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Amplitude and phase of the gravitational waveform from compact binary systems can be decom-
posed in terms of their mass- and current-type multipole moments. In a modified theory of gravity,
one or more of these multipole moments could deviate from general theory of relativity. In this
Letter, we show that a waveform model that parametrizes the amplitude and phase in terms of
the multipole moments of the binary can facilitate a novel multiparameter test of general relativ-
ity with exquisite precision. Using a network of next-generation gravitational wave observatories,
simultaneous deviation in the leading seven multipoles of a GW190814-like binary can be bounded
to within 6% to 40% depending on the multipole order, while supermassive black hole mergers
observed by LISA achieve a bound of 0.3% to 2%. We further argue that bounds from multipoles
can be uniquely mapped onto other parametrized tests of general relativity and has the potential
to become a down-stream analysis from which bounds of other parametric tests of general relativity
can be derived. The set of multipole parameters, therefore, provides an excellent basis to carry out

precision tests of general relativity.

Introduction.—Gravitational waveform from a com-
pact binary coalescence is a nonlinear function of mass-
and current-type multipole moments [1] and their deriva-
tives with respect to time. The adiabatic inspiral of the
binary is well described by the post-Newtonian (PN) ap-
proximation to general theory of relativity (GR) where
the mass ratio and the spins of the binary constituents
determine which multipoles are excited and what their
contributions are to the emitted flux and the phase evo-
lution of the binary.

In a modified theory of gravity, where the compact bi-
nary dynamics differs from GR, it is natural to expect
that one or more of these multipole moments will devi-
ate from those of GR [2-9]. Therefore, asking whether
the measured multipole moments of compact binaries
are consistent with GR predictions is an excellent way
to test GR. References [10, 11] first derived a multipo-
lar parametrized gravitational-wave phase, which sepa-
rately tracks the contribution from different multipole
moments within the PN approximation to GR. This is
achieved by associating parameters p; and €; to the mass-
and current-type radiative multipole moments, respec-
tively. Here [ = 2,3,--- denote quadrupole, octupole,
etc. The phenomenological multipole parameters are
equal to unity in GR (i.e., u°® = 1 and R = 1), by
definition. By introducing deviations to these multipole
coefficients, denoted as du; and de; (i-e., uy = 1+0u;, and
€1 = 1+ d¢;), one can use the gravitational-wave data to
obtain bounds on these two sets of parameters.

The most general test of GR one can perform, within
this framework, is the one where all the du; and de; are
simultaneously measured, which is often referred to as a

multiparameter test (multiparameter tests have been dis-
cussed in the context of PN phase expansion in Refs. [12—
15]). We explore the possibility of simultaneously esti-
mating the leading seven multipole parameters (i.e., the
leading four mass-type and the leading three current-
type moments) with the present and next-generation
gravitational-wave detectors. This generalizes the single-
parameter projections reported in Refs. [10, 11] and com-
plements the consistency tests proposed in Refs. [16, 17]
and the results from GW190412 and GW190814 being
reported in Refs. [18, 19]. This work also extends the
single parameter octupolar bounds from GW190412 and
GW190814 reported recently in Ref. [20].

The crucial ingredient in this work is the introduction
of new parametrized multipolar amplitudes up to 2PN or-
der recently computed in a companion paper [21], which
enables us to use the multipolar information in both the
amplitude and the phase to derive the bounds on the
multipole parameters. Unlike the parametrizations that
look for deviations either in phase [12, 22-33] or in am-
plitude [17, 19] of gravitational waveform independently,
the multipolar parametrization has the advantage that
the number of independent parameters is smaller, same
as the number of multipole parameters that appears in
the amplitude and phase.

