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Gravitational-wave signals from binaries that contain spinning black holes in general include an
asymmetry between the þm and −m multipoles that is not included in most signal models used in LIGO-
Virgo-KAGRA analysis to date. This asymmetry manifests itself in out-of-plane recoil of the final black
hole and its inclusion in signal models is necessary both to measure this recoil, but also to accurately
measure the full spin information of each black hole. We present the first model of the antisymmetric
contribution to the dominant coprecessing-frame signal multipole throughout inspiral, merger, and
ringdown. We model the antisymmetric contribution in the frequency domain, and take advantage of
the approximations that the antisymmetric amplitude can be modeled as a ratio of the (already modeled)
symmetric amplitude, and analytic relationships between the symmetric and antisymmetric phases during
the inspiral and ringdown. The model is tuned to single-spin numerical-relativity simulations up to mass-
ratio 8 and spin magnitudes of 0.8, and has been implemented in a recent phenomenological model for use
in the fourth LIGO-Virgo-KAGRA observing run. However, the procedure described here can be easily
applied to other time- or frequency-domain models.
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I. INTRODUCTION

The LIGO-Virgo-KAGRA collaboration has published
∼90 gravitational-wave (GW) observations [1–3] since the
first detection in 2015 [4]. The majority of these have been
from binary black holes (BBHs), from which we are
beginning to infer the astrophysical distribution of black-
hole masses and spins [5–8] and references therein. So far
population inference has had to rely on limited spin
information from each binary; to measure the magnitude
and orientation of both spins we typically require louder
signals than in most of those observed so far [9,10]. We also
require sufficiently accurate and physically complete theo-
retical waveform models. One physical effect that is
necessary to measure the full spin information is an
asymmetry in the signals’ multipolar structure that is not

included in the standard full inspiral-merger-ringdown
models of PHENOM [11–22] or SEOBNR [23–29] family
used in current LIGO-Virgo-KAGRA analyses.
A non-eccentric BBH is characterized by the black-hole

masses m1 and m2, and each black hole’s angular momen-
tum, Si, which are usually represented in geometric units as
the dimensionless vectors χ i ¼ Si=m2

i . The dominant effect
of the spins on the GW signal is due to the spin components
aligned with the binary’s orbital angular momentum, which
affect the rate of inspiral, and can therefore be measured
through their effect on the signal’s phase. The remaining
(in-plane) spin components have little effect on the inspiral
rate. They instead induce orbital and spin precession, which
lead to modulations in the signal’s amplitude and phase
[30]. In most cases this is a weaker contribution to the
signal and more difficult to measure, in turn making it
difficult to measure the full spin information of the binary.
Spin misalignment also leads to an asymmetry in the power
emitted above and below the orbital plane, and can lead to
large out-of-plane recoils of the final black hole [31]. Most
signals to date have been too weak to observe precession
and recoil (with the notable exception of several analyses of
the signal GW200129_065458 signal—which we refer to
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as GW200129 in the rest of the text) [3,32,33], but more
signals with measurable spin misalignment are expected as
detector sensitivities improve.
Most current generic-binary models separately consist of

a model of the signal in a non-inertial frame that tracks the
precession of the orbital plane (a “coprecessing” frame),
and a model of the time- or frequency-dependent preces-
sion angles. If the signal is decomposed into spin-weighted
spherical harmonics, then the dominant contributions in the
coprecessing frame are the (l ¼ 2; jmj ¼ 2) multipoles. As
discussed in more detail in Sec. II, current Phenom and
effective-one-body (EOB) models assume the symmetry
hCP22 ¼ hCP�2;−2 in the coprecessing frame. Precessing binaries
also include an antisymmetric contribution. There have
been indications for some time that neglecting this con-
tribution could lead to measurement biases [34,35], and
more recently explicit examples of such biases have been
found [36]. One model that does include the antisymmetric
contribution is the NR surrogate model NRSur7dq4 [37],
and this likely plays an important role in being able to
accurately infer the primary spin in GW200129 [32,33],
demonstrating the need to include the antisymmetric
contribution in Phenom and EOB models.
In this paper we present a simple method to model the

antisymmetric contribution to the ðl ¼ 2; jmj ¼ 2Þ copre-
cessing-frame multipoles, taking into account the phenom-
enology of how the antisymmetric contribution depends on
the in-plane spin direction and relates to the symmetric
contribution. Note that all of the examples shown in this
paper are constructed using either numerical relativity
waveforms or post-Newtonian estimates and that the model
introduced here is versatile in that it can be integrated into
any frequency-domain approximant.
To motivate our focus on only the antisymmetric

contribution to the dominant multipoles, Fig. 1 shows
the frequency-domain amplitude of the coprecessing-frame
multipoles for a signal with mass-ratio q ¼ m1=m2 ¼ 2,
spin on the larger black hole of χ ¼ 0.8, and spin misalign-
ment with the orbital angular momentum of θLS ¼ 90°, i.e.,
the spin initially lies entirely in the orbital plane. (This is
case CF_38 in Ref. [38].) We see that the antisymmetric
(2, 2) amplitude is of comparable strength to the symmetric
(3, 3); since the (3, 3) extends to higher frequencies, it will
contribute more power than the antisymmetric (2, 2) at high
masses, and comparable power in low-mass systems. The
next-strongest antisymmetric contribution is to the (3, 3),
and we see that this is significantly weaker than the
symmetric (4, 4). This suggests that any model that
includes symmetric contributions up to l ≤ 4 need only
include the dominant (2, 2) antisymmetric contribution. If
we wish to accurately model the signal to the level of the
symmetric (5, 5) contribution, then we must also include
the antisymmetric (3, 3). Current Phenom models include
symmetric multipoles up to l ¼ 4, and so we limit our
attention to only the dominant antisymmetric contribution.

[Note that the antisymmetric (3, 3) multipole is also weaker
than the symmetric (2, 1) and (3, 2) in this configuration.]
We find that we can model the (2, 2) antisymmetric

contribution using numerical relativity (NR) simulations
that cover only the reduced parameter space of the binary’s
mass ratio, the larger black hole’s spin magnitude, and its
misalignment angle; to a first approximation we do not
need to sample the in-plane spin direction, which can be
treated analytically. A more complete model that includes
subdominant in-plane-spin-direction effects and two-spin
effects is left to future work.
In Sec. II we explain the motivation behind our modeling

approach. We describe the preparation of the NR data that
we used to calibrate our model in Sec. III. In Sec. IV we
construct a model of the ratio of the antisymmetric and
symmetric amplitudes, and in Sec. V, we present our
method to construct the antisymmetric phase from the
symmetric phase and the precession angle, α. We discuss
the accuracy of our prescription in Sec. VI.

