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A B S T R A C T   

Uncertainties and computational complexity are two growing challenges in scheduling industrial heating loads. 
In this paper, a data-driven real-time predictive control approach is proposed to deal with these challenges in the 
industrial scheduling of bitumen tanks. Specifically, predictive control technology is utilized to leverage the 
updated information to mitigate the negative impact of past uncertainties in equipment parameters and external 
environmental factors, which may lead to temperature constraint violations in the bitumen tank operation 
processes. Meanwhile, a data-driven method using artificial neural networks (ANN) is developed to ensure 
efficient computation for real-time predictive control. Moreover, a two-layer control method is devised to reduce 
the calculation time for day-ahead optimal scheduling of a large scale of bitumen tanks, aiming to generate 
sufficient high-quality data for training ANN. In the two-layer control method, the clustered temperature transfer 
processes of bitumen tanks are analyzed and modeled for the first time. Simulation results indicate that the two- 
layer control method can significantly reduce the computational time required for the day-ahead optimal 
scheduling of bitumen tanks, facilitating the generation of a large amount of high-quality data for training ANN. 
Subsequently, the application of ANN enables real-time predictive control, helping to eliminate the negative 
impact of uncertainties.   

1. Introduction 

The exploration of flexibility within industrial production processes 
is a prominent research area in the industrial sector [1]. This field is 
dedicated to investigating innovative strategies that harness the 
inherent flexibility of industrial production processes to optimize elec-
tricity consumption without impacting normal production or services 
provision [2]. 

In real-world scenarios, numerous uncertainties exist in industrial 
production processes, such as those related to renewable energy gen-
eration [3], real-time electricity prices [4], and electrical load demand 
[5]. These uncertainties may cause deviations between the actual and 
expected states of the industrial processes, resulting in poor control 
performance. For industrial heating loads, the temperature transfer 
processes are susceptible to uncertainties in equipment parameters and 
environmental factors, in addition to the aforementioned uncertainties, 
which are generally neglected in previous research. For example, the 
heat dissipation rate of industrial heating loads changes with variations 
in external temperature, which may potentially result in temperature 
constraint violations during their operational processes. 

In this paper, real-time predictive control technology [6] is utilized 

to address the issues caused by uncertainties in equipment parameters 
and environmental factors in the control of industrial heating loads. 
During the real-time predictive control process, the current states and 
forecasting values in the control model of industrial heating loads can be 
updated based on real-time feedback, which is important to mitigate the 
negative impact of the previous uncertain factors [7]. 

Real-time predictive control requires high computational efficiency 
to ensure that it can be implemented at every time step. However, in 
industrial sites, providing balancing and network services to the main 
grid require coordinating various flexibility sources and thus involve a 
global optimization, which is usually formulated as a mixed integer 
programming (MIP) problem [8]. This is an NP-hard (non-deterministic 
polynomial-time hard) problem with high computational complexity, 
making it challenging to conduct real-time predictive control. At pre-
sent, there are several main categories of approaches for solving NP-hard 
problems, such as exact methods and heuristic algorithms. Exact 
methods aim to find an optimal solution by exploring the entire search 
space, which guarantee the global optimum, but they can be computa-
tionally expensive for large-scale problems [9]. Heuristic algorithms are 
designed to find suitable solutions quickly, but they may not guarantee 
to find the global optimum and can get stuck in local optima [10]. 
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Moreover, integer programming solvers, such as CPLEX, are specialized 
software packages to solve MIP problems, which have been widely used 
in industry and academia [11]. However, as the scale of the problem and 
the number of integer variables increases, the solution efficiency of all 
the above approaches in real-time predictive control may become a 
bottleneck. 

Nowadays, data-driven methods, such as artificial neural networks 
(ANN) [12], deep neural networks (DNN) [13], and deep reinforcement 
learning (DRL) [14], have opened up the possibility for real-time pre-
dictive control in complex industrial processes. These powerful machine 
learning algorithms can learn and model complex, nonlinear relation-
ships between input and output data [15]. Compared to DNN and DRL, 
which are typically applied in complex tasks [16], the implementation 
and training of ANN are more easily manageable and better suited for 
this study. The utilization of ANN can significantly reduce the compu-
tational burden as it can quickly process input data and generate control 
commands as output data without intricate calculations [17]. Basically, 
the effectiveness of ANN depends on the quality and quantity of his-
torical data used to train it. As asserted in [18], ensuring that the 
training data possesses both good quality and a sufficiently large 
quantity is crucial for the ANN to learn complex input-output relation-
ships. However, historical industrial operation or scheduling data are 
typically based on experience and automatic control, which may not 
represent the optimal operation. For example, in the historical operation 
involving industrial heating loads, the most commonly employed 
method is through an automatic temperature control mechanism, while 
overlooking the optimal adjustment of the switch status through manual 
control [19]. Therefore, it is necessary to develop an efficient control 
method for industrial heating loads that can effectively deal with 
large-scale NP-hard problems, facilitating the generation of a substantial 
amount of high-quality data (at least thousands of samples [20]) for 
training ANN. 