What makes the multiparameter tests very difficult to
perform is the strong degeneracies introduced by the si-
multaneous inclusion of more phenomenological deforma-
tion parameters. Multiband gravitational-wave observa-
tions [13, 14] and Principal Component Analysis [15, 34—
36] have been argued to be two different approaches to
carry out multiparameter tests of GR in terms of de-



formations introduced directly in the PN expansion co-
efficients of the signals’s phase evolution. Here, we in-
vestigate the use of multipole parameters, as opposed to
the usual deformation parameters in the signal’s phase,
to carry out multiparameter tests of GR. Apart from be-
ing a more downstream parameter set, orthogonality of
the multipole parameters may help in lifting the above-
mentioned degeneracies.

In this Letter, we show that the multipolar framework
is a viable route to carry out a very generic multipa-
rameter test of GR. We further argue that the bounds
on du; and d€; can be mapped to other parameterized
tests of GR. Therefore, this new class of tests may be
thought of as an “all-in-one” test of GR, which may
be mapped to any parametrized test of interest. We
explicitly demonstrate this mapping in the context of
parametrized tests of PN phasing, which is currently em-
ployed on the gravitational-wave data and used to obtain
constraints on specific modified theories of gravity [37].

Waveform model—We use the frequency-domain
amplitude-corrected multipolar waveform for spinning,
non-precessing compact binaries recently reported in
Ref. [21]. This waveform model is 3.5PN accurate in the
phase and 2PN accurate in the amplitude (i.e., includes
the contributions from the first six harmonics). The am-
plitude corrected multipolar polarizations in frequency
domain up to 2PN schematically reads [38-40]
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Here M, v (= ﬁ with ¢ being the ratio between
the primary and secondary mass), and Dy denote the
redshifted total mass, symmetric mass ratio, and the lu-
minosity distance of the source, respectively. The in-
dices n and k indicate the §-th PN order and harmon-
ics of the orbital phase, respectively. The parameter
Vi = (270G M f/c*k)'/3 is the dimensionless gauge in-
variant PN parameter for the k-th harmonic [38], G is the
gravitational constant, c is the speed of light, and f is the
gravitational-wave frequency. The coefficients Hﬁrkf ) de-
note the amplitude corrections in the frequency domain
polarizations associated with the contribution from k-th
harmonic at -th PN order. These amplitude coefficients
are functions of the masses, spins, and orbital inclination
angle ¢+ and, in our paramterization, contain the multi-
pole parameters p;, ;. The expressions for all the H (k, ")
can be found in Egs. (10) and (11) of Ref. [21]. Lastly,
Ugpa (f) represents the frequency-domain parametrized
multipolar gravitational-wave phasing for the first har-
monic. Refs. [10, 11] obtained the 3.5PN accurate ex-
pression of Wgpa (f) for non-precessing spinning binaries
using the Stationary Phase Approximation. In the spirit
of null tests, the multipolar polarizations in Eq. (1) are

Network name |Detector location (PSD technology)

HLA LIGO Hanford (A" [42]), LIGO Livingston
(A", LIGO Aundha [43] (AF)

40LA CE [44] Washington (CE 40 km), LIGO
Livingston (A"), LIGO Aundha (A?)

40LET CE Washington (CE 40 km), LIGO Liv-
ingston (A"), ET Europe [45, 46] (ET 10
km xylophone [47])

4020ET CE Washington (CE 40 km), CE Texas
(CE 20 km), ET Europe (ET 10 km
xylophone)

TABLE I. A summary of the four networks of ground-based
gravitational-wave detectors used in our analysis. The de-
tector location determines the detector antenna patterns and
location phase factors, whereas the PSD technology specifies
the used power spectral density. See Ref. [48] for more details.

re-expressed in terms of {du;, d¢; } with the goal of deduc-
ing projected bounds on them from gravitational-wave
observations.

The gravitational-wave strain in the frequency-domain
measured by a detector D is given by

= i, (f30, ¢) |ha (f) F(f30, ¢, )
+ﬁx(f)FX(f795 ¢a 1/’) bl

ho(f)
(2)

where, Fy, is the location phase factor of the detector, F.
and F\ are the antenna response functions that describe
the detector’s sensitivity to the two different polariza-
tions, 6 is the declination angle, ¢ is the right ascension,
and ¢ is the polarization angle (see Sec. III of Ref. [41]
for more details).