II. ASYMMETRY BACKGROUND

An aligned-spin binary is invariant under reflection
across the orbital plane. If we choose a coordinate system
where the orbital plane is the x-y plane and perform a
decomposition of the gravitational-wave signal into spin-
weighted spherical harmonics, then this symmetry arises in
the signal multipoles as

hl;mðtÞ ¼ ð−1Þlh�l;−mðtÞ: ð1Þ

This relationship is useful when constructing a model of the
multipoles of an aligned-spin binary: we need only explic-
itly model the positive-m multipoles, and the negative-m
multipoles follow from Eq. (1).

FIG. 1. Frequency-domain amplitude of coprecessing-frame
symmetric and antisymmetric contributions for a ðq ¼ 2;
χ ¼ 0.8; θLS ¼ 90°Þ configuration. The figure shows the sym-
metric contributions to (2, 2), (3, 3), (4, 4), and (5, 5), and the
antisymmetric contributions to (2, 2) and (3, 3).
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When the spins are not aligned with the orbital angular
momentum, both the spins and the orbital plane may
precess [30,39]. In systems with misaligned spins Eq. (1)
no longer holds, even if there is no orbital precession. The
simplest illustration of this is the “superkick” configuration
[31,40,41]: here the black holes are of equal mass and of
equal spin, and the spins lie in the orbital plane but point in
opposite directions. The symmetry of this system implies
that the orbital plane does not precess, and although the
spins will precess in the orbital plane, they both precess at
the same rate and so remain oppositely directed to each
other, so that the vector sum of the two spins is zero at all
times. Although the direction of the orbital plane remains
fixed, emission of linear momentum perpendicular to the
orbital plane causes the entire system to move up and
down. This linear momentum emission and “bobbing” [42]
manifests itself in the gravitational-wave signal as an
asymmetry in the positive- and negative-m multipoles,
i.e., a violation of Eq. (1) [31].
The symmetry of Eq. (1) will remain broken regardless

of any rotations performed on the multipoles [43]. This
point becomes important when constructing signal models,
where we regularly make use of a “coprecessing frame.” In
this frame the signal during the inspiral can be approxi-
mated as that of a nonprecessing binary [44] and so many
current waveform models are split into a model for aligned-
spin binaries and a model for the precession dynamics,
and the precession dynamics are then used to “twist up” a
nonprecessing-binary waveform to produce the complete
precessing-binary waveform [13,15,16,19,24,25,28,45,46].
However, since the nonprecessing-binary waveform res-
pects the symmetry in Eq. (1), the model cannot reproduce
the asymmetry that should be present in the true precessing-
binary signal.
Several studies have considered the impact of neglecting

these multipole asymmetries. Reference [35] compares the
multipoles from precessing-binary waveforms with those
from nominally equivalent nonprecessing binaries, to test a
number of assumptions that go into the construction
of many commonly used waveform models, including
neglecting the multipole asymmetry. Reference [34] com-
pares NR waveforms from configurations with different in-
plane spin directions and magnitudes, and argues that
neglecting the multipole asymmetry may lead to parameter
biases even at moderate SNRs, and that including the
multipole asymmetry will be necessary to clearly measure
in-plane spins and identify precessing systems. Finally,
Ref. [36] uses the surrogate model NRSur7dq4 to identify
the level of bias in binary measurement examples, and
confirms that neglecting the multipole asymmetry leads to
biases in measuring in-plane spins (but the masses and
effective aligned spin χeff are less affected). They also
confirm the importance of the multipole asymmetry in
precession measurements, showing that it had a significant
impact on measurement of the properties of the signal
GW200129 [32,33].

In the next section we will summarize the leading-order
PN contribution to the asymmetry, which provides some
insight into the phenomenology of the multipole asymme-
try, and also motivate our modeling procedure. Although
the multipole asymmetry has been known for some time,
and indeed is included in the standard PN expressions that
we use here, and is also discussed in detail in Ref. [43], we
are not aware of any prior treatment that discusses the
amplitude and phasing of the antisymmetric (2, 2) con-
tribution in relation to the symmetric contribution, or notes
the simple dependence of the relative phase between
different in-plane spin directions, which is a key feature
of the asymmetry that we exploit in constructing our model.

A. Inspiral

To gain insight into the phenomenology of the multipole
asymmetry during the inspiral, we consider the leading-
order post-Newtonian contributions to a binary where only
one black hole is spinning and the spin lies entirely in the
orbital plane. The binary consists of two black holes
with masses m1 and m2 and the dimensionless spin on
the primary is χ ¼ S1=m2

1, where S1 is the magnitude of the
black hole’s angular momentum. We use the post-
Newtonian expressions from Ref. [47], where in this
single-spin case the symmetric and antisymmetric spin
contributions are χs ¼ χa ¼ χ=2. The in-plane spin com-
ponents incline the total angular momentum J with respect
to the normal to the orbital plane (and direction of the
Newtonian orbital angular momentum, L) by an angle ι,
and the azimuthal precession angle of L around J is α; this
is also the azimuthal angle of the total in-plane spin. As
such, if we choose the instantaneous orbital plane to
coincide with the x-y plane, then the entirely in-plane spin
can be written as χ ¼ χðcosðαÞ; sinðαÞ; 0Þ.
We start with the multipole h22 as given in Eq. (B1) in

Ref. [47]. Requiring symmetry due to exchanging black
holes [see the discussion prior to Eq. (4.15) in the same
paper], leads to the relation hlmðΦÞ ¼ ð−1Þlþmh�l−m×
ðΦþ πÞ, where Φ is the orbital phase. We can enter the
instantaneous orbital plane by setting ι ¼ α ¼ 0, and from
our choice of spin we can then substitute χax ¼ χsx ¼
χ cosðαÞ=2 and χay ¼ χsy ¼ χ sinðαÞ=2; see Sec. VI B of
Ref. [48] for details. We then have an approximation to
the symmetric and antisymmetric contributions to the
signal in the coprecessing frame, hCP;s22 ¼ ðhCP22 þ h�CP2−2Þ=2
and hCP;a22 ¼ ðhCP22 − h�CP2−2Þ=2, up to Oðv4Þ,

hCP;s22 ¼ A

�
1þ ð55η − 107Þv2

42

�
e−2iΦ; ð2Þ

hCP;a22 ¼ A
ð1þ δÞχv2

4
e−iðΦþαÞ; ð3Þ

where the overall amplitude is A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
64π=5