Two-layer control is a concept of hierarchical architecture designed 
to address complex control problems where a large number of control 
variables need to be considered [21]. The key advantages of the 
two-layer control architecture are its ability to significantly reduce 
computational time and ensure that computational time is not influ-
enced by the increasing scale of control objects. In specific, the role of 
the upper layer is to reduce the complexity of the control problem by 
clustering control objects together. The lower layer focuses on opti-
mizing the control of each individual object based on the results ob-
tained from the upper-layer clustering control. In the existing studies, 
the authors in [22] proposed a two-layer frequency control framework 
for large-scale distributed energy storages that can be separated into 
several energy storage clusters to solve the heavy computational burden. 
A two-layer optimization framework was established in [6] to speed up 
the calculation efficiency of energy management of a large scale of 
electric vehicles. The authors in [23] implemented a two-layer demand 
response program to reduce the total power consumption of household 
appliances during peak hours by clustering the different operation 
modes of household appliances. However, as far as the authors know, 
there has been no research focusing on the two-layer control of indus-
trial heat loads for speeding up scheduling purposes. This is because, 
compared to loads such as electric vehicles, energy storages, and 
household appliances, industrial heat loads exhibit more complex clus-
tering characteristics. For example, the temperature transfer inside each 
industrial heat load is nonlinear. This arises from the fact that, when the 
internal temperature of the industrial heat load is high, the large tem-
perature difference with the external environment results in a higher 
rate of heat dissipation; whereas at lower internal temperatures, the heat 
dissipation rate is lower [24]. Therefore, analyzing the clustered tem-
perature transfer characteristics of industrial heat loads is challenging. 
Meanwhile, due to various factors such as different initial temperatures 
and uncertainties, the temperature distribution within the population of 
industrial heat loads is discrete [25], making it challenging to set the 
limits for the average temperature of industrial heat loads during the 

clustering temperature transfer processes. 
Based on the above analysis, ANN-based real-time predictive control 

is an effective approach to address the computational complexity and 
uncertainty issues in the control processes of industrial heating loads. 
Moreover, a prerequisite for this approach is to develop an efficient 
control method that can generate sufficient high-quality training data 
for the ANN. In this paper, an industrial site with a large scale of bitumen 
tanks is analyzed as a representative of industrial heating loads. The 
main contributions of this work are as follows.  

1) A two-layer control method is proposed to deal with the calculation 
complexity of day-ahead control of a large scale of bitumen tanks. 
The upper-layer cluster control optimizes the total number of 
bitumen tanks to be switched ON at each time slot, while the lower- 
layer model distributes the obtained number of switching ON within 
the bitumen tank population.  

2) In the proposed two-layer control model, the clustered temperature 
transfer processes of bitumen tanks are analyzed and modeled for the 
first time, for the purpose of expediting scheduling. Meanwhile, the 
limits for the average temperature of bitumen tanks are well defined 
by considering the clustered temperature transfer characteristics.  

3) An ANN-based real-time predictive control method is developed 
based on the sufficient training data obtained from the proposed two- 
layer control method, aiming to further speed up the solution effi-
ciency and mitigate the negative impact of uncertainties in equip-
ment parameters and environmental factors during the operational 
processes of bitumen tanks. 

The paper is organized as follows. Section 2 presents the control 
mechanism of industrial bitumen tanks. Section 3 formulates the two- 
layer control method of bitumen tanks. Section 4 analyzes the un-
certainties in the operation of bitumen tanks and develops the ANN- 
based real-time predictive control approach. Section 5 presents the re-
sults of case studies. Finally, the conclusions and future directions are 
presented in Section 6. 

2. Control mechanism of bitumen tanks 

2.1. Industrial sites with bitumen tanks 

Fig. 1 shows that the main power elements in an industrial site 
include bitumen tanks, infrastructure load, and on-site wind turbines. 
The infrastructure load refers to the amount of power required by the 
industrial site to operate its essential functions consistently throughout 
the day. 

Generally, a bitumen tank is equipped with an electric heater to 
control the heating to in-tank temperature within a certain range, 

Fig. 1. An industrial site of bitumen tanks.  
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typically between 150 ◦C and 180 ◦C, ensuring the fluidity and viscosity 
of the stored bitumen so that it can be used when needed [26]. Mean-
while, bitumen tanks have to consume a large amount of energy to 
maintain the temperature [19]. As clean and low-cost renewable energy, 
on-site wind power can provide a significant amount of electricity to 
bitumen tanks and reduce the energy demand of the industrial site from 
the main grid [27]. Therefore, it is necessary to manage the operation of 
bitumen tanks to promote the absorption of on-site wind power and 
improve the characteristics of the power demand curve of the industrial 
site for the benefits of the main power grid. 

2.2. Temperature control mechanism 

The bitumen tank has two temperature control processes, namely 
heating, and cooling. When the switch of the electric heater is turned 
ON, the temperature of bitumen increases. On the contrary, when the 
switch is turned OFF, the temperature of bitumen naturally cools down. 

