
Enhancing
Reinforcement Learning

with a
Context-based

Approach

A thesis submitted in partial fulfilment
of the requirement for the degree of Doctor of Philosophy

Francisco Munguia-Galeano

October 2023

In 1939, George Bernard Dantzig mistook two problems writ-
ten on the blackboard as homework. He found the problems to
be more challenging than normal. Despite their difficulty, he
solved them. Those problems turned out to be open mathemat-
ical problems in statistics. This resulted in one of the shortest
PhD theses ever.

i

Abstract

Reinforcement Learning (RL) has shown outstanding capabilities in solving complex
computational problems. However, most RL algorithms lack an explicit method
for learning from contextual information. In reality, humans rely on context to
identify patterns and relations among elements in the environment and determine
how to avoid making incorrect actions. Conversely, what may seem like obvious
poor decisions from a human perspective could take hundreds of steps for an agent
to learn how to avoid them. This thesis aims to investigate methods for incorporating
contextual information into RL in order to enhance learning performance.

The research follows an incremental approach in which, first, contextual infor-
mation is incorporated into RL in simulated environments, more concisely in games.
The experiments show that all the algorithms which use contextual information sig-
nificantly outperform the baseline algorithms by 77 % on average. Then, the concept
is validated with a hybrid approach that comprises a robot in a Human-Robot In-
teraction (HRI) scenario dealing with rigid objects. The robot learns in simulation
while executing actions in the real world. For this setup, based on contextual infor-
mation, the proposed algorithm trains in a reduced amount of time (2.7 seconds).
It reaches an 84% success rate in a grasp and release-related task while interact-
ing with a human user, while the baseline algorithm with the highest success rate
reached 68% after learning during a significantly longer period of time (91.8 sec-
onds). Consequently, CQL suits the robot’s learning requirements in observing the
current scenario configuration and learning to solve it while dealing with dynamic
changes provoked by the user.

Additionally, the thesis explores using an RL framework that uses contextual in-
formation to learn how to manipulate bags in the real world. A bag is a deformable
object that presents challenges from grasping to planning, and RL has the potential
to address this issue. The learning process is accomplished through a new RL algo-
rithm introduced in this work called Π-learning, designed to find the best grasping
points of the bag based on a set of compact state representations. The framework
utilises a set of primitive actions and represents the task in five states. In the ex-
periments, the framework reaches a 60% and 80% success rate after around three
hours of training in the real world when starting the bagging task from folded and
unfolded positions, respectively. Finally, the trained model is tested on two more
bags of different sizes to evaluate its generalisation capacities.

Overall, this research seeks to contribute to the broader advancement of RL and
robotics, aiming to enhance the development of intelligent, autonomous systems that
can effectively operate in diverse and dynamic real-world settings. Besides that, this
research seeks to explore new possibilities for automation, HRI, and the utilisation

ii

of contextual information in RL.

iii

Dedication

To my dearest wife,

You have been my main support and inspiration throughout this entire journey.
I could not have accomplished this PhD without you by my side. I dedicate this
thesis to you with all my heart.

To my dear baby,

As I write this dedication, you have yet to be born, but I already feel excited
to meet you. May you always find joy and the strength to fight for your dreams. I
dedicate this thesis to you with all my love.

To my dear mom, who passed away,

You were my first inspiration and my greatest supporter. Although you are no
longer with us, your memory, life lessons, and love guide me. I would have achieved
nothing without you. I dedicate this thesis to you with all the love in my heart.

To my loving dad,

You have been my constant source of guidance. Your support and encouragement
have been essential in shaping me into the person I am today. I dedicate this thesis
to you with all the love in my heart.

iv

v

Declaration

This thesis is the result of my own independent work, except where otherwise stated,
and the views expressed are my own. Other sources are acknowledged by explicit
references. The thesis has not been edited by a third party beyond what is permitted
by Cardiff University’s Use of Third Party Editors by Research Degree Students
Procedure.

Signed Francisco Munguia Galeano

Date 22/October/2023

Statement 1
This thesis is being submitted in partial fulfilment of the requirements for the degree
of PhD.

Signed Francisco Munguia Galeano

Date 22/October/2023

Statement 2
This work has not been submitted in substance for any other degree or award at this
or any other university or place of learning, nor is it being submitted concurrently
for any other degree or award.

Signed Francisco Munguia Galeano

Date 22/October/2023

Statement 3
I hereby give consent for my thesis, if accepted, to be available on the University’s
Open Access repository (or, where approved, to be available in the University’s
library and for inter-library loans), and for the title and summary to be made avail-
able to outside organisations, subject to the expiry of a University-approved bar on
access if applicable.

Signed Francisco Munguia Galeano

Date 22/October/2023

vi

vii

Acknowledgements

I want to thank the Consejo Nacional de Humanidades, Ciencias y Tecnologías
(CONAHCyT) for funding and supporting part of my doctoral studies.

I am also grateful to Cardiff University for hosting my PhD studies. The academic
environment provided me access to excellent resources, and my interactions with my
colleagues were both stimulating and informative.

I would like to express my gratitude to my supervisors, Dr. Ze Ji and Dr. Juan
David Hernández Vega, for their mentorship, support, knowledge, patience, and
advice. I feel lucky to have had such dedicated researchers to guide me along the
way.

I would like to thank my wife, family, and friends for their support and encourage-
ment. Their belief in me was essential in completing my doctoral studies. I am truly
blessed to have such wonderful people in my life.

viii

ix

Contents

Abstract i

Dedication iii

Declaration v

Acknowledgements vii

List of Figures xv

List of Tables xvii

List of Algorithms xix

List of Acronyms xxi

List of Publications xxiii

1 Introduction 1
1.1 Motivation . 2
1.2 Research questions . 6
1.3 Aim and Objectives . 6
1.4 Outline . 7

2 Literature Review 11
2.1 Reinforcement Learning Overview . 11

2.1.1 Bellman Equations . 14
2.1.2 The Bellman optimality equation 17
2.1.3 Dynamic Programming . 18
2.1.4 Monte Carlo Methods . 19
2.1.5 Temporal Difference . 20
2.1.6 Q-learning . 22
2.1.7 State-Action-Reward-State-Action 23
2.1.8 Deep Q-network . 23
2.1.9 Double Deep Q-network . 26
2.1.10 Dueling Architectures . 26
2.1.11 Actor-Critic Methods . 27
2.1.12 Deep Deterministic Policy Gradient 29

x CONTENTS

2.1.13 Twin Delayed Deep Deterministic Policy Gradient 31
2.1.14 Soft Actor-Critic . 33
2.1.15 Proximal Policy Optimisation 35
2.1.16 Hindsight Experience Replay 36

2.2 Context and Reinforcement Learning 37
2.2.1 Context-free Methods . 38
2.2.2 Implicit Context-based Methods 40
2.2.3 Explicit Context-based Methods 43

2.3 Reinforcement Learning in Robotics 44
2.3.1 Why Reinforcement Learning in Robotics? 45
2.3.2 Robotic Manipulation of Rigid Objects with Reinforcement

Learning . 47
2.3.3 Reinforcement Learning in Human-Robot Interaction 50
2.3.4 Robotic Manipulation of Deformable Objects with Reinforce-

ment Learning . 53
2.3.5 Robotic Manipulation of Deformable and Rigid Objects with

Reinforcement Learning . 55
2.4 Discussion . 56
2.5 Summary . 58

3 Explicit Context Representation in Deep Reinforcement Learning 61
3.1 Introduction . 61
3.2 IECR Framework . 64

3.2.1 Contextual Key Frames . 64
3.2.2 Iota Function . 69
3.2.3 Learning . 71

3.3 Experimental Setup . 76
3.3.1 Environments Description . 77
3.3.2 First Stage of the Experiments 80
3.3.3 Second Stage of the Experiments 81

3.4 Results . 82
3.4.1 Results of the First Stage of the Experiments 82
3.4.2 Results of the Second Stage of the Experiments 83
3.4.3 Affordances Loss Impact . 87

3.5 Discussion . 88
3.6 Summary . 91

4 Affordance-based Reinforcement Learning for Human-Robot Inter-
action 93
4.1 Introduction . 94
4.2 Affordance-based Human-Robot Interaction Framework 96

4.2.1 Voice-gestures . 97
4.2.2 Learning . 98
4.2.3 Valid Policy Detector . 102

4.3 Experimental Setup . 103
4.4 Results . 105

4.4.1 Results of the First Experiment 105

CONTENTS xi

4.4.2 Results of the Second Experiment 108
4.4.3 Results of the Third Experiment 109
4.4.4 Results of the Fourth Experiment 109
4.4.5 Results of the Fifth Experiment 110
4.4.6 Results of the Sixth Experiment 111

4.5 Discussion . 112
4.6 Summary . 112

5 Learning to Bag with a Simulation-free Reinforcement Learning
Framework for Robots 115
5.1 Introduction . 116
5.2 Problem Formulation . 119
5.3 Framework . 122

5.3.1 Perception . 123
5.3.2 Learning . 126
5.3.3 Robot Controller . 130
5.3.4 Bagging task implementation 131

5.4 Experimental Setup . 133
5.5 Results . 134
5.6 Discussion . 140
5.7 Summary . 142

6 Contributions, Conclusions and Future Work 145
6.1 Contributions . 145
6.2 Conclusions . 147
6.3 Future work . 148

A External Resources 151

xii CONTENTS

xiii

List of Figures

2.1 Popular RL algorithms. 14
2.2 Typical neural network architectures used in DQN’s variants (Hasselt

2010). 27
2.3 Collection of data with several robots. This approach is designed to

learn in the real world (Levine et al. 2018). Despite being a relevant
approach in the literature, not many laboratories in the world can
afford that number of robots. 49

2.4 Cruz et al. (2016b) proposes a framework in which a user guides the
learning of a robot through spoken instructions. 51

2.5 Two dexterous robotic hands manipulating paper (Elbrechter et al.
2012). This is a good example of how adding markers to the sheet of
paper is necessary to extract its current state. 54

2.6 ShakingBot using the physical capacities of the bag in its favour to
open it in three steps (Gu et al. 2024). First the robot locates the
bag handles and then uses the material’s properties to maintain its
shape in order to complete the task. 56

3.1 Deep reinforcement learning with explicit context representation. . . . 62
3.2 In the figure, the iota explicit context representation framework is

applied to Deep Q-network (DQN), Double Deep Q-network (DDQN),
Dueling Deep Q-network (DuDQN), and Double Dueling Deep Q-
network (DDDQN) to create four new algorithms that learn with
context. The affordances function ι(s) is connected with the whole
framework, hence, the name of the framework. 63

3.3 In (a), there is an example of tokenising the state according to the
element type and the number of elements. In (b), the position of each
element in the cell of the CKF is added to the token value. In (c),
the direction of the elements and their numerical values are added to
the token. 66

3.4 In (a), the neural network predicts a non-valid action. Consequently,
the affordances loss increases. In (b), the neural network outputs
respect the boundaries given by ι(s). This provokes the affordances
loss to be equal to zero. 72

3.5 Game environments. (a) Mario. (b) Pacman. (c) FlappyBirds. (d)
TaxiDriver. (e) ScaraRobot . 76

xiv LIST OF FIGURES

3.6 Neural Network architectures used in the experiments. (a) shows
the neural network setup used for IDQN and IDDQN. (b) shows the
neural network setup used by IDuDQN and IDDDQN. 81

3.7 The earning curves above are the results of the first stage of the exper-
iment in which the learning progress is measured in every episode: (a)
Mario, (c) Pacman, (c) Flappybirds, (d) TaxiDriver and (e) ScaraRobot. 84

3.8 This figure displays the results of the second stage of the experiments,
in which the progress is measured every epoch: (a) Mario, (c) Pacman,
(c) Flappybirds, (d) TaxiDriver and (e) ScaraRobot. Every epoch is
equivalent to 400 training steps. In the second stage, the learning
progress of the state-of-the-art algorithms was less chaotic. However,
IECR variants still outperform the state-of-the-art approaches. 85

3.9 The results above show the effect of varying the value of λ in the
algorithms. 88

4.1 Experimental setup. The view of the camera and a visual representa-
tion of the state can be appreciated at the bottom left and the upper
right of the image, respectively. 95

4.2 Proposed framework for HRI using RL. 97
4.3 Flow chart of the Human-Robot Interaction (HRI) experiments with

Reinforcement Learning (RL). 103
4.4 Flow chart of the experiments carried out to test different capabilities

of the framework. 106
4.5 The learning curves above are eight out of 100 samples taken from the

results of the experiments. All algorithms succeeded in (a) and (b),
but DQN failed. In (c), QL and DQN fail to find a solution. In (d),
A2C and DQN fail to find a solution while PPO and QL struggle to
converge. In (e), only CQL and QL converge. In (f), CQL and A2C
converge while the rest of the algorithms fail. In (g), PPO struggles
to converge while CQL finds a solution. In (h), all the algorithms fail
to find a solution. 107

4.6 This figure shows a user speaking an instruction while pointing to the
right box with his hand while the robot performs the instruction. . . 107

4.7 In this figure, the user puts extra objects on the table such that the
robot identifies them and puts them into the box. 109

4.8 In this figure, the yellow objects are identified as sensible obstacles,
and CQL adds a security perimeter while the robot successfully avoids
those obstacles. 109

4.9 In this figure, the user moves the goal, and a negative reward trigger
is returned such that the robot identifies that the user moved the goal
and then re-planned its movements. 110

4.10 In this figure, the user puts a hand in the way of the robot’s path.
Consequently, a negative reward is returned, and the robot asks the
user to move his hand. 110

4.11 In this figure, the framework is tested in a different robot configuration.111

LIST OF FIGURES xv

5.1 The robot, in four steps, performs the bagging task. In the first step,
the robot unfolds the bag. In the second step, the bag is opened by
the robot. The robot places the red cube in the bag’s opening in the
third step. In the fourth step, the robot carries the bag, completing
the task. 117

5.2 This figure illustrates the five states that conform the bagging task.
The red and blue dots represent the grasping points the robot can
select. In (a), the bag is folded such that its area is small, and the
opening is not visible. In (b), the bag is unfolded, and the opening is
visible. In (c), the bag’s opening area is large enough to put an object
inside. In (d), The object is in the bag’s opening, distinguishing this
state from the others. In (e), the task succeeded because no visible
objects were left on the table, meaning the robot carried both the bag
and the object. Lastly, (f) shows a failure case when the robot took
the bag, but the red cube was still on the table. 119

5.3 Proposed framework for learning to bag using RL. 122
5.4 The left side of the figure illustrates the experimental setup compris-

ing an object to be bagged (red cube), a Kuka® iiwa 1400™ robot,
and an Intel® RealSense™. On the left side are the three bags used
during the experiments. 130

5.5 Implementation of the real-world learning robot-bagging framework. . 133
5.6 The learning curves above display the results of the experiments.

First, (a) shows the progress of the learning curve of the unfolding
step, demonstrating that the approach converges after 100 training
steps while DQN and A2C struggle to do so. Then, in (b), the pro-
posed framework was the only one to converge after training for 100
and 50 training steps. In (c), A2C and DQN failed to find a solution
while the approach converged. Lastly, in (d), the approach trained
for 100 steps and converged to the highest value. 135

5.7 The robot performing the bagging task with two different bags. In
(a), the bag’s opening faces the camera’s view. In (b), the bag’s
opening is facing the opposite direction of the camera’s view. The
robot successfully completed the tasks in both cases with different
orientations of the bag. 136

5.8 In (a), the robot performs the bagging task with “Bag 1”, used for
training with the framework. In (b), the robot using the framework
after training performs the bagging task with “Bag 2”, a smaller bag
made of polyester. In (c), the robot using the framework after training
performs the bagging task with “Bag 3”, a bag made of cotton and
also with a different size of “Bag 1”. 139

6.1 Roadmap of the techniques developed in this thesis. 146

xvi LIST OF FIGURES

xvii

List of Tables

2.1 Classical RL algorithms characteristics. 23
2.2 Deep RL algorithms characteristics. 37
2.3 Context consideration in RL. 38
2.4 Advantages and disadvantages of RL methods applied to robotics. . . 47

3.1 Nomenclature table for Chapter 3. 65
3.2 Hyperparameters used during the experiments. 77
3.3 Set of rules for each game environment. 80
3.4 Average reward obtained in the second stage of the experiments. . . . 83
3.5 Performance comparison of the maximum reward obtained with IDQN,

IDDQN, IDuDQN or IDDDQN from the learning curves of Fig. 3.8
and the stable baselines. 87

3.6 Affordance loss impact (average reward). 89

4.1 Nomenclature table for Chapter 4. 96
4.2 Results after running Contextual Q-learning (CQL), Q-learning (QL),

Deep Q-network (DQN), Proximal Policy Optimisation (PPO), and
Advantage Actor-Critic (A2C) in 100 different scenarios. 108

5.1 Nomenclature table for Chapter 5. 118
5.2 Differences between QL and Π-learning. 126
5.3 Characteristics and parameters of the bags used in the experiments.

The values of Ath, Aoth, Abmax , Aomax are measured in pixels2. 134
5.4 Total reward obtained by the framework and the stable-baselines after

training. 137
5.5 Reward obtained by the framework and the stable-baselines after

training, categorised per step. 137
5.6 Success rate of the framework and the stable-baselines after training. 138
5.7 Success rate of the framework and stable-baselines after training per

step. 138

xviii LIST OF TABLES

xix

List of Algorithms

1 CKFs generator. 69
2 ι(s) generator. 70
3 Context-based Deep Reinforcement Learning and its variants learning 71
4 Sub-goals extractor. 98
5 State generator. 100
6 Contextual Q-learning. 102
7 Opening area’s calculator . 123
8 Π-learning. 130

xx LIST OF ALGORITHMS

xxi

List of Acronyms

A2C Advantage Actor-Critic

A3C Asynchronous Advantage Actor-Critic

CAD Computer-Aided Design

CKF Contextual Key Frame

CQL Contextual Q-learning

CMDP Contextual Markov Decision Process

CNNs Convolutional Neural Networks

DDDQN Double Dueling Deep Q-network

DDQN Double Deep Q-network

DDPG Deep Deterministic Policy Gradient

DP Dynamic Programming

DQNfD Deep Q-network from Demonstrations

DQN Deep Q-network

DRL Deep Reinforcement Learning

DuDQN Dueling Deep Q-network

GRASP Generative Action Selection Through Probability

IECR Iota Explicit Context Representation

IDDDQN Iota Double Dueling Deep Q-network

IDDQN Iota Double Deep Q-network

IDQN Iota Deep Q-network

IDuDQN Iota Dueling Deep Q-network

IRL Inverse Reinforcement Learning

xxii LIST OF ALGORITHMS

HER Hindsight Experience Replay

HRI Human-Robot Interaction

LfD Learning from Demonstration

LLMs Large Language Models

LSTM Long Short-Term Memory

MC Monte Carlo

MDP Markov Decision Process

ML Machine Learning

MMCRL Multi-Modal Contextual Reinforcement Learning

MSE Mean Squared Error

PDF Probability Density Function

PPO Proximal Policy Optimisation

QL Q-learning

ReLU Rectified Linear Unit

RL Reinforcement Learning

RNNs Recurrent Neural Networks

RRT Rapid-exploration Random Trees

SAC Soft Actor-Critic

SARSA State-Action-Reward-State-Action

TD Temporal Difference

TD3 Twin Delayed Deep Deterministic Policy Gradient

TL Transfer Learning

xxiii

List of Publications

The work introduced in this thesis is based on the following publications:

• Francisco Munguia-Galeano, Ah-wee Tan and Ze Ji. Deep Reinforcement
Learning With Explicit Context Representation. IEEE Transactions on Neural
Networks and Learning Systems, 2023 doi: 10.1109/TNNLS.2023.3325633.

• Francisco Munguia-Galeano, Satheeshkumar Veeramani, Juan David Hernán-
dez, Qingmeng Wen and Ze Ji. Affordance-based human-robot interaction
with reinforcement learning. IEEE Access, 2023 doi: 10.1109/ACCESS.2023.3262450

• Francisco Munguia-Galeano, Jihong Zhu, Juan David Hernández and Ze
Ji. Learning to bag with a simulation-free reinforcement learning framework
for robots. IET Cyber-Systems and Robotics, 2024 doi: 10.1049/csy2.12113

Other publications:

• Francisco Munguia-Galeano, Lesli Ortega-Arroyo, Miguel Gabriel Villarreal-
Cervantes and Ze Ji. Towards integrating 3D printing and automated assem-
bly. Presented at: 2023 IEEE 19th International Conference on Automation
Science and Engineering (CASE), Auckland, New Zealand, 2023.

• Yanzhang Tong, Qiyuan Zhang, Francisco Munguia Galeano and Ze Ji.
Designing an AR Facial Expression System to Improve Trust in Human-Robots
Collaboration. Presented at: 28th IEEE International Conference on Automa-
tion and Computing (ICAC2023), 2023.

• Prasad Rayamane, Francisco Munguia-Galeano, Seyed Amir Tafrishi and
Ze Ji. Towards smooth human-robot handover with a vision-based tactile
sensor. Presented at: Towards Autonomous Robotic Systems: 24th Annual
Conference, TAROS 2023, Cambridge, UK, 2023.

• Prasad Rayamane, Peter Herbert, Francisco Munguia-Galeano and Ze Ji.
Presented at: 2023 IEEE 29th International Conference on Mechatronics and
Machine Vision in Practice (M2VIP), Queenstown, New Zealand, 2023.

• Yanzhang Tong, Qiyuan Zhang, Francisco Munguia Galeano and Ze Ji.
Towards Flexibility and Efficiency for Smart Manufacturing: Advancing Human-
Machine Perception and Collaboration. Presented at: The 25th IEEE Inter-
national Conference on Industrial Technology (ICIT2024), 2024.

xxiv LIST OF ALGORITHMS

1

Chapter 1

Introduction

Reinforcement Learning (RL) has significantly evolved over the years, resulting in

its implementation in various fields, such as gaming (Shao et al. 2019; Silver et al.

2016) and robotics (Brunke et al. 2022). RL algorithms can learn complex tasks

from scratch by relying only on stochastic exploration and producing their own

training dataset. The goal of RL is to train agents to learn optimal actions based

on rewards and interact with the environment autonomously. These characteristics

of RL make it suitable for several tasks where either the mathematical model of

the system to control is not available or challenging to create. Despite the success

of RL, several concerns still need addressing. For example, the learning process

of agents involves massive exploration of the environment and repeating the same

actions even when the agent has made the same mistake before. On the other hand,

humans can identify patterns and utilise contextual information (e.g., semantics,

rules, or affordances) to optimise their decision-making capabilities and avoid re-

peating mistakes (Munguia-Galeano et al. 2023a,b, 2024). Ideally, an RL agent

should learn as fast as a human does (Voss et al. 2020). This thesis investigates

methods involving the incorporation of contextual information into RL algorithms,

with the goal of enhancing RL capabilities in exploration and learning, particularly

in the context of robotics applications.

2 1.1 Motivation

1.1 Motivation

The performance of an RL agent depends on the quality of the data that it has

been training with (Raffin et al. 2022). In RL approaches, this data is produced by

the own RL agent in a process known as the exploration-exploitation trade-off. The

exploration stage is based on selecting actions stochastically, while the exploitation

stage is based on taking the best action according to the agent’s knowledge. This

trade-off offers advantages such as not requiring a dataset since the own agent can

generate it while training (Sutton and Barto 1998). Besides, RL is a human-like

learning approach that allows the learning of complex behaviours (Y. Zhang et

al. 2018). For example, RL has been implemented in robotics, in which, without

knowing the mathematical model of the robot itself, robots can learn to walk from

scratch (Lele et al. 2020). However, there also exist disadvantages, such as the

complexity of the sequential interaction (which often produces low-quality training

datasets) (Yarats et al. 2022), the reward function structure (Icarte et al. 2022),

differences between simulation and the real world debase RL performance (W. Zhao

et al. 2020) and generalisation (Cobbe et al. 2019).

The complexity involved in leveraging the exploration-exploitation trade-off of

RL has a high impact on the quality of the data produced by the own agent. Con-

sequently, this factor usually only depends on stochasticity, and the dataset grows

exponentially with low-quality data, which dramatically decelerates the learning of

the agent (Blondé and Kalousis 2019). In the literature, several approaches focus

on using demonstrations to reduce the exploration space of RL agents. This ap-

proach is known as Learning from Demonstration (LfD) and is usually carried out

using three methods: teleoperation, passive observation and kinesthetic demonstra-

tions (Ravichandar et al. 2020). In teleoperated-based approaches, the user guides

the robot with a joystick, a haptic device or a teach pendant (Pareek and Ke-

savadas 2019). Passive observation refers to robots that can learn from video streams

containing human demonstrations of the task (Hwang et al. 2020). In kinesthetic

1.1 Motivation 3

demonstrations, the user manually guides the robot by pulling or pushing the end

effector (Stavridis et al. 2022). Despite the advantages of LfD, there are constraints

for these approaches regarding the solution shown by the user because more opti-

mal solutions than the demonstrated one are often discarded (Hester et al. 2018).

Consequently, RL provides alternative solutions to this problem by encouraging the

agent to explore further and find better solutions than the user’s demonstrated one.

Additionally, data sampling quality significantly impacts the quality of the learn-

ing progress of the agent. Offline RL learning approaches have shown that high-

quality data improves RL performance (Ren et al. 2018; T. Yu et al. 2021). The

primary distinction between off-line and on-line RL algorithms lies in their training

data. Online RL algorithms train with data generated in real-time during the train-

ing process, whereas offline RL algorithms use data collected beforehand. Typically,

RL algorithms use an ϵ-greedy policy (Cruz et al. 2018b), which consists of selecting

actions randomly and eventually bias preference to actions from the agent. Data

sampling depends on the quality of the exploration process; it is essential to define

when and how to carry out data sampling (M. Bellemare et al. 2016; Osband et al.

2019; Pan et al. 2018). The main problem with the state-of-the-art approaches is

that undesirable data become trivial because the ϵ-greedy policy and the agent will

keep selecting wrong actions for multiple episodes until the ϵ-greedy policy reaches a

low probability and the agent learns to avoid them. Consequently, the training data

set grows exponentially with low-quality data, and the agent decelerates its learning

process. This is known as the sampling efficiency problem (Blondé and Kalousis

2019; Nair et al. 2018).

An additional problem with RL is that, because of its stochastic nature during

the exploration-exploitation process, the actions taken by the agent rely only on the

reward function, which can be sparse for complex tasks. Hence, the agent wastes

time learning what not to do while increasing the complexity of the design of reward

functions (Millan-Arias et al. 2021). This is because (i) RL relies on data that are

4 1.1 Motivation

the product of the policy through random exploration, and the policy is trained

through only the indirect information that is given as a reward (Naeem et al. 2020),

and (ii) contextual information is often ignored, such that the agent must learn it

from scratch. An approach to solve this problem is based on a concept that Gibson

(1977) coined as affordances, which is contextual information that represents the

relationships between actions and objects. Affordances give information about the

effect of a given action, i.e., whether a particular task affords an action or not (C.

Wang et al. 2013; Zeng 2019). Affordances enhance the performance of the ϵ-greedy

policy (Sutton and Barto 1998). Applying affordances in robotics is essential because

it encourages human-like generalisation capabilities (Ardón et al. 2019).

Despite the vast literature exploring several RL approaches in simulation, less

attention has been paid to RL in the real world due to several problems (Dulac-

Arnold et al. 2021), such as costly robot time, motion constraints, stochastic be-

haviours of objects surrounding the robot, and unnecessary robot wear due to the

intrinsic exploration and learning process of RL. Although training RL in simula-

tion is effective, transferring the trained policies to the real world is a challenge that

must be taken seriously, often resulting in significant performance degradation due

to the simulation-to-reality gap (Salvato et al. 2021; W. Zhao et al. 2020). Even

though RL provides an alternative to hard-coded solutions, a significant gap ex-

ists regarding what is possible in simulation and learning in the real world (Hanna

et al. 2021a). Among several problems, deformable objects present a challenge re-

garding large object configuration spaces, the difficulty of modelling the object’s

behaviour, and considerable change in the object’s state resulting from manipula-

tion attempts (Matas et al. 2018). Therefore, tackling complex problems such as

learning to manipulate deformable objects in the real world may open the door to

addressing further challenges in robotics and RL.

Once the issues of finding a proper exploration-exploitation trade-off and a good

reward function are solved, it does not guarantee that the agent will perform well

1.1 Motivation 5

when there are changes in the environment. This is known as generalisation and is

a current challenge in RL (Hansen and X. Wang 2021; K. Wang et al. 2020). For

example, setups involving Human-Robot Interaction (HRI) present highly dynamic

and unpredictable behaviours (Modares et al. 2015). Although RL has the poten-

tial to deal with this problem (El-Shamouty et al. 2020), the performance of RL

agents is seriously affected when they have to deal with unseen domains (Kostas

et al. 2021). There has been research to address this problem. For example, Anoop-

kumar et al. (Sonar et al. 2021) proposed learning a representation that makes the

optimal policy, to be built based on this representation, invariant across training

domains. This approach aims to learn and exploit the causes of successful actions

instead of the actions themselves. Another interesting approach is the one presented

by Raileanu and Fergus (Raileanu and Fergus 2021), which shows that the need to

capture level-specific features to estimate the value function can result in a policy

that does not generalise well to new task instances. Consequently, both approaches

demonstrate that learning abstract representations of the state and adding a con-

textual understanding of the task, rather than trying to understand pixels, enhances

the generalisation capacities of RL. This is because when a neural network is fed

only pixels, it takes time for the neural network to group and establish relationships

between the numerical data and the actual task. In contrast, when this relationship

is provided through demonstrations or state representations, the neural network

saves time and does not need to learn such information from scratch. This enhances

its learning performance.

To summarise, RL performance relies on good-quality data produced in a defi-

cient exploration-exploitation trade-off that lacks context. Moreover, the difficulty

of generalising and bringing the simulation to the real world is still a crucial chal-

lenge that needs to be addressed to improve RL. In particular, adding human-like

capabilities, such as using context to enhance the exploration-exploitation trade-off

process of RL, is essential. The hypothesis of this work is that injecting contextual

6 1.3 Aim and Objectives

information (e.g., semantics, rules, or affordances) will result in improved sampling

efficiency for RL agents and enhanced learning performance.

1.2 Research questions

The following research questions will be addressed in this thesis:

• How does contextual information impact the exploration-exploitation trade-off

of RL agents?

• How to include context in the learning process?

• Can context-based RL agents be used in the real world with robots?

• Is context-based RL suitable for HRI?

• Can RL be used to learn how to manipulate deformable objects such as bags?

A detailed examination based on a literature review, experiments and analysis

will be conducted for each one of the questions above. These questions answers hold

the potential to provide helpful information about the benefits and limitations of

using contextual information for training RL agents, as well as understanding the

factors required to carry out RL in the real world.

1.3 Aim and Objectives

This thesis aims to investigate the effectiveness of using contextual information to

improve the learning performance of RL agents. To achieve this aim, the following

objectives are pursued:

• To investigate the effectiveness of using contextual information for training

reinforcement learning agents in discrete environments. The goal of the first

objective is to develop methods that can be safely tested and demonstrate how

1.4 Outline 7

context enhances RL sampling efficiency. Therefore, discrete environments

such as games serve as suitable proof of concept before progressing to more

complex scenarios involving robots.

• To develop and test a robotic RL context-based system to perform HRI for

rigid objects in the real world. The second objective, which involves HRI

scenarios, encompasses dynamic changes in the environment. Consequently,

extracting contextual information has the potential to provide additional in-

sights to the RL agent. Therefore, developing methods and testing the RL

agent’s capabilities to react to uncertain behaviours offers an ideal setup to

identify weaknesses in current RL approaches. This process allows for the

development of methods that address these weaknesses and enhance overall

performance.

• To develop and test a robotic RL context-based system for learning to manip-

ulate deformable objects in the real world. The third objective aims to explore

the current capabilities of RL in handling complex manipulation problems. In

this study, bags are employed for this purpose. Bags are deformable objects

that have not been thoroughly explored to date. Therefore, it is essential to

investigate how RL methods can effectively address this task.

By pursuing these objectives, this thesis aims to contribute to developing robust

RL algorithms that can learn in simulation and the real world.

1.4 Outline

This outline presents a concise summary of the thesis’ content comprised of six chap-

ters, aiming to provide a clear overview of the research presented in the following

chapters.

8 1.4 Outline

Chapter 2 introduces relevant literature in RL, affordances and robotics, and a

critical analysis of the existing approaches by identifying the gaps and limitations

in current research.

Chapter 3 introduces a framework for discrete environments called Iota Explicit

Context Representation (IECR). This framework utilises the principle of Deep Q-

network and involves encoding each state using the Contextual Key Frame (CKF)

representation, which can then be used to extract a function that represents the

affordances of the state (referred to as Iota in this work, which gives the name to

the proposed framework); in addition, two loss functions are introduced with re-

spect to the affordances of the state. The novelty of the IECR framework lies in

its capacity to extract contextual information from the environment and learn from

the CKFs’ representation. The framework is validated by developing four new algo-

rithms that learn using context: Iota Deep Q-network (IDQN), Iota Double Deep

Q-network (IDDQN), Iota Dueling Deep Q-network (IDuDQN), and Iota Double

Dueling Deep Q-network (IDDDQN). Furthermore, the framework and the new al-

gorithms are evaluated in five discrete environments. The experiments show that all

the algorithms which use contextual information significantly outperform the base-

line algorithms by 77 % on average.

Chapter 4 introduces an affordance-based human-robot interaction framework,

aiming to reduce the action space size that would considerably impede the explo-

ration efficiency of RL agents. The framework is based on a new algorithm called

CQL based on the principle of classic Q-learning, a tabular RL approach. The ex-

periments show that the proposed algorithm trains in a reduced amount of time

(2.7 seconds) and reaches an 84% success rate, while the baseline algorithm with

the highest success rate reached 68% after learning during a significantly longer pe-

riod of time (91.8 seconds). This suits the robot’s learning efficiency in observing

1.4 Outline 9

the current scenario configuration and learning to solve it. During the HRI, the

robot uses semantic information from the state and the optimal policy of the last

training step to search for relevant changes in the environment that may trigger the

generation of a new policy.

