
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/16 8 4 6 1/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Yan, Weiqing,  S u n,  Yiqiu, Yue, Gu a n g h ui, Zhou,  Wei a n d  Liu, H a n t a o  2 0 2 4.

FVIFor m e r:  flow-g uide d  glob al-local a g g r e g a tion  t r a n sfo r m e r  n e t wo rk  for  video

inp ain ting.  IEEE Jou r n al of E m e r ging  a n d  S elec t e d  Topics  in Circ ui ts  a n d  Sys t e m s

1 0.11 0 9/JETCAS.20 24.3 3 9 2 9 7 2  

P u blish e r s  p a g e:  h t t p://dx.doi.or g/10.11 0 9/JETCAS.202 4.33 9 2 9 7 2  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



1

FVIFormer: Flow-Guided Global-Local Aggregation

Transformer Network for Video Inpainting
Weiqing Yan Member, IEEE, Yiqiu Sun, Guanghui Yue Member, IEEE, Wei Zhou, Hantao Liu Member, IEEE

Abstract—Video inpainting has been extensively used in recent
years. Established works usually utilise the similarity between
the missing region and its surrounding features to inpaint in
the visually damaged content in a multi-stage manner. However,
due to the complexity of the video content, it may result in
the destruction of structural information of objects within the
video. In addition to this, the presence of moving objects in
the damaged regions of the video can further increase the
difficulty of this work. To address these issues, we propose
a flow-guided global-Local aggregation Transformer network
for video inpainting. First, we use a pre-trained optical flow
complementation network to repair the defective optical flow
of video frames. Then, we propose a content inpainting module,
which use the complete optical flow as a guide, and propagate the
global content across the video frames using efficient temporal
and spacial Transformer to inpaint in the corrupted regions of
the video. Finally, we propose a structural rectification module to
enhance the coherence of content around the missing regions via
combining the extracted local and global features. In addition,
considering the efficiency of the overall framework, we also
optimized the self-attention mechanism to improve the speed
of training and testing via depth-wise separable encoding. We
validate the effectiveness of our method on the YouTube-VOS and
DAVIS video datasets. Extensive experiment results demonstrate
the effectiveness of our approach in edge-complementing video
content that has undergone stabilisation algorithms.

I. INTRODUCTION

Video inpainting focuses on generating lost or corrupted

content in video frames using the available information from

the video. The goal is to create a restored video that is

not only fully formed and logical, but also seamless. While

image inpainting has seen considerable progress as referenced

in [12], [20], [26], the challenge in video inpainting lies in

the continuous and complex nature of video content, which

makes it unsuitable to directly apply techniques developed for

image inpainting. Applying image inpainting methods frame

by frame can lead to temporal inconsistencies and noticeable

flaws in the video. Therefore, for high-quality video inpainting,

it is essential to address both the spatial structure of the video

frames and their temporal coherence.
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In the past few years, deep video inpainting techniques

have achieved significant success. Previous video inpainting

networks commonly utilized 3D CNNs [35], [6], [38], [13],

[28] for the integration of spatiotemporal details. However,

these approaches frequently encountered challenges such as

constrained receptive fields in both time and space, as well as

alignment issues between neighboring frames. Consequently,

they exhibited reduced efficacy in capturing distant content.

Transformer’s exceptional capability in handling long-range

interactions has proven it to be well-suited for video inpainting

tasks [30], [45], [21]. Both these methodologies, one based

on CNN and the other on Transformers, come with their re-

spective strengths and limitations. For instance, the 3D CNN-

based approach by Wang et al.[35] excels in reconstructing

the general content but lacks in detail refinement and video

continuity. In contrast, Ren et al.[30] employed Transformers

to better align adjacent features, although the reconstructed

objects lacked structural integrity.

On the basis of these two methods, several academics [45],

[21], [43], [8] introduce optical flow in the inpainting process.

The two methods of Xu et al.[43] and Gao et al. [8] used

optical flow guidance to complete video repair according

to local feature information in CNN structure. Zhang et al.

[45] and Li et al. [21] used Transformer structure under the

guidance of optical flow to complete the repair of video

content by connecting long-distance information. Due to the

varying motion magnitudes between foreground objects and

background, the sharing similar motion patterns are more

likely to be related. Consequently, the disparities in motion

observed in flows can act as a powerful guide, instructing the

attention to retrieve content that is more relevant to the task

at hand.

In summary, we designed an optical flow restoration module

that uses forward and reverse optical flow to complete the

estimated residual optical flow information as a guide for

subsequent restoration. Guided by the complete optical flow,

we use a transformer network to extract relevant and effective

features in video frames from both temporal and spatial

dimensions to inpaint the missing regions of the target frames.

