case,

Tol= 0.1) and || · ||2 denotes the Euclidean norm. The relative error estimate is

therefore used to confirm that the solution is converging during iterative refine-

ment. In all arrangements modelled, LinErr is on the order of 1 × 10−15 or less,

suggesting the model converges to a suitable approximation.

6.2.3 Spatial arrangements of oocytes/embryos

During vitrification, the samples are placed by the embryologist on the plate such

that they just touch each other, or have only a very small separation. Once on

the plate, the samples may move, resulting in a number of different arrangements

which we model. After samples are placed, the covering CPA droplet is con-

structed in the model by taking the union of the individual droplets that would

have otherwise surrounded the individual samples, as shown. We use COMSOL

Multiphysics 5.5 to construct the model, with an example shown in Figure 6.10

demonstrating an arrangement of two samples. Thus, the volume of the combined
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CPA droplet grows with the number of samples vitrified, but this growth depends

on the amount of overlap between each individual droplet. The overlap volume

between the droplets depends on how close the samples are placed to one another,

and on which pattern they are arranged (called ‘arrangement’ from now on). In

this way, the model represents clinical practice well by modelling the aspiration

of excess CPA, rather than modelling each sample in a fixed volume [248].

Figure 6.10: Two merged droplets rendered in COMSOL Multiphysics 5.5. The
same set-up is displayed from two different angles. The droplet is formed from
the union of the two separate droplets accompanying each sample.

The first arrangement studied in this work is a single sample, which provides

a reference case for arrangements with more than one sample. Up to three more

samples are then added in a line running down the length of the plate, to study

the effect of increasing the number of samples (see Figure 6.11a); we call this

the ‘Line’ arrangement. Considering longer lines of samples is unnecessary, since

the cooling rate of samples located in the centre of the line will be dictated by

the shortest distance to the liquid nitrogen, and will hence be unaffected by the

length of the sample line. Additionally, the upper limit allowed by the Open

Cryotop®protocol is 4 [248].

The next arrangement we consider is a variation of the ‘Line’ arrangement.

We consider the possibility that by adding more than one sample to the plate,

the aspiration process may be more difficult to perfect, resulting in more CPA

remaining on the plate. Instead of forming a CPA droplet from the union of the

droplets around it, as for the ‘Line’ arrangement, we now add to the CPA volume

assuming it forms a cylinder with rounded quarter sphere ends. This geometry,
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which we refer to as the ‘Cylinder’ arrangement (Figure 6.11b), is considered to

test how perturbations to the droplet geometry compared to the ‘Line’ arrange-

ment might alter cooling rates. We also account for potential aspiration errors

which, as shown in the Open Cryotop®manual, are considered poor protocol.

Finally, we consider cases where the samples are not aligned along the centre of

the plate, but group into more complex arrangements (see Figure 1.8 for practical

examples). Choosing close aggregation of samples allows us to study various types

of grouping behaviour. Three different arrangements are considered, a ‘Triangle’

(Figure 6.11c), a ‘Square’ (Figure 6.11d) and a ‘Cross’ (Figure 6.11e). In reality,

the locations of the samples on the plate may vary, but modelling every possible

arrangement is unnecessary. The sample arrangements we consider give a good

representation of the expected behaviour.

In the ‘Triangle’ case, samples are placed such that their centres lie on the

corners of an equilateral triangle with side length 0.2mm. In the computational

model, such an arrangement may cause issues where COMSOL Multiphysics 5.5

cannot generate a mesh around the contact points, which appear to overlap. As

such, in practice the leftmost sample is shifted slightly to prevent mesh generation

failures (see Figure 6.11c). In the Square case, sample centres form the corners

of a square whose side lengths are 0.2mm. In the Cross case, an arrangement

similar to that of the square is desired, but with a sample in the centre. This

arrangement would cause the droplet to hang off the plate, however, so samples

are instead placed on the corners of a rectangle with side lengths 0.28mm wide by

0.3mm long, leaving enough space to place a sample in the centre of the rectangle.

The measurements shown in Figure 6.11 are calculated based off of these rules.

Manufacturer’s guidelines allow a maximum of four samples per device [248],

which means that the Cross case is not considered a valid arrangement within

an IVF clinic. This case is tested nonetheless, because it is an extreme case that

allows us to quantify the extreme scenario in which a sample is surrounded by

other samples, so that the validity of the guidelines may be confirmed. If the

cross case does not preclude negative outcomes for embryo cooling rates, then no

other case we can feasibly consider would cool slower.

The sixth case considered is the ‘Worst Case’ benchmark, in which the droplet

has radius equal to the width of the plate (Figure 6.11f), and contains only a

single sample at its centre. The volume of this droplet is 0.09µl, which is just

less than the recommended maximal volume of 0.1µl, and as such, this repres-

ents a case fits within current guidance and should be safe [248]. As the droplet

volume is maximised, this will represent the case with the slowest cooling rate
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that is still considered to be viable for sample vitrification. Whilst the model

cannot necessarily be used to predict a minimum safe, or effective, cooling rate,

any case in which cooling rates are greater than those observed in the Worst Case

simulations can be considered to have sufficiently fast vitrification.

(a) ‘Line’. (b) ‘Cylinder’.

(c) ‘Triangle’. (d) ‘Square’.

(e) ‘Cross’. (f) ‘Worst Case’.

Figure 6.11: Top-down visualisations of the six arrangements our model. The
‘Line’ arrangement is considered in three permutations with variable sample num-
ber, named ‘Line-1’,‘Line-2’ and ‘Line-3’ according to the number of samples
considered.

6.3 Results

Figure 6.12 shows the average temperature over time for arrangements in which

between one and three samples are placed along the centre of the plate (see Figure

6.11a and Figure 6.11a), with separate plots for each set of the three cases assumed

for the thermophysical parameters. Figure 6.13 shows the temperature in the

‘Triangle’, ‘Square’, ‘Cross’ and ‘Worst Case’ arrangements, with a minimum

of three samples included. The time taken to reach the target temperature of

143.15K, for all cases, is shown in Table 6.4, and the associated cooling rates are

displayed in Table 6.5. We will now discuss some key features of these figures.
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(a) Ethylene glycol.

(b) Vitreous water.

(c) Water with variable thermophysical parameters.

Figure 6.12: The average temperature (Equation (6.2.14)) in samples arranged
in a straight line on the Open Cryotop®device, namely the ‘Line’ arrangement
(Figure 6.11a) with one to three samples, and the ‘Cylinder’ arrangement (Figure
6.11b), which is equal to the ‘3-Line’ arrangement, with a semicircular droplet
cross-section. Temperature is determined by numerically resolving the PDE sys-
tem given by Equations (6.2.4)-(6.2.12) in COMSOL Multiphysics 5.5. Each
sub-figure uses a different choice of thermophysical parameters for the CPA solu-
tion, with the constant parameters for ethylene glycol and and vitreous water
given in Table 6.2, and the temperature-dependent thermophysical parameters
for water given in Table 6.3.
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(a) Ethylene glycol.

(b) Vitreous water.

(c) Water with variable thermophysical parameters.

Figure 6.13: The average temperature (Equation (6.2.14)) in samples in the ‘Cyl-
inder’,‘Triangle’,‘Square’, and‘Cross’ arrangements (Figures 6.11b,6.11c,6.11d
and 6.11e respectively), as well as the ‘Worst case’ arrangement (Figure 6.11f)
that considers a much larger droplet. Temperature is determined by numerically
resolving the PDE system given by Equations (6.2.4)-(6.2.12) in COMSOL Mul-
tiphysics 5.5. Each of the figures uses a different choice of thermophysical para-
meters for the CPA solution, with the constant parameters for ethylene glycol
and and vitreous water given in Table 6.2, and the temperature-dependent ther-
mophysical parameters for water given in Table 6.3.
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Model Number of samples Time, s
EG vitW W

Line-1 1 0.26 0.26 0.14
Line-2 2 0.28 0.28 0.16
Line-3 3 0.30 0.30 0.16

Cylinder 3 0.30 0.30 0.16
Triangle 3 0.30 0.30 0.16
Square 4 0.32 0.32 0.16
Cross 5 0.32 0.32 0.16

Worst Case 1 0.48 0.44 0.18

Table 6.4: Time taken (seconds) for the average temperatures inside the samples,
plotted in Figures 6.12 and 6.13, to reach the target vitrification temperature,
143.15K. Each column denotes a separate case of the choice of thermophysical
parameters, with constant parameters for ethylene glycol (EG) and vitreous water
(vitW) available in Table 6.2, as well variable thermophysical parameters for
water (W) in Table 6.3.

Model Cooling rate, K/min
EG vitW W

Line-1 38541 38541 71576
Line-2 35788 35788 62629
Line-3 33402 33402 62629

Cylinder 33402 33402 62629
Triangle 33402 33402 62629
Square 31314 31314 62629
Cross 31314 31314 62629

Worst Case 20876 22774 55670

Table 6.5: Cooling rates from 310.15K to 143.15K in the simulations, calculated
by dividing the temperature difference by the cooling times from Table 6.4. Res-
ults shown for the three choices of thermophysical parameters,: ethylene glycol
(EG), vitreous water (vitW) or water with variable thermophysical parameters
(W).

Figure 6.12 indicates that increasing the number of samples leads to a de-

creased cooling rate. However, we also observe from Table 6.4 that the difference

in time taken to reach 143.15K is very small. The difference in cooling times

between one and three samples is at most 0.04 seconds in the ethylene glycol and

vitreous water cases, and only 0.02 seconds in the case of water with variable ther-

mophysical parameters. Hence, whilst the number of samples does affect cooling

rates, the difference is insignificant. Furthermore, we observe that the distance

between the two/three sample curves is smaller than between the one/two sample

curves in all three variable thermophysical parameter cases. We can hence predict

the cooling curve for a four-sample ‘Line’ arrangement will be almost identical to

the three-sample arrangement.
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Additionally, in Figures 6.12a and 6.12b, we can see that the cooling rate

is slightly slower in the ‘Cylinder’ case compared to the three-sample ‘Line’.

However, comparison of the cooling times in Table 6.4 show that in all three

parameter cases, the actual difference in cooling time is smaller than 0.01 second.

Therefore, it can be concluded that these the ‘Cylinder’ and three-sample ‘Line’

arrangements yield almost identical cooling rates, which supports assumption

6.2.1.4, that minor perturbation in droplet shape is unimportant.

Having shown that the cooling rate is dependent on the sample number, up

to a point, we next query whether the reduction in cooling rate is large enough to

have negative implications for the vitrified samples, by comparing these curves to

the Worst Case benchmark. Since the ‘Cylinder’ arrangement is a lower bound

for the cooling rate of all ‘Line’ arrangements, it suffices to compare only this

arrangement, and not the ‘Line’ arrangements, to the benchmark. Figure 6.13

shows the ‘Cylinder’, ‘Worst Case’ and all other non-linear sample arrangements.

The temperature profile for the ‘Cylinder’ and ‘Triangle’ arrangements are al-

most identical, with Table 6.4 showing that all arrangements with three samples,

namely ’3 Line’, ’Cylinder’ and ’Triangle’, all have the same cooling times, regard-

less of their arrangement. Arrangements with more than three samples, namely

‘Square’ and ‘Cross’ arrangements, have a higher cooling time than 3-sample

arrangements, but have no difference between themselves.

The ‘Worst Case’ in Figure 6.13 displays has the smallest cooling rate out

of all cases considered. This should be the arrangement with the lowest cooling

rate which is still safe, so it can be concluded from Figures 6.12 and 6.13 that all

of the other arrangements presented in this work, whose temperature profiles sit

well below the ‘Worst case’, are considered safe with respect to cooling rates.

The comparisons we have drawn hold for all three choices of thermophysical

parameters (ethylene glycol, vitreous water and temperature-dependent water).

By comparing Figures 6.12 and 6.13, we can see that the choice of thermophysical

parameters does change the expected cooling rates, as expected by Equation

(6.2.16) which shows the temperature has an exponential dependence on the

diffusion coefficient. However, the relative shape and distribution of the simulated

thermal profiles is constant regardless of the choice of diffusion coefficient, which

controls how quickly the curve evolves. For example, cooling is fastest when

using the temperature-dependent thermophysical parameters of water, shown in

Figures 6.12c and 6.13c, which minimises the effects of the variable geometry

and sample number, whilst also minimising the difference between all simulated

cases and the Worst Case benchmark. We have already demonstrated in Figure

6.5 that for variable thermophysical parameters, the diffusion coefficients are of

order 10−5m2/s, which is much greater than those reported for ethylene glycol
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or vitreous water of the order 10−7. This implies that the samples will cool

much faster, despite the increasing thermal conductivity, which suggests that the

rate at which the boundary warms up should decrease (see Equation (6.2.3)).

The simulations in Figures 6.12c and 6.13 show that whilst actual cooling rates

vary depending on thermophysical parameter selection, the relative hierarchy of

cooling rates and comparative spatio-temporal thermal profiles remain similar.