As shown in Fig. 2, there are typically two ways to adjust the switch 
status of the electric heater of the bitumen tank. The first way is through 
an automatic temperature control mechanism [19]. This mechanism is 
designed to maintain the temperature of the bitumen within a specific 
range by automatically turning the switch ON and OFF as needed. When 
the temperature of a bitumen tank reaches the upper limit (e.g., t1/5 in 
Fig. 2), the mechanism turns OFF its switch to prevent overheating. By 
contrast, when the temperature falls below the lower limit (e.g., t2 in 
Fig. 2), the mechanism turns ON its switch to raise the temperature. The 
second way to adjust the switch status is through manual control. In this 
case, the system can manually turn the switch ON or OFF at any time (e. 
g., t3/4 in Fig. 2), regardless of the current temperature of the bitumen 
tank. This method provides more flexibility and allows for adjustments 
based on the specific needs of the operation. 

Fig. 3 depicts the heating transfer process of a bitumen tank. The 
corresponding mathematical expressions for the heating transfer process 

are introduced below: 

Psupply = Prate × x (1)  

Ploss = U × A × (T − Tamb) (2)  

Pnet = Psupply − Ploss (3)  

Pnet = cv × m ×
dT
dt

(4)  

dT
dt

=
Prate × x − U × A × (T − Tamb)

cv × m
(5)  

where Psupply is the heat supply rate; Prate is the rated power of heating; x 
is the switch state, with 1 indicating the electric heater is turned ON and 
0 indicating the electric heater is turned OFF; Ploss is the heat loss rate; U 
is the overall heat transfer coefficient; A is the area of bitumen tank; T is 
the temperature of bitumen; Tamb is the temperature of outside ambi-
ance; Pnet is the net rate of heat transfer; cv is the heat capacity of the 
bitumen; m is the mass of bitumen. 

Eqs. (1) and (2) provide the heat supply rate and heat loss rate for 
each bitumen tank. Eq. (3) represents the net rate of heat transfer, 
leading to a change in temperature inside the bitumen tank. Eq. (4) il-
lustrates the relationship between the net rate of heat transfer and the 
rate of internal temperature change. Finally, Eq. (5) determines the rate 
of internal temperature change for the bitumen tank under different 
switch states. 

By controlling the switch state x of each electric heater, the power 
consumption characteristics of bitumen tanks in the industrial site can 
be optimized while maintaining the desired temperature range of 
bitumen. 

3. Two-layer control method of bitumen tanks 

3.1. Direct control method 

The direct control objective of bitumen tanks in an industrial site is to 
minimize the peak-to-valley difference of the demand power curve from 
the main grid while considering the absorption of onsite wind power, 
which is given as follows: 

minf = max
1≤h≤H

(
∑N

i=1
xi,h ×Prate − Ch

)

− min
1≤h≤H

(
∑N

i=1
xi,h ×Prate − Ch

)

(6)  

s.t.Ti,h = Ti,h− 1 +
Prate × xi,h − U × A ×

(
Ti,h− 1 − Th

amb

)

cv × m
× Δt,∀i, ∀h (7)  

Tdown ≤ Ti,h ≤ Tup,∀i, ∀h (8)  

where H is the length of the time horizon; N is the number of bitumen 

Fig. 2. The temperature control mechanism of a bitumen tank.  

Fig. 3. The heating transfer process of a bitumen tank.  
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tanks; xi,h ∈ {0,1} is the switch state of the ith electric heater at hth time 
slot; Ch is the value of wind power output minus infrastructure load at 
hth time slot; Ti,h is the temperature of ith bitumen tank at hth time slot; 
Δt is the length of each time slot; Th

amb is the temperature of outside 
ambiance at hth time slot. Tup/down is the upper/lower temperature limit 
of bitumen tanks. 

Eq. (7) gives the temperature transfer process of each bitumen tank. 
Eq. (8) expresses the upper/lower limit of the temperature of each 
bitumen tank. 

The direct control of bitumen tanks is formulated as an integer 
programming (IP) problem, which is known to be NP-hard. As the 
number of bitumen tanks and the length of time horizon increases, the 
computational complexity of finding an optimal solution to the day- 
ahead control of bitumen tanks increases exponentially. 

3.2. Two-layer control method 

To address the above-mentioned computational burden, this sub-
section proposes a two-layer control method. The upper-layer clustered 
control decides the total number of bitumen tanks that should be turned 
ON at each time slot. The lower-layer distributes the total number of 
switches that should be opened to each bitumen tank at each time slot.  

1) Upper-layer clustered control 

Same as the direct control method, the objective of the upper-layer 
clustered control is to minimize the peak-to-valley difference of the 
demand curve: 

minf = max
1≤h≤H

(xh ×Prate − Ch) − min
1≤h≤H

(xh ×Prate − Ch) (9)  

where 0 ≤ xh ≤ N is the number of bitumen tanks to be turned ON at the 
hth time slot. 

According to (7), the temperature transfer constraints of each 
bitumen tank in the industrial site are listed as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T1,h = T1,h− 1 +
Prate × x1,h − U × A ×

(
T1,h− 1 − Th

amb

)

cv × m
× Δt

T2,h = T2,h− 1 +
Prate × x2,h − U × A ×

(
T2,h− 1 − Th

amb

)

cv × m
× Δt

...