Chapter 5 presents an efficient learning-based robot-bagging framework where the

novelty lies in its capacity to learn bagging in the real world. The learning process is

accomplished through a new RL algorithm introduced in this work called Π-learning,

designed to find the best grasping points of the bag based on a set of compact state

representations. Moreover, Π-learning is a table-based RL approach. The frame-

work utilises a set of primitive actions and represents the task in five states. In the

experiments, the framework reaches a 60% and 80% success rate after around three

hours of training in the real world when starting the bagging task from folded and

unfolded positions, respectively. Finally, the trained model is tested on two more

bags of different sizes to evaluate its generalisation capacities.

Chapter 6 concludes the thesis by summarising the main contributions and achieve-

ments of this research work. In addition, the limitations and challenges of the ap-

proaches developed in this thesis are discussed, and future research directions are

proposed .

Overall, this thesis aims to contribute to the ongoing efforts to improve RL reliability

and robustness in real-world applications.

10 1.4 Outline

11

Chapter 2

Literature Review

In the field of Reinforcement Learning (RL) and considering the objectives of this

thesis, a comprehensive review of the current state-of-the-art is necessary to un-

cover insights into current challenges and unresolved problems. By examining the

various applications, which include robotics and the use of contextual information

as part of the training of RL agents, this chapter aims to explore the diverse RL

algorithms, their work principles and applications in robotics. The rest of the chap-

ter is organised as follows: section 2.1 introduces relevant concepts in RL. Then,

section 2.2 explores how contextual information is involved in current state-of-the-

art approaches. This is followed by section 2.3 that focuses on robotic applications,

more concisely, on the use of RL for the manipulation of rigid and deformable ob-

jects. Finally, the main findings of the literature review are discussed in section 2.4

and summarised in section 2.5.

2.1 Reinforcement Learning Overview

RL is a sub-field of Machine Learning (ML) that focuses on training agents to

learn how to maximise a reward in a given environment based on a human-like

approach to learning by trial and error. RL algorithms are designed to allow the

agent to learn from its own experience and, in this way, improve its performance

12 2.1 Reinforcement Learning Overview

within each iteration with the environment. The RL framework is comprised of

the following key concepts: agent, environment, state, action, reward, policy, state-

value function, action-value function, exploration-exploitation trade-off, and Markov

Decision Process (MDP). The definitions of these concepts are as follows:

• An agent is the learner, the one that makes decisions in the environment and

gets feedback from the environment in the form of rewards.

• The environment is the system where the agent interacts, which can be sim-

ulated or real. An environment can be discrete (contains countable or finite

elements) or continuous (contains uncountable or infinite elements). Addition-

ally, an environment can be deterministic or stochastic.

• A state represents the current configuration of the environment based on

sensor readings, images, or numbers. The state is denoted by s, and it belongs

to the set of states S such that s ∈ S. The agent observes the state and makes

a decision based on its training. The state can be discrete or continuous.

• An action can be taken by the agent given the current state in a certain

environment. The set of actions can be discrete (i.e., up, down, left, and

right) or continuous (a robot’s joint that can rotate from 0 to 2π radians).

An action an agent can take is denoted by a, and it belongs to the set of all

possible actions A such that a ∈ A.

• A model describes the changes in the environment when the agent takes an

action. The model can be provided or “discovered" by the agent through

interaction with the environment. RL algorithms designed to learn with a

given model are known as model-based, while those that do not rely on a

predefined model are classified as model-free.

• The reward is a numerical value that the agent gets as feedback from the

environment in a given state after performing an action and is denoted by R.

2.1 Reinforcement Learning Overview 13

The reward has the goal of guiding the learning process of the agent throughout

the training stage.

• A policy is the strategy the agent uses to make decisions in the environment.

In other words, it is in charge of mapping the action-state pairs, which can be

deterministic or stochastic. The policy is denoted by π.

• The state-value function predicts the expected reward starting from a given

state s while following a policy π. This function is denoted by V (s).

• The action-value function predicts the expected reward an agent would get

if starting from a given state s and selecting a given action a while following

a policy π. This function is denoted by Q(s, a) and expresses the quality of a

given state-action pair.

• The exploration-exploitation trade-off is a process in which the explo-

ration phase is when the agent makes decisions stochastically, with the pur-

pose of finding better alternatives. The exploitation phase seeks to use the

knowledge of the agent to make decisions. Therefore, establishing a good

exploration-exploitation trade-off strategy has a significant impact on the

learning performance of RL agents.

• An MDP is a 4-tuple ⟨S,A,R, P ⟩ where S is a set of states, A is a set of

actions, R is a reward function, and P (s′|s, a) is a transition function (Sutton

and Barto 1998).

RL algorithms are designed to learn and solve an MDP. RL agents’ objective

is to learn a policy π that maximises the reward while mapping which action a is

the best given a state s where a ∈ A and s ∈ S. Usually, RL agents perform the

following steps: observing the environment, selecting an action a, receiving a reward

R, transitioning into a new state s′ based on P (s′|s, a), and updating the policy. To

14 2.1 Reinforcement Learning Overview

this end, RL agents utilise a value function to estimate the quality of the action-state

pairs.

Overall, RL algorithms can be classified into two branches (Fig. 2.1). The first

one is where the algorithms utilise a table to store the transitions of the environment

(classical RL algorithms), and the second one refers to the algorithms that are based

on the use of neural networks (Deep RL algorithms). In the subsequent sections,

the algorithms will be described.

Figure 2.1: Popular RL algorithms.

2.1.1 Bellman Equations

The last section introduced the concept of the state-value function. However, how

this function is calculated is not explained. In RL, the Bellman equation (Bellman

1966) is a fundamental concept that allows the computation of the value function

V (s). In this context, the Bellman equation can be expressed as follows:

V (s) = R(s, a) + γ · V (s′) (2.1)

Here, V (s) is the value of the state s, R(s, a) is the immediate reward for transi-

2.1 Reinforcement Learning Overview 15

tioning from s to s′ while taking action a, γ is a discount factor and V (s′) is the

value of the next state. When a policy π is given, then the value function can be

expressed as follows:

V π(s) = R(s, a) + γ · V π(s′) (2.2)

This form of the Bellman equation works when the environment is deterministic.

However, when the environment presents stochastic behaviours, it is necessary to

add the transition function P (s′|s, a):

V π(s) =
∑
s′∈S

P (s′|s, a) · (R(s, a) + γ · V π(s′)) (2.3)

Despite the fact that the equation above includes the stochasticity of the environ-

ment, it still needs to be considered when the policy is stochastic and not determin-

istic. Hence, to include a stochastic policy:

V π(s) =
∑
a∈A

π(a|s) ·
∑
s′∈S

P (s′|s, a) · (R(s, a) + γ · V π(s′)) (2.4)

The equation above is known as the Bellman expectation equation, and it can be

rewritten in its expectation form:

V π(s) = Es′∼P
a∼π

[
R(s, a) + γ · V π(s′)

]
(2.5)

In equation (2.5), it can be observed that V (s) evaluates the whole value of the state.

However, it does not evaluate each action independently, and this is a limitation that

can be solved by calculating the quality of every action-state pair with the action-

value function Q(s, a), better known as the Q function. Then, the Bellman equation

of the Q function can be expressed as follows:

Q(s, a) = R(s, a) + γ ·Q(s′, a′) (2.6)

16 2.1 Reinforcement Learning Overview

Here, Q(s, a) is the Q value of an action-state pair, R(s, a) is the reward for transi-

tioning from s to s′ while taking action a, γ is a discount factor and Q(s′, a′) is the

Q value of the next state’s action a′. When a policy π is given, then the Q-function

can be expressed as follows:

Qπ(s, a) = R(s, a) + γ ·Qπ(s′, a′) (2.7)

This form of the Bellman equation works when the environment is deterministic.

However, when the environment presents stochastic behaviours, it is necessary to

add the transition function P (s′|s, a):

Qπ(s) =
∑
s′∈S

P (s′|s, a) · (R(s, a) + γ ·Qπ(s′, a′)) (2.8)

Despite the fact that the equation above includes the stochasticity of the environ-

ment, it still needs to be considered when the policy is stochastic and not determin-

istic. Hence, to include a stochastic policy:

Qπ(s, a) =
∑
s′∈S

P (s′|s, a) · (R(s, a) + γ
∑
a′∈A

π(a|s) ·Qπ(s′, a′)) (2.9)

The equation above is known as the Bellman expectation equation of the Q function,

and it can be rewritten in its expectation form:

Qπ(s, a) = Es′∼P

[
R(s, a) + γ · Ea′∼πQπ(s′, a′)

]
(2.10)

In general, the value and Q function Bellman equations are used for calculating the

value of the state and the quality of the Q value’s state-action pairs, respectively.

These equations are based on the models of the environment given by P (s′|s, a), a

policy π and the reward function R(s, a).

2.1 Reinforcement Learning Overview 17

2.1.2 The Bellman optimality equation

The Bellman optimality equation expresses the expected maximum or total reward

that can be achieved from a given state based on the value function (Eq. (2.4)). The

equation defines the relationship between the value of a state and the values of its

neighbouring states. The Bellman optimality equation of the value function is given

by the following:

V ∗(s) = max
a

∑
s′∈S

P (s′|s, a) · (R(s, a) + γ · V ∗(s′)) (2.11)

The equation states that the optimal value of a state is the maximum expected

value obtained by taking the best action in the current state. Moreover, this equation

considers the expected values of the resulting states. On the other hand, the Bellman

optimality equation of the Q function can also be calculated and is given by the

following:

Q∗(s, a) =
∑
s′∈S

P (s′|s, a) · (R(s, a) + γ ·max
a′

Q∗(s′, a′)) (2.12)

Additionally, the relationship between the value and Q functions is that the value

function can be derived from the Q function by selecting the maximum Q value for

each state. In order to calculate the value function based on the Q function, the

maximum Q value over all possible actions in a given state is selected. Consequently,

for each state, the action that maximises the Q value is selected, which becomes the

value of that state. Therefore, the value V (s) is equal to the maximum Q value for

a given state s. Then, the relationship can be expressed as follows:

V ∗(s) = max
a
Q∗(s, a) (2.13)

Following the logic from the previous sentence, if the maximum value of V ∗(s)

corresponds to the maximum value of Q∗(s, a), then the Q function can be derived

18 2.1 Reinforcement Learning Overview

from the value function by substituting Eq. (2.13) in Eq. (2.12), then:

Q∗(s, a) =
∑
s′

P (s′|s, a) · (R(s, a) + γ · V ∗(s)) (2.14)

Overall, the relationship between the value and Q functions is that the value function

can be derived from the Q function by selecting the maximum Q value for each state.

At the same time, the Q function can be derived from the value function by using

the Bellman equation.

2.1.3 Dynamic Programming

Dynamic Programming (DP) is a method used in mathematics to solve optimisation

problems. This method divides the problem into smaller subproblems. Then, the

method recursively solves the subproblems and stores their solutions in a table or

array. In the context of RL, DP is used to find an optimal policy π∗ from the

Bellman equations introduced in the last subsection. To this end, two DP methods

exist: value iteration and policy iteration.

In the value iteration method, the optimal value function is computed by itera-

tively taking the maximum Q value over the Q function (Eq. (2.14)). Then, within

each step, the value function is updated with Eq. (2.13). Lastly, the optimal policy

is extracted from the optimal value function while computing the Q values with the

following:

π∗ = argmax
a
Q(s, a) (2.15)

The policy interaction method computes the optimal value function using the policy

iteratively. In other words, the method starts with a random policy π0 and computes

its value function with Eq. (2.4). Then, it is necessary to extract a policy π1 derived

from the previous one. To this end, the V (s) values al already available from the

last interaction, and they can be used to compute the Q values with Eq. (2.14).

2.1 Reinforcement Learning Overview 19

Consequently, a new policy can be extracted by using Eq. (2.15). This process is

repeated till finding π∗.

In summary, the Bellman optimality equations and the relationship between the

value and Q functions can be applied interactively with DP to find an optimal policy.

The value iteration method first computes the Q values to update the value function,

and at the end, it extracts the optimal policy. The policy interaction method utilises

a random policy that eventually becomes optimal.

2.1.4 Monte Carlo Methods

A problem with the approaches mentioned above is that the transition function is

given (model-based), and they do not consider the case when the dynamics of the

environment are unknown (model-free). In the context of RL, Monte Carlo (MC)

methods are algorithms used to estimate the value function and find the dynamics

of the environment through interaction (Browne et al. 2012). The expected value of

the value function of a given state can be approximated by visiting that state for N

times and obtaining the total return:

V (st) ≈
1

Nt

Nt∑
i=1

Gi (2.16)

Here, Gi is the total return, st corresponds to the step t when that state was visited

(this must not be confused with the expression V (s) or V (s′) from last subsections,

in the case of MC methods the term t is necessary to update the value of a state

at a given step), and Nt denotes the number of times the st state in a given step t

has been visited. In order to establish a balance between computational efficiency

and memory requirements, instead of using the arithmetic mean as in Eq. (2.16),

the incremental mean is more commonly used, and it is expressed as follows:

V (st) ≈ V (st) + α · (Gt − V (st)), (2.17)

20 2.1 Reinforcement Learning Overview

where α = 1
Nt

. MC methods also focus on solving the problem of estimating the Q

function for a given policy. Hence, the following expression can be deduced:

Q(st, at) ≈ Q(st, at) + α · (Gt −Q(st, at)) (2.18)

MC methods have two variations: first-visit MC and every-visit MC. In the first-

visit MC, the algorithm only updates the value or Q function once per episode.

Contrary, every-visit MC updates the value or Q function every time. The main

idea is to use returns obtained from actual episodes to approximate the expected

returns. The MC algorithms are comprised of the following steps: episode collection,

value function estimation, and policy improvement.

During the episode collection, the agent interacts with the environment by fol-

lowing a given policy. Besides that, it collects experience and computes the return

during each episode. Every episode ends with a final state or a terminal condition.

For the value function estimation, depending on the variant, Eq. (2.17) or Eq. (2.18)

is used. The return is the cumulative sum of discounted rewards from a given state

until the end of the episode. The more episodes, the more accurate the estimation.

Once the value function is estimated, the agent can use it to optimise the policy.

This is done by selecting actions that maximise the estimated value function.

In general, MC methods are model-free algorithms that perform the described

steps iteratively. Where the agent collects episodes, updates the estimated value

function, and improves the policy until it transforms it into an optimal one.

2.1.5 Temporal Difference

Despite the potential of MC methods, their working principle design relies on reach-

ing a terminal state to approximate a value function. A drawback is that if the

episode is too long, it means costly computation. In this context, Sutton and Barto

(1998) proposed an alternative that balances Bellman equation methods and MC

2.1 Reinforcement Learning Overview 21

methods. The approach is known as Temporal Difference (TD). These approaches

learn by bootstrapping, meaning that instead of waiting until the end of an episode,

they update their value estimation based on the following:

V (s) ≈ r + γ · V (s′), (2.19)

where r is the immediate reward obtained after transitioning from state s to the next

state s′. Here, similar to the replacement of the average mean for the incremental

mean in Eq. (2.17), Eq. (2.19) can be expressed as follows:

V (s)←− V (s) + α · (r + γ · V (s′)− V (s)), (2.20)

The last expression, known as the TD estimate rule, can be used to estimate the

value of the state. However, it is necessary to apply the same logic to the Q function

to have an optimal policy based on that estimate. The TD estimate rule for the Q

function is given by the following:

Q(s, a)←− Q(s, a) + α · (r + γ ·Q(s′, a′)−Q(s, a)). (2.21)

Similar to MC methods, TD methods can be on-policy or off-policy. On-policy

methods utilise the same policy that the agent is improving. The policy used for

exploration-exploitation is also the policy that is updated based on the collected

experiences. MC methods are the most common on-policy methods. Off-policy

methods are the ones that update their action-value function regardless of the ac-

tion actually taken. In other words, off-policy methods are designed to let the

agent learning from experiences generated by a different policy than the one being

updated. For example, the State-Action-Reward-State-Action (SARSA) algorithm

(Rummery and Niranjan 1994) is a TD method that learns the policy-value function

from the policy that is following. Another approach is Q-learning QL, an off-policy

algorithms. Both algorithms utilise an ϵ-greedy policy that encourages exploration

22 2.1 Reinforcement Learning Overview

of the environment, iteratively updates the value estimates, and improves the policy.

In summary, one of the most important advantages of TD methods is their ability

to learn online while combining the benefits of MC methods (being model-free) and

DP (bootstrapping from estimated values).

2.1.6 Q-learning

Among several approaches, Q-learning (QL) is a popular off-policy RL algorithm

that learns an MDP in discrete environments. This algorithm is also model-free

because it does not require any previous model of the environment. QL is designed

to update the quality values Q of a state-action combination, given by:

Q : A× S −→ R, (2.22)

where Q are the Q-values (usually stored in a table), and they represent the quality

of the state-action pair. In other words, the higher the Q-value, the better the action

for that state. Then, a Q-table is necessary to represent each Q-value such that QL

updates the state-action pair by using the following:

Q(s, a)←− Q(s, a) + α · [r + γ ·max
a′

Q(s′, a′)−Q(s, a)], (2.23)

where α is the learning rate, r is the reward and γ is the discount factor. The

discount factor is usually a value between 0 and 1 (0 ≤ γ ≤ 1) that balances

the importance the agent puts on future rewards rather than immediate rewards.

According to equation (2.23), the state-action pair is updated based on the next

state s′ even when that state has not been explored, which is why QL is considered

an off-policy method.

2.1 Reinforcement Learning Overview 23

2.1.7 State-Action-Reward-State-Action

The State-Action-Reward-State-Action (SARSA) algorithm was first proposed by

Rummery and Niranjan (1994), and its main difference with QL lies in the manner

in which the Q values are updated. SARSA is designed to learn from its own policy.

Hence, SARSA is categorised as an on-line RL algorithm. The update rule of SARSA

is given by the following:

Q(s, a)← Q(s, a) + α · [r + γ ·Q(s′, a′)−Q(s, a)], (2.24)

where α is the learning rate, r is the reward and γ is the discount factor. In the

case of SARSA, the maximum Q value of the next state-action pair is not used as

in QL (see Eq. (2.23)). In terms of equations, this is the main difference between

both algorithms.

Characteristic Bellman Equations MC DP TD QL SARSA

Off-Line ✓ ✓ ✓ ✓

On-Line ✓ ✓ ✓ ✓ ✓

Model-Free ✓ ✓ ✓ ✓

Model-Based ✓ ✓

Off-Policy ✓ ✓ ✓

On-Policy ✓ ✓ ✓ ✓

Discrete Action ✓ ✓ ✓ ✓ ✓ ✓

Continuous Action ✓ ✓ ✓ ✓

Discrete State ✓ ✓ ✓ ✓ ✓ ✓

Continuous State ✓ ✓ ✓ ✓

Supports large

State Spaces

Table 2.1: Classical RL algorithms characteristics.

2.1.8 Deep Q-network

A problem with the approaches described before is that when the state space is

too large, or the number of states is infinite, the approach becomes impractical and

impossible to implement (see Table 2.1). Hence, a solution to this problem is to

24 2.1 Reinforcement Learning Overview

utilise a neural network that can approximate all possible state-action pairs. Since

the implementation of neural networks RL is commonly referred to as Deep Rein-

forcement Learning (DRL) (Goodfellow et al. 2016), the approach of implementing

neural networks into QL is known as Deep Q-network (DQN). However, the prob-

lem now is related to finding a proper set of weights for the neural network Qθ. In

this context, the Q function Qπ(s, a) denotes the value of an action-state pair that

approximates the expected future reward that can be obtained from R(s, a) when

a policy π is given. The optimal value function Q∗(s, a) can be obtained from the

Bellman optimality equation:

Q∗(s, a) = Es′∼P

[
R(s, a) + γ ·max

a′
Q∗(s′, a′)

]
(2.25)

In Equation (2.25), the reward functionR(s, a) is equivalent to the immediate reward

r, which is obtained when performing an action a in a given state. Therefore, the

Q function can be approximated with a neural network Qθ(s, a) that can be trained

by utilising k transitions from a replay buffer Dreplay. Then, the expectation can

be removed and approximated by using bootstrapping. The optimal value function

Q∗(s, a) is:

Q∗(s, a) = r + γ ·max
a′

Q(s′, a′) (2.26)

In order to stabilise the learning performance, DQN uses two neural networks (Mnih

et al. 2015). The main neural network Qθ computes the current value of the given

pair (s, a). The target neural network parameterised by θ and denoted by Qθ′(s, a) is

frozen for n training steps and is used to compute the next pair (s′, a′). Consequently,

the target function Qθ′(s, a), the current values of the main neural network Qθ(a, s),

and equation (2.26) can be used to obtain the loss function Jdn(Q), as follows:

Jdn(Q) = r + γ ·max
a′

Qθ′(s′, a′)−Qθ(s, a) (2.27)

2.1 Reinforcement Learning Overview 25

In order to use the replay buffer to train the neural network, it is necessary to

calculate the Mean Squared Error (MSE) and minimise it. Hence, instead of using

only equation (2.27), it is necessary to use the k transitions stored in the buffer, as

follows:

Jdn(Q) =
1

k

k∑
i=1

(ri + γ ·max
a′

Qθ′(s′i, a
′)−Qθ(si, ai))

2 (2.28)

For simplicity, the expression r+ γ ·maxa′ Q
θ′(s′i, a

′) can be expressed as the target

value yi, which is restricted to the following condition:

yi =


r if the state is terminal,

r + γ ·maxa′ Q
θ′(s′i, a

′) otherwise.
(2.29)

Then the loss function can be expressed as follows:

Jdn(Q) =
1

k

k∑
i=1

(yi −Qθ(si, ai))
2 (2.30)

The weights θ are updated with the following:

θ = θ − α · ∇θJdn(Q) (2.31)

Overall, DQN utilises two neural networks. One is the main source of action

selection, known as the main neural network with weights θ. The second one is

the target neural network with weights θ′, and this structure is used to stabilise

the learning progress of the agent. The equation (2.26) detonates that the optimal

value function depends on the reward and the Q-value of the next state-action pair.

To this end, a loss function, given by equation (2.27), increases its value when the

current Q-values are different from the optimal values. Consequently, after training

for n steps, a replay buffer is collected, and the loss function is used interactively to

26 2.1 Reinforcement Learning Overview

get the gradients that reduce the loss. Finally, the weights theta are used to update

the θ′ weights after a certain number of training steps (usually 100).

2.1.9 Double Deep Q-network

For some environments, DQN may overestimate the Q-values of the next state,

leading to bias preference towards actions that are not optimal. Double Deep Q-

network (DDQN) is a variant of DQN, which is designed to deal with this prob-

lem (Hasselt 2010). More concisely, while DQN takes the maximum Q-value of the

target neural network, DDQN takes the index of the maximum Q-value from the

main neural network and then takes the value of that index from the target neural

network. In this way, DDQN solves the problem of overestimating the states that

DQN presents in some environments. DDQN takes the maximum index of the main

neural network and then the actual value of that index in the target neural network

to calculate the loss Jddn(Q):

Jddn(Q) = r + γ ·Qθ′(s′, argmax
a′

Qθ(s′, a′))−Qθ(s, a) (2.32)

Similar to DQN, when using the replay buffer to train the neural network with

DDQN, the loss function can be expressed as follows:

Jddn(Q) =
1

k

k∑
i=1

(ri + γ ·Qθ′(s′i, argmax
a′

Qθ(s′i, a
′
i))−Qθ(si, ai))

2 (2.33)

2.1.10 Dueling Architectures

A problem with DQN and DDQN is that both algorithms have the value estimation

function embedded in the same network, which may provoke some problems, such

as ambiguity, when the agent can take two actions that lead to the same goal.

This can result in overgeneralisation, in other words, the value estimates for actions

2.1 Reinforcement Learning Overview 27

that are not relevant or are propagated to other states. Dueling architectures (Z.

Wang et al. 2016) use two output separate estimators: the advantage output stream

Aθ(s, a) and the Vθ(s) output stream (refer to Fig. 2.2). By using this configuration,

dueling architectures enhance their learning efficiency while allowing for better value

estimation. Dueling Deep Q-network (DuDQN) uses two streams in the neural

network to estimate separately the advantage Aθ(s, a) that is given by the following:

Aθ(s, a) = Qθ(s, a)− Vθ(s), (2.34)

where Aθ(s, a) is the advantage, and Vθ(s) is the value of the state s. Even though

the actions are selected using the advantage stream channel, the loss function (2.27)

for DuDQN is the same used for DQN. Finally, Double Dueling Deep Q-network

(DDDQN) is the implementation of the DDQN principle to DuDQN.

Figure 2.2: Typical neural network architectures used in DQN’s variants (Hasselt 2010).

2.1.11 Actor-Critic Methods

The algorithms discussed above are designed to learn a value function. On the con-

trary, Actor-Critic methods (Mnih et al. 2016) are model-free approaches combining

policy- and value-based elements. These methods consist of two components: an

actor and a critic. On one hand, the actor selects actions based on the current state.

It is represented by a policy which can be stochastic or deterministic. The critic

28 2.1 Reinforcement Learning Overview

evaluates the actions taken by the actor by estimating the expected cumulative re-

ward or value function associated with a given state or state-action pair. On the

other hand, the critic learns to approximate the value function based on the TD

or MC methods discussed previously. Both components, the actor and critic, work

iteratively such that while the actor explores the environment, the critic estimates

the value function to provide feedback to the actor.

Broadly speaking, there are two algorithms based on Actor-Critic methods:

Advantage-Actor Critic (A2C) and Asynchronous Advantage Actor-Critic (A3C).

A2C algorithm utilises two neural network function approximations, one for the

actor-network θ, and the other one for the critic-network ϕ. The parameters of the

actor-network are updated with the following:

θ = θ + α · ∇θJ(θ) (2.35)

Here, J(θ) is the loss function. The preceding equation aims to maximise the rewards

obtained by the policy πθ such that the gradient with respect to θ of the loss is given

by the following:

∇θJ(θ) = ∇θ log πθ(at|st)(r + Vϕ(s
′
t)− Vϕ(st)), (2.36)

where πθ(at|st) is a policy that follows a probability density function at a given

time-step t. In other words, the neural network’s output is the mean and standard

deviation of the Probability Density Function (PDF) given by the policy πθ(at|st).

Whereas Vϕ(s′t) and Vϕ(st) are the values of the current and next state predicted

with the neural network ϕ. The weight values ϕ are updated with the following:

ϕ = ϕ− α · ∇ϕJ(ϕ) (2.37)

Here, the loss J(ϕ) is given by the following:

2.1 Reinforcement Learning Overview 29

J(ϕ) = r + Vϕ(s
′
t)− Vϕ(st) (2.38)

The A3C algorithm introduces the concept of asynchrony to improve training effi-

ciency. Besides that, A3C train multiple agents in parallel. For this purpose, a copy

of the environment is given to each agent. All the agents collect experiences inde-

pendently. Then, these experiences are used to update the shared parameters of the

actor and critic networks. A3C adds a new term to the loss function utilised by A2C,

which is known as the entropy or measurement of randomness given by M(π(s). By

encouraging a higher entropy, A3C promotes exploration and prevents the policy

from focusing on a limited set of actions. The loss is given by the following:

J(θ) = log πθ(at|st)(r + Vϕ(s
′
t)− Vϕ(st)) + βM(π(s)), (2.39)

where β controls the significance of the entropy. A3C utilises several agents known as

workers and the global agent. In A3C, several workers perform actions and compute

the losses (Eq. (2.38) and Eq. (2.39)) that are then used to update the global agent

parameters.

In general, agents based on actor-critic methods can learn a value function and

optimise a policy simultaneously while iteratively interacting with the environment.

2.1.12 Deep Deterministic Policy Gradient

The algorithms discussed above are designed to solve environments with discrete

action spaces. Contrary, Deep Deterministic Policy Gradient (DDPG) (Lillicrap et

al. 2015) is an Actor-Critic model-free method that combines elements from both

policy-based methods and value-based methods. DDPG works in continuous action

space environments. Similar to DQN variants, DDPG also utilises the idea of main

and target neural networks. A replay buffer, which stores experiences encountered

during training, is also utilised. Additionally, DDPG uses the Actor-Critic principle

30 2.1 Reinforcement Learning Overview

to train an agent. Hence, four neural networks are used: main critic ϕ and target

criticϕ′, main actor θ and target actor θ′. The main critic neural network weights

are updated with the following:

θ = θ + α · ∇θJ(θ) (2.40)

Here, the loss J(θ) is computed as follows:

J(θ) =
1

k

k∑
i=1

(ri + γ ·Qθ(s
′
i, µϕ′(si))−Qθ(si, ai))

2, (2.41)

where i is the index of experiences in the replay buffer. Each replay experience

is denoted by the tuple (si, ai, ri, s
′
i), si is the current state, ai is the action taken,

ri is the reward received, and s′i is the next state. The loss J(θ) is computed

by summing all the transitions in the replay buffer and involves the main critic’s

and actor’s outputs. Additionally, µϕ′ is the deterministic policy generated by the

actor neural network ϕ′, and k samples are randomly taken from the replay buffer.

The exploration of this algorithm is achieved by applying the Ornstein-Uhlenbeck

random process consisting of injecting random noise such that:

a = µϕ +N, (2.42)

where N is the noise. The actor’s main neural network is updated by using the

following equation:

ϕ = ϕ− α · ∇ϕJ(ϕ) (2.43)

Here, the objective function J(ϕ) is given by:

J(ϕ) =
1

K

K∑
i=1

Qθ(si, µϕ(si)) (2.44)

For updating the target actor neural network, it is necessary to copy the weights

2.1 Reinforcement Learning Overview 31

from the main actor neural network by applying soft replacement:

ϕ′ = ω · ϕ+ (1− ω)ϕ′, (2.45)

where ω is usually set to 0.001. In a similar manner, the target critic neural network

can be updated by applying soft replacement:

θ′ = ω · θ + (1− ω)θ′ (2.46)

DDPG is designed to learn an optimal policy that maximises the expected cumu-

lative reward in continuous action spaces. This is achieved by iteratively updating

the actor and critic networks with Eq. (2.40) and Eq. (2.44) with samples from the

replay buffer.

2.1.13 Twin Delayed Deep Deterministic Policy Gradient

Twin Delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al. 2018)

the successor of DDPG, and it implements three major changes: clipped double Q-

Learning, delayed policy update and target policy smoothing. First, similar to DQN,

DDPG tends to overestimate the action-state pair of the next state. To address this

issue, the Double Q-learning principle is implemented. For this purpose, TD3 utilises

twin critics, which are two critic neural networks instead of the only one DDPG uses.

This is known as clipped double Q-learning. In this way, two target critic networks

are used to compute the two Q values and select the minimum value out of these

two. Then, based on that information, the target value is calculated. Consequently,

two main critic neural networks with parameters θ1 and θ2 are defined, while for

the target critic neural networks, the parameters are θ′1 and θ′2. The parameters are

updated with the following equations:

θ1 = θ1 − α · ∇θ1J(θ1) (2.47)

32 2.1 Reinforcement Learning Overview

θ2 = θ2 − α · ∇θ2J(θ2) (2.48)

Their respective loss functions are expressed as follows:

J(θ1) =
1

K

K∑
i=1

(r + γ · min
j=1,2

Qθj(s
′
i, â)−Qθ1(si, ai))

2 (2.49)

J(θ2) =
1

K

K∑
i=1

(r + γ · min
j=1,2

Qθj(s
′
i, â)−Qθ2(si, ai))

2 (2.50)

Here, the k represents a sample minibatch of transitions, and the target policy

smoothing principle applies by adding some noise to â:

â = µϕ′ + ϵ, (2.51)

where ϵ ∼ N (0, σ). Contrary to DDPG, TD3 does not update the actor, target

critic and target actor networks within every step of execution. Instead, TD3 waits

for t steps and then updates the parameters, this is known as delayed policy update.

The actor-network is updated with the following:

ϕ = ϕ− α · ∇ϕJ(ϕ) (2.52)

Here, the objective function J(ϕ) is given by:

J(ϕ) =
1

k

K∑
i=1

Qθ1(si, µϕ(si)) (2.53)

For updating the target actor neural network and both target critic neural networks,

it is necessary to copy the parameters from the main neural networks by applying

soft replacement:

ϕ′ = ω · ϕ+ (1− ω)ϕ′, (2.54)

2.1 Reinforcement Learning Overview 33

θ′1 = ω · θ1 + (1− ω)θ′1, (2.55)

θ′2 = ω · θ2 + (1− ω)θ′2, (2.56)

TD3 is an actor-critic method designed for continuous action spaces and learns from

a replay buffer generated by itself. In general, the aim of TD3 is to mitigate the

overestimation problem of DDPG and to maximise the cumulative reward.

2.1.14 Soft Actor-Critic

Soft Actor-Critic (SAC) (Haarnoja et al. 2018) is designed for continuous action

spaces and combines the advantages of Actor-Critic methods. For example, SAC

utilises entropy regularisation, and contrary to DDPG and TD3, SAC follows a

stochastic policy. Besides that, SAC uses five neural networks. Two of these are in

charge of approximating the value, and there is a main value network represented

by ψ and a target value network ψ′. Similar to TD3, it has two main Q-networks

represented by θ1 and θ2. Since SAC is an Actor-Critic method, the parameters of

the neural networks are updated every step of the episode. Let:

a = πϕ(s), (2.57)

be the policy that returns the action a parameterised by ϕ. After performing the

action, it is possible to calculate the value loss with the following:

Jv(ψ) =
1

k

k∑
i=1

(min
j=1,2

Qθj(si, ai)− α · log πϕ(ai|si)− Vψ(si))2 (2.58)

Then, the main value neural network can be updated with:

ψ = ψ + λ · ∇ψJv(ψ) (2.59)

34 2.1 Reinforcement Learning Overview

Now, it is possible to compute the Q-network’s losses by using the following:

JQ(θj) =
1

K

K∑
i=1

(ri + γ · Vϕ′(s′i)−Qθj(si))
2 (2.60)

Here, j = 1, 2 and for updating the parameters of the Q-networks the following

expressions are used:

θ1 = θ1 − λ · ∇θ1JQ(θ1) (2.61)

θ2 = θ2 − λ · ∇θ2JQ(θ2) (2.62)

At this point, it can be noted why SAC is an Actor-Critic approach. However, a key

characteristic of SAC is in the policy objective function that integrates the entropy

of the policy. In other words, by maximising this objective function, the agent not

only seeks a better action-state pair but also encourages exploration at the same

time. The policy objective function is given by:

Jϕ(θ) =
1

k

k∑
i=1

[Qθ1(si, ai)− α · log πϕ(ai|si)], (2.63)

where log πϕ(a|si) represents the entropy of the policy. Based on the preceding

objective function, the parameters of the policy network can be updated as follows:

ϕ = ϕ+ λ · ∇ϕJπ(ϕ) (2.64)

At the end, the target value network parameters are updated by using soft replace-

ment:

ψ′ = ω · ψ + (1− ω)ψ′ (2.65)

The same process is repeated iteratively, aiming to improve the policy within each

2.1 Reinforcement Learning Overview 35

training step. Overall, the two key components of SAC are the addition of a stochas-

tic policy and the use of entropy regularisation, which encourages exploration while

maximising the cumulative rewards.

