
Revisiting the Cosmic String Origin of GW190521

Josu C. Aurrekoetxea ,1,* Charlie Hoy ,2,† and Mark Hannam 3

1Astrophysics, University of Oxford, Oxford OX1 3RH, United Kingdom
2University of Portsmouth, Portsmouth PO1 3FX, United Kingdom

3Gravity Exploration Institute, Cardiff University, Cardiff, United Kingdom

(Received 11 December 2023; revised 19 January 2024; accepted 11 March 2024; published 30 April 2024)

For the first time we analyze gravitational-wave strain data using waveforms constructed from strong
gravity simulations of cosmic string loops collapsing to Schwarzschild black holes; a previously
unconsidered source. Since the expected signal is dominated by a black-hole ringdown, it can mimic
the observed gravitational waves from high-mass binary black hole mergers. To illustrate this, we consider
GW190521, a short duration gravitational-wave event observed in the third LIGO-Virgo-KAGRA
observing run. We show that describing this event as a collapsing cosmic string loop is favored over
previous cosmic string analyses by an approximate log Bayes factor of 22. The binary black hole
hypothesis is still preferred, mostly because the cosmic string remnant is nonspinning. It remains an open
question whether a spinning remnant could form from loops with angular momentum, but if possible, it
would likely bring into contention the binary black hole preference. Finally, we suggest that searches for
ringdown-only waveforms would be a viable approach for identifying collapsing cosmic string events and
estimating their event rate. This Letter opens up an important new direction for the cosmic-string and
gravitational-wave communities.
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Introduction.—The observation of gravitational-waves
(GWs) [1–5] has paved the way to search for new physics.
Cosmic strings [6–11] are a well-motivated example that
naturally arise when the rapid cooling of the universe
triggers a phase transition [12–14]. Cosmic strings
may manifest themselves through several channels, such
as imprints via lensing on the Cosmic Microwave
Background (CMB) [15,16], and a stochastic background
of gravitational waves (SGWB) [17–20], which is the total
integrated power of incoherent GWs from all individual
emissions that are too weak to be detected. The LIGO-
Virgo-KAGRA (LVK) Collaboration currently searches for
the SGWB [21], and places constraints on the dimension-
less string tension Gμ=c2; a key property that sets their
gravitational coupling strength and the energy scale of the
phase transition, providing a unique link to the early
universe. Localized coherent events of cosmic strings
can also be searched for, if they are energetic enough to
be directly detected.
To date, all observed GW signals are consistent with

binary black hole (BBH) and/or neutron star mergers [1–5],
with signal-to-noise ratios that are mainly gained during the

inspiral phase (around 20–50 Hz). The absence or modi-
fication of this stage on the GW signal may serve as a
smoking gun for new physics. A candidate with these
properties is GW190521 [22,23], which featured as a short
transient in the LIGO-Virgo-KAGRA (LVK) detection
pipelines due to its low frequency nature. The origin of
this event has been extensively discussed in the literature as
a massive black hole binary merger [24–30], eccentric
encounter [31–38], or new physics [39–43]. Another
studied (and disfavored) hypothesis of interest to this
Letter is a cosmic string cusp [23], a gravitational-wave
burst released when a fragment of a string doubles back on
itself and moves at the speed of light. This waveform
inherently lacks a quasinormal mode ringdown phase, as no
black hole is formed during the process [44].
In this Letter we revisit the cosmic string hypothesis of

GW190521 using novel GW waveforms of cosmic string
loops collapsing to black holes [45,46]. Guided by the first
fully general relativistic field-theory simulations of Abelian
Higgs strings, we construct an example waveform for a
loop with dimensionless string tension Gμ=c2 ¼ 10−7 that
collapses to form a black hole, radiating 3.4% of its initial
mass in gravitational waves, see Fig. 1. At a fiducial
distance dL ¼ 4 Gpc, this corresponds to a cosmic string
loop with radius R0 ¼ 2.85 AU observed with an inclina-
tion angle ι ¼ 34°. We show that this collapsing cosmic
string yields a signal-to-noise ratio ρ ≈ 12, greatly improv-
ing on the cusp result (ρ ≈ 10). This maps to an approxi-
mate log Bayes’ factor of logBloop