Indeed, our inspiral-only waveform model ignores the
contributions from the merger and ringdown phases of
the compact binary dynamics, the inclusion of which can
lead to a considerable increase in the signal-to-noise ratio
(SNR). However, as we crucially make use of the multi-
pole structure in PN theory, it is only natural to employ
inspiral-only waveforms for a proof-of-concept study like
this, provided we restrict to binaries that are dominated
by their inspiral. Finally, for simplicity, we only consider
non-precessing binary configurations in quasi-circular or-
bits. It is likely that precession and eccentricity induced
modulations may improve the bounds reported, though
the magnitude of this needs to be quantified by a dedi-
cated study.

Parameter estimation.—To compute the statistical er-
rors on various multipole deformation parameters and
other relevant binary parameters, we use the semi-
analytical Fisher information matrix formalism [49-52].
In the high SNR limit, the Fisher information matrix is a
computationally inexpensive method to predict the sta-
tistical uncertainties (1o error bars) on the parameters
of a signal model buried in stationary Gaussian noise.

For a frequency-domain gravitational-wave signal



hp(f), described by a set of parameters X, the Fisher
matrix is defined as
fmax i]/ m i]/* +
a2 [ F2n Tl
min Sh(f

*Dm(f) E‘D,n (f)
)

df
(3)

where Sy (f) is the one-sided noise power spectral density
(PSD) of the detector, and fumin and fmax are the lower
and upper limits of integration. In the above equation,
“x” denotes the operation of complex conjugation, and
“” denotes differentiation with respect to various ele-
ments in the parameter set X = {\™}. The lo statistical
error in A\ is 0, = v/2mm, Where the covariance matrix
Ymn = (Tmn) ! is the inverse of the Fisher matrix.

To estimate the errors on all multipole deformation
parameters simultaneously, we have considered the fol-
lowing parameter space

X = {tca @m long V, X1z, X2z IOgDL, COS ¢,
COS07 d)v Y, {6/1[, 661}}, (4)

where, t. is the time of coalescence, ¢. is the phase at
coalescence, M, = M v3/5 is the redshifted chirp mass,
X1 and Yo, are the individual spin components along
the orbital angular momentum®.

For the computation of the statistical errors in the var-
ious parameters for different binary configurations and
networks of ground-based gravitational-wave detectors,
we use GWBENCH [41], a publicly available Python-based
package that computes the Fisher matrix and the cor-
responding covariance matrix for a given gravitational-
wave network. The plus and cross polarizations in Eq. (1)
are added into GWBENCH for this purpose. We have cho-
sen fumin to be 5 Hz and fi.x to be 6F1sco Hz for all
the ground-based network configurations. Here Fisco
is the redshifted Kerr ISCO (inner-most stable circular
orbit) frequency [53-55] and its explicit expression for
non-precessing binaries can be found in Appendix C of
Ref. [56]. For the sources observed by the space-based
Laser Interferometer Space Antenna (LISA), we have
used Eq. (2.15) of Ref. [57] and have taken fio, = 1074
Hz and T,,s = 4 yr to estimate fu,. In the LISA band
fmax is given by the smaller of 6 Fisco and 0.1 Hz. We
have summarized the different networks of ground-based
detectors considered here in Table I. The noise PSDs of
various ground-based detectors used here can be found
in GWBENCH [41]. We have adopted the non-sky-averaged
noise PSD of LISA reported in Ref. [58] [see Egs. (1)-(5)
of [58]] and ignored its orbital motion in our computa-
tion.

1 While estimating the statistical errors on {du;, d¢;} in the LISA
band, we have removed cos 0, ¢, and 1) from the parameter space
to improve the inversion accuracy of the Fisher matrix. These
parameters are mostly irrelevant for our purposes.
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FIG. 1. Multiparameter bounds on different multipolar defor-
mation parameters for GW190412- and GW190814-like sys-
tems in different networks of future gravitational-wave detec-
tors. Median values from the synthesized population of 100
events is reported (see text for details). Different markers de-
note different networks considered here.