TN,h = TN,h− 1 +
Prate × xN,h − U × A ×

(
TN,h− 1 − Th

amb

)

cv × m
× Δt

(10) 

By summing all the formulas in (10) and taking the average, the 
clustered temperature transfer constraint of bitumen tanks can be ob-
tained as follows: 

Th = Th− 1 +
Prat ×

xh
N − U × A ×

(
Th− 1 − Th

amb

)

cv × m
× Δt (11)  

where Th is the average temperature of bitumen tanks at the hth time 
slot. 

To ensure compliance with the temperature constraints for each in-
dividual bitumen tank, it is crucial to maintain a certain gap between the 
average temperature of all the bitumen tanks and the limits (Tup and 
Tdown). This is necessary because the temperatures of the bitumen tanks 
are distributed discretely around the average temperature. Therefore, 
the lower/upper limit of the average temperature of bitumen tanks is 
given as follows: 

Tdown + ΔT ≤ Th ≤ Tup − ΔT,∀h (12)  

where ΔT is the magnitude of the gap, and the specific value is analyzed 
and provided in the next subsection. 

In the direct control method, the size of control variables is N × H, 
while in the upper-layer clustered control, the size is reduced and re-
mains at 1 × H, making it possible to control a large number of bitumen 
tanks efficiently.  

2) Lower-layer state distribution 

After obtaining the total number of bitumen tanks that should be ON 
(i.e., {xh}

H
h=1) through the upper-layer clustered control, it is necessary 

to make further decision regarding which specific bitumen tanks should 
be ON (i.e., the state distribution). The principle of lower-layer state 
distribution is to prioritize turning ON the switches of bitumen tanks 
with lower temperatures at each time slot. This principle keeps the 
temperatures of the bitumen tanks away from the upper and lower limits 
as much as possible, thus preventing temperature constraint violations. 

3.3. Magnitude of the gap 

According to the lower-layer state distribution principle introduced 
in Section 3-2-2), at any specific time slot, two arbitrary bitumen tanks 
within a population of bitumen tanks can have three different combi-
nations of the ON/OFF states. In Case 1, both bitumen tanks are turned 
ON. In Case 2, both bitumen tanks are turned OFF. In Case 3, the 
bitumen tank with lower temperature is turned ON while the bitumen 
tank with higher temperature is turned OFF. 

Next, to obtain the magnitude of the gap (i.e., the value of ΔT) 
mentioned in (12), the following lemma is introduced. Lemma A: For a 
population of bitumen tanks controlled by the two-layer optimal 
scheduling model, if δh ≤ ΔT at the time step h, then for the next time 
step there must be δh+1 ≤ ΔT, where δ is the width of the temperature 
distribution of the bitumen tank population and equals to the difference 
between the maximum and minimum temperature in the population. 

The proof of Lemma A is given as follows. According to (7), in Case 1, 
when both bitumen tanks are turned ON, the bitumen tank with a lower 
temperature heats up faster (as depicted in Fig. 4(a)). In Case 2, when 
both bitumen tanks are turned OFF, the bitumen tank with a higher 
temperature cools down faster (as depicted in Fig. 4(b)). Therefore, the 

Fig. 4. The temperature evolution process of the two bitumen tanks.  
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temperature difference between the two bitumen tanks in both Cases 1 
and 2 will decrease throughout the entire Δt period. According to the 
initial temperature difference between the two bitumen tanks, Case 3 
can be divided into two scenarios. In Case 3-1, if the initial temperature 
difference is large (larger than ΔT, which will be defined later), the 
difference will decrease in the next Δt period (as depicted in Fig. 4(c)); 
however, in Case 3-2, if the initial temperature difference is small 
(smaller than ΔT), the difference may be further enlarged in the next Δt 
period (as depicted in Fig. 4(d)). From Fig. 4(d) in Case 3-2, it can be 
inferred that, the maximum temperature difference after Δt occurs when 
the initial temperature of the two bitumen tanks is infinitely close to 
each other, which is shown in Fig. 4(e). This maximum temperature 
difference, noted as ΔT, can be calculated as follows: 

ΔT =
Prate − U × A ×

(
Tn,h− 1 − Th

amb

)

cv × m
× Δt +

U × A ×
(
Tn,h− 1 − Th

amb

)

cv × m
× Δt

=
Prate × Δt

cv × m
(13) 

The above analysis can prove that Lemma A is true. Therefore, for the 
proposed two-layer control method, as long as the very initial value of δ 
before the first time step of the scheduling horizon is smaller than ΔT, 
the temperature of each bitumen tank will not exceed the upper/lower 
limits (Tup/down) at any time step. 

4. Artificial neural network-based real-time predictive control 

4.1. Uncertainty analysis 

It can be seen from (5) that the temperature transfer process of a 
bitumen tank is affected by various uncertainty factors, including the 
overall heat transfer coefficient (U-value) of the bitumen tank and 
ambient temperature. 