We refer to this process as the Content Inpainting Module. In

the temporal Transformer, we use the Efficient Multi-Head

Self-Attention (EMSA) [47] on the input frame sequence.

Since the input sequence contains non-adjacent video frames,

the same target may have a large offset in the sequence.

Information interaction within a small receptive field makes

it difficult to establish an effective link; therefore, we use a

large window to perform inter-frame EMSA to ensure the

integrity of the content in the receptive field. The optical
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flow information emphasises the contour structure of moving

objects within a single video frame. Therefore, we introduce

optical flow information before the spatial Transformer to

distinguish between moving objects and background regions.

Considering that the optical flow information is generated,

there may be some errors. Thus, we use a stream weighting

operation when introducing the optical flow. It will adaptively

control the influence weight of the optical flow information on

the recovered content according to the similarity between the

optical flow information and the image information. This can

reduce the impact of errors in the optical flow information as

much as possible. In the spatial Transformer, we utilise video

sequences fused with optical flow information on the content

of a single frame using an Efficient Multi-Head Self-Attention

(EMSA). This process uses the information of the same object

or scene to fill in the missing regions of it.

Since Transformer focuses more on the interaction of long-

range information, this may make the local structure of the

repaired content disparate from the real structure although the

texture is reasonable. Therefore, we propose an hourglass-

type Structural Rectification Module that use a local binding

to interact with local features on the repaired content to

restructure the content. Through the processing of this module,

the boundary area between the missing and visible regions will

be more coordinated, and the transition of the content of the

same object there will be more reasonable. In summary, our

contributions are:

1) We propose an optical Flow-guided Global-Local Ag-

gregation Transformer Network for video inpainting

which exploit the related flow features to guide the

corrupted video frame generation via global-local Trans-

former feature aggregation.

2) We use the idea of optical flow guidance to design

Optical-flow Restoration Module as a pre-processing

operation to obtain the contour information of moving

objects in the video, so that moving objects can be

distinguished from the background area. In order to

avoid the situation that missing content cannot be found

in the target frame, we design a Content Inpainting

Module, which uses the information of discontinuous

video sequence from the spatial dimension to carry out

content repair. Based on the results obtained from the

content restoration module, we designed a Structural

Rectification Module to adjust the edge information of

the missing area by mixing local and global feature

extraction, so as to make it more coordinated with the

visible content.

3) In the inpainting process, we optimise the sub-attention

mechanism via adding the depth-wise separable way to

improve the efficiency of the task implementation. We

assess the efficacy of our approach using the YouTube-

VOS and DAVIS video datasets. The comprehensive ex-

perimental results affirm the effectiveness of our method

in enhancing the edges of stabilized video content.

II. RELATED WORK

The field of inpainting initially began with images, with

the primary objective of filling in missing portions using

retrieved or artificially generated content. The concept of video

inpainting, which extends this idea to videos, emerged as a

natural progression, introducing the additional dimension of

time. In video inpainting, the temporal consistency of the

video stream becomes crucial, as it allows us to recover

information for the corrupted regions not only from the

current frame but also from neighboring frames. Conventional

video inpainting techniques, exemplified by references like [1],

[11], [27], [7], [10], delve into the geometric relationships,

such as homography or optical flows, that exist between the

damaged areas in the target frames and the intact portions

in reference frames. These relationships are harnessed to

achieve precise content synthesis and maintain high fidelity.

Nonetheless, these methodologies are often plagued by a

significant computational burden stemming from the intensive

optimization processes involved, which imposes limitations on

their practical applicability in real-world scenarios.

Due to the swift progress in deep learning, there has been

a proliferation of more streamlined and potent deep learning-

driven approaches for video inpainting. These methods have

made notable strides in enhancing both the quality and speed

of inpainting outcomes. These methods can be broadly cate-

gorized into three main categories:optical flow-based methods,

3D convolution methods, and Transformer-based methods.

Approaches utilizing 3D convolutions [3], [16], [24] com-

monly address missing content by directly incorporating tem-

poral features between adjacent frames through 3D temporal

convolution. For instance, the [35] pioneered the development

of the initial deep video inpainting network, employing a

structure comprising a 3D convolutional network for tem-

poral feature extraction and a 2D convolutional network to

restore spatial details. Expanding on this groundwork, the

[14] introduced a recurrent 3D-2D network intended to fuse

temporal features into the areas within the target frame re-

quiring inpainting. While 3D convolution methods excel in

efficiently integrating temporal information, it’s noteworthy

that 3D CNNs tend to entail relatively higher computational

complexities compared to their 2D counterparts. This aspect

may impose limitations on the practical application of these

techniques.

