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A B S T R A C T   

Integrating ecosystem services and life cycle assessment is gaining increasing attention for the analysis of 
environmental costs and benefits associated with human activities covering multiple geographical scales and life 
cycle stages. Such integration is particularly relevant for evaluating the sustainability of nature-based solutions. 
However, merging these methods introduces additional uncertainties. This paper introduces a novel protocol to 
assess uncertainties in combined ecosystem services-life cycle assessment, focusing on ecosystem services ac
counting, life cycle inventory of foreground systems, and life cycle impact assessment characterisation factors. 
Applied to a nature-based solution case study compared to no-action and energy-intensive scenarios, the un
certainties were analysed using multi-method global sensitivity analysis. The robustness of the analysis results 
was assessed through convergence plots and statistical tests. Findings reveal significant uncertainties, especially 
in life cycle impact assessment characterisation factors, with the extent varying by impact category. Uncertainties 
in foreground life cycle inventory, particularly in land use of nature-based solutions scenario, are also notable. 
Compared to these, uncertainties associated with indicators of impact on ecosystem services (uncertainty arising 
from input variability in ecosystem services accounting) are relatively lower. This study underscores the critical 
role of uncertainty assessment in enhancing the reliability of integrated assessments for nature-based solutions, 
providing a framework to identify and quantify key uncertainties, thereby supporting more informed decision- 
making.   
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AF air filtration 
CF characterisation factor 
CSS carbon storage and sequestration 
DM delta method 
eFAST extended Fourier Amplitude Sensitivity Test 
ES ecosystem services 
FE freshwater eutrophication 
FP freshwater provisioning 
FPMF fine particulate matter formation 
GR groundwater recharge 

GWP global warming potential 
KIA key issue analysis 
LCA life cycle assessment 
LCI life cycle inventory 
LCIA life cycle impact assessment 
LH Latin hypercube 
LU land use 
MC MonteCarlo simulation 
ME marine eutrophication 
MM Method of Morris 
MS Morris sampling 
NbS nature-based solution 
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PAWN PAWN method 
RBD random balance design 
RF RBD-FAST 
RS random sampling 
RUSLE Revised Universal Soil Loss Equation 
S1 Sobol's sensitivity first-order index 
SCC Spearman correlation coefficient 
SR sediment retention 
SRC standardised regression coefficient 
SS Sobol's sequence 
SSI Sobol's sensitivity indices (first-order and total-order) 
ST Sobol's sensitivity total-order index 
UA uncertainty assessment 
WC water consumption 
WPN water purification (nitrogen) 
WPP water purification (phosphorus) 

1. Introduction 

The advent of nature-based solution (NbS) systems heralds a prom
ising approach to addressing environmental challenges while enhancing 
sustainability. NbS is defined by the International Union for Conserva
tion of Nature (IUCN) as “actions to protect, sustainably manage and 
restore natural or modified ecosystems that address societal challenges 
effectively and adaptively, simultaneously providing human well-being 
and biodiversity benefits” (IUCN, 2020). The NbS applications range 
across many domains including sustainable stormwater management, 
wastewater treatment, urban agriculture, agroecological farming, 
coastline erosion prevention, and remediation of contaminated soil and 
groundwater (European Commission. Directorate General for Research 
and Innovation., 2020). To assess the sustainability of NbS several ap
proaches have been used including cost-benefit analysis, life cycle 
assessment (LCA), ecosystem services (ES)-based approaches, multi- 
criteria decision analysis, or a combination of two or more approaches 
(Loiseau et al., 2016). LCA measures the environmental impacts over the 
life cycle of a system/service (Guinée et al., 2011; Rebitzer et al., 2004); 
while ES accounting is the process of quantifying and valuing the ser
vices provided by natural ecosystems to humans such as carbon 
sequestration (Schröter et al., 2015). The integration of ES and LCA is an 
increasingly used approach (Rugani et al., 2019), to provide a compre
hensive assessment of the environmental impacts and benefits that a 
single approach could provide (Rugani et al., 2023) particularly in the 
sustainability assessment of NbS systems (Alshehri et al., 2023a). The 
integration of ES and LCA could be performed in several ways, such as 
post-analysis by qualitative interpretation of the ES and LCA results (e. 
g., ES and LCA are conducted independently, then the results are ana
lysed qualitatively based on risk scale), through integration by the 
combination of the results (e.g., approaches are performed separately, 
then the results are combined by ranking method), or by complementing 
a driving primary method (e.g., ES results to the LCIA phase) (De Luca 
Peña et al., 2022). 