U =
1

1
α1
+ 1

α2
+ σ1

λ1
+ σ2

λ2
+ σ3

λ3

(14)  

where α1 is the individual convection heat transfer coefficient for 
bitumen; α2 is the individual convection heat transfer coefficient for 
ambient air; σ1 is the steel wall thickness; λ1 is the thermal conductivity 
of the steel; σ2 is the tin sheet thickness; λ2 is the thermal conductivity of 
the tin sheet; σ3 is the insulation thickness; λ3 is the thermal conductivity 
of the insulation. 

Eq. (14) shows that the U-value is influenced by multiple factors, 
such as the convection heat transfer coefficient for bitumen and ambient 

air [28]. For example, during the operation, the ambient conditions 
around a bitumen tank can vary due to weather conditions, air velocity, 
temperature, and humidity. In windy, rainy, and snowy weather, the 
convection heat transfer coefficient of ambient air is usually higher due 
to increased air movement around the bitumen tank [29]. On the other 
hand, in sunny or calm weather, the convection heat transfer coefficient 
of ambient air is lower, resulting in slower heat transfer from the 
bitumen tank to the surrounding air. Moreover, the U-value is also 
influenced by factors such as thermal conductivity, the specific heat 
capacity of the tank material, and steel wall thickness [30]. If the 
properties of the materials used in the construction of the bitumen tanks 
vary between tanks, then the U-values of each tank will also be different. 
Therefore, the day-ahead control commands of bitumen tanks may not 
be executable in real-world scenarios due to the impact of uncertain 
factors, resulting in poor operational performance. 

4.2. Modification of ANN-based output 

An ANN-based real-time predictive control method is developed in 
this subsection to mitigate the negative impact of uncertainties in 
equipment parameters and environmental factors on the operation of 
bitumen tanks. 

Fig. 5 depicts the schematic diagram of an ANN, which is a model 
consisting of an input layer, hidden layers, and an output layer [31]. 
After setting hyperparameters, including the number of layers in the 
hidden layers and the quantity of neurons, the ANN can be trained with a 
large amount of input and output data. During the training process, the 
connection weights and bias terms of the ANN are adjusted to enable the 
network to adapt to input data and generate the desired outputs. In this 
study, according to the operation of bitumen tanks under various 
operating conditions, a lot of input data can be obtained, which can be 
utilized to obtain the output data through the proposed two-layer con-
trol method. Therefore, a substantial amount of data for training the 
ANN can be obtained. Specifically, the input data for training the ANN 
includes the current temperature within the bitumen tanks, wind power, 
infrastructure load, and forecasted ambiance temperature. The output 
data for training is the total ON number of bitumen tanks at each time 
slot. Once the ANN has been trained, it can be used in the real-time 
predictive control process to obtain control commands of bitumen 
tanks based on the updated inputs. 

Due to the output data of the ANN-based method being linear 
numbers, there is a constraint that the output data should be rounded to 
integer numbers, representing the total ON numbers of bitumen tanks. 

xh
ANN = round

(
xh

out

)
,∀h (15) 

Fig. 5. Schematic diagram of an ANN.  
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where xh
out (linear number) is the output total ON number of bitumen 

tanks at hth time slot; xh
ANN is the rounded total ON number of bitumen 

tanks at hth time slot. 
Subsequently, the lower-layer state distribution introduced in Sec-

tion 3-2-2) can also be used to obtain the ANN-based control command 
of each bitumen tank at each time slot. 

It should be noted that, influenced by factors such as network 
structure, parameter settings, and training data, the output data of ANN 
may not always be the optimal solution [32]. Therefore, it is necessary to 
modify the obtained ANN-based control command of each bitumen tank 
if implementing the command would lead to the violation of the tem-
perature limits during real-time operation. 

The mathematical process for the modification is as follows: 

Ti,1 = Ti,0 +
Prate × xi,1

ANN − U × A ×
(
Ti,0 − T1

amb

)

cv × m
× Δt, ∀i (16)  

xi,1
ANN

′
=

{
xi,1

ANN, if Tdown ≤ Ti,1 ≤ Tup

1 − xi,1
ANN, if Ti,1 > Tup or Ti,1 < Tdown

,∀i (17)  

where xi,1
ANN is the first control command of the ith bitumen tank based on 

ANN; xh,1
ANN

′ 
is the modified first control command of ith bitumen tank 

based on ANN. 
Eq. (16) calculates the temperature of each bitumen tank after the 

execution of xi,1
ANN. Eq. (17) is given to check whether the temperature of 

each bitumen tank after executing xi,1
ANN violates the upper/lower tem-

perature limits. If the constraint of upper/lower temperature is violated, 
then the control command obtained from the ANN for the corresponding 
bitumen tank should be changed. 

To facilitate understanding, the architecture diagram of the proposed 
data-driven real-time predictive control method is exhibited in Fig. 6. In 
Fig. 6, K is the required number of training scenarios to train the ANN, 
and toff is the end time of real-time predictive control. Firstly, training 
data required for the ANN is generated through the two-layer control 
method. Subsequently, the trained ANN is applied in the solution of real- 
time predictive control processes for bitumen tanks. 