If we assume that all of the multipole deviation pa-
rameters take the same value for different events in a
population, one can compute a joint bound on them by
multiplying the corresponding 1d likelihoods. The width
of the joint likelihood is given by

Ua[i(afj))_ﬂ_%, ac {0, da}  (5)

i=1

where ¢ = 1,... N denotes the events considered in the
compact binary population.

Results and discussions.—We start by discussing the
projected bounds on the multipole deformation pa-
rameters from GW190412 [59] and GW190814-like sys-
tems [60], two asymmetric compact binary mergers de-
tected in the third observing run by LIGO/Virgo ob-
servatories, in different networks of future ground-based
gravitational-wave detectors. As these types of events
have been confirmed to exist and extensively studied,
they help us to understand the importance of the re-
sults. As the observed strengths of the higher-order mul-
tipoles depend crucially on the inclination angle ¢ and the
SNR of the observed gravitational-wave signal depends
on the location of the source, we synthesize a population
for these two representative systems and use the median
value of the resulting distribution to assess the measure-
ment uncertainty in various multipole deformation pa-
rameters. Towards this, for each of the systems we draw
100 samples distributed isotropically over the sphere for
the orientation and location of the source. The compo-
nent masses and spins, and the luminosity distances are
fixed at the median values reported by Refs. [59-61]. For
each sample, we estimate the 1o statistical errors in the
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FIG. 2. Combined multiparameter bounds on different multipole deformation parameters for three distinct types of compact
binary population in different networks of future ground-based gravitational-wave detectors. Population models described in
Ref. [48] is employed, and the loudest 200 events in each category of the source population is combined to obtain the results

shown.

seven multipole deformation parameters simultancously
and then compute the median of these 1o errors from the
100 samples. The results for different detector networks
are shown in Fig. 1.

We can measure all seven multipole deformation
parameters simultancously for a GW190814-like sys-
tem to within ~40% accuracy in 4020ET, whereas for
GW190412-like binaries all multipole deformation pa-
rameters can be measured simultaneously to within
~T70% in 4020ET. Therefore a single detection of
GW190412-like or GW190814-like binary in the next-
generation (XG) gravitational-wave detectors will allow
us to measure all seven multipole deformation parameters
simultaneously and hence to perform the most generic
multiparameter test of gravitational-wave phase and am-
plitude evolution in GR. It is seen that the mass-type
multipole deformation parameters are always estimated
better as compared to the current-type multipole defor-
mation parameters. This should be due to the domi-
nance of the mass type moments over the current type
ones on the dynamics of the binary system. In terms of
different detector networks, the 40LET bounds are com-
parable to those from 4020ET which suggests that two
third-generation detectors already provide very precise
bound and the sensitivity of the third detector does not
have a significant impact on the joint bounds.

Next, we consider three different classes of compact bi-
nary populations, neutron star—black holes (NSBH), bi-
nary black holes (BBH), and intermediate mass binary
black holes (IMBBH), reported in Ref. [48] (see supple-
mentary material for details of the population). For each
class of the compact binary population, we select 200
loudest events in the respective network of ground-based
detectors and calculate the combined bounds on all seven
multipole deformation parameters simultaneously using

Eq. (5).

Figure 2 shows the combined bounds on multipole de-
formation parameters for these three types of compact
binary populations in different networks. We can con-
strain all the multipole moments simultaneously within
an accuracy of ~20% in the XG era from the NSBH pop-
ulation. The BBH population considered here mostly
contains equal-mass binaries, and therefore, they provide
the best constraint on dus. Binaries in the IMBBH pop-
ulation are more massive than the other two populations
and are also more asymmetric than the BBH population.
As asymmetric massive binaries carry stronger signatures
of higher-order multipoles, we obtain the best bounds on
higher-order multipole deformation parameters from the
IMBBH population — all multipole deformation param-
cters can be measured simultancously to within ~8% in
the XG era. The NSBH population consists, mainly of
high mass ratio, but less massive, systems than the other
two populations. As a result, they provide bounds similar
to BBH on higher-order multipole deformation parame-
ters.

