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1. Introduction 

Human pose estimation is a growing technique and of particular 
benefit to clinicians and researchers working in musculoskeletal 
biomechanics interested in calculating human movement patterns 
(Stenum et al., 2021). The observation of a patient’s joint angle during a 
movement can determine the effectiveness of a rehabilitation pro
gramme, risk of injury and other quality of life measures (Dos Santos 
et al., 2016) increasing the value of objectively assessing joint angle and 
joint range of motion (ROM) for allied health professionals. Where ac
cess to these sophisticated three-dimensional motion analysis (3DMA) 
systems are limited, the benefit of open-source tools that can be used in a 
variety of applications has a growing platform. 

The established laboratory reference standard for joint angle/ROM 
calculations uses 3DMA technology, utilising 3D optical retroreflective 
marker-based systems and multiple video cameras (e.g., Qualisys, Vicon, 
Optitrack) (Keogh et al., 2019). The development of depth cameras has 
enabled marker-less solutions for joint angle measurement; now heavily 
used within 3DMA and rehabilitation research (Kanko et al., 2021). 
Though these tend to require specialist input, the development of 
trained two-dimensional (2D) pose estimation models makes objective 
human movement data collection more accessible, using small devices 
such as phone cameras (Halilaj et al., 2021). Human pose estimation 
localises body key points to accurately recognise the posture of in
dividuals in an image or video (Munea et al., 2020). 

Accuracy of various systems is likely to be assessed differently also 

limiting direct comparison. The accuracy of the Qualisys Track Manager 
(QTM) 3D laboratory reference standard uses a recommended residual 
error margin of < 1 mm from each camera perspective. Whereas pose 
estimation models often use mean per joint position error (MPJPE), 
utilising the mean of the distances between the estimated coordinate and 
the true coordinate, over each joint. This produces estimates for coor
dinate and skeletal position based on key points. With pose estimation 
resulting in an accepted reduced accuracy compared to laboratory-based 
3DMA, MPJPE is reported to be accepted within a 20 mm error (Des
marais et al., 2021). The question remains as to whether the reduced 
accuracy of these systems can still give reliable ROM and joint angle 
estimates when compared to 3D laboratory standard systems given their 
different measurement methods and user applications. 

The research objective of this exploratory study was to compare two 
human pose estimation models against the laboratory reference stan
dard for the measurement of joint angle and ROM parameters, using 
basic comparative validation statistics with time matched video re
cordings. Comparisons were made between several different but simple 
movement activities that assess active ROM based on the recommen
dation from a clinical specialist in the field. The simplicity of the analysis 
demonstrates preliminary observations available for pose estimation 
examination and its suitability when restricted by resource and time. 
However, there remains further potential for in depth analysis to 
determine specific model differences that arise with particular move
ments types and situations to determine more granular levels of accu
racy between models. 
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2. Methods 

2.1. Participant data collection 

Twenty two healthy volunteers with no history of injury or other 
lower and upper limb pathology, participated in this exploratory study 
to compare pose estimation model outputs with a QTM 3DMA marker- 
based laboratory system. 

After the study was ethically approved by a Research Ethics Com
mittee, all subjects were provided with an information sheet and gave 
written informed consent on the day of data collection. Participants 
were recruited via social media and word of mouth advertisement 
within and around the Musculoskeletal Biomechanics Research Facility 
(MSKBRF) at Cardiff University, School of Engineering. Participants 
were asked to wear loose or compressed shorts, a loose vest/T-shirt, and 
comfortable shoes/trainers before performing the following set of ac
tivities: sit-to-stand for five repetitions and one repetition of seated right 
knee extension, standing right elbow flexion and prone left knee flexion. 
Activities were recorded using marker-based 3DMA (Qualisys, Sweden) 
with 12 Oqus 700 + infrared cameras and 2 Oqus 210c video cameras for 
2D image collection, capturing at 100Hz and 24Hz respectively. The 
infrared and video cameras were synchronised using the QTM trigger 
module which sends out a TTL pulse to start and stop recording. Data 
collection took place in a Motion Analysis Laboratory in the MSKBRF. A 
modified upper and lower body marker placement protocol, with 12 
retro-reflective markers, was used for the data collection to represent the 
target points for the pose estimation software (Fig. 1). The markers were 
placed at specific anatomical locations on the right and left acromion, 
lateral elbow epicondyles, wrist pisiform bone, greater trochanter, 
lateral knee epicondyles, and lateral malleoli. 