The cooling rates in Table 6.5 are of similar order of magnitude to the 23, 000°/min

(equivalent to K/min) figure reported by Kitazato® [350], but we highlight a dis-

crepancy between the cooling rates in our work and [240], despite using the same

thermophysical parameters for vitreous water. The droplets modelled in [240] are

also spherical caps, with a height of 0.1mm and a width of 0.35mm yielding a

droplet volume of approximately 0.02µl. In our work, the arrangement closest to

this is the ‘Line-1’ arrangement, where the droplet volume is also 0.02µl [240],

yet we report approximately half the cooling rate.

Several factors contribute to this discrepancy, including the different geometry

of the two models. In [240], axisymmetric geometry is assumed, which means their

model has ‘shaved off’ the rectangular corners of the plate and is, instead, a cyl-

inder. This will increase the surface area to volume ratio, and therefore increases

the cooling rate of the plate, compared to the model we use here. Furthermore,

the plate material is assumed to be polyethylene in [240], with a diffusion coef-

ficient (thermal diffusivity) of 1.4 × 10−7m2/s, which is around double that of

polypropylene, that is assumed here (see Table 6.2); this further contributes to

an increased cooling through the plate. This effect is demonstrated when tracking

the warmest temperature point in each model; in our work, the warmest point

is always at the contact between the sample and the plate, whilst in [240] the

warmest point is 0.04mm above the plate, almost halfway into the droplet itself.

This implies heat transfer through the plate is larger than in our model. Ad-

ditionally, the contact angle in [240], although not reported, is visibly less than

π/2. The droplet in [240] has height 0.1mm and diameter 0.35mm, relative to

our droplet which has height 0.21mm and diameter 0.42mm. Based on these

measurements, droplet in [240] has approximately 1.5 times the surface area of

the droplet in our work, and as such has a greater exposure to the liquid nitrogen.

All these differences contribute to discrepancy in cooling rate between our model

and the model in [240].

6.4 Discussion

Determining cooling rates during vitrification of multiple oocytes or embryos is

important, as they have direct clinical implications. Comparing the cooling rate
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of different sample arrangements cannot be undertaken experimentally, since in-

serting a thermocouple into an embryo is impossible without the embryos destruc-

tion. In this work, we have developed a new mathematical model that predicts

the temperature of oocytes and embryos during vitrification. We have shown that

differences in cooling rates for different sample arrangements are not large enough

to affect survival rates, so long as droplet volumes are constant and within the

manufacturer’s limits.

All simulated arrangements have higher cooling rates than those that would

be observed in the laboratory, represented by our Worst Case simulation, and

are therefore considered to be valid configurations. The small differences in the

times taken to reach the target temperature of 143.15K that are observed between

different arrangements would be within the error of experimental readings. Al-

though our results are not quantitatively exact, they do offer a robust “rule of

thumb” time scale of around half a second for time to vitrification. This means

that there is no need for embryologists to spend time arranging loaded samples

on the plate; instead they should focus on aspirating the medium efficiently. This

can save precious time for embryologists, and justifies operating according to their

personal preference within the confines of standard operating procedures.

The differences in the cooling rate obtained from our model and other mod-

els can be attributed to variations in the geometry and assumptions made in

the model construction. Despite the small difference of around 9.2% between

our Worst Case cooling rates (22774 K/min in vitreous water) and the 23000

K/min value reported by Kitazato [224], our model yields suitable lower and

upper bounds for the cooling rates of samples vitrified in varying numbers and

spatial arrangements, both of which are within the safe and appropriate bounds

reported for the Open Cryotop®device.

Although cooling rates have been used metric for comparing between our

model and previous works, we highlight some issues associated with this metric.

First, cooling rates have a non-linear dependence on the predetermined temper-

ature interval used (Equation (6.2.16)), so when different authors use different

temperature intervals, cooling rates cease to be comparable. Additionally, tem-

perature evolution in the system occurs within the order of half a second, which

means that very small absolute differences in the time taken for cooling can result

in very large variation in the cooling rate, since it is proportional to the inverse of

the time taken for cooling (Equation (6.2.15)). As such, vastly differing cooling

rates may appear to justify selecting one technique, or arrangement, over an-

other, when in reality vitrification always occurs within less than half a second.

As such, we recommend caution when relying solely on cooling rates as a metric

of the quality of vitrification. In order for cooling rates to be truly comparable
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between two experiments or models, the same start and end temperature must

be agreed upon; in this case, it would be better to report the time elapsed rather

than the reciprocal cooling rate, to prevent insignificant differences in vitrification

time exploding into seemingly significant differences in cooling rates.

The results of our work are dependent on the validity of the assumptions

made. The assumption in Section 6.2.1.4 (droplets are hemispheres) may not

be accurate, as different-shaped droplets such as those depicted in [245], which

is a rounded cuboid, or the significantly more flat droplet in [240] (although we

note that a droplet of height 0.1mm will not actually contain the average early

blastocyst, which has mean diameter 0.15mm [363]). The arrangement of samples

in different droplet shapes may have different characteristic lengths, and therefore

different cooling rates. Such perturbations would lead to small differences in our

predicted results.

The question of how many samples can be mounted on a single device is be-

coming increasingly important. With vitrification, survival rates are always a

primary concern [246]. A recent study has shown that survival rates vary de-

pending on the number of embryos placed on a single Open Cryotop®[238], but

were unable to explain why. We therefore questioned whether thermal effects

could explain variable survival rates. our model shows that the only limitation

from a thermal perspective is the skill of the embryologist. Specifically, they may

mount any number of samples that can be properly stored within 0.1µl of vitri-

fication solution within a reasonable time frame. Our work does not assess other

factors associated with loading of multiple samples, such as the time taken to

process samples, or cost efficiency; we instead only validate that loading of mul-

tiple samples per device is thermally justifiable. As a result, we cannot comment

on the optimality of any specific arrangement, or number of samples. Instead,

it can only be concluded that thermal differences arising from variable sample

number and arrangement are an unlikely explanation for variable survival rates.

Further work to refine the model and achieve greater accuracy is possible by

revisiting the assumptions in Section 6.2.1. Specifically, the assumptions relating

to the size and shape of the samples and droplets, 6.2.1.2 and 6.2.1.4, can be

easily altered to account for more realistic droplet shapes, larger droplet volumes,

and different sample locations and sizes. Another avenue for further work is to

test whether these conclusions also hold true in other devices; the computational

model in COMSOL Multiphysics can be easily adapted to achieve this.

Furthermore, one might wish to relax the assumption in Section 6.2.1.1 that

liquid nitrogen is a stationary, isothermal liquid. In practice, the liquid is boiling,

which involves additional mechanisms of temperature change, such as boiling-

induced convection, film boiling and other boiling specific effects [357]. The effect
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of these additional mechanisms may differ between arrangements, and therefore

may affect cooling rates. This would involve more complex numerical models,

which would account for fluid motion at the interface of the droplet and the

liquid nitrogen [383].

Additionally, we could relax assumption 6.2.1.6, that there is no Stefan front.

This assumption essentially assumes that the solid-liquid interface is is unaffected

by latent heat effects, and moves instantaneously with the change in temperature

of the CPA. A more detailed model would involve a moving boundary, which

would reduce the cooling rate. We note that this change would affect all ar-

rangements, including the ‘Worst Case’ benchmark, causing all of them to have

a decreased cooling rate. Hence, we would expect the comparison between the

‘Worst Case’ and all other arrangements presented in this work to remain valid,

but a more complex moving boundary model is needed to verify this claim.

The choice of parameters in our model could be refined in further work. As

discussed, parameter choices for the CPA, polypropylene and liquid nitrogen are

taken from literature and COMSOL Multiphysics 5.5, but may not reflect those

observed in the clinic. Therefore, there is scope for more experimentally validated

parameter choices for the specific materials and environment considered. That

said, it is likely the real thermophysical parameters of the CPA will be similar to

the value we assumed for ethylene glycol or vitreous water, as stated in Table 6.2.

Vitreous water and ethylene glycol diffusion coefficients are of the same order of

magnitude ( 10−8), which means that if the true thermophysical parameters of

the CPA are interpolated between these values depending on the relative con-

centration of each constituent chemical, replacing the parameters used in our

model will have little effect on the reported temperature profiles. Additionally,

we assumed that samples have the same thermophysical properties of the CPA.

Although we justified that samples replace some of their water content with CPA,

we cannot quantify the difference between reality and our assumption. We have

also not accounted for the effect of the physical structure of the oocyte or embryo

on cooling.

In particular, the surface heat transfer coefficient in particular is of interest,

since the heat flux at the boundary strongly affects the cooling rate. Making

a good choice for the value of h is crucial for making the model as accurate as

possible. In our model, it is very easy to replace the values of the parameters, so

as more accurate parameter values become available, the model can be quickly

updated to generate more accurate approximations of cooling rates.

Despite the emphasis of our work on maximising cooling rates, there is evid-

ence to suggest that this is not the optimal approach to improve survival rates

[384], and that there is instead an optimal range for cooling that reduces both the
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risk of damage to cells from the CPA for high cooling rates and the risk of intra-

cellular ice formation for low cooling rates. As such, it is appropriate to first look

to define this range, and then find arrangements that give cooling rates within

this range. Additionally, there is evidence that cooling rates are less significant

for the survival of oocytes than warming rates [246]. Indeed, it may be that some

balance between cooling rates and warming rates should be sought. Future work

could therefore model the effect of spatial arrangement on the warming process.

With some alterations, our model could also be used to simulate the warming

process. This would involve setting the initial condition (Equation (6.2.12)) to

be a uniform temperature of 77.15K, and to the external temperature uext to

be the temperature of the solution used to warm vitrified samples (in [245], a

sucrose solution is used). In accordance with [245], the heat transfer coefficient h

would also have to change, since the warming solution does not exhibit the boiling

properties of liquid nitrogen. The absence of this boiling phenomena, however,

could require a more material alteration of the model if a lower value of h being

taken in the warming model results in significantly slower temperature change;

this may require that the moving boundary problem be re-introduced to tackle

the ‘reverse’ challenge of sample warming.

Despite the shortcomings of our model, the simulations provide the correct

order of magnitude for the cooling rates, in line with experimental findings. Spe-

cifically, as long as the volume of the CPA droplet does not exceed the maximum

volume given by the manufacturer’s guidelines, the cooling process should be on

the order of half a second, or less, regardless of the spatial arrangement or number

of mounted samples. This means that all arrangements considered in this work

exhibit high enough cooling rates to facilitate successful vitrification.
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Chapter 7

Statistical analysis of time-lapse
images of post-thaw embryos

7.1 Introduction

An embryo which has been safely cryopreserved, as discussed in Chapter 6, may

then be thawed and used in a future treatment cycle. We recall that the process

of using an embryo which has been previously cryopreserved, and then thawed,

is known as a Frozen Embryo Transfer (FET) [66, 385], whilst the term ‘fresh

embryo transfer’ refers to those which do not undergo cryopreservation. During

vitrification, fluid is removed from the blastocoel of the embryo (see Figure 1.7),

either from loss due to osmosis or through intervention in the clinic. This is de-

sirable, since it minimises the volume of fluid inside the blastocyst which must

be replaced during vitrification [36]. As a result of this fluid loss, the embryo un-

dergoes collapse, and is physically reduced in size. During thawing, re-expansion

occurs, such that the embryo regains fluid and is restored to its original size.

The objective of this chapter is to determine whether measurements of the re-

expansion of the embryo can be used to predict viability and potential to form a

clinical pregnancy.

An embryo at the blastocyst stage is a multicellular structure, and study of

the intra-cytoplasmic behaviour is considerably more challenging than in oocytes;

we cannot apply DDM or PIV as we did for oocytes in Chapter 2.2. Hence, we are

therefore required to study the blastocyst through morphokinetics. Specifically,

here we study the re-expansion of embryos following warming from cryopreser-

vation. In Figure 7.1, which is a reproduction of Figure 1.2 in Chapter 1, we

show the re-expansion process for a single blastocyst. The re-expansion process

begins with the cells of the blastocyst being shrunken and compacted into a tight

ball inside the zona pellucida, and is expected to end with the blastocyst either

returning to its fully expanded pre-vitrified state (Figure 1.7), or hatching from

the zona pellucida. Some embryos may not fully expand, however.
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Figure 7.1: A reproduction of Figure 1.2 in Chapter 1, the re-expansion of a single
blastocyst is shown. The images are approximately 25 minutes apart, showing
the initially compacted and shrunken blastocyst re-expanding to its pre-vitrified
state.

In this chapter we wish to perform analysis of time-lapse images of cryop-

reserved embryos throughout this re-expansion process, in order to identify para-

meters which can predict clinical pregnancy (recall that clinical pregnancy is

defined by the established presence of a fetal heartbeat via ultrasound [65]). First,

in Section 7.2, we introduce new time-lapse images of expanding blastocysts, made

available by LWC. Then, we apply a neural network approach to automatically

extract the blastocyst area from the images in this dataset. Using this machine-

learning method to process the images, in Section 7.3 we undertake statistical

analysis to identify a metric that allows us to partition embryos into sets with

different clinical pregnancy rates, suggesting a new criterion for post-thaw embryo

selection.

