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A B S T R A C T

Machine learning methods have shown great performance in many areas, including neuroimaging data analysis.
However, model performance is only one objective in neuroimaging analysis. Gaining insight from the data
is also critical in this field, such as identifying regions where detected signals are relevant to cognitive
and diagnostic tasks. To fulfill this need, enabling the explainability of a model’s decision-making process
is critical. Predictions of complex machine learning models are notoriously difficult to explain. This limits
the use of complex models like kernel support vector machines (SVM) in neuroimaging analysis. Recently,
several permutation-based methods have been developed to explain these complex models. However, the
explanation results are affected by class-irrelevant features like suppressor variables and high background
noise variables. This problem may also happen when explaining linear models. One possible reason is that the
permutation process will produce unrealistic data instances when features are not independent, e.g. correlated.
These unrealistic data instances will influence the explanation results. In neuroimaging analysis, the activation
pattern, the estimated weight of the assumed generative model corresponding to the current classifier, is used to
deal with this problem for linear models. This method does not rely on a permutation process but rather on the
available data information. In this paper, we propose a novel method of Explanation through Activation Pattern
(EAP) to explain the SVM models with different types of kernels for neuroimaging data analysis. Our method
can generate a global feature importance score by estimating the activation pattern of kernel SVM models.
We evaluate our method against three popular methods on both simulation datasets and a publicly available
EEG/MEG dataset on visual tasks. The experimental results demonstrate that the proposed EAP method can
provide explanations with low computational cost and is less affected by class-irrelevant features than the
other three methods. In the experiment using the MEG/EEG dataset of visual tasks, the proposed EAP method
provides agreement results with the brain’s electrical activity patterns reported in the literature on the visual
tasks EEG/MEG data and is significantly faster than the other explanation methods.
1. Introduction

Modern machine learning models are capable of advance and com-
plex performance, especially with respect to prediction and classifi-
cation. However, concerns have been raised about how these models
make a decision. Complex models make predictions through a highly
nonlinear data processing process, which is not transparent, since these
models can be regarded as ‘black-box’ models. Due to this character-
istic, the use of these models is limited in some fields where model
explainability is equally essential as model performance. Neuroimage
analysis is one of these fields. In this field, machine learning models can
help to decode highly noisy signals like electroencephalogram (EEG)
and magnetoencephalography (MEG). However, gaining insight related
to the studied tasks is equally, if not more, important than model
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performance. Explaining the prediction from a model can help re-
searchers understand the mechanism of the concerned cognitive tasks,
for example, determining the brain region or specific channels of the
brain cognitive process being studied. To fulfill this need, although
nonlinear models may extract more information, linear models are
preferred (Dima, Perry, Messaritaki, Zhang, & Singh, 2018; Sharma
et al., 2022; Wang, Tian, Zhang, & Hu, 2022) due to their predictions
being relatively easier to explain.

In recent years, eXplainable Artificial Intelligence (XAI) has become
a topic of great interest with many techniques developed that can
help to explain complex models. Several attempts have been made
in the neuroimaging field (Lawhern et al., 2018; Sturm, Lapuschkin,
Samek, & Müller, 2016). Although most efforts have focused on deep
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learning models because of their promising performance in many tasks,
traditional models can also benefit from these XAI techniques. The
support vector machine (SVM) is still one of the most popular models in
neuroimaging analysis. Usually, the amount of available neuroimaging
data, for training and testing, is small. Compared with deep learning
models, these models require less data and are easy to implement.
Therefore, they are still prominently used within this field.

With respect to the need for model explanation, although non-
linear SVM models can extract more information and show better
performance, linear SVM models are preferred and wildly used in
this field (Lotte et al., 2018). One way to explain nonlinear SVM
models is to measure the feature importance within the underlying
data/model. These methods are model-agnostic XAI methods, such
as local interpretable model-agnostic explanations (LIME) (Ribeiro,
Singh, & Guestrin, 2016) and kernel Shapley additive explanations
(SHAP) (Lundberg & Lee, 2017), that can characterize feature be-
haviours by permuting feature input. While these model-agnostic ap-
proaches have shown good model explanation power for many appli-
cations, their results can be affected by class-irrelevant features, such
as suppressor variables (Krus & Wilkinson, 1986; Wilming, Budding,
Müller, & Haufe, 2022) and background information (Budding, Eitel,
Ritter, & Haufe, 2021). As their works indicated, even though class-
irrelevant features are intentionally designed in a straightforward way,
these features can still be assigned high importance scores. This can
cause misunderstandings about the features and the current classifica-
tion tasks. It is important to note that this problem may appear in both
linear and nonlinear cases. One potential reason is that the permutation
process assumes that features are independent, when some features are
not independent, the newly produced instances may fall into data space
that does not exist in the original dataset. These instances affect the
calculation and cause bias to the final results.

To deal with this problem, Haufe et al. (2014) proposed a method
for the linear models. When explaining a linear classifier, the first
intuition is using model weights. However, as mentioned above, this
sometimes results in a misleading explanation (Hebart & Baker, 2018;
Kriegeskorte & Douglas, 2019), for example, where the only goal of a
classifier is to gain better performance. To achieve this goal, a classi-
fier will extract the interested signal and suppress the non-interested
signal of the data. Extraction and suppression steps may eliminate non-
interesting features, which can cause misinterpretation of the results.
In Haufe et al. (2014), observations are assumed to be generated from
a generative model associated with the current classifier. The weights of
this generative model, which is called the activation pattern, can reflect
those class-related features while suppressing those class-irrelevant fea-
tures since the generative model directly reflects the generation process
of observed data. Furthermore, this method relies on available data
information rather than permutation processes, which does not suffer
from the problem of the unrealistic data instances that the permutation
process produces.

We adopt this notion and apply it to kernel SVM models. The idea of
kernel SVM models is that data can be mapped from input space into
higher dimensional kernel space. Those data that cannot be linearly
separated in input space can be separated by a hyperplane in this
kernel space. We can construct the high-dimensional activation pattern
in kernel space by using this hyperplane. The feature importance
can be measured by estimating the input space version of this high-
dimensional activation pattern. This kind of result is less affected by
class-irrelevant features.

This paper aims to address the aforementioned drawbacks of exist-
ing methods to propose an explanation method for kernel SVM with
a focus on neuroimaging data analysis. The novel contributions of the
paper can be summarized as follows:

• This paper proposes a novel activation pattern-based method for
explaining kernel SVM in neuroimaging analysis tasks. We call
this method: Explanation through Activation Pattern (EAP).
2

• It generates explanation results more robust to noise variables by
constructing patterns instead of directly permuting features.