The subjects were video recorded in the sagittal plane as they per
formed the activities to translate the outputs into the pose estimation 
models. The video camera was positioned 4.2m from the subject for sit- 
to-stand, seated right knee extension and standing right elbow flexion 
activities, and 4.8m from the subject for prone left knee flexion activity. 

2.2. Kinematic outputs 

The coordinates of the markers placed at the acromion, lateral elbow 
epicondyles, and wrist pisiform and at the greater trochanter, lateral 
femoral epicondyles, and lateral malleoli were used to calculate elbow 
and knee joint angles, as kinematic variables, respectively, within QTM. 

Two algorithms, HRNet and MediaPipe were used for comparisons as 
current open-source benchmark 2D pose estimation models (Sun et al., 
2019; Bazarevsky et al., 2020). MediaPipe uses a combination of heat
map, offset and regression approaches to train the network. The heat
maps and offsets for training are then removed when reading in data, 
making it a light-weight architecture. An encoder-decoder network 
followed by regression encoder network then generates the 33 key 
points on the body (Fig. 1). The HRNet (Sun et al., 2019) uses 
multi-resolution subnetworks enabling the maintenance of 
high-resolution features across the whole process, and contributes to 
more accurate and spatially precise heatmaps. Key points are predicted 
from the high-resolution features using a key point detection dataset to 
predict 17 key points trained on Common Objects in Context (Lin et al., 
2014). Using the predicted key points from the MediaPipe and HRNet 
models, metrics for musculoskeletal kinematic analysis were imple
mented. Extracted key points provided by the pose estimation networks 
were used to identify joints and calculate joint angles. 

Joint ROM was defined as the difference between maximum and 
minimum joint angles, calculated using coordinate positions from the 
detected key points, in radians then converted into degrees. 

2.3. Output comparisons and statistical analysis 

Results across the three systems were matched using the resultant 
time frames and time stamps. Since the video and infrared cameras were 
synchronised, time stamps could be calculated with respect to the 
starting frame for both QTM and the pose estimation data derived from 
the video camera. The joint angles calculated were defined by key points 
with the marker placement and recorded throughout the exercise as a 
time series for each participant and matched with respect to the starting 
frame. Thus, the three systems had joint angle results at matched time 
stamps and could then be compared across each other for Coefficient of 
Variation (CoV) and Standard Deviation (SD) statistics. The mean of the 
CoV and SD values for each participant and each exercise were presented 
in summary data (Table 1). 

Statistical comparisons for joint angle and ROM as a discrete 

Fig. 1. 33 key point topology of the MediaPipe model (Bazarevsky et al., 2020).  

Table 1 
Coefficient of Variation (CoV) and Standard Deviation (SD) for joint angle time 
series data across the different systems (MoCap, MediaPipe, HRNet) for each 
activity, including the key points utilised to determine the joint angles.  

Activity 3D key 
points used 

Mean MoCap, 
MediaPipe & 
HRNet CoV 
(±SD) 

Mean MoCap 
& MediaPipe 
CoV (±SD) 

Mean 
MoCap & 
HRNet CoV 
(±SD) 

Seated Knee 
Extension 
Flexion (R) 

Right ankle, 
knee, and 
hip 

4.638 ± 1.95 4.6 ± 2.15 4.69 ±
2.72 

Prone Knee 
Flexion 
Extension 
(L) 

Left ankle, 
knee, and 
hip 

5.535 ± 3.82 4.86 ± 2.3 5.12 ±
3.86 

Elbow 
Flexion 
Extension 
(R) 

Right wrist, 
elbow, and 
shoulder 

5.335 ± 2.24 5.81 ± 2.22 5.45 ±
3.15 

Sit to Stand 
Knee (L) 

Left ankle, 
knee, and 
hip 

4.322 ± 1.53 4.57 ± 2.28 4.29 ± 1.7 

Sit to Stand 
Knee (R) 

Right ankle, 
knee, and 
hip 

4.005 ± 1.39 4.65 ± 1.79 3.66 ±
1.62  
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parameter were computed using CoV and Intra-Class Correlation Coef
ficient (ICC). Data descriptions and statistical comparisons were 
computed with Microsoft Excel and SPSS. CoV comparisons were 
calculated for ROM data with SD values and ICC to measure the level of 
agreement consistency as a correlation, presented with statistical sig
nificance (Table 2). ICC results are categorised as follows: above 0.9 =
excellent reliability, 0.75–0.9 good, 0.5-.75 moderate and below 0.5 =
poor reliability (Koo et al., 2016) and strengthened with a significant p 
value < 0.05 using an alpha confidence interval of 95%. 