7.2 Machine-learning image segmentation

Images and other data were gathered from IVF treatments conducted in LWC

from 2018-2020. Consent to use outcome data was obtained for each patient, and

records are anonymised. For each of the 147 FET recorded cycles, in addition

to time-lapse imaging, the following were collected: the presence of a positive

pregnancy test, registered clinical pregnancy and live birth. Time-lapse movies

acquired in a GERI®incubator capture images every 5 minutes, showing the re-

expansion of each embryo immediately following thawing. Once re-expanded, the
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Figure 7.2: Visualisation of the outcomes of the 147 embryos from LWC data. We
excluded 23 embryos from the study; 22 were missing corresponding movies, and
one did not survive cryopreservation and was not transferred. Of the remaining
124 embryos, 67 resulted in a positive pregnancy test (54.0%), 53 in a clinical
pregnancy (41.7%), and 37 in live birth (29.1%). These rates are in line with
expected European live birth rates [85]. The two embryos listed as ’?’ had no
recorded live birth outcome data.

embryo remains in culture until the time of transfer. This time period often varies

within the clinic, with some embryos remaining in culture far longer than their

re-expansion time [36]. The length of the movies is therefore highly variable, with

some lasting longer than an hour, whilst others cover as little as 15 minutes.

Of the 147 embryos for which we were given outcome data, 22 embryos were

discounted from the study because corresponding movie data was missing, whilst

another embryo was not considered because it did not survive cryopreservation

and was, therefore, never transferred. Therefore, our dataset consists of 124

embryos. We visualise the outcomes for these embryos in Figure 7.2. The two

embryos listed as ’?’ had no recorded live birth outcome data.

We note that the choice of what we consider a ‘positive clinical outcome’

is highly important to any statistical analysis we undertake. As we descend

through each level of the outcomes (Figure 7.2), the number of positive outcomes

decreases. In this work, we choose positive clinical pregnancy as the success

outcome, primarily because this outcomes is used in other literature [66, 247],

which makes it easier to compare between studies. The overall objective of IVF

should obviously be a live birth, but there are a number of confounding variables

which may cause a clinical pregnancy to not result in live birth which do not relate

to the health of the embryo prior to transfer, such as maternal age and lifestyle

[386]. Hence, we focus on potential of the embryo to implant successfully, and

focus only on positive clinical pregnancy.

Additional data provided by LWC for each embryo include:
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• The date of thaw.

• The number of days between fertilisation and vitrification, either 5 or 6.

• The number of embryos transferred per patient, always one.

• The number of surviving embryos, equal to one for all patients.

• The number of embryos thawed per FET, only greater than one if previous

thawed embryos did not survive. This was the case for a single patient, who

has two embryos thawed.

Additional comments were also recorded for a selection of embryos with important

features to highlight, such as partial hatching, absence of the zona pellucida (ZP)

or the presence of twins.

We must now decide what measurements to take from these images. We aim

to further the scope of current morphokinetic analysis of post-thaw embryos,

by including information from all available time-points, rather than only a select

few. It makes sense to therefore measure the blastocyst area as in previous studies

[69, 247, 249, 250, 253], i.e. the combined area of the Inner Cell Mass (ICM),

trophectoderm and blastocoel, the fluid filled cavity inside the trophectoderm (see

Figure 1.7). The blastocyst area is, in other works, often estimated by considering

an ellipsoidal approximation, and only the semi-major and semi-minor axis are

measured. However, this approximation is clearly imperfect, as can be seen in

Figure 7.3, where the outer edge of the the blastocyst boundary is not smooth,

and clearly asymmetric. Additionally, under such measurement schemes, the

area estimates can depend on the orientation of the axes of the ellipse. Here, we

introduce a more reliable metric, measuring the blastocyst area instead by the

number of pixels it occupies in the image.
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Figure 7.3: A single frame from one time lapse video, at the start of the re-
expansion process when the blastocyst is compacted. The two major features
of interest are labelled: the border of the blastocyst (red solid line) and the
inner edge of the Zona Pellucida (ZP, black dashed line), labelled by hand. The
blastocyst area is contained within the red contour, and the perivitelline space is
the area contained between the red and black dashed contours.

Automating the measurement of the blastocyst area is also desirable, since in

the clinic, manual labelling is an impractical and very time-consuming approach.

Evaluating the blastocyst is equivalent to enumerating which pixels within the

image correspond to the blastocyst area. This is therefore a segmentation task,

for which a collection of computer-vision techniques already exist [387]. However,

the complexity of biological image data, and in particular that of embryo image

data, often prevents the implementation of these techniques. For example, edge

detection to identify the boundaries of the zona pellucida (ZP) can frequently fail,

since the illumination gradient between the ZP boundary and the background is

often locally very small. Additionally, cell fragments and overlapping cells can

create challenges in determining the edge of the blastocyst; this challenge becomes

increasingly likely as the blastocyst expands and the blastocoel emerges [387].

Machine learning is an optimal tool for tackling this challenge, since the

blastocyst is a visually discernable feature in the images, and hence there is

a strong pattern to detect. This particular type of machine learning is referred

to as semantic segmentation, and has been recently implemented successfully in

[124] to segment images of oocytes into regions denoting the cytoplasm, first polar

body, zona pellucida, perivitelline space and cumulus/corona cells. In [124], 71

different architectures were tested in order to determine the optimal performing

structure. A variant of DeepLab-v3-ResNet-18 was identified to be the strongest

performer [124], where the number 18 references the number of layers in the
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network. We therefore also adopt the ResNet-18 architecture for segmentation

here.

First introduced in 2015, Residual Networks (ResNet) were developed to over-

come the problem of ‘degradation’, where adding more layers to a neural network

causes first saturation and then a drop in the accuracy of the network [388]. The

ResNet architecture overcomes this issue by adding shortcuts between layers in

a standard neural network, as shown in Figure 7.4. These shortcuts do not have

weights and biases to train, so do not add to the complexity of the network, but

have been shown to boost training accuracy [388]. ResNet18 is a popular choice

of architecture for biological image segmentation tasks [389–391], and is therefore

considered an appropriate choice in this work.

Figure 7.4: ResNet architectures in machine-learning models differ from standard
neural networks due to the inclusion of ‘shortcuts’ that can skip layers. Adapted
from [388].

The purpose of the segmentation is to assign a label to each pixel in the image,

where the labels are elements of a set of ‘classes’. We define three classes,

• l1 = Background.

• l2 = Blastocyst area.

• l3 = Perivitelline space.

The neural network we implement is a form of supervised machine learning, which

means learning is driven by encouraging the network to reproduce segmentation

in a labelled training dataset. We use the MATLAB 2022b image labelling app

to assign pixel labels to each frame of 40 embryos which we decide to use as a

training set. This results in a total of 986 labelled frames; an example is shown

in Figure 7.5. By considering whole movies in the training set, we ensure that we

capture a roughly equal sample of different stages of expansion for each of the 40

embryos.
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Figure 7.5: A single frame from an embryo expansion movie provided by LWC,
manually labelled using the MATLAB 2022b image labelling app.

The set of labelled images is split into training, testing and validation sub-

sets using a 60/20/20% split, with random allocation to each set by performing

a random permutation on the ordered list of images, then taking the first 60%

for training, the next 20% for testing, and the remaining images for validation.

The cost function for a semantic segmentation needs careful consideration due

to a disparity between the relative number of labels assigned to each class; the

majority of pixels are labelled as Background (l1), such that there are much fewer

labels assigned to Blastocyst area (l2) or the Perivitelline space (l3). If I pick a

random pixel from the image, the probability it will belong to the background

is much higher than any other class, which can bias the network towards over-

estimating the probability that any given pixel is part of the background. This

issue is known as class imbalance [392], which we control for by weighting the

cost function using the prevalence of that label in the training set. Based on some

trial and error, we choose to train the network over a maximum of 5 epochs (the

number of times the training data is passed through completely), in batches of

16 (the number of images passed through before updating weights and biases).

These values optimised fitting performance in the validation set, ensuring we train

sufficiently without over-fitting. We adopt the pre-built ResNet-18 architecture

available through MATLAB 2022b, achieving an accuracy of 98.14% in the valid-

ation set. With the trained network, we can now process the image data available

in order to identify morphokinetic parameters which may correlate with success.

7.3 Non-linear expansion rates predict negative

clinical pregnancy

We use the trained machine learning algorithm to segment all 124 time-lapse

movies. This reduces each movie to a set of pixel labels, which we enumerate

220



to generate dataset for the blastocyst area at each time point. Since the frame

size is constant, the blastocyst area can be represented as a percentage of the

frame which it covers. We can plot this area percentage as a function of time

for a single embryo, as shown in Figure 7.6a. The objective of our analysis is to

infer embryo health from these plots, but comparing the plots of two embryos is

made difficult by the variable embryo size, and variable length of imaging. The

plot for each embryo will have an entirely different range and domain, making it

difficult to spot patterns which discriminate between positive and negative clinical

pregnancy. Instead, we choose to compare these plots for different embryos by

plotting the blastocyst area in frame number t on the horizontal axis, against the

area in the (t+ 1)th frame on the vertical, as in Figure 7.6b. Although the initial

and final size of the blastocyst area will now define the range and domain of these

plots, the length of imaging is no longer an issue when comparing two embryos.

The benefit of this representation is that we can more easily spot patterns relating

to the uniformity of the embryo expansion; embryos which re-expand at a slow,

uniform rate will remain close to the y = x curve, whilst embryos with sudden

and large changes in area will produce points far from the positive diagonal.

(a) Area as a function of time. (b) Area at frame t+ 1 as a function area
at frame t.

Figure 7.6: The blastocyst area in a single embryo, plotted over time, in two
different representations. In Figure 7.6a, the area is plotted as a function of time,
in frames (where one frame is taken every 5 minutes), whilst in 7.6b, we plot the
blastocyst area in the frame t+ 1 against the blastocyst at frame t.

Using this new representation, we draw a scatter plot of all measured blastocyst

areas from all embryos in Figure 7.7, such that each point represents a single frame

from one embryo. We denote the embryos which resulted in a clinical pregnancy
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with open circles, and those which did not with a cross. It appears to be a trend

that the further away the data points are from the y = x curve, the more likely

that the embryo did not result in a clinical pregnancy.

Different colours are used to denote which embryo a point belongs to, so we

note that many of the points farthest from the y = x curve originate from the

same blastocyst. Hence, one should interpret these points as saying that for some

embryos, which did not result in a clinical pregnancy, the expansion or contraction

jump was large for many time points. These embryos may be considered to behave

more erratically.

Figure 7.7: Scatter plot of the blastocyst area, at time t + 1 against the area at
time t, for the 124 embryos, provided by LWC. Each point represents a single
frame of an embryo, with crosses marking embryos which did not result in a
clinical pregnancy, and open circles marking those which did. In general, the
points farthest from the y = x curve tend to be originate from embryos which did
not result in a clinical pregnancy. Colour denotes which point originated from
which embryo.

The correlation between large jumps in expansion, or contraction, and neg-

ative clinical outcomes suggests that the size of each change in blastocyst area

might be an indicator of poor health of the embryo; this motivates a new metric

which enumerates the magnitude of the change of the area of the blastocyst, as

follows. For an embryo whose blastocyst area expands or contracts within certain

bounds, denoted ±∆A, the graph in Figure 7.6b would be of the form

y = x± ∆A. (7.3.1)
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whilst embryos with area remaining constant will generate plots whose points all

sit in the same location on the line y = x, since the area never changes. An

embryo whose blastocyst area changes by a value greater than |∆A| at any given

time will result in a curve which moves outside of these bounds. Therefore, we can

think of ∆A as a threshold value, against which we can compare the magnitude

of the change in blastocyst area. We can plot the blastocyst area for an embryo

as in Figure 7.8, draw lines a distance ∆A above and below the line y = x, and

classify the embryos as either:

• In-Bounds (IB), if all area points sit inside the bounding lines.

• Out-of-Bounds (OB), if at least one point is outside of the bounding lines.

We give an example of the above classification method in Figure 7.8; the classi-

fication of embryos changes from IB to OB as the size of ∆A decreases. It is our

hypothesis that more erratic re-expansion is an indicator of lower probability of

clinical pregnancy, so we propose that there exists a particular choice of |∆A| for

which embryos classified as IB have a higher probability of resulting in clinical

pregnancy than those assigned the class of OB. It remains now to identify if such

a value of |∆A| exists.

Figure 7.8: The same embryo data plotted in Figure 7.6, with bounding lines
given by Equation (7.3.1). When ∆A = 1%, the embryo remains inside these
bounds since the biggest change in the blastocyst area is smaller than this value,
but for ∆A = 0.5%, a number of points (filled red circles) sit outside of the
boundary. These points would cause the embryo to be classified as ‘OB’

This metric moves beyond current morphokinetic approaches, by considering

information from every frame in the movie, rather than only comparing the start
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and end points. In order for this metric to be useful, we would need to find

some value of ∆A which maximises the partition between embryos resulting in

positive clinical pregnancy, and those which do not. If ‘cp+’ denotes the outcome

of positive clinical pregnancy, and IB the outcome that an embryo is classified as

in bounds, the conditional probability P of clinic pregnancy given IB is defined

by Bayes theorem to be

P (cp + |IB) =
P (cp + ∩IB)

P (IB)
,

which can be evaluated as the number of IB positive clinical pregnancy embryos

divided by the total number of IB embryos. When there are no embryos classified

as IB, we assign the probability of clinical pregnancy to be zero, since otherwise

the conditional probability is undefined. We now consider our embryo dataset

(124 embryos), and consider the conditional probability of clinical pregnancy

given an embryo is OB, for a range of ∆A. We plot the size of the sets IB and

OB in Figure 7.9a, and the conditional probabilities of positive clinical pregnancy

in Figure 7.9b, both against the choice of ∆A.