• It produces a faster explanation than other state-of-the-art expla-
nation methods.

• It presents an extensive experimental evaluation using simulated
data and real EEG/MEG data, Wakeman & Henson dataset (Wake-
man & Henson, 2015), showing the explanation results consis-
tently better agree with patterns of brain activities than the
benchmark methods.

This paper proceeds as follows. The next section provides a brief
review of the related works. The linear activation pattern is also intro-
duced in this section. Section 3 presents the EAP method for explain-
ing the predictions of kernel SVM models using activation patterns.
Section 4 details the evaluation experiments, including the datasets
used, the experiment setups and the selected representative explanation
methods for comparison. The experiment results and discussion are
presented in Section 5. The final section provides an overall conclusion
of this paper.

2. Related works

Various methods have been proposed to make complex models
transparent to users from different directions. For example, Bach et al.
(2015) proposed a method of measuring feature contribution based
on Taylor decomposition. Greenwell, Boehmke, and McCarthy (2018)
developed a framework based on partial dependence plots (Friedman,
2001) for measuring interactions between 2 features. Some works
try to explain models from an example-based view, such as finding
representative samples (Kim, Khanna, & Koyejo, 2016) of a classifier
and adversarial samples (Goodfellow, Shlens, & Szegedy, 2014; Szegedy
et al., 2013) which can cheat the model. Recently, much effort has been
made to focus on deep learning methods (Bučková, Brunovský, Bareš,
& Hlinka, 2020; Guerrero-Gómez-Olmedo, Salmeron, & Kuchkovsky,
2020; Kim & Ye, 2020; Van Putten, Olbrich, & Arns, 2018). When
applying XAI methods on deep learning models, their results may
be influenced by class-irrelevant features such as large background
noise (Budding et al., 2021), and suppressor variable (Wilming et al.,
2022).

Deep learning models have some advantages when applied in neu-
roimaging analysis tasks, such as requiring fewer preprocessing steps.
Despite the impressive improvement of deep learning models in recent
years, such as in the Motor Imagery (MI) field (Al-Saegh, Dawwd, &
Abdul-Jabbar, 2021), these models have yet to significantly improve
performance in some tasks (Lotte et al., 2018). It has been observed that
the SVM model generally still achieves considerable performance and
is still the most frequently used method even in recent years (Pahuja,
Veer, et al., 2022; Saeidi et al., 2021). This can be attributed to the
simplicity and low computation cost of the SVM model (Moctezuma &
Molinas, 2020), which makes it widely used in many tasks (Savadkoohi,
Oladunni, & Thompson, 2020; Wen & Aris, 2022; Zhang et al., 2018).
There is still an urgent need to explain these models.

One approach to non-linear SVM explanation uses rule-extraction
(Barakat & Bradley, 2010), which is also applied to neural networks
(Hailesilassie, 2016). Their goal is to learn a set of rules to mimic the
output of the original model. They use EEG channels and associated
values to represent the extracted rules. The rules are transparent and
straightforward. However, as the number of rules increases and the
length of each rule becomes longer, it can lead to the loss of inter-
pretability and make it difficult for human interpretation (Minh, Wang,
Li, & Nguyen, 2022).

Another potential approach is using gradient-based methods like
sensitivity analysis. Rasmussen, Madsen, Lund, and Hansen (2011) has
applied sensitivity analysis to identify important voxels in functional
magnetic resonance (fMRI) data. One problem with this method is that
when the number of features increases, the results may be unstable,
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and the difference between the summarized gradient score of each
feature may be minimal. This kind of problem makes it hard to interpret
the results. Additionally, gradient-based methods may suffer from the
influence of class-irrelevant variables (Wilming et al., 2022).

Recently, several model-agnostic explanation methods have been
proposed (Fisher, Rudin, & Dominici, 2019; Lundberg & Lee, 2017;
Ribeiro et al., 2016) which enlarge the toolbox for neuroimaging
analysis. For example, permutation importance (PI) is applied to a
memory-related study (Valentin, Harkotte, & Popov, 2020), which aims
to highlight important frequency bands and channels from EEG signals.
The idea of this model-agnostic method is to make explanations by
perturbing inputs. Feature contributions are calculated in different
strategies based on the model output. However, some of these methods
have efficiency problems. Usually, these methods need a large amount
of sampling process, i.e. repeating permute one feature to estimate
the model prediction changes. For some feature importance calcula-
tion strategies, the computational cost increases significantly as the
number of features increases. This efficiency problem will limit the
use of these explanation methods in some scenarios, such as search-
light analysis (Kriegeskorte, Goebel, & Bandettini, 2006), in which
multiple classifiers will be trained along time points. In this case, the
computational cost for some model-agnostic methods is impracticable.
Furthermore, recent research suggests that class-irrelevant features like
suppressor variables may influence these explanation methods (Bud-
ding et al., 2021; Wilming et al., 2022). These class-irrelevant features
may provide side information like noise reduction but do not provide
study-related information.

3. Methods

3.1. Linear activation pattern

To address the problem caused by class-irrelevant variables, Haufe
et al. (2014) proposed a method for linear model cases in neuroimaging
analysis tasks by constructing the activation pattern. In their work, the
m-dimensional observed data 𝐗 ∈ 𝑛×𝑚 are assumed to be generated
by some k-dimensional latent factors 𝐋 ∈ 𝑛×𝑘 using specific patterns
𝐖𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ∈ 𝑚×𝑘 and model weights 𝐖𝑙𝑖𝑛𝑒𝑎𝑟 ∈ 𝑚×𝑘 which is:

Generative model: 𝐗 = 𝐋𝐖𝑇
𝑝𝑎𝑡𝑡𝑒𝑟𝑛 + 𝜖

Discriminative model: 𝐋 = 𝐗𝐖𝑙𝑖𝑛𝑒𝑎𝑟,

where the 𝜖 represents the noise variables, and the discriminative
model represents the classifier. The latent variables could be a brain
process under study or different classes interested in analysis. The gen-
erative model shows how observations are generated by class-related
latent variables, while its weights 𝐖𝑝𝑎𝑡𝑡𝑒𝑟𝑛, called activation pattern,
directly indicate variables related to class-related latent variables. This
activation pattern is less affected by class-irrelevant variables than
classifier weights.

This activation pattern for linear models can be reconstructed once
we have the associated classifier. By assuming the latent variables are
independent, and noise variables 𝜖 are uncorrelated with latent factors.
We can obtain this reconstructed activation pattern as follows:

𝐖𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = 𝛴𝐗𝐖𝑙𝑖𝑛𝑒𝑎𝑟𝛴
−1
𝐿 ,

where 𝛴𝐗 and 𝛴𝐿 represent the covariance matrix of observations 𝐗
and latent variables 𝐋.