5. Case studies 

In this section, several cases are carried out to verify the effectiveness 
of the two-layer control method of bitumen tanks and the ANN-based 
real-time predictive control solutions. All cases were performed on a 

64-bit PC with a 3.30-GHz CPU and 8-GB RAM. The YALMIP toolbox in 
MATLAB and CPLEX 12.6 is used to solve the above IP problems. 
Moreover, the Neural Network Toolbox in MATLAB is used to solve the 
ANN-based real-time predictive control problem. 

The actual measurements of bitumen tanks at the industrial site come 
from the open data of National Grid and Open Energi [33]. The basic 
parameters in this study are listed in Table 1. 

5.1. Day-ahead direct control results of bitumen tanks 

In this subsection, the day-ahead direct control results for different 
numbers of bitumen tanks are discussed. 

Fig. 7(a) illustrates the power consumption curves of the bitumen 
tanks when the number of tanks is 10, 20, and 30, respectively. It shows 
that the shapes of power consumption curves are roughly consistent 
with the shape of wind power after being absorbed by the infrastructure 
load. This consistency is due to the objective of minimizing the peak-to- 
valley difference in the demand power curve from the power grid. The 
demand power curves from the power grid represents wind power 
subtracted by the infrastructure load and bitumen tanks. Fig. 7(b) in-
dicates that the direct control system works effectively to minimize the 
peak-to-valley difference of the demand power curve from the power 
grid, which ensures a more stable and efficient power supply. 

The peak-to-valley differences of the electricity exchange curves 
under different numbers of bitumen tanks and the corresponding 
calculation times are listed in Table 2. The results show that the peak-to- 
valley difference is slightly larger when N = 10 compared to N = 20 and 
N = 30. This is because the regulation capability of bitumen tanks when 
N = 10 is lower compared to a larger number of bitumen tanks. More-
over, it is evident that the calculation time increases significantly as the 
number of bitumen tanks increases, which is impractical to be imple-
mented in actual operational practice. 

Fig. 6. Architecture diagram of the proposed data-driven real-time predictive control method.  

Table 1 
Basic parameters.  

Parameter Value Parameter Value Parameter Value 

N 30 H 96 U (kWm− 2K− 1) 7.75 × 10− 3 

A (m2) 36 cv (kJkg− 1K− 1) 1.34 m (kg) 21,500 
Prate (kW) 120 Δt (s) 900 Tup (◦C) 180 
Tdown (◦C) 150 / / / /  
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5.2. Day-ahead two-layer control results of bitumen tanks 

In this subsection, the day-ahead two-layer control results of bitumen 
tanks are discussed. Moreover, the calculation times for day-ahead two- 
layer control under different control intervals are discussed. 

Fig. 8 exhibits the day-ahead two-layer control results with 30 
bitumen tanks. It can be observed that the total consumption curve of 
bitumen tanks in Fig. 8(a) is similar to the day-ahead direct control re-
sults, while significantly reducing the calculation time to 41.34 s. Fig. 8 
(b) depicts the related temperature transfer process of bitumen tanks, 
with each colored line representing the temperature variation curve of 

Fig. 7. Day-ahead direct control results for different numbers of bitumen tanks.  

Table 2 
Day-ahead direct control results under different number of bitumen tanks.  

Number of bitumen tanks Peak-to-valley difference (MW) Calculation time (s) 

10 0.1160 3741.45 
20 0.1148 13,873.92 
30 0.1148 52,874.13  

Fig. 8. (a) Day-ahead two-layer control results with 30 bitumen tanks and (b) their temperature transfer process.  
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an individual bitumen tank. The cluster temperature falls slowly or rises 
when the total demand power of bitumen tanks is large and drops 
quickly when it is small. Moreover, Fig. 8(b) shows that there is a 
temperature loss of about 10◦ on this day, which means that the initial 
heat energy in the bitumen tanks will be lower the next day. 

To examine the performance of the day-ahead two-layer control 
method under the condition of lower initial heat energy in the bitumen 
tanks, the corresponding results are presented in Fig. 9. The lower initial 
heat energy reduces the downward adjustment space for total con-
sumption of bitumen tanks but increases their upward adjustment space. 
Therefore, in this situation, the proposed method can still achieve good 
control performance in terms of the peak-to-valley difference. 

To further illustrate the characteristics of the day-ahead two-layer 
control method, Table 3 presents the calculation times under different 
number of bitumen tank. A comparison with the data in Table 2 reveals 
that the calculation time of the two-layer control method is unaffected 
by the number of bitumen tanks, and there is a significant reduction in 
calculation time compared to the day-ahead direct control method. 

All the above cases are conducted when H = 96, with each control 
interval being 15 min. In Table 4, a comparison of the calculation times 
for day-ahead two-layer control is provided when the control interval is 

shortened to 10 min and 5 min, respectively, while keeping the length of 
the time horizon unchanged. According to the results presented in 
Table 4, the calculation time of the two-layer control method increases 
as the control interval decreases. Meanwhile, with the shortening of the 
control interval, there is a slight improvement in the peak-to-valley 
characteristic of the demand power curve. 