2.1.15 Proximal Policy Optimisation

Proximal Policy Optimisation (PPO) is an on-policy algorithm suitable for discrete

and continuous environments. PPO utilises a policy network to represent the pol-

icy. The policy network outputs a probability distribution over the available actions,

which can be soft-max or Gaussian for discrete or continuous action spaces, respec-

tively. PPO generates a number of experiences N by following the current policy

πtheta such that τ iNi=1 are the experiences. The algorithm uses these experiences to

evaluate the policy by estimating the advantage values for each state-action pair.

Moreover, PPO utilises a value network parameterised by ϕ. The objective function

that PPO aims to maximise is the following:

L(θ) = Et

[
πθ(at|st)
πθold(at|st)

· At

]
(2.66)

Here, the term πθ(at|st)/πθold(at|st) expresses the probability ratio, which serves as

a proximity measure. In other words, it represents how far or close the new policy

is from the old one. For simplicity, the probability ratio can be expressed by:

rt(θ) =
πθ(at|st)
πold(at|st)

(2.67)

PPO ensures that the change of the policy is within a certain range or better known

as a thrust region by adding a function called clipping function, such that the ob-

jective function is rewritten as:

L(θ) = Et[min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)], (2.68)

36 2.1 Reinforcement Learning Overview

where ϵ is a value usually set to 0.1 or 0.2. Besides, the preceding equation implies

that when At > 0, the action must be preferred over the others. Hence, the proba-

bility ratio rt(θ) can be increased. However, to keep the value close to the old policy,

the restriction 1 + ϵ applies. On the other hand, when At < 0, the corresponding

action should not be preferred over the other ones. Therefore, the rt(θ) value should

be decreased while respecting the bound 1− ϵ. In general, this is what the function

clip does. For updating the policy network, the following equation is used:

θ = θ + α · ∇θL(θ) (2.69)

The loss function of the value network is given by:

J(ϕ) =
1

N

N∑
i=1

T−1∑
t=0

(Rt − Vϕ(st))2, (2.70)

where Rt is the return collected by following the policy πθ for N times. The param-

eters of the value network are updated with the following:

ϕ = ϕ− α · ∇ϕL(ϕ) (2.71)

This process is repeated iteratively for several training steps. Overall, PPO collects

experiences, estimates advantages, and seeks to optimise the policy and value net-

works. Finally, PPO aims to keep the policy updates within the trust region by

using the clipping function and, in this way, stabilise the agent’s learning process.

2.1.16 Hindsight Experience Replay

Hindsight Experience Replay (HER) (M. Andrychowicz et al. 2017) is a method

that aims to address the problem of sparse rewards in goal-oriented tasks. As the

name suggests, HER has the ability to understand and evaluate experiences after

they have occurred. Unlike other RL algorithms, HER allows learning from both

successful and unsuccessful outcomes. This is achieved by defining hindsight goals,

2.2 Context and Reinforcement Learning 37

which are created when the agent fails to reach its intended destination. In other

words, by incorporating multiple hindsight goals, HER encourages generalisation as

the agent learns to reach different configurations instead of solely focusing on the

initial main goal during training.

In this way, the agent can learn even from failed attempts. Consequently, the

agent not only generalises better but also explores alternative trajectories, thereby

enhancing its exploration efficiency. Additionally, this technique transforms unsuc-

cessful transitions into valuable ones because when the agent fails to reach the main

goal, a hindsight goal is defined. The next time the agent samples that transition

from the replay buffer, it already performed the correct way to reach the hindsight

goal.

Overall, HER is a useful technique that can be applied to various RL algorithms

(see Table 2.2), such as DQN, DDPG, TD3, SAC, and PPO, to address problems

related to sparse rewards and multi-goal setups.

Characteristic DQN DDQN DuDQN DDDQN A2C A3C DDPG TD3 SAC PPO

Off-Line ✓ ✓ ✓ ✓

On-Line ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Model-Free ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Model-Based

Off-Policy ✓ ✓ ✓ ✓ ✓ ✓ ✓

On-Policy ✓ ✓ ✓

Discrete Action ✓ ✓ ✓ ✓ ✓ ✓ ✓

Continuous Action ✓ ✓ ✓ ✓ ✓ ✓

Discrete State ✓ ✓ ✓ ✓ ✓ ✓ ✓

Continuous State ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

HER ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2.2: Deep RL algorithms characteristics.

2.2 Context and Reinforcement Learning

Context provides meaning to raw data, reduces ambiguity, and focuses attention

on a clear objective; a situation is incomprehensible without context. In many RL

38 2.2 Context and Reinforcement Learning

environment settings, contextual data can be accessed, but it takes time for an RL

agent to learn directly from this information. Moreover, it is not easy to differentiate

between two states because of the stochastic nature of RL (Fujimoto et al. 2019;

Ribeiro 2002). A critical gap in knowledge is the difficulty in exploiting available

contextual information, such as affordances, objects, positions, shapes, and more

physical characteristics, which may be used to differentiate between two states and,

in this way, improve the sampling quality of the agent during the exploration of the

environment. Ideally, an agent should learn as fast as a human does (Finn et al. 2017;

Voss et al. 2020). This section introduces popular and relevant literature about how

contextual information has been incorporated into RL, and it is summarised in three

subsections: context-free, implicit context-based and explicit context-based meth-

ods. Table 2.3 summarises the main differences among the three classifications. For

context-free methods, any demonstrations or pertaining are given. Besides that, all

the learning is performed on-line. Implicit context-based methods are the ones that

include some off-line training, including previous generation of datasets from demon-

strations and pre-trained neural networks. Lastly, explicit context-based methods

are the ones that do not need any demonstrations or pre-training. However, a set

of rules (affordances) can be applied during the agent’s training in an on-line setup.

Characteristic Context-free Implicit context Explicit context
Demonstrations ✓

Affordances ✓
Pre-training ✓

Off-Line ✓
On-Line ✓ ✓

Table 2.3: Context consideration in RL.

2.2.1 Context-free Methods

This subsection comprises methods in which no contextual information is explicitly

given, and consequently, the agent learns everything from scratch by relying only

upon the reward function and states. For example, DQN, which, as discussed be-

fore, has several state-of-the-art variants (Urtans and Nikitenko 2018), has shown

2.2 Context and Reinforcement Learning 39

versatility across different applications. Part of its success can be attributed to its

scalability. Therefore, DQN has been used for many applications and has proved

its effectiveness in multiple fields (Arulkumaran et al. 2017) that include DQN for

same-day deliveries (X. Chen et al. 2022), path planning for autonomous surface ve-

hicles (Chai et al. 2022; H. Li et al. 2019; Luis et al. 2021; Yang et al. 2018), and even

in optimisation of demand-side management systems for energy consumption (Tai

et al. 2022). Among the vast literature, one of the most well-known implementa-

tions of DQN is for playing Atari games (Mnih et al. 2015), where DQN-trained

policies outperformed humans in most games. The preceding work introduced the

fundamental idea of using a main and target neural network to stabilise the agent’s

learning.

Several researchers explore different applications in the context of combining

ideas of the algorithms discussed in section 2.1. For example, deep SARSA is a

novel approach that combines SARSA with deep learning techniques to address

video game control problems (D. Zhao et al. 2016). By utilising deep convolutional

neural networks and an experience replay buffer, similar to DQN, deep SARSA

demonstrates superior performance compared to deep DQN for some cases. How-

ever, the use of contextual information is also avoided. Some researchers, aware of

the limited understanding of DQN, focus on algorithmic and statistical analyses,

aiming to establish convergence rates and justify the key components of DQN, such

as experience replay and target networks (Fan et al. 2020). Besides that, based on

their findings and the concept of two-player zero-sum setting (Littman 1994), the

authors propose the Minimax-DQN. This algorithm introduces the concept of a

minimax objective, aiming to find a policy that minimises the opponent’s reward

while maximising the agent’s reward. The algorithm trains two separate DQN net-

works, one for the opponent and the other for the agent. This approach is distinct

from DQN because it does not use a main and target neural network.

Another approach that modifies the original QL is asynchronous QL (G. Li et al.

40 2.2 Context and Reinforcement Learning

2020), an algorithm that integrates multiple agents that run in parallel. Each agent

interacts with the environment independently. To this end, this parallelisation seeks

to allow the agents for more efficient exploration. There has also been a modification

of asynchronous QL. For example, incorporating the principle of pessimism (Y. Yan

et al. 2022). In other words, they penalise the less visited state-action pairs, which

encourages a better exploration. Another enhancement to asynchronous QL is a

bound proposed in (G. Li et al. 2021), which aims to estimate the number of samples

needed for finding a proper Q function. However, there is a problem with this sort

of approach because it is not easy to verify if any of the agents is not improving

while the others do improve (Casgrain et al. 2022). Therefore, it is necessary to find

a Nash equilibria (Bai et al. 2020). In this context, a modification of DDPG called

multi-agent DDPG (Lowe et al. 2017), was proposed aiming to train multiple agents

that consider each other’s progress.

Overall, the discussed works highlight advancements in RL by borrowing ideas

of the various state-of-the-art algorithms and following different strategies such as

multi-agent architectures or including demonstrations in the replay buffer. The

main contribution of these works is to improve the exploration efficiency of RL in a

context-free setup.

2.2.2 Implicit Context-based Methods

Several existing approaches use indirect contextual information in the form of pre-

vious experiences, intending to enhance their learning capabilities. For example,

Transfer Learning (TL) (M. E. Taylor and Stone 2009) is an approach that utilises

previous experiences from solving preliminary source tasks to learn a new policy and

use it for a new target task. As a consequence of this, TL uses fewer samples than if

the policy had been trained from scratch. Given a target task, an RL transfer agent

must perform three steps: select a correct source task, find the relation between

source and target tasks, and transfer knowledge from source to target task. Within

2.2 Context and Reinforcement Learning 41

the existing literature, various approaches use state-of-the-art RL algorithms and

combine them with TL. For instance, QL has been combined with TL in Transfer

Reinforcement Learning under Unobserved Contextual Information (Y. Zhang and

Zavlanos 2020), in which the authors propose to solve a Contextual Markov Decision

Process (CMDP) (Hallak et al. 2015) using TL. This is achieved by providing casual

bounds and a context-aware policy to assist the agent’s learning process. Despite

the advantages of TL, there are still several concerns regarding over-fitting one of

the tasks and, in this way, difficulty transferring the knowledge to a new task (Weiss

et al. 2016).

In RL, sampling adequate data from the training environment is particularly im-

portant as it improves the learning process because the agent incrementally updates

its parameters while producing its own training set (Deisenroth and Rasmussen

2011). An approach that aims to enhance the sampling efficiency of RL is Deep Q-

network from Demonstrations (DQNfD) (Hester et al. 2018). DQNfD is an excellent

example of how the quality of the sampled data improves the agent’s performance.

For example, although DQNfD takes 1 million steps to achieve good scores, DDQN

takes 84 to 85 million steps to accomplish a similar performance. The approach

creates a data set with human demonstrations to pre-train a neural network. After

using the DQNfD algorithm, the agent outperforms DDQN in 41 out of 42 Atari

games. However, these algorithms lack the human ability to recognise actions while

observing video streams (S. Liu et al. 2022, 2020), and this contextual information

is often omitted. This situation leaves the agent with the task of learning it from

scratch. Another method that implicitly embeds contextual information is Multi-

Modal Contextual Reinforcement Learning (MMCRL) (Kabra et al. 2021b) that

proposes using a contextual exploration technique in real-time recommendations for

users by including previous experiences to avoid training an agent from scratch and

reducing the number of random recommendations. A similar approach is employed

in (Kabra et al. 2021a), in which by using RL and contextual resources, an agent

42 2.2 Context and Reinforcement Learning

learns to make top-k recommendations 1. Another strategy that can be employed

to overcome the problems of stochastic explorations is Generative Action Selection

Through Probability (GRASP) (Xu et al. 2021). GRASP uses generative adversarial

networks to generate exploration spaces so that the exploration efficiency improves

by indirectly including this contextual information.

An alternative perspective to indirectly include demonstrations into the learning

process of RL is Inverse Reinforcement Learning (IRL), a method that allows infer-

ring a reward function from an observed behaviour (Arora and Doshi 2021). IRL

aims to avoid the difficulties that involve the manual definition of reward functions

in RL (Ng, Russell, et al. 2000; Russell 1998). Maximum entropy IRL (Ziebart et al.

2008) is the most popular method to infer the reward function. This method in-

volves finding the reward function that maximises the entropy of the policy subject

to matching the learned policy with the demonstrated one. Nevertheless, one of

the most common problems with IRL is the lack of generalisation to new scenar-

ios (Adams et al. 2022). This is because the demonstration may not be optimal,

and the reward function limits the agent to explore better alternatives. Under other

conditions, context can be indirectly included in the agent’s learning process, which

does not depend on the reward function. Hence, the agent is not constrained to

the quality of the demonstration. RL algorithms can be equipped with Recurrent

Neural Networks (RNNs) (X. Li et al. 2015). Since RNNs are based on the Long

Short-Term Memory (LSTM) (Hochreiter and Schmidhuber 1997) architecture, they

use the previous output as part of the input. Hence, since it is possible to store past

information, it can be said that RNNs feed the agent with indirect contextual data.

Summarising, these approaches demonstrate the impact of adding context in RL

in an implicit manner. While there are advantages, such as avoiding the tedious

definition of reward functions, challenges, such as lack of generalisation, overfitting,

and the manual generation of demonstrations, still remain significant issues.

1Top-k recommendations refer to a method of generating a ranked list of the k most relevant
items.

2.2 Context and Reinforcement Learning 43

2.2.3 Explicit Context-based Methods

Several methods exist in the literature that include explicit contextual information

by encoding it into the state or using affordances. An affordance is a semantic link

between the environment and the possibility of taking an action (Gibson 1977). For

example, a hammer affords to hit, while a pen affords to write. Affordances have

been applied successfully to different fields (Koppula and Saxena 2015; Yamanobe

et al. 2017), and even there has been a considerable amount of research that involves

how to learn affordances (Khetarpal et al. 2020; Wu et al. 2020). Despite this, the

focus of the research on affordances is mainly on how to extract them from the

environment and, in some cases, combine them with planning methods (i.e. Şahin

et al. (2007)) that do not involve RL. As a case in point, AffordanceNet (Do et al.

2018) is a deep learning approach that detects multiple objects and their affordances

with only the images as input. This approach allows object detection and pixel

assignation of labels representing the affordances.

On the other hand, Chalmers et al. (2017) present a method based on affordances

to predict a human’s next action such that a robot reacts accordingly, in which an

example of a successful implementation of affordances in an RL agent is illustrated.

Moreover, the method not only reaches any environment where its predictions are

valid but also accelerates RL in new scenarios. Additionally, affordances have been

used as constraints. For instance, Cruz et al. (2016a) introduced a resource called

“contextual affordances” that works as a constraint of high-level actions depending

on the elements present in the environment. This method relies on a table where the

affordances are defined, and during the learning process, the actions are sampled,

taking the table into account. Eventually, the authors proved that incorporating af-

fordances accelerates the learning process of the RL agent used in their experiments.

A similar approach is followed in (Cruz et al. 2018a), where the authors escalated

the use of affordances, vocal commands and hand gestures to enhance multi-modal

RL learning performance in a robot cleaning scenario.

44 2.3 Reinforcement Learning in Robotics

Nevertheless, another way to approach the direct involvement of contextual in-

formation is through frameworks designed to solve CMDPs (Benjamins et al. 2021,

2022). The framework incorporates information such as gravity, target distance,

actuator strength, and joint stiffness in the learning process. This approach demon-

strates how these contextual data affect the performance learning of the agents.

Another approach is to encode the state and the contextual features (Sodhani et

al. 2021). The method developed relies on the capacity to relate tasks to external

supplementary data to improve the agent’s learning performance. Injecting domain

knowledge into the neural network (Teng et al. 2014) is another method that proves

contextual data’s positive influence on an agent’s learning performance. However,

all the methods mentioned above still fail to include the affordances of the actions,

which is also essential contextual information.

In general, affordances have great potential for enhancing the exploration effi-

ciency of RL agents (Y. Yu 2018). In the same way, methods that involve encoding

the state have also shown the potential to improve learning performance in RL (A.

Zhang et al. 2020). Despite the vast number of research articles focusing on af-

fordances and observation encoding, the methods utilised vary, and this situation

makes it challenging to implement a universal solution that captures the benefits of

using affordances and encoding the observation of the environment.

2.3 Reinforcement Learning in Robotics

This section introduces relevant research in the field of robotics and RL, where

classical and RL approaches are applied to solve Human-Robot Interaction (HRI)

problems and manipulation tasks of rigid and deformable objects.

2.3 Reinforcement Learning in Robotics 45

2.3.1 Why Reinforcement Learning in Robotics?

Based on RL approaches, many researchers have worked towards improving the

autonomy of robots for several applications, including but not limited to motion

planning (X. Li et al. 2021; S. Wen et al. 2018), obstacle avoidance (Kontoudis

and Vamvoudakis 2019), wel2ding (Zhong et al. 2021), robot manipulation (D.

Liu et al. 2020), robot-assisted rehabilitation (Y. Zhang et al. 2019), and dual-arm

motion planning (Wong et al. 2021). In these works, classical methods, including

Rapid-exploration Random Trees (RRT) (LaValle et al. 1998) and variants of it

like RRT* (Karaman and Frazzoli 2010), are combined with RL approaches such

as Actor-Critic architectures (Mnih et al. 2016), and DDPG. This combination

enhances the performance and quality of the robot’s navigation and motion planning

capabilities.

One of the most significant advantages of RL in robotics is its capacity to learn

and adapt (Polydoros and Nalpantidis 2017). Unlike classical methods (kinematic

control, inverse kinematics, path planning, control theory, computer vision and state

estimation), which rely on static programming, mathematical models and predeter-

mined rules, robots utilising RL algorithms can continue learning and evolving in

almost any environment. By directly learning from interactions and experiences,

robots using RL approaches can adjust their behaviour based on the reward re-

ceived so that they keep enhancing their performance even when the models of the

environment and the robot are not available (Kormushev et al. 2013).

RL algorithms are designed for handling complex and dynamic environments,

such as the ones that robots usually face. Hence, it is essential to recognise that a

robot must also be re-programmed when the environment changes (K. Zhao et al.

2022). For this reason, classical planning methods may struggle in scenarios with

large and continuously changing states and action spaces because of their reliability

on predefined action sequences or heuristics. RL agents, on the other hand, can

adapt their strategies to handle uncertainties, making them more suitable for such

46 2.3 Reinforcement Learning in Robotics

environments.

In terms of perception, classical methods based on computer vision rely on static

programming and are usually focused on extracting a limited number of features

(e.g., detecting motion). For example, H.-Y. Lin et al. (2020) propose a framework

that utilises the objects’ Computer-Aided Design (CAD) models to match with the

point cloud produced by a depth camera to find the best grasping pose for an object.

Nonetheless, the generalisation of the previously mentioned approach would involve

having a CAD model of every object the robot needs to grasp. On the other hand,

RL-based methods commonly rely on the camera’s stream data only, which could

be RGB images or a point cloud. Cheng et al. (2022) and Cheng and Meng (2018)

use Convolutional Neural Networks (CNNs) for predicting the grasping rotations

and locations of several objects. A drawback of this method is that large datasets

are required to achieve a decent success rate. There also exist alternatives to RL,

such as the one Zeng et al. (2022) proposed, in which by using genetic algorithms,

the utilisation of any datasets is avoided.

Despite the advantages of RL-based approaches, there exist some drawbacks,

such as the long training time, the necessity of simulated environments, the reward

function design being complex for most of the tasks, and the challenging task of

transferring the knowledge from simulation to real-world puts extra difficulty into

the generalisation of RL approaches. Besides that, the presence of humans and their

interaction with robots, as well as the potential of using contextual information

as part of the agent’s training, are factors which are often omitted. Table 2.4

summarises the various advantages and disadvantages of RL methods applied to

robotics. The following subsections discuss several works that aim to address these

drawbacks from distinct perspectives.

2.3 Reinforcement Learning in Robotics 47

Advantages Disadvantages

• Model-free framework.

• Handle complex dynamic envi-
ronments.

• Learn and adapt beyond classical
methods.

• Long training time.

• Necessity of simulated environ-
ments.

• Complex reward function design.

• Sim-to-real challenge.

Table 2.4: Advantages and disadvantages of RL methods applied to robotics.

2.3.2 Robotic Manipulation of Rigid Objects with Reinforce-

ment Learning

One of the most popular applications of RL in robotics is the manipulation of rigid

objects. Among RL methods, QL has been a popular algorithm that allows robots

to learn and perform manipulation tasks (Jain et al. 2018). When hybridised with

secondary optimisation algorithms, it is also known that the QL algorithm achieves

better results (Konar et al. 2013; Maoudj and Hentout 2020). In RL, secondary opti-

misation algorithms modify the principal optimisation algorithm. Some approaches

have employed secondary optimisation algorithms in QL agents to set initial opti-

mistic values, and in robotics in several works (S. Li et al. 2015; C. Yan and Xiang

2018), with promising results. For instance, integrating a novel flower pollination

algorithm with QL to initialise the Q-table and selection of control parameters ac-

celerates the learning process of the traditional firefly algorithm (Low et al. 2019).

This approach establishes a balance between the exploration and exploitation of

the computational agent during the learning process. Splitting the task into a hi-

erarchy of small parts is proved to be an effective method in QL (Veeramani and

Muthuswamy 2022). Ji et al. (2019) alluded to a novel QL-based approach that

efficiently computes the path of the robot arm based on a hybrid path planning

method, which splits the planning problem into two separate parts: active finding

(finds simple actions for the robot arm) and passive finding (computes joint angles).

48 2.3 Reinforcement Learning in Robotics

Hand-eye coordination is the ability to coordinate the movements of the eyes

and the hands to perform actions or tasks. In robotics, there are approaches to

developing this ability based on RL. For example, CNNs can be trained to predict

which gripper’s motion will result in a successful grasp in the context of the hand-eye

coordination problem (Levine et al. 2018). Besides being implemented in the real

world (see Fig. 2.3), the approach only uses camera images and the current robot

pose. Contrary, Mahler et al. (2017) utilises synthetic data and a depth camera

instead of a monocular one to feed the CNNs. Their experiments demonstrated that

their approach could find the right grasping pose in less than a second. Another

famous approach is the one presented by O. M. Andrychowicz et al. (2020), where

RL is utilised to learn dexterous in-hand manipulation policies. First, the training

is performed in a simulated environment, and then the knowledge is transferred to

a real robot. The authors employ a variety of technical manoeuvres to facilitate the

learning and transfer of knowledge to the real robot, such as objects easy to identify

and cameras at the fingertips. Contrary to relying on simulations, H. Zhu et al.

(2019) propose a simple system framework that allows learning to open the door

with a flexible handle, rotating a cross-shaped valve, rotating the same valve made of

deformable foam, and box flipping. They show that their approach, based on DRL,

learned to perform the tasks in 4-7 hours, and when integrating demonstrations, the

time was reduced to 2-3 hours.

Moreover, Quillen et al. (2018) evaluates RL algorithms for vision-based robotic

grasping. The results show that DDPG is more reliable than MC methods and

DDQN. Another approach that involves a massive quantity of training data is

in (Pinto and Gupta 2016), where the results show the benefit of using large-scale

datasets by training a robot to learn to grasp from 50,000 tries and 700 robot hours.

However, when dealing with tasks, these approaches are often criticised due to their

huge data requirements. Aiming to address this concern, Pinto and Gupta (2017)

proposed using shared representations of tasks. Besides, it showed that adding

2.3 Reinforcement Learning in Robotics 49

Figure 2.3: Collection of data with several robots. This approach is designed to learn in
the real world (Levine et al. 2018). Despite being a relevant approach in the literature,
not many laboratories in the world can afford that number of robots.

additional data from different tasks is more important than adding data from the

main task. In other words, by learning to push and poke, the agent learns faster

to grasp. Levine et al. (2016) proposed a method for training policies that directly

map raw image observations to robot motor torques using CNNs. To achieve this,

a guided policy search method is employed, which transforms the policy search into

supervised learning. The supervision is provided by a RL algorithm. The approach

is tested on several real-world manipulation tasks that involve rigid objects, such as

screwing a cap onto a bottle.

Overall, vast literature exists in RL-based robotic manipulation of rigid objects.

Notoriously, the discussed approaches show potential in dealing with difficult prob-

lems, from finding the right grasping points of an object to dexterous manipulation

using only one hand. Finally, learning in the real world and simulation has been

widely explored, and contextual information, such as demonstrations, has effectively

reduced training times.

50 2.3 Reinforcement Learning in Robotics

2.3.3 Reinforcement Learning in Human-Robot Interaction

The preceding subsection discussed works in which the objects the robot is learn-

ing to manipulate are static, or their starting position is on the robot’s hand. In

contrast, in HRI, an area that studies how humans and robots communicate and

collaborate (Sheridan 2016), human users introduce the challenge of dynamic and

stochastic behaviours. Research in the intersection of RL and HRI have led to

significant progress in addressing challenges related to robotics. A vast part of

the literature focuses on learning from users in HRI setups. A proposed solution

methodology to address the problem is using affordances. When implemented in

MDP, the affordances make the agent choose optimal actions sooner, dramatically

reducing the number of state-action pairs the robot needs to evaluate (Zeng et al.

2018). Affordances improve the planning, control, recognition, transferability, and

programming style of robots (C. Chen et al. 2015). Techniques such as affordances

and modifications to the RL algorithms presented in section 2.1 have been pro-

posed to enhance understanding, cooperation, and coordination between humans

and robots. The incorporation of human feedback (Fig. 2.4), usually carried out

through demonstrations or spoken instructions, has proven effective in improving

the learning performance of the robot. These advancements demonstrate the im-

portance of exploring methods of HRI that involve RL approaches and affordances.

In the context of RL and HRI, the use of affordances has been studied to solve

problems, such as cleaning tables (Cruz et al. 2016b), reacting to non-verbal user’s

clues (Khamassi et al. 2018), identifying users’ behaviours (Tabrez and Hayes 2019),

coordinating human and robot actions (Ghadirzadeh et al. 2020; Roy et al. 2019),

and learning from the user (Dromnelle et al. 2020; Lowe et al. 2019). Besides that,

facilitating fluent and effective communication and understanding in HRI from both

parts emphasise the need for cooperation and coordination of robots operating in

human-populated environments (Luebbers et al. 2022; Tabrez et al. 2020). Re-

search has been carried out to address this challenge. For example, Zakershahrak et

2.3 Reinforcement Learning in Robotics 51

Figure 2.4: Cruz et al. (2016b) proposes a framework in which a user guides the learning
of a robot through spoken instructions.

al. (Zakershahrak et al. 2021) address the issue of understanding explanations from

the human recipient in a planning context. This is achieved by formulating the prob-

lem as a goal-based MDP, and the reward function is learned with IRL. Another

approach based on DRL is proposed in (Shafti et al. 2020), in which through the

use of a collaborative maze game where co-learning between the human and robot

is necessary to complete the task, the human and robot actions require joint effort

to solve. The authors showed that it is possible to find an effective collaborative

policy that leads to consistent success in the game setup proposed in the paper.

Moreover, several researchers have explored the intersection of RL and HRI in

52 2.3 Reinforcement Learning in Robotics

dynamic and stochastic scenarios. By way of illustration, Z. Liu et al. (2021) focuses

on HRI in dynamic and stochastic environments, more specifically in collaborative

assembly. The authors proposed a modification of DQN, aiming to achieve successful

collaboration. The study demonstrates the effectiveness of training the robot by

reacting correctly to the random behaviour of the human. Another task-specific

solution for onion sorting is proposed in (Sengadu Suresh et al. 2023). The work

introduces a method based on IRL that allows learning in collaborative tasks with

a human partner. The main novelty of the approach is that it avoids agents needing

to access the global state. Furthermore, the agent achieves superior performance in

the onion sorting task, proving that IRL has the potential to deal with problems

in HRI setups. An additional technique that relies on IRL is the one proposed

by Nikolaidis et al. (2015), in which the torque data produced by the demonstration

of a user is utilised for training a model that can adapt faster to new users. On

the other hand, human feedback can also improve RL. As a case in point, Thomaz

and Breazeal (2006) propose a modification of QL called interactive QL, which

incorporates human actions into the classical algorithm. In their experiments, the

agent that incorporates human feedback improves in terms of exploration and speed

of task learning.

To summarise, RL has been used to address various HRI tasks. However, when

dealing with challenging environments involving users, the solutions and modifica-

tion of the baseline RL algorithms become task-specific. This sheds light on gen-

eralisation problems due to the difficulty that HRI involve. Furthermore, the tasks

primarily centre around manipulating rigid objects, emphasising that knowledge

transfer and algorithm design for robot learning heavily rely on perceptual abilities,

which are more straightforward for rigid objects. On the other hand, human feed-

back in the form of affordances or demonstrations has proved to be an effective tool

for enhancing learning performance. This shows the impact of involving contextual

information in the learning process of RL agents.

2.3 Reinforcement Learning in Robotics 53

2.3.4 Robotic Manipulation of Deformable Objects with Re-

inforcement Learning

Robots with human-level dexterity that can handle deformable objects may encour-

age a smoother integration of robots in daily activities. In practice, daily activities

depend on more than manipulating rigid objects. In this context, the robots’ ca-

pacity to manipulate deformable objects to operate in human environments is a

necessity (J. Zhu et al. 2022). In the literature, several approaches mainly focus

on how to manipulate 2D deformable objects, such as paper (Balkcom and Mason

2004, 2008; Elbrechter et al. 2011, 2012), fabrics (Borràs et al. 2020; Hoque et al.

2022; Jangir et al. 2020), ropes (Nair et al. 2017; Shi et al. 2022; Sundaresan et al.

2020) and cables (Zhou et al. 2020; J. Zhu et al. 2019). The cited approaches rely

on classical approaches where the model of the robot and the object are necessary

to complete the task. The model-free capabilities of RL, on the other hand, have

the potential to learn how to manipulate deformable objects without the necessity

of any model.

One way to tackle the challenge of handling deformable objects with RL and

robots is by using simulated environments. These are valuable resources for training

agents to learn how to solve a given task. For example, Seita et al. (Seita et al. 2021)

used transporter networks to learn how to rearrange deformable objects, where 3D

deformable structures such as bags are included. In (Bahety et al. 2022), a method

to rearrange objects is proposed and is based on two policies learned in simulation.

The first policy rearranges the objects, and the second one learns to lift them.

A disadvantage of this approach is that it assumes that the bag is always open.

Therefore, in a simulated environment, all the information regarding the opening of

the bag and the objects is available, which is useful when training an agent requires

a large number of episodes to learn the task. However, when running the agent in

the real world, the differences between the simulation and the real-world tasks may

lead to undesirable and dangerous behaviours.

54 2.3 Reinforcement Learning in Robotics

In the literature, methods exist to transfer the knowledge obtained during sim-

ulation to the real world (sim-to-real). X. Ma et al. (2022) introduce a method that

sets several grasping points on a cloth surface. A graph neural network uses these

points to learn their dynamics. Subsequently, when the task is transferred to the real

world, it is easier to track the points than the whole cloth. X. Wang et al. (2022a)

introduced a method in which an agent is trained to learn how to wrap boxes in a

simulated environment. The actual texture of the deformable object is taken from

the real object such that the transition from simulation to the real world is smoother

than when taken from the pure simulation.

To summarise, all the current research on deformable objects mainly focuses on

manipulating 2D objects. Furthermore, the methods used to deal with the sim-to-

real gap vary among the different works (Fig. 2.5). This sheds light on the difficulty

of manipulating deformable objects and how these rely on robust perception meth-

ods.

Figure 2.5: Two dexterous robotic hands manipulating paper (Elbrechter et al. 2012). This
is a good example of how adding markers to the sheet of paper is necessary to extract its
current state.

2.3 Reinforcement Learning in Robotics 55

2.3.5 Robotic Manipulation of Deformable and Rigid Objects

with Reinforcement Learning

In the context of manipulation of deformable and rigid objects, bagging shines for

being one of the most widely human tasks that is not only necessary but also carried

out every day and everywhere. As a case in point, Iterative Interactive Modelling for

Knotting Plastic Bags (C. Gao et al. 2023) is an approach that focuses on the bag’s

handles, learns from demonstrations, and uses a set of primitive actions to knot the

handles. However, the detection of the handles relies on a large dataset. Another

interesting solution is the one presented by L. Y. Chen et al. (2022). The authors

introduced the algorithm AutoBag, which is based on several primitive actions that

reorientate plastic bags till the opening is visible and the objects can be put inside.

Gu et al. (2024) introduce ShakingBot (Fig. 2.6), which uses a perception module

to identify the key region of a plastic bag and opens it using Bag Adjustment, Dual-

arm Shaking, and One-arm Holding. The robot then inserts items and lifts the bag

for transport. An interesting example to consider is the use of Singulating Layers

using Interactive Perception (SLIP) in the task of autonomous bagging (L. Y. Chen

et al. 2023). The authors developed an algorithm called SLIP-Bagging that makes

use of SLIP to grasp the top layer of a plastic or fabric bag and open it for object

insertion. In their physical experiments, a YuMi robot using the SLIP-Bagging

algorithm achieved a success rate varying from 67% to 81% across bags of different

materials.

Overall, the field of deformable object manipulation has not been explored as

extensively as the field of rigid object manipulation, and the research becomes even

more narrow when dealing with 3D objects such as bags. This is because of the

difficulty involved in understanding the dynamics of the deformable object. RL,

due to its learning nature, has the potential to use its model-free capabilities to

indirectly learn the model of the objects and perform deformable object-oriented

tasks.

