Dictionary Examples in the Era of Large Language Models

Fatemah Almeman∗△, Steven Schockaert∗, Luis Espinosa-Anke∗♢

∗CardiffNLP, School of Computer Science and Informatics, Cardiff University, UK
△ College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, KSA
♢ AMPLYFI, UK

{almemanf, schockaerts1, espinosa-ankel}@cardiff.ac.uk

Abstract

Dictionary definitions play a prominent role in a wide range of NLP tasks, for instance by providing additional context about the meaning of rare and emerging terms. Many dictionaries also provide examples to illustrate the prototypical usage of words, which brings further opportunities for training or enriching NLP models. The intrinsic qualities of dictionaries, and related lexical resources such as glossaries and encyclopedias, are however still not well-understood. While there has been significant work on developing best practices, such guidance has been aimed at traditional usages of dictionaries (e.g. supporting language learners), and it is currently unclear how different quality aspects affect the NLP systems that rely on them. To address this issue, we compare WordNet, the most commonly used lexical resource in NLP, with a variety of dictionaries, as well as with examples that were generated by ChatGPT. Our analysis involves human judgments as well as automatic metrics. We furthermore study the quality of word embeddings derived from dictionary examples, as a proxy for downstream performance. We find that WordNet’s examples lead to lower-quality embeddings than those from the Oxford dictionary. Surprisingly, however, the ChatGPT generated examples were found to be most effective overall.

Keywords: lexical resources, dictionary examples, semantics

1. Introduction

Lexical resources are a fundamental repository of knowledge. They include information about words, in the form of definitions, as well as other critical information such as examples of usage, morphology, syntax and etymology. Lexical resources play a key role both in traditional (knowledge-rich) and data-driven NLP (Camacho-Collados et al., 2018). For instance, they have been used for decades for improving word-to-word Machine Translation systems (Masterman, 1957; Sparck Jones, 1986; Artetxe et al., 2017), or in low resource settings, e.g., for improving English-Malayalam translations by providing additional vocabularies and inflected verbal forms (S and Bhattacharyya, 2016). Other areas such as word sense disambiguation (WSD) (Kwong, 2001; Fellbaum, 2001) or question answering (Pasca and Harabagiu, 2001) have also benefitted. More generally, NLP applications rely on lexical resources for modeling semantics, either directly (Budanitsky and Hirst, 2001; Silber and McCoy, 2002), or via the enrichment and refinement of both knowledge bases (Espinosa-Anke et al., 2016b; Xu et al., 2022) and language models (LMs) (Joshi et al., 2020; Chen et al., 2022).

Despite the importance of lexical resources in NLP, there has only been limited work on evaluating their intrinsic quality, fleshing out their specific features (e.g., type and style of definitions, or readability and informativeness of examples) and studying the extent to which such features dictate the performance of NLP systems. For instance, WordNet (WN) is the de-facto lexical database for English (Miller, 1995), and has been embedded in a myriad of applications (cf. Section 2.1), among others, due to its large provision of <word, definition, example> triplets. Here, example is a sentence showing the usage of word (as defined by definition) in context. This is helpful, among others, for definition modeling (Noraset et al., 2017; Gadetsky et al., 2018; Giulianelli et al., 2023), which has in turn been shown to benefit existing lexical semantics systems (Bevilacqua et al., 2020). However, despite WN’s popularity, Almeman and Espinosa-Anke (2022) concluded that its examples are often shorter and less informative than those from other lexical resources (e.g., the Oxford Dictionary). This makes it hard to learn a good representation of a word by (only) relying on WN examples. This issue was further investigated by Giulianelli et al. (2023), who used Large Language Models (LLMs) such as FlanT5-XXL (Chung et al., 2022) to generate definitions for words in context, finding this harder for WordNet examples than for examples from the Oxford Dictionary.