It is worth noting that in real-time predictive control, for example, 
with a control interval of 5 min, a calculation time of 633.76 s cannot 
meet the requirement of real-time operation. Therefore, in this situation, 
it is necessary to apply the ANN-based method with a faster solving 
speed. 

5.3. Influence of uncertainties 

Fig. 10(a) compares the empirical U-value of the bitumen tanks with 
their potential actual values for a day. The black straight line represents 
the empirical U-value which remains fixed throughout the day. The 
colored curves depict the actual variation in U-values for each of the 
bitumen tanks over time. Fig. 10(b) provides a possible comparison of 
the forecasted and the actual temperature values of outside ambiance 
(Tamb) during the day, which also affects the temperature transfer pro-
cess of bitumen tanks. 

As claimed in Section 4.1, the actual variation in U-values is influ-
enced by various factors of outside ambiance, including humidity, wind 
speed, solar radiation, etc. These factors have a high degree of uncer-
tainty, making the accurate forecasting of U-values for each of the 
bitumen tanks highly challenging. In the predictive control method, the 
impact of uncertainties in U-values on the temperature transfer of 
bitumen tanks is considered by updating the real-time temperature of 
bitumen tanks. This is because the temperature deviation of bitumen 
tanks, in comparison to day-ahead control, is caused by the impact of 
various uncertainties. By updating the real-time temperature of bitumen 
tanks during the predictive control processes, the past impact of un-
certainties in U-values can be eliminated. Moreover, unlike the U-values, 
the forecasting of Tamb can be updated with greater accuracy based on 
data from the local meteorological station during the predictive control 
processes. 

Due to the uncertainties and variations in the operation, the actual 

Fig. 9. (a) Day-ahead two-layer control results of 30 bitumen tanks with lower initial heat energy and (b) their temperature transfer process.  

Table 3 
Day-ahead two-layer control results under different number of bitumen tanks.  

Number of bitumen tanks Peak-to-valley difference (MW) Calculation time (s) 

10 0.1175 41.67 
20 0.1193 40.83 
30 0.1178 41.34  

Table 4 
Day-ahead two-layer control results of 30 bitumen tanks under different control 
interval.  

H Peak-to-valley difference (MW) Calculation time (s) 

96 0.1178 41.34 
144 0.1155 104.23 
288 0.1142 633.76  
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execution of day-ahead two-layer control commands of bitumen tanks 
may not achieve the desired effects. Fig. 11(a) shows the actual execu-
tion results of the day-ahead control commands with 30 bitumen tanks 
on this day. The overall trend of the total demand power curve is nearly 
horizontal, with the exception that there are obvious increase and 
fluctuation during certain periods, as indicated by the circled section in 
Fig. 11(a), which cause its peak-to-valley difference to increase. Fig. 11 
(b) gives the actual temperature transfer process of bitumen tanks. 

The reason for the fluctuation in the total demand power curve 

within the circled section can be explained as follows. Due to the higher 
U-values and lower Tamb-values in the actual scenario (as shown in 
Fig. 10), the heat dissipation of bitumen tanks is faster before approxi-
mately 14:00, which is illustrated in Fig. 11(b). Therefore, the clustered 
temperature of bitumen tanks drops rapidly and approaches Tdown 
around 14:00. According to the temperature control mechanism, some 
switches of bitumen tanks are automatically turned ON as their tem-
peratures reach Tdown. As a result, the day-ahead control commands of 
switches cannot be executed as planned, leading to increased and 

Fig. 10. Comparison between (a) the empirical U and (b) the forecasted Tamb with their respective actual values.  

Fig. 11. (a) Actual execution results of day-ahead two-layer control commands with 30 bitumen tanks and (b) their temperature transfer process.  
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fluctuating power consumption of bitumen tanks during the circled 
periods. 

To explain the reason for the fluctuation in the total demand power 
curve within the circled section, the time sequence of the switch ON 
number of bitumen tanks is provided in Table 5. It can be observed that 
the switch ON number of bitumen tanks changes continuously between 
15:00 and 18:00. The reason is that the temperature distribution in 
bitumen tanks is uneven, causing a varying number of bitumen tanks to 
automatically switch ON as their temperatures decrease and reach Tdown 
at different time stages. 

5.4. ANN-based real-time predictive control results 

When employing ANN for real-time predictive control, conducting 
sensitivity analysis on the network hyperparameters is essential to 

ensure that the trained ANN exhibits good generalization performance. 
In this study, K = 1000 sets of input and output data are generated using 
the two-layer control model. Among these sets, 80 % are used as training 
data to train the ANN, while the remaining 20 % are allocated as vali-
dation data to assess the generalization performance of the trained ANN. 