cusp ¼ 22 in favor of the
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collapsing cosmic string over existing cusp results.
Although the collapsing cosmic string is disfavored relative
to the BBH hypothesis (ρ ≈ 14), a full Bayesian analysis
that encompasses the full configuration space could poten-
tially show comparable agreement. The purpose of our
analysis is to show that while cusps are easily distinguish-
able from black-hole mergers, collapsing loops can be
excellent mimickers. This makes it difficult to conclusively
identify a high-mass binary black hole merger if collapsing
cosmic string loops occur in nature.
Collapsing string loop waveforms.—After cosmic

strings form and the universe evolves, long strings self-
intersect producing a network with abundant closed loops
of a vast range of sizes [47–54]. These loops can oscillate
and contribute to the SGWB [55–60] or collapse, process
during which the loop may circularize [61]. The linear mass
density μ and radius R0 of circular string loops set their rest
mass via M0 ¼ 2πR0μ. The Schwarzschild radius of such
configurations can then be expressed as

Rschw ≡ 2GM0

c2
¼ 4πR0

Gμ
c2

: ð1Þ

If during the loop’s lifetime its mass is enclosed within its
Schwarzschild radius, it will form a black hole [64–69].
Using the hoop conjecture, this condition becomes rather
generic when the loops are circular, as the initial radius
needed to form a black hole is very small,

R0 ≳ 10−26 m

�
Gμ=c2

10−7

�−3=2
; ð2Þ

with masses

M0 ≈ 100M⊙

�
R0

1 AU

��
Gμ=c2

10−7

�
: ð3Þ

Here 1 AU ≈ 1.49 × 108 km denotes astronomical units,
so these solar-system-sized loops are very small when
compared to the size of the cosmological network.
The gravitational waveform of a circular cosmic string

loop can be described in three stages [46]: infall, black hole
formation, and ringdown:

hðtÞ ¼

8>><
>>:

h½infall� t < tBH;

h½BH� tBH < t < tqnm;

h½qnm� tqnm < t:

ð4Þ

Analogous to BBHs [70,71], string loop waveforms can be
constructed using semianalytical and numerical techniques.
Infall: During the early stages of the loop collapse,

when its radius is much larger than its Schwarzschild
radius, local backreaction effects can be neglected and the
dynamics can be treated within the weak-field limit,

h½infall�ij ðtÞ ¼ 4G
rc4

Z
∞

−∞
d3x Tijðtret þ x · n;xÞ; ð5Þ

where tret ≡ t − r=c, and r and n are the distance and
direction of the observer [72]. In the above expression, Tij

is the energy momentum tensor, which for a (infinitesi-
mally thin) circular cosmic string loop oscillating on the
z ¼ 0 plane is given by

Tαβðt;xÞ ¼ μδ
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
q

− RðtÞ
i
δ½z�UαUβ; ð6Þ

where Uα ¼ γ½c; VðtÞ sinðϕÞ; VðtÞ cosðϕÞ; 0� is the four-
velocity and γ the Lorentz contraction factor. The radius
and velocity during the infall are given by [67,73]

FIG. 1. Gravitational waveform hþlm of a collapsing cosmic string loop with radius R0 ¼ 2.85 AU and dimensionless string tension
Gμ=c2 ¼ 10−7. This corresponds to an initial mass ofM0 ≈ 181M⊙ that collapses to form a remnant black hole of massM ≈ 175M⊙ in
the source frame, radiating ≈6M⊙ in gravitational waves. The vertical dashed line depicts the transition between the infall and black hole
formation stages, where there is a sudden change in the frequency content of the signal.
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RðtÞ ¼ R0 cos

�
ct
R0

�
; VðtÞ ¼ c sin

�
ct
R0

�
: ð7Þ

Even if the periodicity of these solutions seems to suggest
the existence of ever-oscillating circular loops (via the
trigonometric functions), this description breaks down
when the loop radius is comparable to the string width.
In this Letter we will focus on the last oscillation of a
planar, circular loop, where the endpoint is the formation of
a black hole. Geometrically, noncircular loops can still
form black holes as long as the loops are planar. We expect
nonplanar and non-self-intersecting loops will eventually
circularize via radiation of scalars, vectors, and gravita-
tional waves, but this timescale is not known. The maxi-
mum radius of a circular loop R0 sets the oscillation
frequency and thus the frequency content of the infall
signal, which is approximately