In this context, and even in today’s LLM era, we find that WN remains widely used. For instance, WN was recently used to create a novel abstract/concrete hypernymy dataset which proved to be challenging even for recent LLMs (especially when it comes to abstract terms) (Liao et al., 2023). WN has also been used with success for curating datasets and, in combination with LLMs, for
solving highly specialized tasks such as pun detection (Ermakova et al., 2023). More generally, at the intersection of lexicography and NLP, we can now find studies focused on the capabilities of LLMs when compared to more traditional resources, such as English learners’ dictionaries. For instance, Rees and Lew (2023) evaluated AI-generated definitions against those provided by the Macmillan English Dictionary to resolve vocabulary uncertainties within a multiple-choice reading task, which was aimed at testing lexical knowledge. However, there was no significant difference between the performance of students who used MED definitions, had no definitions at all, or were provided with AI-generated definitions. In contrast, Phoodai et al. (2023) found that ChatGPT generally outperforms the Oxford Advanced Learner’s Dictionary in providing lexicographical data to English language learners, particularly on microstructural elements. Therefore, and given the relevance of WN as a go-to resource in NLP, in this paper we extend previous analyses of this resource by conducting a comprehensive evaluation of its examples. In addition to comparing WN’s examples against those from other lexical resources, we also include examples that were generated by ChatGPT\(^1\) in our analysis. Specifically, we propose an analysis that involves human assessments of dictionary examples from several standpoints, namely naturalness, informativeness and the extent to which examples are self-contained. We complement these human judgements with a range of automated metrics. Finally, as a proxy for the usefulness of dictionary examples in downstream tasks, we test the quality of the word embeddings that can be obtained from these examples, using an off-the-shelf model for learning representations of words in context (Liu et al., 2021). Our findings can be summarised as follows:

- WN examples are less informative than those from the Oxford dictionary and those generated by ChatGPT. However, they are generally easy to to understand and are judged to be more natural by human annotators.

- The examples generated by ChatGPT are judged to be considerably more informative than those from WN and the Oxford Dictionary by human annotators. Moreover, word embeddings that are learned from ChatGPT’s examples perform considerably better in word similarity benchmarks.

- WN examples tend to be generally (too) short, often include words that are highly ambiguous, and tend to lack fluency.

The rest of the paper is structured as follows. First, we provide the necessary background for the two main concerns of this paper, namely WN and the principles behind good dictionary examples (a.k.a. GDEX criteria). Then, we report on the results of the human evaluation of WN’s examples against GDEX criteria. We contrast our findings to an NLP experiment, specifically the evaluation of word similarity, where we use contextualised embeddings of words-in-context to represent words. Specifically, by obtaining these embeddings from dictionary examples, we can use this task to estimate the informativeness of the examples. We then complement our questionnaire and extrinsic evaluation with an intrinsic evaluation of WN examples through automatic metrics (GDEX and readability-based). This allows us to perform a larger-scale comparison with other lexical resources. Finally, we summarise our conclusions and outline directions for future work.

2. Background

In this section we first introduce WordNet (Miller, 1995), as the lexical resource that we focus on in this paper. Second, we recall a set of criteria known as Good Dictionary Examples (GDEX) (Kilgarriff et al., 2008), since our evaluation builds on them.

2.1. WordNet

WN is an electronic lexical dictionary for English that organizes words in groups of synonyms called “synsets” (Miller, 1995). Each synset is described by its definition, lemmas (i.e. the set of words or phrases that make up the synset), examples of usage (for some but not all synsets), and its relation to other synsets. Some of the relations that are covered include hypernymy (is-a), meronymy (is-part) and troponymy (manner-of). WN is mainly used in lexicographic and language learning settings (Morato et al., 2004), but it has also proven to be a high-quality knowledge resource for NLP systems. For instance, previous works have shown that base NLP systems can be improved by injecting knowledge from WN in some way, with applications ranging from information retrieval and extraction (Moldovan and Mihalcea, 2000; Banerjee and Pedersen, 2002) to improving word embeddings (Faruqui et al., 2014; Espinosa-Anke et al., 2016a; Mrkšić et al., 2017; Vulić and Mrkšić, 2018), or “simply” serving as the sense inventory for WSD methods of various nature (Agirre and Edmonds, 2007; Zhang et al., 2022; Pu et al., 2023).