To address this issue, some researchers have tackled the

aggregation of temporal information by framing it as a pixel

propagation problem and leveraging optical flow data to

depict the evolving relationships between pixels [43], [8],

[14], [15], [46], [51]. This spatio-temporal feature aggregation

framework, initially applied to video target detection, involves

computing the optical flow field between adjacent frames using

a pre-trained model, as described by Zhu et al.[50]. They

map features from previous frames to the current frame’s

coordinate space, aggregating them with current frame features

through weighted averaging. Wu et al.[39] introduced an

Recurrent Neural Network(RNN)-based method for enhancing

detection accuracy by aggregating semantic features across

frames, taking into account motion trajectories, occlusions,

and scene dynamics. Cui et al.[5] proposed the Tf-blender

framework, incorporating an attention mechanism for adap-

tive feature fusion, focusing on the most relevant features

for current frame detection. Zhou et al.[48] developed the
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Fig. 1. Overview of the Flow-Guided Global-Local Aggregation Transformer Network for Video Inpainting. It includes 1) Optical-flow Restoration
Module(ORM), 2) Content Inpainting Module(CIM), and 3) Structural Rectification Module(SRM). The framework first uses the Optical-flow Restoration
Module to repair the missing stream information of the content, then uses the Content Inpainting Module to synthesise the missing regions within the video
under the guidance of the optical flow, and finally optimises the details of the seams by means of the Structural Rectification Module.

TransVOD architecture, combining spatial transformers for

feature map alignment within frames and temporal trans-

formers to capture motion information across frames. This

approach is now widely used in video-related tasks. These

approaches typically start by introducing a pre-trained flow

completion network to reconstruct the optical flow frames.

Subsequently, they employ this restored flow to inpaint the

missing regions of neighboring sequence. For instance, in

[43], the flow sequence, reconstructed through a coarse-to-fine

flow completion network, serves as a guide for incorporating

essential pixels into the areas that need to be inpainted.

Expanding upon this concept, the [8] addressed the completion

of flow edges. The [14] designed flow completion module and

an error compensation network guided by error maps, which

improves temporal consistency and visual quality in inpainted

videos. Furthermore, the [51] tackled spatial misalignments

during the propagation of temporal features by leveraging

the completed optical flow. While these methods have shown

promise, they do have limitations when it comes to aggregating

visible content from distant frames due to the inherent nature

of optical flow information.

To effectively capture long-distance correspondences, state-

of-the-art techniques [18], [19], [23], [25], [40], [44] have

adopted Transformer models [33], known for their ability

to handle long-term relationships. For instance, Zeng et al.

[44] introduced the first transformer-based model for video

inpainting. Furthermore, Liu et al. [23] improved the depiction

of edge details in the missing region by integrating soft com-

position operations within the framework of the transformer.

In a related development, Ren et al. [30] introduced an

approach named the Discrete Latent Transformer (DLFormer).

This approach reformulates the video inpainting task within a

discrete latent space, offering a unique perspective on address-

ing the challenge. While these methods excel at aggregating

information from distant parts of the video, they sometimes

struggle with maintaining local structural coherence in the in-

painted results, which can lead to inconsistencies with reality.

Zhou et al.[49] introduced ProPainter, a method that enhances

propagation accuracy and efficiency by leveraging previous

frame restoration outcomes and current frame data, effectively

reducing error accumulation and boosting restoration quality.

Wu et al.[41] introduced a semi-supervised technique via the

cycle consistency constraints, enabling networks to restore

entire videos’ corrupted areas with just a single frame’s

annotated mask.

Although Transformers have demonstrated remarkable per-

formance, their self-attention mechanisms introduce a chal-

lenge due to their high computational complexity. When

designing a structure for video restoration, it’s essential to

consider not only the quality of the restoration but also the

efficiency of the process. In this context, we introduce a Flow-

Guided Global-Local Aggregation Transformer Network that

addresses both local and global feature relationships during

the restoration process. This approach effectively tackles the

computational complexity associated with the self-attention

mechanism, offering a more balanced solution for video

restoration tasks.

III. PROPOSED METHOD

Given a corrupted video sequence with length T

I =
{

It ∈ R
H×W×3 | t = 1 . . .T

}
and corresponding frame

wise binary masks M =
{

Mt ∈ R
H×W×3 | t = 1 . . .T

}
,

our model output the complete video sequence Y ={
Yt ∈ R

H×W×3 | t = 1 . . .T
}

. In the following, we will

specifically discuss the components of our approach. As shown

in Fig. 1, the structure of our network consists of three main

modules: Optical-flow Restoration module, Content Inpainting

module and Structural Rectification module. For a given

masked video sequence It , Optical-flow Restoration module in-

puts its forward and backward optical flows, then, an hourglass

network is used to recover the optical flow information in the

missing area. Based on completed flows, Content Inpainting
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Module propagates the content across video frames, which ag-

gregates high similarity information from neighbouring frames

to the target frame. Eventually, Structural Rectification Module

interacts the information between the repaired and unmasked

content and reconstructs them to a final video sequence Y.

