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Abstract. Preparedness saves lives. Forecasts can help im-
prove preparedness by triggering early actions as part of pre-
defined protocols under the Forecast-based Financing (FbF)
approach; however it is essential to understand the skill of a
forecast before using it as a trigger. In order to support the de-
velopment of early-action protocols over Kenya, we evaluate
the 33 heavy rainfall advisories (HRAs) issued by the Kenya
Meteorological Department (KMD) during 2015–2019.

The majority of HRAs warn counties which subsequently
receive heavy rainfall within the forecast window. We also
find a significant improvement in the advisory ability to an-
ticipate flood events over time, with particularly high levels
of skill in recent years. For instance actions with a 2-week
lifetime based on advisories issued in 2015 and 2016 would
have failed to anticipate nearly all recorded flood events in
that period, whilst actions in 2019 would have anticipated
over 70 % of the instances of flooding at the county level.
When compared against the most significant flood events
over the period which led to significant loss of life, all three
such periods during 2018 and 2019 were preceded by HRAs,
and in these cases the advisories accurately warned the spe-
cific counties for which significant impacts were recorded.
By contrast none of the four significant flooding events in
2015–2017 were preceded by advisories. This step change
in skill may be due to developing forecaster experience with

synoptic patterns associated with extremes as well as access
to new dynamical prediction tools that specifically address
extreme event probability; for example, KMD access to the
UK Met Office Global Hazard Map was introduced at the end
of 2017.

Overall we find that KMD HRAs effectively warn of heavy
rainfall and flooding and can be a vital source of information
for early preparedness. However a lack of spatial detail on
flood impacts and broad probability ranges limit their utility
for systematic FbF approaches. We conclude with sugges-
tions for making the HRAs more useful for FbF and outline
the developing approach to flood forecasting in Kenya.

1 Introduction

Like many worldwide the Kenyan population is at signifi-
cant risk from heavy rainfall-induced flooding. In the last
2 years alone flood losses and damages have been exten-
sive. Recent examples of this include flooding during the
“long rains” season of 2018, impacts of which included the
displacement of 300 000 people (OCHA, 2018). This was
shortly followed by the “short rains” flooding of 2019, which
induced a landslide in West Pokot, killing 72 (reliefweb,
2019). In response to this kind of hydro-meteorological risk,
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the Red Cross Red Crescent movement has pioneered the
Forecast-based Financing approach (FbF; see https://www.
forecast-based-financing.org/, last access: 11 January 2021,
for more details).

In the humanitarian action landscape FbF sits within a
wider set of approaches to anticipatory risk management,
which can broadly be termed early warning–early action, of
which there are many examples (see Wilkinson et al., 2018,
for a review of FbF initiatives). FbF specifically has three
defining features: a set of objective pre-defined forecast trig-
gers, which when met activate a set of pre-defined early ac-
tions, themselves funded by a dedicated finance mechanism.
Together these constitute the early-action protocols (EAPs)
of an FbF system. The EAPs can facilitate early actions (such
as evacuation or cash transfers) or readiness actions (such
as pre-positioning of non-food items) which can be imple-
mented before the hazard event occurs, thus moving from
disaster response to early preparation and reduction in poten-
tial risks posed by the hazard event. Many FbF pilots are ac-
tive worldwide, and whilst it is not simple to precisely quan-
tify the impact of such programmes, evidence suggests they
can significantly reduce individual and community expenses
(Gros et al., 2019) along with bringing unquantifiable bene-
fits to lives and livelihoods.

Following the establishment of the DREF (Disaster Risk
Emergency Fund) by the International Federation of Red
Cross and Red Crescent Societies in December 2017, na-
tional Red Cross and Red Crescent societies are working
to define their EAPs for the dominant hazard types. In
Kenya this work is facilitated through the project “Innova-
tive Approaches in Response Preparedness” (IARP), funded
by the IKEA Foundation and implemented by the Kenya
Red Cross Society (KRCS) with further support from aligned
projects, notably the UK-funded NERC (Natural Environ-
ment Research Council) and DFID (Department for Inter-
national Development) project “Toward Forecast-Based Pre-
paredness Action” (ForPAc3; http://www.forpac.org, last ac-
cess: 11 January 2021). ForPAc has been working since
2017 with partners including the Kenya Meteorological De-
partment (KMD) and KRCS to establish the scientific ba-
sis for FbF and investigate the development of anticipatory
approaches in Kenya for managing flood and drought risk
across a range of forecast timescales.

Setting up an FbF EAP for a particular hazard begins by
identifying priority risks or impacts that can be addressed
by anticipatory early action. The next step is to identify the
best forecasts to use to trigger early action. In Kenya under
the IARP programme, this involved exploring a range of po-
tential forecasts that can support anticipation of the priority
risks and evaluating the accuracy (or skill) of the forecasts.
Anticipatory actions are then selected which are consistent
with the skill of the forecast. For instance a reliable forecast
of extremely high probability of imminent flooding might be
an appropriate trigger for a higher-cost intervention such as
evacuation, whilst a lower probability level (with a higher

chance of action in vain) could still be linked to a lower-cost
or “no-regret” action such as repair of river dykes.

Forecast skill assessment is therefore an essential step in
designing a system for FbF. In order to be used (in this case
by the KRCS and national disaster management agencies),
forecasts must show evidence of skill, which should be quan-
tified. In addition the forecast must be readily available to
the actors from the mandated agency for providing weather
forecasts (in this case the KMD). Finally the forecast must
be provided in such a way to be easily integrated within the
EAP.

Through the IARP programme a “menu” of potential fore-
casts of flood risk has been developed for the Kenya EAPs. In
the absence of a Kenya-wide national flood forecast system
(Weingärtner et al., 2018), forecasts of rainfall provide the
most appropriate proxy. One key potential forecast for heavy
rainfall events that could result in flooding is the KMD heavy
rainfall advisories (HRAs; described in full in Sect. 2.1).
These text-based advisories are issued on an irregular ba-
sis by the KMD when forecasters’ interpretation of current
conditions and the output of dynamical atmospheric mod-
els point to risk of heavy rainfall. These advisories are made
widely available to the public and risk management agencies
in relevant counties.

As these heavy rain advisories are issued from the man-
dated forecasted agency, they have high potential to be used
in a systematic manner as an FbF trigger in flood EAPs.
However the skill of these advisories is unknown. In addi-
tion they are developed explicitly for heavy rainfall warnings
and only implicitly warn of flooding. Here then we assess the
accuracy of the historically issued KMD HRAs and evaluate
their potential to be used as a trigger in an FbF system for
flooding. Understanding the level of skill of the advisories
supports the development of early-action protocols by disas-
ter managers.

The verification of the advisories also helps to build con-
fidence in early warnings from subjective forecasts. Many
forecasts of natural hazards are produced with some level
of expert judgement, but this subjectivity makes verification
difficult as a large number of forecasts produced using a con-
sistent method are rarely available for objective evaluation.
Without this evaluation, trust in the forecast producer alone
determines confidence in the forecasts. However when a rea-
sonable archive of forecasts is available, forecast verification
can help both to build confidence in the use of the forecasts
and to increase trust in the forecast producer.