2.2. GDEX

The “Good Dictionary EXamples” tool was first implemented as a system that added around 8,000

\(^1\)https://chat.openai.com
new example sentences to the Macmillan English Dictionary by automatically finding good examples in corpora using a set of rules of thumb (Kilgarriff et al., 2008; Bejoint, 2014). GDEX criteria are used in different works for extracting examples or concordances from a corpus, and have been studied and discussed, often more in terms of their usefulness for lexicographers rather than their benefits for NLP. In a nutshell, a good dictionary example must be:

- **Typical**, i.e., showing the, as Kilgarriff et al. (2008) put it, “frequent and well-dispersed patterns of usage” of the target word.
- **Informative**, so that it helps with understanding the definition of the word.
- **Intelligible** to the reader by avoiding difficult lexis and structures which cannot be understood without access to a wider context (a.k.a. readability).

Beyond the above core GDEX criteria, Kosem et al. developed further desiderata, including that a dictionary example is:

- **Natural**: the example should appear like a sentence one would expect to see in usual language use.
- **Authentic**: because they are examples from actual corpora.
- **Self-contained**: the content of the example is understandable without requiring additional context.

3. Human Evaluation

Our core motivations are to assess to what extent WN (1) adheres to GDEX criteria; (2) how it compares with another well known resource, namely the Oxford Dictionary (Oxford Dictionary, 1989); and (3) how well it compares with examples automatically generated using LLMs. In order to answer these three questions, two annotators with extensive expertise in computational lexicography and machine learning, good command of English (although not native speakers), and with annotation experience, were provided with a questionnaire specifically designed for evaluating the quality of dictionary examples. In Section 3.1 we first explain the data that was used for constructing this questionnaire. Subsequently, we describe the design of the questionnaire itself in Section 3.2 and we discuss the results in Section 3.3.

3.1. Questionnaire Data

The definitions and examples that were used in the questionnaire were sourced from 3D-Ex (Almeman et al., 2023), a unified resource containing several dictionaries mapped against common <word,definition> and <word,definition,example> triplets. The examples in the questionnaire were derived from all <word,definition> instances that were identified through an exact match in both WN and a subset of the Oxford Dictionary. We will refer to the latter dictionary as CHA, which is common practice in the literature, as per the first work that introduced this dictionary into NLP applications (Chang and Chen, 2019).

Generating Examples with ChatGPT In addition to data from WN and CHA, we expanded the questionnaire with examples that were generated using GPT-3 (text-davinci-003) and ChatGPT (gpt-3.5-turbo). We used two different prompts to obtain the examples: the simple format (“Write a sentence showing the word {word}, defined by {definition} in context”); and the GDEX format, which extended the simple prompt with instructions about how the example should be written following GDEX criteria.

Questionnaire Statistics The questionnaire focused on 87 words. Each of these words has a corresponding definition and usage example in both WN and CHA. For each word, we also included four generated examples (two prompts for each of GPT-3 and ChatGPT), resulting in a total of $87 \times 6 = 522$ examples. Each example was evaluated based on three criteria (see Section 3.2) by two annotators, meaning that this annotation exercise resulted in 3,132 unique annotations. Table 1 illustrates the kind of examples that the participants were asked to annotate, in this case for the word “cage”. Note that the sources were hidden from the participants.

3.2. Questions Design

The questions presented in the questionnaire were aimed at capturing participants’ perception of GDEX criteria in a granular way. To this end, the questionnaire was split into two sections: definitions evaluation and examples evaluation. While our main focus was on the examples evaluation, we included an evaluation of the definitions as well, to assess to what extent the definitions alone were successful in clarifying the meaning of the considered terms. The primary objective of this exercise is to determine whether (and how much) examples can help readers understand the meaning of difficult or unfamiliar terms that have unclear or difficult definitions. Specifically, for definitions evaluation, participants were presented with a word and definition, and were asked to assign one of the following labels:
Table 1: Examples for the term “cage”, defined as “confine in a cage”.