The merger rates of supermassive binary black holes
(SMBBH) and their detection rates in LISA are highly
uncertain. Here we consider a few representative SMBBH
systems and compute the projected error bars on various
multipole deformation parameters. We consider merg-
ing SMBBHs at a luminosity distance of 3 Gpc with two
different choices of spins (x1. = 0.2, x2. = 0.1) and
(x12 = 0.8, x2. = 0.7). For each pair of spins, we choose
two different mass ratios 2 and 5. All the angles (i.e., ¢, 6,
¢, V) are set to be m/6. The 1o errors in all seven defor-
mation parameters in the LISA band for various SMBBH
configurations are shown in Fig. 3. We find that for most
of the SMBBH systems considered here, LISA will be able
to measure all seven multipole moments simultaneously
to within ~10%.

We next discuss how bounds on the PN deformations
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FIG. 3. Projected multiparameter constraints on various multipolar deformation parameters for SMBBHs in LISA band. All
the sources are considered to be at a fixed luminosity distance of 3 Gpc. All the angles specifying the binary’s orientation and
location in the sky, are chosen to be 7/6 as a representative angular configuration.
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FIG. 4. Violin plots for the posterior probability distribu-
tions of d¢y obtained through the mapping of the multipole
deformation bounds for a next-generation detector configura-
tion consisting of two CE and one ET detector (4020ET). The
horizontal bars indicate the median values and 90% credible
intervals.

may be derieved from the multipole bounds. In principle,
any PN parameterized test of gravitational wave phase
or amplitude can be effectively recast in terms of the
multipole parameters. All we need for this, is to derive
a relation between those phenomenological parameters
in the phase or amplitude and {du;, de;}. If the para-
metric form of the phase or amplitude for any test and
the contribution of different multipoles to the gravita-
tional wave phase [10, 11] and amplitude [21] are known,
this derivation is straightforward. Here, as a proof-of-
principle demonstration, we show how the constraints

on {0y, d¢;} can be mapped onto the different PN de-
formation parameters (5(&;, in the phase evolution (where
be0,2,3,4,5,6,60,7 denotes different PN orders).

Given the gravitational-wave data, d, we are inter-
ested in computing ﬁ(dcfbb\d, H), the posterior probabil-
ity distribution of 5¢A>b, for a uniform prior on 5¢A>b (H
denotes the hypothesis, which is the parametric model
we employ). Once we have the posterior samples for
the joint probability distribution 15(X I XT\d, H) for uni-
form priors on \; € {v, X1z, X2-} and X € {6, o€},
we can compute the posteriors on ¢y, P(6$b|d, H), us-
ing the relation between &5;] and {X;, XT} As ¢y is
a unique, non-linear function of {X;, 5\’T}7 a uniform
prior on {A7, Ar} does not translate into a uniform prior
on 8¢y, Therefore, to obtain P(3¢y|d, ) we need to
reweight the samples of P(5q§b|d, H) by the samples of
8¢y derived from the uniform prior on {X I XT}, using
the relation between (5<Z>b and {Ar, Ar}. A more detailed
discussion about the reweighting procedure is provided
in the supplementary material.

We consider GW190412 and GW190814-like systems
in 4020ET network and compute the Fisher matrix 'y,
to construct Gaussian probability distribution function
p(X) x e 2Tmn (" =AML where Ay are the in-
jected parameter values. We marginalize the distribu-
tion p(X) over paramecters other than {X;, Ar} to get
IB(XI, Nt |d, H). Next, we calculate P((S(;Aﬁb |d, H) using
the samples of P(X;, Ar|d, #). To obtain P(3¢y | d. H)
that assumes a uniform prior on 5(?)5 between [—10, 10],
we reweight the distribution P(d¢y |d. H) by the distri-
bution of 6¢A)b derived from the following prior distribu-



tions: v is uniform between [0.045, 0.25], x1, and x2. are
uniform between [—0.99,0.99], and X are uniform be-
tween [—10,10]. The posterior distribution P3¢y | d, )
of different (5@, are shown in Fig. 4. All the 5(?)‘;, proba-
bility distributions are constrained to better than 0.5 at
80% credibility.