The forecast and verification data are described in the fol-
lowing section, along with an outline of the challenges to
verification posed by the format of the advisories and the
approach taken to meet this challenge. Results follow, and
the paper concludes with a discussion of the main findings
and limitations to the analysis along with recommendations
for design and operation of the Kenya EAPs and further re-
search.
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2 Data and verification approach

2.1 Production of the KMD heavy rainfall advisories

The first HRA was issued at the KMD on 2 June 2015 after
being introduced as a forecast product as part of the Severe
Weather Forecasting Demonstration Project (SWFDP) for
East Africa (https://www.wmo.int/pages/prog/www/swfdp/
SWFDP-EA.html, last access: 11 January 2021). This project
was implemented with support from the World Meteorologi-
cal Organization (WMO) with the aim of improving the abil-
ity of National Meteorological and Hydrological Services
(NMHSs) to forecast severe-weather events and improve the
lead time of early warnings as well as the interaction of
NMHSs with disaster managers before and during the event.
The intended audiences for these advisories are national and
county risk management agencies, humanitarian organiza-
tions, relevant ministries, and the media for dissemination to
the general public within areas of concern.

The decision to issue an advisory is subjective, informed
by dynamical model output and forecaster experience. Ev-
ery day forecasters at the KMD’s Severe Weather Fore-
casting section review forecast products from Global Pro-
ducing Centres (such as the European Centre for Medium-
Range Weather Forecasts, ECMWF; National Centers for
Environmental Prediction, NCEP; UK Met Office; and Me-
teo France) using their judgement to produce a 5 d running
severe-weather forecast. This 5 d severe-weather forecast is
based on areas expected to receive any of the following: rain-
fall above 50 mm in 24 h, winds greater than 25 knots, or
waves above 2 m height. These forecasts are presented graph-
ically as polygons, along with tables showing the level of risk
(low, medium, or high) over specified areas. At 09:00 Z rep-
resentatives from the NMHSs of all the contributing coun-
tries of the SWFDP participate in a teleconference call to
discuss the forecast and develop a consensus.

If any models indicate a raised chance of an extreme
event occurring over Kenya during the next few days, then
a high-impact weather conference is held at the KMD by
experts from the forecasting unit, and a consensus advisory
is drafted. A subjective probability of occurrence is esti-
mated based on the consensus between models, taking into
account weighting of the better-performing models (where
model quality is judged subjectively according to forecast-
ers’ experience). Once the advisory is drafted it is examined
and reviewed by the senior management within the forecast-
ing division and finally sent to the director for approval to
disseminate it to the public by the public weather service sec-
tion.

HRAs are the most frequently issued type of advisory by
the KMD (advisories for strong winds, ocean waves, and
temperature are also issued but are not considered in this
study). The advisories are text-based (an example is shown
in Fig. 1). They generally specify a rainfall threshold which
could be reached: sometimes this is included as a rainfall rate

(e.g. 30 mm in 24 h), otherwise an accumulation total with-
out a rate is mentioned. Finer-scale details are often included
in this description, such as when within the valid period the
rainfall can be expected to start for different regions. Fol-
lowing the forecast description, the full list of potentially
affected counties is listed, along with general instructions
for flood preparedness (e.g. “be on the lookout for potential
floods”, “avoid driving through or walking in moving water”,
“people in landslide prone areas . . . should be on high alert”).

There are no clear objective criteria triggering issuance
of HRAs, which is a subjective process depending on fore-
casters’ experience and perception of model skill, consen-
sus within the forecasting section, and forecast data avail-
able. The forecast information used at the KMD to pro-
duce the HRAs has changed over the advisory period under
study: in mid-2016, the KMD was granted a 2-year trial li-
cense to ECMWF “eccharts” through the SWFDP, and in Au-
gust 2017 the KMD began using the UK Met Office Global
Hazard Map (GHM) as part of the ForPAc project. The GHM
provides an at-a-glance summary of forecast high-impact
weather over the coming week by visualizing forecasts from
the UK Met Office (MOGREPS-G, which is the Met Of-
fice Global and Regional Ensemble Prediction System) and
ECMWF (ENS), both separately and in a multi-model en-
semble forecast. The multi-model informs summary poly-
gons which direct forecasters to the potential for high-impact
weather over the week ahead via an overview map.

By the end of 2019 a total of 33 HRAs had been issued.
These 33 have been digitized here for the purpose of verifi-
cation, with relevant information extracted: the date of issue
and validity, the probability range, and the rainfall thresh-
old specified along with all counties mentioned. Details are
given in Table 1, and descriptive statistics are shown in Fig. 2.
Several aspects of the KMD advisories demand a careful ap-
proach to verification, as detailed in the following section.

2.2 Verification approach

There are three characteristics of the HRAs with implications
for verifying them against observed rainfall:

1. The small sample size (33) means it is difficult to as-
sess specific aspects of the forecast such as reliability
of probabilities or accuracy of rainfall thresholds. De-
scriptive statistics for these are provided in Fig. 2, which
shows that the probability range of “33 %–66 %” is in-
dicated in nearly all advisories (Fig. 2d; used in 26 ad-
visories), and other probability ranges are rarely used.

2. The forecast window over which advisories are active
is variable from 1 to 6 d but most commonly out to 3 d
(Fig. 2c; 13 advisories), so the definition of heavy rain-
fall for verification cannot be consistent.

3. The spatial characteristics of the forecasted heavy rain-
fall are ambiguous. To illustrate: should we deem an
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Figure 1. An example of a heavy rainfall advisory issued by the KMD.

Figure 2. Summary statistics of advisories issued over 2015–2019 detailed in Table 1. (a) The number of advisories issued per year, (b) the
rainfall threshold mentioned, (c) the length of the valid period, and (d) the probability mentioned.
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Table 1. Summary of all advisories 2015–2019 evaluated in this study.