(a) The number of embryos classified as
IB or OB for each ∆A.

(b) The percentage of embryos that gen-
erated clinical pregnancy, for each classi-
fication IB or OB.

Figure 7.9: (7.9a) The number of embryos labelled IB or OB as a function of
∆A. (7.9b) the percentage of embryos that led to clinical pregnancy for embryos
classified as IB and OB, as a function of ∆A. When ∆A > 0.42%, IB embryos
are more likely to generate a clinical pregnancy than OB embryos, and beyond
∆A = 2%, all OB embryos had a negative clinical pregnancy outcome.

From Figure 7.9b, we highlight two key values of ∆A. The first occurs at

∆A > 0.42%, for which the likelihood of clinical pregnancy is higher for IB
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embryos than OB. This represents the smallest value of ∆A for which OB embryos

have a lower probability of positive clinical pregnancy than IB embryos. We note

that the point at which the dataset is split exactly in half, between IB to OB,

is around ∆A = 0.8%, where the clinical pregnancy rate is around 40% for OB

embryos and 50% for IB. When ∆A = 0.8%, we therefore have a new metric

which partitions the dataset of 124 embryos approximately equally, in such a way

that one partition is more likely to result in a clinical pregnancy than the other.

Whilst OB embryos appear to have a higher clinical pregnancy rate than IB for

∆A < 0.42, the sample size of IB embryos is less than 15, and thus is too small

to be certain of the validity of these results.

The second value of ∆A to note is ∆A > 2%. When ∆A > 2%, all remaining

OB embryos did not lead to clinical pregnancy. Whilst this extreme choice of

∆A could be a way of identifying embryos which are guaranteed to not result in

a clinical pregnancy, this considers a sample size of only 4 embryos classified as

OB, which is not a large enough group to allow a confident conclusion. Therefore,

the interval of interest is 0.42 < ∆A < 2%. When the largest change in area for

an embryo in this dataset between two consecutive frames is greater than ∆A in

this interval, the embryo is less likely to result in a clinical pregnancy than an

embryo which does not change by more than ∆A. We now explore the statistical

certainty of this result.

One way in which we can quantify the statistical certainty that the observed

results reflect a genuine pattern in the data, and are not a result of chance, is to

apply a χ2 test to determine whether IB embryos have a greater clinical pregnancy

rate than OB embryos, for some ∆A. The null hypothesis of this test is that the

probability of clinical pregnancy does not depend on the embryo classification, IB

or OB. That is, under the null hypothesis, we assume that the clinical pregnancy

rate for the IB group will be equal to the clinical pregnancy rate of the whole

set of 124 embryos, found by the number of clinical pregnancies over the number

of embryos i.e.53/124 = 0.4274 (see Figure 7.2). We, thus, define the null and

alternate hypothesis as follows:

• H0: The probability of clinical pregnancy for the IB group is p = 0.4274.

• H1: The probability of clinical pregnancy for the IB group is p ≠= 0.4274.

For each ∆A, we assign each embryo to one of four groups, defined by the

pair of characteristics of being either positive or negative clinical pregnancy, and

IB or OB. We can also predict the expected number of embryos in each of these

groups, by multiplying the number of IB/OB embryos by the expected success
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probability in H0. We may then apply the χ2 test, using the test statistic

χ2 =
n∑

k=1

(Ok − Ek)2

Ek

,

where Ok denotes the observed number of embryos in a group and Ek denotes

the expected number of embryos in that group.

We have one degree of freedom in this system, since there is only one in-

dependent variable. We reject H0 if the χ2 statistic exceeds the critical value

of 3.84, which corresponds to a p-value of 0.05. We plot the χ2 test statistic

in Figure 7.10, for each ∆A; this is greater than the critical value 3.84 when

0.86% < ∆A < 1.44%. This means that the probability of clinical pregnancy

given an embryo is IB is statistically significantly higher than that of the general

cohort, for these ∆A. Within this region, selecting only IB embryos improves

clinical pregnancy rates by between 0.6-3%.

Figure 7.10: The χ2 test statistic value as ∆A varies from 0 to 3.5%, compared
to the critical value 3.84 corresponding to the p-value p = 0.05. Any test statistic
value over the critical value 3.84 is considered statistically significant.

Another measurement of the difference between groups is the odds ratio,

defined as
# Positive IB × # Negative OB

# Negative IB × # Positive OB
.

The odds ratio when 0.86% < ∆A < 1.44% region varies between 2.45-12.55,

so picking IB embryos means you are 2-10 times more likely to get a clinical

pregnancy compared to choosing OB embryos.

We have, therefore, found a new metric which, in this dataset of 124 embryos,

appears to partition the cohort of embryos into two sets based on the size of

the largest change in the blastocyst area, where the two sets have statistically
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significant differences in clinical pregnancy probability. Our new metric considers

large contractions and expansions to result in an embryo being assigned the OB

label, but we wish to explore whether a combination of the two phenomena drives

the partitioning of our data, or whether either contraction or expansion dominate

the larger changes in the blastocyst area.

We, thus, plot histograms in Figure 7.11 that show the distribution of changes

in blastocyst area in the 124 embryos, separately for embryos which resulted in

clinical pregnancy and those which did not. Embryos which result in negative

clinical pregnancy are skewed more towards negative changes in area than positive

outcome embryos, with a heavy tail that suggests larger contraction predicts

negative outcome. This suggests that it is primarily contraction which drives

the classification of an embryo as OB. However, we also note that the range of

blastocyst area change for positive outcome embryos is contained within the range

observed for negative outcome embryos, suggesting that exceeding some upper

threshold on expansion could still be indicative of negative outcome. In this

case, it may be that some asymmetric threshold on the acceptable contraction

and expansion rates would provide a better partition than our current symmetric

approach.

7.4 Summary and discussion

In this chapter, we analysed time-lapse image data of post-thaw expanding em-

bryos, and identified a possible metric which might indicate the viability of

the embryo based on its re-expansion behaviour. The clinical embryo data are

provided by by the London Women’s Clinic, and are movies and additional data

for human embryos thawed and used in Frozen Embryo Transfers (FET). This

metric allows us to correlate morphokinetic parameters with clinical outcome, in

a more complete manner than in previous studies.

First; we implemented a neural network to determine the blastocyst area in

each time frame of the movies through semantic segmentation, which allowed

us to quickly extract key morphokinetic parameters. By plotting the blastocyst

area at each time point against the blastocyst area at the next time frame, we

identified that large expansion or contraction correlates with negative clinical

pregnancy outcomes. This led to a new metric which partitioned the dataset

into In-Bounds (IB) or Out-of-Bounds (OB) embryos, depending on whether the

embryo expansion or contraction was bounded above by some threshold, ∆A
(units % of the whole frame size), at each time step. When 0.86 < ∆A <

1.44%, IB embryos were statistically significantly more likely to result in a clinical

pregnancy than OB embryos. We also showed in Figure 7.11 that classification as
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Figure 7.11: Histogram exhibiting the Probability Density Function (PDF) of the
changes in the blastocyst area between each time frame in the time-lapse movies;
plotted separately for embryos with a positive and negative clinical pregnancy
outcome. Black dotted vertical lines denote the upper and lower bounds on the
blastocyst area change for embryos with a positive clinical outcome, and red
dashed lines show the upper and lower limits on the blastocyst area change for
negative clinical outcome. Embryos resulting in negative clinical pregnancy have
wider tails in PDF, and are skewed negatively compared to the embryos resulting
in positive clinical pregnancy.

OB was predominantly driven by the observation of large contractions, although

exceptionally large expansions also appeared to indicate negative outcome.

The metric identified here extends the existing approaches to using morphokin-

etic parameters in post-thaw embryos, by considering measurements of the em-

bryo at each individual time points during expansion, rather than waiting for

expansion to conclude [69, 249, 252, 253], or considering only the change between

the beginning and end of expansion [78, 247, 250, 255]. Our approach comple-

ments existing work which studies the relationship between contraction during

post-thaw expansion and clinical outcome [247, 250, 253, 254], since our metric

is mostly based on identifying contraction, as proven above in Figure 7.11.

Whilst [253] explored the frequency of contraction, our approach is more sim-

ilar to that of [254], which correlated the size of contraction with clinical outcome

in samples of 30 mouse blastocysts. Although our study uses a much larger sample

size than [254], our results agree with this work, by suggesting that there is some

limit in the size of contraction, above which negative clinical outcome is more

likely. Our results are more directly relevant to the clinic, since we use human

embryo images instead of mouse images, and a larger sample size. Additionally,
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we considered a threshold not only on contraction, but also expansion, such that

our study captures more anomalous behaviour in the blastocyst re-expansion.

Although our work suggests that the proposed metric for classifying embryos

could lead to increased clinical pregnancy rates, we have been careful to identify

that without some biological explanation for how absolute blastocyst area change

correlates with embryo health, this metric is not immediately clinically useable.

For example, contraction frequency has been theorised to relate to the health

of the embryo through the physiology of the trophectoderm, with less dense cell

arrangement resulting in fewer ion channels that drive osmotic expansion of the

blastocoel [247]. The link between significant changes to the cell volume during

re-expansion, and lower rates of clinical pregnancy, could be similarly related to

the function of the ion channels. Re-expansion is the result of the movement

of water into the cell, which can be accelerated though the intake of sodium

ions. This is an active process, demanding the use of ATP, which could suggest

that embryos with well-regulated re-expansion have larger ATP reserves than

embryos which collapse, or re-expand too quickly. If true, this would imply that

low variance in re-expansion is indicative of higher embryo viability. In order

to explain and validate our proposed metric, future work is needed to design

controlled experiments which identify biological health markers correlating with

the rate of expansion and contraction.

Another direction for future work would be to consider additional features

beyond the blastocyst area. In the movies in the considered dataset, different

embryos exhibited different behaviours that could have the potential to discern

between them, based on health. For example, some embryos demonstrated cell

fragmentation, which has been identified as a possible sign of negative outcome

[393]. Our approach focussed on only one measurement, the blastocyst area,

but in reality, some combination of measurements could be better predictors of

viability.

One limitation of our work is that the accuracy with which we measure the

size of the blastocyst depends on the performance of the neural network used for

semantic segmentation. Although we demonstrated that the network achieved

over 98% accuracy during training, the labels themselves were provided by the

author, and not a trained embryologist. Lack of expertise in label definition may

limit the performance of the neural network compared to the ‘true value’, which

would affect all subsequent analysis. As such, we recommend that this study is

repeated with labelling by an embryologist, and with a larger annotated training

set, in order to increase our confidence in the results.

Another limitation is that, as a retrospective study, our results suffer from sur-

vivorship bias, defined to be error produced by focussing on data from subjects
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which have already satisfied some selection criteria, whilst ignoring those which

did not [394]. We only have here the data from embryos which have been used in

FET cycles; we do not know how well the alternative embryos might have per-

formed. This means that even if our metric does have some biological motivation,

we cannot predict how much benefit its implementation would have in the clinic.

For example, suppose maternal genetics are the root cause of excessively large

contraction or expansion, and therefore identifying the embryo as a poor candid-

ate. Then it is possible that every embryo available in the cohort would have

the same OB classification; in this scenario, classification has no benefit, because

this new information cannot motivate improved embryo selection. Survivorship

bias is a common problem in retrospective studies, and is mitigated only through

control studies. The requirement that new morphokinetic parameters be subject

to control studies is highlighted in [199], who observe that the many seemingly

useful morphokinetic parameters which are identified in a retrospective study

subsequently fail to correlate with clinical outcome in other datasets.

Even if we can find some biological explanation for the results observed in this

work, and can prove through controlled studies that the selection criteria would

have some benefit in clinical pregnancy rates, the observed benefit of using our

metric in FET needs to be much higher than in fresh cycles to justify its use. In

fresh cycles, we have some cohort of embryos or oocytes to choose from, and any

unused embryos can be vitrified for use in subsequent cycles, if needed. Hence, any

improvement in clinical pregnancy rate gained purely from optimised selection,

regardless of magnitude, is worth implementing in the clinic, since selection has no

disadvantages. In FETs, however, we only thaw one embryo at a time, and have

to make the decision to either use the embryo, or thaw another and discard the

current candidate. Making this decision is difficult for the embryologist; consider

the scenario in which an embryo is thawed, and given a ‘bad’ classification that

predicts a low probability of success compared to a ‘good’ embryo. The decision

to choose another embryo is motivated by the probability that the next embryo

might have a ‘good’ classification, the size of the potential increase in clinical

pregnancy rate which a ‘good’ embryo could provide, and the number of embryos

a patient has available.

Furthermore, the opinion of the patient is a vital consideration in this de-

cision. Choosing to discard embryos is an emotionally challenging decision for

patients [395, 396], so some patients may prefer to use an embryo with a slightly

lower success rate, rather than destroy an embryo in the hope of improving their

likelihood of getting pregnant. To provide the best outcome for patients in terms

of maximising their chances of getting pregnant whilst also allowing them to re-

tain autonomy in the decision making process, there must be some overwhelming
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advantage to moving on to the next candidate in order to justify this decision.