Both ES and LCA are influenced by different sources of uncertainty 
(Lima et al., 2017; Barahmand and Eikeland, 2022). Given that ES 
modelling is essentially a spatial modelling exercise (Andrew et al., 
2015), the quality of spatial data is a major source of uncertainty in ES 
modelling (Hamel and Bryant, 2017). Additionally, the structural un
certainties arising from simplified ES models are yet another significant 
source of uncertainty in ES modelling (Natural Capital Project, 2022). 

In the LCA domain, the common sources of uncertainty are due to 
data variability and availability (e.g., foreground life cycle inventory 
(LCI), LCI; background LCI), methodological choices (e.g., definition of 
system boundary; functional unit; impact assessment method including 
relevant characterisation factors (CFs)), choice of normalisation and 
weighting, lack of knowledge of biogeochemical processes (epistemic 
uncertainty; e.g., land use change, ecosystem functions), and assump
tions of linearity and fixed relationships (Bamber et al., 2020). 

The integration of various assessment approaches, each carrying its 
own set of uncertainties, leads to compounded uncertainty (Hamel and 
Bryant, 2017). The sources of uncertainty in integrated modelling could 
arise from the context and framing of the system under study (i.e., the 
scope of the assessment), input uncertainty driven by external parame
ters (e.g., natural variability of climatic parameters), parameter uncer
tainty (i.e., pertaining the parameter value potentially arising from 
measurement errors), structural model uncertainty (simplified or 
incomplete description of the modelled system relative to reality), 
model technical uncertainty which are implementation related un
certainties (e.g., coding and software technical bugs) (Walker et al., 
2003; Refsgaard et al., 2007). The total uncertainty of the model output 
(s) is attributed to various sources of uncertainties (Loucks et al., 2005). 
These uncertainties could undermine the credibility of integrated as
sessments if not treated properly (Baustert et al., 2018). Igos et al. 
(2019) identified several steps in the uncertainty treatment which are:  

• uncertainty identification (determining sources of uncertainty),  
• uncertainty characterisation (defining the range of variability in 

uncertainty sources), 
• uncertainty analysis (i.e. simulation of possible representative sce

narios using sampling methods for instance),  
• sensitivity analysis (understanding the magnitude of contribution of 

the sources of uncertainty to the output uncertainty using either local 
sensitivity analysis or global sensitivity analysis approaches), and 

• uncertainty communication (i.e., transparent dissemination of un
certainty assessment results) 

While uncertainty assessment protocols have been proposed in in
dividual domains, whether in ES accounting (Lima et al., 2017; Yang 
et al., 2019; Connor et al., 2022) or LCA modelling (Padey et al., 2013; 
Barahmand and Eikeland, 2022; Ravi et al., 2022), to our knowledge no 
uncertainty assessment protocol yet exists for integrated ES-LCA 
assessment. Section 2 of this paper offers further discussions of the 
state-of-the-art of uncertainty assessment in ES-LCA modelling. Conse
quently, there arises a critical need for a comprehensive and robust 
framework to quantify the uncertainties inherent to the integrated sus
tainability assessment of NbS systems. 

1.1. Objectives and novelty 

In response to this imperative, we propose a novel uncertainty 
assessment protocol for integrated ES-LCA assessments to quantify the 
effect of different sources of uncertainty. To test the applicability, un
certainty on several representative ES assessment factors (i.e. carbon 
sequestration, groundwater recharge, water purification, and air filtra
tion) was considered, together with uncertainty affecting foreground LCI 
parameters, and CFs of life cycle impact assessment (LCIA). Specifically 
in this work, we aim to achieve the following objectives: the develop
ment of a novel quantitative uncertainty assessment of ES-LCA protocol; 
the application of multi-method global sensitivity analysis (GSA) to a 
NbS system; the assessment of the robustness of the multi-method GSA 
through visual inspection and statistical testing; and the study of the 
impacts of sampling strategy and the number of simulations on the GSA 
results. The novelty of this work lies in the development of the first 
quantitative uncertainty assessment protocol for an integrated ES-LCA 
assessment within the context of NbS systems sustainability assessment. 