<table>
<thead>
<tr>
<th>Example</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>The animal was caged.</td>
<td>WordNet</td>
</tr>
<tr>
<td>In future should I leave the house I will cage the dogs no matter who else is in the house with them.</td>
<td>CHA</td>
</tr>
<tr>
<td>The zookeeper had to cage the wild animals to ensure the safety of the visitors.</td>
<td>ChatGPT-simple</td>
</tr>
<tr>
<td>The zookeeper had to cage the wild animal to ensure the safety of visitors.</td>
<td>ChatGPT-GDEX</td>
</tr>
<tr>
<td>The zookeeper caged the lion to keep it from escaping.</td>
<td>GPT-3-simple</td>
</tr>
<tr>
<td>The animal was confined in a small cage, unable to escape its captivity.</td>
<td>GPT-3-GDEX</td>
</tr>
</tbody>
</table>

Unclear: upon reviewing the provided definition, the meaning of the term remains unclear or difficult to comprehend

Borderline: the definition gave me some insight into the term’s meaning, but it is still unclear

Clear: the definition clearly and fully explains the meaning of the term

The *examples evaluation* section of the questionnaire aimed at evaluating the WN and CHA examples, as well as those generated by GPT-3 and ChatGPT. In this case, annotators were asked to rank each example according to the following criteria:

- **Self containment**: Was the dictionary example fully understandable to you without the need for wider context or to consult external sources? (1-3 where 1: No, 2: Partially, and 3: Yes)
- **Informativeness**: Regardless of your prior knowledge of the term, how well did the example clarify or elaborate on its meaning? (1-5; 1 being the lowest, 5 the highest)
- **Naturalness**: Naturalness: How well does this example reflect the style and wording you’d expect to find in everyday language use? (1-5; 1 being the lowest and 5 the highest)

3.3. Results and Analysis

Annotator Agreement

First, Table 2 reports the agreement between the two participants, in terms of Fleiss’ kappa, as well as the Pearson (PCC) and Spearman (SCC) correlation coefficients. Overall, we can conclude that there was a fair level of agreement between the two annotators. When interpreting relatively low Fleiss’ kappa scores, the fine-grained nature of the annotation scales needs to be taken into account. As the Pearson and Spearman correlation scores show, the annotators largely agreed on the overall trends. In particular, the main conclusions from our analysis below remain valid whether we look at the annotations from either annotator alone, or whether we aggregate their scores.

Informativeness for Challenging Definitions

We first delve into which resource (or pseudo-resource) provided the highest number of informative examples. For this analysis, we specifically focus on words whose definition received ratings of being *unclear* or *borderline* by at least one of the annotators. This was the case for 45 of the definitions. We focus specifically on these 45 words, as the main purpose of dictionary examples is to help clarify potentially incomplete definitions. Upon examining the examples associated with these words, as shown in Table 3, it can be seen that ChatGPT-GDEX yielded the highest number of informative examples, rated 4 or 5 by one annotator or more. In contrast, WN exhibited the lowest count of informative examples. In terms of uninformative examples (those with a score of 1 or 2 from at least one annotator), WN presented the highest number, while GPT-simple displayed the lowest. Despite this, the differences are relatively small, especially in the number of informative examples. However, we observe a trend that will become evident throughout the rest of this paper, which is the struggle of WN in providing informative examples for challenging definitions, as opposed to ChatGPT and GPT-3. This is further supported by the examples presented in Table 1.

GDEX Criteria

Let us now take a closer look at the assessment of the different GDEX criteria for the 6 considered resources. Figure 1 shows the response means and standard errors, which we can interpret as follows. WN examples appear highly natural but they are somewhat lacking in informativeness, which would suggest they may be easy to understand but not very useful examples. In comparison, the CHA examples are more informative but less natural, as well as being slightly less self-contained. Interestingly, the GPT-3 and ChatGPT generated examples were rated as being considerably more informative, while at the same time also being more natural than those from CHA, albeit less natural than those from WN. Moreover, when comparing ChatGPT-simple with ChatGPT-GDEX and
comparing GPT-3-simple with GPT-3-GDEX, we cannot see any benefits from the GDEX based prompting strategy. This confirms that, while the GDEX prompt leads to longer and more complex examples, in practice, they prove to be just as effective as the zero-shot approach without explicit instructions.