f½infall� ≈ 10−3 Hz

�
1 AU
R0

�
: ð8Þ

From Eq. (5), it can be shown that,

rhþ½infall�ðt; θ;ϕÞ ¼ R0

Gμ
c2

Iðt; θ;ϕÞ ð9Þ

rh×½infall�ðt; θ;ϕÞ ¼ 0 ð10Þ

where h×½infall� ¼ 0 due to the axial symmetry of the collapse

and the details of the numerical integral Iðt; θ;ϕÞ can be
found in the appendices of Ref. [46]. A template bank can
be constructed using the scaling relations

hþ½infall� ∝
R0

r
Gμ
c2

∝
1

r
GM0

c2
; ð11Þ

Δt½infall� ∝
R0

c
: ð12Þ

Black hole formation: At early times, the weak-field
GW description of the collapsing loop during its infall stage
is valid. However, this linearized treatment breaks down
when the loop’s size is comparable to its Schwarzschild
radius, and gravitational effects become significant. We
define this time tBH, when RðtBHÞ ≈ Rschw and can be
estimated via Eqs. (1) and (7), to be

tBH ≈
R0

c
arccos

�
4π

Gμ
c2

�
: ð13Þ

This quantity sets the timescale of the infall, after which the
waveform hþ½infall� is no longer valid and needs to be matched

to the black hole formation stage hþ½BH�. This is inherently a

strong-gravity phenomenon and thus relies on general
relativistic simulations. These become prohibitive when

there exist several physical scales that need to be resolved,
as is the case of extreme mass ratio inspirals of black holes.
In the cosmic string scenario, we would need to resolve the
string width δ ≈ 10−35 km (for Gμ=c2 ¼ 10−7), and the
Schwarzschild radius of the black hole Rschw ≈ 500 km (for
GW190521). In addition, the Lorentz contraction of the
loop along the collapsing direction at the latest stages of the
infall is γ ∝ 1=Gμ ≈ 1011. This results in a separation of
scales δ=Rschw ≪ 10−37, beyond the capabilities of adaptive
mesh refinement techniques [74]. However, results from
numerical relativity simulations of collapsing cosmic string
loops with Gμ ≈ 10−3 and δ=Rschw ≈ 10−2 exhibit a
featureless intermediate stage between the infall and the
ringdown, and we will thus model hþ½BH� as a simple time-

interpolating function between both phases. We choose this
interpolation such that the radiated energy in gravitational
waves agrees with the balance between the initial loop and
final mass of the remnant black hole.
Ringdown: Slightly after the black hole has formed

tqnm⪆tBH þ 15GM=c3, the remnant enters the ringdown
stage, hþ½qnm�. This is modeled as a linear sum of damped

sinusoids

hþ½qnm�ðtÞ ¼
1

r

X
lm

Alm exp

�
iωlm

c3

GM
t

�
ð14Þ

where ωlm ¼ ReðωlmÞ þ iImðωlmÞ are a set of complex
frequencies known as quasinormal modes. The real and
imaginary parts set the oscillation frequency and damping
rates of the sinusoids and can be obtained from perturbative
calculations [75,76], while the amplitudes Alm depend on
the strong-field regime details of the event itself. In our
case, the remnant black hole is nonspinning and predomi-
nantly radiates in the ðl; mÞ ¼ ð2; 0Þ multipole.
The radiation of energy-flux generally results

in a permanent displacement Δh ¼ hð∞Þ − hð−∞Þ so-
called gravitational-wave memory [77–81]. The magni-
tude can be estimated using the Christodolou formula
Δh ∼ 4GErad=c4r, where Erad is the total energy radiated.
From general relativistic simulations [46] and geometrical
arguments by Hawking [82], collapsing circular cosmic
string loops are expected to radiate between 1%–29% of
their initial mass in gravitational waves. The expected
memory for sources that feature in the LVK frequency band
is then given byΔh ⪅ 10−27 (1 Gpc=r), so we will ignore it
when constructing the waveforms [83].
Data analysis.—Because of limited numerical relativity

simulations for collapsing cosmic string loops and the
difficulty of studying low string tensions, we do not
construct a parameterized model, and hence are unable
to perform a template based matched filter search or a
Bayesian analysis to determine the parameters that max-
imizes the signal-to-noise ratio (SNR). Instead, we calcu-
lated the matched-filter SNR for an example cosmic string
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loop with Gμ=c2 ¼ 10−7 and R0 ¼ 2.85 AU that radiates
3.4% of its initial mass in gravitational waves. Although
these may not correspond to the parameters that best fit
GW190521, we demonstrate that our example waveform is
still favored when compared to previously studied cosmic
string cusps.
The construction of waveforms is generally done in the