56 2.4 Discussion

Figure 2.6: ShakingBot using the physical capacities of the bag in its favour to open it in
three steps (Gu et al. 2024). First the robot locates the bag handles and then uses the
material’s properties to maintain its shape in order to complete the task.

2.4 Discussion

This section delves into a detailed analysis of the advantages and disadvantages

of various RL approaches and their implementation in robotics, which were pre-

sented during the previous sections. After carefully examining the discussed works,

it becomes evident that significant progress in RL has been made by combining

ideas from state-of-the-art algorithms presented in section 2.1 and applying them

to solve a wide variety of problems in which robotic is one of the most benefited

fields. Current research adopts strategies such as multi-agent architectures and clas-

sical robotics methods involvement. Another way to improve the learning efficiency

of RL are the ones that implicitly or explicitly involve contextual information in

the learning process in the form of demonstrations or through the use of affor-

dances. Similarly, methods involving the encoding of state representations have

demonstrated improved learning performance in RL. By encoding contextual infor-

mation within the state, agents can better comprehend the environment and adapt

their actions accordingly. These approaches primarily contribute to improving the

exploration efficiency of RL in a context-free setup.

2.4 Discussion 57

Additionally, current research endeavours have been made to explore the imple-

mentation of RL in robotics. It has been found that using affordances can greatly

enhance a robot’s exploration efficiency. Affordances help robots extract relevant

information from their environment, enabling them to identify action possibilities

and make decisions based on them. However, despite the proliferation of research

articles on affordances and observation encoding, there is still no universal solution

that captures all the benefits of these techniques. In other words, by encoding the

state, all the semantics utilised for that purpose also have the potential to be used as

a source of affordances. Besides that, the intersection between RL and HRI remains

challenging to the point that the research carried out proposes task-specific solu-

tions. This shows that the sole RL framework is not enough to provide a universal

solution to all problems.

Despite the advantages of the discussed approaches, there are still challenges

related to the implementation of RL in robotics. Firstly is the challenge of generali-

sation, wherein RL agents struggle to perform properly in unseen scenarios. Overfit-

ting poses another obstacle, which often results in poor performance. Secondly, the

manual generation of demonstrations remains a concern, as it is a time-consuming

task that requires effort and expertise. Thirdly, when the exploration of the envi-

ronment is performed stochastically, the only way to get feedback is through the

reward function, and contextual information that can be used to make decisions

about what to explore is often omitted. Moreover, the design of reward functions is

usually carried out manually, or for some tasks, the reward is sparse, meaning that if

the definition of the reward is simple, it complicates the agents’ exploration process.

Lastly, based on the literature review carried out in this chapter, the following gaps

were identified:

• Lack of involvement in the whole learning process of RL of explicit contex-

tual information. Some research focuses on using only affordances to improve

exploration efficiency. At the same time, other research focuses on encod-

58 2.5 Summary

ing the whole information of the state. However, the equations introduced in

section 2.1 are rarely modified to directly benefit from such modifications.

• The use of RL for HRI focuses more on improving the learning performance

of the agent with human demonstrations and instructions and less on reacting

in real-time to dynamic human behaviour. There are potential applications

of the RL policy that can be combined with contextual information, such as

semantics, that can be used to make decisions based on what the policy finds

in its way to reach the goal.

• Lack of approaches designed to learn directly in the real world. Most of the

research in RL utilises simulations as a source of data and avoids learning in

the real world. This is because the baseline algorithms require a large number

of training steps and dangerous behaviours that may be unsafe to perform

with real robots. However, using simulations also brings some challenges with

it. For example, transferring the knowledge gained in the simulator to the real

robot often reduces the performance of the agent due to differences between

reality and simulation. Hence, there is a necessity for designing algorithms

that allow efficient learning in the real world in a safe manner.

• Current research in robotic manipulation focuses more on how to handle rigid

objects than on how to handle deformable objects. At the same time, among

deformable objects, there has been limited exploration in the area of learning

to manipulate 3D objects such as bags.

2.5 Summary

This chapter has provided valuable insights into the implementation of RL in robotics.

The main findings are discussed as follows. Firstly, significant progress has been

made in RL and RL for robotics. Achieving this was possible by combining ideas

2.5 Summary 59

from state-of-the-art algorithms and adopting strategies such as multi-agent ar-

chitectures, the inclusion of contextual information in the form of affordances and

techniques to encode extra information into the state. These approaches have shown

promise in improving the exploration efficiency and accelerating the learning process

of RL. Secondly, RL has shown the potential to deal with dynamic and stochastic

real-world scenarios such as the ones that involve HRI. Lastly, in the context of

deformable objects, several approaches have been proposed to learn in simulated

environments and have proved to be reliable. However, challenges remain, includ-

ing difficulties in generalisation, perception, large dataset dependency, long training

time, simulations dependency and sim-2-real knowledge transfer. This thesis focuses

on proposing different RL algorithms that can provide robustness in learning in the

real world and reduce the learning time by incorporating contextual information in

the learning process.

This literature review has also identified several gaps in the current knowledge of

RL. First, there is a lack of explicit involvement of contextual information through-

out the RL learning process. Current research primarily focuses on either affor-

dances or state encoding rather than effectively integrating both approaches and

incorporating them directly into the objective or loss functions. Additionally, the

intersection between RL and HRI requires further exploration. While there are sev-

eral resources that can be derived from the context to enhance the robot’s reactions

to dynamic human behaviour, how to effectively utilise these resources within the

RL framework remains unclear. The majority of the literature mainly concentrates

on task-specific cases, making it difficult to apply the same approach to different

tasks, which contradicts the original aim of RL as a universal framework that allows

learning in a human-like manner. Furthermore, there is a need for algorithms that

facilitate efficient learning directly in the real world. Most current RL approaches

heavily rely on simulation, and the accuracy of these simulations presents challenges

in transferring knowledge to real robots due to performance discrepancies. Lastly,

60 2.5 Summary

research on RL primarily focuses on interacting with rigid objects, even in the works

discussed in section 2.3.3, where the tasks involving HRI mainly focus on rigid ob-

jects. Additionally, manipulation of 2D deformable objects, such as cables, cloths, or

paper, receives more attention, while manipulation of 3D objects like bags remains

underdeveloped.

This thesis follows an incremental approach to address these gaps. Firstly, the

incorporation of contextual information and state encoding into RL algorithms is

explored in simulated environments. Secondly, aiming to extend the applicability of

these principles to real-world scenarios, a hybrid approach is proposed that integrates

HRI observations and encoding within the framework, aiming to allow the robot to

learn and react based on an RL approach. Finally, the underexplored domain of

RL in deformable object manipulation is investigated, focusing on techniques that

involve RL, state encoding, and contextual information, where the goal is to enable

robots to learn how to manipulate bags in the real world. By addressing these gaps,

this thesis aims to contribute to the field of RL and robotics by proposing novel

frameworks that integrate contextual information, such as affordances and state

encoding, throughout the RL learning process.

61

Chapter 3

Explicit Context Representation in

Deep Reinforcement Learning

This chapter presents a framework that aims to smoothly integrate contextual data

in Deep Reinforcement Learning (DRL) agents for solving discrete environments, in

this case, 2D games. The rest of the chapter is organised as follows: Section 3.1 mo-

tivates and discusses current problems with state-of-the-art approaches. Followed

by Section 3.2 that formally introduces the framework and details its use to gen-

erate four new algorithms. Then, Section 3.3 introduces the characteristics of the

environments and neural networks and the evaluation metrics employed. Section 3.4

describes the results. Section 3.5 presents a discussion. Finally, the main findings

of this chapter are summarised in Section 3.6.

3.1 Introduction

During the past few years, Reinforcement Learning (RL), which is a sub-field of

Machine Learning (ML), has successfully shown to be capable of learning policies to

control decision-making in sequential environments (Hanna et al. 2021b; Schaul et al.

2015; X. Wang et al. 2022b). QL is an off-policy RL approach that updates the action

selection given a particular state using Bellman optimal equations based on the

62 3.1 Introduction

Figure 3.1: Deep reinforcement learning with explicit context representation.

Temporal Difference (TD) principle. TD combines the Monte Carlo (MC) methods

and Dynamic Programming (DP) introduced by Watkins and Dayan (1992a).

This chapter introduces the Iota explicit context representation (IECR) frame-

work, which aims to enhance the learning performance of RL agents by adding

contextual data (Fig. 3.1). IECR initially transforms the environment information

into Contextual Key Frames (CKFs), comprising a matrix in which each cell con-

tains a token representing an element from the environment, its position, size, and

direction. The main contributions are summarised as follows:

• IECR, a framework that uses contextual data to improve the learning process

of RL agents, is introduced.

• Four new algorithms based on IECR: Iota Deep Q-network (IDQN), Iota

Double Deep Q-network (IDDQN), Iota Dueling Deep Q-network (IDuDQN),

and Iota Dueling Double Deep Q-network (IDDDQN).

In this chapter, two stages of experiments are performed: (i) the first stage aims

to demonstrate the effect of the CKFs representation on the performance of IDQN

3.1 Introduction 63

F
ig

ur
e

3.
2:

In
th

e
fig

ur
e,

th
e

io
ta

ex
pl

ic
it

co
nt

ex
t

re
pr

es
en

ta
ti

on
fr

am
ew

or
k

is
ap

pl
ie

d
to

D
ee

p
Q

-n
et

w
or

k
(D

Q
N

),
D

ou
bl

e
D

ee
p

Q
-n

et
w

or
k

(D
D

Q
N

),
D

ue
lin

g
D

ee
p

Q
-n

et
w

or
k

(D
uD

Q
N

),
an

d
D

ou
bl

e
D

ue
lin

g
D

ee
p

Q
-n

et
w

or
k

(D
D

D
Q

N
)

to
cr

ea
te

fo
ur

ne
w

al
go

ri
th

m
s

th
at

le
ar

n
w

it
h

co
nt

ex
t.

T
he

aff
or

da
nc

es
fu

nc
ti

on
ι(
s)

is
co

nn
ec

te
d

w
it

h
th

e
w

ho
le

fr
am

ew
or

k,
he

nc
e,

th
e

na
m

e
of

th
e

fr
am

ew
or

k.

64 3.2 IECR Framework

learning, and (ii) the second stage evaluates the proposed framework and state-of-

the-art algorithms’ performance under the same conditions. For both stages, the

stable-baselines (Hill et al. 2018) implementations are used. The problem domain

to benchmark the algorithms comprises five discrete environments, and their char-

acteristics are explained in detail in Section 3.3.

3.2 IECR Framework

In this section, the IECR framework (Fig. 3.2) is presented, aiming to allow the

smooth integration of contextual information into the learning process of DRL agents

based on DQN, DDQN, DuDQN and DDDQN. For each variant of DQN, the IECR

framework uses three algorithms, detailed in the next three subsections: CKFs’

generation, affordances function generation and learning. The nomenclature of this

chapter is summarised in Table 3.1.

3.2.1 Contextual Key Frames

This subsection introduces Algorithm 1, which focuses on identifying known seman-

tic data from the environment (objects, positions, sizes, and directions) and using it

as a feature representation of the state. The contextual key frames algorithm takes

as an input the semantic set F , the width of the screen sw, and its height sh. The

output is a CKF that contains the tokens of all the elements in the environment.

At this point, the goal is to create a set of tokens Z that represent an ne number

of elements in the environment, such that Algorithm 1 can transform it into CKFs.

The set of tokens is given by the following:

Z = {ζi | i ∈ [0, ne)}, (3.1)

3.2 IECR Framework 65

Symbol Description
CKF Contextual Key Frame
F Semantic set
P Positions set
W Sizes set
V Directions set
A Actions set
N Set of tuples representing the pair name of the element with its respective key
Ψ Rules set
ζi Token of the i-th element
ki Key of each type of the i-th element
ai Vertical numerical position of the i-th element
bi Horizontal numerical position of the i-th element
di Direction of the i-th element
µ Token range value
ne Total number of elements in the environment
xi Horizontal position of the i-th element in pixels
yi Vertical position of the i-th element in pixels
ui Number of rows that of the i-th element occupies taking its own size as reference
vi Number of columns that the i-th element occupies taking its own size as reference.
sw Width of the screen in pixels
sh Height of the screen in pixels
wi Width of the i-th element in pixels
hi Height of the i-th element in pixels
wi Width the i-th element in pixels with respect to the first element
hi Height of the i-th element in pixels with respect to the first element
ι(s) Affordances function
Jιn(θ) Main simple neural network loss
Jaffordance(θ) Affordances loss
Jsimple(θ) Total simple loss
Jιnd(θ) Main double neural network loss
Jdouble(θ) Total double loss
MaxIECR Maximum reward obtained by an iota algorithm
Maxbaseline Maximum reward obtained by a baseline algorithm
Pimprovement Percentage of improvement between an iota and a baseline algorithms

Table 3.1: Nomenclature table for Chapter 3.

where ζi is the token of the i-th element. Formally, a CKF is a n × m matrix

where CKFn,m ∈ Z. In order to obtain Z, first, extracting the information from the

environment is necessary. For this purpose, the characteristics of every component

in the environment are known and tokenised so that the agent can easily understand

them. The token ζi is given by:

ζi = ki + ai + bi + di, (3.2)

where ki is the key of each type of element in the environment, ai is the vertical

numerical position, bi is the horizontal numerical position, and di is the direction of

the i-th element, respectively. Let:

66 3.2 IECR Framework

(a)

(b)

(c)

Figure 3.3: In (a), there is an example of tokenising the state according to the element
type and the number of elements. In (b), the position of each element in the cell of the
CKF is added to the token value. In (c), the direction of the elements and their numerical
values are added to the token.

N = {⟨namei, ki⟩ | i ∈ Z+, ki =
i

µ
}, (3.3)

3.2 IECR Framework 67

be the set of tuples representing the pair name of the element with its respective

key ki. Set N represents the relation between the element name and its key. For

example, ⟨mario, 0.1⟩, ⟨pipe, 0.3⟩, ⟨hole, 0.8⟩. Let:

W = {⟨wi, hi, ẇi, ḣi⟩ | i ∈ [0, ne), w ∈ [0, sw], h ∈ [0, sh],

(i = 1→ ẇi, ḣi) ∧ (i > 1→ ẇi = ⌈
wi
w1

⌉, ḣi = ⌈
hi
h1
⌉},

(3.4)

be the set that represents the sizes of all the elements, where wi is the width of the

element in pixels, hi is the height of the element in pixels, ẇi is the width that is

taken as a reference of the size of the main element of the environment, and ḣi is the

height of the i-th element taking the size of the main element of the environment

as a reference. Set W contains the information that represents the environment

elements’ sizes. Let:

P = {⟨xi, yi, ui, vi, ai, bi⟩ | i ∈ [0, ne), xi, yi ∈W,

ui = ⌊
xi
wi
⌋, vi = ⌊

yi
hi
⌋, ui, vi ∈ R+,

ai =
⌊10 · (sw

xi
− ui)⌋

10µ
, bi =

⌊10 · (yi
hi
− vi)⌋

100µ
},

(3.5)

be the set containing the position in the image of each element of the environment

where xi and yi are the horizontal and vertical positions of the agent in pixels, ui is

the number of rows, vi the number of columns, sw and sh are the width and height

size in pixels of the screen. This set defines the values of ai and bi that depend on

the token range value µ.

On the right side of Fig. 3.3a, it can be observed that the number of elements

ne is equal to nine. For each element, a number of index i is designated. The

main element the neural network will control must have i = 1, whereas the rest are

randomly assigned. In order to calculate ki, it is compulsory to obtain the token

68 3.2 IECR Framework

range value µ = 10τ , when τ ∈ Z+, 10ne ≥ 10τ > ne, and ne < 100. This means

that for the example of ne = 9 on the right side of Fig. 3.3a, µ = 10 such that it is

possible to use only one decimal to represent the key ki of the element in ζi. When

there are more than nine elements in the environment (See left side of Fig. 3.3a),

then µ = 100, in this manner, it is possible to represent the 11 elements with two

decimals of ζi.

Since the elements in the environment are not only static but dynamic, a method

to represent their position inside the CKF is necessary. The Set P contains the

equivalences of the width and height of every element and the position of an ele-

ment inside its own grid in CKFn,m. This idea is illustrated in Fig. 3.3b. Despite

the element being inside the same cell, the horizontal position ai and vertical posi-

tion bi provide helpful information that can be encoded in ζi. This representation

differentiates states even when the element is situated in the same cell of the CKF.

In Fig. 3.3c, the purpose of di is illustrated. When an element changes direction,

this means a different state. Consequently, this information must be taken into

account. The value of di is in the set of movement directions V . Let:

V = {⟨→, 1

1000µ
⟩, ⟨↗, 2

1000µ
⟩, ⟨↑, 3

1000µ
⟩, ⟨↖, 4

1000µ
⟩,

⟨←, 5

1000µ
⟩, ⟨↙, 6

1000µ
⟩, ⟨↓, 7

1000µ
⟩, ⟨↘, 8

1000µ
⟩},

(3.6)

be the set that contains the tuples ⟨V 1, V 2⟩, where V 1 is the movement direction

and V 2 its numerical value. With all the sets defined before, it is now possible to

define the semantic set F , which is given by the following:

F = {⟨ki, ui, vi, ai, bi, di, ẇi, ḣi⟩ | i ∈ [0, ne), ki ∈ N2,

ui ∈ P 3, vi ∈ P 4, ai ∈ P 5, bi ∈ P 6, di ∈ V 2,

ẇi ∈ W 3, ḣi ∈ W 4},

(3.7)

3.2 IECR Framework 69

Algorithm 1 CKFs generator.
Input : Semantic set F , the number of elements ne, the screen width sw, and the
screen height sh
Result : CKF
n← ⌈ sh

h1
⌉;

m← ⌈ sw
w1
⌉;

Initialise an n×m CKF as a zero matrix;
for i = 1, ne do

Get ki, ui, vi, ai, bi, di from F ;
for r = 0, wi do

for c = 0, hi do
CKF(ui+r,vi+c) = ζi;

end for
end for

end for

3.2.2 Iota Function

The affordances function explores the interactions among the elements of the envi-

ronment, classifying what combinations of actions are not allowed according to the

context of the environment. The affordances function is represented through ι(s)

for a given state s. Let:

A = {aj | j ∈ Z+, a ∈ {0, 1}}, (3.8)

be the set of actions the agent can execute in the environment, where na = |A| gives

the total number of actions. Let:

Ψ = {⟨aj, ki, ϕi, αi⟩ | aj ∈ A, i ∈ [0, ne), ϕi, αi ∈ Z}, (3.9)

be the set of rules that contains which interactions among the actions and envi-

ronment are evidently wrong, where a is the action, ϕ is the horizontal exploration

range, and α is the vertical exploration range. These exploration ranges refer to how

70 3.2 IECR Framework

many columns or rows from the agent’s position should be considered to contemplate

the affordability of an action. For example, if a pipe is three columns away from

Mario and the vertical exploration range is set to 2, then the agent will keep selecting

the action that moves Mario towards the pipe, but once Mario is two columns away,

the agent will avoid that action. Table 3.3 shows five sets of rules manually defined

for each environment. These sets of rules contain negative affordances, which are

actions that the agent is not allowed to execute given that situation.

Algorithm 2 takes as input the state s in the shape of CKF, the set of rules Ψ,

the first element of the set F , and the number of actions na. All the rules related

to each action are explored through the CKF obtained using Algorithm 1. The

exploration ranges ϕ, and α allow the agent to identify near or far elements that

may put the agent into a bad state. However, decision-making using only ι(s) is not

enough to find an optimal policy because there may be states with multiple choices

where ι(s) does not provide the optimal action.

Algorithm 2 ι(s) generator.
Input : CKF, number of actions na, set of rules Ψ and semantic set F
Result : ι(s)
Create an ι vector with na elements filled with ones;
Get k1, u1, v1 from CKF;
for a = 0, na do

Get Ψa = ⟨aj, ki, ϕi, αi⟩ from Ψ;
for r = 0, |Ψa| do

Get kr, αr, αr from Ψa;
for p = u1, u1 + ϕr do

if CKFp,v1 = kr then
ιa = 0;

end for
for l = v1, v1 + αr do

if CKFu1,l = kr then
ιa = 0;

end for
end for

end for
ι(s)← ι;

3.2 IECR Framework 71

3.2.3 Learning

This subsection explains how the CKFs and ι(s) are incorporated into the DQN,

DDQN, DuDQN, and DDDQN algorithms. For this purpose, Algorithm 3 is intro-

duced and how it can be applied to DQN variants to create the four new algorithms

developed in this research: IDQN, IDDQN, IDuDQN, and IDDDQN. The main

differences (Fig. 3.2) among the algorithms are in their neural network architecture

(single or dueling), action selection (Q-values-stream-based or Advantage-stream-

based) and loss functions (simple or double).

Algorithm 3 Context-based Deep Reinforcement Learning and its variants learning
Set neural network architecture;
\∗ Single stream for IDQN and IDDQN, and double stream for IDuDQN and
IDDDQN ∗\
Initialise main and target neural networks with random weights θ and θ′, respec-
tively;
Initialise a buffer Dreplay;
for n number of episodes do

for t = 1, T do
Get a CKF with Algorithm 1;
Get ι(s) with Algorithm 2;
With probability ϵ, execute a valid action;
\∗ Eq. (3.10) for IDQN and IDDQN or eq. (3.19)
IDuDQN and IDDDQN ∗\
Store a, s, s′, r, ι(s), ι(s′) transition in Dreplay;
Sample a transition from Dreplay;
if the state is terminal then

Set Jι(θ) = 0
\∗ target = r for IDQN and IDuDQN or
targetdouble = r for IDDQN and IDDDQN ∗\

else
Calculate the loss;
\∗ Jsimple(θ) for IDQN and IDuDQN or
Jdouble(θ) for IDDQN and IDDDQN ∗\

Perform gradient descent step on the loss;
Update θ;
if t mod τ = 0 then
θ′ ← θ

s← s′

end for
end for

72 3.2 IECR Framework

(a) (b)

Figure 3.4: In (a), the neural network predicts a non-valid action. Consequently, the
affordances loss increases. In (b), the neural network outputs respect the boundaries given
by ι(s). This provokes the affordances loss to be equal to zero.

The approach begins with the integration of the IECR framework into DQN,

referred to as IDQN. The affordances function ι(s) is used for selection-making

tasks as follows:

at = argmax
a

[(Qθ(s, a) + |min
a
Qθ(s, a)|)⊙ ι(s)] (3.10)

Adding ι(s) to the action selection process produces useful data but not optimal

solutions. This is because ι(s) can provide more than one action depending on the

state, and consequently, this information is insufficient, and it is not possible to

know which one of these actions is the best one. Given these circumstances, the

only manner to find the optimal action and explore the environment using the ι(s)

function is to embed this information into the target function of DQN given by

Eq. (2.26). Hence, this is done by applying the Hadamard product operation:

3.2 IECR Framework 73

target = r + γmax
a′

[(Qθ′(s
′, a′)+

|min
a′

Qθ′(s
′, a′)|)⊙ ι(s′)−min

a′
Qθ′(s

′, a′)]

(3.11)

For IDQN, its main simple neural network loss Jιn(θ) is given by the following:

Jιn(θ) =
1

K

K∑
i=1

(target−Qθ(s, a))
2, (3.12)

where K is a sample mini-batch of a given number of transitions from the replay

buffer. In the experiments, the mini-batch size K is set to 64. Since it is possible to

obtain ι(s), the target value goal for the main neural network, which indicates how

the network over-estimates impossible actions according to ι(s), can be calculated

as follows:

goal = r + γmax
a

[(Qθ(s, a)+

|min
a
Qθ′(s, a)|)⊙ ι(s)−min

a
Qθ(s, a)]

(3.13)

In Fig. 3.4, the affordance loss Jaffordance(θ) functionality is illustrated. The

loss increases when the neural network overestimates a non-valid action (refer to

the illustrative example in Fig. 3.4a). This overestimation happens when the neural

network predicts a higher value for non-valid actions. Therefore, when the overesti-

mated values of the neural network, corresponding to one or several actions, coincide

with the zeros of ι(s), the loss increases. On the contrary, when the neural network

respects the constraints given by ι(s), the loss is equal to zero (Fig. 3.4b). The

affordance loss is given by the following:

74 3.2 IECR Framework

Jaffordance(θ) =
1

K

K∑
i=1

(goal −max
a
Qθ(s, a))

2 (3.14)

The total simple loss Jsimple(θ) is the sum of the main simple neural network loss

Jιn(θ) and the affordance loss Jaffordance(θ):

Jsimple(θ) = (1− λ)Jιn(θ) + λJaffordance(θ) (3.15)

The λ parameter controls the effect between losses. The effects of removing the

affordance loss are investigated in the next section. Algorithm 3. IDDQN is the

implementation of DDQN in IDQN. The difference when compared with IDQN is

in its targetdouble equation given by the following:

targetdouble = r + γQθ′(s
′, argmax

a′
[(Qθ′(s

′, a′)+

|min
a′

Qθ′(s
′, a′)|)⊙ ι(s′)−min

a′
Qθ(s

′, a′)])

(3.16)

Given targetdouble is possible to obtain the main double neural network loss

Jιnd(θ):

Jιnd(θ) =
1

K

K∑
i=1

(targetdouble −max
a
Qθ(s, a))

2 (3.17)

The total double loss for IDDQN, Jdouble(θ), is the sum of the main double neural

network loss Jιnd(θ) and the affordance loss Jaffordance(θ):

3.2 IECR Framework 75

Jdouble(θ) = (1− λ)Jιnd(θ) + λJaffordance(θ) (3.18)

IDDQN differs from IDQN in the way the total loss is calculated. IDQN uses

J(θ)simple, whereas IDDQN uses the double loss J(θ)double. For action selection, both

algorithms use equation (3.10). IDQN and IDDQN use neural networks with single

streams (Fig. 2.2 top image).

On the other hand, dueling architectures use the advantage stream to select an

action during the training process. IDuDQN utilises neural networks with dueling

streams (Fig. 2.2 bottom image) and the simple loss function J(θ)simple. However,

the DuDQN action selection equation is given by the following:

at = argmax
a

[(Aθ(s, a) + |min
a
Aθ(s, a)|)⊙ ι(s)] (3.19)

IDDDQN utilises neural networks with dueling streams (Fig. 2.2 bottom im-

age), the first for the advantage and the second for the Q-values. It also selects

an action from the advantage stream using the equation (3.19). DDDQN uses the

double loss J(θ)double.

IDQN, IDDQN, IDuDQN and IDDDQN require a buffer replay Dreplay, a main

neural network Qθ, and a target neural network Q′
θ. The weights of the main neural

network θ are copied to the target neural network weight θ′ every nstep, where nstep

is usually set to 100. The pseudo-code of Algorithm 3 explains how to implement

the algorithms mentioned above.

76 3.3 Experimental Setup

3.3 Experimental Setup

This section describes the experimental setup used in this work to evaluate the

performance of the IDQN, IDDQN, IDuDQN, and IDDDQN algorithms. For the

experiments, five environments were utilised (Fig. 3.5). Each environment has dis-

tinctive characteristics that challenge the algorithms in multiple ways. The exper-

iments are conducted in two stages. The first stage of experiments evaluates how

IDQN performs against DQN and a random policy to prove that IDQN can learn

from the CKFs’ representation. The second stage of experiments compares the per-

formance of IDQN, IDDQN, IDuDQN, and IDDDQN against their state-of-the-art

variants. For both stages of experiments, the CKFs’ representation is used as the in-

put of the neural networks. The stable-baselines implementations of DQN, DDQN,

DuDQN, DDDQN, Proximal Policy Optimisation (PPO) and Asynchronous Actor-

Critic (A2C) were used to compare the performance of the proposed algorithms.

(a)

(b)

(c)

(d)

(e)

Figure 3.5: Game environments. (a) Mario. (b) Pacman. (c) FlappyBirds. (d) TaxiDriver.
(e) ScaraRobot

In the first stage, the learning progress in every episode was measured by using

the average reward and based only on the decisions of the neural network. In the

3.3 Experimental Setup 77

second stage, the progress was measured in epochs. The same network architecture

and hyperparameters were used for all the experiments: an input layer which flattens

the CKF, then two hidden layers of Rectified Linear Unit (ReLU) neurons and the

output layer, which depends on how many actions the environment in turn has. The

neural network architectures (single and double stream) are shown in Fig. 3.6. To

this end, Table 3.2 shows the parameter values used for all the environments and

experiments. The values of these hyperparameters were found to be the best by trial

and error.

Table 3.2: Hyperparameters used during the experiments.

Parameter Value
Learning rate (γ) 0.99
Mini-batch size 64
Episodes 2000
Epochs 200
Optimiser Adam
Optimiser learning rate 0.0001
Loss function huber
Training steps per epoch 400
Maximum steps per episode 3000
Target network update steps (τ) 100
Replay buffer size 50000
ϵmax 0.9
ϵmin 0.05
σepisode (ϵ decay per episode) 0.001
σepoch (ϵ decay per epoch) 0.01

3.3.1 Environments Description

Mario (Fig. 3.5a) is a game in which the free space available in the environment

allows the agent to move almost everywhere, and this is a challenge. Moreover,

negative rewards could take longer to propagate. For example, suppose there is a

hole, and the jumping action was executed several states before. In that case, it

will take several steps to make the agent understand that the action taken puts the

78 3.3 Experimental Setup

agent in a deficient state. The reward function of the Mario environment is given

by:

rmario(s, a) =



10, finishing the game

−10, dying

1, moving forward one square

0, otherwise

(3.20)

Pacman (Fig. 3.5b) is a simple game where the agent’s path is highly constrained.

An action that immediately crashes with a wall or an enemy is easily identifiable

in this environment. However, using the epsilon policy, the agent does not consider

evident mistakes. On the other hand, a ι(s) function can easily avoid immediate

mistakes and speed up the agent’s learning process. The reward function of the

Pacman environment is given by:

rpacman(s, a) =



10, finishing the game

−10, dying

1, eating a pellet

0, otherwise

(3.21)

Even though FlappyBirds (Fig. 3.5c) is a game with only two actions (fly and

fall), their random selection under the same probability provokes the agent to stay

at the top of the screen, since the fly action has a more biased behaviour than the

fall action. The replay buffer will eventually fill with useless data that affect the

agent’s learning process. The reward function of the FlappyBirds environment is

given by:

3.3 Experimental Setup 79

rflappybirds(s, a) =



10, finishing the game

−10, dying

1, passing the pipes

0, otherwise

(3.22)

TaxiDriver (Fig. 3.5d) and ScaraRobot (Fig. 3.5e) are environments that can

only be solved by finishing two tasks: pick and drop. This characteristic complicates

the exploration-exploitation process of the agent because the buffer fills more with

demonstrations of the first task (pick) than the second one (drop). The reward

function of the TaxiDriver environment is given by:

rtaxidriver(s, a) =


10, picking in the right place

10, dropping in the right place

0, otherwise

(3.23)

The reward function of the ScaraRobot environment is given by the following:

rScaraRobot(s, a) =



10, picking in the right place

10, dropping in the right place

1, getting closer to the goal

0, otherwise

(3.24)

For all the experiments, the average reward (produced from the actions of the

neural network) is an indicator of learning progress. The set of rules of each en-

vironment is given in Table 3.3. Moreover, the actions that can be taken in every

80 3.3 Experimental Setup

environment can be found therein the first tuple’s element from their correspond-

ing set of rules. For example, for the Mario environment, it is possible to take the

actions right and jump, whereas for Pacman, the available actions are right, left,

up, and down.

Table 3.3: Set of rules for each game environment.

Environment Set of rules
Mario ΨMario = {⟨right, pipe, 1, 0⟩, ⟨right, enemy, 2, 0⟩,

⟨right, hole, 2, 0⟩, ⟨right, block, 1, 0⟩, ⟨jump, empty, 0,−1⟩}
Pacman ΨPacman = {⟨right, wall, 1, 0⟩,

⟨left, wall,−1, 0⟩, ⟨up, wall, 0, 1⟩, ⟨down,wall, 0,−1⟩,
⟨right, ghost, 1, 0⟩, ⟨left, ghost,−1, 0⟩, ⟨up, ghost, 0, 1⟩,
⟨down, ghost, 0,−1⟩}

FlappyBirds ΨFlappyBirds = {⟨fly, pipeup, 3, 0⟩, ⟨fly, pipeup, 0, 1⟩,
⟨fly, ceiling, 0, 1⟩, ⟨fall, pipedown, 3, 0⟩,
⟨fall, pipedown, 0,−1⟩, ⟨fall, f loor, 0,−1⟩}

TaxiDriver ΨTaxiDriver = {⟨right, wall, 1, 0⟩, ⟨left, wall,−1, 0⟩,
⟨up, wall, 0, 1⟩, ⟨down,wall, 0,−1⟩, ⟨pick, wall, 0, 0⟩,
⟨pick, empty, 0, 0⟩, ⟨drop, wall, 0, 0⟩, ⟨drop, empty, 0, 0⟩}

ScaraRobot ΨScaraRobot = {⟨right, obstacle, 1, 0⟩, ⟨left, obstacle,−1, 0⟩,
⟨up, obstacle, 0, 1⟩, ⟨down, obstacle, 0,−1⟩, ⟨pick, obstacle, 0, 0⟩,
⟨pick, empty, 0, 0⟩, ⟨drop, obstacle, 0, 0⟩, ⟨drop, empty, 0, 0⟩}

3.3.2 First Stage of the Experiments

This experiment aimed to prove the neural network’s capacity to learn from the

CKFs. During this first stage of the experiments, IDQN was applied to solve the

five environments. Additionally, the number of episodes was used as a common

reference. Every episode is constrained to end if the agent reaches 3,000 steps,

dies, or completes the game. In addition, three extra experiments are run for each

environment. Thus, this could confirm that IDQN performs better than DQN and

a full random policy. Moreover, DQN was performed using the same number of

episodes IDQN took to learn.

3.3 Experimental Setup 81

(a)

(b)

Figure 3.6: Neural Network architectures used in the experiments. (a) shows the neural
network setup used for IDQN and IDDQN. (b) shows the neural network setup used by
IDuDQN and IDDDQN.