3. Results 

The data represents the results from twenty-two healthy population 
volunteers (Female n = 16, Male n = 6, Age mean = 36.9 ± 11.6, Weight 
(kg) mean = 75.9 ± 15.8, Height (m) mean = 1.7 ± 0.1, BMI (kg/m2) 
mean = 26.1 ± 3.8). 

3.1. Descriptive statistics 

Table 1 displays descriptive results for joint angle calculated by the 
three different systems: 3DMA joint angle, vision-based MediaPipe and 
vision-based HRNet. The vision-based model with the best comparison 
score when assessed against marker based joint angle system is denoted 
in bold. Table 1 demonstrates MediaPipe as having the lower variation 
value for seated and prone knee extension-flexion exercises when 
compared to 3DMA, whereas HRNet displays lower variation for the 
other 3 activities. All resulted in low summary variations but with high 
deviations. A participant example of joint angle data for the 5 outputs of 
4 movement activities is demonstrated in Fig. 2 (note these do not 
represent summary data but rather example data from one participant). 

3.2. Comparison statistics 

CoV values for the ROM comparisons in Table 2 demonstrate similar 
variation results to the joint angle time series results in Table 1 with 
MediaPipe demonstrating lower variation values for seated and prone 
knee extension-flexion, only including left knee sit-to-stand exercise 
also. The HRNet displays lower variation for the other two exercises. 
Each exercise displayed strong and significant correlations for both 
models when comparing to 3DMA joint angle apart from left knee sit-to- 
stand which also has a higher CoV for both model comparisons. 

4. Discussion 

When investigating the use of pose estimation model outputs, their 
comparison to 3DMA outputs can be explored in a variety of manners. 

Minimal but valuable comparisons can demonstrate quick results to help 
decipher the validity of an open-source model with simple movements in 
a reduced setting. This could be similar to a clinic or treatment room 
setting. 

The time series movement summary results for both models, display 
similar values when utilising CoV as a variation statistic. With all CoV 
results under 10% (Table 1), this implies that both models compute 
reliable joint angle time series data based on previous literature result 
standards utilising low variation as a measure (Dos Santos et al., 2016). 
Equally similar low variation results are seen in more established open 
source models such as OpenCap, when comparing both joint and angles 
and kinetic force data with 3DMA methods (Ulrich et al., 2023). Despite 
low CoV values for both models, dispersion values remain high for all 
findings, thus reducing their reliability, and this should be considered 
within the consistency agreement interpretation. 

When comparing ROM as a discrete parameter, CoV values remain 
low, though not all below 10% such as joint angle results (Table 2). The 
two activities for sit-to-stand result in higher variation and dispersion 
values when compared to the other activities, implying that the pose 
estimation outputs for this activity are not sufficiently developed to be 
reliably comparable to 3DMA. This may be due to larger degrees of 
motion resulting in a higher likelihood of errors within the key point 
predictions, or specific movements obstructing the camera image. This 
could then affect the maximum and minimum angle distinctions and 
resultant ROM measure. Other similar models that struggle with com
plexities (Resnet and CPN) in movements are reported, such as heatmap 
loss (Sun et al., 2018), reconstruction loss (Xu et al., 2019) and motion 
loss (Wang et al., 2020) and may benefit from training on larger datasets 
with further complex movements or potentially use of threshold metrics 
rather than utilising accuracy comparisons. 

The weaker comparison results for sit-to-stand activities are rein
forced by outcomes displayed for ICC values. This determines the 
correlative similarity between the data, with good-to-excellent correla
tions for the three other activities (supported by level of significance 
determined), and lower correlation values for sit-to-stand results. The 
difference in correlation values between the two pose estimation models 
are so minor that it should be concluded that either of them would 
determine strong to excellent validity compared to 3DMA. Since sit-to- 
stand is one of the more prominent activities within clinical gait anal
ysis and rehabilitation monitoring for populations such as elderly (Smith 
et al., 2020) and cerebral palsy (Apoorva et al., 2018), it is crucial to 
ensure this activity is associated with good-excellent degree of accuracy 
and reliability. Other models have shown greater reliability for this 
metric (Kidziński et al., 2020) and compared across clinically significant 
measures as a means of clinical setting validation. This is a crucial 
element to test the reliability of the tool to produce a clinically 
measurable difference and is required for the tools analysed in this paper 
if intended to be used in a clinical setting. 