2. Uncertainty of ES-LCA integration: a brief literature review 

The integration of ES-LCA is a developing research focus aimed at 
broadening LCA frameworks to include ES accounting (VanderWilde 
and Newell, 2021). Yet, the exploration of uncertainty and sensitivity in 
ES-LCA remains an emerging field, with limited studies to date (Rugani 
et al., 2023; Yao et al., 2024). The terms uncertainty and sensitivity 
analysis are frequently used interchangeably (Rosenbaum et al., 2018). 
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In this study, we use Saltelli's definition of sensitivity as “The study of how 
uncertainty in the output of a model (numerical or otherwise) can be 
apportioned to different sources of uncertainty in the model input” (Saltelli, 
2004). Sensitivity methods can be classified as either local or global. 
Global sensitivity methods generally fall into distinct categories: 
derivative-based, distribution-based (also known as variance-based), 
variogram-based, and regression and correlation-based methods 
(Razavi et al., 2021). Interested readers are suggested to consult Iooss 
and Lemaître (2014) and Razavi et al. (2021) for comprehensive over
views of GSA methods, and Saltelli (2008) for a more in-depth explo
ration. Despite the increasing number of stand-alone ES accounting 
assessments, they are not often coupled with uncertainty assessments 
(Hamel and Bryant, 2017), which could potentially undermine the 
robustness and usefulness of such assessments (Bryant et al., 2018). The 
application of GSA to ES accounting is still a relatively unexplored topic 
demonstrated by the number of studies. Noting that there are several ES 
accounting models, a Scopus search with the terms “ES accounting AND 
global sensitivity analysis” returned a few results, some examples of 
which are presented in Table 1. 

Sánchez-Canales et al. (2015) employed the method of Morris (MM) 
to investigate sediment retention ecosystem services in the Iberian 
Peninsula. They analysed input parameters like rainfall erosivity, soil 
erodibility, and land use/land change (LULC) related factors. The study 
focused on three model outputs: total exported sediments, improved 
water quality from retained sediment fraction, and reduced reservoir 
sedimentation due to retention. Huang et al. (2019) employed MM to 
study the impact of land conservation on climate change-induced 
degradation of ES in a semi-arid catchment in Idaho, USA, using In
VEST's water yield and sediment retention models. Likewise, Yang et al. 
(2019) utilized MM to assess the precision of InVEST's water yield model 
in predicting water provisioning in South China (Yang et al., 2019), 
employing a Latin hypercube sampling (LHS) approach distinct from the 
Monte Carlo simulations used in the studies by Sánchez-Canales et al. 
(2015) and Huang et al. (2019). Wang et al. (2022) recently carried out a 
GSA implementation on an InVEST model (nutrient delivery retention), 
using the extended Fourier Amplitude Sensitivity Test (eFAST) to 
pinpoint the significant environmental management factor affecting the 
economic gains of excess nitrogen and phosphorus retention as an 
ecosystem service. In another context, Connor et al. (2022) used the MM 
to gauge the responsiveness of ES payments to both biophysical and 
economic factors, grounded in an urban forest regeneration initiative. 
This analysis encompassed carbon storage, sequestration, and 

freshwater provisioning as key ES benefits. 
Beyond InVEST models, Estrada-Carmona et al. (2017) employed 

Monte Carlo simulations and random forest techniques to reduce the 
model uncertainty of the Revised Universal Soil Loss Equation (RUSLE) 
model. They examined 18 distinct input parameters, utilizing random 
forest on six spatial datasets representing varying climatic and 
geographical conditions that affect sediment retention ES delivery. 