3.3.3 Second Stage of the Experiments

A problem with the first stage is that the incorporation of the affordance function

ι(s) allows the agent to last longer during every episode. However, DQN makes more

mistakes, and the number of training steps for the neural networks is significantly

lower because every episode ends prematurely. The goal of this second stage is to

deal with this unfair comparison. For this purpose, the measure of the learning

82 3.4 Results

progress is carried out in epochs, where one epoch is conformed of 400 training

steps. To this end, the influence of the affordance loss Eq. (3.14) is investigated by

setting λ to 0, 0.5, 1, 5 and 10, respectively.

3.4 Results

This section describes the learning curves in Fig. 3.7 and Fig. 3.8 from the results

of the first and second stages of the experiments, respectively. The affordance loss

impact is also discussed at the end of this section 1.

3.4.1 Results of the First Stage of the Experiments

Fig. 3.7a to Fig. 3.7e show the learning curves in the first stage of the experiments for

the five experimental environments: Mario, Pacman, FlappyBirds, TaxiDriver, and

ScaraRobot. Both DQN and the random agents show similar performance within the

Mario environment at the beginning of the training. The nature of the environment

can explain this behaviour. While Pacman is highly constrained, Mario can take

several actions within its open environment. Meanwhile, when there is an enemy or

an obstacle, the ι(s) function provides actions that prevent the agent from dying or

getting stuck. Consequently, IDQN feeds the replay buffer with better-quality data

while reaching further states during the game.

In the Pacman environment, the efforts of DQN are impractical because every

episode ends prematurely. Likewise, when using a random policy, the performance

is poor because, most of the time, the agent can only go in two directions. Con-

sequently, the equal probability of taking those actions leads the agent to a poor

exploration of the environment. IDQN performs better because the ι(s) function

avoids impractical actions such as crashing against a wall or an enemy. This be-

haviour may take more than 2,000 episodes for DQN to learn.

1Demo available at https://youtu.be/Gqsud7KUZfM

https://youtu.be/Gqsud7KUZfM

3.4 Results 83

In the FlappyBirds environment, IDQN can easily outperform DQN because the

stochastic nature of the ϵ-greedy policy exploration with equal probability indirectly

biases the agent’s behaviour. Therefore, the replay buffer fills with data related to

crashes against the pipes, floor, or ceiling and rarely with passing through the pipes.

Moreover, when randomly sampling a mini-batch from the replay buffer, the prob-

ability of picking a transition representing a positive reward when passing through

the pipes is exceptionally low. Hence, the agent mainly trains with impractical data

and rarely trains from transitions that represent the actual goal of the game. In con-

trast, IDQN can take decisions based on the obstacles around the bird. Thus, every

episode lasts longer and fills the replay buffer with better-quality training data.

In the TaxiDriver and ScaraRobot environments, DQN presents difficulty in

learning the drop action. In these environments, it is very easy to collide against

obstacles due to the stochastic nature of DQN. This behaviour fills the buffer with

useless data, and the episodes end prematurely. IDQN does not need to explore

or learn when to pick or drop because that behaviour is already encoded in the

affordance function ι(s).

Table 3.4: Average reward obtained in the second stage of the experiments.

Environment IDQN IDDQN IDuDQN IDDDQN DQN DDQN DuDQN DDDQN PPO A2C
Mario 26.24 25.87 30.24 23.69 23.24 20.28 27.06 23.88 23.94 −5.24
Pacman 45.77 45.03 39.71 41.16 23.02 14.63 20.36 26.05 25.68 6.55
FlappyBirds 15.18 15.18 14.16 13.49 −8.02 −8.26 −8.72 −8.49 −8.38 −8.83
TaxiDriver 14.51 16.22 16.54 18.1 1.11 1.11 1.24 0.9 7.05 0.22
ScaraRobot 690.35 715.17 679.27 647.82 239.26 258.12 182.97 133.04 108.48 7.83

3.4.2 Results of the Second Stage of the Experiments

For the second stage of the experiments, the learning curves in Fig. 3.8a to Fig. 3.8c

show a comparison between the performance of the state-of-the-art algorithms DQN,

DDQN, DuDQN, DDDQN, PPO, and A2C and the IECR variants IDQN, IDDQN,

IDuDQN and IDDDQN. Table 3.4 summarises the results for this stage. The same

number of training steps are applied to compare the algorithms fairly. The agent

84 3.4 Results

(a) (b)

(c) (d)

(e)

Figure 3.7: The earning curves above are the results of the first stage of the experiment
in which the learning progress is measured in every episode: (a) Mario, (c) Pacman, (c)
Flappybirds, (d) TaxiDriver and (e) ScaraRobot.

trained for 200 epochs, where every epoch is equivalent to 400 training steps. In

the Mario environment, the DQN, DDQN, DuDQN, and DDDQN learning curves

show more stable progress than in the first stage of the experiments. It can be

observed better learning progress when ι(s) is involved than when it is not. In

Mario’s environment, the gap between state-of-the-art approaches is smaller than

in Pacman and FlappyBirds because this environment has a huge open space where

3.4 Results 85

(a) (b)

(c) (d)

(e)

Figure 3.8: This figure displays the results of the second stage of the experiments, in
which the progress is measured every epoch: (a) Mario, (c) Pacman, (c) Flappybirds,
(d) TaxiDriver and (e) ScaraRobot. Every epoch is equivalent to 400 training steps. In
the second stage, the learning progress of the state-of-the-art algorithms was less chaotic.
However, IECR variants still outperform the state-of-the-art approaches.

the agent can decide where to go. Moreover, the ι(s) only has a notorious effect

when enemies, pipes, or holes are nearby, and most of the time, all the actions are

available. However, ι(s) assists in critical moments of decisions and allows the agent

to explore further and fill the replay buffer with this information. Besides, PPO

showed competitive learning progress, while A2C got stuck into a local minimum

86 3.4 Results

(See Fig. 3.8a).

In the Pacman environment, ι(s) has a higher impact because environment obsta-

cles such as walls and ghosts are always next to Pacman. While the state-of-the-art

approaches use a stochastic policy for exploring the environment, provoking Pacman

to crash against the walls or die by touching a ghost, ι(s) will avoid these states

immediately.

In the FlappyBirds environment, the state-of-the-art approaches show difficulties

in exploring the environment and finding high-value states. On the contrary, ι(s)

explores and supports good decisions based on what is surrounding the bird. Conse-

quently, the state-of-the-art approaches rarely train from adequate states, whereas

ι(s) guides the agent into better decisions through every episode.

In the TaxiDriver environment, the affordances function ι(s) assisted the agent

exploration efficiently because, once the taxi reached the passenger position, the

only possible action according to the set of rules is picking. Therefore, the state-

of-the-art algorithms must visit the same state several times to learn that picking

is the only possible action at that state. In Fig. 3.8d, it can be noted that IECR

variants learn faster due to the reason explained before.

The ScaraRobot environment behaves similarly to TaxiDriver. When the robotic

arm reaches the picking or dropping positions, only one action is allowed (picking or

dropping). However, the state-of-the-art approaches cannot produce enough high-

quality data dependent on the action-selection process, which reverberates in their

learning performance (Fig. 3.8a).

In summary, the second stage of experiments showed that all the algorithms

which use contextual information significantly outperform the baseline algorithms

by 77 % on average, according to the information in Table 3.4, in the environments

used in this thesis. To calculate the improvement, the following equation is used:

3.4 Results 87

Table 3.5: Performance comparison of the maximum reward obtained with IDQN, IDDQN,
IDuDQN or IDDDQN from the learning curves of Fig. 3.8 and the stable baselines.

Environment (MaxIECR) Algorithm Maxbaseline Pimprovement

Mario (33) DQN 30 10
DDQN 25 25
DuDQN 26 21
DDDQN 27 19

PPO 24 28
A2C -8 124

Pacman (70) DQN 40 43
DDQN 35 50
DuDQN 30 47
DDDQN 28 60

PPO 19 27
A2C 5 93

FlappyBirds (25) DQN -10 140
DDQN -9.5 138
DuDQN -9 136
DDDQN -8 132

PPO -7.5 130
A2C -7 128

TaxiDriver (23) DQN 14 61
DDQN 2 95
DuDQN 2 95
DDDQN 2 95

PPO 2 95
A2C 1 96

ScaraRobot (800) DQN 400 50
DDQN 350 56
DuDQN 290 64
DDDQN 210 74

PPO 180 78
A2C 1 99

Average ≈ 77

Pimprovement = 100 · (1− Maxbaseline
MaxIECR

) (3.25)

Here, Pimprovement represents the percentage of improvement of the iota algorithm

MaxIECR with the highest reward compared to the maximum reward obtained by

the baseline algorithms expressed as Maxbaseline.

3.4.3 Affordances Loss Impact

The impact of the affordances loss was measured by calculating the percentage of

improvement, with λ = 0 serving as a reference for all the environments. Fig. 3.9

summarises the results showed in Table 3.6. When λ = 0.5, IDQN and IDuDQN

had an improvement of 7.5% and 6%, respectively. While IDDQN and IDDDQN

88 3.5 Discussion

showed a deterioration in the performance of 1% and 14%. For λ = 1, IDQN

and IDDQN increased their performance by 1.5% and 5.5%, whereas IDuDQN and

IDDDQN performance reduced in 2.5% and 7.5%, respectively. The experiment

results show that λ = 5 produced an increment in the performance of IDQN, IDDQN

and IDuDQN of 6.8%, 1.8% and 0.5%, while IDDDQN performance dropped in

4.5%. Setting λ = 10 provoked that IDQN, IDDQN and IDuDQN increased their

performance by 8.9%, 1.7% and 6.5%, respectively. While IDDDQN performance

decreased 5.2%.

Figure 3.9: The results above show the effect of varying the value of λ in the algorithms.

3.5 Discussion

This chapter introduced the IECR framework, which takes advantage of the available

information in the environment to accelerate the agent’s learning process. This

approach is first fed from a manually defined set of rules, much like what a human

does. Then it uses the rules to generate an affordance function that seeks to reduce

the exploration space and optimise the decision-making process.

In real-world tasks, humans understand the rules, so repeating the same mistake

millions of times is unnecessary. IECR is a successful framework that uses this

human capability to benefit from context and use it to make intelligent decisions.

3.5 Discussion 89

Table 3.6: Affordance loss impact (average reward).

λ = 0 IDQN IDDQN IDuDQN IDDDQN
Mario 24.91 25.01 26.75 36.36
Pacman 41.19 45.92 48.95 41.02
FlappyBirds 14.93 15.18 13.38 14.41
TaxiDriver 14.77 15.29 15.51 16.86
ScaraRobot 680.65 641.92 731.89 697.07

λ = 0.5 IDQN IDDQN IDuDQN IDDDQN
Mario 25.65 26.81 23.46 23.81
Pacman 42.78 47.58 45.86 42.95
FlappyBirds 14.9 15.18 13.76 13.92
TaxiDriver 14.97 15.46 15.91 15.8
ScaraRobot 810.28 595.5 966.78 573.0

λ = 1 IDQN IDDQN IDuDQN IDDDQN
Mario 26.24 25.87 30.24 23.69
Pacman 45.77 45.03 39.71 41.16
FlappyBirds 15.18 15.18 14.16 13.49
TaxiDriver 14.51 16.22 16.54 18.1
ScaraRobot 690.35 715.17 679.27 647.82

λ = 5 IDQN IDDQN IDuDQN IDDDQN
Mario 26.42 24.54 24.79 25.75
Pacman 41.96 50.42 45.47 50.09
FlappyBirds 15.18 15.18 13.49 13.33
TaxiDriver 14.94 16.64 14.5 15.27
ScaraRobot 841.11 593.11 914.08 711.51

λ = 10 IDQN IDDQN IDuDQN IDDDQN
Mario 25.14 26.12 24.31 29.34
Pacman 44.43 48.63 44.73 41.87
FlappyBirds 15.16 15.12 13.75 13.29
TaxiDriver 16.83 16.1 18.3 18.55
ScaraRobot 802.81 591.69 959.26 614.2

The fact that IECR variants outperform all these state-of-the-art approaches makes

it clear how vital context is during the learning process of an agent.

In the FlappyBirds environment, the IECR variants IDQN, IDDQN, IDuDQN,

and IDDDQN outperform state-of-the-art approaches. There may be better ap-

90 3.5 Discussion

proaches than DQN, DDQN, DuDQN, or DDDQN. For example, a Q-table and

QL could manage to solve this environment quickly. Since FlappyBirds is a highly

repetitive environment, the number of states can be calculated. Another solution

may be to use two replay buffers: one buffer for poor and average transitions and

a second buffer exclusive for good transitions. It would be necessary to bias the

sampling process of the data to collect good transitions so that the agent can learn

and find a solution for the environment. Another solution may be to design a reward

function that pushes the bird to the middle of the pipes. However, IDQN does not

require such modifications, and a set of rules is enough to solve the environment.

The results in Table 3.6 show that λ and the two loss functions based on the af-

fordance function (J(θ)simple and J(θ)double) have a higher impact in IDQN, IDDQN

and IDuDQN than in IDDDQN. It is believed that the reason for this is that the

J(θ)double loss function is connected to the Q-values stream of the target neural net-

work. Hence, the weights of the main and target neural networks may provoke the

possible actions in the advantage stream to differ from the ones in the Q-values

stream.

Simply carrying out a stochastic exploration of the environment does not secure

a good learning process for the agent. Therefore, the satisfactory results of IECR

introduced in this chapter can be explained by the quality of the data produced

with the assistance of the ι(s) function. Regarding the manual definition of the

sets of rules, there are two possible approaches that can automate their genera-

tion. The first one would consist of logging what actions combined with certain

elements produce negative rewards. However, this approach would not be able to

deal with ambiguous cases such as the ones where the agent is stuck and not getting

any reward. Besides that, it would again bring the problem of designing a reward

that indirectly guides the learning process. The second alternative, which is more

promising, consists of using Large-Language Models (LLMs) (Brown et al. 2020). A

possible procedure to follow would be feeding the image with a description of the

3.6 Summary 91

game and samples of the actions taken by the learning agent, aiming to use the

strong contextual capabilities of LLMs to design a human-like set of rules. Lastly,

IECR has the potential to be extended to more baseline algorithms such as PPO

and A2C. To achieve this, it would be necessary to design the corresponding loss

functions involving ι(s) and integrate the exploration based on the affordances in

the same way it was done for DQN and its variants.

3.6 Summary

This chapter has explored the integration of context in RL and opened the door

to new challenges in RL. The framework developed in this chapter demonstrates a

smooth integration of contextual data in DRL. In this chapter, it has been shown

that the proposed framework and the resulting algorithms IDQN, IDDQN, IDuDQN,

and IDDDQN improved the agent’s performance by converging in the experimental

environments in around 40,000 training steps. Since a manually defined set of rules

and the concept of CKFs were included, an affordance function could be obtained.

Consequently, the agent’s learning profits from better quality data than it would

do with a pure stochastic exploration. The contributions of this chapter include

an intuitive framework that includes contextual information to improve RL and

four new algorithms based on IECR. The results of the first stage of experiments

showed IDQN’s capacity to learn from CKFs representation. The second stage of

the results shows that by using the same number of training steps (40,000) as a

reference, IECR variants also outperform the state-of-the-art algorithms. IECR

provides a solution to difficult states, where instead of learning after millions of

interactions, the agent computes ι(s) and avoids getting stuck before continuing to

explore the environment.

92 3.6 Summary

93

Chapter 4

Affordance-based Reinforcement

Learning for Human-Robot

Interaction

Chapter 3 demonstrated that it is possible to integrate contextual information into

the learning process of a Reinforcement Learning (RL) agent. More concisely, the

representation of the state in Contextual Key Frames (CKFs) combined with a set

of rules has shown to be effective when training neural networks for solving discrete

environments. However, the conditions are different in a real-world setup, such

as a Human-Robot Interaction (HRI) scenario. For example, all the information

regarding the current state is not as easy to extract in the real world as it is with

a simulation. Besides that, the stochastic behaviour of a human user is not easy to

deal with only with a pre-trained neural network due to the problem of generalisation

discussed in Chapter 2. With this idea in mind, the current chapter aims to propose

a solution by integrating contextual information into the Q-learning (QL) algorithm,

a set of rules, and to represent the current real-world scenario with CKFs in an HRI

setup. The rest of this chapter is structured as follows. It begins with Section 4.1,

which motivates current problems of RL in HRI setups. Then, in Section 4.2, the

94 4.1 Introduction

framework based on Contextual Q-learning (CQL) is formally introduced. This

is followed by Section 4.3, which describes the experimental setup. Section 4.4

discusses the implementability of the framework in an HRI scenario and presents

the results. Finally, the chapter concludes in Section 4.6.

4.1 Introduction

Robots with human-level intelligence to plan and adapt to dynamic environments

may open the door to the full integration of robotics in industrial and domestic

environments (Khan et al. 2020). In the context of HRI, RL has been applied

to adapt the behaviour of the robot to the user in dynamic environments, such

as finding optimal parameters in a robot arm impedance model (Modares et al.

2015), biped dynamic walking (J.-L. Lin et al. 2016) and allowing navigation among

crowds (C. Chen et al. 2019; Everett et al. 2021). HRI is challenging and requires

dealing with dynamic changes in the environment. A robot with the capacity to

reprogram itself when necessary may lead to improve HRI (Ciou et al. 2018; Cruz

et al. 2016b; Y. Gao et al. 2019; Lathuilière et al. 2018; W. Wang et al. 2019). This

is particularly important in grasp, and release-related tasks, where combining RL

capacities to adapt to dynamic environments and HRI is crucial (Andriella et al.

2020).

In the literature, several approaches exist for automating repetitive robot tasks

based on HRI, such as LEarning from Demonstrations (LfD). Usually, LfD is ex-

ecuted employing three methods: kinesthetic, passive observation, and teleopera-

tion (Ravichandar et al. 2020). In kinesthetic demonstrations, the user manually

guides the robot by pulling or pushing the end effector (Stavridis et al. 2022; X. Yu

et al. 2020). Passive observation is when the robot learns from the user through

video streams (Hwang et al. 2020). With teleoperation, the user guides the robot

by operating a teach pendant, a joystick, or a haptic device (Pareek and Kesavadas

4.1 Introduction 95

Figure 4.1: Experimental setup. The view of the camera and a visual representation of the
state can be appreciated at the bottom left and the upper right of the image, respectively.

2019). A limitation of LfD approaches is that these are constrained to the solution

shown by the user, and more optimal solutions are often discarded. Hence, RL of-

fers a solution to this problem by encouraging the agent to explore further and find

better solutions than the user’s demonstrated one.

This chapter presents an affordance-based human-robot interaction framework

whose novelty lies in its capacity to use contextual information (semantic informa-

tion, affordances, and high-level goals) that enhances the exploration and learning

process of the agent. The framework is based on a new algorithm called CQL. The

algorithm aims to reduce the exploration space of the agent and the number of states

required to represent it. This allows CQL to find a policy from the current obser-

vation in the real world and solve the Q-table in a short period of time. This fast

learning capacity makes the framework suitable for HRI tasks. Our contributions

are (i) CQL is introduced, allowing efficient learning in the context of active HRI,

and (ii) a framework based on CQL that allows robots to perform HRI in the real

world.

96 4.2 Affordance-based Human-Robot Interaction Framework

The problem domain to empirically validate the framework is an HRI scenario

(Fig. 4.1). Here, the user first provides instructions and then actively interacts

with the robot to manipulate objects. At the same time, changes that interfere

intermittently with the robot’s actions are produced. CQL is validated experi-

mentally by comparing its performance against baseline algorithms such as classi-

cal QL (Watkins and Dayan 1992a), Deep Q-network (DQN) (Mnih et al. 2013),

Proximal Policy Optimisation (PPO) (Schulman et al. 2017) and Asynchronous

Actor-Critic (A2C) (Mnih et al. 2016) from the stable-baselines (Hill et al. 2018)

implementations.

4.2 Affordance-based Human-Robot Interaction Frame-

work

This section presents a framework that aims to solve the problem of performing grasp

and release-related operations during HRI (Fig. 4.2). The framework is composed of

three modules: voice-gestures, learning, and valid policy detector. The nomenclature

used in this chapter is summarised in Table 4.1.

Symbol Description
S Set of states
A Set of actions
G Set of Goals
O Semantic set
λ Set of affordable actions
Ψ Set of rules
I Set of primary actions
E Set of complementary actions
ne Number of elements
ζ(s, a) Affordances function of each state-action pair
ξ(s, a, g) Initial optimistic values function
gi Name of the goal i-th goal
xi Coordinates of the i-th goal in the x axis
yi Coordinates of the i-th goal in the y axis
zi Coordinates of the i-th goal in the z axis
sn,m State in the form of a n×m matrix
ki Token of the i-th element
wi Width of the i-th element
li Length of the i-th element
hi Height of the i-th element
namei Name of the i-th element
at Maximum affordable action

Table 4.1: Nomenclature table for Chapter 4.

4.2 Affordance-based Human-Robot Interaction Framework 97

Figure 4.2: Proposed framework for HRI using RL.

4.2.1 Voice-gestures

With this module, to extract the sub-goals set Π, the robot acquires human in-

structions by using the Google speech-to-text API (Google n.d.) and the CVZone

package (CVZone n.d.) for hand-tracking. When the instruction ι is ready, the algo-

rithm 4 processes the string and fills Π. When the word “here" is in the instruction,

the module tracks the hand position and finds the closest goal, which is stored in

the set of goals G, given by:

G4 = {⟨gi, xi, yi, zi⟩ |xi, yi, zi ∈ R}, (4.1)

where gi is the name of the goal. The terms xi, yi, and zi are the coordinates of

the ith goal in the x, y, z axis respectively. This allows the replacement of "here"

with the goal’s name. Consequently, algorithm 4 can be applied to relate the goals

with the objects and split the task into sub-goals. For each sub-goal, CQL solves its

respective contextual Q-table. When all the sub-goals are completed, or Π is empty,

the task is considered finished.

98 4.2 Affordance-based Human-Robot Interaction Framework

Algorithm 4 Sub-goals extractor.
Input : Human instruction ι, Semantic set O, the phrase set ρ= {}
Result : Sub-tasks set Π
while|ι| > 0

for word in ι do
ρ = ρ ∪ {word}
if |ρ ∩G1| > 0 and |ρ ∩ V | > 0
goal ∈ ρ ∩G1

if |ρ ∩ {all, every, the}| > 0 and |ρ ∩ Z| = 0
Π = Π ∩ {⟨obj, goal⟩ | obj ∈ O1 ∩ ρ}

if |ρ ∩ {some, the}| > 0 and |ρ ∩ Z| = 0
Π = Π ∩ {⟨obj, goal⟩ | obj ∈ H}

if |ρ ∩ Z| > 0
Set n to |ρ ∩ Z|;
Fill set H by randomly pick n objects from
O1 ∩ ρ;
Π = Π ∩ {⟨obj, goal⟩ | obj ∈ H}

if |ρ ∩ {a, an}| > 0
Π = Π ∩ {⟨obj, goal⟩ | obj ∈R O1 ∩ ρ}

Remove ρ elements from ι and set ρ = {}
end for

if |Π| = 0
Send error: "Not executable instruction."

end

4.2.2 Learning

The learning module uses the proposed algorithm CQL to learn the set of actions

that solve a task established by the user through the voice-gesture module. CQL

uses a set of codes that numerically represents the state s of the environment. This

set is used to create contextual Q-tables and to extract the affordances. Formally,

a state s is a n × m matrix that contains semantic information of the state and

sn,m ∈ {0, 0.1, 0.2, 0.3, 0.4}, where 0 is an empty space, 0.1 is used to point an

object as the target to manipulate, 0.2 stands for objects that become obstacles

in the environment, 0.3 represents the goal, and 0.4 represents a hand. A number

will be added to tokenise every new object type in s. The value of the tokens is

in the range between zero and one to avoid state-of-the-art approaches to learning

spurious correlations due to high values. This normalisation also assists with faster

4.2 Affordance-based Human-Robot Interaction Framework 99

convergence by avoiding large input values that may mislead the agent. The objects’

semantic information is represented in the object’s set O, given by:

O8 = {⟨ki, xi, yi, wi, li, hi, namei⟩ | i ∈ (0, 1, .., n),

xi, yi, wi, li, hi ∈ [0,∞)},
(4.2)

where O represents the semantic set, i ∈ (0, 1, ..., n), ki is the ith of the element , x

and y are the position coordinates in pixels, w is the width, l is the length, h is the

height, and namei is the name of the object (e.g., “blue-square-1”, “yellow-hexagon-

2”).

Algorithm 5 uses the semantic set O to create a matrix that represents the state

s. The dimension of the states matrix s is given by n × m. The set actions are

defined as follows:

A = {UP,DOWN,LEFT,RIGHT,GRASP,

DROP,GOAL},
(4.3)

where UP andDOWN are the displacements along the y axis given by ±li. RIGHT

and LEFT are the displacements along the x-axis given by ±wi, GRASP closes the

gripper of the robot and controls its orientation according to li and wi, DROP opens

the gripper, and GOAL is the trajectory from the coordinates of the closest state

of the target to the robot to the goal’s position. The affordances Λ are given by:

Λ : A× S −→ Z|A|
2 , (4.4)

Context is comprised of the affordances Λ, the semantic set O, the state s and a

set of rules Ψ. Let:

100 4.2 Affordance-based Human-Robot Interaction Framework

Algorithm 5 State generator.
Input : Semantic set O, the number of elements ne, the screen width sw, and the
screen height sh
Result :s
n← ⌈ sh

h1
⌉;

m← ⌈ sw
w1
⌉;

Create an n×m matrix s filled with zeros;
for i = 1, ne do

for r = 0, wi do
for c = 0, hi do

if ki is the target do
s(ui+r,vi+c) = 0.1;

if ki is an obstacle do
s(ui+r,vi+c) = 0.2;

if ki is the goal do
s(ui+r,vi+c) = 0.3;

if ki is a user’s hand do
s(ui+r,vi+c) = 0.4;

end for
end for

end for

Ψ = {⟨UP, 0, 0, 1⟩, ⟨DOWN, 0, 0,−1⟩,

⟨LEFT, 0,−1, 0⟩, ⟨RIGHT, 0, 1, 0⟩,

⟨GRASP, 0.1, 0, 0⟩, ⟨DROP, 0.3, 0, 0⟩,

⟨GOAL, 0.3,±1,±1⟩},

(4.5)

be the set of rules manually defined that contains which interactions among the

actions and environment should not be performed by the robot. For example, picking

an object when there is nothing to pick or moving to a place where the robot may

collide. Ψ3 is the horizontal exploration range and Ψ4 is the vertical exploration

range. The affordance ζ of each state-action pair is given by:

4.2 Affordance-based Human-Robot Interaction Framework 101

ζ(s, a) =



1, |{⟨a, sp,q, u, v⟩} ∩ I| > 1 and

|{⟨a, sp+u,q+v, u, v⟩ | a ∈ E} ∩R| = 0

1, |{⟨a, sp,q, u, v⟩} ∩ E| > 1

0, otherwise

(4.6)

Where a ∈ A, p ∈ (0, n), q ∈ (0,m), u, v ∈ {−1, 0, 1}, I = {UP,DOWN,

LEFT,RIGHT} is the primary actions set, and E = {GRASP,DROP,GOAL}

secondary actions set. With the affordances equation (4.5) and the current state, it

is possible to generate a contextual Q-table and set optimistic initial values by:

Q(s, a) = ζ(s, a) + ξ(s, a, g), (4.7)

where ξ(s, a, g) = 0.1, when the action a points to the goal g, ζ > 0 and a ∈ I,

otherwise ξ(s, a, g) = 0. The optimistic initial values functionQ ξ(s, a, g) bias the

Q-values of the actions that point to the goal. Once the contextual Q-table is ready,

it is necessary to find an optimal policy. To select the valid action given a state s,

it is necessary to include the affordances function (4.6) by applying the Hadamard

product operation:

at = argmax
a

[(Q(s, a) + |min
a
Q(s, a)|)⊙ ζ(s, A)], (4.8)

where at is the maximum possible action according to ζ(s, A), and ∀a, s, Q(s, a) ̸= 0.

Therefore, to update the Q-table by including the affordances function (4.6), the

following equation is used:

102 4.2 Affordance-based Human-Robot Interaction Framework

Q(s, a)←− Q(s, a) + α[r + γmax
a′

[(Q(s′, a′)+

|min
a′

Q(s′, a′)|)⊙ ζ(s′, A)−min
a′

Q(s′, a′)]]

(4.9)

Algorithm 6 output is an optimal policy that produces a discrete set of actions,

which is the trajectory that the robot must follow to reach the goal. These points

are used to generate a discrete path. Since the robot is a continuous agent, it is

necessary to smooth the discrete path by applying spline interpolation.

Algorithm 6 Contextual Q-learning.
Input : The goal g, and start position p
With equation (4.7), create a contextual Q-table
for n steps do

if ∀a,Q(s, a) = 0
Randomly select an action at

else
With probability ϵ select a valid action at with
equation (4.8)

Perform at and get reward r
if terminal state
Q(s, a)←− r

else
Update Q-table with equation (4.9)

end for
Apply spline interpolation to the series of discrete actions of the optimal policy

4.2.3 Valid Policy Detector

Within each step of execution, changes in the environment are observed to decide

if re-planning is required. Since the valid policy detector module is continuously

observing the environment, when a change occurs (i.e., interruption of user hand or

change in goal position), a negative reward will be returned such that the robot uses

it as a trigger and reprograms itself using CQL to complete the manipulation task.

4.3 Experimental Setup 103

Figure 4.3: Flow chart of the HRI experiments with RL.

4.3 Experimental Setup

The problem domain to validate the framework empirically is an HRI scenario,

where the user and robot manipulate objects. At the same time, the user provokes

changes that interfere intermittently with the robot’s actions. The experiment setup

is comprised of a service robot (Care-O-Bot 4™), a table with a set of objects, and

an Intel®RealSense™ camera mounted on the top of the table, as shown in Fig. 4.1.

104 4.3 Experimental Setup

The learning parameters used for CQL are α = 0.99 and γ = 0.05 (it was found

by trial and error that CQL converges faster when using these parameters). The

following experiments were performed:

1. The performance of CQL is compared against the performance of QL, DQN,

PPO, and A2C by solving the MDP for 100 objects’ manipulation tasks with

the robot. Every manipulation task is contained in a scenario configuration,

each with a different initial position, goal destination, and different obstacles.

2. The user asks the robot for a certain task and puts pieces on the table while

the robot executes the task.

3. A certain type of object is set as a sensible obstacle to test the robot’s capacity

to establish a safety perimeter around the obstacle.

4. The user moves the goal to test the robot’s capacity to recognise a change in

the environment that may lead to failing the current task.

5. The user obstructs the way of the robot with a hand to test the robot’s capacity

to react safely to the user’s movements.

6. The framework is tested in a Kuka® LBR iiwa™ 14 robot.

Each experiment, in turn, aims to answer the following questions:

1. Does CQL perform better than QL, DQN, PPO, and A2C to suit the learning

efficiency needed for HRI?

2. Can the robot understand the user’s instructions and learn how to manipulate

the objects on the table to complete the task using CQL?

3. Does CQL generate a series of optimal continuous actions that not only take

an object from one place to another but also avoid collisions?

4.4 Results 105

4. Can the simulation of the last optimal policy produce a negative reward trigger

in real-time to re-plan the actions of the robot?

5. Can the robot safely react in real-time to a dynamic obstruction from the user?

6. Is the framework suitable for a different robot configuration?

For all the algorithms, the number of times the agent finds a solution for the 100

hundred manipulation tasks was counted, such that it is possible to calculate the

proportion of successful attempts, which is referred to as the success rate 1.

4.4 Results

This section describes the results of the six experiments, providing an overview of

the outcomes and insights garnered from each experiment. Fig. 4.4 shows a flowchart

of the experiments.

4.4.1 Results of the First Experiment

In the first experiment, CQL, QL, DQN, PPO, and A2C were used for training over

100 different scenario configurations. For each scenario configuration, a new contex-

tual Q-table is generated. This table contains all possible states given the current

scenario configuration. A problem with Deep Reinforcement Learning (DRL) ap-

proaches is that they over-fit in simulation or the real world for a certain task, and it

is difficult to make them work under different tasks or environments (Nguyen and La

2019). Hence, a change in the state related to perception or its configuration would

affect the agent’s performance. To avoid this issue, CQL design aims to generalise

by learning from scratch given the current scenario configuration (Fig. 4.3). Despite

changes in the environment, the algorithm always generates a new contextual Q-

table for that scenario configuration. Once the contextual Q-table is solved, the set

1For a better understanding of the experimental setup, see: https://youtu.be/raVeVjPv_Rc

https://youtu.be/raVeVjPv_Rc

106 4.4 Results

Start

Experiment 1: Compare the performance
of CQL against QL, DQN, PPO, and A2C

Experiment 2: User requests a task
while the robot manipulates objects

Experiment 3: Test robot’s abil-
ity to establish safety perimeter

Experiment 4: Test the robot’s ability
to recognise changes in the environment

Experiment 5: Test robot’s
reaction to user obstruction

Experiment 6: Test framework
on Kuka® LBR iiwa 14™ robot

End

Does CQL performance suit
the learning necessities of HRI?

Success rate of CQL com-
pared to other algorithms?

Can the robot understand
user instructions with CQL?

Does CQL generate optimal continu-
ous actions with collision avoidance?

Can the simulation of the optimal policy
be used to trigger warnings to the user?

Can the robot react safely to dy-
namic obstruction from the user?

Is the framework suitable for dif-
ferent robot configurations?

Figure 4.4: Flow chart of the experiments carried out to test different capabilities of the
framework.

of actions can be safely transferred to the robot. In this context, the performances

of CQL, QL, DQN, PPO, and A2C were compared. The CPU energy consumption

of each algorithm is measured with the PyRAPL library (Rountree and Tsafrir n.d.).

Fig. 4.5 shows the learning curves of CQL, QL, DQN, PPO, and A2C after

training over 100 different scenarios configurations. The results are summarised in

Table 4.2. Where CQL had a success rate of 84%, took 67,631 training steps on

average to converge in 2.7 seconds, and expended 61.76 J of energy. QL took 1.02

seconds on average to converge and consumed 26.9 J. However, the QL success rate

is 38% and takes 67,631 steps on average to converge. DQN had the slowest learning

rate, and it only succeeded in 17% of the scenarios with 39.9 seconds of learning

time, an average number of steps to converge of 76,430, and an energy consumption

of 886.83 J. Among the stable-baselines algorithms, PPO showed to be the best

by succeeding in 68% of the cases in 50,098 average number of steps to converge.