Label Issue date Period length Largest rainfall Probability indicated
(days) threshold mentioned

A 2 June 2015 2 50 mm 33 %–66 %
B 2 July 2015 2 50 mm 0 %–33 %
C 25 April 2016 2 50 mm 80 %–100 %
D 18 April 2017 2 50 mm 33 %–66 %
E 28 April 2017 1 50 mm 70 %–89 %
F 18 September 2017 3 50 mm 80 %–100 %
G 11 October 2017 3 50 mm 33 %–66 %
H 30 October 2017 2 50 mm 33 %–66 %
I 2 November 2017 4 30 mm 66 %–100 %
J 27 February 2018 3 50 mm 33 %–66 %
K 9 March 2018 4 40 mm 0 %–33 %
L 15 March 2018 4 50 mm 66 %–100 %
M 27 April 2018 5 40 mm 33 %–66 %
N 2 May 2018 3 50 mm 33 %–66 %
O 7 May 2018 3 50 mm 33 %–66 %
P 20 May 2018 1 50 mm 33 %–66 %
Q 30 May 2018 1 30 mm 33 %–66 %
R 4 June 2018 3 40 mm 33 %–66 %
S 24 September 2018 3 50 mm 33 %–66 %
T 23 October 2018 3 40 mm 33 %–66 %
U 25 March 2019 3 30 mm 33 %–66 %
V 3 May 2019 4 40 mm 33 %–66 %
W 7 May 2019 5 30 mm 33 %–66 %
X 22 May 2019 3 40 mm 33 %–66 %
Y 31 May 2019 6 40 mm 33 %–66 %
Z 10 October 2019 5 20 mm 33 %–66 %
A′ 14 October 2019 5 40 mm 33 %–66 %
B′ 23 October 2019 6 20 mm 33 %–66 %
C′ 18 November 2019 6 40 mm 33 %–66 %
D′ 23 November 2019 3 30 mm 33 %–66 %
E′ 28 November 2019 6 30 mm 33 %–66 %
F′ 3 December 2019 3 None 33 %–66 %
G′ 6 December 2019 3 20 mm 33 %–66 %

advisory warning of 50 mm of rainfall for two named
counties to be a “hit” if 50 mm accumulated rainfall is
observed (a) over a single point within at least one of the
counties, (b) over the entirety of either or both counties,
or (c) any areal extent between these extremes? This
spatial aspect is further complicated by the wide range
of size of Kenyan counties: from just over 200 km2

(Mombasa) to over 70 000 km2 (Turkana). The hit rate
and false-alarm rate would be highly sensitive to these
verification criteria.

In order to address these issues, we take a step back and re-
focus on the question of whether these advisories would have
been worthwhile for flood preparedness. Though “heavy
rainfall” does not necessarily lead to flooding, and flooding
does not always require a heavy rainfall event for triggering
(Berghuijs et al., 2019), we proceed by considering the per-
spective of a manager responsible for flood preparedness at

the KRCS who is interested in the consequences of using the
advisories as a trigger for preparedness.

We first assume that every advisory triggers preparedness
actions independent of the rainfall threshold or probability
specified. We then define the extent of the preparedness ac-
tions according to the counties mentioned in the advisory.
Such actions are unspecified here and could range from a
low-regret communication to county-level Red Cross volun-
teers to a more expensive decision to pre-position supplies.
This approach is consistent with the FbF approach, though
with action triggered on the release of an advisory rather than
being associated with a particular probability level.

After assuming that action was taken within the entire re-
gion under advisory for each advisory window, we then con-
sider the question of whether this action was worthwhile.
There is no single answer to this question as it depends on the
specific actions along with individual and institutional toler-
ances for false alarms and misses. However following this
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approach we can identify clear hits and false alarms and can
confront the advisories with “what really happened”. As such
our method involves answering the following four questions:

1. How well does the total area under advisory warn of the
extent of heavy rainfall? (Sect. 3.1)

2. What is the relative spatial extent of preparedness ac-
tions implied by each advisory? (Sect. 3.2)

3. How many flooding events in the period 2015–2019
would the advisories have anticipated? (Sect. 3.3)

4. How often would an FbF system based on the advisories
be expected to trigger? (Sect. 3.4)

By answering these questions we determine the extent to
which the KMD HRAs could effectively guide preparedness
activity.

2.2.1 Comparing advisory areas with subsequent
rainfall

We address question 1 with a visual comparison of the total
area warned under each advisory with the total rainfall accu-
mulation in the subsequent advisory window. Rainfall obser-
vations are taken from the Climate Hazards and Infra-Red
Precipitation Data with Stations (CHIRPS) dataset (Funk
et al., 2015). We use CHIRPS as it compares favourably
against other rainfall datasets over East Africa and bene-
fits from relatively high station density in Kenya (Dinku
et al., 2018). Particular weaknesses of CHIRPS include spu-
rious drizzle and underestimation of peak magnitudes of
the most extreme rainfall (specifically the 99.9th percentile;
Beck et al., 2017), but our focus on multi-day accumulation
of heavy but not necessarily extreme rainfall should be in-
sensitive to these biases.

With this visual comparison we begin with a subjective
assessment of the overall performance of advisories. Follow-
ing this we calculate the distribution of accumulation totals
across all 5km CHIRPS grid points inside the polygon asso-
ciated with the warned counties, quantifying the spatial ex-
tent of high rainfall totals for areas under advisory. In addi-
tion we show the distribution as the percentage of grid points
within the warned region receiving more than a specified
rainfall threshold. Throughout the analysis we evaluate the
total rainfall accumulation across each variable-length advi-
sory window.

In addition we derive the proportion of the warned
area that experienced accumulated rainfall above indicative
thresholds. No single rainfall threshold leads to increased
flood risk, which depends on many factors, both hydrome-
teorological and social. Even for a single location the same
amount of rainfall may cause a flood in one year but not the
next. In the following analysis we show results for 25, 50,
75, and 100 mm accumulation over the advisory window and
focus the discussion on results for 50 mm accumulation. We

do not suggest that this threshold has primacy over others;
an in-depth analysis would be necessary to determine and
quantify the most relevant thresholds for flood risk in a loca-
tion. Instead we take 50 mm as a working definition of heavy
rainfall to keep the discussion concise whilst including other
thresholds in the analysis for reference.

2.2.2 Estimating the relative extent of preparedness
actions implied by advisories

To answer question 2 we estimate the relative scale of pre-
paredness implied by each advisory. In practice preparedness
actions would be determined by overlaying the forecast haz-
ard footprint with data on exposure and vulnerability to that
hazard. Many different actions are possible which would tar-
get different groups, and we do not attempt to evaluate the
cost of specific actions. Instead we aim at a broad indication
of the magnitude of the general preparedness activities ap-
propriate for each advisory by assuming that preparedness is
taken based on advisories to target communities exposed to
a 1-in-5-year riverine flood event.

We use ward-level exposure data provided by the KRCS,
which have been created by combining population density
with an estimate of the areas inundated by a 1-in-5-year
flood which has been provided to the KRCS by the ECMWF
and calculated using the modelling framework of the Global
Flood Awareness System (GloFAS). The exposure estimate
is not intended to quantify the absolute level of assistance re-
quired (not least because the frequency of advisory issuance
means that the vast majority will not be followed by a 1-
in-5-year event by definition). However it does allow a rel-
ative estimate of the extent of preparedness action required
between advisories. For instance an advisory active in loca-
tions where 2 million people are exposed to flooding is likely
to require more preparedness than an advisory relevant for
only 200 000 people. It should also be noted that the number
exposed to flooding is an upper bound on those actually re-
quiring assistance as we do not take vulnerability to flooding
into account.