p
Mηv2=DL, M

is the total mass, η ¼ m1m2=M2 is the symmetric mass
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ratio, δ ¼ ðm1 −m2Þ=M, v is the relative speed of the two
black holes, andDL is the luminosity distance to the source.
Note that in Ref. [47] the symbol Φ denotes the orbital
phase in the instantaneous orbital plane, but here we use it
to denote the total orbital phase that enters in the waveform.
We may immediately note several important features

from Eqs. (2) and (3). The spin does not enter the amplitude
of the symmetric contribution at this order. The antisym-
metric contribution enters at Oðv2Þ lower than the sym-
metric contribution. We see that we may also consider the
antisymmetric amplitude jhCP;a22 j as a simple rescaling of the
symmetric amplitude, jhCP;s22 j.
The in-plane spin direction, α, does not enter into the

amplitude of the antisymmetric contribution, but it does
modify the phase. The physical interpretation is that the
phase of the antisymmetric contribution depends on the
direction of the in-plane spin relative to the separation
vector of the two black holes. This will vary with the orbital
phase, Φ, but also the (slower) precession rotation of the
spin, given by α. This is also consistent with the observation
in studies of out-of-plane recoil, that the recoil amplitude
depends sinusoidally on the initial direction of the in-plane
spin [31].
Finally, we note a key observation for the model that

we will produce: if we modify the initial in-plane spin
direction byΔα, this will induce a simple overall phase shift
in the antisymmetric contribution, hCP;a22 . This suggests that,
given a set of single-spin NR waveforms that cover the
parameter space of mass ratio, aligned-spin magnitude and
in-plane spin magnitude, we will have enough information
to build a model of the antisymmetric contribution to
single-spin waveforms without the need to also sample
multiple initial in-plane spin directions. We have just such
a set of waveforms to hand, as used to construct the first
NR-tuned full inspiral-merger-ringdown model of (the
symmetric contribution to) precessing-binary waveforms
[48], and discussed in Ref. [38].

B. Merger and ringdown

Before proceeding to construct a model, we consider the
phenomenology of the antisymmetric contribution through
merger and ringdown, and inspect which inspiral features
hold for the entire waveform.
One of the main features of the antisymmetric contri-

bution that we see in the leading-order inspiral single-spin
expressions (2) and (3) is that an in-plane rotation of the
spin by an angle Δα results in a corresponding shift in the
antisymmetric (2, 2) phase by Δα. This is evident from
Fig. 2; the two configurations considered here correspond
to the superkick configuration described earlier. S⃗⊥1 denotes
the initial in-plane spin vector of the primary and r⃗12 is the
initial separation vector pointing from the primary to the
secondary. It is clear that the asymmetry phase for a
configuration with S⃗⊥1 ⊥ r⃗12 can be easily produced by

applying a phase shift of π=2 to the antisymmetric wave-
form of a configuration with S⃗⊥1 k r⃗12. We note that the
simple phase relationship does not appear to hold as well
through merger and ringdown, but the deviation is small
enough that this could be due to numerical error, and
requires more detailed study in future.
A second key feature of the antisymmetric contribution

is that its frequency is roughly half that of the symmetric
contribution (plus a small correction from the spin-
precession rate α̇). Figure 3 shows the time-domain GW
frequency of the symmetric and antisymmetric contribu-
tions for a configuration where only the larger black hole

FIG. 2. Antisymmetric waveform constructed from NR wave-
forms for two superkick configurations in the time domain,
S⃗⊥1 kr⃗12 in dashed black and S⃗⊥1 ⊥r⃗12 in solid gray, shows a
constant phase offset of π=2. Inset: dashed blue line shows that
the antisymmetric waveform for S⃗⊥1 ⊥r⃗12 can be constructed by
just applying a π=2 phase shift to the S⃗⊥1 kr⃗12 waveform even in
the strong-field regime close to merger ðtmerger ¼ 1784MÞ.

FIG. 3. The symmetric and antisymmetric frequencies obtained
from NR data of a ðq ¼ 2; χ ¼ 0.7; θLS ¼ 90°Þ configuration.
During inspiral the antisymmetric frequency, ωa, is about half of
the symmetric frequency, ωs (or nearly equal to the orbital
frequency), and close to merger quickly catches up with the
symmetric frequency. As expected from perturbation theory,
ωs ¼ ωa during ringdown.
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is spinning, with the spin (χ ¼ 0.7) entirely in plane. We
see that during the inspiral the antisymmetric frequency is
approximately half that of the symmetric, as we expect.
During ringdown the two frequencies are equal. This is

consistent with our expectations from perturbation theory.
In the ringdown, where perturbation theory results are
applicable, the ðl ¼ 2; m ¼ �2Þ multipoles will have the
same (constant) frequency, and will decay exponentially at
the same rate. We therefore expect both the symmetric
and antisymmetric combinations of h22 and h2;−2 to have
the same frequency, and for the ratio of the symmetric and
antisymmetric amplitudes to be constant throughout the
ringdown.
The third property we took from the inspiral expressions

(2) and (3) was that the antisymmetric amplitude can be
considered as a rescaling of the symmetric amplitude.
Figure 4 illustrates that this holds for the entire waveform.
It shows the frequency-domain ampiltude of the symmetric
and antisymmetric (2, 2) contributions for a configuration
with ðq ¼ 1; χ ¼ 0.4; θLS ¼ 60°Þ, case CF_7 in Ref. [38].
We see in particular that the turnover to ringdown occurs
at the same frequency (the ringdown frequency is at
fM ∼ 0.09 for this configuration). We also see that, as
discussed above, the symmetric and antisymmetric con-
tributions decay at the same rate.
We will now exploit these features to construct a model

for the antisymmetric amplitude and phase.

C. Structure of the model

Based on the observations in the previous section we
construct an approximate model of the antisymmetric
contribution to the (2, 2) multipole in the coprecessing
frame as follows. We start with a model for the symmetric
contribution, which provides us with the symmetric ampli-
tude, AsðfÞ, and symmetric phase, ϕsðfÞ. In the examples
we consider here the symmetric contribution is calculated
from NR waveforms. In a full model, we would start with

the symmetric contribution from an already existing model.
An explicit example is the multimode precessing-binary
model described in Ref. [49], but the antisymmetric model
described in this paper can be applied to any existing
frequency-domain precessing-binary model that separately
provides AsðfÞ, and symmetric phase, ϕsðfÞ, and the
precession angle αðfÞ, as we describe below.
To construct the antisymmetric amplitude, AaðfÞ, we

model the ratio κðfÞ ¼ AaðfÞ=AsðfÞ. In the inspiral we use
a post-Newtonian estimate of the amplitude ratio, and find
that we can model the amplitude ratio accurately through to
the ringdown by adding only one higher-order term, which
we fit to our NR data. In the ringdown we treat the
amplitude ratio as a constant, as motivated in the previous
section. The amplitude model is presented in Sec. IV.
To construct the antisymmetric phase, during the

inspiral we combine the symmetric phase, ϕsðfÞ, and
the precession angle αðfÞ, as prescribed by Eq. (3), i.e.,
ϕaðfÞ ∼ ϕsðfÞ=2þ αðfÞ. In the merger-ringdown the anti-
symmetric phase will behave as ϕaðfÞ ∼ ϕsðfÞ. We apply
an overall time and phase shift to smoothly connect these
two functional forms at some transition frequency. We note
that we find that it is possible to produce an accurate model
of the antisymmetric phase ϕaðfÞ using the same transition
function for any binary, i.e., the parameters of the transition
function do not need to be fit across the binary parameter
space. The phase model is presented in Sec. V.