A. Optical-flow Restoration Module(ORM)

Fig. 2. Structure of Optical-flow Restoration Model. The module uses a two-
layer coding and decoding structure and introduces P3D blocks to achieve
the aggregation of temporal and spatial flow information during the coding
process.

In this section, we will detail the proposed the Optical-

flow Restoration Module (ORM). The framework of ORM is

presented as Fig. 2. We firstly use the optical flow estima-

tion network Recurrent All-Pairs Field Transforms(RAFT)[31]

to estimate the residual optical flow information F ={
ft ∈ R

H×W×3 | t = 1 . . .T
}

of the corrupted video sequence

I. Then, we add the Pseudo-3D residual networks (P3D)[29]

block to the skip connect to aggregate the features of the flow

sequence from both time and space dimensions. Compared

with the skip connect, P3D adds one dimensional space and

time convolution to enhance the connection of video sequence

information. In this module, the residual optical flow informa-

tion sequence F is inpainted to obtain the complete optical flow

information sequence F
′ =

{
Ft ∈ R

H×W×3 | t = 1 . . .T
}

. The

feature extraction depth of the hourglass repair network is 2,

and we take ft as the input and f̃ 2
t as the output of the encoding

of ORM. The encoding process of the optical flow is shown

in Eq.1:

P3D( ft) = TC(SC( ft))

f̃ 1
t = P3D( ft)+Encoder( ft)

f̃ 2
t = P3D( f̃ 1

t )+Encoder( f̃ 1
t )

(1)

where, TC() is a one-dimensional time convolution, SC() is

a two-dimensional space convolution, and they work together

to form a P3D block. Encoder() represents the coding layer

of the local stream feature aggregation network. In these

blocks, the convergent flow characteristics of the target flow

are obtained by reducing the time resolution of the flow

sequence. As shown in Fig. 2, we decode the local aggregation

feature f̃ m+1
t after dilation convolution to complete the stream

information inpainting to obtain the complete flow F
′. The

process of Optical-flow Restoration Model is shown in the

following Eq.2.

f̃ 1
t = Decoder(Concat(DC( f̃ 2

t ), f̃ 2
t ))

Ft = Decoder(Concat(DC( f̃ 1
t ), f̃ 1

t ))
(2)

where, DC() represents void convolution, Concat() represents

feature cascade operation, Decoder() represents the decoding

layer of the local stream feature aggregation network, f̃ n
t

represents the stream feature after n times of encoding, n is

the number of coding layers, and t is the t-th frame.

B. Content Inpainting Module(CIM)

Once the entire optical flow information has been acquired

from the preceding stage, we proceed to inpaint the missing

regions in the video based on the optical flow sequence F .

Our content inpainting module incorporates both temporal and

spatial transformers. He et al.[12] have highlighted the issue

of content redundancy arising from processing information

solely from local temporal neighbors. To address this con-

cern, we advocate for sequences that encompass information

from non-adjacent frames, offering advantages over sequences

containing information only from adjacent frames. In this

module, we introduce multiple the Res-Spatial Transformer

and Res-Temporal Transformer blocks (STTformer) to effec-

tively complete the aggregation of local spatial information

and non-local temporal information for content inpainting.

In these transformer module, we introduce Efficient Multi-

Head Self-Attention (EMSA) [47] to reduce the computational

complexity.

Before the content Inpainting module, we downsized the

resolution of both the video sequence It and the complete

optical flow sequence Ft to one-fourth of their original di-

mensions. Illustrated in Fig. 1, the corrupted It and completed

Ft is input to the flow-guided feature generation module to

propagate the information of It from the generated optical

flow sequence Ft via convolutional layers, which enhances

the accuracy of subsequent operations. Following the feature

extraction process, we derived the characteristics of the video

sequence as Ît and the optical flow feature sequences as

F̂t . To facilitate input into the temporal-spatial interleaved

Transformer network, we partitioned Ît and the completed flow

sequence F̂ into small patches, and project them into frame

token X token
t and F token

t for further processing.

Following that, we present the Content Inpainting Module,

including the EMSA, Res-Temporal Transformer, Res-Spatial

Transformer.