We then assess the amount of rainfall falling in the spe-
cific areas where people are exposed to flooding and esti-
mate the percentage of the “prepared people” who received
above-threshold rainfall. From this we can estimate the rela-
tive “worthiness” of each preparedness action: assuming that
when flood preparedness assistance is given in a location, and
significant rainfall follows, the action is considered worthy
(even if that heavy rainfall does not lead to flooding). We
note the potential mismatch between local rainfall and flood-
ing (e.g. when rainfall falls upstream in the catchment and
floods the lower reaches of the river), which suggests that our
assumption of worthiness only when heavy rainfall is experi-
enced locally should be considered a lower bound; inclusion
of flooding related to non-local rainfall would only increase
the estimate of worthiness.
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2.2.3 Verifying HRAs against flood events and
evaluating frequency of action triggering

The analysis so far quantifies the extent of rainfall accumu-
lations and estimates the relative scale of the actions which
each advisory may trigger. Whilst heavy rainfall is not the
only factor in flooding (Amoako and Frimpong Boamah,
2015) and does not always trigger flooding, flood risk and
response managers may be inclined to use the HRAs to trig-
ger readiness activities for flooding. It is therefore instruc-
tive to verify the issued HRAs directly against recorded flood
events, answering question 3 above. We use two sources of
flood records, and their use in verifying the advisories is de-
scribed below.

The first flood record database has been created by the
KRCS. This comprises a county-level record of flood events
based on information from the KRCS Emergency Operations
Center (EOC). The EOC operates 24 h a day at KRCS head-
quarters and records disaster incidences that are recorded all
over the country on social and mainstream media and by
KRCS volunteers. The record from the EOC has been sup-
plemented with additional events identified post hoc from
other online sources. In total over the 5 years 2015–2019,
the database notes 461 flood events, with 167, 44, 54, 164,
and 199 for each year separately (we note that simultaneous
flooding in two counties is considered in this count as two
events).

The KRCS flood record is then used to calculate two key
skill statistics across the entire sample (over all counties):
firstly the hit rate (HR), calculated here as the percentage of
events which were preceded by advisories. Secondly we cal-
culate the precision, which is defined as the percentage of
advisories which are followed by a flood event (NB preci-
sion is equal to 100 % minus the false-alarm ratio, another
key metric for FbF, and is a commonly used diagnostic in
informatics; Powers, 2011). HR and precision are calculated
over the whole sample and for each year separately. Follow-
ing Coughlan de Perez et al. (2016) they are also calculated
under the assumption that actions related to flood prepared-
ness have a lifetime; that is, preparedness carried out today
will still avert flood risk even if that flooding does not oc-
cur immediately. Actions such as evacuation will only re-
main effective whilst people remain evacuated, whilst low-
regret actions focused on readiness such as pre-positioning
of water purification tablets will still be useful if flooding oc-
curs months later. Coughlan de Perez et al. (2016) use a 30 d
lifetime in their verification; here we evaluate the advisories
across a range of action lifetimes from 0 to 30 d following
the end of the advisory window.

The second source of flood record we use is the EM-DAT
database (EM-DAT, 2020). EM-DAT collects data on the oc-
currence and effects of mass disasters globally, requiring at
least one of the following four conditions for inclusion in the
database:

– 10 or more people dead;

– 100 or more people affected;

– the declaration of a state of emergency;

– a call for international assistance.

Eight significant flood events in Kenya are recorded in
EM-DAT for the period June 2015 to December 2019. From
these we remove the Solai earth dam collapse of May 2018
as there were major non-meteorological reasons for its col-
lapse (including lack of maintenance and an outdated de-
sign; NECC, 2018). We merge the two entries beginning
14 March 2018 as they relate to the same period of heavy
rainfall. This leaves six flood events, to which we add the
landslide of November 2019 as this was directly triggered by
a period of heavy rainfall. Compared to the KRCS record,
the EM-DAT record is much smaller and so precludes a ro-
bust quantitative analysis. Instead we consider each event in
turn and determine the relevance of the advisories for antici-
pating these most significant flooding events, for which early
warning would have been most valuable.

Finally we conclude by addressing question 4. Here we de-
termine the number of times an FbF system based on HRAs
might be expected to trigger in each county. We assume here
that actions have a lifetime as described above and that the
system will not be triggered again if an action is still active
in that county.

3 Results

3.1 How much rain fell in counties under HRAs?

We begin by identifying the total area of all counties named
in each HRA and compare this with the accumulated rainfall
over Kenya during the advisory valid window. For conve-
nience, advisories are labelled (A–Z, followed by A′–G′) in
Table 1, and these labels are used from this point.

Figure 3 shows all the advisories and the resultant accumu-
lation. From a visual comparison, we see that 18 advisories
provide a good forecast of all areas going on to receive at
least 50 mm rainfall accumulation (A, F, H, J, K, L, P, R, S,
Y, Z, A′, B′, C′, D′, E′, F′, and G′). For these advisories, pre-
paredness is most likely to have been considered worthy, and
local actions based on these advisories are likely to be hits.

Nine advisories do successfully warn of heavy rainfall in
some areas whilst failing to warn other counties which re-
ceived similar amounts (G, I, M, N, O, T, V, W, and X). In
these cases preparedness may have been considered worthy,
although preparedness would not have reached all those po-
tentially affected by flooding, with risk of missed events and
therefore failing to act.

Five advisories warned the “wrong” counties, where more
accumulation was seen in unwarned counties than those re-
ceiving warnings (C, D, E, Q, and U). One advisory (B)
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Figure 3. (a) Counties with active warnings for each of the 33 heavy rainfall advisories issued by the KMD during 2015–2019 (advisory
details are given in Table 1). (b) Rainfall accumulations (mm) during each advisory window, based on CHIRPS.
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Figure 4. How much rain fell in counties under advisory? (a) Rain-
fall accumulation during advisory window, showing distribution
over all 5 km square grid points within counties mentioned in ad-
visory (light/dark shading shows the range/interquartile range of
the distribution, and the dot indicates the median). (b) Percentage
of each advisory region where rainfall accumulation was above 25,
50, 75, or 100 mm.

warned coastal counties of heavy rain, yet 20 mm fell during
a 2 d window, a relatively normal amount for the region. For
these six advisories it is unlikely that preparedness triggered
by the advisories would be considered worthwhile; instead it
would possibly be seen as false alarms and misses.

Next, we consider the rainfall distribution across these re-
gions under advisory. Figure 4a shows the rainfall accumu-
lation across the warned region for each advisory, presented
as the distribution over the sample of 25 km2 CHIRPS grid
points. Figure 4b shows the percentage of the warned area
which receives rainfall accumulation above thresholds 25,
50, 75, and 100 mm. We see that for the vast majority of ad-
visories (29 out of 33), less than 50 % of the warned area
received over 50 mm. This implies that for any point location
falling in an area under advisory, there is generally over a
50 % chance that no “significant” accumulation will be seen.
This is inevitable for rainfall early warnings, particularly in
a region with a large contribution from localized but intense

Figure 5. Ward-level density of the population exposed to 1-in-5-
year flooding, produced by KRCS (see Sect. 2.2.2 for details).

convective storms, leading to high spatial variability in rain-
fall totals.