This typically means that there must be evidence that the current embryo is

guaranteed to not result in pregnancy. As such, selection criteria that result in

a raised probability of success may be less useful in FET than criteria which

identify only a few embryos with exceptionally poor prospects.

In addition to identifying a range of blastocyst area changes for which the suc-

cess rate for IB embryos was elevated over OB embryos, we also identified that

for above an area change threshold of 2% of the frame size, all OB embryos res-

ulted in a negative clinical pregnancy. We only had four embryos in this sample,

which is insufficient for statistical certainty in our observation, but this type of

exclusion criteria would have much more power than cohort-selection criteria in a

FET setting. Identifying and discarding embryos which are almost certain to fail

will improve clinical pregnancy rates, although by very small amounts. However,

if multiple exclusion criteria can be identified, the sum of these marginal gains

could be clinically significant. As such, we propose that future research into the

morphokinetics of post-thaw embryos should focus on identifying these incredibly

poor embryos with very low success rates.

Despite the outlined flaws and limitations of this work, the results presented

here show that there is promise in morphokinetic analysis of time-lapse images

of post-thaw embryo re-expansion. Time-lapse incubators have offered clinics a

wealth of new imaging data, which may offer new insight into embryo health.

Morphokinetics are a non-invasive tool which have the potential to improve se-

lection processes and, hence, clinical pregnancy rates, at no additional cost to

clinics already using time-lapse incubators. Furthermore, automated image ana-

lysis software, if designed in conjunction with embryologists, can allow advanced

analysis techniques to be easily incorporated into clinical protocol, with immedi-

ate benefit to patients. Whilst we do not claim to have ‘solved’ post-thaw embryo

health assessment, our results show promise in the 124 embryos studied, and we

encourage further investigation into using measurements of re-expansion to assess

the viability of embryos.
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Chapter 8

Summary, discussion and future
work

IVF, as a treatment for infertility, has revolutionised assisted reproductive tech-

nologies (ART) [5, 15, 16]. Development of cryopreservation technology has fur-

ther advanced the use of IVF, offering more control over family planning [37,

38], protecting against fertility threats such as cancer treatment [23], and pre-

serving leftover embryos from previous IVF cycles [32, 33]. The booming fertility

industry has evolved to meet the increasing demand for IVF [29] and improve

treatment standards, but there are still several challenges to overcome. The IVF

success rate (# of live births per treatment cycle), summarised in Table 1.1,

remains low, at only 19% world-wide [7, 83, 85–87]. Whilst success rates have

improved since the 1980s, when IVF first became available, they have stagnated

in recent years [79]. The high cost of IVF is also a barrier for many patients

who have to seek treatment privately [89], when they are not eligible for state-

funded treatment, or are faced with long waiting lists [92]. Improving IVF success

rates would benefit patients, clinics and society at large. Mathematics can play

a central role in tackling important IVF challenges [101], through mathematical

modelling, data science and the use of machine learning. In this thesis, we have

used a combination of mathematical methodologies to tackle some of these IVF

challenges, in collaboration with the London Women’s Clinic (LWC) [10], as well

as experimental biologists and imaging specialists, respectively, from the Schools

of Biosciences and Physics and Astronomy, Cardiff University. In particular, we

focus on challenges related to non-invasive oocyte assessment using time-lapse

microscopy, and cryopreservation of oocytes and embryos. Below, we summarise

the main results and conclusions obtained in this thesis and outline future work

directions.

In the Introduction (Section 1.2), we described a number of important math-

ematical challenges faced in the IVF clinic. In particular, we highlighted that

identifying which oocytes are most likely to develop into healthy embryos is a

232



key consideration for improving IVF success rates. Current oocyte assessment

methods mostly focus on identifying abnormalities in the oocyte morphology

which may be indicative of poor health [109, 119, 122], but these methods re-

main unreliable, as many seemingly normal oocytes do not result in a healthy

pregnancy [109, 122]. In Section 1.2.2.1, we discussed how measurements of cyto-

plasmic movement, extracted from time-lapse imaging of oocytes, may predict

oocyte health. Of the available image analysis techniques, summarised in Section

2.1.2, we chose to investigate Differential Dynamic Microscopy (DDM) as a an

oocyte health assessment technique. Specifically, we use DDM to describe the

randomly distributed, spatially incoherent advection-diffusion behaviours which

drive cytoplasmic movement (see Figure 1.6).

In Section 2.2, we first provided an in-depth review of the theory of DDM;

this is, to our knowledge, the most comprehensive overview of DDM to date. We

consider this a very useful contribution to the field given the often sparse details

provided in previous literature [164, 266, 267]; we hope that this will make DDM

more accessible to other researchers in the various fields in which it has been

applied, including soft matter [397], chemical physics [311] and mathematical

biology [142, 163, 270]. In this review, we examined the numerous assumptions

necessary for DDM, and identified a set of practical considerations that can im-

prove the algorithm’s performance with respect to accuracy and computational

workload. These considerations can be applied to a large variety of datasets, both

biological and inorganic.

In Section 2.3, we applied DDM analysis to a sample mouse oocyte dataset

(provided by the Swann lab, Cardiff University), and drew several conclusions

about the potential use of DDM in oocyte assessment in IVF. First, we demon-

strated in Section 2.3.1 that cytoplasmic movements in FCCP-poisoned oocytes

could be described using the intermediate scattering function (ISF, see Equation

(2.2.15)) for Brownian motion, allowing us to extract a diffusion coefficient for

each oocyte which is characteristic of the distribution of the speed of its cytoplas-

mic movement. This demonstrated that DDM can be used to analyse time-lapse

microscopy of oocyte data. However, we also identified several challenges faced

when applying DDM to oocyte data. Firstly, we need to derive the ISF describing

cytoplasmic movement in healthy oocytes. In Sections 2.3.1-2.3.3, we show that

the two ISF models available, namely Brownian motion (Equation (2.2.22)) and

an undirected advection-diffusion motion (Equation (2.2.24)), fail to describe the

cytoplasmic movement in healthy oocytes. Thus, even though the DDM matrix

may contain information about the health of the oocytes, we currently lack a suit-

able model to extract this information. Despite this limitation, when applying

the ‘incorrect’ Brownian model to healthy oocytes as well as to poisoned ones,
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we were able to assign a diffusion coefficient D to each oocyte, and show that D

decreases following poisoning, as expected (see Figure 2.16). This demonstrates

that DDM has the potential to inform on underlying oocyte health, but we iden-

tified three limitations which prevent us from forming any statistically significant

inference of oocyte health using DDM: (i) the lack of model for the ISF means we

cannot guarantee our fitted parameters correspond to the observable cytoplas-

mic movements, (ii) with weak parameter fitting approaches, we cannot validate

whether our fitted movement parameters match the ‘true’ value for each oocyte,

and (iii) the DDM assumption that there are no boundary effects (Section 2.2.8.4)

requires large amounts of image data to be discarded. These three challenges may

be found in other image datasets, and are therefore are not limited to our applic-

ation of DDM to oocyte images. There is, hence, wider value in resolving these

challenges. Identifying methods to overcome these limitations forms the work in

Chapters 3 and 4.

There is limited image data to analyse when tackling these limitations; there-

fore, in Chapter 3, we introduced synthetic data as an alternative. We, first,

reviewed and improved current synthetic data practice in the context of DDM.

Whilst Equation (3.1.2) provides the commonly accepted approach to generat-

ing such data, it introduces several parameters for which there is little guidance

to govern their selection. We, hence, developed new guidelines which optimise

the generation of synthetic images for use in DDM, through a mixture of heur-

istic arguments and simulated experiments. These simulations were constructed

by creating particle trajectories, which are converted into images as per Equa-

tion (3.1.2). In particular, we demonstrated the existence of an upper and lower

bound on the term controlling the width of each particle, 0.6 < σ < 5 pixels

(see Figures 3.2 and 3.4); this was numerically validated in Figures 3.3 and 3.5.

Additionally, we studied the importance of the relationship between the number

of particles, Np, and the number of pairs of image differences, M . For a fixed

value of M = 500, we identified a minimum required particle number, Nt ≈ 150,

that guarantees a sufficient statistical sample of the particle ensemble. This value

of M was chosen to limit the computational cost of the generated simulations,

but it is highly likely that such a choice is not optimal. For larger values of M ,

fewer particles will be required, and conversely, more particles may be needed for

smaller values of M .

Together, the guidelines we proposed ensure the validity of our subsequent

analysis of synthetic data. Further investigation of the relationship between ima-

ging parameters, such as Np and M , and DDM performance may be an important

step towards defining conditions and tests to ensure the appropriate use of DDM

on real image datasets. Given a set of biological time-lapse images, we can always
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apply DDM to extract some set of parameters. When images are ‘poorly condi-

tioned’, such as when the particle number is excessively high, or too few images

are contained within the movie, these parameters will have no physical meaning.

As such, it is critical in future work to develop tests which can be applied to new

datasets, to indicate whether they are suitable for DDM.

In Chapter 4, using the simulation methodology and parameters derived in

Chapter 3, we tackled limitations and challenges faced when applying DDM to

oocyte image data, such as the bright-field oocyte data obtained in the Swann

lab. First, in Section 4.2 we introduced a new methodology for modelling bound-

ary effects, through numerically approximating the ISF, which only requires to

describe the behaviour of a single particle in the system. This is, thus, much

less restrictive than current DDM analysis, which requires us to also analytically

express the average behaviour of the ensemble. Through the ‘toy’ problem of

Brownian motion confined to a circular domain with reflective boundaries, we

demonstrated in Section 4.2 that our new method yielded improved accuracy,

compared to the existing alternative approach of cropping the image to subdo-

mains away from the boundary, as seen in other works [142, 280, 302] (Figures

4.4 and 4.5). This work, aside to the benefit of enabling the inclusion of bound-

aries in images, offers a new mechanism for the generation of the ISF for datasets

where an analytic expression is challenging or impossible, which is most often the

case.

Despite the aforementioned new methodology we developed for numerically

constructing the ISF, which has a clear advantage over current DDM approaches,

we demonstrated in Section 4.3 that we are still limited by flawed parameter fit-

ting approaches. We, thus, created a virtual experiment with a synthetic directed

advection-diffusion problem (with velocity v, assumed constant) and highlighted

the inadequacy of the current fitting approach taken in DDM. We showed in

Figure 4.9 that the accuracy with which we approximate the diffusion coefficient

and velocity terms depends on the non-dimensional Péclet number. The Péclet

number, which is the ratio of the velocity magnitude |v| to the diffusion coeffi-

cient D, is particularly important in the context of oocyte assessment, because it

describes the relative magnitudes of the key driving forces in cytoplasmic move-

ment, namely active diffusion and cytoplasmic streaming. Our hypothesis is that

oocyte quality determines the rate of cytoplasmic movement, which may imply

that oocytes of different quality have different Péclet numbers. If Péclet num-

ber correlates with both the accuracy of DDM analysis, and the quality of the

oocyte, then comparison of DDM-derived parameters between oocytes becomes

unreliable.
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In Section 4.4, to overcome the poor performance of current fitting algorithms

in DDM, we developed a new methodology for fitting parameters from image data,

based on machine learning. We introduce a pipeline (Figure 4.13) which uses a

neural network (NN) to fit parameters from DDM matrices. By careful precon-

ditioning of the DDM matrix, we allow the NN to be trained on purely synthetic

image data. The algorithm performs well on real image data, as evidenced by ap-

plication to time-series images of colloidal dispersions supplied by the Swann lab.

We have successfully approximated the diffusion coefficients characterising these

colloidal dispersions; these agreed with the Stokes-Einstein relation [299], and

achieved similar accuracy to existing fitting approaches. Although the accuracy

of our proposed pipeline did not surpass current approaches, we propose that the

benefit of our methodology is that it can be generalised to other forms of motion

more easily than current DDM fitting. Given a set of rules which determine the

trajectory of each particle, we can train the NN to fit key movement parameters

without needing to determine the ISF.

The proposed machine learning pipeline is an exciting first step towards ap-

plying DDM analysis in non-invasive oocyte assessment, although there is still a

great deal of work to be done. In order to accurately generate the synthetic data

to train the NN, we require live imaging experiments to inform our understand-

ing of oocyte cytoplasmic movement. The cost of generating such data, as well

as the ethical approvals required, hinder its production. Additionally, the NN

we developed is basic; whilst it has proved sufficient for approximating diffusion

coefficients in colloidal dispersions, more complex forms of particle movement

will likely require more advanced architecture. An avenue for future work is to

explore different types of NN, as well as optimising NN meta-parameters such

as the number of, and size of, layers, to increase fitting accuracy and ensure the

proposed pipeline can be applied to different image datasets.