4.4 Results 107

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 4.5: The learning curves above are eight out of 100 samples taken from the results
of the experiments. All algorithms succeeded in (a) and (b), but DQN failed. In (c), QL
and DQN fail to find a solution. In (d), A2C and DQN fail to find a solution while PPO
and QL struggle to converge. In (e), only CQL and QL converge. In (f), CQL and A2C
converge while the rest of the algorithms fail. In (g), PPO struggles to converge while CQL
finds a solution. In (h), all the algorithms fail to find a solution.

Figure 4.6: This figure shows a user speaking an instruction while pointing to the right
box with his hand while the robot performs the instruction.

Nevertheless, PPO learning time is about 105 seconds and consumes 2662.49 J. In

terms of less number of training steps to converge (Fig. 4.5c), A2C spends 30,915,

but its success rate is only 38%. There were cases where any of the algorithms found

108 4.4 Results

a solution, as shown in Fig. 4.5h. This experiment serves as evidence to show that

CQL performs better than QL, DQN, PPO, and A2C to suit the learning efficiency

needed for HRI.

Table 4.2: Results after running CQL, QL, DQN, PPO, and A2C in 100 different scenarios.

Algorithm Success rate Training
time

Average number
of steps to con-
verge

Energy con-
sumption

CQL 85% 2.7 s 60,103 61.76 J
QL 38% 1.02 s 67,631 26.9 J
DQN 17% 36.9 s 76,430 886.83 J
PPO 68% 91.8 s 50,098 2122.52 J
A2C 39% 104.6 s 30,915 2662.49 J

The improvement in the performance of CQL compared to the baseline algo-

rithms (Table 4.2) can be attributed to the reduction in exploration space based

on the affordances. Furthermore, the effect of ξ(s, a, g) for biasing the exploration

towards the direction of the goal allowed CQL to finish the task faster than the

baseline algorithms, which usually omit this information.

4.4.2 Results of the Second Experiment

The user provided visual and spoken instructions in the second experiment (Fig. 4.6).

The tasks were divided into sub-goals, and a contextual Q-table was generated for

each object that met the description of the instruction. For each contextual Q-table,

CQL was applied to solve the MDP by obtaining a discrete optimal policy. Once

the discrete policy was available, CQL applied spline interpolation to transform the

discrete series of actions into a continuous one and send it to the Care-O-Bot 4™’s

controller. Between every continuous action, the robot looked for relevant changes

in the environment and could identify the extra pieces the user put on the ta-

ble (Fig. 4.7). Therefore, the robot puts the objects into its corresponding box.

This demonstration indicates that the robot understands the user’s instructions and

learns how to manipulate the objects on the table to complete the task using CQL.

4.4 Results 109

Figure 4.7: In this figure, the user puts extra objects on the table such that the robot
identifies them and puts them into the box.

4.4.3 Results of the Third Experiment

In the third experiment (Fig. 4.8), the yellow objects were set as sensible obsta-

cles such that CQL established a virtual security perimeter. The robot executed

the series of continuous actions without colliding with the sensible obstacles. This

demonstrated that CQL generates a series of optimal continuous actions that take

objects from one place to another while avoiding collisions.

Figure 4.8: In this figure, the yellow objects are identified as sensible obstacles, and CQL
adds a security perimeter while the robot successfully avoids those obstacles.

4.4.4 Results of the Fourth Experiment

In the fourth experiment (Fig. 4.9), the user moved the goal while the robot was

holding an object. Consequently, the robot identified a relevant change in the en-

vironment by running the policy in the most recently observed environment and

obtained a negative reward. In this case, the simulation of the policy dropped the

object in a 0.0 (empty space) square instead of a 0.3 (goal) one. Hence, the robot

could identify the type of error and react accordingly. The robot finished the task

110 4.4 Results

by computing a new policy with CQL and dropping the object in the new goal. This

demonstration shows that the simulation of the last optimal policy can produce a

negative reward trigger in real time to re-plan the robot’s actions.

Figure 4.9: In this figure, the user moves the goal, and a negative reward trigger is re-
turned such that the robot identifies that the user moved the goal and then re-planned its
movements.

4.4.5 Results of the Fifth Experiment

In the fifth experiment (Fig. 4.10), the user placed his hand in the way of the robot.

The robot identified this relevant change in the environment. In this experiment,

the robot found a collision while simulating the set of discrete actions against a 0.4

(user’s hand). The robot asked the user to be careful with his hand, and after the

user moved his hand, the robot finished the task. Overall, the robot successfully

reacts safely and in real-time to dynamic obstructions from the user.

Figure 4.10: In this figure, the user puts a hand in the way of the robot’s path. Conse-
quently, a negative reward is returned, and the robot asks the user to move his hand.

4.4 Results 111

4.4.6 Results of the Sixth Experiment

In the sixth experiment (Fig. 4.11), the framework was tested in a robot with a differ-

ent configuration. Even though RL performs well in simulation, its implementation

on real robots experiences several shortcomings, such as incomplete perception in-

formation and physical differences between the simulation and real-world scenarios.

This may difficult the implementation of RL algorithms into different robot setups.

One way to tackle this problem is by mixing real data with simulated data and

training an agent with data from a buffer filled with transitions of synthetic and

real-world images. This would allow the neural network to generalise better. An-

other possible solution is to define primitive actions and, in this way, reduce the risks

that random exploration may cause in real-world setups. The use of several robots

in parallel is also a well-known method to produce training data under real-world

conditions.

However, using the framework proposed in this chapter, the Kuka® robot was

able to carry out the same activities while showing the same capacities as Care-O-

Bot 4™ during the experiments. To this end, the framework has been shown to be

compatible with different robot setups. This highlights the novelty of this work,

which has shown to be a solution to the drawbacks discussed before.

Figure 4.11: In this figure, the framework is tested in a different robot configuration.

112 4.6 Summary

4.5 Discussion

The outcomes of the experiments demonstrated the efficacy of CQL compared to

baseline algorithms such as QL, DQN, PPO and A2C. The superior performance

metrics presented in Table 4.2 of CQL CQL can be attributed to the reduction of

the exploration space by the use of affordances as a filter of non-relevant actions.

In this manner, the agent saves time, and at the same time, the algorithm biases

the exploration towards the direction of the goal, which also reflects in reaching the

goal faster than the baseline algorithms.

With the proposed framework, the robot showed an interesting “understanding”

behaviour by following the instructions of the user and completing the tasks. This

awareness of the robot is something that requires further investigation and improve-

ment. Another important characteristic of the framework is that despite the robot

configuration, it was still possible to implement it in a Kuka® robot. This shows

that the framework can generalise, at least in terms of the robot being used. Nev-

ertheless, further improvements are required, such as manipulating more complex

objects and adding more robust object recognition strategies. These advancements

would allow the framework to be used in more complex scenarios, such as repeti-

tive processes in factories where a no robotics expert user can only teach the robot

with spoken instructions and gestures, so the robot would not need a roboticist to

reprogram it every time the process changes.

4.6 Summary

In this chapter, the affordance-based human-robot interaction framework was em-

pirically validated. The experiments showed that the framework allows robots to

understand instructions and execute manipulation during HRI based on an RL ap-

proach. This shows the impact of adding contextual information, such as semantics

and affordances, to set initial optimistic values in a contextual Q-table. The 2.7

4.6 Summary 113

seconds of learning time allows CQL to generalise in different setups. Besides, it is

possible to observe the environment while the robot executes a task within every

step of execution. The robot using the framework was shown to be reliable while

identifying relevant changes in the environment based on negative rewards and the

semantic representation of the state.

The framework has the potential to be applied to navigation and collaborative

robot problems and opens the door to robust real-time applications of RL learning

in robotics. The current limitations of this chapter include tight shapes (e.g., sticks,

pens, or pencils) that may lead CQL to create irregular squares to represent the

states such that the agent’s exploration could be affected, and the resulting set of

actions may not be optimal. A future work direction would include the implemen-

tation of the framework in a more complex HRI scenario, including learning from

the user.

114 4.6 Summary

115

Chapter 5

Learning to Bag with a

Simulation-free Reinforcement

Learning Framework for Robots

The frameworks presented in Chapter 3 and Chapter 4 demonstrated that the use of

contextual information enhances the learning performance of Reinforcement Learn-

ing (RL) agents. However, in both previous chapters, it was possible to predict the

next states, given the simulations and the nature of the rigid objects used in the

Human-Robot Interaction (HRI) scenario. This chapter focuses on how to learn to

manipulate a deformable object (a bag) in which the bag’s next state is not easy to

predict (i.e., if an action is taken, the physical configuration of the object changes

drastically), difficult to model, and transferring from simulation to real world is a

complex task. More concisely, the framework presented in this chapter allows robots

to learn bagging in the real world, aiming to deal with the aforementioned short-

comings. The rest of this chapter is structured as follows. It begins with Section 5.1,

motivating the problem of RL and manipulation of deformable objects. The problem

formulation is described in Section 5.2. Then Section 5.3 formally introduces the

framework, followed by Section 5.4, which describes the experimental setup. Sec-

116 5.1 Introduction

tion 5.5 presents the results, while Section 5.6 discusses them. Finally, Section 5.7

concludes this chapter.

5.1 Introduction

Robots with human-level dexterity that can handle deformable objects may encour-

age a smoother integration of robots in daily activities. In practice, daily activities

depend on more than manipulating rigid objects. In this context, the robots’ capac-

ity to manipulate deformable objects to operate in human environments is a neces-

sity (J. Zhu et al. 2022). Among deformable objects, bags are used in several relevant

tasks, such as transporting objects, packing, and shopping. Even though there have

been studies on how to manipulate deformable objects, such as paper (Balkcom and

Mason 2004, 2008; Elbrechter et al. 2011, 2012), fabrics (Borràs et al. 2020; Hoque

et al. 2022; Jangir et al. 2020), ropes (Nair et al. 2017; Shi et al. 2022; Sundaresan

et al. 2020), cables (Zhou et al. 2020; J. Zhu et al. 2019) and meat (Jørgensen et al.

2019), the problem of learning the bagging task is still underdeveloped.

Bagging is a complex task for robots because there exist challenges related to

perception, occlusions, modelling of the bag’s dynamics, ambiguity related to find-

ing the opening, and how to grasp one or two layers of the bag depending on the

current state of the task. RL has the potential to deal with the problems mentioned

above. However, RL agents are commonly trained in simulation, which brings more

challenges when implementing the agent in real-world tasks (Sharma et al. 2022).

One challenge is that before simulating the bag, the model must be the most similar

as possible to the real object (Yin et al. 2021). On the other hand, when switching

from simulation to real-world, the agent must deal with occlusions, incomplete in-

formation, and noises. These are vital factors that make difficult the generalisation

of RL (Nguyen and La 2019).

This chapter presents a new learning framework for robot-bagging tasks with

5.1 Introduction 117

Figure 5.1: The robot, in four steps, performs the bagging task. In the first step, the robot
unfolds the bag. In the second step, the bag is opened by the robot. The robot places the
red cube in the bag’s opening in the third step. In the fourth step, the robot carries the
bag, completing the task.

compact state representations and primitive actions, aiming to efficiently train a

robot to learn bagging in the real world1. The framework identifies five possible

states and utilises eight primitive actions related to several grasping points on the

bag. The task is solved in four steps (Fig. 5.1): unfolding, opening, placing the piece,
1Demo available at https://youtu.be/3omyRbZJCZ0

https://youtu.be/3omyRbZJCZ0

118 5.1 Introduction

and carrying. The main contributions of this chapter are (i) a new RL algorithm

is introduced, allowing robots to learn how to bag in the real world efficiently, (ii)

a versatile state representation for the bagging task, and (iii) a framework that

integrates reliable perception of the bag state and learning.

Symbol Description
S Set of states
A Set of actions
Φ Set of tuples of primary and complementary primitive action pairs
Psj Set of pose points for primary primitive actions of sj , where sj ∈ S
Dsj Set of pose points for complementary primitive actions of sj , where sj ∈ S
Ψ Set of rules
Λsj ,primary Set of primary affordable actions for the state sj
Λsj ,complementary Set of complementary affordable actions for the state sj
R(s, a) Reward function
a Action
s State
Abag Area of the bag in pixels2
Ath Threshold of the bag in pixels2
Ao Area of the opening in pixels2
Aoth Threshold of the opening in pixels2
Acube Area of the cube in pixels2
Abmax Maximum area of the bag when it is unfolded in pixels2
Aomax Maximum area of the bags’ opening when is open in pixels2
τ Primary primitive action
µ Complementary primitive action
τgrasp Grasping primitive action
τscratch Scratching primitive action
τpick Picking primitive action
τclose Closing gripper primitive action
µlift Lifting primitive action
µdrag Dragging primitive action
µplace Placing primitive action
µcarry Carrying primitive action
g Number of pose points
ζ Griding parameter
Π State-action values table

Table 5.1: Nomenclature table for Chapter 5.

The problem domain to empirically validate the framework is conformed by a

cotton bag and a red cube (Fig. 5.1). The framework first learns to perform the

task through a different number of steps, as explained in Section 5.4. Then, the

trained model is used to perform the task using two more bags with different sizes

and positions to test the framework’s generalisation capabilities. The nomenclature

used in this chapter is summarised in Table 5.1.

5.2 Problem Formulation 119

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.2: This figure illustrates the five states that conform the bagging task. The red
and blue dots represent the grasping points the robot can select. In (a), the bag is folded
such that its area is small, and the opening is not visible. In (b), the bag is unfolded,
and the opening is visible. In (c), the bag’s opening area is large enough to put an object
inside. In (d), The object is in the bag’s opening, distinguishing this state from the others.
In (e), the task succeeded because no visible objects were left on the table, meaning the
robot carried both the bag and the object. Lastly, (f) shows a failure case when the robot
took the bag, but the red cube was still on the table.

5.2 Problem Formulation

The bagging task is formulated as a Markov Decision Process (MDP) (Sutton and

Barto 1998) and is aimed to be solved by using a learning policy π. In an MDP, the

agent executes a valid action a from the set of actions A in the current state s and

transitions to a valid state s′, where s and s′ belong to the set of states S, according

to the unknown dynamics of the bag. The environment provides a reward according

to the reward function R(s, a) upon transitioning to a new state. The set of states

S is given by the following:

S = {s0, s1, s2, s3, s4, s5}, (5.1)

120 5.2 Problem Formulation

where s0 represents the folded bag, s1 is the representation of the bag expanded, s2

represents the bag opened, s3 shows when the red object is on the bag, s4 is the

success state, and s5 is the fail state. More specifically, the states are denoted as

follows:

• For s0: Folded bag.

Condition: the bag’s area is small, and the opening is not visible (Fig. 5.2a).

• For s1: Expanded bag.

Condition: The bag is unfolded, the opening is visible, and the green labels

can be seen (Fig. 5.2b).

• For s2: Opened bag.

Condition: The opening area of the bag is large enough to accommodate an

object (Fig. 5.2c).

• For s3: Red object on the bag. The colour of the object helps the robot to

distinguish it from the rest of the objects on the table.

Condition: The object is in the opening of the bag, which distinguishes this

state from the others (Fig. 5.2d).

• For s4: Success state.

Condition: No visible objects were left on the table, indicating that the robot

carried both the bag and the object (Fig. 5.2e).

• For s5: Fail state.

Condition: The robot took the bag, but the red cube was still on the table

(Fig. 5.2f).

Hence, the current state can be calculated as follows:

5.2 Problem Formulation 121

s =



s0, (Abag < Ath) ∧ (Ao = 0) ∧ (Acube = 0)

s1, (Abag > Ath) ∧ (Ao > 0) ∧ (Acube = 0)

s2, (Abag > Ath) ∧ (Ao > Aoth) ∧ (Acube = 0)

s3, (Abag > Ath) ∧ (Ao > Aoth) ∧ (Acube > 0)

s4 (Abag = 0) ∧ (Ao = 0) ∧ (Acube = 0)

s5, (Abag = 0) ∧ (Ao = 0) ∧ (Acube > 0),

(5.2)

where Abag is the bag’s area, Ath is a threshold value indicating a small area, Ao

is the area of the opening, Aoth is the threshold value indicating a large enough

opening and Acube stands for the area of the cube. The robot can select among a

set of primitive actions executed in pairs. Let:

Φ = {⟨τgrasp, µlift⟩, ⟨τscratch, µdrag⟩,

⟨τpick, µplace⟩, ⟨τclose, µcarry⟩},
(5.3)

be the set of tuples that contains the primitive actions τ that represents the primary

primitive action executed by the robot and µ the complementary primitive actions

(Fig. 5.4). The robot’s primitive actions are defined as follows:

• Grasping Action τgrasp: Involves the robot grasping two layers of the bag.

• Lifting Action µlift: Occurs when the bag is raised above the table and

dropped to unfold it.

• Scratching Action τscratch: Involves the robot grasping only one layer of the

bag.

• Dragging Action µdrag: Takes place when the robot moves a grasped layer

122 5.3 Framework

Figure 5.3: Proposed framework for learning to bag using RL.

point to a designated placing point.

• Picking Action τpick Refer to picking the red object.

• Placing Action µplace: Places the red object.

• Closing Action τclose: Grasps one layer of the bag when the object is placed

in the opening.

• Carrying Action µcarry: Lifts the bag to grab the object.

This chapter aims to find an optimal policy π∗ that computes the correct sequence

of primitive actions to transition through the states S till solving the bagging task.

5.3 Framework

This section presents a framework that aims to solve the problem of learning to

bag in the real world with RL (Fig. 5.3). The framework comprises three modules:

perception, learning and robot controller.

5.3 Framework 123

5.3.1 Perception

The perception module plays a crucial role in extracting relevant information from

the bag, including its area, opening area, grasping points, and current state. It

receives data from an Intel®RealSense™ camera, which provides RGB and depth

images. The module utilises the OpenCV library to process this data. By filtering

colours from the black background and obtaining the bag’s contours, the module

can calculate the Abag value.

Algorithm 7 Opening area’s calculator
Require: points : A list of 2D points
Ensure: Ao: The area of the opening
1: if CountPoints(points) < 3 then
2: Ao ← 0
3: return Ao
4: end if
5: triangles← []
6: nodes← CountPoints(points)
7: center← GetCenter(points)
8: while True do
9: pts← points[]

10: i, n← FindClosestNode(center, pts)
11: j,m← FindClosestNode(n, pts)
12: triangles.append([center, n,m])
13: pts.pop(j)
14: k, o← FindClosestNode(n, pts)
15: triangles.append([center, n, o])
16: points.pop(i)
17: if CountPoints(points) < 3 then
18: break
19: end if
20: end while
21: Ao ← 0
22: for each triangle in triangles do
23: Ao = Ao + GetArea (triangle)
24: end for
25: return Ao

In order to assist with the automatic classification of bag states, green labels have

been added around the bag’s opening (refer to Fig. 5.2b). It is worth mentioning that

perception is not the main focus of this work. Hence, the experiment configurations

124 5.3 Framework

were simplified in order to obtain the states from observations reliably. Specifically,

green markers were used to facilitate the detection of the bag opening. Algorithm 7

is utilised to calculate the opening’s area. This is achieved by providing an array of

points containing the pair of coordinates obtained from the labels. Then through

the generation of triangles, it is possible to sum all their areas and, in this way,

obtain the opening’s area Ao.

This information enables the module to determine whether the bag is on the

table, folded, or unfolded. To differentiate the bag from the background, a black

canvas is used as the background to make it easier to extract the bag, which is white.

Similarly, the object for bagging is a cube in red. In brief, the primary functions of

the perception module are:

• to determine the current state of the task;

• to provide pose points depending on the state;

• to measure the bag’s current area; and

• to measure the current opening’s area.

The perception module generates multiple pose points denoted by g = ζ2, where

g represents the number of pose points and ζ is the griding parameter. For instance,

Fig. 5.2 illustrates a configuration with g = 9 and ζ = 3. Increasing the value of g

results in more points available for grasping and lifting the bag, consequently leading

to a larger set of actions to explore. Thus, the position of the grasping points can

be determined.

The state s0 (Fig. 5.2a) can be distinguished from the others because the opening

is not visible, and the bag area is small compared to when it is unfolded. In this

state, there are g = 9 grasping points (red dots in Fig. 5.2a) whose position can

be obtained with the RealSense™ camera. Those points are stored in the set Ps0 .

Before unfolding the bag and reaching the next state, the robot must explore which

5.3 Framework 125

one of these grasping points is the best to grasp the bag, lifting it at a given height

stored in the Ds0 set and dropping it.

In the state s1 (Fig. 5.2b), the opening is visible, and the bag’s area has reached

a feasible value for opening the bag. Besides, since the opening area is small, s1

can be distinguished from the other states based on the criteria of the opening area.

In this state, the perception module provides g = 9 grasping points close to the

opening (red dots in Fig. 5.2b) which are stored in the set Ps1 , and g placing points

(blue dots in Fig. 5.2b) stored in the set Ds1 . Consequently, the robot’s goal in this

state is to find which combination of actions over the grasping point maximises the

opening area.

In the state s2 (Fig. 5.2c), the opening’s area serves as a trigger to identify this

state. First, the perception module stores the object’s position to be bagged in Ps2 .

Then, the perception module sets g = 9 placing points (red dots in Fig. 5.2c) and

stores them in the set Ds2 . The robot can place the object to be bagged on one of

those placing points and get a reward depending on the closeness with the centre of

the bag’s opening.

In the state s3 (Fig. 5.2d), the red object is placed in the opening. In this state,

the robot is required to explore more grasping points. For this reason, the number of

pose points is g = 81 (red dots in Fig. 5.2d). Then, the pose points are stored in the

set Ps4 while the lifting poses corresponding to the complementary primitive action

in this state are stored in the set Ds4 . Therefore, the robot can interact with the

bag and decipher which grasping point allows it to finish the task. When the robot

lifts the bag, and the module can not detect any object left, as shown in Fig. 5.2d,

the state s4 can be identified, and the task is finished. On the other hand, when

there are still objects on the table, the module identifies the s5 state, which is a

failed attempt to bag the object (Fig. 5.2f).

126 5.3 Framework

5.3.2 Learning

The learning module seeks to find the optimal combination of grasping points on

the bag and primitive actions from the robot. Additionally, this subsection aims

to motivate the problems that experience current RL approaches and explain the

functionality principle of the Π-learning algorithm (Table 5.2 summarises the main

similarities and differences between Q-learning (QL) and Π-learning). Additionally,

as previously described, this work proposes the use of several primitive actions,

meaning that the action space is discrete.

Table 5.2: Differences between QL and Π-learning.

Aspect Q-learning Π-learning

Exploration Space Explores all possible action-state
pairs.

Reduces exploration space by
defining rules and pairs of primi-
tive actions.

Exploration Strategy Uses ϵ-greedy policy. Besides the ϵ-greedy polity, utilises
affordances and predefined rules
for action selection.

Next State Dependence Dependent on the next state for
updating the Q-values.

Independent of the next state for
updating the Π-values.

State Transition Handling May result in instability due to the
state transitions of the bag.

Designed to deal with the state
transitions of the bag.

Table Initialisation Initialises Q-values to zeros. Initialises Π-values to zeros.

Update Rule Updates Q-values based on next
state information.

Updates Π-values independently of
the next state.

Optimal Policy Extraction Extracts optimal policy based on
the maximum Q-value.

Extracts optimal policy based on
maximum Π-value.

In the context of state-of-the-art approaches, despite the popularity of QL and its

successful implementation in multiple fields, when it comes to the problem defined

in section 5.2, there exist several drawbacks. The first one is related to the size of

the exploration space, where considering eight primitive actions, 81 pose points, and

four possible states in the case of Fig. 5.2, it would be necessary to explore a total

of 2592 primitive action-pose point pairs. This approach lacks practical significance

because it would involve a long training time in the real world.

Moreover, the dependency of QL on the next state value would also involve

significant exploration to achieve stable convergence. This is because of the dynamics

5.3 Framework 127

of the bag, which despite executing the best action, it would take repeating the same

action until the bag’s state transitions. More specifically, while for the best action

a given the state s, the bag may transition to s′, it may also stay in the same

state s due to the manner the problem was defined (see Eq. (5.2)) and for the

characteristics of the environment, which also include failures in the real world that

could contaminate the training.

The following is proposed to solve the drawbacks. First, the exploration space is

reduced by implementing affordances that define what primitive actions are suitable

given the current state. The affordances are obtained from a manually defined set

of rules Ψ. Then, the robot executes actions with probability ϵ, also known as ϵ-

greedy policy (the value of ϵ controls the exploration of the environment), and gets

a reward. The process is repeated for n steps till the training is completed. Let:

Ψ = {⟨s0, τgrasp, µlift⟩, ⟨s1, τscratch, µdrag⟩,

⟨s2, τpick, µplace⟩, ⟨s3, τgrasp, µcarry⟩},
(5.4)

be the set of rules that contains the tuples in which each state s is related to its

valid actions. Then, the primary affordable actions of the states are:

Λsj ,primary = Ψ2 × Psj , (5.5)

where sj ∈ Ψ1 and j ∈ (0, |S|). The affordable complementary actions are given by:

Λsj ,complementary = Ψ3 ×Dsj , (5.6)

where sj ∈ Ψ1. The set of affordable actions pairs is given by:

A = Λsj ,primary × Λsj, complementary (5.7)

Aiming to avoid confusion with the QL notation algorithm, Π is utilised. Al-

128 5.3 Framework

gorithm 8 has a function that calculates the state-action value Π, representing the

quality value of an action a given a state s:

Π : S × A −→ R (5.8)

At the beginning of the learning, all Π values are initialised to zero and stored

in a Π-table. During the training process, it is updated with the following:

Π(s, a)←− Π(s, a) +R(s, a)

m
, (5.9)

where m is the number of times that action-state pair Π(s, a) has been selected by

the agent, m > 0 and a ∈ A. The reward function used for the bagging task is given

by the following:

R(s, a) =



Abmax

Abag
, s = s0 or s = s1

Aomax

Ao
, s = s2

1, s = s3, and the object is

at the centre of the opening

1, s = s4

−0.1 s = s5

0, otherwise,

(5.10)

where Abmax is the maximum area of the bag when it is unfolded, Abag is the area

of the bag after executing an action, Aomax is the maximum area that the bag’s

opening can reach, and Ao is the bag’s opening area after executing an action.

5.3 Framework 129

In contrast to classical QL (Watkins and Dayan 1992b), which would require

exploring a total of 2592 primitive action-pose point pairs (considering 8 primitive

actions, 81 pose points, and 4 possible states in the case of Fig. 5.2), Π-learning is

tailored to handle these conditions, particularly in the context of the bagging task.

This is because many actions do not result in state changes due to factors such as

incomplete unfolding in state 0 or failure to open the bag in state 1. As a result,

the robot must repeat the same action until a transition occurs. To this end, the

optimal policy is extracted from Π(s, a) with:

π∗(s) = argmax
a

[Π(s, a)] (5.11)

Unlike QL, Π-learning incorporates equation (5.9), which is independent of the

next state. It also reduces the exploration space by defining rules and pairs of

primitive actions using equation (5.7). For instance, in the scenario depicted in

Fig. 5.2, QL would require exploring 2592 actions, while Π-learning would only

necessitate exploring 81 actions. This significant reduction in exploration space aims

to reduce training time for Π-learning. Furthermore, the Π-table remains unaffected

by the next state. This is crucial because the bag assumes different shapes after

each action and may or may not transition into the next state. This behaviour may

cause instability for QL because of its dependence on the next state information.

Consequently, the perception module detects state transitions and allows Π-learning

to concentrate on maximising the reward solely based on the current state.

Algorithm 8 takes the number of training steps n and the set of actions A as the

input. First, a Π-table is generated. Then, after n steps of training, the algorithm

returns the optimal policy π∗(s). The Π-learning algorithm is specifically designed

to enable learning with a reduced number of states while dealing with a wide range

of actions.

130 5.3 Framework

Algorithm 8 Π-learning.
Require: Training steps n, set of actions A
Ensure: Optimal policy π∗(s)
1: Initialise a Π-table with zeros
2: for n steps do
3: With probability ϵ, select a valid action a from A
4: Perform a and calculate the reward with Eq. (5.10)
5: Update Π-table with Eq. (5.9)
6: end for
7: Extract the optimal policy from the Π-table with Equation (5.11)

5.3.3 Robot Controller

The robot controller module coordinates the robot’s continuous actions in a precise

manner. To accomplish this, the module inputs any primitive action and translates

it into continuous actions that the robot can handle. Since the perception mod-

ule provides the grasping points of the bag, and the learning module generates a

sequence of primitive actions given a state, the robot controller module can make

the robot interact with the environment. This information is managed through the

Robot Operating System (ROS).

Figure 5.4: The left side of the figure illustrates the experimental setup comprising an
object to be bagged (red cube), a Kuka® iiwa 1400™ robot, and an Intel® RealSense™.
On the left side are the three bags used during the experiments.

5.3 Framework 131

5.3.4 Bagging task implementation

This subsection aims to provide a more exhaustive description of the bagging task,

focusing on how primitive actions are implemented and how positions are determined

within the perception module. The following is a point-by-point description of the

processes that allow the robot to perform the bagging task:

• The primitive actions are steps taken by the robot to interact with the bag

and achieve the overall task. The primitive actions are hard-coded commands

and depend on the perception module’s output, which interprets data from

an Intel® RealSense™ camera and provides a set of possible grasping points.

These actions are available as services running under ROS.

• The grasping points are necessary for the robot to securely hold the bag,

depending on the current state. The perception module generates multiple

pose points denoted by g = ζ2, where g represents the number of pose points

and ζ is the griding parameter. These points are automatically positioned

around the bag’s opening and body. If more grasping points are required, the

value of ζ must be increased. Depending on the state of the bag given by the

perception module, the framework calls a ROS service that corresponds with

the current state and feeds the grasping points as parameters.

• The position determination of grasping points is important for the exe-

cution of primitive actions. The algorithm presented in Algorithm 7 calculates

the opening area Ao by generating triangles from an array of points obtained

from green labels around the bag’s opening. This information is used to de-

termine the positions for grasping and placing points. When it comes to the

body of the bag, the perception module retrieves the bag’s body as a 4-sided

geometry with sides F , G, H, and I (refer to Fig. 5.5). The objective is to

evenly distribute ζ2 points inside the described geometry based on the ref-

erence point (x0, y0), corresponding to the upper-right corner of the 4-sided

132 5.3 Framework

geometry surrounding the bag. Each side of the geometry can be expressed as

follows:

1. Side F represented by the coordinates (p11, p21) and (p31, p41).

2. Side G represented by the coordinates (p12, p22) and (p32, p42).

3. Side H represented by the coordinates (p13, p23) and (p33, p43).

4. Side I represented by the coordinates (p14, p24) and (p34, p44).

The reference point (x0, y0) corresponds to the upper-right corner of the 4-

sided geometry. The objective is to distribute ζ2 points inside this geometry

evenly. Hence, the i-th point on sides F , G, H, and Ican be represented as:

(xi, yi) =

(
x0 +

i

ζ
· (pn1 − pn−3), y0 +

i

ζ
· (pn+1 − pn−1)

)
(5.12)

Here, i ranges from 0 to ζ − 1, (xi, yi) represents the evenly distributed points

and n represents the side of the 4-sided figure. If n is equal to 1, it corresponds

to side F. If n equals 2, it corresponds to side G, and so on. With these points,

a grid can be generated inside the geometry. Hence, the grasping points are

at the centre of each grid cell.

The implementation of primitive actions relies on the perception module’s anal-

ysis of RGB and depth images from the RealSense camera. Algorithm 7 contributes

to determining the bag’s opening area, and Eq. (5.12) determines the evenly dis-

tributed points on the sides of the 4-sided geometry for the body of the bag. With

these points, a grid can be generated inside the geometry. Hence, the grasping points

are at the centre of each grid cell. This integration of perception and primitive ac-

tions defined as services in ROS allows the robot to execute the bagging task defined

in this paper2.
2For further technical details, the reader is encouraged to visit: https://github.com/

FranciscoMunguiaGaleano/LearningToBag

https://github.com/FranciscoMunguiaGaleano/LearningToBag
https://github.com/FranciscoMunguiaGaleano/LearningToBag

5.4 Experimental Setup 133

Figure 5.5: Implementation of the real-world learning robot-bagging framework.

5.4 Experimental Setup

The experimental setup to empirically validate the framework incorporates three

bags (Table 5.3), the object to be bagged (red cube), a Kuka® iiwa 1400™ robot, and

an Intel® RealSense™ camera (Fig. 5.4). The task’s goal is to train the robot to learn

to bag the object (red cube). The experiments start by training several agents to

learn how to handle “Bag 1” in the real world for 10, 30, 50, and 100 training steps for

each state of the task (unfolding, opening, placing the piece, and carrying), totalling

40, 120, 200 and 400 total training steps, respectively. Then, the performance of our

framework is compared against the following state-of-the-art algorithms performance

by using their implementations from the stable-baselines (Hill et al. 2018): Deep Q-

network (DQN) (Z. Wang et al. 2016) and Asynchronous Actor-Critic (A2C) (Mnih

et al. 2016) two robust and well-tested algorithms for discrete action spaces. After

the training is completed, 10 attempts are executed for each agent, and the count of

successful completion of the bagging task for each attempt is recorded. Additionally,

10 attempts are performed to calculate the algorithms’ success rate when starting

134 5.5 Results

from the unfolding and opening steps. The preceding experiment aims to discover

if the framework can learn better than the baseline algorithms.

Table 5.3: Characteristics and parameters of the bags used in the experiments. The values
of Ath, Aoth, Abmax , Aomax are measured in pixels2.

Name Opening length Bag width Material Ath Aoth Abmax Aomax

Bag 1 30 cm 35 cm Cotton 25000 150 34000 3900
Bag 2 25 cm 25 cm Polyester 18000 50 28000 3200
Bag 3 33 cm 26 cm Cotton 25000 150 34000 3900

The trained agent with the highest success rate is used to test the generalisation

capacities of the framework. To evaluate the framework’s proficiency in handling

the task from a different starting position, the position and orientation of “Bag 1”

were changed twice. Then, the framework is tested on “Bag 2” and “Bag 3” for 10

attempts.