From a meteorological perspective then, we find the ad-
visories to be relatively good indications of heavy rainfall.
Summarizing the above semi-quantitative analysis of Figs. 3
and 4, we conclude that 18 successfully warned those regions
which did receive heavy rainfall, 9 provide warning for some
regions but miss other regions, and only 6 of 33 are unlikely
to be useful for early preparedness actions. However at the
same time, nearly all “good” advisories warn significantly
larger areas compared to the areas which go on to receive
heavy rainfall.

We next turn to potential actions triggered by the advi-
sories, estimating the relative extent of preparedness action
implied by advisories along with the potential public percep-
tion of the actions based on locally experienced rainfall.

3.2 What is the extent of preparedness action implied
by advisories?

Ward-level density of the population exposed to 1-in-5-year
flooding is shown in Fig. 5. High population density is seen
around the Lake Victoria basin and elsewhere in the central
highlands, although large areas of this highly populated re-
gion are not exposed to significant flood risk. This indicates
the importance of taking patterns of exposure into account.
This population density is then integrated across the warned
region for each advisory to estimate the total number of ex-
posed people warned by the advisory. This is shown as the
black stars in Fig. 6a.
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Figure 6. What is the extent of preparedness action implied by advi-
sories? (a) The total population living in the warning region (black
star) and the number living in that region also receiving at least 25,
50, 75, or 100 mm rainfall over the advisory window. (b) Percent-
age of the population living in the advisory region and also receiving
above-threshold rainfall.

There is significant variability in the extent of the warn-
ings for the population at risk from flooding: eight advi-
sories warn areas where at least 1 million people are ex-
posed to flooding. The rest warn around 500 000 people and
fewer, and of these the warning from 18 advisories is “only”
targeted at fewer than 200 000 people (these smallest-scale
warnings are generally when only warnings for coastal coun-
ties are active). This quantifies the significant variations in
the extent and cost of preparedness actions which could be
linked to the advisories.

To evaluate the extent to which this preparedness would
have been perceived as worthwhile, we also show the number
of exposed people living in a warned area which then went on
to receive accumulation of 25, 50, 75, or 100 mm. These re-
sults are also shown in Fig. 6a, whilst Fig. 6b presents these
values as a percentage of the population warned which re-
ceived rainfall above each threshold. Since these scores are
conditioned on exposed population, they are highly sensi-
tive to the underlying exposed population density. They will

only be improved if heavy rain falls on an area at risk from
flooding, and this improvement will be higher if the area
is more densely populated. In this way we move beyond
purely meteorological verification and take into account real-
world implications of acting on a forecast. This also consid-
ers the potential response of beneficiaries of flood prepared-
ness: if flood preparedness is carried out in a region that sub-
sequently receives significant rainfall, most people will see
the preparedness as worthwhile. Conversely, people are more
likely to see the action as a false alarm if no significant rain-
fall falls where they live.

Focusing again on 50 mm accumulation as a nominal
threshold for increased flood risk, we see several advisories
for which most people receiving early preparedness would
not have seen significant rainfall. For eight advisories less
than 10 % of those receiving assistance would have seen
more than 50 mm; these are unlikely to be seen by most as
worthy actions (A–E, P, Q, and U). At the other end of the
scale, six advisories see significant accumulation for at least
60 % of those assisted (M, T, X, A′, C′, and E′). The re-
maining 24 see significant rainfall for between 10 %–40 %
of those affected. Notably, by this metric the first five ad-
visories (covering mid-2015 to mid-2017) are among the
worst-performing, whilst those most likely to have led to
worthy actions were all issued in 2018 and 2019.

3.3 Did advisories warn of flooding?

We next turn to the verification of the advisories against
recorded flooding in the KRCS flood record. HR and pre-
cision are shown in Fig. 7. This shows a clear improvement
of the advisories over time: for advisories in 2015 and 2016
less than 5 % of flood events were hit, even with a favourable
assumption of a 30 d lifetime of preparedness actions. Con-
versely action on advisories in 2019 would have seen a 40 %
HR with a 0 d lead time, rising to 60 % or over 70 % if actions
are taken with a 1- or 2-week lifetime. Though 2019 also saw
many more advisories issued compared to earlier years, each
was also more precise, with a 40 % chance of seeing flooding
in a county within 2 weeks of taking action during 2018 and
2019, compared with 20 % in 2017, 10 % in 2016, and 0 % in
2015.

Though recent advisories perform well when measured
against the KRCS record of flooding, it may not be that
all events in the record would have required significant pre-
paredness. We therefore turn now to the seven most signifi-
cant flooding events in Kenya over the period, recorded in the
EM-DAT database. These are compared with relevant advi-
sories; for simplicity we consider an advisory to be relevant
if it was issued in the 7 d preceding the indicated start date
of the impact as early preparation triggered by that advisory
would have been in place for the onset of the event. We do
not require the heavy rainfall window to explicitly overlap
with the recorded period of impact, allowing for some lag be-
tween heavy rain and flooding. The locations and details of
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Figure 7. Skill statistics of the advisories when verified against ob-
served flood events at county level. The hit rate shows the percent-
age of events which were preceded by an advisory in that county
(solid line), whilst the precision shows the percentage of county
warnings which were followed by an event (dashed line; note that
precision is equivalent to 100 % minus the false-alarm ratio). Statis-
tics are calculated for all years (black line) and each year separately
(coloured lines) across a range of “action lifetimes”, such that theo-
retical action based on each advisory is assumed to have a lifetime
so is still considered a “hit” as long as the flood event occurs within
the lifetime of the action.

the events are plotted in Fig. 8, which also shows the coun-
ties mentioned in any relevant advisories as defined above (if
any). These seven events are now discussed in turn.

Figure 8a shows the significant flooding which occurred
across Kenya in December 2015 during the large 2015 El
Niño event that peaked in December. This event led to the
highest number of deaths recorded in the sample (112). No
HRA was issued at any point before or during this event or
during the season as a whole. Notably, seasonal forecasts
did indicate an increased risk of a particularly wet season,
although as a whole the seasonal rainfall anomalies were
smaller than previous comparable El Niño events (Siderius
et al., 2018; MacLeod and Caminade, 2019).

Figure 8b represents a smaller event in Turkana
county caused by intense rainfall on a single afternoon
(10 March 2016). This rainfall led to river overflow, three
deaths, displacement of 1000 people, and loss of livestock.
No HRA was issued for this event.

The third event (Fig. 8c) occurred at the end of April 2016.
This flooding impacted over 10 000 people across semi-arid
counties in the north (Turkana, Marsabit, and Wajir) along
with Nairobi. In Nairobi the rainfall triggered the collapse
of a building in the Huruma estate (a building which was
not constructed to safe standards), ultimately leading to 52
deaths. In advance of this period, an HRA was issued by the
KMD (advisory C); however warnings were given for coastal
counties and parts of western Kenya but not for those coun-
ties most seriously impacted. The KRCS did trigger an early

response based on this advisory, activating response teams
and sending out warnings via SMS to communities living in
lowland areas. Although no heavy rainfall was directly ex-
perienced in those regions for which the response was trig-
gered, the action was felt to be worthwhile at the KRCS as
some flooding was experienced later due to the Tana River
bursting its banks after heavy rainfall in the central highlands.