4. Similarity Experiment

This experiment aims to validate the human judgments collected through the questionnaire by employing WN, CHA, and ChatGPT examples to compute similarities between word pairs. Specifically, for this experiment, we use the examples to generate word embeddings, using MirrorWiC (Liu et al., 2021), a state-of-the-art model for learning high-quality representations of words or phrases in context. The idea behind this experiment is that informative examples should lead to higher-quality embeddings. To evaluate the quality of the word embeddings, we rely on a number of standard word similarity benchmarks, namely SimLex-999 (Hill et al., 2015), SimVerb-3500 (Gerz et al., 2016), Stanford’s Contextual Word Similarities (SCWS) (Huang et al., 2012), and MEN Test Collection (Bruni et al., 2014). We first extracted the common words between WN and CHA along with their examples, and for each word we generated 5 different examples from ChatGPT using the two different prompts (Section 3.1). Then for each similarity dataset we retrieved the word pairs that can be found in the common words set. For each pair, we computed the cosine similarity between the MirrorWiC embeddings of their associated examples. If a word has multiple examples in WN or CHA, we select the one that leads to the highest similarity score. By comparing the similarity scores with the gold scores provided by the similarity datasets, we found that ChatGPT examples have the best encoding for all datasets while WN-derived embeddings seems less suitable for the task. Table 5 shows the Pearson’s Correlation Coefficient (PCC) and the Spearman’s Correlation Coefficient (SCC) between the gold similarity scores and the cosine similarity between examples’ encodings.

In addition to the word similarity results, we also list a few illustrative examples (Table 4) where, for different word pairs, we show the dictionary examples pair with the highest cosine similarity for each resource. The disparity in the quality of the resources (and GPT generations) becomes apparent. For instance, for easy and tough, we find that the most similar WN examples are less informative, and most critically, the antonymic relationship between both words is not actually reflected by the given sentence pair. The CHA and GPT generations do not suffer from this issue. A similar situation happens with dull and funny, where the antonymic relationship is not captured by the WN example pair, and instead we find that both examples elicit health-related senses. CHA, in this case, also falls short (dull edge and funny stomach), but both of the GPT generated pairs are expressing the sense related to entertainment. Finally, for rock and jazz, the WN examples pair again shows a conflating of meanings (music, but also exaggerated talk in “don’t give me any of that jazz”), with CHA and GPT, both providing accurate music-themed senses. Interestingly, however, GPT provides an example pair where a visual arts sense of jazz (“decorated with a jazz theme”) was found to be most similar to the music sense of rock.

5. Automatic Evaluation

In order to complement the insights derived from the questionnaire analysis, we are also interested in comparing the examples from different sources in terms of automatic metrics. We focus on evaluating their readability (i.e., how easy it would be to understand them), as well as a number of other measurable criteria which are sometimes considered as important for good dictionary examples Kilgarriff et al. (2008). For this analysis we look at two different settings. First, we consider all dictionaries with examples included in 3D-ex. In this case, we randomly sample 1,000 examples from each resource. Note that these examples are necessarily for different words, since the overlap between some of the sources is small. Therefore, in our second
setting, we focus on the words in the intersection of WN and CHA. For this analysis, we will be able to
directly compare the examples from these two
dictionaries with each other, as well as with the ex-
amples generated from GPT-3 and ChatGPT. We
first recall the nature and main features of all the
resources considered:

- **Wikipedia**: a collaborative online encyclope-
dia generated by a community of online con-
tributors (Yano and Kang, 2016).

- **Wiktionary**: A web-based dictionary provides
different information about terms, including def-
definitions, examples, pronunciation, and more
(Bajčetić and Declerck, 2022).

- **Urban** (Urban Dictionary): a crowd-sourced
 resource focusing on terms that are usually not
 included in conventional dictionaries (Wilson
 et al., 2020).

- **CODWOE**: The English version of the dataset
used for the CODWOE (Comparing Dictionaries
and Word embeddings) SemEval 2022
shared task (Mickus et al., 2022).

- **Sci-definition**: a dataset constructed to gen-
erate definitions for scientific terms with con-
trollable complexity (August et al., 2022).