If only one latent variable exists, i.e., k = 1 and 𝐖𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝐖𝑙𝑖𝑛𝑒𝑎𝑟
become an m-dimensional vector, such as in the binary classification
case, the 𝛴𝐿 is a constant, i.e., the variance of this latent variable, that
can be ignored if our goal is to find important features. Therefore, the
pattern can be simplified as follows:
3

𝐖𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ∝ 𝛴𝐗𝐖𝑙𝑖𝑛𝑒𝑎𝑟. f
The linear activation pattern combines classification information
and data variance information. Various statistical techniques, such as
factor analysis, are also available to discover latent components in
data with associated patterns and measure the variance contribution
of observed variables. These methods aim to obtain independent latent
variables and better explain the data. Although the latent variables
have the potential to contribute to the classification task, this is not
guaranteed. The linear activation pattern is particularly suited for
classification cases since it restricts the latent variable associated with
the classification task.

We adapt the notion of linear pattern to kernel SVM models. The
proposed method contains two steps: the first is to estimate the coef-
ficient of the activation pattern in kernel space, and the second is to
map the activation pattern back into input space.

3.2. Construct activation pattern in kernel space

To separate the data, SVM models aim to find a hyperplane, rep-
resented using data samples and associated coefficients. This idea
also works for kernel-based SVM models, which map data into high-
dimensional space to make the linearly inseparable data in input space
separable in the high-dimensional kernel space. We can then construct
an activation pattern in this kernel space.

Usually, the hyperplane of an SVM model can be written as a
linear combination of support vectors and associated coefficients. For
the kernel-based SVM model, assuming the dimension of kernel space
is q which we do not know, this hyperplane 𝐖𝑘𝑒𝑟𝑛𝑒𝑙 ∈ 𝑞 can be
represented as 𝐖𝑘𝑒𝑟𝑛𝑒𝑙 = 𝛴𝑖𝛼𝑖𝛷(𝐱𝑖), where the 𝛷(𝐱𝑖) ∈ 𝑞 represents
the kernel space support vector. And 𝛼𝑖 represents the associated coef-
ficient. For the convenience of representing equations, we will rewrite
them in matrix format.

Assume 𝐒𝑇 = [𝛷(𝐱1), 𝛷(𝐱2),… , 𝛷(𝐱𝑠)] represents the mapped support
ector, i.e., 𝐒 ∈ 𝑠×𝑞 , and the number of support vectors is 𝐬, and 𝛼
s the associated coefficient vector. The hyperplane can be shown as
ollows:

𝑘𝑒𝑟𝑛𝑒𝑙 = 𝐒𝑇 𝛼 (1)

The covariance matrix of mapped data can also be represented in
his matrix format, which is as follows:

𝜙(𝐱) = 1
𝑛
𝐅𝑇𝐇 (𝐅𝑇𝐇)𝑇

= 1
𝑛
𝐅𝑇𝐇𝐇𝑇𝐅

= 1
𝑛
𝐅𝑇𝐇𝐅 (2)

where the 𝐅 ∈ 𝑛×𝑞 and 𝐅𝑇 = [𝛷(𝐱1), 𝛷(𝐱2),… , 𝛷(𝐱𝑛)] represents
he mapped data matrix with the number of samples is 𝐧. We do
ot know whether the mapped data is centered, which is required
hen calculating the covariance. So we introduce the centering matrix
, which is 𝐇 = 𝐈𝐧 − 1

𝐧𝟏𝐧, where the 𝐈 is 𝐧 dimensional identity
matrix and 𝟏𝐧 is the n-by-n matrix of all 1. 𝐅𝑇𝐇 can be seen as
he sample minus mean step while calculating variance/covariance.
entering matrix has a good property which 𝐇𝐇𝑇 = 𝐇. This has been

applied in Eq. (2). One thing to note is that usually, the data will
be scaled before training the SVM model. The data used here is the
actual data used for training and testing, i.e. the scaled data if using
the scaler. Combining the equations above, the pattern in kernel space
𝐖𝑘𝑒𝑟𝑛𝑒𝑙−𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ∈ 𝑞 can be constructed as:

𝐖𝑘𝑒𝑟𝑛𝑒𝑙−𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = 𝛴𝜙(𝐱) 𝐖𝑘𝑒𝑟𝑛𝑒𝑙

= 1
𝑛
𝐅𝑇𝐇𝐅𝐒𝑇 𝛼 (3)

where 𝐅𝐒𝑇 = [𝑘(𝐱𝑖, 𝐱𝑗 )]𝑛∗𝑠 is a (𝑛 ∗ 𝑠) dimensional matrix, which can be
een as the inner product between each mapped data sample and each
upport vectors. This inner product can be calculated using the kernel
unction used in the classifier, which is represented as 𝑘(𝐱 , 𝐱 ).
𝑖 𝑗
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Fig. 1. Figure A show the channel position of the simulation data and an example
channel weights of a simulation dataset used in experiment 1. The bright color indicates
a higher weight than the dark color. Figure B shows some signals of interested and
non-interested signals. The right line chart shows the averaged event-related potential
for the 2 channels: FP1, which is selected as an interested channel, and FC1, which is
not interested.

We should note that the current pattern 𝐖𝑘𝑒𝑟𝑛𝑒𝑙−𝑝𝑎𝑡𝑡𝑒𝑟𝑛 is in high-
dimensional space, which we do not know specifically. However, this
is still a combination of mapped data 𝐅. The combination coefficient
vector 𝐏 ∈ 𝑛 can easily calculate:

Kernel Pattern Coefficient: 𝐏 = 1
𝑛
𝐇𝐅𝐒𝑇 𝛼 (4)

and 𝐖𝑘𝑒𝑟𝑛𝑒𝑙−𝑝𝑎𝑡𝑡𝑒𝑟𝑛 is rewritten as:

𝐖𝑘𝑒𝑟𝑛𝑒𝑙−𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = 𝐅𝑇𝐏 (5)

3.3. Mapping method: fixed point iteration

For the kernel-based method, there is no need to specify how a data
point is mapped into kernel space. This mapping process is not required
in the later calculation. For training and making a prediction, a kernel-
based SVM model only uses the inner product of two mapped samples,
which is defined by the kernel function 𝐤(𝐱1, 𝐱2). As mentioned above,
the reconstructed activation is in the kernel space, and it is hard to
calculate the input space results of a known kernel space vector. This
problem can be solved by applying a pre-image technique (Honeine &
Richard, 2011; Kwok & Tsang, 2004). These methods can find input
space results of a kernel target, based on some constraints such as
minimizing the MSE between the results and kernel target, which have
been used for kernel PCA denoising (Mika et al., 1998).