source frame, while the analysis is in the detector frame.
The transition between source-frame and detector-frame
waveforms relies on additional parameters describing the
sky position of the source, as well as its inclination ι and
redshift z. When these sources are at cosmological dis-
tances, we infer a larger remnant mass in the detector frame
ð1þ zÞM owing the redshifted waveforms. Similarly, the
amplitude of the observed GWs is suppressed by a factor
of sin2 ι=dL where dL is the luminosity distance to the
source [84]. As a result of the short timescales over which a
significant fraction of the initial mass is radiated in
gravitational waves, the amplitude of the waveform is
large, see Fig. 1. Suppressing the amplitude to typical
GW strain levels restricts the allowed values of sin2ι=dL,
and due to the degeneracy between ι and dL, this can take
any value between 0 and 1=dL. We are therefore free to

choose a distance and inclination angle. For this analysis,
we use a fiducial distance dL ¼ 4 Gpc, chosen to match the
LVK BBH analysis [23], and inclination angle ι ¼ 34°.
In Fig. 2 we plot the best-fit cusp [85,86] and loop

waveforms with the strain data in the LIGO-Livingston
GW detector. For comparison, we also add the BBH
waveform, which is the reconstructed maximum likelihood
waveform from the LVK analysis [22,87]. We whiten the
data and waveforms using the publicly available power
spectral densities (PSDs) provided as part of the LVK data
release [87]. Owing to the short duration of GW190521
(approximately 0.1 s), we additionally bandpass the strain
data between (10–256 Hz) to suppress high frequencies. At
early stages of the loop waveform, we see that the infall is
restrained in comparison to Fig. 1. This is due to its low
frequency nature, which is below the sensitivity of the LVK
detectors [88–90]. However, it retains the late-time ring-
down, which is similar to the BBH waveform [91]. We see
that the loop waveform is dominated by the black hole
formation and ringdown stages, which solely depend on the
mass of the loop (and thus black hole). This introduces a
degeneracy between the radius and string tension via
Eq. (1), which can only be broken in the presence of the

FIG. 2. The time-domain gravitational wave strain data for the LIGO-Livingston detector [90,92] around the time of GW190521 [22].
The top, middle and bottom panels plot the best-fit detector-frame waveforms assuming a cosmic string cusp, loop collapse and BBH
merger respectively. The cosmic string cusp waveform is the best-fitting template from the LVK’s cosmic string matched filter search
pipeline [85,86] and the BBH waveform is the reconstructed maximum likelihood waveform from the LVK analysis [22,87]. The strain
data and waveforms are whitened by the noise power spectral density provided as part of the LVK data release [87]. We shift the data and
waveforms by the coalescence time in the LIGO-Livingston detector tc as reported in the LVK BBH analysis.
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infall signal as this timescale depends on R0. This means
that comparable waveforms with different string tensions
and radii can be generated, as long as the mass of the loops
remains unchanged.
To assess the probability that GW190521 was formed

from a collapsing cosmic string, we calculate the matched-
filter SNR for our example string loop waveform described
above. This can be considered as analogous to a matched-
filter search [93–105] with only one template. For com-
parison, we repeat the calculation for the best-fit BBH and
cusp models. We calculate the SNR ρ by evaluating the
noise-weighted inner product [106]. We use the publicly
available PYCBC [98,101] software to perform the analysis.
Often signal-consistency tests are additionally performed to
distinguish between genuine astrophysical signals, and
non-Gaussian noise artifacts [107]. We did not perform
any signal-consistency tests in this Letter as we are
ultimately interested in comparing the collapsing cosmic
string, BBH, and cusp models. In Fig. 3 we plot the SNR
time series for our example collapsing cosmic string loop
and best-fit BBH and cusp models. We see that the loop
waveform greatly out performs the cusp model with an
increase in SNR of 20%: 10 to 12. To highlight that our
loop waveform provides a better fit to the data than
previously considered cosmic string signals, we calculate
the Bayes factor. We do not calculate the odds ratio, and
therefore we do not account for the theoretical expectation
of forming collapsing cosmic string loops in nature (a prior
probability of the model), since their theoretical event rate
is highly uncertain [108]. Assuming that the likelihood
follows expð−ρ2=2Þ, the log Bayes’ factor in favor of our
loop waveform over cusps is 22. This implies that the loop