5.1. Metrics

We measured the quality of dictionary examples
using two groups of metrics. First, we
used readability metrics, which determine the U.S.
grade level needed to comprehend a sentence:
Flesch–Kincaid Reading Grade Level (FKRGL)
(Kincaid et al., 1975), which uses word length
and sentence length, Dale-Chall Readability (DCR)
(Dale and Chall, 1948), which is based on sen-
tence length and the number of ‘hard’ words, and
Coleman-Liau Index (CLI) (Coleman and Liau,
1975), which is calculated using the average num-
er of letters per 100 words and the average sen-
tence length. Second, we looked at proxies for
determining adherence to the following GDEX cri-
teria:

- **Sentence fluency**: we use the GPT-2
language model for measuring fluency of dictio-

- **Sentence length (len-pen)**: a good exam-
ple should be between 10 and 25 words long
based on Kilgarriff et al. (2008). Accordingly,
the length penalty was calculated as 1 minus

We chose GPT-2 instead of GPT-3 as it provides
sufficient performance while being more user-friendly
and cost-effective.
<table>
<thead>
<tr>
<th>W1</th>
<th>W2</th>
<th>Encoded Example 1</th>
<th>Encoded Example 2</th>
<th>Dict.</th>
</tr>
</thead>
<tbody>
<tr>
<td>easy</td>
<td>tough</td>
<td>An easy victim.</td>
<td>Getting published and earning a bit of critical acclaim to spur on further creative efforts is tough for those starting out.</td>
<td>WN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With so many people to choose from, booking several dates in a short amount of time is easy.</td>
<td>He had a tough time adjusting to his new school.</td>
<td>CHA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>She has a natural talent for learning languages, so picking up Spanish was easy for her.</td>
<td>The hiking trail was tough, with steep inclines and rocky terrain.</td>
<td>ChatGPT_g</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The hike up the mountain was challenging, but the descent was easy and enjoyable.</td>
<td>The hiking trail was tough, with steep inclines and rocky terrain.</td>
<td>ChatGPT_g</td>
</tr>
<tr>
<td></td>
<td>dull</td>
<td>Dull pain.</td>
<td>Told the doctor about the funny sensations in her chest.</td>
<td>WN</td>
</tr>
<tr>
<td></td>
<td>funny</td>
<td>Most cooks use the point because the edge is dull.</td>
<td>Suddenly my stomach felt funny.</td>
<td>CHA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>His sense of humor was quite dull, and his jokes rarely elicited laughter.</td>
<td>My friend has a funny way of telling stories; he always adds humorous details.</td>
<td>ChatGPT_g</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The lecture was so dull that I struggled to stay awake.</td>
<td>The comedian’s jokes were so funny that the entire audience couldn’t stop laughing.</td>
<td>ChatGPT_g</td>
</tr>
<tr>
<td></td>
<td>rock</td>
<td>That mountain is solid rock.</td>
<td>Don’t give me any of that jazz.</td>
<td>WN</td>
</tr>
<tr>
<td></td>
<td>jazz</td>
<td>The movie is a disappointment and could have been a lot better if only he had gone out on a few more limbs than just the inclusion of a few rock tunes.</td>
<td>They’re playing a kind of light jazz, something lively to listen to without having to know the words.</td>
<td>CHA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>My favorite genre of music is classic rock.</td>
<td>I love listening to jazz music on a lazy Sunday afternoon.</td>
<td>ChatGPT_g</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The concert was held in an open-air amphitheater, and the crowd swayed and danced to the rhythm of the rock music.</td>
<td>The interior of the restaurant was decorated with a jazz theme.</td>
<td>ChatGPT_g</td>
</tr>
</tbody>
</table>

Table 4: Examples from the word similarity experiment, showing the pair of examples with the maximum cosine similarity between their MirroWiC embeddings for several resources: WordNet (WN), CHA (CHA), ChatGPT-simple with a simple prompt (ChatGPT_s) and ChatGPT-GDEX prompted with instructions on writing a good dictionary example following GDEX (ChatGPT_g).

<table>
<thead>
<tr>
<th></th>
<th>SimLex</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCC</td>
<td>SCC</td>
<td>PCC</td>
<td>SCC</td>
<td>PCC</td>
<td>SCC</td>
</tr>
<tr>
<td>WordNet</td>
<td>0.18</td>
<td>0.16</td>
<td>0.21</td>
<td>0.21</td>
<td>0.59</td>
<td>0.54</td>
</tr>
<tr>
<td>CHA</td>
<td>0.25</td>
<td>0.25</td>
<td>0.28</td>
<td>0.26</td>
<td>0.62</td>
<td>0.58</td>
</tr>
<tr>
<td>ChatGPT-simple</td>
<td>0.44</td>
<td>0.43</td>
<td>0.37</td>
<td>0.36</td>
<td>0.68</td>
<td>0.66</td>
</tr>
<tr>
<td>ChatGPT-GDEX</td>
<td>0.46</td>
<td>0.43</td>
<td>0.42</td>
<td>0.40</td>
<td>0.68</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Table 5: Correlation between the gold similarity scores and the cosine similarity between examples’ encodings, in terms of Pearson (PCC) and Spearman (SCC) Correlation Coefficient (bold: best, underlined: worst).