Our final contribution to DDM, in Chapter 5, involves a previously unex-

plored interaction with phase-contrast imaging. Despite previous implementa-

tion of DDM in differential interference contrast (DIC) images, we observe that

image shadowing, a known feature of phase contrast images [268], induces an

artificial anisotropic deformation of the DDM tensor, which corresponds to a pre-

viously unknown effect on DDM analysis. In the context of oocyte assessment,

this anisotropy is important to consider since a popular bench-top incubator in

the IVF clinic, the Embryoscope®, uses phase contrast microscopy [333]. In

any imaged dataset, assuming the observed motion is isotropic, we derive an

expression in Equation (5.2.21) which interprets this artificial anisotropy as a

frequency-dependent scaling, and conclude that parameter fitting is invariant un-

der phase-contrast shadowing. Critically, this means that DDM can be applied
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in phase-contrast images of isotropic movement, without any consideration for

the shadowing effect. We extended this analysis to a directed advection-diffusion

process, as a specific form of anisotropic motion. For this problem, we describe

the shape of the DDM matrix in Equation (5.3.14), showing that the induced ar-

tificial anisotropy cannot be expressed by a scaling term as in the isotropic case.

This means that in order to fit the velocity magnitude and diffusion coefficient

from the DDM matrix, an adapted ISF must be determined, which is not an easy

task.

Seeking an adapted ISF to tackle phase contrast images is not ideal, since

it can be difficult to describe analytically. In the advection-diffusion problem, a

‘natural’ anisotropy problem which approximates combined active diffusion and

cytoplasmic streaming in the oocyte [147, 154], the adapted ISF also contains a

number of non-linear dependencies on velocity, the shear distance and the angle

between the velocity field and shear. These non-linear dependencies result in less

stable parameter fitting (see Figure 5.13). In Section 5.3.2, we explored whether

accurate parameter fitting can be undertaken without adapting the ISF, as in

the isotropic case. We identified a condition for this to be true in Equation

(5.3.19), namely that the radial average of the product of the velocity and shear

correlation functions is approximately equal to the product of the radial average

of each. This assumption implies the shear distance in DIC is much smaller than

the displacement observed in the images, which is realistic. This suggests that

we may be able to ignore shadowing in DIC imaging.

However, we advise caution, since in Section 5.4, we show that failure to

use the adapted ISF when the small-shear approximation does not hold causes

parameter fitting algorithms to converge on incorrect estimates of the velocity

(see Figure 5.18). Furthermore, we show that for some combinations of velocity

and shear, we can predict how the magnitude of this error (see Figure 5.19). With

more analysis, we might be able to propose post-processing steps which restore

the correct estimate of the velocity, but for now, we advise that the adapted form

of the ISF is used in anisotropic motion to prevent unexpected fitting error.

Our work is important in clinical applications, since we have shown, for an-

isotropic motions such as cytoplasmic streaming, how DDM analysis must be

adapted to consider the shadowing effect and obtain more accurate estimates of

the streaming velocity. Important future work must be conducted to further ex-

plore the interplay between anisotropic motion and phase-contrast shadowing in

other behaviours than the advection-diffusion problem we consider.

The second part of this thesis, Chapters 6-7, focuses on challenges in cryo-

preservation and thawing, directly addressing questions posed to us by LWC.

In Chapter 6, we developed a new computational thermal model of the Open
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Cryotop®device in COMSOL Multiphysics, and determined the temperatures

and cooling rates during oocyte or embryo freezing. This allowed us to virtually

experiment with different numbers and arrangements of embryos or oocytes on a

single device. Comparing the derived cooling rates against a ‘Worst Case’ viable

benchmark (Figure 6.13), we concluded that the cooling rates are approximately

equal in all considered arrangements. Our model could be easily adapted to other

cryopreservation devices, increasing the value of the proposed framework across

the wider IVF community. This work has direct clinical application, as it provides

confidence and time savings for embryologists, who can choose the number and

any arrangement of oocytes or embryos within the limits of protocol, without

risking cryogenic damage.

Our computational model adopts similar assumptions with other modelling

of cryopreservation and thawing processes in IVF [240, 242, 244, 245]. However,

the model can be improved by relaxing some of these assumptions. In particular,

we considered liquid nitrogen to be a stationary, isothermal medium, as in other

works [240, 242], whereas it is an actively boiling liquid [357]. Another assump-

tion which could be relaxed is that there is no moving boundary which models

phase change from the liquid to the solid state of the cryoprotectant solution.

Whilst relaxing this assumption would make our model more realistic, we noted

that previous models making the same assumption [240, 242, 244, 245] demon-

strated cooling rates which agree with experimental results [229, 246]. This is

likely a result of the very small volume device, oocyte/embryo and CPA droplet,

which results in very fast cooling and, therefore, a very fast moving boundary.

The cooling rates predicted by our model would therefore be likely to remain

unchanged given the inclusion of a moving boundary problem.

In Chapter 7, we introduced a new metric for non-invasive health assessment

of embryos, using time-lapse images of 124 cryopreserved embryos re-expanding

after being thawed. The challenge posed by LWC was to determine whether the

rate of re-expansion of thawing embryos can be used to predict clinical pregnancy.

LWC provided us with a dataset describing the outcome of 147 Frozen Embryo

Transfers (FET), in addition to time-lapse imaging of the re-expansion of each

embryo following warming. Excluding 23 embryos from the study due to missing

data, or lack of survival during cryopreservation, 67 (54.0%) registered a positive

pregnancy test, 53 (42.7%) registered a positive clinical pregnancy, and 37 (29.8%)

resulted in a live birth (see Figure 7.2). We applied a machine learning semantic

segmentation approach to the time-lapse images provided by LWC, to measure the

area of the expanding cell mass in the embryo at each time step. We identified that

embryos with non-linear re-expansion patterns were less likely to result in clinical

pregnancy than embryos with linear re-expansion (Figure 7.7). In Figure 7.9, we
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determined a threshold on the absolute area change, which identifies a subset

of 57 out of 124 embryos with lower clinical pregnancy rates, at a statistically

significant level (p <0.05). Based on LWC dataset, this threshold could increase

clinical pregnancy rates by up to 3% by identifying poor quality embryos, which

could be replaced by a second, more viable candidate from the pool of vitrified

embryos.

Whilst the latter threshold appears promising, it has been previously repor-

ted in [199] that morphokinetic parameters identified in one dataset frequently

fail to yield results when applied to another. As such, a repeat study is needed,

with the sole intention of investigating and validating this hypothesis; any new

morphokinetic parameter should be tested with randomised controlled trials be-

fore being used in the clinic. Additionally, it is important to investigate the cause

of the relationship between expansion rate and the underlying embryo health. We

identified (Figure 7.11) that the majority of large area changes observed in em-

bryos which did not lead to clinical pregnancy were due to sudden contractions,

which have already been considered as indicators of poor embryo quality [247,

250]. However, it is not known whether contraction is the cause, caused by, or

even related to embryo quality [72, 253, 254].

The work in this thesis is an exciting step forward in using mathematics to

tackle important challenges in IVF, in the non-invasive assessment of oocytes

using advanced image processing algorithms, in optimisation of cryopreserva-

tion protocols, and in thawed embryo selection during Frozen Embryo Trans-

fers. The implications of our results range in their applicability and scope; our

thermal modelling work has direct clinical applications, allowing embryologists

to save time and be more confident as cooling rates are approximately constant

as the number and arrangement of oocytes or embryos vitrified on a single Open

Cryoptop®device changes. For the wider biological imaging community, our work

on explaining the effect of phase-contrast shadowing on DDM opens the door to

applying the DDM technique in a range of new datasets. The rest of our work

provides a foundation for future development. In particular, we consider the use

of DDM as a non-invasive oocyte (and early 1-cell embryo) assessment technique

to be a highly exciting prospect; however, there are steps to take before this

work can reach the clinic. We, first, require improved models that describe the

cytoplasmic movements in oocytes, which will likely only be available through ex-

periments with tracer particles, similar to experiments in [275, 398–400]. These

experiments may act as a ‘ground truth’ against which DDM can be compared.

Secondly, potentially invasive experiments which relate cytoplasmic move-

ments to measurements of health in oocytes are required. For example, in [135],
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the relationship between cytoplasmic contractions, and the health of the cytoskel-

eton, was established by injecting the oocytes with messenger RNAs which encode

two proteins, each binding to either myosin or actin. These proteins were tagged

with Green Fluorescent Protein (GFP) or Enhanced GFP, to highlight myosin

and actin activity respectively. Spikes in the cytoplasm speed could therefore be

correlated with spikes in fluorescence, which in turn indicate enhanced actin or

myosin activity. Hence, invasive experiments provided data which could bridge

the gap between a clinically safe measurement, and key biological measurements

which are indicative of embryo viability, but not clinically accessible through dir-

ect measurement. Currently, similar data which may correlate output statistics

from DDM to oocyte viability are lacking. Pairing the machine learning pipeline

outlined in Figure 4.13 (Section 4.4) with such oocyte data is a vital step towards

employing DDM as a predictive tool in the IVF clinic.

Whilst improving oocyte and embryo selection has significant potential to

improve IVF success rates, there is almost certainly no ‘silver bullet’ that will

guarantee the desired outcome of one live birth per treatment. IVF is a complex,

multistage process [64], with clinical outcomes being the product of a plethora of

variables including patient age [8], environmental influence [263], clinical protocol

[401], oocyte quality [132] and more. The fertility community has made great

strides to identify the areas of IVF which need the most improvement [50, 100,

101], but we echo ESHRE in that ‘interdisciplinary collaborations involving the

use of mathematics are bringing innovation to reproductive medicine’.

A recent review [402] discussed fields where the greatest open questions in

mathematical biology can be found, identifying parameter sensitivity, model selec-

tion and development, the consideration of multi-scale, hierarchical, and spatio-

temporal models, stochastic non-linear dynamics and hybrid, data-driven mod-

elling. All these challenges and methodologies have featured in this thesis, and

various avenues for future work have been outlined.

A critical direction for future work is the development of machine learning

and artificial intelligence (AI) approaches in the IVF clinic. IVF treatment is

accompanied by a vast amount of data, including patient age and BMI [403],

environmental factors such as patient occupation [261], morphokinetics of the

embryo [57, 404] and more. Understanding how these many variables determine

IVF outcomes is critical to improving success rates, and is a challenge well suited

to AI [405]. Integrating AI into IVF is a recent, but highly active, research

field [395, 405]. However, whilst AI is being investigated as a predictive tool in

IVF treatments, and has begun to see some clinical applications [406, 407], AI

integration into most clinics is still limited. This is partly attributed to poorly

conditioned training datasets which contain bias, noise and imbalanced classes,
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in addition to a lack of standardised approaches to choosing the optimal network

architecture [405]. With the help of AI experts, these problems can be mitigated,

and AI has the potential to become a part of regular day-to-day operation for

IVF clinics.

However, before the mathematical challenges of AI can be tackled in the fer-

tility industry, the foundations of good working principles of AI must first be

established. Healthcare is highly regulated, which means any technology adopted

for healthcare applications must also be subjected to stringent regulatory require-

ments. The importance of regulatory oversight in AI healthcare applications is

driven by a number safety and ethical concerns, as well as privacy concerns sur-

rounding training data, the possibility of bias, and a lack of transparency in its

application [408]. The emergence of Large Language Models (LLMs) such as

ChatGPT and Bard, which are vastly complex and have frequently been mis-

used or misunderstood, have accelerated these concerns [409]. Regulation of AI

is not a concern unique to the healthcare setting, so lessons can be learned from

similarly heavily regulated industries, such as banking and the financial sector

[410]. For the fertility industry in particular, however, the setting of policy and

guidelines that ensure safe and effective application of AI in healthcare settings

is a task demanding multidisciplinary contribution, from clinicians, government

regulators, academics and AI industrial experts.

Our primary recommendation for enhancing the use of mathematics in fertility

treatments is therefore to pursue interdisciplinary collaborations, like [411], and

the project this thesis forms a part of. With the combined efforts of modellers,

statisticians, operations researchers, imaging specialists, AI experts, experimental

biologists and clinical embryologists, the many barriers to improving success rates

in IVF may be overcome.
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Table of Notation

Notation Meaning
r Cartesian coordinates (x, y), units µm.
t Time, units s.
C Local concentration of some chemical, units mol/µm3.

c(r, z, t) Local particle density.
D Diffusion coefficient, units µm2/s.
v Velocity vector field, units µm s−1.
η Dynamic viscosity, units Pa s.
p pressure, units Pa.

I(r, t) Image stack.
Np Number of particles within the imaged system.
Nt Number of images in the image stack I(r, t).
L,W Length and width of each image I(r, t), respectively.
ν Physical length of a pixel, units µm.
T The set of times corresponding to each frame in the image stack

I(r, t), such that t ∈ T .
i0 Background image brightness.

K(r − r′, z) Point Scattering Function (PSF).
⋆ Convolution operator.

G(∆r,∆t) The van Hove function.
V Volume, units µm3.
∆t The time lag between two frames of the image stack, I(r, t).

∆tmin The time lag between two consecutive frames of the image stack,
I(r, t).

q The spatial frequency vector in two dimensions, with length q
µm−1 and angle θ.

D(q,∆t) The Differential Dynamic Microscopy (DDM) tensor evaluated
at the spatial frequency vector q and time lag ∆t.

Γ The circular contour of length q with origin (0, 0).
DR(q,∆t) The DDM Matrix, equal to the radial average of D(q,∆t) over

the circular contour Γ.
f(q,∆t) The Intermediate Scattering Function (ISF) at spatial frequency

q and time lag ∆t, equal to the real part of the Fourier transform
of the van Hove function.