III. NUMERICAL RELATIVITY DATA

The model is tuned to 80 single-spin NR waveforms
generated using the BAM code [50,51]. They cover mass
ratios q ¼ f1; 2; 4; 8g, spin magnitudes on the larger
black holes of χ1 ¼ f0.2; 0.4; 0.6; 0.8g, and angles of spin
misalignment with the orbital angular momentum of
θLS ¼ f30°; 60°; 90°; 120°; 150°g. In labeling the configu-
rations, the cases are ordered according to the mass ratios,
then the spin magnitudes, then the misalignment angles;
for example, case 57 corresponds to ðq ¼ 4; χ1 ¼ 0.8;
θLS ¼ 60°Þ. This is the same indexing as in Ref. [38],
which provides full details on the catalog of simulations. To
motivate the model and test our modeling assumptions
we have also used families of simulations that consider
variations in the initial in-plane-spin direction, based on
those in Ref. [34]. One notable addition to this set were
simulations of superkick configurations where the black
holes were given an additional out-of-plane momentum, to
remove a secular drift in the center of mass.
Several processing steps are performed to prepare the NR

data for modeling, using the tools in Ref. [52]. We start with
the waveform data for the l ¼ 2 multipoles of the Weyl
scalar, ψ4;2m, in an inertial frame. We apply a Hann window
to remove “junk” radiation from the beginning of the wave-
forms (a nonphysical artifact of the initial data), and to
remove numerical noise in the post-ringdown waveform.
Furthermore, to ensure that the frequency-domain step size is

FIG. 4. The amplitude of the ðl ¼ 2; m ¼ 2Þ symmetric and the
antisymmetric waveform in the frequency-domain coprecessing
frame for a ðq ¼ 1; χ1 ¼ 0.4; θLS ¼ 60°Þ NR simulation.
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sufficiently small, the time-domain data are padded with
zeros to the right. More details are given in Ref. [38].
We then transform to a frame that tracks ĴðtÞ; as

described in Ref. [48], this retains the approximation that
the direction of ĴðtÞ is constant throughout the waveform.
Modeling deviations from this approximation are left to
future work and are discussed further in Ref. [48], along
with the procedure to track ĴðtÞ and perform this trans-
formation. At the level of approximation and accuracy of
the antisymmetric model presented here, we do not expect
this approximation to have any appreciable effect on the
final model. We then transform the ψ4;2�2 multipoles to a
coprecessing frame, the “quadrupole-aligned” (QA) [53]
or “optimal emission direction” [54,55] frame. In this
frame the multipoles are significantly simplified, with
the ðl ¼ 2; jmj ¼ 2Þ multipoles having the strongest ampli-
tude and the precession-induced modulations minimized.
The ð2;�2Þ multipoles of time-domain coprecessing

frame Ψ4 are now transformed to the frequency domain,

ψ̃CP
4;2�2ðfÞ ¼

Z
ψCP
4;2�2ðtÞe−2πiftdt: ð4Þ

To compute the strain, we note that Ψ4ðtÞ ¼ −ḧðtÞ, so in
the frequency domain we may write,

h̃CP2;�2ðfÞ ¼ −
ψ̃CP
4;2�2ðfÞ
ω2

; ð5Þ

where ω ¼ 2πf. The antisymmetric and symmetric compo-
nents of the waveform in the QA frame are computed from

h̃NRs ðfÞ ¼ 1

2
ðh̃CP2;2 þ h̃�CP2;−2Þ; ð6Þ

h̃NRa ðfÞ ¼ 1

2
ðh̃CP2;2 − h̃�CP2;−2Þ: ð7Þ

The symmetric and antisymmetric strains are complex
quantities that can be written as

h̃NRs ðfÞ ¼ ANR
s ðfÞeiϕNR

s ðfÞ; ð8Þ

h̃NRa ðfÞ ¼ ANR
a ðfÞeiϕNR

a ðfÞ ð9Þ

and we can easily calculate their amplitude, ANR, and phase,
ϕNR, as their absolute value and argument, respectively. We
denote the ratio between the anti-symmetric and symmetric
amplitudes as κNRðfÞ ¼ ANR

a ðfÞ=ANR
s ðfÞ.

IV. MODEL OF THE AMPLITUDE RATIO

We model the amplitude of the antisymmetric contribu-
tion AaðfÞ as a ratio of the symmetric contribution AsðfÞ,
i.e., AaðfÞ ¼ κðfÞAsðfÞ.
Our first step in constructing the ratio model is to

compute the ratio in the framework of PN theory as a
PN expansion in terms of v=c, where v is the relative
velocity of the two black holes and c is the speed of light,
and we choose geometric units where c ¼ 1. We again
restrict our analysis to single-spin binaries.
To compute the PN ratio, we follow a procedure

similar to the illustrative calculation in Sec. II. We obtain
from Ref. [47] the complex 1.5PN expressions of the
(l ¼ 2; jmj ¼ 2) multipoles, hPN2�2, for spinning, precessing
binaries with generic inclination angle ι moving on nearly
circular orbits. The strains of the l ¼ jmj ¼ 2 multipoles
can then be transformed to a coprecessing frame that
follows the instantaneous orbital plane. To achieve this,
we choose a simple coprecessing frame where we set to
zero the inclination angle of the orbital angular momentum
relative to the total angular momentum, ι ¼ 0, and also set
the precession angle, α ¼ 0. We then use an approximate
reduction to a single-spin system [48],