- **Word frequency (freq-pen):** A sentence was penalized for each non-frequent word, defined as a word which is not among the top 20,000 most common words on the English language, as derived from the Google Web Trillion Word Corpus (Brants and Franz, 2006). This penalty score is derived by computing the ratio of non-frequent words to the total number of words in the sentence.
- **Anaphoric references (ana-pen):** This
penalty score was calculated by dividing the number of pronouns in the dictionary example by its total number of words.

- **Ambiguity**: we penalized the presence of ambiguous words in a sentence by summing up the number of senses for each word (using WordNet senses) and then dividing this by the total number of words in the sentence.

- **The main clause (m-clause)**: we penalized examples where the target word does not appear in the main clause. Specifically, examples where the target word is in the main clause are scored 1, with other examples being scored 0. To identify the main clause, we used a transition-based dependency parser.

5.2. Assessing 3D-EX Sources

Table 6 shows the automatic evaluation results, where we report the average for each metric. Our analysis reveals that WN examples exhibit the lowest sentence fluency, and they also tend to have a higher penalty for using ambiguous or multi-sense words. In contrast, WN does well at ensuring that the target word is included in the main clause of the sentence, and it provides easy to read examples as shown by its scores in the readability metrics. In addition, its penalties for non-frequent words and anaphoric references are low compared to the other resources.

Conversely, Sci-definition examples show the highest log-likelihood scores, suggesting they are more coherent and fluent. Nevertheless, Sci-definition examples demonstrate higher grade levels in all readability metrics, implying a greater level of complexity, which is unsurprising given that they were sourced from scientific journal abstracts. Moreover, Wikipedia has the lowest penalty for sentence length, anaphoric references, and ambiguity. This suggests that Wikipedia’s examples are closer to the ideal length, use fewer pronouns for clearer communication, and have fewer words with multiple meanings for easier understanding. However, Wikipedia, along with Urban, received a higher penalty for non-frequent words, while CHA has the lowest penalty for this metric, indicating a preference for commonly used language in its examples. Urban demonstrates high readability, as indicated by its lower grade levels in FKGRL and CLI, but has higher penalties for the use of non-frequent words, which is unsurprising given the very nature of Urban Dictionary.

5.3. WN vs CHA vs GPT

In this section, we look at the data used for the dictionary example evaluation via the GDEX-motivated questionnaire (Section 3). Recall that, in addition to including actual lexicographic resources (WN and CHA), we also include two instances of GPT as described in Section 3.1. In terms of results, the most immediate conclusion is that, upon comparing ChatGPT-simple with ChatGPT-GDEX, and GPT-3-simple with GPT-3-GDEX in Figure 2, it becomes evident that the GDEX-prompted examples exhibit higher readability grades, indicating that they might be more challenging to read. However, when compared with the questionnaire results, they yield very similar outcomes, especially in terms of informativeness. Figure 3 shows the Pearson correlations between readability metrics and questionnaire criteria for some of the datasets. In both WN and CHA, there is a negative correlation between self-containment and readability, which means that annotators frequently labeled easy to read examples with high self-containment scores. Additionally, a negative correlation between naturalness and readability is observed in ChatGPT-simple and GPT-3-simple. This implies that their easy to read examples tend to also be annotated as natural.

6. Conclusion and Future Work

In this work we have evaluated WN examples in comparison with existing lexicographic resources and similar content automatically generated by GPT. Our findings highlight that although WN is a valuable resource that excels at providing a certain type of dictionary example, it does not seem to be the optimal resource when informative contexts are required. We also found that the gains by using GDEX criteria in a prompt to ChatGPT are negligible, which could point to the fact that ChatGPT already has a deep understanding of what a good dictionary example should look like. Finally, in our downstream analysis, using word similarity as a proxy, we found that indeed examples from ChatGPT yielded better embeddings in all datasets, leaving little doubt about what to prefer when it comes to using dictionary examples for downstream applications relying on word or phrase representations.