Fig. 3. Efficient Multi-Head Self-Attention. The depth wise separable convo-
lution introduced within the process reduces the dimensionality of the input
tokens, which reduces the amount of self-attention operations and improves
processing efficiency.
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1) Efficient Multi-Head Self-Attention (EMSA): The Multi-

Headed Self-Attention (MHSA)[34] exhibits clear advantages

compared to conventional sequence modeling techniques, of-

fering capabilities to handle extensive dependencies and facili-

tate parallel computing. Nonetheless, the substantial consump-

tion of computational and storage resources poses efficiency

challenges for MHSA in practical applications. The compu-

tational complexity of MHSA is O(2dmn2 + 4d2
mn), where n

denotes the spatial dimension of the input data and dm denotes

the channel size. To address these issues, we introduce the

EMSA module (shown in Fig. 3) aimed at mitigating compu-

tational and storage demands while maintaining effectiveness.

Step 1: Similar to MHSA, EMSA also takes matrix mul-

tiplication to obtain the three values Q, K, V . However,

to improve the efficiency of the self-attention operation, a

depth wise separable convolution is introduced before using

the 2D input token Xt ∈ R
n×dm as a way of splitting the

dimension n into the form h × w, (i.e., x̂ ∈ R
dm×h×w)and

decreasing the dimensionality of h and w by a factor k. p is

a built-in parameter adaptive setting for depth wise separable

convolution. The kernel size, step size, and padding are p+1,

p, and p/2, respectively.

Step 2: Reshape a 3D token mapping x̂ ∈R
dm×h/p×w/p with

reduced width and height into 2D one, i.e.,x̂ ∈ R
n′×dm , n′ =

h/p × w/p. The key K and the value V are then obtained

using x̂ also using matrix multiplication. The process is shown

in Eq.3:

Qt = Linear(LN(Xt))
Kt = Linear(LN(DWConv(Xt)))
Vt = Linear(LN(DWConv(Xt)))

(3)

Step 3: We connect the output value vectors of the three

branches of Q,K,V end to end, and then form the final output

through linear transformation.

EMSA(Q,K,V ) = IN(Softmax(Conv(
QKT

√
dk

)))V (4)

In this context, Conv() denotes a standard 1× 1 convolu-

tional operation. The attention function of each head depends

on all keys and queries. However, this configuration diminishes

the MHSA’s capability to incorporate information from distinct

subsets of representations across different positions. To revive

the diversity in the attention mechanism, we introduce Instance

Normalization[32] (represented as IN()), applied to the dot

product matrix following the Softmax operation.

The computational complexity of EMSA is O
(

2dmn2

p2 +

2d2
mn(1+ 1

p2 )+dmn
(p+1)2

p2 + k2n2

p2

)
, much lower than the com-

putational complexity of the original Multi-headed Self-

attention(MHSA), especially at the lower stages where p tends

to be higher. As shown in Fig. 3, the output of each EMSA

is shown as follows:

Xt
′ = Xt +EMSA(LN(Xt)) (5)

2) Res-Temporal Transformer: The temporal transformer

serves the purpose of facilitating the interaction of distant

information within a video, enabling the extraction of in-

formation from other video frames when there is no loss

area within the target frame. This functionality becomes

particularly evident when inpainting moving objects in the

video. In the temporal transformer, we execute attentional

retrieval in the temporal dimension to gather content from a

video sequence. Given that the video sequence includes non-

adjacent frames in addition to adjacent frames, a large attention

window is employed to prevent potential failures in attentional

retrieval caused by significant differences between the content

of non-adjacent frames and the target frame. Consequently,

we segment the image tokens along the spatial dimension into

multiple non-overlapping cubes, each of substantial size with

dimensions H ×W ×T (where H represents height, W repre-

sents width, and T represents time). The attentional retrieval

is performed using EMSA within each cube, facilitating the

aggregation of long-range information. The implementation of

the temporal transformer is detailed in Equation 6.

Ptoken
K

′
= Ptoken

K +EMSA(LN(Ptoken
K ))

T token
K = Ptoken

K

′
+FFN(LN(Ptoken

K

′
))

(6)

where Ptoken
K consists of the K-frame image features, which are

the output of content-fusion module, LN() is the linear normal

layer, EMSA() is the efficient self-attention mechanism, and

FFN() is the feedforward layer of the Transformer.