With the constructed kernel activation pattern above, the pre-image
method can estimate the associated result 𝐱∗ in input space by minimiz-
ing the mean squared error (MSE) distance between 𝐱∗ and the target
𝐖𝑘𝑒𝑟𝑛𝑒𝑙−𝑝𝑎𝑡𝑡𝑒𝑟𝑛 in kernel space, which is

arg min
𝐱∗

MSE (𝐱∗) = ||𝐖𝑘𝑒𝑟𝑛𝑒𝑙−𝑝𝑎𝑡𝑡𝑒𝑟𝑛 − 𝜙(𝐱∗)||2

Furthermore, the mean squared distance is as follows:

MSE (𝐱∗) = ||𝐖 − 𝜙(𝐱∗) ||2
4

𝑘𝑒𝑟𝑛𝑒𝑙−𝑝𝑎𝑡𝑡𝑒𝑟𝑛
= (𝐅𝑇𝐏 − 𝜙(𝐱∗))𝑇 (𝐅𝑇𝐏 − 𝜙(𝐱∗))

= 𝐏𝑇𝐅𝐅𝑇𝐏 − 𝜙(𝐱∗)𝑇𝐅𝑇𝐏 − 𝐏𝑇𝐅𝜙(𝐱∗) + 𝜙(𝐱∗)𝑇𝜙(𝐱∗)

where 𝐏 represent the kernel pattern coefficient as shown in Eq. (4);
𝜙(𝐱∗) represent the mapped result 𝐱∗ in kernel space. Note that 𝐏𝑇𝐅𝐅𝑇𝐏
is clearly a fixed constant, i.e., the inner product of the activation
pattern. This will not change once the classifier is trained. The two
middle fractions, 𝜙(𝐱∗)𝑇𝐅𝑇𝐏 and 𝐏𝑇𝐅𝜙(𝐱∗) is the same. 𝜙(𝐱∗)𝑇𝐅𝑇 and
𝐅𝜙(𝐱∗) represent the inner product between the mapped result 𝜙(𝐱∗)
and each of the mapped data samples. After multiplying the coefficient
vector 𝐏, whether 𝜙(𝐱∗)𝑇𝐅𝑇𝐏 or 𝐏𝑇𝐅𝜙(𝐱∗) can be regarded as the sum
of the inner product multiplied by the corresponding coefficient. For
convenience, these 2 middle parts are rewritten as a sum-up format
later as 𝜙(𝐱∗)𝑇𝐅𝑇𝐏 = 𝐏𝑇𝐅𝜙(𝐱∗) = 𝛴𝑛

𝑖 𝐩𝑖𝑘(𝐱
∗, 𝐱𝑖). The last fraction,

𝜙(𝐱∗)𝑇𝜙(𝐱∗) represents the inner product of the mapped result, which
can be calculated using kernel function as 𝑘(𝐱∗, 𝐱∗).

The function of minimizing the MSE error can be simplified as
follows:

arg min
𝐱∗

MSE (𝐱∗) = 𝑘(𝐱∗, 𝐱∗) − 2𝛴𝑛
𝑖 𝐩𝑖𝑘(𝐱

∗, 𝐱𝑖) (6)

As mentioned before, we do not need to know the exact mapping
process, just like we can classify samples using kernel SVM models
without needing to know the exact mapping process.

A variety of random searching methods can solve this problem.
Nevertheless, the large search space of these methods requires many
computation costs. Here we use the fixed-point iteration method to
search the results. Compared with random searching methods, the
fixed-point iteration method limited the search space, which decreased
the computation cost. Furthermore, the result of this method will have
the same scale as the input vectors have (Honeine & Richard, 2011),
which makes the results more straightforward when using the pattern
to explain the model.

The overall goal is the same for different kernels, as shown in Eq. (6).
By setting the derivative of Eq. (6) for 𝐱∗ to zero, we can easily obtain
a fixed-point iteration format. The exact fixed-point iteration format
equation is different depending on the kernel function used.

When using RBF kernel function

𝑘(𝐱1, 𝐱2) = exp
||𝐱1 − 𝐱2||2

𝛾
,

the fixed-point iteration format becomes

MSE (𝐱∗) = exp
||𝐱∗ − 𝐱∗||2

𝛾
− 2𝛴𝑛

𝑖 𝐩𝑖 exp
||𝐱𝑖 − 𝐱∗||2

𝛾

= 1 − 2𝛴𝑛
𝑖 𝐩𝑖 exp

||𝐱𝑖 − 𝐱∗||2

𝛾

By setting the derivative for 𝐱∗ to zero, we can obtain a fixed-point
iteration method:

𝐱𝑡+1 =
𝛴𝑛
𝑖 𝐩𝑖𝑘(𝐱𝑖, 𝐱

∗) 𝐱𝑖
𝛴𝑛
𝑖 𝐩𝑖𝑘(𝐱𝑖, 𝐱∗)

(7)

Similarly for polynomial kernel, which the kernel function is
𝑘(𝐱1, 𝐱2) = (𝐱𝑇1 𝐱2 + 𝐜)𝑑 where the 𝐝 is the degree of kernel and 𝐜 is
constant term. The fixed-point iteration format is as follows:

𝐱𝑡+1 =
𝛴𝑛
𝑖 𝐩𝑖(𝐱

𝑇
𝑖 𝐱𝑡 + 𝐜)𝑑−1 𝐱𝑖

(𝐱𝑇𝑡 𝐱𝑡 + 𝐜)𝑑−1
(8)

And for sigmoid kernel, which the kernel function is 𝑘(𝐱1, 𝐱2) =
𝑡𝑎𝑛ℎ(𝐱𝑇1 𝐱2 + 𝐜) where the 𝐜 is constant term. The fixed-point iteration
format is:

𝐱𝑡+1 =
𝛴𝑛
𝑖 𝐩𝑖(1 − 𝑡𝑎𝑛ℎ2(𝐱𝑇𝑖 𝐱𝑡 + 𝐜)) 𝐱𝑖

𝑇 (9)

1 − 𝑡𝑎𝑛ℎ2(𝐱𝑡 𝐱𝑡 + 𝐜)
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3.4. Our proposed explanation algorithm

Section 3.2 above derives the use of activation pattern to explain
the prediction of nonlinear SVM models. This sub-section presents the
proposed method into an algorithm as shown below.