Though many of the results display similarities across the two pose 
estimation models when compared to 3DMA, certain activities and 
parameter outputs are marginally better for individual models. Explo
ration of the data reveals that seated knee extension/flexion and prone 
knee flexion/extension produce better results with MediaPipe, and 
elbow flexion/extension with HRNet, however, the differences between 
these models is minor using the applied variation and correlation mea
sures. Both models show strong levels of validity when compared to the 
3DMA laboratory standard, when based on a small cohort and simple 
descriptive statistics as a means of validity comparison. Development of 
further parameter outputs such as movement ROM, angular accelera
tion, angular velocity, movement symmetry, and movement consis
tency, with larger data sets will strengthen use reliability within a 
clinical field and allow for remote assessments. 

Where these activities would generally be analysed in a more so
phisticated setting, such models could provide transformational tools 
with a large degree of impact when used in more remote settings, given 
the practical difficulty of rehabilitation testing in laboratories. The need 

Table 2 
Range of motion statistical comparison summary table utilising Intra-Class 
Correlation Coefficient (ICC) with significant correlation denoted by *.  

Activity MoCap vs 
MediaPipe CoV 
(% ±SD) 

MoCap vs 
HRNet CoV 
(% ±SD) 

MoCap vs 
MediaPipe ICC 
(with sig.) 

MoCap vs 
HRNet ICC 
(with sig.) 

Seated Knee 
Extension 
(R) 

8.02 ± 3.8 9.73 ±
5.21 

0.95 (p < 
0.001)* 

0.87 (p <
0.001)* 

Prone Knee 
Flexion 
Extension 
(L) 

7.98 ± 7.08 10.02 ±
8.66 

0.81 (p < 
0.001)* 

0.63 (p =
0.021)* 

Elbow Flexion 
Extension 
(R) 

4.05 ± 2.97 3.25 ± 
2.96 

0.92 (p <
0.001)* 

0.94 (p < 
0.001)* 

Sit to Stand 
Knee (L) 

11.68 ± 9.66 11.71 ±
7.23 

0.41 (p =
0.138) 

0.41 (p =
0.134) 

Sit to Stand 
Knee (R) 

11.66 ± 3.7 10.53 ± 
4.96 

0.83 (p < 
0.001)* 

0.82 (p <
0.001)*  
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for “real world testing” and validation methods within these settings is 
increasingly apparent in the literature (Weygers et al., 2020; Stenum 
et al., 2021) due to known adaptations that people make when in a 
laboratory testing setting. Increasing pilot and validation data for such 
remote tools, provides opportunities for clinicians and patients to rely on 
remote tools to the same extent as laboratory or clinically based 
methods. 

The need and desire to utilise pose estimation tools within clinical 
and rehabilitative settings is driven by the potential for fast and practical 
access to objective measures. Though reduced accuracy in comparison 
to 3DMA, this may still provide greater reliability when compared to 
subjective or self-reported measures. It also promises access to much 
larger scale human-based movement research using less resources with 
lower levels of required expertise, allowing growth of movement-based 
data sharing and dataset development (Ulrich et al., 2023). This will be 

critical for development and possibly stratification of patients in 
musculoskeletal conditions, such as osteoarthritis, where this data is 
simply not well accessed (Evans et al., 2022). Therefore, a degree of 
trade-off should be accepted in terms of reliability depending on the 
model use and its purpose. Particularly, threshold metrics may help to 
decipher what trade-off is acceptable depending on the setting. 

Further measure comparisons that are used within pose estimation 
algorithm tools such as MPJPE, angular velocity, angular acceleration, 
movement symmetry, movement consistency as well as threshold met
rics (reported to accurately identify errors specifically for joint detec
tion) could provide greater granularity of results for movement 
detection, particularly for analysis of a range of complex movements 
(Desmarais et al., 2021). 