5.5 Results

This section presents the results of the experiments. Firstly, the learning progress

of the framework and the state-of-the-art algorithms for each step of the task (un-

folding, opening, placing the piece, and carrying) is illustrated in Fig. 5.6. Secondly,

Table 5.4 shows the total reward obtained by each algorithm, followed by Table 5.5,

which contains the reward obtained by all the approaches for each step of the bag-

ging task. Table 5.6 shows the success rates from performing the bagging task 10

times with “Bag 1" for each step of the task, as well as the success rates starting

from step 1 (opening) and from step 2 (unfolding). Then, Fig. 5.7 shows the robot

performing the task in different initial positions with “Bag 1". Fig. 5.8 illustrates

the robot performing the bagging task with “Bag 2" and ‘Bag 3". Lastly, the success

rates of handling all the bags are summarised in Table 5.7.

The learning curves in Fig. 5.6a show the progress of the agent learning to unfold

the bag, which consists of selecting a grasping point, lifting the bag, and dropping it

5.5 Results 135

(a) (b)

(c) (d)

Figure 5.6: The learning curves above display the results of the experiments. First, (a)
shows the progress of the learning curve of the unfolding step, demonstrating that the
approach converges after 100 training steps while DQN and A2C struggle to do so. Then,
in (b), the proposed framework was the only one to converge after training for 100 and 50
training steps. In (c), A2C and DQN failed to find a solution while the approach converged.
Lastly, in (d), the approach trained for 100 steps and converged to the highest value.

till it is unfolded. The framework running for 100 training steps converged in around

50 training steps, while DQN and A2C demonstrated an unstable learning behaviour

by struggling to converge. The framework running 10 and 30 training steps shows

that the agent requires more exploration. Contrary, the framework learning for 50

training steps indicates that 50 is the minimum number of training steps required

to find the best grasping and lifting positions for our approach.

The learning curves in Fig. 5.6b illustrate the learning progress of the agents for

the opening step, which involves grasping one layer of the bag and dragging it to

another point of the bag. The reward during this step is equal to the total area of the

opening. The framework that ran for 100 training steps converged in approximately

80 training steps, while the one that ran for 50 training steps found the best solution

136 5.5 Results

(a)

(b)

Figure 5.7: The robot performing the bagging task with two different bags. In (a), the
bag’s opening faces the camera’s view. In (b), the bag’s opening is facing the opposite
direction of the camera’s view. The robot successfully completed the tasks in both cases
with different orientations of the bag.

in around 40 training steps. This is due to the stochastic nature of the exploration,

which randomly found a better action in an early stage of the learning process for

the 50 training steps experiment. DQN and A2C fell into a local minimum, and

their learning could not progress. Our framework running for 10 and 30 training

steps could not explore the environment enough to find an optimal policy.

The learning curves in Fig. 5.6c show the progress of the agent learning to place

the goal object (red cube) in the bag’s opening such that the closer the robot places

the goal object, the higher the reward. The framework running for 10, 30, 50, and

100 training steps converged faster than the previous steps because this step is more

straightforward than the previous ones by only including nine placing points in the

bag’s opening. The framework running for 10, 30, 50, and 100 could converge, while

DQN and A2C could not find a solution.

The learning curves in Fig. 5.6d show the learning progress of the agents for the

carrying task. In this step, if the robot executes the carrying action and the red

cube is not on the table after that, the reward is equal to 1 and -0.1 otherwise. The

framework that runs for 50 and 100 training steps could converge to a stable plateau

5.5 Results 137

Table 5.4: Total reward obtained by the framework and the stable-baselines after training.

Approach Total reward Training time Total training steps

Ours (100) 1.9608 173 min. 400 (100 for each step of the task)
Ours (50) 1.7000 95 min. 200 (50 for each step of the task)
Ours (30) 0.9900 62 min. 120 (30 for each step of the task)
Ours (10) 0.2475 18 min. 40 (10 for each step of the task)

DQN 1.0300 198 min. 400 (100 for each step of the task)
A2C 0.6488 186 min. 400 (100 for each step of the task)

while running for 10 and 30 could not result in the right grasping point for carrying

the bag. DQN fell into a local minimum and could not find a solution. A2C could

find a better grasping point to carry the bag. However, the learning curve shows

that A2C struggles to converge.

Table 5.5: Reward obtained by the framework and the stable-baselines after training,
categorised per step.

Approach Reward step 1 Reward step 2 Reward step 3 Reward step 4

Ours (100) 0.500 0.241 0.490 0.730
Ours (50) 0.460 0.280 0.440 0.520
Ours (30) 0.390 0.248 0.430 0.220
Ours (10) 0.366 0.014 0.500 0.110

DQN 0.510 0.020 0.120 0.380
A2C 0.470 0.070 0.100 0.009

The success rates of all the approaches are summarised in Table 5.7, in which 10

attempts were performed for each step of the bagging task. For step 1, Ours(100)

and Ours(50) reached the highest success rate with 70%, followed by DQN with

40%. The lowest success rates were achieved by Ours(30) and A2C with 0% and

20%, respectively. For step 2, A2C, DQN, and Ours(10) presented the lowest success

rates, which demonstrates that step 2 is the most difficult to learn. For step 3, all the

approaches reached a success rate equal to or superior to 90%, which demonstrates

that this step is the easiest to learn. In the last step, Ours(10) had the lowest

performance with 60% while the rest of the approaches reached a success rate equal

to or superior to 90%. Additionally, 10 attempts were carried out from step 1

(unfolding) and step 2 (opening), which for Ours(100) resulted in 60% and 80% of

138 5.5 Results

success rates, respectively. It can be observed that the low success rates of Ours(10),

DQN, and A2C are because of getting stuck on step 2. Moreover, the difficulty

increases when the task is started from step 1, which reflects in the performance of

all the agents.

Table 5.6: Success rate of the framework and the stable-baselines after training.

Experiment Step 1 Step 2 Step 3 Step 4 Success rate Success rate
“bag 1" from Step 1 from Step 2

Ours (100) 7/10 9/10 9/10 10/10 6/10 8/10
Ours (50) 7/10 7/10 9/10 10/10 5/10 6/10
Ours (30) 2/10 4/10 10/10 10/10 1/10 4/10
Ours (10) 0/10 0/10 10/10 6/10 0/10 0/10
DQN 4/10 1/10 10/10 9/10 0/10 2/10
A2C 2/10 1/10 10/10 10/10 0/10 1/10

The total average reward obtained by all the approaches is summarised in Ta-

ble 5.4, where the three approaches that collected the highest rewards are Ours(100),

Ours(50), and DQN with 1.9608, 1.7 and 1.03, respectively. When it comes to the

total average reward collected for each step, Table 5.5 shows that for step 1, DQN

collected the highest reward of 0.51, followed by Ours(100), which collected 0.5.

For step 2, Ours(50) collected the highest reward of 0.28, followed by Ours(100)

with 0.241. In step 3, the highest reward was obtained by Ours(100). For step

4, the highest reward was obtained by Ours(100), followed by Ours(50) and DQN.

In general, the stable-baselines DQN and A2C presented problems learning step 2

(opening), while the rewards collected for all the approaches in step 1 are almost

the same.

Table 5.7: Success rate of the framework and stable-baselines after training per step.

Experiment Step 1 Step 2 Step 3 Step 4 Success rate Success rate
from Step 1 from Step 2

Bag 1 6/10 8/10 9/10 9/10 6/10 8/10
Bag 2 4/10 6/10 10/10 8/10 2/10 5/10
Bag 3 5/10 8/10 10/10 9/10 3/10 7/10

The last experiment tested the generalisation capabilities of the framework. The

5.5 Results 139

(a)

(b)

(c)

Figure 5.8: In (a), the robot performs the bagging task with “Bag 1”, used for training with
the framework. In (b), the robot using the framework after training performs the bagging
task with “Bag 2”, a smaller bag made of polyester. In (c), the robot using the framework
after training performs the bagging task with “Bag 3”, a bag made of cotton and also with
a different size of “Bag 1”.

success rates are summarised in Table 5.6. Fig. 5.7 illustrates the robot performing

the bagging task with “Bag 1” starting from two different positions and orientations.

Despite the change in the initial position, the framework was capable of finishing

the task. This is because the proposed approach focuses on the state and grasping

points with respect to the bag, which is independent of the pose of the bag in the

global workspace frame. Fig. 5.8a shows the robot performing the bagging task with

“Bag 2”, which had a success rate of 20% when starting from step 1 and 50% when

starting from step 2. The robot performing the bagging task with “Bag 3” had a

success rate of 30% and 70% when starting from step 1 and step 2, respectively.

Most of the failures are caused by the robot being unable to open the bag and not

being able to unfold it.

140 5.6 Discussion

5.6 Discussion

Prior to the current work, the DQN and A2C algorithms were implemented, aiming

to solve the problem of learning bagging in the real world. However, low performance

was observed during the bagging task with DQN and A2C (refer to Table 5.4), which

can be attributed to the limited number of training steps (400 training steps in total).

Achieving better results with these algorithms would likely require implementing

them in a simulated environment. However, this approach presents challenges, such

as the reality-to-simulation gap discussed in Chapter 2 and the need to simulate the

physical properties of the bag accurately. Furthermore, DQN and A2C algorithms

typically require thousands to millions of steps to achieve stable learning. For in-

stance, Hester et al. (Hester et al. 2018) demonstrated that Deep Q-network from

Demonstrations (DQNfD) required 1 million steps to achieve satisfactory scores in

their experiments. While using demonstrations accelerated the learning process in

their experiments, DQN took 84 to 85 million steps for similar performance in the

same application. Using Deep Reinforcement Learning (DRL) algorithms in the real

world is challenging due to the necessary number of iteration steps to train an agent.

This problem led to the design of the Π-learning algorithm.

Additionally, after completing the learning phase with the proposed framework,

the robot performed 100 attempts using each approach for the bagging task with

“Bag 1" (refer to Fig. 5.8a). The success rates are summarised in Table 5.4, in which

it can be appreciated that the main reason for the failures was the robot’s inability

to complete the unfolding (step 1) or opening of the bag (step 2). This highlights

the need for further improvements, such as a more robust unfolding strategy and

enhanced camera measurement accuracy. Improved accuracy of the camera’s mea-

surements would allow the robot’s gripper to reach the surface of the bag’s layer

more precisely, as even a difference of 1 mm caused the robot to grasp both layers or

fail to grasp any layer at all (The RealSense™ camera provokes these fluctuations).

The decision to not use continuous RL algorithms, such as Deep Deterministic

5.6 Discussion 141

Policy Gradient (DDPG) (Lillicrap et al. 2015), or Soft Actor-Critic (SAC) (Haarnoja

et al. 2018), is motivated by the aim of preventing dangerous behaviours of the robot

in the experimental setup, particularly during the learning stage. Unlike continuous

RL algorithms, which may lead to collisions and undesired behaviours due to their

inherent exploration process, defining primitive actions and employing a discrete

action-selection approach helped to prevent such incidents specifically for the task

proposed in this chapter. To summarise, the following list encompasses the main

limitations of the proposed framework and, therefore, potential challenges that re-

quire further research:

• Unfolding difficulty: The current approach faces challenges when it comes

to unfolding the bag. Problems such as the bag being too large or the opening

not being visible after following our approach prevent the framework from

generalising to a wider set of bags.

• Opening difficulty: The robot encounters issues in opening the bag after

the unfolding step. This is due to the resistance of the same bag’s material to

change its initial configuration because the robot grasps two layers instead of

one.

• Accuracy of the camera: The camera’s accuracy is not sufficient for the

robot to distinguish between layers. Even a difference of 1 mm causes the

robot to grasp both layers or fail to grasp any layer.

• Automatically recognise the bag’s opening with no markers: For the

cases presented in this paper, the bags had no handles, making it ambiguous

and challenging to find the opening using only a camera. This process is

difficult even for humans, who often need to rotate the bag several times

before finding the opening.

Some potential solutions to the challenges listed above are proposed as follows:

142 5.7 Summary

• Improved unfolding and opening strategy: Adding a second arm or using

a human-like gripper would allow the implementation of more robust strategies

involving dexterity or simply adding more resources to the robot to hold the

bag while attempting more actions.

• Incorporating tactile sensing: The camera’s low accuracy limitations can

be overcome by adding fingers with tactile feedback. This would allow the

robot to localise the real position of the layers and, in this manner, know

when the gripper has held one or two layers of the bag.

• Enhanced exploration strategy: To overcome the ambiguity regarding

how to find the opening of the bag without markers, it would be necessary to

implement a process that involves robustly unfolding the bag. Then, explore

one side of the bag. If that side does not open, continue with the next side if

the bag is still unfolded. Repeat these actions until the robot finds the opening

of the bag.

5.7 Summary

This chapter presented an efficient learning framework for a robot manipulator to

acquire the bagging task. The real-world learning robot-bagging framework has been

empirically validated. Leveraging the Π-learning algorithm, this framework enables

efficient learning of the bagging task in real-world scenarios. After training for a

total of 400 steps, which took approximately three hours, the framework achieved

a success rate of 60% and 80% when starting from the unfolding or opening step,

respectively. Additionally, the framework demonstrated generalisation capabilities

across different bags.

However, there are certain limitations to the proposed framework. For instance,

the framework’s applicability is restricted to bags made from specific materials, such

as cotton bags, and may not be suitable for handling plastic bags. Furthermore, the

5.7 Summary 143

framework is designed to handle only one object that is smaller than the bag’s

opening. Additionally, there is room for improvement in the primitive actions of

unfolding the bag (τgrasp) and grasping only one layer of the bag (τscratch), as these

actions were the primary causes of the robot’s failure in the bagging tasks. De-

spite these limitations, the framework exhibits the potential to tackle challenging

problems such as deformable object manipulation to a wider degree.

Future work could focus on enhancing the unfolding and opening routines by

incorporating bi-manual robotic manipulation techniques. This advancement would

enable the bagging of multiple objects, expanding the framework’s capabilities be-

yond a single object. This would help to overcome the limitation of using only

red cubes. Adding more advanced vision techniques such as You Only Look Once

(YOLO) (Redmon et al. 2016) would allow the robot to recognise a wider set of

objects, and combined with the depth cloud produced by the RealSense™ camera,

it is possible to find grasping points. Subsequently, finding the right orientation of

the object would also influence the bagging task, and consequently, this information

should also be part of the state space. Additionally, the integration of supervised

learning methods could be explored since it has the potential to facilitate the gen-

eralisation of the perception module to a wider range of bag types. This extension

would enhance the framework’s versatility and applicability.

144 5.7 Summary

145

Chapter 6

Contributions, Conclusions and

Future Work

This chapter concludes the study undertaken in this work. Section 6.1 focuses on

highlighting the main contributions of this thesis. The findings and key takeaways

are presented in Section 6.2, while recommendations for future research directions

are discussed in Section 6.3. A roadmap of the frameworks and algorithms developed

in this thesis is shown in Fig. 6.1.

6.1 Contributions

The contributions of this thesis are summarised as follows:

• Iota Explicit Context Representation (IECR), a framework that uses Contex-

tual Key Frames (CKFs) as state representation to improve the learning and

exploration processes of Reinforcement Learning (RL) agents.

• Four new algorithms based on IECR: Iota deep Q-network (IDQN), Iota

double deep Q-network (IDDQN), Iota dueling deep Q-network (IDuDQN),

and Iota dueling double deep Q-network (IDDDQN). These algorithms were

146 6.1 Contributions

Chapter 3
——————————-

◦ How does contextual information im-
pact the exploration-exploitation trade-

off of reinforcement learning agents?
◦ How to include context
in the learning process?

Outcome
——————————-
◦ Iota Explicit Context
Representation (IECR)

◦ Four new algorithms based on IECR:
IDQN, IDDQN, IDuDQN, and IDDDQN

Chapter 4
——————————-

◦ Can context-based RL agents be
used in the real world with robots?

◦ Is context-based RL suitable for HRI?

Outcome
——————————-

◦ CQL
◦ Framework based on CQL for
HRI in real-world environments

Chapter 5
——————————-

◦ Can RL be used to learn how to manip-
ulate deformable objects such as bags?

Outcome
——————————-

◦ Π-learning algorithm for bagging

Figure 6.1: Roadmap of the techniques developed in this thesis.

demonstrated to be superior in terms of converging faster than their baseline

equivalents in the environments used in this work.

• Contextual Q-learning (CQL) is introduced, an algorithm that allows efficient

learning in the context of active Human-Robot Interaction (HRI).

• A framework based on CQL that allows robots to perform HRI in the real

world while actively reacting to changes in the environment provoked by a

human user.

• The Π-learning algorithm is introduced, allowing robots to learn how to bag

in the real world.

• A framework for learning bagging that provides a reliable perception of the

bag state, learning, and generalisation of the learned task.

6.2 Conclusions 147

6.2 Conclusions

In conclusion, this thesis has explored the impact of using contextual information,

such as semantics and affordances, aiming to address the following research ques-

tions: How does contextual information impact the exploration-exploitation trade-

off of reinforcement learning agents? How to include context in the learning process?

Can context-based RL agents be used in the real world with robots? Is context-based

RL suitable for HRI? And, can RL be used to learn how to manipulate deformable

objects such as bags?

In order to answer the research questions mentioned above, the following ob-

jectives were pursued: (1) to investigate the effectiveness of using contextual in-

formation for training reinforcement learning agents in discrete environments, (2)

to develop and test a robotic RL context-based system to perform HRI for rigid

objects in the real world, (3) to develop and test a robotic RL context-based system

for learning to manipulate deformable objects in the real world. By pursuing these

objectives, this thesis’ aim was to contribute to developing robust RL algorithms

that can learn in simulation and the real world.

For the first objective, the findings of Chapter 3 shed light on the benefits of

utilising CKFs representations and affordances to train neural networks to solve

discrete environments. The results highlight the effectiveness of incorporating con-

textual information in training RL agents, leading to improved learning performance

that surpasses current state-of-the-art baselines.

Moreover, by pursuing the second objective, this thesis has made significant

contributions to the domain of rigid object manipulation during HRI based on an

RL approach. The framework introduced in Chapter 4 shows the potential to solve

real-world HRI tasks. It demonstrates how using contextual information enhances

the learning capabilities of RL agents. Contextual information can be used to deal

with problems not only for discrete environments such as games but also for robots

running in the real world.

148 6.3 Future work

Additionally, Chapter 5 has explored the challenging domain of deformable ob-

ject manipulation, aiming to address the third objective. Through the development

and testing of an RL framework, a robot showed capable of learning to manipulate

bags. All the learning process was carried out in the real world, which also shows

the potential of using affordances to reduce the exploration space of the agent to

the point that the robot can use an RL-based approach to learn the task in around

3 hours in the real world.

Overall, this thesis makes a valuable contribution to the RL field by propos-

ing algorithms and frameworks that use contextual information to learn in a more

human-like manner. This opens the door for further research and development in

the domain of RL and robotics, aiming to create autonomous agents that can learn

and operate in real-world scenarios as humans do.

6.3 Future work

The research conducted in this thesis has provided valuable insight into the fields of

RL and robotics. Despite that, several challenges deserve further exploration, such

as:

• Investigation of RL in the real world: While this study focused more on using

simulations and less on learning in the real world, future work can explore

methods that allow learning from data obtained in the real world as humans

do. Despite the challenges, it is still necessary to gain a more comprehensive

understanding of the way humans learn and how to transfer these skills to arti-

ficial agents. One of the reasons behind this problem is that Neural Networks

cannot “remember” in the same manner a Q-table can just store the corre-

sponding Q-value of a certain transition. This provokes the Neural Network

to be fed with the same data several times, dramatically reducing its learning

speed. An alternative to avoid such a problem would be to design method-

6.3 Future work 149

ologies to reduce the state space. In robotics, most of the tasks are related to

picking and placing, so focusing on supervised learning to identify the grasp-

ing points of the most common objects humans have to deal with (e.g., door

handles, drawers, or tools) combine it with classical planning methods and

the powerful contextual capabilities of Large Language Models (LLMs) could

simplify the state space. This approach can be used to generate datasets of

robots executing diverse tasks. Then, the data set can be used to train a

Neural Network with these demonstrations.

• Deformable objects manipulation: This thesis primarily examined the case of

bagging, but there is a need to expand the research to a more diverse set of

deformable objects. The investigation of methods that deal with deformable

objects is still underdeveloped. Hence, conducting research in this domain is

of great potential not only from the research point of view but also in terms of

the wide range of applications that can benefit everyone’s daily activities. One

of the challenges robots encounter when interacting with deformable objects is

the absence of feedback, making it challenging for them to determine the op-

timal sequence of actions to manipulate the object effectively. Tactile sensing

has the potential to address this issue. In this context, developing tactile sen-

sors that equate to the human sense of touch is paramount. Integrating tactile

sensing data into RL algorithms would enhance the agent’s understanding of

the current state of the deformable object, potentially resulting in more robust

learning and manipulation.

• Continuous RL algorithms with embedded contextual information: This thesis

focused on discrete action spaces and then used several approaches, such as

spline interpolation and primitive action definitions, to transform discrete poli-

cies into continuous ones. Future research could involve embedding contextual

information into continuous action space RL algorithms. Algorithms such as

150 6.3 Future work

Proximal Policy Optimisation (PPO) and Deep Deterministic Policy Gradient

(DDPG) can also benefit from affordances. An approach to enable this would

involve utilising classical methods such as Probabilistic Roadmaps (PRM) to

discard robot configurations that lead to collisions. With such information, it

is possible to generate a probabilistic function that first reduces the likelihood

of the ϵ-greedy policy selecting actions that lead to collisions. Second, if the

neural network assigns a high probability to a certain range of actions that

lead to collisions, the loss can be increased based on this information. This

approach has the potential to accelerate the learning process, similar to the

algorithms developed in Chapter 3.

151

Appendix A

External Resources

To access the code and packages necessary to reproduce this work, please visit the

GitHub repositories:

• Chapter 3:

https://github.com/FranciscoMunguiaGaleano/Iota-Deep-Q-Network

• Chapter 4:

https://github.com/FranciscoMunguiaGaleano/RLforHRI

• Chapter 5:

https://github.com/FranciscoMunguiaGaleano/LearningToBag

https://github.com/FranciscoMunguiaGaleano/Iota-Deep-Q-Network
https://github.com/FranciscoMunguiaGaleano/RLforHRI
https://github.com/FranciscoMunguiaGaleano/LearningToBag

152 6.3 Future work

153

Bibliography

Adams, S., T. Cody, and P. A. Beling (2022). “A survey of inverse reinforcement

learning”. In: Artificial Intelligence Review 55.6, pp. 4307–4346.

Andriella, A., C. Torras, and G. Alenya (2020). “Short-term human–robot interac-

tion adaptability in real-world environments”. In: International Journal of Social

Robotics 12, pp. 639–657.

Andrychowicz, M. et al. (2017). “Hindsight experience replay”. In: Advances in neural

information processing systems 30.

Andrychowicz, O. M. et al. (2020). “Learning dexterous in-hand manipulation”. In:

The International Journal of Robotics Research 39.1, pp. 3–20.

Ardón, P., È. Pairet, R. P. Petrick, S. Ramamoorthy, and K. S. Lohan (2019). “Learn-

ing grasp affordance reasoning through semantic relations”. In: IEEE Robotics

and Automation Letters 4.4, pp. 4571–4578.

Arora, S. and P. Doshi (2021). “A survey of inverse reinforcement learning: Chal-

lenges, methods and progress”. In: Artificial Intelligence 297, p. 103500.

Arulkumaran, K., M. P. Deisenroth, M. Brundage, and A. A. Bharath (2017). “Deep

reinforcement learning: A brief survey”. In: IEEE Signal Processing Magazine

34.6, pp. 26–38.

Bahety, A. et al. (2022). “Bag All You Need: Learning a Generalizable Bagging

Strategy for Heterogeneous Objects”. In: arXiv preprint arXiv:2210.09997.

Bai, Y., C. Jin, and T. Yu (2020). “Near-optimal reinforcement learning with self-

play”. In: Advances in neural information processing systems 33, pp. 2159–2170.

154 BIBLIOGRAPHY

Balkcom, D. J. and M. T. Mason (2004). “Introducing robotic origami folding”. In:

IEEE International Conference on Robotics and Automation, 2004. Proceedings.

ICRA’04. 2004. Vol. 4. IEEE, pp. 3245–3250.

— (2008). “Robotic origami folding”. In: The International Journal of Robotics Re-

search 27.5, pp. 613–627.

Bellemare, M., S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos

(2016). “Unifying count-based exploration and intrinsic motivation”. In: Advances

in neural information processing systems 29.

Bellman, R. (1966). “Dynamic programming”. In: Science 153.3731, pp. 34–37.

Benjamins, C., T. Eimer, F. Schubert, A. Biedenkapp, B. Rosenhahn, F. Hutter,

and M. Lindauer (2021). “Carl: A benchmark for contextual and adaptive rein-

forcement learning”. In: arXiv preprint arXiv:2110.02102.

Benjamins, C. et al. (2022). “Contextualize Me–The Case for Context in Reinforce-

ment Learning”. In: arXiv preprint arXiv:2202.04500.

Blondé, L. and A. Kalousis (2019). “Sample-efficient imitation learning via gen-

erative adversarial nets”. In: The 22nd International Conference on Artificial

Intelligence and Statistics. PMLR, pp. 3138–3148.

Borràs, J., G. Alenyà, and C. Torras (2020). “A grasping-centered analysis for cloth

manipulation”. In: IEEE Transactions on Robotics 36.3, pp. 924–936.

Brown, T. et al. (2020). “Language models are few-shot learners”. In: Advances in

neural information processing systems 33, pp. 1877–1901.

Browne, C. B. et al. (2012). “A survey of monte carlo tree search methods”. In: IEEE

Transactions on Computational Intelligence and AI in games 4.1, pp. 1–43.

Brunke, L., M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P. Schoel-

lig (2022). “Safe learning in robotics: From learning-based control to safe rein-

forcement learning”. In: Annual Review of Control, Robotics, and Autonomous

Systems 5, pp. 411–444.

BIBLIOGRAPHY 155

Casgrain, P., B. Ning, and S. Jaimungal (2022). “Deep Q-learning for Nash equilibria:

Nash-DQN”. In: Applied Mathematical Finance 29.1, pp. 62–78.

Chai, R., H. Niu, J. Carrasco, F. Arvin, H. Yin, and B. Lennox (2022). “Design

and experimental validation of deep reinforcement learning-based fast trajec-

tory planning and control for mobile robot in unknown environment”. In: IEEE

Transactions on Neural Networks and Learning Systems.

Chalmers, E., E. B. Contreras, B. Robertson, A. Luczak, and A. Gruber (2017).

“Learning to predict consequences as a method of knowledge transfer in re-

inforcement learning”. In: IEEE transactions on neural networks and learning

systems 29.6, pp. 2259–2270.

Chen, C., Y. Liu, S. Kreiss, and A. Alahi (2019). “Crowd-robot interaction: Crowd-

aware robot navigation with attention-based deep reinforcement learning”. In:

2019 international conference on robotics and automation (ICRA). IEEE, pp. 6015–

6022.

Chen, C., A. Seff, A. Kornhauser, and J. Xiao (2015). “Deepdriving: Learning affor-

dance for direct perception in autonomous driving”. In: Proceedings of the IEEE

international conference on computer vision, pp. 2722–2730.

Chen, L. Y., B. Shi, D. Seita, R. Cheng, T. Kollar, D. Held, and K. Goldberg (2022).

“AutoBag: Learning to Open Plastic Bags and Insert Objects”. In: arXiv preprint

arXiv:2210.17217.

Chen, L. Y. et al. (2023). “Bagging by Learning to Singulate Layers Using Interactive

Perception”. In: 2023 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). IEEE, pp. 3176–3183.

Chen, X., M. W. Ulmer, and B. W. Thomas (2022). “Deep Q-learning for same-day

delivery with vehicles and drones”. In: European Journal of Operational Research

298.3, pp. 939–952.

156 BIBLIOGRAPHY

Cheng, H. and M. Q.-H. Meng (2018). “A grasp pose detection scheme with an end-

to-end CNN regression approach”. In: 2018 IEEE International Conference on

Robotics and Biomimetics (ROBIO). IEEE, pp. 544–549.

Cheng, H., Y. Wang, and M. Q.-H. Meng (2022). “A Vision-Based Robot Grasping

System”. In: IEEE Sensors Journal 22.10, pp. 9610–9620.

Ciou, P.-H., Y.-T. Hsiao, Z.-Z. Wu, S.-H. Tseng, and L.-C. Fu (2018). “Composite

reinforcement learning for social robot navigation”. In: 2018 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 2553–

2558.

Cobbe, K., O. Klimov, C. Hesse, T. Kim, and J. Schulman (2019). “Quantifying gen-

eralization in reinforcement learning”. In: International Conference on Machine

Learning. PMLR, pp. 1282–1289.

Cruz, F., S. Magg, C. Weber, and S. Wermter (2016a). “Training agents with interac-

tive reinforcement learning and contextual affordances”. In: IEEE Transactions

on Cognitive and Developmental Systems 8.4, pp. 271–284.

Cruz, F., G. I. Parisi, J. Twiefel, and S. Wermter (2016b). “Multi-modal integration

of dynamic audiovisual patterns for an interactive reinforcement learning sce-

nario”. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE, pp. 759–766.

Cruz, F., G. I. Parisi, and S. Wermter (2018a). “Multi-modal feedback for affordance-

driven interactive reinforcement learning”. In: 2018 International Joint Confer-

ence on Neural Networks (IJCNN). IEEE, pp. 1–8.

Cruz, F., P. Wüppen, A. Fazrie, C. Weber, and S. Wermter (2018b). “Action selec-

tion methods in a robotic reinforcement learning scenario”. In: 2018 IEEE Latin

American Conference on Computational Intelligence (LA-CCI). IEEE, pp. 1–6.

CVZone (n.d.). CVZone - OpenCV and MediaPipe Tools and Resources. https:

//github.com/cvzone/cvzone. Accessed: May 2, 2023.

https://github.com/cvzone/cvzone
https://github.com/cvzone/cvzone

BIBLIOGRAPHY 157

Deisenroth, M. and C. E. Rasmussen (2011). “PILCO: A model-based and data-

efficient approach to policy search”. In: Proceedings of the 28th International

Conference on machine learning (ICML-11), pp. 465–472.

Do, T.-T., A. Nguyen, and I. Reid (2018). “Affordancenet: An end-to-end deep

learning approach for object affordance detection”. In: 2018 IEEE international

conference on robotics and automation (ICRA). IEEE, pp. 5882–5889.

Dromnelle, R., B. Girard, E. Renaudo, R. Chatila, and M. Khamassi (2020). “Coping

with the variability in humans reward during simulated human-robot interactions

through the coordination of multiple learning strategies”. In: 2020 29th IEEE

International Conference on Robot and Human Interactive Communication (RO-

MAN). IEEE, pp. 612–617.

Dulac-Arnold, G., N. Levine, D. J. Mankowitz, J. Li, C. Paduraru, S. Gowal, and

T. Hester (2021). “Challenges of real-world reinforcement learning: definitions,

benchmarks and analysis”. In: Machine Learning 110.9, pp. 2419–2468.

Elbrechter, C., R. Haschke, and H. Ritter (2011). “Bi-manual robotic paper ma-

nipulation based on real-time marker tracking and physical modelling”. In: 2011

IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,

pp. 1427–1432.

— (2012). “Folding paper with anthropomorphic robot hands using real-time physics-

based modeling”. In: 2012 12th IEEE-RAS International Conference on Hu-

manoid Robots (Humanoids 2012). IEEE, pp. 210–215.

Everett, M., Y. F. Chen, and J. P. How (2021). “Collision avoidance in pedestrian-

rich environments with deep reinforcement learning”. In: IEEE Access 9, pp. 10357–

10377.

Fan, J., Z. Wang, Y. Xie, and Z. Yang (2020). “A theoretical analysis of deep Q-

learning”. In: Learning for Dynamics and Control. PMLR, pp. 486–489.

158 BIBLIOGRAPHY

Finn, C., P. Abbeel, and S. Levine (2017). “Model-agnostic meta-learning for fast

adaptation of deep networks”. In: International conference on machine learning.

PMLR, pp. 1126–1135.

Fujimoto, S., H. Hoof, and D. Meger (2018). “Addressing function approximation

error in actor-critic methods”. In: International conference on machine learning.

PMLR, pp. 1587–1596.

Fujimoto, S., D. Meger, and D. Precup (2019). “Off-policy deep reinforcement learn-

ing without exploration”. In: International conference on machine learning. PMLR,

pp. 2052–2062.

Gao, C., Z. Li, H. Gao, and F. Chen (2023). “Iterative Interactive Modeling for

Knotting Plastic Bags”. In: Conference on Robot Learning. PMLR, pp. 571–582.

Gao, Y., E. Sibirtseva, G. Castellano, and D. Kragic (2019). “Fast adaptation with

meta-reinforcement learning for trust modelling in human-robot interaction”.

In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE, pp. 305–312.

Ghadirzadeh, A., X. Chen, W. Yin, Z. Yi, M. Björkman, and D. Kragic (2020).

“Human-centered collaborative robots with deep reinforcement learning”. In:

IEEE Robotics and Automation Letters 6.2, pp. 566–571.

Gibson, J. J. (1977). “The theory of affordances”. In: Hilldale, USA 1.2, pp. 67–82.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep learning. MIT press.

Google (n.d.). Google Cloud Speech-to-Text. https://cloud.google.com/speech-

to-text. Accessed: May 2, 2023.

Gu, N., Z. Zhang, R. He, and L. Yu (2024). “ShakingBot: dynamic manipulation for

bagging”. In: Robotica 42.3, pp. 775–791.

Haarnoja, T., A. Zhou, P. Abbeel, and S. Levine (2018). “Soft actor-critic: Off-

policy maximum entropy deep reinforcement learning with a stochastic actor”.

In: International conference on machine learning. PMLR, pp. 1861–1870.

https://cloud.google.com/speech-to-text
https://cloud.google.com/speech-to-text

BIBLIOGRAPHY 159

Hallak, A., D. Di Castro, and S. Mannor (2015). “Contextual markov decision pro-

cesses”. In: arXiv preprint arXiv:1502.02259.