The algorithm can be seen as two parts: calculate the coefficient of
the estimated pattern in kernel space and map back this pattern into
input space. The pattern is estimated in kernel space and using support
vectors in kernel space. The first step is to calculate its associated
coefficient. The second step is an optimizing procedure.
Algorithm 1: Algorithm for EAP

Input:
• 𝐍𝐈: Maximum iteration number
• 𝛼: Coefficients of the support vectors
• 𝐒𝑇 = [𝐱1, ..., 𝐱𝐬]: Support vectors
• 𝐗𝑇 = [𝐱1, ..., 𝐱𝐧]: Training set
• 𝐦𝐜𝐡: The minimum changes

Output:

• 𝐱∗: Explanation vector

// Calculate coefficient of pattern in kernel
space

1 Calculate centre matrix 𝐇 = 𝐈𝑛 −
1
𝑛 𝟏𝑛. ;

2 for i = 1: n do
3 for j = 1: s do
4 Calculate the element 𝐅𝐒𝑇𝑖𝑗 = 𝐤(𝐱𝑖, 𝐱𝑗 ). The kernel

function depends on the kernel used in the SVM
model. ;

5 𝐣++ ;
6 𝐢++ ;

7 Calculate the coefficient of estimated pattern 𝐏 = 1
𝑛𝐇𝐅𝐒𝑇 𝛼. ;

// Mapping the estimated pattern into input
space

8 𝐭 ← 0 ;
9 𝐱∗0 ← initialised from standard normal distribution;
10 𝐝𝐢𝐟𝐟 𝑡−1 ← 1 /*difference between 𝐱∗𝑡−1 and 𝐱∗𝑡 /;
11 𝐝𝐢𝐟𝐟 𝑡−2 ← 1 /*difference between 𝐱∗𝑡−2 and 𝐱∗𝑡 /;
12 while (𝐭 < 𝐍𝐈) AND (All |

|

𝐝𝐢𝐟𝐟 𝑡−𝑖|| > 𝐦𝐜𝐡) do
13 Update 𝐱∗𝑡 with equation (7) or (8) or (9), depending on

the kernel type. ;

14 Update the 𝐝𝐢𝐟𝐟 𝑡−1 ←
|

|

|

MSE (𝐱∗𝑡−1)−MSE (𝐱∗𝑡 )
|

|

|

MSE (𝐱∗𝑡−1)
;

15 Update the 𝐝𝐢𝐟𝐟 𝑡−2 ←
|

|

|

MSE (𝐱∗𝑡−2)−MSE (𝐱∗𝑡 )
|

|

|

MSE (𝐱∗𝑡−2)

16 𝐭 ← 𝐭 + 1 ;

Based on the results of multiple experiments, in our experiments, the
nitialization of 𝐱∗0 is initialized from the standard normal distribution,
nd the number of iterations is set to 1000. Another stop iteration
trategy is the MSE changes between the results 𝐱∗𝑡 , 𝐱∗𝑡−1 and 𝐱∗𝑡−2. Any

of these changes smaller than the threshold will cause the iteration to
stop. The threshold of these changes is set to 0.001 empirically based
on experiments. Besides, this threshold is reasonable; if the changes are
below this standard, the changes do not significantly influence the final
results.

The initialized starting result 𝐱0 may affect the fixed-point iteration
ethod. In our experiments, the starting results are initialized from the

tandard normal distribution because of the standard scaler. Multiple
uns using different starting results may be needed. Other optimization
ethods like the momentum-based method may also help in severe

ases.
5

4. Experiments

This section presents three experiments to evaluate the EAP method
against three popular explanation methods. The first two experiments
are performed on two simulated electroencephalography (EEG) datasets.
Experiment 3 is performed on a publicly available EEG/MEG dataset,
Wakeman & Henson dataset (Wakeman & Henson, 2015), on a visual
face perception task. SVM classification models using RBF, polynomial
and sigmoid kernel are trained on each dataset. EAP and three bench-
mark explanation methods are then used to explain the predictions of
those trained models.

4.1. Datasets

4.1.1. Simulation dataset
The overall simulation dataset setting is similar for experiments 1

and 2. The main difference is the interested channel selection strategies.
The simulated EEG signal is Event-Related Potential (ERP) like simula-
tions, which can be seen as the epoched and preprocessed real EEG
signal. The simulation datasets are simulated using a MATLAB toolbox,
MVPA-Light (Treder, 2020). Each dataset has 1000 samples divided
into two classes. Each sample has 30 channels and 200 time points.
For each sample, one peak is simulated.

The difference in simulation datasets for experiment 1 and 2 is how
to set the channel weights. Channel weights decide the signal changes
of each channel in the peak. Interested channels will have larger
weights than other non-interested channels, which means that those
channels with large weights will react significantly despite the noise.
The channel weights reflected the spatial information of simulation
datasets, which can be seen as the ground truth. The goal is to recover
this information with the help of explanation methods.

Experiment 1. The channel weights are initialized with random num-
bers sampled from the standard normal distribution. Then six interested
channels are randomly selected. Additional weight is added to each of
the interested channels. This additional weight contains a fixed and
random number sampled from standard uniformed distribution. This
can ensure that the additional weight is significantly larger than the
initialized value while maintaining a slight difference between different
channels. Samples are divided into two classes based on average peak
values. Both classes have roughly the same mean value during peak,
while one class contains more samples close to the mean peak value
and another contains more extreme cases, then adds strong Gaussian
noise. An example is shown in Fig. 1.

Experiment 2. The simulation dataset in experiment 2 contains 3 parts:
𝐬𝐢𝐠𝐧𝐚𝐥, 𝐝𝐢𝐬𝐭𝐫𝐚𝐜𝐭𝐨𝐫, and 𝐧𝐨𝐢𝐬𝐞. The weights of the 𝐬𝐢𝐠𝐧𝐚𝐥, and 𝐝𝐢𝐬𝐭𝐫𝐚𝐜𝐭𝐨𝐫,
or called the patterns, are shown in Fig. 3A. Two classes are divided
depending on 𝐬𝐢𝐠𝐧𝐚𝐥, and like in experiment 1, the average signal of
the two classes is roughly the same. One class sets the signal weights
as 1 × 𝑠𝑖𝑔𝑛𝑎𝑙 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 and −1 × 𝑠𝑖𝑔𝑛𝑎𝑙 𝑝𝑎𝑡𝑡𝑒𝑟𝑛, while another class sets as
.5 × 𝑠𝑖𝑔𝑛𝑎𝑙 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 and −0.5 × 𝑠𝑖𝑔𝑛𝑎𝑙 𝑝𝑎𝑡𝑡𝑒𝑟𝑛. The 𝐝𝐢𝐬𝐭𝐫𝐚𝐜𝐭𝐨𝐫, and 𝐧𝐨𝐢𝐬𝐞

both represent the non-interested signals, while the 𝐝𝐢𝐬𝐭𝐫𝐚𝐜𝐭𝐨𝐫 show
overlapped signals. To mimic the signal changes, for each sample, the
distractor weights multiply a random number from the standard normal
distribution. This distractor signal is irrelevant to the class label and
will weaken the interested signal. This is a simulation of those class-
irrelevant variables like suppressor variables. The 𝐧𝐨𝐢𝐬𝐞 acts as strong
background Gaussian noise. The proportion of the signal combination
is: 𝐗 = 0.25 × 𝐬𝐢𝐠𝐧𝐚𝐥 + 0.25 × 𝐝𝐢𝐬𝐭𝐫𝐚𝐜𝐭𝐨𝐫 + 0.5 × 𝐧𝐨𝐢𝐬𝐞.