hypothesis is strongly preferred over the cusp model, and is
therefore the most accurate representation of GW190521
assuming a cosmic string origin to date. We see that
the BBH hypothesis obtains a larger SNR, meaning
that it is still the preferred progenitor of GW190521.
Without further details about the low-frequency nature of
GW190521 and a more complete template bank of loop
waveforms, we are unable to draw further conclusions.
Conclusion.—In this Letter we have revisited the origin

of GW190521 using, for the first time, waveforms of
circular cosmic string loops collapsing to black holes; a
previously unconsidered source. We have shown that
GW190521 can be described as a collapsing string loop
with a signal-to-noise ratio of ρ ≈ 12. This greatly improves
upon previous cosmic string cusp analyses, where ρ ≈ 10 is
obtained. By approximating the log Bayes’ factor, we show
that the collapsing cosmic string hypothesis is favored over
existing cusp results by logBloop

cusp ¼ 22.
Our cosmic string loop waveforms are constructed from

circular, planar loops that have no angular momentum, and
thus collapse to form Schwarzschild black holes. Indeed,
this is a very special case—in general loops will be
nonplanar [109], or carry initial spin in its internal field
configuration, or possess traveling kinks. A loop with
initial angular momentum might collapse to form a black
hole with significant spin. This would reduce the damping
rate of the ringdown phase and improve the SNR, so it is
entirely conceivable that such signals would be indistin-
guishable from binary black holes in an observation like
GW190521. However, the details about the angular
momentum loss rate during the loop collapse process
and whether spinning black holes are to form from these
systems are not known, so we leave this Letter for
future work.
The timescales shown in Fig. 1 highlight the multi-

frequency nature of these events. The data favor the
absence of an oscillatory infall signal, suggesting that it
must be below the low-frequency sensitivity of the LVK
detectors, f½infall� ⪅ 10 Hz. This implies that R0 ⪆ 10−4 AU
via Eq. (8), and assuming the progenitor was a cosmic
string loop of M0 ≈ 181M⊙, we can put a weak constraint
on the dimensionless string tension of this event to be
Gμ=c2 ⪅ 10−2. This is not competitive with those obtained
from CMB [110] or SGWB [21] searches, but note,
however, that these are sensitive to details of the loop
distribution model and how the string network evolves. Our
Letter provides a novel technique to infer the astrophysical
event rate of collapsing string loops by searching for their
individual signals in LVK data. This could help guide the
construction of string loop distribution models, analogous
of how BBH detections help to constrain the BBH event
rates and BH population models [111]. Given that ∼80
BBHs have been observed through GWs [1], and only one
can be described by cosmic string loops with high
significance, we derive a simple estimate for the event

FIG. 3. Network signal-to-noise ratios (assuming a network of
the LIGO-Hanford, LIGO Livingston and Virgo detectors) for the
best-fit BBH, loop and cusp waveforms, ρ ¼ f14; 12; 10g,
respectively. As with Fig. 2, we shift the time series by the
coalescence time in the LIGO-Livingston detector tc as reported
in the LVK BBH analysis.
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rate from collapsing loops to be 80 times smaller than for
BBHs. If circular loops were to exist and be detected with
the methods described in this Letter, it could imply that
either (i) there might be many more small loops than
expected; and/or (ii) there exists a dynamical process that
efficiently circularizes them, such as the significant radi-
ation of gravitational waves.
Based on our results, we propose collapsing string loops

as a potential hypothesis for future analyses. The degen-
eracy between high mass binary black hole and string
collapse signals will make a definitive detection of this
source difficult, although it might be possible to use higher
modes to more conclusively distinguish them. The absence
of additional power prior to black-hole formation may be a
smoking gun in LVK observations, but it will be necessary
to understand how easily string collapse can be distin-
guished from dynamical capture mergers that also lack
significant premerger power. We suggest using ringdown-
only waveform templates as a simple and viable approach
to search for these events. Future GW detectors that target
lower frequencies, such as LISA [112–114], will be able to
probe the early phase of GWevents that feature at the edge
of the LVK sensitivity, helping to distinguish between high
mass BBHs or signals arising from new physics.
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