The next EM-DAT event occurred in May 2017 (Fig. 8d).
This involved coastal counties along with some in the central
highlands and some in the west. A total of 26 deaths were
recorded, with over 25 000 affected for this event, during
which a reported 235 mm of rain fell on Mombasa in a 24 h
period between 8–9 May. Although an advisory for coastal
counties was issued in late April (advisory E), the valid pe-
riod was a single day which saw little accumulation in the
warned counties.

Figure 8e shows the impacts of heavy rainfall during
the 2018 long rains season, which has been evaluated in
depth elsewhere (Kilavi et al., 2018; Finney et al., 2019).
Widespread flood impacts were seen across the country be-
ginning on 14 March and extending throughout the month.
Two advisories were issued during March (advisories K and
L). The first was issued on the 9 March and covered the pe-
riod 13–15 March, and a follow-up was issued on 15 March,
covering the period 16–19 March. Both of these periods saw
significant rainfall accumulation (see Fig. 3 and Kilavi et al.,
2018). Every county noted in EM-DAT as experiencing flood
impacts was mentioned in these advisories except for Man-
dera in the extreme north-east of Kenya.

Figure 8f shows impacts that occurred from 17–24 Octo-
ber during the short rains 2019. Flash floods, landslides, and
riverine floods were reported in Turkana, Wajir, and Elgeyo-
Marakwet counties. Two advisories were issued preceding
this event (advisories Z and A′). The first was issued on 10
October, covering the period 10–14 October, and a second
was issued on 14 October, covering the period 16–20 Octo-
ber. Counties with reported flood impacts were all mentioned
in these HRAs.

The final event in the sample also occurred during the
2019 short rains: a landslide in West Pokot on 23 Novem-
ber (Fig. 8g). This occurred following heavy rainfall across
many counties, for which a warning was issued several days
ahead of the event, on 18 November, covering 19–24 Novem-
ber (advisory C′).

In summary the first four events in the study period were
not well warned by advisories. The third event in April 2016
was preceded by a warning, but it did not target the counties
with significant flood impacts. The final three events in 2018
and 2019 were all preceded by advisories correctly targeting
the counties which saw major impacts from heavy rainfall;
the lead time between the first advisory and the recorded start
of the impacts for these three events was 5, 7, and 5 d, respec-
tively. Advisories issued in 2018–2019 therefore gave effec-
tive warning to areas experiencing significant flooding im-
pacts, whilst the earlier advisories did not. Along with skill
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Figure 8. Were the most significant impacts of heavy rainfall preceded by advisories? All seven relevant events extracted from EM-DAT
across the advisory period (see Sect. 2.3 for details of event selection). Counties reporting impacts are shown in orange, whilst hatching
indicates counties for which warnings were active when the impact was recorded to have begun.

analysis shown in Fig. 7, this suggests that in recent years
advisories have improved and have the potential to act as
a trigger for an FbF system. However it should be recalled
that the warned area is often much larger than the area ex-
periencing heavy rainfall (see Figs. 4, 6, and 8). Even those
advisories where triggering leads to worthy action where im-
pacts are felt will also simultaneously trigger action in many
places which do not require early preparedness, and these
“actions in vain” may be quite expensive in highly populated
regions such as western Kenya. In the next and final section,
we turn to a practical consideration of basing such a system
on advisories and estimate how often such a system might be
expected to trigger.

3.4 How often would an FbF system based on
advisories trigger?

An important consideration in setting up an FbF system is
how frequently it can be expected to be activated. It is desir-
able to prepare for all significant events; however more fre-
quent triggering limits the cost of actions if the system is to
remain financially sustainable. Here we estimate how often
such a system might trigger.

Naturally the number of advisories will fluctuate year to
year depending on climate variability. However 2018 and
2019 could reasonably indicate the potential number of ac-
tivations of an FbF system, given that they both experienced
significant rainy seasons (with 11 advisories issued in 2018

and 13 in 2019; Fig. 2a). For low-cost actions such as tar-
geted communication of the warning to vulnerable communi-
ties, this may be an acceptable number of triggers, and results
from Sect. 3.3 suggest that these would successfully warn
against all significant flood events. A key requirement of the
advisories is to warn the vulnerable public of significant haz-
ards, and so for this purpose the frequency of issuance is ap-
propriate to the cost of the warning.

In the FbF context the advisories could be used to insti-
gate actions from response organizations and disaster man-
agement. Several actions have already been identified as po-
tentially forming part of an EAP (Maurine Ambani, personal
communication, 2020):

– strengthening of barriers designed to prevent people
from crossing rivers or places where there is usually
fast-flowing water;

– provision of water containers and water treatment;

– provision of vouchers to affected populations to ac-
cess water treatment tablets, containers, and treated
mosquito nets.

These kinds of actions would have significant costs, and so
more than 10 triggers in a year may not be realistic. However
on the other hand, triggering on every advisory may not be
necessary. Frequently an advisory is issued which follows on
from another, describing a continuing rainfall event (e.g. J–L,
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Figure 9. How many times per year might an FbF system based on advisories trigger? The number of potential triggers per county during
2019: here we assume that an action is triggered if an advisory is issued as long as no action had already been triggered in the preceding 1,
2, 3, or 4 weeks (a–d).

M–O, C′–G′). Significant flood preparedness may not need
to be carried out for each individual one of the advisories
in sequence as actions of this nature will have a “lifetime”
that may span the interval between several consecutive issued
warnings (Coughlan de Perez et al., 2016). For example river
defences will still be effective several weeks after action is
taken to repair or reinforce them.

The impact of action lifetime on trigger frequency is il-
lustrated for each county in 2019 in Fig. 9. Here we assume
that the action will not be repeated if another advisory fol-
lows closely after the action is triggered. The number of total
actions is shown, assuming an action lifetime of 1, 2, 3, or 4
weeks. We consider multiple chained advisories such as C′–
G′ as triggering a single preparedness action: after the first
days of heavy rain, activity will have already moved from
preparedness to response mode; additional advisories may
trigger scaling-up of existing response operations.

With an action lifetime of 1 week most counties would
have triggered 4 times in 2019. With a longer lifetime the
system activates less often, and in the longest case of 4 weeks
no county would have activated in 2019 more than twice (on
average, once for each of the rainy seasons).

Typical FbF approaches tend to focus on extreme events
rather than floods which occur every year (RCRCCC, 2020),
and so even taking into account long action lifetimes, this
trigger frequency may still be too high for high-cost ac-
tions. However this frequency may yet be appropriate for FbF
linked to low-cost, low-regret actions, such as fast-tracking
drainage clearance which has already been planned and bud-
geted for.