4.1.2. Real dataset
The Wakeman & Henson dataset used in this experiment is an

MEG/EEG dataset of visual face perception tasks (Wakeman & Henson,
2015): in this dataset, participants are asked to see pictures of fa-
mous faces, unfamiliar faces, and scrambled faces during the recording

period. Signals are measured using Elekta Neuromag Vectorview 306
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Fig. 2. Figure A shows the explanation results of one randomly picked simulation dataset. The left topograph in Figure A shows the actual channel weights, which is the ground
truth of this simulation dataset. For the convenience of comparison, all results are scaled from 0 to 1 before drawing topographies. Figure B shows the rank correlation score. Since
our goal is to highlight the important channels, the correlation scores are calculated between the absolute value of explanation results and the absolute value of actual weights.
system in a light magnetically shielded room. Sixteen participants are
involved in the dataset. The number of trials in each of the 3 classes
is around 290. In our experiment, only signals of the famous faces task
and scrambled face task are selected in this study.

Preprocessing. Irrelevant channels, such as ECG and EOG channels,
are removed first. Then, to highlight the interested signal and reduce
the noise, a bandpass filter is applied between 1 Hz to 40 Hz with
windowed-sinc Finite Impulse Response (FIR) filters. The EEG data is
re-referenced using the average reference method, i.e., subtracted by
the average signal of all channels. This step will help highlight the
interested signals. To save computation costs, data are then down-
sampled into 220 Hz. Since many trials are logged continuously, trials
are segmented based on the event file provided by the dataset. This step
ensures that the time points in each sample are aligned relative to the
condition, i.e., seeing the picture. Each trial maintains 0.5 s before par-
ticipants see pictures and 1 s after. Baseline correlation is applied based
on a time window from 0.5 s to 0 s before the stimulus. 70 EEG and
102 magnetometer channels are then selected as classification features.
We directly use sensor-level data, so the explanation results should also
reflect spatial information at the sensor level. All preprocessing tasks
are carried out using Fieldtrip and MVPA-Light toolbox (Treder, 2020)
on MATLAB.

Unlike the simulation dataset, several peaks are detected in this
dataset. This means that several reactions are logged, and we should
identify them. Two interested time intervals are identified based on
local minima in the Global Field Power (Skrandies, 1990), a method
that quantifies the amount of activity at each time point. The local
minima of Global Field Power are similar for EEG and MEG data. The
6

selected two time intervals, 80–135 ms and 145–190 ms, are identified
for use in this experiment.

4.2. Classification

All experiments use the mean of each channel within selected time
intervals as the classification feature. For experiment 1 and 2, the
selected time interval is the peak area. For experiment 3, the selected
time intervals are the two selected time intervals.

RBF kernel, Polynomial kernel, and sigmoid kernel are performed
separately. For each simulation dataset/participant, the classifier’s hy-
perparameters are optimized based on 5-fold cross-validation under
the same hyperparameter searching range. Then build classifiers and
implement several explanation methods.

4.3. Selected explanation methods

The EAP method is evaluated against three selected state-of-the-
art model agnostic explanation methods: permutation importance, local
interpretable model agnostic explanation (LIME), and Shapley additive
explanations (SHAP). All these methods are implemented using the
default parameter setting in their code package.

Permutation importance (PI) is firstly proposed by Breiman (2001),
to measure the feature contribution of the random forest model. Fisher
et al. (2019) introduces a model-agnostic framework for permutation
importance called model reliance. The idea of this approach is to
assign an importance score for each feature. Importance scores are
calculated based on measuring the changes in model function results
after shuffling one feature value while fixing other feature values.
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Fig. 3. The left topograph in Figure A shows the channel weights of the signal pattern, which is the ground truth, and the channel weights of the distractor pattern. Since the
distractor pattern is irrelevant to the 2 classes, the explanation methods are expected to highlight the channels shown in the signal pattern and not highlight the channels shown
in the distractor pattern. The right topographies in Figure A shows the average results of the explanation results. For the convenience of comparison, all results take absolute value
and then scaled from 0 to 1. Under the use of different kernels, the EAP method is less influenced by class-irrelevant variables than the other three methods. Figure B shows the
rank correlation score between the explanation results and the absolute value of actual weights. The performance of the EAP method in different kernel settings is more stable
than the other three methods.
This method provides a global view of explaining current models. An
advantage of this method is that it has a low computation cost.

The local interpretable model-agnostic explanation (LIME) (Ribeiro
et al., 2016) is an instance-based model-agnostic explanation method.
LIME first samples around a single instance and weighs new samples
by their similarity compared with the associated instance. Then learn
a linear surrogate model for this instance, trying to approximate the
properties near this instance. The weight of this surrogate model is
the explanation score assigned for this instance. It explains the current
instance by approximating its feature gradient. In our experiment, all
samples in the training set are explained.

The Shapley value (Shapley, 1952), which comes from game theory,
is a method that can measure feature influence for a model in a real-
world setting. Shapley additive explanations (SHAP) (Lundberg & Lee,
2017) is a model-agnostic framework that can approximate Shapley
value for a single instance, which is increasingly popular. Like LIME,
all training samples are explained to make a global explanation.

The explanation results may be in different scales, and our goal is to
find the most important features. For the convenience of comparison,
all explanation results will take absolute value and be scaled between
0–1 using the min–max scaling method.

5. Results analysis and discussion

Explainable machine learning can be categorized as global and local
methods depending on their scope of explainability. Global methods
7

provide an overall explanation of model behavior on features in the
data collectively affecting the prediction, local methods explain why
the model makes a certain prediction for an instance. For those methods
in the evaluation, the EAP method and PI provide a global explanation,
and LIME and SHAP provide a local explanation for each instance. To
make the evaluation results comparable, the results in this section are
presented in a global explanation scope, i.e., the results explain the
overall feature importance to the prediction. We follow the commonly
used aggregation approach for LIME and SHAP to yield a global expla-
nation using averaged absolute results. For the EAP method and PI, the
results are also using the absolute value of their results.