Despite the reweighting employed, the mapped bounds
derived here need not match with the regular multipa-
rameter phasing tests using either ground-based or space-
based detector alone, where different phasing deforma-
tion parameters are treated as independent parameters.
This should not be surprising as the proposed mapping
accounts only for the relation between the multipole and
the phase deformation parameters and not the correla-
tions these two sets of parameters would have with other
binary parameters when the test is performed in the cor-
responding bases. We have checked that the bounds on
the phase deformation parameters derived from the mul-
tipole bounds are overall much tighter than those which
follow from directly sampling over all of them simultane-
ously.

In the case of other parametrized tests of GR that
rely on spin-induced multipole moments [62-65], mod-
ified dispersion relations [66—69], subdominant harmon-
ics [17, 19], etc., the same method will work to derive the
corresponding bounds from the multipole ones. In this
case, one may visualize the test to be capturing a GR
deviation via some effective multipolar deformation. A
detailed study of these maps and their meanings will be
taken up as a follow up project.
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Supplemental Materials

In this Supplement, we briefly describe the three types of compact binary populations considered in the paper. The
reader must refer to Sec. IIT of Ref. [48] for a more detailed description. We also provide the Bayesian framework for
mapping the bounds on multipole deformation parameters {du;, de;} to the PN phasing deformation parameters d¢y,.

Compact binary populations
Binary black holes

The primary black hole masses are drawn from the Power Law + Peak mass model [70, 71] with the following
values of model parameters: o = —3.4, mpin = 5 Mg, Mmax = 87 Mg, A = 0.04, pup, = 34 Mg, 0, = 3.6 Mg, and
Om = 4.8 Mg [72] [See Eq. (B3) in Appendix B of Ref. [72]]. The mass ratio follows a power-law distribution [73] with
power law index of 1.1 [72], and respect the condition my,, = 5 Mg, [See Eq. (B7) in Appendix B of Ref. [72]]. The
aligned spins components of the binary (x1., x2.) are drawn from a Beta distribution [74] with oy, = 2, 8, = 5 [72] [See
Eq. (10) of Ref. [74]]. The merger rate of the binary black hole population is assumed to follow the Madau-Dickinson
star formation rate [75] with a local merger rate density of 24 Gpe=2 yr—1 [71].

Intermediate mass binary black holes

The masses of the intermediate mass binary black hole population are drawn from a power law distribution with
a power-law index of —2.5. The lightest and heaviest masses in the distribution are opted to be mpy, = 100 Mg
and mpax = 1000 Mg, respectively. The spin components along the orbital angular momentum follow a uniform
distribution between [—0.9, 0.9]. The merger rate is chosen to follow the Madau-Dickinson star formation rate [75]
with a local merger rate density of 1 Gpc™3yr—1.

Neutron star-black hole binaries

The black hole masses are drawn from the Power Law + Peak mass model [70, 71], same as the primary mass of the
binary black hole population. The masses of the neutron star follow a uniform distribution between [1,2.2] M. The
aligned spin components of black hole are assumed to follow a normal distribution with mean 0 and standard deviation
of 0.2. The aligned spin components of the neutron star are uniformly drawn between [—0.1,0.1]. The merger rate
follow the Madau-Dickinson star formation rate [75] with a local merger rate density of 45 Gpc=3yr~! [72, 76].