Hanna, J. P., S. Desai, H. Karnan, G. Warnell, and P. Stone (2021a). “Grounded ac-

tion transformation for sim-to-real reinforcement learning”. In: Machine Learning

110.9, pp. 2469–2499.

Hanna, J. P., S. Niekum, and P. Stone (2021b). “Importance sampling in reinforce-

ment learning with an estimated behavior policy”. In: Machine Learning 110.6,

pp. 1267–1317.

Hansen, N. and X. Wang (2021). “Generalization in reinforcement learning by soft

data augmentation”. In: 2021 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, pp. 13611–13617.

Hasselt, H. (2010). “Double Q-learning”. In: Advances in neural information process-

ing systems 23.

Hester, T. et al. (2018). “Deep q-learning from demonstrations”. In: Proceedings of

the AAAI Conference on Artificial Intelligence. Vol. 32.

Hill, A. et al. (2018). Stable Baselines. https://github.com/hill-a/stable-

baselines.

Hochreiter, S. and J. Schmidhuber (1997). “Long short-term memory”. In: Neural

computation 9.8, pp. 1735–1780.

Hoque, R. et al. (2022). “Visuospatial foresight for physical sequential fabric manip-

ulation”. In: Autonomous Robots, pp. 1–25.

Hwang, P.-J., C.-C. Hsu, and W.-Y. Wang (2020). “Development of a mimic robot-

Learning from demonstration incorporating object detection and multiaction

recognition”. In: IEEE Consumer Electronics Magazine 9.3, pp. 79–87.

Icarte, R. T., T. Q. Klassen, R. Valenzano, and S. A. McIlraith (2022). “Reward

machines: Exploiting reward function structure in reinforcement learning”. In:

Journal of Artificial Intelligence Research 73, pp. 173–208.

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

160 BIBLIOGRAPHY

Jain, S. et al. (2018). “Deep q-learning for navigation of robotic arm for tokamak

inspection”. In: Algorithms and Architectures for Parallel Processing: 18th Inter-

national Conference, ICA3PP 2018, Guangzhou, China, November 15-17, 2018,

Proceedings, Part IV 18. Springer, pp. 62–71.

Jangir, R., G. Alenya, and C. Torras (2020). “Dynamic cloth manipulation with deep

reinforcement learning”. In: 2020 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, pp. 4630–4636.

Ji, M., L. Zhang, and S. Wang (2019). “A path planning approach based on Q-

learning for robot arm”. In: 2019 3rd International Conference on Robotics and

Automation Sciences (ICRAS). IEEE, pp. 15–19.

Jørgensen, T. B., S. H. N. Jensen, H. Aanæs, N. W. Hansen, and N. Krüger (2019).

“An adaptive robotic system for doing pick and place operations with deformable

objects”. In: Journal of Intelligent & Robotic Systems 94, pp. 81–100.

Kabra, A., A. Agarwal, and A. S. Parihar (2021a). “Cluster-based deep contextual

reinforcement learning for top-k recommendations”. In: Proceedings of the In-

ternational Conference on Computing and Communication Systems: I3CS 2020,

NEHU, Shillong, India. Springer, pp. 125–135.

— (2021b). “Potent Real-Time Recommendations Using Multimodel Contextual

Reinforcement Learning”. In: IEEE Transactions on Computational Social Sys-

tems 9.2, pp. 581–593.

Karaman, S. and E. Frazzoli (2010). “Incremental sampling-based algorithms for

optimal motion planning”. In: Robotics Science and Systems VI 104.2.

Khamassi, M., G. Velentzas, T. Tsitsimis, and C. Tzafestas (2018). “Robot fast

adaptation to changes in human engagement during simulated dynamic social

interaction with active exploration in parameterized reinforcement learning”. In:

IEEE Transactions on Cognitive and Developmental Systems 10.4, pp. 881–893.

BIBLIOGRAPHY 161

Khan, M. A.-M., M. R. J. Khan, A. Tooshil, N. Sikder, M. P. Mahmud, A. Z.

Kouzani, and A.-A. Nahid (2020). “A systematic review on reinforcement learning-

based robotics within the last decade”. In: IEEE Access 8, pp. 176598–176623.

Khetarpal, K., Z. Ahmed, G. Comanici, D. Abel, and D. Precup (2020). “What can I

do here? A Theory of Affordances in Reinforcement Learning”. In: International

Conference on Machine Learning. PMLR, pp. 5243–5253.

Konar, A., I. G. Chakraborty, S. J. Singh, L. C. Jain, and A. K. Nagar (2013). “A

deterministic improved Q-learning for path planning of a mobile robot”. In: IEEE

Transactions on Systems, Man, and Cybernetics: Systems 43.5, pp. 1141–1153.

Kontoudis, G. P. and K. G. Vamvoudakis (2019). “Kinodynamic motion planning

with continuous-time Q-learning: An online, model-free, and safe navigation

framework”. In: IEEE transactions on neural networks and learning systems

30.12, pp. 3803–3817.

Koppula, H. S. and A. Saxena (2015). “Anticipating human activities using ob-

ject affordances for reactive robotic response”. In: IEEE transactions on pattern

analysis and machine intelligence 38.1, pp. 14–29.

Kormushev, P., S. Calinon, and D. G. Caldwell (2013). “Reinforcement learning in

robotics: Applications and real-world challenges”. In: Robotics 2.3, pp. 122–148.

Kostas, J., Y. Chandak, S. M. Jordan, G. Theocharous, and P. Thomas (2021).

“High Confidence Generalization for Reinforcement Learning”. In: International

Conference on Machine Learning. PMLR, pp. 5764–5773.

Lathuilière, S., B. Massé, P. Mesejo, and R. Horaud (2018). “Deep reinforcement

learning for audio-visual gaze control”. In: 2018 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS). IEEE, pp. 1555–1562.

LaValle, S. M. et al. (1998). “Rapidly-exploring random trees: A new tool for path

planning. 1998”. In: URL http://citeseerx. ist. psu. edu/viewdoc/summary.

Lele, A. S., Y. Fang, J. Ting, and A. Raychowdhury (2020). “Learning to walk: Spike

based reinforcement learning for hexapod robot central pattern generation”. In:

162 BIBLIOGRAPHY

2020 2nd IEEE International Conference on Artificial Intelligence Circuits and

Systems (AICAS). IEEE, pp. 208–212.

Levine, S., C. Finn, T. Darrell, and P. Abbeel (2016). “End-to-end training of

deep visuomotor policies”. In: The Journal of Machine Learning Research 17.1,

pp. 1334–1373.

Levine, S., P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen (2018). “Learning hand-

eye coordination for robotic grasping with deep learning and large-scale data

collection”. In: The International journal of robotics research 37.4-5, pp. 421–

436.

Li, G., Y. Wei, Y. Chi, Y. Gu, and Y. Chen (2020). “Sample complexity of asyn-

chronous Q-learning: Sharper analysis and variance reduction”. In: Advances in

neural information processing systems 33, pp. 7031–7043.

— (2021). “Sample complexity of asynchronous Q-learning: Sharper analysis and

variance reduction”. In: IEEE Transactions on Information Theory 68.1, pp. 448–

473.

Li, H., Q. Zhang, and D. Zhao (2019). “Deep reinforcement learning-based automatic

exploration for navigation in unknown environment”. In: IEEE transactions on

neural networks and learning systems 31.6, pp. 2064–2076.

Li, S., X. Xu, and L. Zuo (2015). “Dynamic path planning of a mobile robot with

improved Q-learning algorithm”. In: 2015 IEEE international conference on in-

formation and automation. IEEE, pp. 409–414.

Li, X., H. Liu, and M. Dong (2021). “A general framework of motion planning for

redundant robot manipulator based on deep reinforcement learning”. In: IEEE

Transactions on Industrial Informatics 18.8, pp. 5253–5263.

Li, X., L. Li, J. Gao, X. He, J. Chen, L. Deng, and J. He (2015). “Recurrent rein-

forcement learning: a hybrid approach”. In: arXiv preprint arXiv:1509.03044.

Lillicrap, T. P. et al. (2015). “Continuous control with deep reinforcement learning”.

In: arXiv preprint arXiv:1509.02971.

BIBLIOGRAPHY 163

Lin, H.-Y., S.-C. Liang, and Y.-K. Chen (2020). “Robotic grasping with multi-view

image acquisition and model-based pose estimation”. In: IEEE Sensors Journal

21.10, pp. 11870–11878.

Lin, J.-L., K.-S. Hwang, W.-C. Jiang, and Y.-J. Chen (2016). “Gait balance and

acceleration of a biped robot based on Q-learning”. In: IEEE access 4, pp. 2439–

2449.

Littman, M. L. (1994). “Markov games as a framework for multi-agent reinforcement

learning”. In: Machine learning proceedings 1994. Elsevier, pp. 157–163.

Liu, D., Z. Wang, B. Lu, M. Cong, H. Yu, and Q. Zou (2020). “A reinforcement

learning-based framework for robot manipulation skill acquisition”. In: IEEE

Access 8, pp. 108429–108437.

Liu, S., Y. Li, and W. Fu (2022). “Human-centered attention-aware networks for

action recognition”. In: International Journal of Intelligent Systems.

Liu, S., S. Wang, X. Liu, C.-T. Lin, and Z. Lv (2020). “Fuzzy detection aided real-

time and robust visual tracking under complex environments”. In: IEEE Trans-

actions on Fuzzy Systems 29.1, pp. 90–102.

Liu, Z., Q. Liu, L. Wang, W. Xu, and Z. Zhou (2021). “Task-level decision-making for

dynamic and stochastic human-robot collaboration based on dual agents deep re-

inforcement learning”. In: The International Journal of Advanced Manufacturing

Technology 115.11-12, pp. 3533–3552.

Low, E. S., P. Ong, and K. C. Cheah (2019). “Solving the optimal path planning of a

mobile robot using improved Q-learning”. In: Robotics and Autonomous Systems

115, pp. 143–161.

Lowe, R., A. Almér, P. Gander, and C. Balkenius (2019). “Vicarious value learning

and inference in human-human and human-robot interaction”. In: 2019 8th Inter-

national Conference on Affective Computing and Intelligent Interaction Work-

shops and Demos (ACIIW). IEEE, pp. 395–400.

164 BIBLIOGRAPHY

Lowe, R., Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch (2017).

“Multi-agent actor-critic for mixed cooperative-competitive environments”. In:

Advances in neural information processing systems 30.

Luebbers, M. B., A. Tabrez, and B. Hayes (2022). “Augmented Reality-Based Ex-

plainable AI Strategies for Establishing Appropriate Reliance and Trust in Human-

Robot Teaming”. In: 5th International Workshop on Virtual, Augmented, and

Mixed Reality for HRI.

Luis, S. Y., D. G. Reina, and S. L. T. Marín (2021). “A multiagent deep reinforcement

learning approach for path planning in autonomous surface vehicles: the Ypacaraí

lake patrolling case”. In: IEEE Access 9, pp. 17084–17099.

Ma, X., D. Hsu, and W. S. Lee (2022). “Learning latent graph dynamics for vi-

sual manipulation of deformable objects”. In: 2022 International Conference on

Robotics and Automation (ICRA). IEEE, pp. 8266–8273.

Mahler, J. et al. (2017). “Dex-net 2.0: Deep learning to plan robust grasps with syn-

thetic point clouds and analytic grasp metrics”. In: arXiv preprint arXiv:1703.09312.

Maoudj, A. and A. Hentout (2020). “Optimal path planning approach based on Q-

learning algorithm for mobile robots”. In: Applied Soft Computing 97, p. 106796.

Matas, J., S. James, and A. J. Davison (2018). “Sim-to-real reinforcement learning

for deformable object manipulation”. In: Conference on Robot Learning. PMLR,

pp. 734–743.

Millan-Arias, C. C., B. J. Fernandes, F. Cruz, R. Dazeley, and S. Fernandes (2021).

“A robust approach for continuous interactive actor-critic algorithms”. In: IEEE

Access 9, pp. 104242–104260.

Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller (2013). “Playing atari with deep reinforcement learning”. In: arXiv

preprint arXiv:1312.5602.

Mnih, V. et al. (2015). “Human-level control through deep reinforcement learning”.

In: nature 518.7540, pp. 529–533.

BIBLIOGRAPHY 165

Mnih, V. et al. (2016). “Asynchronous methods for deep reinforcement learning”. In:

International conference on machine learning. PMLR, pp. 1928–1937.

Modares, H., I. Ranatunga, F. L. Lewis, and D. O. Popa (2015). “Optimized assistive

human–robot interaction using reinforcement learning”. In: IEEE transactions on

cybernetics 46.3, pp. 655–667.

Munguia-Galeano, F., A.-H. Tan, and Z. Ji (2023a). “Deep reinforcement learning

with explicit context representation”. In: IEEE Transactions on Neural Networks

and Learning Systems.

Munguia-Galeano, F., S. Veeramani, J. D. Hernández, Q. Wen, and Z. Ji (2023b).

“Affordance-based human-robot interaction with reinforcement learning”. In: IEEE

Access.

Munguia-Galeano, F., J. Zhu, J. D. Hernández, and Z. Ji (2024). “Learning to bag

with a simulation-free reinforcement learning framework for robots”. In: IET

Cyber-Systems and Robotics 6.2, e12113.

Naeem, M., S. T. H. Rizvi, and A. Coronato (2020). “A gentle introduction to

reinforcement learning and its application in different fields”. In: IEEE access 8,

pp. 209320–209344.

Nair, A., D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and S. Levine (2017).

“Combining self-supervised learning and imitation for vision-based rope manip-

ulation”. In: 2017 IEEE international conference on robotics and automation

(ICRA). IEEE, pp. 2146–2153.

Nair, A., B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel (2018). “Over-

coming exploration in reinforcement learning with demonstrations”. In: 2018

IEEE international conference on robotics and automation (ICRA). IEEE, pp. 6292–

6299.

Ng, A. Y., S. Russell, et al. (2000). “Algorithms for inverse reinforcement learning.”

In: Icml. Vol. 1, p. 2.

166 BIBLIOGRAPHY

Nguyen, H. and H. La (2019). “Review of deep reinforcement learning for robot

manipulation”. In: 2019 Third IEEE International Conference on Robotic Com-

puting (IRC). IEEE, pp. 590–595.

Nikolaidis, S., R. Ramakrishnan, K. Gu, and J. Shah (2015). “Efficient model learn-

ing from joint-action demonstrations for human-robot collaborative tasks”. In:

Proceedings of the tenth annual ACM/IEEE international conference on human-

robot interaction, pp. 189–196.

Osband, I., B. Van Roy, D. J. Russo, Z. Wen, et al. (2019). “Deep Exploration via

Randomized Value Functions.” In: J. Mach. Learn. Res. 20.124, pp. 1–62.

Pan, J., X. Wang, Y. Cheng, and Q. Yu (2018). “Multisource transfer double DQN

based on actor learning”. In: IEEE transactions on neural networks and learning

systems 29.6, pp. 2227–2238.

Pareek, S. and T. Kesavadas (2019). “iART: Learning from demonstration for as-

sisted robotic therapy using lstm”. In: IEEE Robotics and Automation Letters

5.2, pp. 477–484.

Pinto, L. and A. Gupta (2016). “Supersizing self-supervision: Learning to grasp

from 50k tries and 700 robot hours”. In: 2016 IEEE international conference on

robotics and automation (ICRA). IEEE, pp. 3406–3413.

— (2017). “Learning to push by grasping: Using multiple tasks for effective learning”.

In: 2017 IEEE international conference on robotics and automation (ICRA).

IEEE, pp. 2161–2168.

Polydoros, A. S. and L. Nalpantidis (2017). “Survey of model-based reinforcement

learning: Applications on robotics”. In: Journal of Intelligent & Robotic Systems

86.2, pp. 153–173.

Quillen, D., E. Jang, O. Nachum, C. Finn, J. Ibarz, and S. Levine (2018). “Deep

reinforcement learning for vision-based robotic grasping: A simulated compara-

tive evaluation of off-policy methods”. In: 2018 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, pp. 6284–6291.

BIBLIOGRAPHY 167

Raffin, A., J. Kober, and F. Stulp (2022). “Smooth exploration for robotic reinforce-

ment learning”. In: Conference on Robot Learning. PMLR, pp. 1634–1644.

Raileanu, R. and R. Fergus (2021). “Decoupling value and policy for generalization

in reinforcement learning”. In: International Conference on Machine Learning.

PMLR, pp. 8787–8798.

Ravichandar, H., A. S. Polydoros, S. Chernova, and A. Billard (2020). “Recent

advances in robot learning from demonstration”. In: Annual review of control,

robotics, and autonomous systems 3, pp. 297–330.

Redmon, J., S. Divvala, R. Girshick, and A. Farhadi (2016). “You only look once:

Unified, real-time object detection”. In: Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 779–788.

Ren, Z., D. Dong, H. Li, and C. Chen (2018). “Self-paced prioritized curriculum

learning with coverage penalty in deep reinforcement learning”. In: IEEE trans-

actions on neural networks and learning systems 29.6, pp. 2216–2226.

Ribeiro, C. (2002). “Reinforcement learning agents”. In: Artificial intelligence review

17, pp. 223–250.

Rountree, B. and D. Tsafrir (n.d.). pyRAPL: A Python interface for RAPL. https:

//github.com/berkeley-abc/pyRAPL. Accessed: May 2, 2023.

Roy, S., E. Kieson, C. Abramson, and C. Crick (2019). “Mutual reinforcement learn-

ing with robot trainers”. In: 2019 14th ACM/IEEE International Conference on

Human-Robot Interaction (HRI). IEEE, pp. 572–573.

Rummery, G. A. and M. Niranjan (1994). On-line Q-learning using connectionist

systems. Vol. 37. University of Cambridge, Department of Engineering Cam-

bridge, UK.

Russell, S. (1998). “Learning agents for uncertain environments”. In: Proceedings of

the eleventh annual conference on Computational learning theory, pp. 101–103.

https://github.com/berkeley-abc/pyRAPL
https://github.com/berkeley-abc/pyRAPL

168 BIBLIOGRAPHY

Şahin, E., M. Cakmak, M. R. Doğar, E. Uğur, and G. Üçoluk (2007). “To afford or

not to afford: A new formalization of affordances toward affordance-based robot

control”. In: Adaptive Behavior 15.4, pp. 447–472.

Salvato, E., G. Fenu, E. Medvet, and F. A. Pellegrino (2021). “Crossing the reality

gap: A survey on sim-to-real transferability of robot controllers in reinforcement

learning”. In: IEEE Access 9, pp. 153171–153187.

Schaul, T., J. Quan, I. Antonoglou, and D. Silver (2015). “Prioritized experience

replay”. In: arXiv preprint arXiv:1511.05952.

Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O. Klimov (2017). “Proximal

policy optimization algorithms”. In: arXiv preprint arXiv:1707.06347.

Seita, D., P. Florence, J. Tompson, E. Coumans, V. Sindhwani, K. Goldberg, and

A. Zeng (2021). “Learning to rearrange deformable cables, fabrics, and bags with

goal-conditioned transporter networks”. In: 2021 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, pp. 4568–4575.

Sengadu Suresh, P., Y. Gui, and P. Doshi (2023). “Dec-AIRL: Decentralized Adver-

sarial IRL for Human-Robot Teaming”. In: Proceedings of the 2023 International

Conference on Autonomous Agents and Multiagent Systems, pp. 1116–1124.

Shafti, A., J. Tjomsland, W. Dudley, and A. A. Faisal (2020). “Real-world human-

robot collaborative reinforcement learning”. In: 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 11161–11166.

El-Shamouty, M., X. Wu, S. Yang, M. Albus, and M. F. Huber (2020). “Towards safe

human-robot collaboration using deep reinforcement learning”. In: 2020 IEEE

international conference on robotics and automation (ICRA). IEEE, pp. 4899–

4905.

Shao, K., Z. Tang, Y. Zhu, N. Li, and D. Zhao (2019). “A survey of deep reinforce-

ment learning in video games”. In: arXiv preprint arXiv:1912.10944.

BIBLIOGRAPHY 169

Sharma, S. et al. (2022). “Learning Switching Criteria for Sim2Real Transfer of

Robotic Fabric Manipulation Policies”. In: 2022 IEEE 18th International Con-

ference on Automation Science and Engineering (CASE). IEEE, pp. 1116–1123.

Sheridan, T. B. (2016). “Human–robot interaction: status and challenges”. In: Hu-

man factors 58.4, pp. 525–532.

Shi, L., M. Pantic, O. Andersson, M. Tognon, R. Siegwart, and R. H. Jacobsen

(2022). “Reactive Motion Planning for Rope Manipulation and Collision Avoid-

ance using Aerial Robots”. In: 2022 IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS). IEEE, pp. 3384–3391.

Silver, D. et al. (2016). “Mastering the game of Go with deep neural networks and

tree search”. In: nature 529.7587, pp. 484–489.

Sodhani, S., A. Zhang, and J. Pineau (2021). “Multi-task reinforcement learning

with context-based representations”. In: International Conference on Machine

Learning. PMLR, pp. 9767–9779.

Sonar, A., V. Pacelli, and A. Majumdar (2021). “Invariant policy optimization: To-

wards stronger generalization in reinforcement learning”. In: Learning for Dy-

namics and Control. PMLR, pp. 21–33.

Stavridis, S., D. Papageorgiou, and Z. Doulgeri (2022). “Kinesthetic teaching of bi-

manual tasks with known relative constraints”. In: 2022 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 11796–11801.

Sundaresan, P. et al. (2020). “Learning rope manipulation policies using dense ob-

ject descriptors trained on synthetic depth data”. In: 2020 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, pp. 9411–9418.

Sutton, R. S. and A. G. Barto (1998). Introduction to reinforcement learning. Vol. 135.

MIT press Cambridge.

Tabrez, A. and B. Hayes (2019). “Improving human-robot interaction through ex-

plainable reinforcement learning”. In: 2019 14th ACM/IEEE International Con-

ference on Human-Robot Interaction (HRI). IEEE, pp. 751–753.

170 BIBLIOGRAPHY

Tabrez, A., M. B. Luebbers, and B. Hayes (2020). “A survey of mental modeling

techniques in human–robot teaming”. In: Current Robotics Reports 1, pp. 259–

267.

Tai, C.-S., J.-H. Hong, D.-Y. Hong, and L.-C. Fu (2022). “A real-time demand-side

management system considering user preference with adaptive deep Q learning in

home area network”. In: Sustainable Energy, Grids and Networks 29, p. 100572.

Taylor, M. E. and P. Stone (2009). “Transfer learning for reinforcement learning

domains: A survey.” In: Journal of Machine Learning Research 10.7.

Teng, T.-H., A.-H. Tan, and J. M. Zurada (2014). “Self-organizing neural networks

integrating domain knowledge and reinforcement learning”. In: IEEE transac-

tions on neural networks and learning systems 26.5, pp. 889–902.

Thomaz, A. L. and C. Breazeal (2006). Reinforcement Learning with Human Teach-

ers: Evidence of Feedback and Guidance with Implications for Learning Perfor-

mance. AAAI.

Urtans, E. and A. Nikitenko (2018). “Survey of deep Q-network variants in PyGame

learning environment”. In: Proceedings of the 2018 2nd International Conference

on Deep Learning Technologies, pp. 27–36.

Veeramani, S. and S. Muthuswamy (2022). “Hybrid type multi-robot path planning

of a serial manipulator and SwarmItFIX robots in sheet metal milling process”.

In: Complex & Intelligent Systems 8.4, pp. 2937–2954.

Voss, V., L. Nechepurenko, R. Schaefer, and S. Bauer (2020). “Playing a strategy

game with knowledge-based reinforcement learning”. In: SN Computer Science

1.2, p. 78.

Wang, C., K. V. Hindriks, and R. Babuska (2013). “Robot learning and use of

affordances in goal-directed tasks”. In: 2013 IEEE/RSJ International Conference

on Intelligent Robots and Systems. IEEE, pp. 2288–2294.

BIBLIOGRAPHY 171

Wang, K., B. Kang, J. Shao, and J. Feng (2020). “Improving generalization in rein-

forcement learning with mixture regularization”. In: Advances in Neural Infor-

mation Processing Systems 33, pp. 7968–7978.

Wang, W., C. Du, W. Wang, and Z. Du (2019). “A PSO-optimized fuzzy reinforce-

ment learning method for making the minimally invasive surgical arm cleverer”.

In: IEEE Access 7, pp. 48655–48670.

Wang, X., J. Zhao, X. Jiang, and Y.-H. Liu (2022a). “Learning-based fabric folding

and box wrapping”. In: IEEE Robotics and Automation Letters 7.2, pp. 5703–

5710.

Wang, X. et al. (2022b). “Deep reinforcement learning: a survey”. In: IEEE Trans-

actions on Neural Networks and Learning Systems.

Wang, Z., T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas (2016).

“Dueling network architectures for deep reinforcement learning”. In: International

conference on machine learning. PMLR, pp. 1995–2003.

Watkins, C. J. and P. Dayan (1992a). “Q-learning”. In: Machine learning 8, pp. 279–

292.

— (1992b). “Q-learning”. In: Machine learning 8, pp. 279–292.

Weiss, K., T. M. Khoshgoftaar, and D. Wang (2016). “A survey of transfer learning”.

In: Journal of Big data 3.1, pp. 1–40.

Wen, S., J. Chen, S. Wang, H. Zhang, and X. Hu (2018). “Path planning of humanoid

arm based on deep deterministic policy gradient”. In: 2018 IEEE International

Conference on Robotics and Biomimetics (ROBIO). IEEE, pp. 1755–1760.

Wong, C.-C., S.-Y. Chien, H.-M. Feng, and H. Aoyama (2021). “Motion planning for

dual-arm robot based on soft actor-critic”. In: IEEE Access 9, pp. 26871–26885.

Wu, H., Z. Zhang, H. Cheng, K. Yang, J. Liu, and Z. Guo (2020). “Learning af-

fordance space in physical world for vision-based robotic object manipulation”.

In: 2020 IEEE International Conference on Robotics and Automation (ICRA).

IEEE, pp. 4652–4658.

172 BIBLIOGRAPHY

Xu, D., F. Zhu, Q. Liu, and P. Zhao (2021). “Improving exploration efficiency of

deep reinforcement learning through samples produced by generative model”. In:

Expert Systems with Applications 185, p. 115680.

Yamanobe, N. et al. (2017). “A brief review of affordance in robotic manipulation

research”. In: Advanced Robotics 31.19-20, pp. 1086–1101.

Yan, C. and X. Xiang (2018). “A path planning algorithm for uav based on improved

q-learning”. In: 2018 2nd international conference on robotics and automation

sciences (ICRAS). IEEE, pp. 1–5.

Yan, Y., G. Li, Y. Chen, and J. Fan (2022). “The efficacy of pessimism in asyn-

chronous Q-learning”. In: arXiv preprint arXiv:2203.07368.

Yang, Z., K. Merrick, L. Jin, and H. A. Abbass (2018). “Hierarchical deep reinforce-

ment learning for continuous action control”. In: IEEE transactions on neural

networks and learning systems 29.11, pp. 5174–5184.

Yarats, D., D. Brandfonbrener, H. Liu, M. Laskin, P. Abbeel, A. Lazaric, and L.

Pinto (2022). “Don’t Change the Algorithm, Change the Data: Exploratory Data

for Offline Reinforcement Learning”. In: ICLR 2022 Workshop on Generalizable

Policy Learning in Physical World.

Yin, H., A. Varava, and D. Kragic (2021). “Modeling, learning, perception, and

control methods for deformable object manipulation”. In: Science Robotics 6.54,

eabd8803.

Yu, T., A. Kumar, Y. Chebotar, K. Hausman, S. Levine, and C. Finn (2021). “Con-

servative data sharing for multi-task offline reinforcement learning”. In: Advances

in Neural Information Processing Systems 34, pp. 11501–11516.

Yu, X., W. He, Q. Li, Y. Li, and B. Li (2020). “Human-robot co-carrying using

visual and force sensing”. In: IEEE Transactions on Industrial Electronics 68.9,

pp. 8657–8666.

Yu, Y. (2018). “Towards Sample Efficient Reinforcement Learning.” In: IJCAI,

pp. 5739–5743.

BIBLIOGRAPHY 173

Zakershahrak, M., S. R. Marpally, A. Sharma, Z. Gong, and Y. Zhang (2021). “Order

matters: Generating progressive explanations for planning tasks in human-robot

teaming”. In: 2021 IEEE International Conference on Robotics and Automation

(ICRA). IEEE, pp. 3751–3757.

Zeng, A. (2019). “Learning visual affordances for robotic manipulation”. PhD thesis.

Princeton University.

Zeng, A., S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser (2018).

“Learning synergies between pushing and grasping with self-supervised deep rein-

forcement learning”. In: 2018 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE, pp. 4238–4245.

Zeng, A. et al. (2022). “Robotic pick-and-place of novel objects in clutter with multi-

affordance grasping and cross-domain image matching”. In: The International

Journal of Robotics Research 41.7, pp. 690–705.

Zhang, A., R. McAllister, R. Calandra, Y. Gal, and S. Levine (2020). “Learning

invariant representations for reinforcement learning without reconstruction”. In:

arXiv preprint arXiv:2006.10742.

Zhang, Y. and M. M. Zavlanos (2020). “Transfer reinforcement learning under un-

observed contextual information”. In: 2020 ACM/IEEE 11th International Con-

ference on Cyber-Physical Systems (ICCPS). IEEE, pp. 75–86.

Zhang, Y., P. Sun, Y. Yin, L. Lin, and X. Wang (2018). “Human-like autonomous

vehicle speed control by deep reinforcement learning with double Q-learning”. In:

2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, pp. 1251–1256.

Zhang, Y., S. Li, K. J. Nolan, and D. Zanotto (2019). “Adaptive assist-as-needed

control based on actor-critic reinforcement learning”. In: 2019 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 4066–

4071.

174 BIBLIOGRAPHY

Zhao, D., H. Wang, K. Shao, and Y. Zhu (2016). “Deep reinforcement learning

with experience replay based on SARSA”. In: 2016 IEEE symposium series on

computational intelligence (SSCI). IEEE, pp. 1–6.

Zhao, K., Y. Wang, Y. Zuo, and C. Zhang (2022). “Palletizing Robot Positioning Bolt

Detection Based on Improved YOLO-V3”. In: Journal of Intelligent & Robotic

Systems 104.3, p. 41.

Zhao, W., J. P. Queralta, and T. Westerlund (2020). “Sim-to-real transfer in deep

reinforcement learning for robotics: a survey”. In: 2020 IEEE symposium series

on computational intelligence (SSCI). IEEE, pp. 737–744.

Zhong, J., T. Wang, and L. Cheng (2021). “Collision-free path planning for welding

manipulator via hybrid algorithm of deep reinforcement learning and inverse

kinematics”. In: Complex & Intelligent Systems, pp. 1–14.

Zhou, H., S. Li, Q. Lu, and J. Qian (2020). “A practical solution to deformable

linear object manipulation: A case study on cable harness connection”. In: 2020

5th International Conference on Advanced Robotics and Mechatronics (ICARM).

IEEE, pp. 329–333.

Zhu, H., A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar (2019). “Dexterous

manipulation with deep reinforcement learning: Efficient, general, and low-cost”.

In: 2019 International Conference on Robotics and Automation (ICRA). IEEE,

pp. 3651–3657.

Zhu, J., B. Navarro, R. Passama, P. Fraisse, A. Crosnier, and A. Cherubini (2019).

“Robotic manipulation planning for shaping deformable linear objects withen-

vironmental contacts”. In: IEEE Robotics and Automation Letters 5.1, pp. 16–

23.

Zhu, J. et al. (2022). “Challenges and outlook in robotic manipulation of deformable

objects”. In: IEEE Robotics & Automation Magazine 29.3, pp. 67–77.

BIBLIOGRAPHY 175

Ziebart, B. D., A. L. Maas, J. A. Bagnell, A. K. Dey, et al. (2008). “Maximum

entropy inverse reinforcement learning.” In: Aaai. Vol. 8. Chicago, IL, USA,

pp. 1433–1438.

	Abstract
	Dedication
	Declaration
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	List of Publications
	Introduction
	Motivation
	Research questions
	Aim and Objectives
	Outline

	Literature Review
	Reinforcement Learning Overview
	Bellman Equations
	The Bellman optimality equation
	Dynamic Programming
	Monte Carlo Methods
	Temporal Difference
	Q-learning
	State-Action-Reward-State-Action
	Deep Q-network
	Double Deep Q-network
	Dueling Architectures
	Actor-Critic Methods
	Deep Deterministic Policy Gradient
	Twin Delayed Deep Deterministic Policy Gradient
	Soft Actor-Critic
	Proximal Policy Optimisation
	Hindsight Experience Replay

	Context and Reinforcement Learning
	Context-free Methods
	Implicit Context-based Methods
	Explicit Context-based Methods

	Reinforcement Learning in Robotics
	Why Reinforcement Learning in Robotics?
	Robotic Manipulation of Rigid Objects with Reinforcement Learning
	Reinforcement Learning in Human-Robot Interaction
	Robotic Manipulation of Deformable Objects with Reinforcement Learning
	Robotic Manipulation of Deformable and Rigid Objects with Reinforcement Learning

	Discussion
	Summary

	Explicit Context Representation in Deep Reinforcement Learning
	Introduction
	IECR Framework
	Contextual Key Frames
	Iota Function
	Learning

	Experimental Setup
	Environments Description
	First Stage of the Experiments
	Second Stage of the Experiments

	Results
	Results of the First Stage of the Experiments
	Results of the Second Stage of the Experiments
	Affordances Loss Impact

	Discussion
	Summary

	Affordance-based Reinforcement Learning for Human-Robot Interaction
	Introduction
	Affordance-based Human-Robot Interaction Framework
	Voice-gestures
	Learning
	Valid Policy Detector

	Experimental Setup
	Results
	Results of the First Experiment
	Results of the Second Experiment
	Results of the Third Experiment
	Results of the Fourth Experiment
	Results of the Fifth Experiment
	Results of the Sixth Experiment

	Discussion
	Summary

	Learning to Bag with a Simulation-free Reinforcement Learning Framework for Robots
	Introduction
	Problem Formulation
	Framework
	Perception
	Learning
	Robot Controller
	Bagging task implementation

	Experimental Setup
	Results
	Discussion
	Summary

	Contributions, Conclusions and Future Work
	Contributions
	Conclusions
	Future work

	External Resources