All results are shown and compared in two formats: topography and
ranked correlation score. Topography is a kind of figure that map the
channel signals to the associated position of the head. For experiment
1, the topographies only show an example of the experiment. For ex-
periment 2 and Wakeman & Henson dataset, since different dataset has
the same task, i.e. in experiment 2, all datasets have the same channel
weights and all Wakeman & Henson datasets have the same visual
task, topographies are shown the averaged results. For the convenience
of comparison, all results will be rescaled between 0 to 1 by a min–
max scaler. For the simulation datasets, since we have the generation
channel weights, we can calculate the rank correlation score to compare
the explanation results. Our goal is to highlight the important channels,
so all methods will use the absolute value. Since different methods may
have different scales, all the results are rescaled between 0 to 1 using a
min–max scaler after taking the absolute value. Then rank correlation
scores are calculated between the results and the absolute value of
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Fig. 4. Area Under the Curve of the Receiver Operating Characteristic curve (AUCROC) for comparing explanation results to the ground truth. The channel weights value is replaced
by a binary set of 0, 1 as the ground truth. Figure A shows the AUCROC results for experiment 1, while Figure B shows the results for experiment 2. For most experiments, EAP
methods show lower variance and outperformed others.
generation channel weights, the randomly selected channel weights in
experiment 1, and the signal pattern in experiment 2. To measure our
results from the precision perspective, the area under the curve of the
receiver operating characteristic curve (AUCROC) is involved. Here, the
ground truth is a binary set calculated based on channel weights.

5.1. Simulation: Experiment 1

The goal is to test whether these explanation methods can pick
important features out correctly. Results are shown in Fig. 2. As one
example shown in 2A, all methods can highlight the important channels
while the importance score varies. As shown in Fig. 2B, the EAP method
outperformed the other three methods in experiment 1. SHAP can also
obtain relatively good results, but this method requires much more
runtime to obtain global explanation results. The AUCROC results,
shown in Fig. 4A indicate the same results.

5.2. Simulation: Experiment 2

Fig. 3 shows the results of experiment 2. Fig. 3B shows the average
value of the absolute explanation results. Fig. 3C gives the rank corre-
lation score between the absolute explanation results and the absolute
value of the signal pattern. The distractor pattern can be seen as a large
noise that is irrelevant to the 2 classes. All explanation methods are
expected to highlight the features that contain class-related information
which are shown in the signal pattern. Furthermore, features shown
in the distractor pattern should not be highlighted in the explanation
results. As shown in Fig. 3B, from the mean value view of all explana-
tion results, all methods can roughly pick out the important channels
as shown in the signal pattern. The result of the EAP method may
involve more channels compared to the signal pattern. However, the
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other three methods are influenced more by the distractor signal. The
results displayed in Fig. 4B also provide evidence to support this from
the AUCROC perspective. In experiment 2, the EAP method shows more
stable results than the other three methods. Fig. 5 gives the results of
one simulation dataset, which indicate similar results as in Fig. 3.

5.3. Real data: experiment 3

The results of EEG data are shown in Fig. 6 and MEG in Fig. 7. All
explanation results are averaged among sixteen participants first, then
rescaled to 0 to 1.

The two selected time intervals reflect the previous study, which
is consistent with the two components of the brain cognitive process
in visual tasks: the P100 and N170. These two components have been
reported in many previous studies (Boutros et al., 1997; Kropotov,
2016). Unlike simulation datasets, we do not have the exact ground
truth of Wakeman & Henson dataset. Using similar time intervals allows
us to verify the explanation results in this study against the reported
results of previous vision task studies.

For the explanation results of EEG data (Fig. 6), in the first time
interval, which can be seen as the P100 component, channels at all
occipital areas and inferior occipitotemporal area, which is the back
head area, are highlighted by EAP method. In contrast, other methods
highlight the channels at the center occipital areas. For the P100
component, signal changes are found in most channels in the occipital
area and some in the inferior occipitotemporal area (Herrmann, Ehlis,
Ellgring, & Fallgatter, 2005; Negrini, Brkić, Pizzamiglio, Premoli, &
Rivolta, 2017) in the previous study. In the second time interval, all
methods gave a high score to the channels located in the right back
head, which is the occipitotemporal area in the right hemisphere, and
related weak scores to the channels in the left hemisphere. However,
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Fig. 5. This figure shows an example in experiment 2. Topographies of explanation
results for different kernels are listed. For the convenience of comparison, all results
are scaled from 0 to 1.

the other three methods also highlight the channels in the center back
head, the center occipital area. The second time interval can be seen as
the N170 component. In previous findings (Bentin, Allison, Puce, Perez,
& McCarthy, 1996), the signals for the face are more significant than
non-face stimulus. These signal differences can be found in channels
located in the occipitotemporal area in both hemispheres, the left
and right back head in the topography, while not find significant
signal differences in channels at center occipital area (Negrini et al.,
2017; Rossion & Jacques, 2008). Furthermore, compared with non-face
stimulus, channels at the right occipitotemporal area will detect a larger
difference with face stimulus (Eger, Jedynak, Iwaki, & Skrandies, 2003;
Maurer, Rossion, & McCandliss, 2008; Wang et al., 2019). As a result,
the EAP results are more consistent with the previous finding in both
time intervals.

For the explanation results of MEG data (Fig. 7), all methods high-
light the channels located at the midline occipital area and right
occipitoparietal area in the first time interval. However, the EAP results
of poly and sigmoid kernel experiments also highlighted channels in
the left occipitotemporal and right occipital areas. In the RBF and poly
kernel experiment, SHAP, LIME, and PI also highlight the left occipi-
totemporal area. In previous findings, the P100 component, which is
usually called M100 in MEG, some studies report the signal difference
between face and non-face stimulus is found in the occipitotemporal
of both hemispheres (Liu, Harris, & Kanwisher, 2002; Xu, Liu, & Kan-
wisher, 2005). In contrast, the signal differences are not significant.
However, in Tanskanen, Näsänen, Montez, Päällysaho, and Hari (2005)
channels located in the midline occipital area, locate the front-mid
position of the back head. Some studies (Halgren, Raij, Marinkovic,
Jousmäki, & Hari, 2000; Susac, Ilmoniemi, Pihko, Nurminen, & Supek,
2009) support this finding but also report that channel level signal
differences are found in channels located at the right occipitotemporal
area while not the significant signal difference in channels located at
the left occipitotemporal area.