3) Res-Spatial Transformer: In the spatial transformer,

guided by optical flow, we employ large-size windows to

implement the attention mechanism, facilitating information

interaction within the video frame. While harnessing the

complete optical flow to guide the attention mechanism, a

straightforward approach involves directly cascading the op-

tical flow token and the image token. However, this oper-

ation presents two challenges. Firstly, errors may arise in

the generated optical flow information, potentially leading to

misguided judgments regarding the relevant region. Secondly,

the internal texture information of the same moving region

in the optical flow might vary. Therefore, operating based on

the same scale may yield results different from the original

content. To address these challenges, as depicted in Fig. 4, we

initially use a MLP to assess the similarity between the image

token T token
K and the optical flow token W token

K information. The

optical flow information W token
K is then weighted based on this

similarity, resulting in the weighted optical flow information.

Subsequently, T token
K and W token

K are concatenated and input

into the spatial transformer. The process of weighted fusion is

shown in Eq.7:

Ŵ token
K =W token

K ×MLP(T token
K ,W token

K )

RK =Concat(Ŵ token
K ,T token

K )
(7)

where MLP() indicates the MLP operation. The enhanced flow

Ŵ token
K is weighted to enhance the filling capacity of the space

Transformer. The spatial transformer is implemented as shown

in Eq.8.

R′
K = RK +EMSA(LN(RK))

SK = R′
K +FFN

(
LN(R′

K)
) (8)
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Fig. 4. The process of weighted fusion of optical flow token and image token
before entering Spatial transformer.

where, RK represents the result of cascading the enhanced

optical flow feature F̂ token
K with the output T token

K of time

Transformer, Fusion() denotes the weighted fusion explained

in Eq.7, LN() is the normalization operation, EMSA() is the

efficient self-attention mechanism, and FFN() is the feedfor-

ward layer of Transformer. Stoken
K is the output of the space

Transformer structure, which is the preliminary repair result

of our method.

C. Structural Rectification Module(SRM)

Given that the self-attention mechanism tends to prioritize

global information interaction, there is a potential for distortion

in the structure of local information. In contrast, CNN are

designed to emphasize the interaction of local information.

Therefore, as illustrated in Fig. 5, we introduce a 3-layer

Encoder-Decoder structure following the transformer block.

This addition enhances the coherence of content around the

missing regions, refining the outcomes of our inpainting pro-

cess. The result is a more realistic restoration of partially dam-

aged objects, addressing both structural and textural aspects.

The structural correction process is detailed in Equation 9.

Yt = ED(Ît × (1−Mt)+Stoken
t ×Mt) (9)

where × represents the dot multiplication operation, Mt rep-

resents the mask of the damaged area of the video frame, Yt

represents the content of the visible area in the video input,

and T
spatial

t represents the content generated by the damaged

area of the video. ED() represents the working process of the

codec. As shown in Fig. 5, the decoding operation takes as

input the features of the previous stage and the corresponding

coded features in cascade. We verified the effectiveness of the

module in the ablation experiment of 4.3.

D. Loss function

We measure the loss using the restored video sequence and

its effective feature information.

The first is the image-level loss, which measures the pixel-

level difference in the masked area between the inpainted

video Yt and the true value I
gt
t through the L1 distance:

LI = ∥Mt ×Yt −Mt × I
gt
t ∥1 (10)

The second is feature-level loss, which measures the pixel-

level difference between the effective features of the inpainted

video sequence and the ground-truth by L1 distance:

Fig. 5. Implementation of the Structural Rectification Model. The working
process of the structure correction module. Residual links are used in the
decoding process to connect the same scale features at the time of encoding.

L f = ∥FE(Yt)− Î
gt
t ∥1 (11)

where FE() denotes the same operation as feature extraction

in Fig. 1, which extracts the valid information in Yt and aligns

the format with Î
gt
t for loss measurement.

In addition to this we introduce, the style loss [9] Ls and

and T-PatchGAN loss [4] Lp to supervise the training process.

Ultimately our model training loss is designed as a quadruple

weighted loss.

L = λILI +λ f L f +λsLs+λpLp (12)

where λI , λ f , λs and λp are the weights of image-level loss,

feature-level loss, style loss and T-PatchGAN loss, respec-

tively.

During the training of the model, we set the length of the

video frame sequence to 5 and the learning rate to 1e−4. The

Adam optimiser is used for optimisation and the final weights

file is obtained after 300 iterations.

IV. EXPERIMENTAL RESULTS

A. Settings

Datasets. We have conducted our evaluation using the

Youtube-VOS dataset [42] and the DAVIS dataset [2]. The

Youtube-VOS dataset comprises 541 videos, while the DAVIS

dataset includes 90 videos, encompassing a wide range of

scenes. During the training phase, we utilize the training set

from the Youtube-VOS dataset to train our networks effec-

tively. As for masks, during training, we randomly generate

irregular masks in proportion to simulate the imperfections

of the video content. In the testing process, we use mov-

ing rectangular masks and object-like masks respectively for

quantitative analysis. For our evaluation metrics, we follow

prior research and use the PSNR (Peak Signal-to-Noise Ra-

tio), SSIM (Structural Similarity Index), and LPIPS (Learned

Perceptual Image Patch Similarity) [37]. These metrics enable

us to comprehensively assess the performance of our method

compared to state-of-the-art baselines. VINet[17], STTN[44],

FGVC[8], DSTT[22], FFM[23], E2[21] and FGT[45].