χs=a;x ¼ −χ sinðθLS − ιÞ cosðαÞ=2; ð10Þ

χs=a;y ¼ −χ sinðθLS − ιÞ sinðαÞ=2; ð11Þ

χs=a;z ¼ χ cosðθLS − ιÞ=2; ð12Þ

where χs ¼ ðχ1 þ χ2Þ=2, χa ¼ ðχ1 − χ2Þ=2 are the sym-
metric and antisymmetric spins defined in Ref. [47] and
θLS is the inclination of the spin from the orbital angular
momentum vector.
We then find that the symmetric and antisymmetric

amplitudes are

APN
s ðfÞ ¼ −

4M
21DL

ffiffiffi
π

5

r
v2ηð42þ 84πv3 þ v2ð−107þ 55ηÞ

−28v3ð1þ δ − ηÞχ cos θLSÞ; ð13Þ

APN
a ðfÞ ¼ −

2M
DL

ffiffiffi
π

5

r
v4ð1þ δÞηχ sin θLS: ð14Þ

The ratio of the two amplitudes is then given by

κPNðfÞ ¼
21v2ð1þ δÞχ sin θLS

2ð42þ 84πv3 þ v2ð−107þ 55ηÞ − 28v3ð1þ δ − ηÞχ cos θLSÞ
; ð15Þ

GHOSH, KOLITSIDOU, and HANNAM PHYS. REV. D 109, 024061 (2024)

024061-6



where η ¼ m1m2=M2 is the symmetric mass ratio and
δ ¼ ðm1 −m2Þ=M > 0 is a fractional mass difference. The
expression of the PN ratio of the antisymmetric amplitude
over the symmetric amplitude depends on the symmetric
mass ratio, η, the spin magnitude, χ, and the angle θLS of
the system. Consequently, Eq. (15) can be used to compute
the PN ratio of any configuration as a function of frequency
since v ¼ ðπfMÞ1=3.
We cannot expect the PN estimate of the amplitude ratio,

Eq. (15), to be accurate through merger and ringdown.
To capture this behavior we investigated the addition of
unknown higher-order terms and fit their coefficients to
the NR data. The simplest approach is to add only one
additional term, for example,

κðfÞ ¼ κPNðfÞð1þ bvnÞ; ð16Þ

where b is fit to the NR data. To do this it was necessary to
choose an appropriate frequency range over which to
perform the fit. The NR data are noisy in the early inspiral
and in the post-ringdown frequencies, so we first identified
a consistent definition of a frequency range that could be
used for all 80 NR simulations, based on the ringdown
frequency, fRD of each NR configuration. The frequency
range that we used in the final fits was given by Mfmin ¼
ðMfRD − 0.01Þ=5 and Mfmax ¼ MfRD − 0.002.
We investigated fits to the amplitude ratio of the form

Eq. (16) with n ¼ 3, 5, 7. Figure 5 shows the results for one
configuration, and illustrates that n ¼ 5 provides the most
accurate fit. In fact, we find that n ¼ 5 consistently
provides the most accurate fit across all 80 NR simulations.
It is also clear from Fig. 5 that our fit is not accurate

beyond the ringdown frequency. Beyond this point the
amplitude ratio appears to plateau. This is consistent with
our expectations from perturbation theory, as discussed in
Sec. II B, which predicts that the amplitude ratio will be

constant throughout ringdown. To include this feature in
our model, we fix κðfÞ to the value κðfRDÞ at frequencies
f > fRD. To avoid a sharp transition we use a moving
average algorithm such that

κnðfÞ ¼
1

ð2kþ 1Þ
Xnþkþ1

i¼n−kþ1

κðfiÞ; n∈ ½k; N − k�: ð17Þ

We use a symmetric window of an equal number of points
(k ¼ 40) on either side of the frequency f to calculate the
moving average. Here N is the length of the frequency
series and the algorithm updates κðfÞ for 40 ≤ n ≤ N − 40.
We fit the coefficient b in Eq. (16) (with n ¼ 5) to each

of the 80 single-spin NR waveforms from the NR catalog in
Ref. [38]. Figure 6 shows the resulting fit for the amplitude
ratio for the ðq ¼ 1; χ ¼ 0.4; θLS ¼ 60°Þ configuration. We
see that the final fit, including the leveling off of the
amplitude ratio through ringdown, agrees well with the NR
data. The lower panel of the figure shows the resulting
estimate for the antisymmetric amplitude. We see that this

FIG. 5. Amplitude ratio for the ðq ¼ 1; χ ¼ 0.4; θLS ¼ 60oÞ
configuration, for the NR data, the PN ratio κPN, and fits to
higher-order corrections as in Eq. (16), with n ¼ 3, 5, 7. The
vertical dashed line indicates the ringdown frequency.

FIG. 6. The amplitude ratio (top) and amplitude (bottom)
for the ðq ¼ 1; χ ¼ 0.4; θLS ¼ 60°Þ configuration. The vertical
line indicates the ringdown frequency for the ðl ¼ 2; jmj ¼ 2Þ
multipoles.
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agrees well with the NR data up to the point where the NR
amplitude becomes dominated by noise.
The fit cannot reproduce the NR amplitude ratio in all

cases. In many cases the NR amplitude ratio oscillates
during the inspiral. Figure 7 shows an extreme example of
this feature, from the ðq ¼ 1; χ ¼ 0.8; θLS ¼ 30°Þ con-
figuration. It is not clear what causes these oscillations.
Oscillations in the coprecessing-frame amplitude ratio
during the inspiral can be due to the choice of coprecessing
frame, as we will discuss later. However, if that were the
cause of the oscillations in the NR data, we would expect
there to be some correlation with the degree of precession
in the configuration. Instead we do not find any relationship
between the amplitude of the oscillations, which in some
cases are negligible (as in Fig. 6), and in others (like Fig. 7)
lead to significant variations in the amplitude ratio. We do
find, though, that our model passes through a reasonable
estimate of the mean of the oscillations. The largest impact
is on the constant value of the amplitude that the model
settles on for the ringdown regime; in the example in Fig. 7

the model’s estimate of the antisymmetric amplitude during
the ringdown is roughly 20% below the NR value.
Finally, in some cases we also found that the amplitude

ratio in the NR data did not level off during the ringdown.
Figure 8 is an example of this. We have not been able to
determine the reason for this. As noted previously, we
expect that since the (2, 2) and ð2;−2Þ multipoles decay at
the same rate, that the ratio between their amplitudes would
remain constant during the ringdown. It is possible that this
effect is obscured by numerical noise. Regardless of the
cause, and in the absence of any compelling explanation for
alternative behavior, we have chosen to impose the be-
havior that we expect from perturbation theory.
The coefficient b is shown as a function of symmetric

mass ratio and misalignment angle in Fig. 9; the values for
all four spin magnitudes are shown together. This plot
illustrates the general trend of b across the parameter
space. We find that there is no general trend with respect
to the spin magnitude, and this is illustrated more clearly in
Fig. 10, which shows b as a function of symmetric mass

FIG. 7. The amplitude ratio (top) and amplitude (bottom)
for the ðq ¼ 1; χ ¼ 0.8; θLS ¼ 30°Þ configuration. The vertical
line indicates the ringdown frequency for the ðl ¼ 2; jmj ¼ 2Þ
multipoles.