For the future, we would like to extend the questionnaire to other resources and LLMs, and leverage the scores we obtained for training dictionary scoring systems, which we believe would be helpful tools both for lexicographers and NLP practitioners. Additionally, in similar spirit to other works that extended GDEX (or, more generally, studied sen-
Table 6: Examples automatic evaluation results (bold: best, underlined: worst, in all metrics, a lower value is better, with the exception of “fluency” and “m-clause”).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>fluency</th>
<th>len-pen</th>
<th>freq-pen</th>
<th>ana-pen</th>
<th>ambiguity</th>
<th>m-clause ↑</th>
<th>FKRGL</th>
<th>DCR</th>
<th>CLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>WordNet</td>
<td>-6.08</td>
<td>0.64</td>
<td>0.18</td>
<td>0.08</td>
<td>5.91</td>
<td>0.97</td>
<td>6.97</td>
<td>8.48</td>
<td>7.93</td>
</tr>
<tr>
<td>CHA</td>
<td>-5.06</td>
<td>0.14</td>
<td>0.09</td>
<td>0.09</td>
<td>5.99</td>
<td>0.88</td>
<td>10.24</td>
<td>8.80</td>
<td>10.57</td>
</tr>
<tr>
<td>Wikipedia</td>
<td>-5.14</td>
<td>0.11</td>
<td>0.23</td>
<td>0.02</td>
<td>4.19</td>
<td>0.96</td>
<td>11.11</td>
<td>11.41</td>
<td>10.77</td>
</tr>
<tr>
<td>Wiktionary</td>
<td>-4.99</td>
<td>0.42</td>
<td>0.22</td>
<td>0.08</td>
<td>4.89</td>
<td>0.65</td>
<td>11.60</td>
<td>9.23</td>
<td>10.73</td>
</tr>
<tr>
<td>Urban</td>
<td>-5.75</td>
<td>0.28</td>
<td>0.23</td>
<td>0.11</td>
<td>5.74</td>
<td>0.79</td>
<td>4.17</td>
<td>8.60</td>
<td>4.52</td>
</tr>
<tr>
<td>CODWOE</td>
<td>-5.08</td>
<td>0.46</td>
<td>0.21</td>
<td>0.09</td>
<td>5.13</td>
<td>0.80</td>
<td>9.26</td>
<td>8.72</td>
<td>8.87</td>
</tr>
<tr>
<td>Sci-definition</td>
<td>-4.53</td>
<td>0.31</td>
<td>0.19</td>
<td>0.05</td>
<td>4.46</td>
<td>0.82</td>
<td>16.47</td>
<td>12.16</td>
<td>15.93</td>
</tr>
</tbody>
</table>

7. Acknowledgments

This work was supported by EPSRC grant EP/V025961/1.

8. Bibliographical References

References

Claudio Delli Bovi, Luca Telesca, and Roberto Navigli. 2015. Large-scale information extraction from textual definitions through deep syntactic and semantic analysis. Transactions of the Association for Computational Linguistics, 3:529–543.

Umut Ufuk Demirhan. 2016. A frequency dictionary of turkish: Core vocabulary for learners.

Umberto Eco. 1990. The Limits of Interpretation. Indian University Press.

Daniela Gerz, Ivan Vulić, Felix Hill, Roi Reichart, and Anna Korhonen. 2016. SimVerb-3500: A large-scale evaluation set of verb similarity.

Eric H. Huang, Richard Socher, Christopher D. Manning, and Andrew Y. Ng. 2012. Improving word representations via global context and multiple word prototypes. In Annual Meeting of the Association for Computational Linguistics (ACL).

M. Pasca and S. Harabagiu. 2001. The informative role of wordnet in open-domain question answering. Workshop on WordNet and Other Lexical Resources at NAACL.

Sreelekha S and Pushpak Bhattacharyya. 2016. Lexical resources to enrich english malayalam machine translation.

Lei Zhang, Fanchao Qi, Zhiyuan Liu, Yasheng Wang, Qun Liu, and Maosong Sun. 2020. Multi-channel reverse dictionary model.

9. **Language Resource References**