B. Comparison of Results

Quantitative results: We have conducted a comprehensive

quantitative assessment on both the Youtube-VOS [42] and

DAVIS [2] datasets using stationary masks. Our evaluation
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Fig. 6. Comparative results in the DAVIS dataset. (a) The results of FGVC[8], (b) The results of STTN[44], (c) The results of FFM[23], (d) The results of
DSTT[22], (e) The results of E2[21], (f) The results of FGT[45], (g) Our results.

TABLE I
QUANTITATIVE RESULTS.

Method
Youtube-VOS DAVIS-square DAVIS-object Efficiency

PSNR↑ SSMI↑ LPIPS↓ PSNR↑ SSMI↑ LPIPS↓ PSNR↑ SSMI↑ LPIPS↓ Runtime↓ FPS↑

VINet[17] 30.52 0.9328 0.03449 30.48 0.9128 0.03226 23.28 0.8771 0.01831 0.231 4.329
STTN[44] 31.35 0.9321 0.06582 30.96 0.9136 0.07931 24.05 0.8565 0.01709 0.188 5.588
FGVC[8] 35.17 0.9721 0.02042 35.93 0.9736 0.01635 24.84 0.9091 0.01193 2.162 0.462
DSTT[22] 32.13 0.9343 0.06281 31.63 0.9154 0.07609 24.22 0.8588 0.01674 0.624 1.614
FFM[23] 32.51 0.9369 0.06073 32.07 0.9197 0.07082 24.19 0.8590 0.01679 0.737 1.377
E2[21] 32.79 0.9395 0.05973 32.47 0.9236 0.07275 24.19 0.8598 0.01697 0.189 5.669

FGT[45] 35.33 0.9737 0.01792 35.96 0.9758 0.01514 24.89 0.9183 0.01157 2.611 0.384
Ours 35.33 0.9739 0.01761 35.96 0.9758 0.01512 24.91 0.9193 0.01156 0.497 1.999

involves a comparison with several previous video inpainting

methods, including VINet [17], STTN [44], FGVC [8], DSTT

[22], FFM [23], E2 [21], and FGT [45].

During the inference process, we have created square mask

sets that exhibit continuous motion tracking for both the

Youtube-VOS and DAVIS datasets. These masks are designed

to evaluate the algorithm’s capability to repair damaged video

content. The average size of the masks within the square mask

set is set to 1/16 of the entire frame. Moreover, to assess each

algorithm’s ability to remove objects from videos, we have

generated mask sets that correspond to the regions of moving

objects in the DAVIS dataset. As depicted in Table I, our

method outperforms all previous state-of-the-art algorithms

across all three quantitative metrics. These outstanding results

demonstrate that our approach excels in generating videos with

minimal distortion (as indicated by PSNR and SSIM) and more

visually plausible content (as indicated by LPIPS).

Qualitative results: Fig. 6 shows the results of repairing the

rectangular mask damage video by using different methods.

From the example in the third row, we can see that the result

generated by the FGVC[8] method is obviously deformed, and

the structural shape of the car in the example is destroyed.

From the example in the second line, we can see that the

results generated by the STTN[44] and DSTT[22] methods

will result in the absence of object content, and the part of the

cat’s ear blocked by the mask will not be filled out. From the

example in the fourth line, we can see that the results generated

by the E2[21] and FFM[23] methods are fuzzy, and the dog’s

ear part has obvious distortion. From the example of the first

line, we can see that the result generated by the FGT[45]

method is ghost-like, and we can see that there are redundant

outlines in the area of the dog’s head. In summary, our method

is able to generate faithful texture and structure information.

In addition, we also show the results of our method’s object

removal operation on video in Fig. 9. It can be seen that

the generated results are continuous in time, and there is no

obvious ghost and distortion.

Efficiency Comparison: In Table I, we compare the

Runtime and Frames Per Second (FPS) metrics for these

comparative approaches. The FPS and runtime are derived

from the processing of a single video frame. Our analysis

is performed on a single 2080Ti GPU, taking into account

the complete video restoration process. The experimental data

demonstrate that our method achieves comparable runtime

efficiency while outperforming the comparison methods across

three key evaluation metrics.