FIG. 8. The amplitude ratio (top) and amplitude (bottom)
for the ðq ¼ 2; χ ¼ 0.4; θLS ¼ 90°Þ configuration. The vertical
line indicates the ringdown frequency for the ðl ¼ 2; jmj ¼ 2Þ
multipoles.
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ratio, for each spin magnitude, for the subset of cases with
θLS ¼ 90°. The PN amplitude ratio already includes a linear
dependence on the spin magnitude, and given the uncer-
tainty in our fits, we do not attempt to identify a higher-
order spin dependence. We motivate this point further in
Sec. VI (Fig. 14). We then include all simulations into a
two-dimensional parameter-space fit of the form,

bðη; θLSÞ ¼ b0 þ b1ηþ b2θLS þ b3ηθLS; ð18Þ

where we find b0 ¼ 18.0387, b1 ¼ 15.4509, b2 ¼ 55.1140,
and b3 ¼ −203.6290. From Eq. (18), we notice that b
does not go to zero when θLS is 0° or 180°. However, the

presence of the sin θLS term at the numerator of the ansatz
of the ratio model in Eq. (15) ensures that the multipole
asymmetry goes to zero at these points. The amplitude as
predicted by this fit is shown on each of our figures and
labeled as “final model.”
Two caveats to this approach are worth noting. One is the

choice of coprecessing frame. Previous work has shown
that the symmetric (2, 2) contribution takes a simple form
in the QA coprecessing frame; indeed, the amplitude
evolution can be approximated by the (monotonic) ampli-
tude of an equivalent aligned-spin configuration. This is not
necessarily the case for the antisymmetric contribution, and
this is one possible cause of the oscillations that we see
(although, as noted previously, it does not show a clear
correlation with the strength of precession). Conversely, we
found that the amplitude evolution of the antisymmetric
(2, 2) multipole was monotonic for PN waveforms if we
choose ι ¼ α ¼ 0 in their construction (which is equivalent
to choosing a coprecessing frame that tracks the Newtonian
orbital angular momentum, i.e., the normal to the orbital
plane), but if we consider the PN waveforms in the QA
frame then the antisymmetric (2, 2) amplitude shows strong
modulations. This illustrates that the antisymmetric com-
ponent can depend strongly on the choice of coprecessing
frame, and although we do not expect this to be a
significant issue at the level of accuracy or approximation
of the current model, it may require better understanding in
future refinements of antisymmetric models.
The second point is that our model is constructed

based on the phenomenology of single-spin binaries. If
the model is to be used for generic binaries, one must
choose a method to treat two-spin configurations. One
option, which is employed in the PhenomX implementa-
tion [48,49], is as follows.
We can describe the spin of an equivalent single-spin

system using Eqs. (16) and (17) in Ref. [48], but diverge
slightly in the definition of the in-plane spin as follows:

χ⊥ ¼
�
χas cos2ðθqÞ þ χp sin2ðθqÞ; 1 ≤ q ≤ 1.5

χp; q > 1.5
; ð19Þ

where χp is the effective precession spin as defined in
Ref. [56]. The antisymmetric amplitude for an equal-
mass binary with both spins equal in magnitude, entirely
in-plane and pointing in the same direction, must drop to
zero. The symmetric in-plane spin combination of Eq. (15)
in Ref. [48] cannot account for this effect in superkick
configuration. Therefore, we can instead use an anti-
symmetric in-plane spin combination,

χas ¼
jS⊥

1 − S⊥
2 j

m2
1

; ð20Þ

to appropriately map two-spin to single-spin systems for
generating the antisymmetric waveform.

FIG. 9. Surface bðη; θLSÞ ¼ b0 þ b1ηþ b2θLS þ b3ηθLS fit of
the model’s coefficient, b, to the two-dimensional parameter
space η; θLS. The red points denote the 80 computed b coef-
ficients of the multipole asymmetry amplitude model.

FIG. 10. The b coefficient as a function of the symmetric mass
ratio, η, for a selected angle θLS ¼ 90o and all the available spin
values, χ ¼ ½0.2; 0.4; 0.6; 0.8�. The gray line shows the surface fit,
bðη; 90°Þ from Eq. (18).
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V. PHASE MODEL

GW phases for chirp signals in the frequency domain are
typically quite featureless and therefore not conducive to
modeling. Following a suite of models for the symmetric
phase [11,12,17], we focus first on the antisymmetric
phase derivative. Figure 11 demonstrates that the antisym-
metric phase derivative (i.e., frequency) behavior in the
time domain as discussed in Sec. II B is preserved in the
frequency domain as well. Remarkably, we find that it is
possible to construct a map of the symmetric phase
derivative to the antisymmetric phase derivative that is
independent of the binary’s parameters. Therefore, we do
not need to produce any parametric fits for the map over the
intrinsic parameter space of BH binaries, which makes this
model extremely simple.
Our model of the antisymmetric phase derivative is

defined by the piecewise function,

ϕ0
aðfÞ ¼

8>>><
>>>:

1
2
ϕ0
sðfÞþα0ðfÞþA0; f ≤ fT −

fw
2

ϕ0
intðfÞ; fT −

fw
2
<f ≤ fT þ fw

2

ϕ0
sðfÞ; fT þ fw

2
≤ f < 0.12

;

ð21Þ
where the phase derivative in the intermediate region is
given by

ϕ0
intðfÞ ¼

1

2

�
1−

3

2fw

�
ðf−fTÞ−

ðf−fTÞ3
3f2w

��

×
�
ϕ0
s

2
þα0 þA0

�

þ 1

2

�
1þ 3

2fw

�
ðf−fTÞ−

ðf−fTÞ3
3f2w

��
ðϕ0

sþB0Þ:

ð22Þ
As is evident from Fig. 11, the functional form of region I
transitions to the functional form of region II in the
intermediate region. To ensure smooth transition in the
intermediate region an obvious choice would be a tanh
windowing function. Noting that a tanh function can be
computationally inefficient during model evaluation, we
instead use the Taylor expansion of the tanh function up to
second order with appropriate normalization to construct
the phase derivative functional form of Eq. (22).
The phase derivative ansatz was calibrated to NR

simulations by treating the transition frequency, fT , the
width of the transition window, fw, and the phase coef-
ficients (A0 and B0) as free parameters. The window
parameters were not particularly sensitive to the tuning
and the minor variations could be attributed to the noise in
the antisymmetric phase derivatives; fT ¼ 0.85fRD and
fw ¼ 0.005 was found to be an optimal choice across the
entire single-spin parameter space.