W (x, y) The two-dimensional Blackman filter.
M The number of image pairs sampled during DDM.
Ls Length of the simulation window in pixels, where Ls ≤ L.
α Motility fraction.
a Particle brightness.
σ The standard deviation of the Gaussian beam formed by each

simulated particle in the corresponding synthetic image, units
pixels.
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Notation Meaning
P(D,∆t)|q Polynomial interpolation of the ISF, f(q,∆t), for a fixed spatial

frequency and variable diffusion coefficient.
KB The Boltzmann constant, units J/K.

X(r, t) The phase image formed by one of the pairs of beams from a DIC
image stack.

DI(q,∆t) DDM tensor as defined above, where the subscript I specifies the
image stack on which the DDM tensor is evaluated.

DI,R(q,∆t) DDM matrix as defined above, where the subscript I specifies
the image stack on which the DDM tensor is evaluated, and the
R denotes the application of the radial average.

Jn(x) The Bessel function of order n of the first kind.
E(q) The residual fitting error between the DDM matrix and the model

fitting equation.
γ The ratio of the fitted velocity vout to the input velocity vin.
jn,k The kth positive zero of the Bessel function of order n of the first

kind, Jn(x).
Ln The domain occupied by liquid nitrogen.
F The domain occupied by the cryoprotectant solution.
S The domain occupied by the embryo or oocyte.

P The domain occupied by the Cryotop®plastic plate.
u(x, y, z, t) The temperature at Cartesian position (x, y, z) and time t, units

K.
c(u) Specific heat capacity at temperature u, units J/kg K.
k(u) Thermal conductivity at temperature u, units W/mK.
ρ(u) Density at temperature u, units kg/m3.
h The heat transfer coefficient, units W/m2K.

κA,B The tension force between the two domains A and B, units N.
ℓ The latent heat of freezing, units J/kg.
tD The characteristic timescale of diffusion, units s.

∆A The change in area of the cell mass in an image of an embryo
re-expanding after thawing from cryopreservation, units pixels2.

χ2 The χ2 test statistic.
IB In Bounds, a binary classifier embryo denoting that the frame-

wise absolute change in cell mass area, |∆A|, is below a fixed
tolerance.

IB Out of Bounds, a binary classifier embryo denoting that the
frame-wise absolute change in cell mass area, |∆A|, is above a
fixed tolerance.
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Appendix A

Experimental details regarding
mouse oocyte collection

This appendix provides detail on the setup of the experiments used to gather

oocyte data for this body of work. This appendix applies to the following datasets:

• Bright-field images of mouse oocytes introduced in Section 2.1.1

• DIC images of mouse oocytes introduced in Section 5.1.

Eight-week old CD1 mice were intraperitoneally injected with 5IU pregnant

mare’s serum gonadotrophin (PMSG) to induce ovarian follicle development.

They were again injected with 10IU human chorionic gonadotrophin (hCG) ap-

proximately 48hrs later to induce ovulation. Ovulated mature (MII) eggs were

collected from oviducts approximately 15hrs later. All animals were handled ac-

cording to UK Home Office regulations, and procedures were carried out under a

UK Home Office Project License, with the approval of Cardiff University Animal

Ethics Committee. Live imaging experiments were carried out with mature eggs

cultured in HKSOM, as described previously [412].
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Appendix B

Single Particle Tracking &
Particle Image Velocimetry

B.1 Single Particle Tracking

When dealing with a finite number of distinct particles, the exact trajectory of

each particle over time is the most information we can possibly have. This is the

idea behind the first method of image analysis, Single Particle Tracking (SPT),

which is reviewed in [274].

Consider a finite collection of N particles, depicted in an image stack I(r, t)

where r denotes the Cartesian coordinates r = (x, y). We denote by rn(t) the

position of the centroid of particle n ∈ {1, 2, ..., N} at time t. The first step of

SPT is particle localisation, the process of identifying the set of particle centroids

for each frame. For optical microscopes, single point objects have the appearance

of concentric rings with decaying intensity moving away from the center. The

middle ring is known as an Airy disc, which for a particle located at (x0, y0), can

be approximated by [274]

I(r, t) ≈ i0e
−(x−x0)

2

2σ2 e
−(y−y0)

2

2σ2 ,

where i0 is the central intensity and σ the standard deviation of the intensity

profile. Fitting this profile to the image can determine the centroid of the particle

below even the optical resolution (sub-pixel), or averaging methods can be used

to locate the centroid [277]. The next step is particle linking, whereby trajectories

are constructed by determining which centroids over time originate from the same

particle.

Whilst knowing the trajectory of each particle allows for in depth statistical

analysis, there are a number of physical and experimental constraints that of-

ten limit the use of SPT, at both the localisation and linking stages. Stochastic

variance in the illumination and unavoidable detection and readout noise mean
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that the location of a particle is not exact, but estimated, which may affect sub-

sequent analysis [274]. More importantly, SPT encounters problems with high

particle density. In ultra low densities, particle tracking is a simple ‘connect the

dots’ exercise, but in higher densities or where each particle moves a signific-

ant distance, trajectories can overlap, precluding the possibility of incorrect or

fragmented localisations, as in Figure B.1 [274].

Figure B.1: An example of linking error in SPT, where two particles have moved
from the grey to the red location over a fixed time step. Based on only observation
of the initial and final state of the system, the trajectory of each particle is
uncertain.

Trajectory mapping in dense particle populations is essentially a combinatorial

optimisation problem [274]. A huge variety of SPT algorithms have arisen to

tackle the computational complexity of tracking and improve accuracy [413], but

in general, lack of sparsity will inhibit the ability of SPT. Additionally, SPT

requires distinct, visible particles to function. When classifying a fluid flow in

which no such particles exist, a common solution is to introduce tracer particles

such as fluorescent beads or gold nanoparticles, or through tracking genetically

modified GFP-expressing proteins [275, 398–400]. Clearly, these are invasive

interventions and are unsuitable in the clinic.

SPT has been previously successfully applied to track the movement of en-

dogenous particles in Xenopus laevis oocytes [160], since the large size of these

particles means that they are much larger than the cytoskeleton mesh, and thus

move as tracers in a fluid, as well as being visually well contrasted from the

background. Similar particles exist in mouse oocytes, which could be tracked

[161], but looking at the bright-field image in Figures 2.1, and the DIC image

in Figure 5.2, we can see that although visible particles exist, the surrounding

medium is visually messy and the particles themselves are sparsely integrated

into the cytoplasm. This means only a few tracers are considered, and much of

the cytoplasmic data, making SPT less favourable.
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B.2 Particle Image Velocimetry

The second technique we discuss is Particle Image Velocimetry (PIV), which refers

to a class of techniques for measuring local instantaneous vector velocity fields by

tracking the motion of numerous fine tracer particles [277]. First, we partition the

image domain into a grid of subdomains, Wi, known as ‘interrogation windows’.

On each window, for each pair of consecutive images I1 and I2, we estimate the

cross correlation R(s) , defined as [277]

R(s) =

∫
W1

I1(r)I2(r + s)dr.

The cross correlation can be considered equivalent to sliding I2 across I1 by a

vector s, and measuring how much overlap exists at each shift. When some local

linear flow exists with velocity v, the majority of particles will move by the same

vector ∆r = v∆t during a time lag of ∆t. Hence, a peak in the cross correlation

occurs at s = ∆r, where the most overlap occurs, allowing us to infer the local

velocity. In practice, cross correlation is calculated using Fourier transforms to

improve the speed of the algorithm.

An important subsequent step is to validate the results of interrogation, be-

cause anomalous detection can be caused either by the presence of boundaries

in the domain, or groups of particles creating a peak in the noise stronger than

that of the bulk flow [277]. Compared to SPT, PIV is more statistically averaged,

working under the assumption that particles follow local flow. This means when

particles move independently, and not under some bulk flow, the cross correlation

may not exhibit a dominant peak, resulting in anomalous local velocity classi-

fication. This means classifying diffusion using PIV can challenging in optically

dense samples [279].

There is a wealth of literature reporting the use of PIV in biological applic-

ation. PIV was used to classify spasms in mouse oocytes in relation to Ca2+

oscillations [152], which can act as a predictor of viability with respect to poten-

tial to fertilise [135]. PIV-detected flows in the cytoplasm have also been used to

reflect the architecture of the cytoskeleton, as well as changes in Kinesin activity

[150]. PIV has also served to verify numerical models of cytoplasmic streaming

in starfish oocytes [162].
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Appendix C

DDM applied to bright-field
oocyte images

In this Appendix, we display the fitting results from applying DDM ‘out of the

box’ to bright-field images of mouse oocytes, as discussed in Section 2.3. Each

oocyte is imaged before and after poisoning with FCCP, a metabolic inhibitor.

To the DDM matrices generated for each oocyte in each experimental condition,

we fit movement parameters using two different fitting functions; one assumes

a diffusive-type movement in the cytoplasm, referred to as the Brownian model

here, and the second assumes that some ballistic velocity is superimposed on the

diffusive movement of each particle in the cytoplasm, referred to as the bacterial

model here.
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(a) Egg 1 (b) Egg 2

(c) Egg 3 (d) Egg 4

(e) Egg 5 (f) Egg 6

(g) Egg 7 (h) Egg 8

(i) Egg 9 (j) Egg 10

(k) Egg 11

Figure C.1: Fitting results performing DDM analysis for brightfield imaged mouse
oocytes, under control conditions, where the Brownian fitting model is used.
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(a) Egg 1 (b) Egg 2

(c) Egg 3 (d) Egg 4

(e) Egg 5 (f) Egg 6

(g) Egg 7 (h) Egg 8

(i) Egg 9 (j) Egg 10

(k) Egg 11

Figure C.2: Fitting results performing DDM analysis for brightfield imaged mouse
oocytes, in the FCCP condition, where the Brownian fitting model is used.
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(a) Egg 1 (b) Egg 2

(c) Egg 3 (d) Egg 4

(e) Egg 5 (f) Egg 6

(g) Egg 7 (h) Egg 8

(i) Egg 9 (j) Egg 10

(k) Egg 11

Figure C.3: Fitting results performing DDM analysis for brightfield imaged mouse
oocytes, under control conditions, where the bacteria fitting model is used.
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(a) Egg 1 (b) Egg 2

(c) Egg 3 (d) Egg 4

(e) Egg 5 (f) Egg 6

(g) Egg 7 (h) Egg 8

(i) Egg 9 (j) Egg 10

(k) Egg 11

Figure C.4: Fitting results performing DDM analysis for bright-field imaged
mouse oocytes, under FCCP conditions, where the bacteria fitting model is used.
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C.1 The theory of the formation of a Differen-

tial Interference Contrast (DIC) image

This appendix gives a more thorough explanation for the underlying physics de-

scribing the formation of an image taken using DIC. The following explanation

was provided by Wolfgang Langbein, a collaborator in the School of Physics and

Astronomy, Cardiff University, as part of a submitted paper [335].

A sketch of a DIC microscope with de-Sénarmont compensation and its work-

ings is given in Figure C.5. Starting from a bright-field transmission microscope

in Köhler illumination, the illumination is linearly polarised at 45◦ + θ, and then

transmitted through a quarter-wave plate with the fast axis at 45◦, resulting in

electric field components Ex and Ey in the x and y directions, respectively, of

equal amplitude and a relative phase shift of ψ = 2θ. A Wollaston prism splits

the propagation direction of Ex and Ey in the condenser back focal plane, result-

ing in a relative displacement of the corresponding focal points at the sample by

the shear s along the x direction. The fields probe the sample properties accord-

ingly at two positions displaced by s, and acquire a spatially dependent phase

difference δ(r), with the in-plane sample position r = (x, y). After transmission

through the sample, the two fields are recombined in direction at the back focal

plane of the objective by a Wollaston prism matched to the first one (a Nomarski

prism can be used instead, which allows for the the effective recombination pos-

ition to be displaced from the prism and thus to enabling the positioning of the

prism at a accessible place in the beam path after the objective). A second polar-

iser, called analyser, orientated at −45◦, orthogonal to the first one, projects the

recombined fields along its axis to provide an intensity interference. The resulting

transmitted intensity It has a dependence on the phase shift δ(r) given by

It(r, ψ) =
Ie
2

[1 − cos (ψ − δ(r))] , (C.1.1)

with the excitation intensity Ie, the position in the sample plane r, the phase

offset ψ, and the difference δ(r) of the optical phase shift ϕ for the two beams

that pass through the sample in two adjacent points separated by the shear vector

s.