4 Discussion and recommendations

Here we have evaluated the KMD HRAs. This has been done
from the perspective of a humanitarian agency such as the
KRCS as if the advisories were used to initiate a prepared-
ness protocol such as FbF in order to reduce risks related to
heavy rainfall. Such EAPs for a national flood FbF system

are currently being developed. Our assessment of the advi-
sories has considered the following:

– the relationship between area warned and the subse-
quent rainfall received;

– the scale of preparedness triggered by the advisories and
the perception of the actions based on locally experi-
enced rainfall;

– whether the most significant recent flood events fol-
lowed HRAs;

– how frequently an FbF system could be expected to trig-
ger.

We now draw some general conclusions and provide some
recommendations for improvement of the HRAs and outline
the development of flood risk forecasting in Kenya.

4.1 Conclusions

Advisories issued in the “early period” (from the first in 2015
up to and including 2017) do not appear to be particularly ef-
fective for preparedness for flood or heavy rain impacts. For
each of the nine advisories that were issued in this early pe-
riod, the counties which were warned did not generally re-
ceive significant amounts of rainfall. Furthermore four sig-
nificant flood events were reported in this period, and none
were anticipated by any advisory, whilst 0 %, 5 %, and less
than 20 % of all recorded flooding of any magnitude was
preceded by advisories in each event of 2015–2017, respec-
tively. We conclude then that it is unlikely that conduct-
ing preparedness actions based on advisories between 2015–
2017 would have effectively reduced flood or heavy rain im-
pacts.

However we note evidence of an improvement in the
potential utility of advisories in recent years of 2018 and
2019, when they were more frequently issued. Notably, these
years had particularly wet seasons: March–May 2018 and
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October–December 2019. For a 2-week action lifetime, pre-
paredness at county level based on advisories in 2018 and
2019 would have anticipated 40 % and 70 % of all 363
recorded county-level flooding events in these years, whilst
the three periods which saw significant mortality were di-
rectly associated with heavy rainfall which was well warned
by advisories. We conclude then that advisories issued across
2018/19 were particularly skilful at anticipating heavy rain-
fall and that preparedness actions based on these could have
led to reductions in the impacts of the worst floods in this
period. If the performance of advisories over this period is
indicative of future performance, then they have the poten-
tial to effectively anticipate significant flooding impacts in
Kenya.

One factor for the improved hit rate in 2018 and 2019 may
be the higher frequency of issuance. However this does not
explain the fact that infrequent early advisories were not gen-
erally followed by significant rainfall as noted above. This
poor performance in the early period might instead be re-
lated to the novelty of the system. The first advisories were
issued in 2015, and it may have taken some time to develop
the systems and expertise and gain confidence in issuing ad-
visories. Another explanation for the change in skill is the
evolving access to forecast information from global models
at the KMD.

In mid-2016 the KMD was granted a 2-year trial license
to ECMWF “eccharts” through the SWFDP, which is re-
ported to have been crucial in informing the advisories re-
leased during that period (Mary Kilavi, personal communi-
cation, 2020) and particularly so during the long rains 2018
(advisories J–Q). In addition the GHM in use since August
2017 has provided a multi-model, easy-to-interpret visualiza-
tion of potential severe weather. Evaluation has shown that
multi-model forecasts outperform individual models for ex-
treme precipitation (Robbins and Titley, 2018). The avail-
ability of a higher-skill, multi-model forecast at the KMD in
an easy-to-interpret format may then be a factor in the sig-
nificant improvement in skill of advisories during 2018 and
2019. Indeed it is reported that the GHM was a key source of
information for the advisories which were issued in advance
of all three significant heavy rainfall impacts reported dur-
ing 2018 and 2019 (Fig. 8e–g; see also Kilavi et al., 2018,
for skill analysis of the GHM forecasts used during the 2018
“long rains”).

Overall we demonstrate here in the first systematic verifi-
cation conducted of the HRAs that they have skill. We find an
increase in skill over time and that the HRAs anticipated the
most significant flood events during 2018 and 2019. How-
ever we also find they lack spatial precision on the precise
location of heavy rainfall impacts, which may limit their use
as a trigger in KRCS EAPs.

4.2 Recommendations

Though the HRAs have skill, their likely utility will clearly
depend on the specific context of use. In order to fully as-
certain appropriate actions which could be triggered by the
HRAs, an econometric analysis of the costs and avoided
losses of a range of preparedness actions is necessary (and
recommended). We note here however that their intended
purpose is to alert county governments, other agencies, and
the general public of the possibility of heavy rainfall. For
this purpose they are effective: they are widely disseminated;
the text identification of counties under advisory requires no
technical knowledge to understand; and most importantly,
they have skill. Indeed, Kilavi et al. (2018) note dissemina-
tion and use of HRAs during the long rains 2018.

As a source of information for a systematic FbF system
for flooding, the advisories have several useful characteris-
tics for the KRCS: they are produced by the national man-
dated agency for weather forecasting; they are readily avail-
able at no cost; and being text-based, they require no spe-
cific knowledge for interpretation. However it is likely that
they are not suitable for triggering a KRCS EAP for flood-
ing. The county-scale warning limits the spatial precision of
interventions, and the frequency of the triggering per county
is likely to be too high for FbF, which is intended to tar-
get extreme events with a return period of 1 in 5 years or
greater. In addition the HRAs only provide a general pic-
ture of potential flood impacts without taking into account
any local hydrological conditions. However given the clear
skill of HRAs found here, there is clear scope of the KMD
to develop these in the context of impact-based forecasting
(WMO, 2015): here we make some recommendations for im-
proving the HRAs and the flood forecasting from the per-
spective of stakeholders such as the KRCS.

4.2.1 Developing the HRAs

Improvement of the probabilistic information in the HRAs
would make them more fit for the purpose of FbF. A sin-
gle category 33 %–66 % is issued in nearly all advisories,
which limits options for preparedness actions. More diverse
and precise probabilities would allow a range of increasing
levels of preparedness activities, where high-cost actions are
only triggered for the highest probabilities. Of course it is
essential that these probabilities are reliable, and a relatively
low frequency of subjectively developed forecasts makes this
aspect of the forecast difficult to evaluate. However the use of
historical forecasts and hindcasts from ensemble forecasting
systems used in the GHM (Robbins and Titley, 2018) cur-
rently in use at the KMD would help to establish the reliabil-
ity of probabilities and provide a scientific basis for issuing
more specific heavy rainfall probability forecasts. Analysis
of these dynamical models should also evaluate their perfor-
mance for the four flooding events in the early period of the
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KMD advisories (Fig. 8a–d) to see if these systems did cap-
ture these events.