Once the parameters of the window function were fixed,
we investigated the impact of fixing the phase coefficients.
A best fit to data for B0 ¼ 0 was found to be consistent
across the parameter space; A0 on the other hand showed
some variation, but no specific trend. Furthermore, choos-
ing the algebraic mean of A0 for the set of 80 simulations
did not significantly impact the quality of the fit. This
shows (1) the fitting algorithm tries to find the best A0 for
continuity of the phase derivative at fT , and (2) the
variation in optimal A0 across the parameter space is more
likely due to noisy data and not a function of intrinsic
parameters of the binary.
Applying a shift to the phase derivative is equivalent to

an overall time shift of the waveform. We exploit this
freedom by fixing the symmetric phase derivative minima
to be 0 at fRD. This imposes

A0 ¼
1

2
ϕ0
sðfTÞ − α0ðfTÞ: ð23Þ

Figure 12 shows that A0 obtained from the fitting algorithm
and from NR data using Eq. (23) reasonably well for a
majority of the cases (cf. y axis on Fig. 11). The antisym-
metric model will be used with a phenomenological
symmetric waveform model, so an A0 derived from the
symmetric waveform model makes the phase construction
self-consistent and robust. Furthermore, Fig. 12 highlights
that the gain in accuracy by making a model to capture the
near-stochastic behavior of A0 may be outweighed by
errors introduced by overmodeling. As such, our model
of the antisymmetric phase is NR informed but, noting that
the data for the antisymmetric waveform is often close to
numerical noise, we prioritized our understanding of the
physics rather than model optimization.

FIG. 11. The antisymmetric phase derivative (thick black line),
the symmetric phase derivative (gray dashed line) and the
combination of half of the symmetric phase derivative with the
derivative of the precession angle α (thin gray line). The specific
configuration shown here is for a single-spin binary with ðq ¼ 1,
χ ¼ 0.2, θLS ¼ 30°).
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The phase of the antisymmetric waveform is obtained by
integrating the two pieces,

ϕaðfÞ ¼
� 1

2
ϕsðfÞ þ αðfÞ þA0fþϕA0; f ≤ fT
ϕsðfÞ þϕB0; fT ≤ f < 0.12

;

ð24Þ
where the integration constant ϕB0 is determined by
continuity at fT

ϕB0 ¼ αðfTÞ − ϕsðfTÞ þ A0fT: ð25Þ
Finally, the phase of the asymmetry is modulated by the in-
plane spin direction α; therefore, the initial phase, ϕA0, is
the value of α at a reference frequency, i.e., ϕA0 ¼ αðfrefÞ.

VI. MODEL ACCURACY

A standard measure of waveform accuracy used exten-
sively in the literature is the match of the waveform model
with NR waveforms, defined as

MðhNR; hMÞ ¼ 4Re
Z

∞

0

hNRðfÞh�MðfÞ
SnðfÞ

df; ð26Þ

where hðfÞ ¼ hþðfÞ − ih×ðfÞ is a complex frequency
sequence constructed from the two polarizations of the
waveform, and an optimization over time and phase is
implied. As such, calculating matches of just the antisym-
metric waveform is not physically meaningful. Furthermore,
a true measure of performance of precessing waveforms in
data analysis can only be obtained by calculating matches of
the full waveform in the inertial frame, making consider-
ations for precession as well as extrinsic parameters.
Therefore, matches of just the antisymmetric waveform in
the coprecessing frame provide some indication of the
accuracy of one ingredient in the full waveform, but do
not indicate the overall accuracy of the corresponding
precessing waveform.
However, an inner product like that in Eq. (26) is a useful

measure of agreement between two complex frequency

FIG. 12. Comparison of phase coefficient A0, obtained from
fitting the phase ansatz to NR data (light purple triangles) across
the parameter space and from NR data using Eq. (23) (blue
circles), for cases with χ ¼ 0.4 and 0.8. The algebraic mean of the
set of coefficients are shown by horizontal lines in corresponding
colors. The case index is as described in Sec. III.

FIG. 13. Mismatches of the antisymmetric waveform model in the coprecessing frame with NR data. The black triangles show the
mismatches for the combined amplitude and phase model while the cyan squares (brown diamonds) show the mismatches for just the
amplitude (phase) model with the phase (amplitude) constructed from NR data. The dashed cyan line and the dashed-dotted brown line
show the average mismatch for the amplitude and phase model, respectively; on average they are of comparable accuracy. The black
solid line shows the average mismatch for the overall model. The x axis denotes the case index of the NR simulation as usual, i.e., five
different θLS for each spin magnitude shown in the figure and mass ratio q ¼ 1, 2, 4, and 8.
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series. Since a match-like calculation for the antisymmetric
contribution in the coprecessing frame cannot be inter-
preted in terms of either signal detection efficiency or
parameter measurement accuracy, there is no reason to
include the detector sensitivity, and so we will use a simpler
inner product of the form,

hhNRjhMi ¼ Re
Z

f2

f1

hNRðfÞh�MðfÞdf; ð27Þ

where f1 is the starting frequency of the NR waveform in
geometric units,Mf1 ¼ 0.02, andMf2 ¼ 0.15, after which
point the amplitude of the NR waveform is below the noise
floor of the data. We consider normalized waveforms,
ĥ ¼ h=

ffiffiffiffiffiffiffiffiffiffiffihhjhip
, so that the maximum value of the inner

product is one. We used the standard implementation of this
inner product in PYCBC [57], a Python software package for
GW data analysis, for our match computations. We then
consider the “mismatch” between the two waveforms,

M ¼ 1 −
hhNRjhMiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhNRjhNRihhMjhMi

p : ð28Þ

In Fig. 13 we show the mismatches of the antisymmetric
waveform constructed from our model with the 80 NR
waveforms that were used to calibrate the model. To
determine the accuracy of the individual components, we
also computed matches of the amplitude (phase) model
complemented by phase (amplitude) constructed from NR
data, with the full antisymmetric waveform constructed
from NR data. The overall accuracy of both the models are

comparable. We note that although the model was
verified using the same waveforms as used for modeling,
since the NR tuning was relatively simple—i.e., a single
coefficient in Eq. (16) fit to the four-parameter ansatz
Eq. (18) across a two-dimensional parameter space—using
a much smaller subset of waveforms would have produced
a model of similar accuracy, and the simplicity of this
model and the single-spin parameter space obviates
any concerns about overfitting or unexplored corners of
parameter space.
To investigate the quality of the surface fit in Eq. (18), we

also computed mismatches for the amplitude model using
fit coefficients b of Eq. (16). As is evident from Fig. 14, for
most cases the performance is unchanged and for the
handful of cases where the mismatch changes, the differ-
ence is not very significant. This further illustrates that
capturing the nonlinear dependence on spin magnitude is
unlikely to make significant improvement to the amplitude
model. In addition to the argument made for using Eq. (23)
to calculate A0 from the symmetric waveform and pre-
cession angle, α, we calculated mismatches for the different
choices of A0 in the phase model—i.e., Afit