In Table 6, Nl is the number of hidden layers in the trained ANN; Nn is 
the number of neurons in each hidden layer. The regression R value is 
the correlation between the outputs and targets. An R value of 1 in-
dicates a close relationship, while 0 means a random relationship. The 
mean squared error (MSE) is the average squared difference between the 
outputs and targets of the validation data, with lower values indicating 
better accuracy. The results show that when Nl and Nn are relatively 
small, the regression R value for the validation data increases as Nl and 
Nn increase. However, if Nl and Nn are too large, it leads to a decrease in 
the regression R value for the validation data, indicating overfitting. 
Moreover, DNNs typically have more than 3 hidden layers, making 
overfitting more likely to occur. Therefore, ANN is more suitable for this 
study. In Table 6, when Nl = 1 and Nn = 30, the regression R value and 
the MSE for the validation data show the best values. Therefore, for the 
hyperparameters in the ANN, the number of hidden layers is set to 1, 
with 30 neurons in the hidden layer. 

Fig. 12 presents the real-time predictive control results of the ANN- 
based control commands with 30 bitumen tanks and their temperature 
transfer process. By continuously utilizing the updated feedback of 
bitumen tanks, the real-time predictive control method can identify 
trends indicating that the clustered temperature of bitumen tanks is 
dropping faster than expected. Therefore, the ANN-based real-time 
control commands choose to activate more switches during the opera-
tion to prevent the cluster temperature from dropping so rapidly. As a 
result, no switch of bitumen tanks is automatically turned ON in the real- 
time predictive control process, so the actual total demand power 
characteristics of the industrial site can be significantly improved. In 
addition, the average calculation time of obtaining the ANN-based 
control commands is 0.08 s, which meets the computing time require-
ment of real-time predictive control. 

Fig. 13 compares the electricity exchange curves with the power grid 
using different control methods of bitumen tanks. Moreover, Table 7 
provides a mathematical comparison of different curves in terms of their 

Table 5 
Time sequence of switch ON number of bitumen tanks.  

Time 15:00 15:15 15:30 15:45 16:00 16:15 16:30 
Number 10 11 8 11 11 8 10 

Time 16:45 17:00 17:15 17:30 17:45 18:00 18:15 
Number 11 8 9 12 9 9 11  

Table 6 
Training performance of the ANN with different hyperparameters.  

Nl Nn Regression R value MSE 

Training data Validation data 

1 10 0.9719 0.9621 0.6649 
20 0.9824 0.9729 0.4150 
30 0.9915 0.9884 0.2235 
40 0.9937 0.9792 0.3106 
50 0.9951 0.9592 0.5341 

2 5 0.9818 0.9670 0.4927 
8 0.9891 0.9780 0.3069 
10 0.9931 0.9817 0.2486 
15 0.9946 0.9613 0.4252 
20 0.9957 0.9428 0.6118  

Fig. 12. (a) Real-time predictive control results of ANN-based control commands with 30 bitumen tanks and (b) their temperature transfer process.  
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peak-to-valley differences and the calculation times required to obtain 
the control commands. The peak-to-valley differences of the demand 
power curves of the day-ahead two-layer control method are nearly the 
same as that of the day-ahead direct control method, while the calcu-
lation times are greatly improved, which indicates the effectiveness of 
the proposed two-layer control methods. Moreover, compared to the 
actual execution results of the day-ahead two-layer control commands, 
the proposed ANN-based predictive control method significantly re-
duces the peak-valley differences using an extremely short computation 
time, demonstrating its ability to mitigate the negative impact of un-
certainties in the operation of bitumen tanks. 

6. Conclusion 

To unlock the flexibility potential of industrial heating loads, this 
paper develops a data-driven real-time predictive control methodology 
to address the computational complexity and uncertainties in the 
operational processes of bitumen tanks. Under the computer specifica-
tions of a 64-bit PC with a 3.30-GHz CPU and 8-GB RAM, the day-ahead 
two-layer control method reduces the computation time from 7.87 h to 
41.34 s by analyzing and modeling the clustered temperature transfer 
characteristics of bitumen tanks, enabling the generation of sufficient 
high-quality data for training ANN. The experimental results of the 
ANN-based real-time predictive control method demonstrate its effec-
tiveness in managing uncertainties related to equipment parameters and 
external environmental factors in the industrial operational processes of 
bitumen tanks. Meanwhile, the ANN-based method can achieve the 
calculation times as low as 0.08 s, satisfying the computational re-
quirements for the real-time operation of bitumen tanks. 

Regarding the applicability, although this paper takes the scheduling 
of bitumen tanks as a representative to be studied, the proposed 
approach can be applied to other industrial heating loads, such as in-
dustrial aluminum melting pots and industrial steel melting pots. 
Regarding the limitations, although this study takes into account the 
uncertainty factors affecting the temperature transfer of bitumen tanks, 
it overlooks the impact of uncertainties in wind power output and 
infrastructure load on the control objectives, which should be consid-
ered in the future research. Moreover, this paper focuses on a particular 

problem, viz., optimal scheduling of bitumen tanks as industrial heat 
loads. In practical power systems, there will be various types of loads 
having different characteristics. It will be of more practical significance 
to consider typical schedulable power system loads along with bitumen 
tanks to formulate the scheduling problem, which is treated as another 
future research direction. 
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