This exploratory study has several limitations. The sample size and 
range of population (twenty-two participants, BMI 26.1 ± 3.8 and ≥60 

Fig. 2. Demonstration of joint angle similarity between the 3 models compared for one example participant results for the 5 outputs of 4 activities of daily living 
recorded (A – Prone left knee flexion extension, B – right elbow flexion extension, C – seated right knee extension, D – Sit to stand left knee, E − sit to stand 
right knee). 
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years of age) are restrictive and should be considered in data interpre
tation. The data was collected on a general and healthy population and 
therefore does not represent many population groups that would be 
utilising these tools for rehabilitative exercises. These exploratory 
findings should be considered for future studies developed to achieve 
more relevant results for population groups with musculoskeletal dis
orders. The use of a more comprehensive marker set will allow for the 
limitations created when collecting motion data from a patient popu
lation and will enhance results further. 

5. Conclusion 

The results demonstrate that these 2D pose estimation models that 
are easy to use tools for remote rehabilitative purposes, can be compared 
and validated with 3DMA in a simple analysis to provide valuable 
insight. The results are stronger in flexion/extension movements 
compared to full sit-to-stand movements, however, this is based on a 
small selection of movements. The low variation statistics and strong 
correlations demonstrate that they provide a comparative standard to a 
reduced 3DMA analysis, depending on the context to which the models 
will be used. For many rehabilitative applications, these quick and easy 
to access tools meet the need to provide valuable, objective, movement- 
based information where subjective or self-reported measures may be 
the only alternative. 
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Ulrich, S., Falisse, A., Kidziński, Ľ., Muccini, J., Ko, M., Chaudhari, A., Hicks, J., Delp, S., 
2023. OpenCap: human movement dynamics from smartphone videos. PLoS 
Comput. Biol. 19 (10) https://doi.org/10.1371/journal.pcbi.1011462. 

Wang, J., Yan, S., Xiong, Y., Lin, D., 2020. Motion guided 3D pose estimation from 
videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, j.M. (Eds.), Computer Vision - 
ECCV 2020, vol. 12358. Springer International Publishing, Cnam, pp. 764–780. 
https://doi.org/10.1007/978-3-030-58601-0_45. 

Weygers, I., Kok, M., Konings, M.Hallez, De Vroey, H., Claeys, K., 2020. Inertial sensor- 
based lower limb joint kinematics: a methodological systematic review. Sensors 20 
(673). https://doi.org/10.3390/s20030673. 

Xu, Y., Zhu, S.C., Tung, T., 2019. DenseRaC: joint 3D pose and shape estimstion by dense 
render-and-compare. arXiv: 1910, 00116. 

R.I. Hamilton et al.                                                                                                                                                                                                                             

https://doi.org/10.1038/s41598-018-33962-2
https://doi.org/10.1038/s41598-018-33962-2
https://doi.org/10.48550/arxiv.2006.10204
https://doi.org/10.48550/arxiv.2006.10204
https://doi.org/10.1016/j.cviu.2021.103275
https://doi.org/10.1016/j.jbmt.2016.11.008
https://doi.org/10.1016/j.ocarto.2022.100236
https://doi.org/10.1016/j.ocarto.2022.100236
https://doi.org/10.1016/j.jbiomech.2021.110650
https://doi.org/10.1016/j.jbiomech.2021.110665
https://doi.org/10.1371/journal.pone.0215806
https://doi.org/10.1371/journal.pone.0215806
https://doi.org/10.1038/s41467-020-17807
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.48550/arxiv.1405.0312
https://doi.org/10.48550/arxiv.1405.0312
https://doi.org/10.1109/ACCESS.2020.3010248
https://doi.org/10.1109/ACCESS.2020.3010248
https://doi.org/10.1016/j.jbiomech.2019.109451
https://doi.org/10.1016/j.jbiomech.2019.109451
https://doi.org/10.3390/s21217315
https://doi.org/10.48550/arXiv.1711.08229
https://doi.org/10.48550/arxiv.1902.09212
https://doi.org/10.1371/journal.pcbi.1011462
https://doi.org/10.1007/978-3-030-58601-0_45
https://doi.org/10.3390/s20030673
http://refhub.elsevier.com/S1360-8592(24)00221-3/sref20
http://refhub.elsevier.com/S1360-8592(24)00221-3/sref20

	Comparison of computational pose estimation models for joint angles with 3D motion capture
	1 Introduction
	2 Methods
	2.1 Participant data collection
	2.2 Kinematic outputs
	2.3 Output comparisons and statistical analysis

	3 Results
	3.1 Descriptive statistics
	3.2 Comparison statistics

	4 Discussion
	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References