Adjusting the phase offset ψ, the contrast can be changed from a dark-field

type at ψ = 0, where the intensity is proportional to δ2(r), to a bright field

image modulated by a term linear with the phase shift, with the largest linear

range for ψ = 90◦, for a polariser angle of θ = 45◦. More details on the theory

of DIC can be found in Ref. [414] for two-dimensional samples, in Ref. [415] for

three-dimensional samples, and a fully vectorial treatment of the fields is given

in Ref. [416].
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Figure C.5: A sketch of the principle of operation of a DIC microscope with de-
Sénarmont compensation. After adjusting a transmission microscope for Köhler
illumination, a linear polariser at 45◦ + θ to the sample x (horizontal) and y (out
of plane) directions creates a linear polarisation (see electric field sketches on the
right), which is converted by a quarter wave plate to a relative phase shift of
2θ of the x and y polarised field components Ex and Ey of equal amplitude (see
sketch of temporal field oscillations on the right). A Wollaston prism splits the
two fields, creating two focal points separated by the shear s. The transmitted
fields, which experienced a relative phase shift δ(r) as function of sample position
r = (x, y), are collimated by the objective, recombined in direction by a second
Wollaston prism, and projected by the analyser of −45◦ orientation, providing
an intensity proportional to 1 − cos(ψ − δ(r)). Using ψ = 90◦, a nearly linear
dependence of the intensity on the phase shift δ(r) is obtained, leading to the
relief-type contrast.
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C.2 Approximation of the ISF for DIC images

as a weighted average of parallel and ortho-

gonal components

This appendix demonstrates that in DIC images of advection-diffusion processes,

where the displacement from the velocity is much greater than the size of the DIC

shear, the ISF outlined in Equation (5.3.15) can be bounded above and below

by the ‘extreme’ cases where Φ = 0 or Φ = π/2. Although this observation does

not feature in our analysis in this work, it is nonetheless interesting to present,

as it enhances our understanding of the behaviour of the ISF. In particular, it

allows us to demonstrate that in DIC images, the dependence of the ISF on Φ is

weak, since f(q,∆t) is bounded between two functions which converge towards

the same limit as DIC shear distance decreases.

We begin by recalling the final term in Equation (5.3.15), which was derived

from the term T4 in Equation (5.3.6). Using the non-dimensional parameter

groups

λ = qv∆t, ξ = qs, κ = q2D∆t,

we can redefine T4 by

T4(λ, ξ,Φ) =
e−κ

2

(
J0

(√
λ2 + ξ2 + 2λξ cos Φ

)
+ J0

(√
λ2 + ξ2 − 2λξ cos Φ

))
.

(C.2.1)

We are interested in the behaviour of T4 when Φ = 0 and Φ = π/2, which form

the most ‘extreme’ conditions for when the DIC shear and advection velocity are

parallel and perpendicular, respectively. When Φ = 0, Equation (C.2.1) simplifies

to

T4(λ, ξ, 0) =
eκ

2
(J0(λ+ ξ) + J0(λ− ξ)) . (C.2.2)

Similarly, when Φ = π/2

T4

(
λ, ξ,

π

2

)
= e−κJ0

(√
λ2 + ξ2

)
. (C.2.3)

Although Equations (C.2.2) and (C.2.3) describe the function T4 at the most

extreme angles, they do not give upper or lower bounds for the T4 (see Figure

5.14 when s = 5). However, we make the assumption that for DIC images,

v∆t ≫ s. Equivalently, this also means that λ ≫ ξ. We may therefore take the

Taylor expansion of T4(λ, ξ,Φ) around ξ = 0 ,

T4(λ, ξ,Φ) = e−κ

(
J0(λ) − 2 sin2(Φ)J1(λ) + λ cos2(Φ)(J0(λ) − J2(λ))

4λ
ξ2 + O(ξ4)

)
,
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which by the recurrence relation on the Bessel Functions [324],

2a

x
Ja(x) = Ja−1(x) + Ja+1(x), (C.2.4)

can be expressed as

T4(λ, ξ,Φ) = e−κ

(
J0(λ) +

J2 (λ)
(
cos2(Φ) − sin2(Φ)

)
− J0(λ)

4
ξ2 + O(ξ4)

)
.

(C.2.5)

We also take the Taylor expansion of T4(λ, ξ, 0) and T4(λ, ξ, π/2) around ξ = 0,

T4 (λ, ξ, 0) = e−κ

(
J0(λ) +

1

4
(J2(λ) − J0(λ)) ξ2 + O(ξ4)

)
, (C.2.6)

T4

(
λ, ξ,

π

2

)
= e−κ

(
J0(λ) − 1

4
(J2(λ) + J0(λ)) ξ2 + O(ξ4)

)
. (C.2.7)

Let us suppose that T4(λ, ξ, 0) and T4(λ, ξ, π/2) form a linearly independent basis,

from which we can construct f(q,∆t). Under this assumption, there exists some

scalar values α(Φ) and β(Φ) such that

T4(λ, ξ,Φ) ≈ α(Φ)T4 (λ, ξ, 0) + β(Φ)T4 (λ, ξ, 0) . (C.2.8)

Substituting (C.2.5)-(C.2.7) into (C.2.8), we aim to solve for α and β by equating

terms of matching order. The O(1) terms give us

α + β = 1,

and the O(ξ2) terms give

1

4
J0(λ)

(
α + β − 2 cos2(Φ) + 2 cos2(Φ) − 1

)
+

1

4
J2(λ)

(
α− β − sin2(Φ) + cos2(Φ)

)
= 0,

implying

α + β = 1,

α− β = cos2(Φ) − sin2(Φ).

The conditions on both the O(1) and O(ξ2) terms are satisfied by

α = cos2(Φ), β = sin2(Φ), (C.2.9)

which informs us that the linearly independent basis in Expression (C.2.8) is in

fact a weighted average of the parallel and perpendicular behaviours of T4.

The error from the approximation in Equation (C.2.8) is determined by sub-

tracting the right hand side from the left. The leading order term, which is order

O(ξ4), is equal to
1

24
e−κJ4(λ) cos2(Φ)(cos2(Φ) − 1).
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which is equal to 0 when Φ = 0 or Φ = π/2, and has an absolute upper bound

of 0.0032e−κ when Φ = π/4 and the Bessel function of fourth order attains its

maximum of 0.3102 at λ = 4.2012 [346]. The maximum value of ξ is attained at

the maximum spatial frequency, which from Equation (2.2.17) is given by

max q =
π

ν
,

where ν is the length of a pixel. Under our assumption that the DIC shear is

approximately the same size as ν, the maximal value of ξ is therefore

max ξ =
πs

ν
≈ π,

which would mean the O(ξ4) term is much smaller than 1. Hence, the Taylor

series converges. This means that, in DIC images, the ISF is sandwiched between

the extreme behaviours for when Φ = 0 and Φ = π/2. Furthermore,

lim
ξ→0

T4(λ, ξ, 0) = lim
ξ→0

T4

(
λ, ξ,

π

2

)
= J0λ.

If T4(λ, ξ,Φ) is the weighted average of both T4(λ, ξ, 0) and T4(λ, ξ, π/2), which

are pointwise convergent to J0(λ), then it can be said that

lim
ξ→0

∂T4(λ, ξ,Φ)

∂Φ
= 0,

or in other words, varying Φ has less effect on the value of the ISF as ξ approaches

zero. This means, in DIC, that fitting is insensitive to Φ.
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117. Röblitz, S., Stötzel, C., Deuflhard, P., Jones, H. M. et al. A mathemat-
ical model of the human menstrual cycle for the administration of GnRH
analogues. J. Theor. Biol. 321, 8–27 (2013).
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409. Meskó, B. & Topol, E. J. The imperative for regulatory oversight of large
language models (or generative AI) in healthcare. NPJ Digit. Med. 6 (2023).

410. Rathi, N. Our emerging regulatory approach to Big Tech and Artificial
Intelligence (ed Financial Conduct Authority) https://www.fca.org.

uk/news/speeches/our-emerging-regulatory-approach-big-tech-

and-artificial-intelligence (2023).

411. GW4. Fertility: In Vitro, in Silico, In Clinico https: //gw4 .ac. uk/

community/fertility-in-vitro-in-silico-in-clinico/ (2023).

412. Wang, Y., Pope, I., Brennan-Craddock, H., Poole, E. et al. A primary effect
of palmitic acid on mouse oocytes is the disruption of the structure of the
endoplasmic reticulum. Reproduction 163, 45–56 (2022).

413. Chenouard, N., Smal, I., de Chaumont, F., Maška, M. et al. Objective
comparison of particle tracking methods. Nat. Methods 11, 281–289 (2014).

414. Holmes, T. J. & Levy, W. J. Signal-processing characteristics of differential-
interference-contrast microscopy. Appl. Opt. 26, 3929 (1987).

415. Preza, C., Snyder, D. L. & Conchello, J.-A. Theoretical development and
experimental evaluation of imaging models for differential-interference-contrast
microscopy. J. Opt. Soc. Am. A 16, 2185–2199 (1999).

416. Munro, P. R. T. & Török, P. Vectorial, high numerical aperture study of
Nomarski’s differential interference contrast microscope. Opt. Express 13,
6833 (2005).

285

https://www.apricity.life/fertility-hub/ai-aids-fertility-apricity-fertility-predictor
https://www.apricity.life/fertility-hub/ai-aids-fertility-apricity-fertility-predictor
https://www.apricity.life/fertility-hub/ai-aids-fertility-apricity-fertility-predictor
https://www.conceivable.life/
https://www.conceivable.life/
https://www.fca.org.uk/news/speeches/our-emerging-regulatory-approach-big-tech-and-artificial-intelligence
https://www.fca.org.uk/news/speeches/our-emerging-regulatory-approach-big-tech-and-artificial-intelligence
https://www.fca.org.uk/news/speeches/our-emerging-regulatory-approach-big-tech-and-artificial-intelligence
https://gw4.ac.uk/community/fertility-in-vitro-in-silico-in-clinico/
https://gw4.ac.uk/community/fertility-in-vitro-in-silico-in-clinico/

	Introduction
	Overview of In Vitro Fertilisation (IVF)
	Cryopreservation (oocyte or embryo freezing)
	Time-lapse imaging
	The need for improving IVF

	Mathematical challenges in IVF
	Personalising controlled ovarian stimulation (COS)
	Health assessment and selection in IVF
	Oocyte assessment

	Sperm selection
	Embryo selection
	Optimal cryopreservation protocols
	Post-thaw embryo assessment
	IVF logistics, planning and optimisation

	Thesis outline

	Differential Dynamic Microscopy (DDM)
	Introduction
	Time-lapse images of mouse oocytes
	Image analysis algorithms for quantifying movement parameters
	SPT
	PIV
	DDM


	DDM Theory
	Inferring particle movement from image data
	The DDM tensor, D(q,deltat)
	The radial average of the DDM tensor
	Example: Brownian motion
	Example: Bacterial advection-diffusion
	Constructing ISFs for multiple independent processes
	Parameter fitting
	Algorithm optimisation
	Time lag sampling
	Choosing a spatial frequency interval for fitting
	Image windowing
	Assuming the absence of boundaries

	Summary of assumptions

	Preliminary exploration of DDM in oocyte data
	Brownian motion describes cytoplasmic movement in FCCP treated oocytes, but active diffusion is insufficient to describe healthy oocytes
	The bacteria model performs poorly in both control and FCCP oocytes.
	Cytoplasmic movement is anisotropic
	Diffusion coefficients fall following poisoning, but not significantly
	Identifying areas of improvement for DDM in oocyte data


	Optimal design of synthetic data in DDM
	Introduction
	Simulation construction

	Controlling a and sigma to optimise the appearance of simulated images
	Balancing the particle number, Np, and number of frames, Nt
	Summary and conclusion

	Simulation-guided approaches to Differential Dynamic Microscopy in IVF
	Introduction
	Example: Brownian motion in a square domain with reflective boundary conditions

	Simulation-determined fitting functions in DDM analysis.
	Simulations highlight poor performance of fitting algorithms when some movement sources dominate others
	Introducing a simulation-driven machine learning pipeline for parameter fitting in DDM
	Summary and Discussion

	Differential Dynamic Microscopy can be applied to Differential Interference Contrast images despite shadowing effects
	Introduction
	An analytic expression for the DDM matrix of a DIC image stack for isotropic motion
	Verifying the use of DDM in DIC through simulations and colloid images
	Validation with simulations
	Validation with experimental data

	DDM in isotropic motion can extract the direction, but not the magnitude, of the shear

	Anisotropy
	Fitting the DDM matrix to a simulated advection-diffusion process
	Approximating advection and DIC shears as separable effects

	Exploring the use of the `bright-field' ISF in DDM analysis of DIC images
	Finding parameter regions where error in the fitted velocity is predictable
	Case 1: Φ=0
	Case 2: Φ= π/2

	Estimating the error factor γ

	Discussion

	Modelling the effect of vitrification protocols on oocyte or embryo cooling rates
	Cryopreservation and vitrification protocols
	Mathematical model of the vitrification process
	Assumptions
	Liquid nitrogen is a stationary, isothermal liquid
	Samples are spheres
	Thermophysical properties and parameters
	Cryoprotectant droplets are hemispheres
	Samples have the same chemical properties as the cryoprotectant solution
	The transition from liquid to glass-like state occurs instantaneously, no moving boundary effects

	Computational modelling
	Spatial arrangements of oocytes/embryos

	Results
	Discussion

	Statistical analysis of time-lapse images of post-thaw embryos
	Introduction
	Machine-learning image segmentation
	Non-linear expansion rates predict negative clinical pregnancy
	Summary and discussion

	Summary, discussion and future work
	Experimental details regarding mouse oocyte collection
	Single Particle Tracking & Particle Image Velocimetry
	Single Particle Tracking
	Particle Image Velocimetry

	DDM applied to bright-field oocyte images
	The theory of the formation of a Differential Interference Contrast (DIC) image
	Approximation of the ISF for DIC images as a weighted average of parallel and orthogonal components

	Bibliography