For the results in the second time interval, SHAP, LIME, and PI
give similar results, highlighting both the midline occipital and right
occipitoparietal areas. While the EAP method highlights the channels
located in the right temporal area, left occipitotemporal area, and right
occipital area. In the previous study, signal differences are found in
channels in the inferior occipitotemporal area (Liu et al., 2002; Xu
et al., 2005). While some study also reports signal differences are
also found in channels located in the inferior parietal and the middle
temporal area (Lu et al., 1991; Susac et al., 2009). A recent study (Tadel
et al., 2019) analyzed the same dataset as we used, which reported
the signal difference in channels located at the right temporal area,
right occipital area, and left frontal area at 151 ms, and channels
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located at the right temporal area and left occipitotemporal area on
202 ms. Some MEG source analysis report similar results in the view
of source position analysis (Meeren, de Gelder, Ahlfors, Hämäläinen,
& Hadjikhani, 2013; Takeda, Suzuki, Kawato, & Yamashita, 2019).
In previous studies, channel-level signal differences are usually found
in both hemispheres. In general, the results of EAP result are more
consistent with previous findings.

5.3.1. Empirical computational cost
This sub-section provides an empirical comparison of computational

cost between the EAP method and the three benchmark methods. The
experiment is carried out on both the simulation dataset and Wakeman
& Henson dataset. The run time is measured over a desktop with i7
9700k CPU with 32 GB RAM. The operating system is Ubuntu 20.04.
Table 1 provides a summary of the run time of the methods.

Table 1 shows that SHAP is the slowest and our EAP is the fastest.
Overall, EAP is a few times faster than PI and several orders of mag-
nitude faster than LIME and SHAP. SHAP requires a much longer run
time than LIME for assigning explanations to all the samples due to the
difference in permutation procedure. Moreover, the number of features
also increases the run time of LIME and SHAP since a greater number of
features makes the permutation procedure exponentially less efficient.
In contrast, PI and our EAP provide a global explanation, which is made
through the model itself rather than through samples. The computation
cost of PI and EAP is much lower than LIME and SHAP.

Although LIME and SHAP require a long run time, they have an
advantage in providing an explanation for each instance, which makes
them more flexible in understanding the model at an instance level.
For cases of obtaining a global understanding, however, the excessively
long run time of LIME and SHAP hinders their application, and EAP is
clearly preferred.

6. Conclusion

In neuroimaging analysis tasks, understanding what the model has
learned is as important as the prediction accuracy of the learned model.
This paper presents the EAP explanation method for nonlinear kernel-
based SVM models in the analysis of neuroimaging data. This method
can be adapted to several different kernels. The EAP method provides
an importance score for each variable based on the reconstruction of
an activation pattern, a widely used technique in this field for ex-
plaining linear models in neuroimaging analysis tasks. It can highlight
variables with information in concern and is less affected by noise
and class-irrelevant variables. The EAP method is evaluated against
three state-of-art explanation methods: PI, LIME, and SHAP explanation
methods on simulated data and Wakeman & Henson dataset. Exper-
imental results show that the EAP method can successfully identify
interested features of simulated data in SVM models with different
kernels. The results also indicate the stability of the EAP method: the
results of the EAP method from different kernels are given similar and
correct results. In experiment 3, the EAP method provides consistent
agreement with the human understanding of the brain’s electrical
activity in response to stimuli on the real EEG/MEG data. In addition,
the proposed EAP method is significantly faster than other methods,
multiple orders of magnitude faster than SHAP.

The experiment results indicate that the other three methods have
been influenced more by class-irrelevant variables than the EAP method,
which is potentially caused by the permutation process when fac-
ing feature-dependent cases. One possible explanation, from the data
variance perspective, is that the total variance of the permutation
process is larger compared to the original data. However, this excess
variance can increase the probability of impossible instances outside of
the original data space when permuted. The EAP method considered
the data variance information, which was less affected by this case.
Another problem we encountered is that the result scales produced
by different methods varied. For the convenience of comparison, we
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Fig. 6. Topographies of explanation results for EEG datasets. The results are averaged value of explanation results among 16 participants. For the convenience of comparison, all
results are scaled from 0 to 1 before drawing topographies.
Table 1
Average run time (in seconds) of all methods. EEG-first (EEG-1) time interval and MEG-first (MEG-1) time interval refers to the time range of 80–135
ms, and EEG-second (EEG-2) time interval and MEG-second (EEG-2) time interval refers to the time range of 145–190ms.

RBF Polynomial Sigmoid

EAP PI LIME SHAP EAP PI LIME SHAP EAP PI LIME SHAP

Simulation 1 2.24 4.03 75.79 18 414.00 0.21 1.89 52.73 7132.36 1.78 6.44 141.16 36 286.68
Simulation 2 2.52 11.65 158.74 31 651.03 0.38 2.38 69.163 13 258.65 1.18 5.38 91.97 21 544.58
EEG-1 2.30 10.93 128.89 10 942.02 0.30 3.63 73.66 6596.95 0.45 5.713 120.55 8098.00
EEG-2 3.32 9.18 125.97 9946.59 0.26 3.56 67.57 5834.21 0.45 5.83 118.61 8798.29
MEG-1 2.31 9.55 115.75 10 614.00 0.26 5.94 88.87 7471.90 0.37 8.73 153.06 9998.29
MEG-2 2.66 13.15 101.67 9639.90 0.22 4.56 80.47 5729.55 0.30 6.78 166.87 12 361.26
applied the min–max method to normalize all results. However, a more
robust normalization method, like (Giudici & Raffinetti, 2021), would
be advantageous for more consistent and reliable results. Furthermore,
we suggest that statistical tests are developed and used for comparing
model performance, e.g., using the tests in DeLong, DeLong, and Clarke-
Pearson (1988), Giudici and Raffinetti (2024), Sun and Xu (2014).
These tests will enable us to rigorously analyze and compare the
differences between the results obtained from different methods.

Rigorously verifying the explanation results is still challenging, and
lacking ground truth is still the biggest problem in XAI research (Saeed
& Omlin, 2023). This poses a significant obstacle when validating
explanation results using real-world data sets. Investigating benchmark
datasets that compare XAI methods is a pivotal research problem we
aim to address in the future.

In the future, we are interested in expanding its scope of ex-
plainability. Currently, the EAP method can only explain a model’s
10
prediction at a global level, which may limit its application for cases
where instance-level explainability is required. In nonlinear classifi-
cation cases, heterogeneous problems may occur, i.e., a single class
may contain several different patterns. In this case, explanations for a
single instance or a small sample group may be preferred. So, exploring
the possibility of the EAP method for local explanation will be an
investigation in the future.
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