The heavy rain warning area could also be more precise
by providing it as a free shape rather than administrative
county boundaries. Whilst naming counties in the advisory
is essential for communication to the public and to county
government disaster risk management structures, the precise
area of heavy rainfall areas will not align with administra-
tive boundaries, and so warning whole counties will tend to
overestimate the total area expected to experience rainfall.
Such warning polygons are generated by the GHM, and fore-
casts could be based upon this. The KRCS could then overlay
these with maps of population exposure and vulnerability to
flood risk in order to further narrow down targets for inter-
vention. This would then provide the building blocks of an
impact-based forecasting system following WMO guidelines
(WMO, 2015).

Finally many preparedness actions are limited by the lead
time of the HRAs. They are often issued in the morning of
or the day before the expected start to the rainfall, leaving
a small window to coordinate and implement preparedness.
A longer-lead heavy rainfall forecast would extend the scope
of preparedness actions. Currently the time afforded by ex-
isting 7 and 5 d forecasts from the KMD could be used by
the KRCS to prepare higher-cost actions, which are finally
triggered upon the issuance of an HRA for the next few days.
This approach would be analogous to the ready-set-go ap-
proach of the Red Cross designed to integrate seasonal fore-
casts into decision-making, adapted to a much shorter overall
anticipation window (Bazo et al., 2019).

However the provision of forecasts at an even longer lead
time could further enlarge the window for preparedness. For
instance, sub-seasonal forecasts have been shown to have
skill out to several weeks ahead (Vitart et al., 2017), and there
is clear potential for warnings on this timescale to inform hu-
manitarian preparedness (White et al., 2017). Evaluation of
these timescales is being carried out as part of the ForPAc
project, which has identified potential utility over Kenya, and
these sub-seasonal forecasts are currently being trialled at the
KMD after being made available in real time as part of phase
2 of the S2S project (Kilavi et al., 2018; MacLeod et al.,
2020). The longer lead time of these rainfall forecasts can
afford the KRCS more flexibility and potential for early pre-
paredness.

Having made these suggestions for the HRAs, we must ac-
knowledge the importance of balancing detail with wide in-
terpretability. In this case, although users such as the KRCS
may prefer to see more spatial detail in the advisories, in their
current form the text-based, county-level format means that
no technical knowledge is required to correctly interpret the
information. This facilitates understanding and easy dissemi-
nation (e.g. through radio, translation to local languages, and
in-person broadcasts to communities). To add additional in-
formation may limit the ease with which they are dissemi-
nated and their interpretability and accessibility. Ensuring an

optimal balance for all stakeholders is a challenge for the
KMD and indeed for the NMHSs in general.

4.2.2 Improving flood forecasting

Explicit modelling of local hydrology is necessary to pro-
vide accurate forecasts of flood risk rather than reliance on
rainfall forecasts alone. Although here we do find that HRAs
warn of the most significant flooding events (consistent with
the analysis of Robbins and Titley, 2018, who also find a
good relationship between precipitation forecasts and heavy
impacts across the globe), it is unlikely that flood impacts
will always be felt after heavy rainfall. Or indeed it is not the
case that heavy rainfall is always necessary to trigger flood
impacts, which can occur with “normal” rainfall if the soil
is already saturated (MacLeod et al., 2020). Accurate char-
acterization of flood impacts requires consideration of non-
meteorological and non-hydrological factors.

A unified national flood modelling and forecasting sys-
tem would provide the KRCS with a standardized view of
flood risk across the country; however the KMD does not yet
have such a system, and different approaches are being fol-
lowed in different basins. The Nzoia basin of western Kenya
currently has the only operational flood forecast, where a
basin-scale hydrological model is used to generate a 3 d dis-
charge forecast using basin-average rainfall and soil mois-
ture observations along with a short-range rainfall forecast.
Substantial new investment is being made in flood forecast-
ing in Kenya, notably under the World Bank-supported Wa-
ter Security and Climate Resilience project. This will both
upgrade the Nzoia flood-forecasting system with a new hy-
drological model software and will support an extension of
river flood early-warning systems to other main river basins
of Kenya, including upgraded hydro-meteorological obser-
vation networks supporting hydrological flood forecast mod-
els. This will help to provide more targeted relevant flood
forecasts, and as the hydrological monitoring network is ex-
panded, this will help to evaluate the background level of
flood risk, supported by new hydrological model simulations.
The work will also help to strengthen institutional links be-
tween the KMD, with the mandate for forecasting in Kenya,
and the Water Resource Authority (WRA), with the man-
date for flood risk mapping; close collaboration between the
KMD and the WRA is essential to ensuring effective and co-
herent flood risk management and forecasting in the region.
Other parallel related activities include the SHEAR HiPac
project, which for the Nzoia River basin will map inundation
risk in high resolution and link this to forecasts from the ex-
isting system, and the EU-supported ECHO project develop-
ing flood risk assessment and forecasting for the Tana River.

In the absence of readily available flood forecast in-
formation from the NMHSs covering the entire country,
some national Red Cross societies are now considering the
use of ECMWF GloFAS flood forecasts (see Alfieri et al.
(2013), and http://www.globalfloods.eu, last access: 11 Jan-
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uary 2021) to trigger flood EAPs. In Kenya GloFAS may be
an appropriate product, whilst the basin-scale flood forecast-
ing remains under development, and there remains no uni-
fied national flood-forecasting system. Whilst GloFAS is ad-
vantageous as it is freely available with national coverage,
the GloFAS forecasts are unable to take advantage of real-
time local hydrological observations to initialize the model,
limiting the forecast skill. A locally calibrated model which
assimilates initial hydrological states would likely provide
the optimal basin-scale flood risk forecast. In addition the
need for GloFAS forecast verification remains outstanding
for most basins. The KRCS should work with relevant orga-
nizations to undertake this analysis. Further, use of GloFAS
should be sensitive to issues of national ownership of warn-
ings systems.

Ultimately the evaluation of HRAs presented here should
be put in the context of flood preparedness systems such
as the KRCS flood hazard EAPs. It points to the need,
now widely recognized, for strengthened co-production of
forecast information and products which support the ef-
fective uptake of forecasts into risk management systems.
In Kenya, recent projects exemplify this approach, includ-
ing ForPAc, WISER (Weather and Climate Information Ser-
vices for Africa) SCIPEA (Strengthening Climate Informa-
tion Partnerships - East Africa), and W2-SIP (WISER sup-
port to ICPAC). Simultaneously, the national early warning–
early action platform convened by the KRCS in September
2019 brought together relevant national actors. Coordinated
verification of existing forecast products such as the HRAs
presented here will help to integrate these into systematic
preparedness activities. Whilst in this case the current form
of the HRAs may preclude their use as a trigger for the KRCS
EAPs, they are able to effectively warn of heavy rainfall and
should therefore take a key role in a seamless approach to-
ward mitigating the risk from risks associated with heavy
rainfall across Kenya.

Data availability. Digitized advisories have been made available at
https://doi.org/10.6084/m9.figshare.13553651.v1 (MacLeod et al.,
2021). KRCS flood and exposure data may be shared and given by
KRCS. Please contact the lead author for details. CHIRPS and EM-
DAT rainfall data are freely available by following the relevant ci-
tations.
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