Mapping the multipole deformation bounds to the PN phase deformation parameters

In the Bayesian framework, measuring the PN phase deformation parameter (5(]3;) amounts to obtaining the posterior
probability density function P(d¢p|d, H), where d denotes the detector data and H denotes the model. Using Bayes’
theorem

P(5¢|H) P(d|5dy, H)

P(5|d, M) = P(d|H) ’

(A.6)

where, P(8¢y|#) is the prior probability density function, P(d|d¢y, H) is the likelihood function, and P(d|H) [with
P(d|H) = [ d(3¢p)P(6hp|H) P(d|ddy, H)] is the evidence.

In the parametrized multipolar approach [10, 11] the different gravitational wave phasing coefficients ¢, (also the
amplitude [21]) are functions of py, € along with the other binary’s intrinsic parameters. Therefore, different Sn
are also function of {du;, d¢;} and the intrinsic parameters of binary such as v, x1., and x2.. Here, we are interested
in computing the posterior probability distribution function of (5(;3;,, ﬁ(ééﬂd, H), assuming a uniform prior on 6&;,

i.e., P(6gy|H) = II(6y|H)] from the posterior distributions of {8, d¢;} and intrinsic binary parameters. The
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posterior probability function P(8¢y|d, H) can be obtained by replacing P(8¢y|H) = IL(8¢y|H) in Eq. (A.6) and can
be expressed as follows

L(3hy|H) P(d|d¢, H)

P(6y|d, M) = B
_ T1(6¢u|#) [ dXr dAr P(dIXr, A, H) P(Ar, Ar |06y, H)
P(d|H)
_ TI(0¢u[H) TL(Xp, Xr[H) P3| X1, Az, H)

; (A7)

X dX]dXTP(d|X[,XT,H) =
/ H(5¢w|H)

P(X1, X164y, H)

P(d|H)

where, the intrinsic binary parameters are represented by M€ {v, X1z, X2}, the mulitpolar coefficients are denoted
by A € {8, 6¢;}. P(d|H) is the evidence for the uniform prior on 8¢y, P(d|X;, X, ) is the likelihood function of the
gravitational wave data given the parameters {X;, Ar}, P(6dy | X1, A, H) takes care of the coordinate transformation
between {XI, XT} and 8¢y, and I1(8¢p|H) is given by

H((S(ZB},W‘[) = /dX[ dXT ﬁ(X], XT|H) P(é(i”X}, XT, ’H) . (AS)

Therefore, II(3¢y | H) is simply the distribution of §¢y, derived from the uniform prior on Xr and A7 and the relation
between d¢p, and {A;, Ar}. In Eq. (A.7), we have used Bayes’ theorem which can be further simplified as follows

P, ) = 1100 2) x TR o f 0%, i | MO Arl#) P X, H) | P0G A, H)

P(dH) PIT(dm) TI(3|H)
B3 Ar|dH)
.- A o T1(3¢|H) PIT(d\H)
= d\; d 7 P(d )\,)\,’HP/\ )\d’H , A9
[/ 1dATP(dgp| A1, Ap, H) I T\ ] T(6o|H) (d\’H) (A.9)

where, P(/\I, )\T|d H) is the posterior probability density of {X;, A} and Prp(d/H) [with PIT(d|H) =

[ dX; dXp TI(X1, Xp|H) P(d| A1, Az, H)] is the corresponding evidence derived assuming a uniform prior on {A7, Ap}.
Prr(d|H)

Py
is only interested in estimating P(d¢y|d, H). The different steps for the derivation of the above equation are followed
from Ref. [20] (See Sec. 2 of the supplementary material in Ref. [20})

The numerical factor is an overall normalization constant in the above equation and can be ignored if one

As mentioned earlier, 6¢, is a unique function of {)\I, A1}, say fy(Ar, Ar) [10, 11]; hence given a value of {X;, Ar},
6¢b is particularly determined. Therefore, P(5¢b | X I, )\T, H) can simply be represented by a delta function,

P(3¢y| X1, Xr, H) = 866 — fo(A1, At)). (A.10)
In practice, to compute 15(&3;,\(1, H) one needs to take the posterior samples of {X;, XT} and estimate d¢y, for each

(66 |H)

sample through the functions fb(x I, XT); and then reweight these samples by the probability AL
b