Compared with FGT: Our method obtains the better

performance in the runtime and FPS under the similar metrics

of PSNR, SSMI and LPIPS. In addtion, the propopsed method

consider the Structural Rectification Model(SRM) to adjust

the edge information of the missing area by integrating local

and global feature extraction. As shown in Fig. 7(a) and
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Fig. 7. The visual results of compared with FGT[45].

Fig. 8. The result of ablation experiments for the Structural Rectification
Module.

(b), when the masked region contains fast moving objects,

it can cause more challenges to the contour information of

the restoration results. In this case, the results obtained by the

FGT method show negative phenomena such as distortion or

artefacts, whereas our results distinguish the moving objects

from the background region very well, and obtain better visual

results in terms of contour integrity and coherence.

C. Ablation Studies

TABLE II
THE RESULTS OF THE ABLATION EXPERIMENT.

Method DAVIS-object DAVIS-square
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

W/o SRM 24.78 0.9188 0.01161 35.93 0.9757 0.01520

W/ SRM 24.91 0.9193 0.01156 35.96 0.9758 0.01512

Since E2 et al.[21] demonstrated the effectiveness of intact

optical flow for video inpainting, we perform a ablation

study on Structural Rectification Model(SRM) to verify its

effectiveness. The ablation study is conducted on the DAVIS

dataset. As shown in table II, when we remove the structural

correction module from the model, the value of the quantitative

metrics drops. As can be seen in (a) of Fig. 8, the video

recovery deteriorates significantly after removing the module

in the comparative methods. The position of the bird’s wings

in (a) is not well delineated from the scene, and the recovered

content at the neck does not match the original content. As

can be seen in (b) of Fig. 8, the contours of the objects in

the generated region become less obvious after removing this

module. The arm region of the person in (b) is covered by

a mask and the inpainted contour is not clear after removing

this module.

In the Content Inpainting Module, we use the spatio-

temporal transformer module with EMSA. To demonstrate the

effectiveness, we show ablation experiments for the content

repair module. We use a generative network [36] combining

ResNet and feature pyramid network to replace the spatio-

temporal Transformer structure (STTformer). In addition,

the spatio-temporal Transformer structure is adopted but the

EMSA is removed. The results are shown in Fig. 10. From this

figure, it can be seen that the removal of the STTformer results

in a notably incorrect texture for the repaired region. Similarly,

when the EMSA is omitted, the contours are inadequately

restored, leading to inaccuracies in the texture information

repair.

D. Limitation

Video inpainting algorithms face a great challenge when

both background regions and dynamic objects appear within

a video frame. They have difficulty in discriminating the

contents of the two types of regions, which leads to inpainting

results in missing content or ghosting. We show two failures

of our method in Fig. 11 and list the results of three methods,

STTN[44], DSTT[22], and E2[21], which show that the results

of the algorithms are difficult to maintain consistency with

the original content. We summarise the failure cases and find

that the results of video content restoration become unreliable

when the following three conditions are simultaneously met: 1)

the damaged region of the video contains both the background

region and the moving objects; 2) the moving objects are

small and move fast; 3) the moving object region has no

obvious texture feature information. Failure cases are generally

the result of not effectively distinguishing the content of the

damaged region from the background, which leads to missing

content in the repair results.

V. CONCLUSION

In this research, we introduce a flow-guided global-local

aggregation Transformer network for video inpainting, with

a strong focus on enhancing the connections between global

and local information within video sequences. Our approach

involves the integration of three modules: the Optical-flow

Restoration Module, the Content Inpainting Module, and the

Structural Rectification Module. These modules work collab-

oratively to address several limitations observed in earlier

methods. We incorporate the concept of optical flow guidance

into the design of the Optical-flow Restoration Module, which

serves as a preprocessing step aimed at capturing the contour

information of moving objects within the video. This allows

us to distinguish moving objects from the background area

effectively. The Content Inpainting Module, on the other hand,

leverages information from discontinuous video sequences in

the spatial dimension to perform content restoration. Addi-

tionally, we introduce the Structural Rectification Module,

which combines local and global feature extraction to better

adjust the edge information of the missing area, ensuring its

seamless integration with the visible content. Our experimental

results clearly demonstrate the outstanding performance of our

method, surpassing previous techniques in terms of both quan-

titative and qualitative evaluations on two widely recognized

benchmark datasets.
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Fig. 9. Object removing via our method. Note: odd-numbered actions input content and even-numbered actions our result.

Fig. 10. The result of ablation experiments for the Content Inpainting Module.

Fig. 11. Failure example. (a) is the result obtained by STTN[44], (b) is the
result obtained by DSTT[22], (c) is the result obtained by E2[21], and (d) is
our method.
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