0 and Aequation
0 in

Fig. 12—to confirm that there was no reduction in model
accuracy.
Note that the antisymmetric waveform model is down-

stream from the symmetric waveform model as well as
the precession angle models. Therefore, enhancement in
performance of the overall model due to the addition
of an asymmetry model must always be discussed in the
context of the underlying symmetric, precessing waveform
model. This is beyond the scope of present work and will be

FIG. 14. Mismatches (same as Fig. 13) showing comparison of the amplitude model constructed using the spin magnitude-
independent surface fit of Eq. (16) (cyan squares) with the amplitude model constructed from the true fit coefficients (violet inverted
triangles). The phase of the antisymmetric waveform is constructed from NR data for both cases.
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discussed in the context of the current generation frequency-
domain precessing-binary PhenomXPNR model [49].

VII. CONCLUSION

We have presented a method to model the antisymmetric
contribution to the ðl ¼ 2; jmj ¼ 2Þ multipoles in the
coprecessing frame. This is a general approach that can
be applied to any frequency-domain model that provides
the symmetric contribution to the (2, 2) amplitude, phase,
and precession angle, α. We expect that the main insights of
this model can be used to easily generalize the procedure to
the time domain and be useful in including multipole asym-
metry in current generation time-domain models [45,46].
We summarize the key insights here.
For the amplitude, we observe that the antisymmetric

amplitude can be easily modeled as a rescaling of the
symmetric amplitude. As shown in Fig. 4, both amplitudes
have the same basic structure, in particular the same
ringdown frequency and decay rate. In the inspiral our
model of the amplitude ratio is based on a PN expression
for single-spin systems, and in the late inspiral and merger a
higher-order correction to the PN expression is calibrated
to 80 NR simulations of single-spin binaries [38]. In the
ringdown we make use of the prediction from perturbation
theory that the ratio of the symmetric and antisymmetric
amplitudes will be constant. The amplitude model ratio is
presented in Eqs. (15) and (16) and the fit to the higher-
order contribution given in Eq. (18).
For the phase, we use the facts that in the inspiral the

frequency of the antisymmetric contribution equals the
orbital frequency plus the spin precession frequency, and
that during the ringdown the symmetric and antisymmetric
frequencies are the same. We are able to construct a
mapping from the symmetric phase and precession angle,
ϕs and α, to the antisymmetric phase, ϕa, motivated by
the 80 single-spin simulations, but without the need of
any explicit tuning. The model of the phase is given in
Eqs. (23)–(25). An additional crucial observation is that a
rotation of the initial in-plane spin direction of Δα
introduces a corresponding shift of Δα into the antisym-
metric phase. It is this observation that allows us to model
the dependence on in-plane-spin direction, even though we
do not have a set of NR simulations that span this subspace.
The procedure presented here is not in itself a signal

model. As already noted, one must also provide the sym-
metric amplitude, phase and precession angle. In addition,
having constructed a model for the antisymmetric contri-
bution to the (2, 2) multipoles in the coprecessing frame,
one must then “twist them up” to produce the multipoles in
the inertial frame. This has been done for the recent
extension of the multimode frequency-domain precess-
ing-binary IMRPhenomXPNR model [49].
This is the first phenomenological full inspiral-merger-

ringdown model of the antisymmetric multipole contribu-
tions, and there are many directions for improvement and

issues to be resolved. The first limitation of the model is
that it is based only on single-spin binaries. We expect that
generic two-spin systems can in most cases be modeled to a
good approximation by single-spin systems, but given that
the antisymmetric contribution is itself a weak effect, it is
unclear how well this approximation can be used. It would
be useful to study the applicability of the single-spin
approximation for the antisymmetric contribution, and,
indeed, to extend the model to two-spin systems. The
antisymmetric model is also limited to the ðl ¼ 2; jmj ¼ 2Þ
multipoles. We argue in Fig. 1 that the (2, 2) contribution
will be sufficient for most applications, since the antisym-
metric amplitude is far weaker than the symmetric, but for
high SNR systems, higher-order antisymmetric multipoles
will ultimately be required.
When decomposing the signal into a coprecessing frame

and corresponding time- or frequency-dependent angles,
one will find (depending on the coprecessing frame chosen)
oscillations in the amplitude and/or phase of the antisym-
metric contribution; recall that the coprecessing frame maps
exactly to a nonprecessing aligned-spin waveform only for
the leading-order quadrupole terms [44,48,49]. In this work
we have removed oscillations in the inspiral amplitude by
simply setting the inclination angle ι and precession angle α
to zero in the PN expressions we have used for the signal
multipoles [47]; oscillations remain in the coprecessing-
frame signals for the NR waveforms, but our model
consists of only a monotonic fit through these oscillations.
A better understanding of these oscillations, or at least a
model that captures them, is a necessary next step in
modeling the multipole asymmetries.
We have assumed that the only affect of the initial

in-plane spin direction is to introduce an overall offset in
the antisymmetric phase. This approximation will not
be exact during the merger ringdown. In particular, in
the ringdown we have made the approximation that the
amplitude ratio will be independent of the initial in-plane
spin direction. However, the amplitude ratio will be deter-
mined by the relative phase of the symmetric and anti-
symmetric contributions when ringdown begins, and we
have not attempted to model this effect.
These limitations aside, we find that our method to

construct the antisymmetric contribution has an average
mismatch error better than 0.03. Given that the antisym-
metric contribution is in general less than 10% of the total
SNR, we expect that its contribution to the total mismatch
uncertainty of a model will be less than 3 × 10−3, which is
below the average mismatch error of current Phenom and
SEOBNR precessing-binary models [46,49]. With the
addition of this first antisymmetric model, we expect that
current models will be able to make more precise mea-
surements of black-hole spins and gravitational recoil. The
accuracy of these measurements will depend significantly
on the underlying symmetric model, as well as where a
signal lies in the binary parameter space, and we leave such
accuracy studies with individual models to future work.
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