While GSA is relatively more common in LCA than in ES accounting, 
widespread application remains limited (Mahmood et al., 2022). Table 2 
presents key examples of GSA applied to LCA studies. The first GSA 
application to an LCA was reported by Padey et al. (2013). They 
employed first-order and total-order Sobol's sensitivity indices (SSIs) 
using Monte-Carlo (MC) simulation for a wind power electricity case 
study to determine uncertainty arising from foreground system param
eters and global warming potential characterisation factors. In the 
notable work of Groen et al. (2017), six GSA methods were utilized, 
encompassing key issue analysis (KEI), SSIs (1st and total-order), 
random balanced design (RBD), and sampling-based techniques 
including standardised regression coefficient (SRC) and Spearman cor
relation coefficient (SCC). Two case studies were conducted: one 
involving a simple LCA of electricity production and another with a 
more sophisticated LCA model of fishery activities. 

SSI emerged as the most frequently employed GSA method, as 
illustrated by Lacirignola et al. (2017), Paulillo et al. (2021) and Gkousis 
et al. (2022) in the context of geothermal energy production, and by Lin 
et al. (2022) in the recycling of delivery packages. SSI has also been used 
to assess the uncertainty of emerging technologies. For instance, 
Jouannais and Pizzol (2022) employed SSIs with MC and SS sampling 
strategies for a consequential ex-ante LCA of European production of 
emerging microalgal compounds. Additionally, Baaqel et al. (2023) 
applied SSI to assist in early-stage chemical production. 

The method of Morris (MM), also known as the elementary effects 
test, stands as another commonly used, cost-effective variance-based 
GSA approach. It frequently serves as a screening step to identify non- 
influential parameters, thus reducing the computational expenses 
linked with resource-intensive methods like SSI. This utility is show
cased in various instances, such as Elias et al.'s (2021) application to 
bioethanol production, the examination of Swiss food consumption (Kim 
et al., 2022a), and the study of rice farming (Xu et al., 2022). 

Regression and correlation-based GSA methods have also been uti
lized in LCAs, albeit to a lesser extent. In the work of Groen et al. (2017), 
SRC and SCC were implemented using a random sampling strategy for 
the aforementioned case studies. It was observed that SRC exhibited 
superior performance when dealing with small variances (5 %) in both 
simple and complex LCA models. Conversely, SCC demonstrated greater 
robustness when confronted with larger variances (30 %) in the complex 
LCA model. Xiao et al. (2023) employed SRC to assess the impact of 
parameter uncertainty in a case study involving the recycling of sec
ondary aluminium, encompassing variances ranging from 10 % to 50 % 
of the base values of input parameters. 

Moment-independent GSA methods distinguish themselves from 
variance-based methods by encompassing the entire distribution of the 
model output, rather than focusing solely on its variance (Borgonovo, 
2007). This characteristic makes them more suitable for models 
featuring non-normal output distributions (Liu and Homma, 2009). The 
delta moment-independent (DM) and PAWN methods exemplify 
moment-independent GSA approaches (Wei et al., 2013; Pianosi and 
Wagener, 2018). Within the LCA domain, Jaxa-Rozen et al. (2021a) 
employed both the DM and the PAWN method in a geothermal energy 
case study, whereas Kim et al. (2022a) employed DM in the context of 
Swiss food consumption. Additionally, Ravi et al. (2022) utilized DM to 
explore wastewater sludge recovery. While prior investigations pri
marily centred around foreground LCI, Cucurachi et al. (2022) extended 
the application of DM to assess the uncertainty of background LCI, using 
the ecoinvent database as an illustrative example. 

While GSA methods are increasingly applied in LCA, their adoption 

Table 1 
Brief literature review of global sensitivity analysis (GSA) approaches applied to 
ES accounting model(s)a.  

Reference Modelled 
ES(s) 

ES 
model 
(s) 

Sampling 
methods 

ES LCA ES- 
LCA 

(Sánchez- 
Canales 
et al., 2015) 

SR InVEST MS MM n.a. no 

(Huang et al., 
2019) 

FP, WPP, 
WPN 

InVEST MS MM n.a. no 

(Yang et al., 
2019) 

FP InVEST LH MM n.a. no 

(Estrada- 
Carmona 
et al., 2017) 

SR RUSLE RS SRC n.a. no 

(Connor et al., 
2022) 

CSS, FP, 
WPP 

InVEST MC MM n.a. no 

(Wang et al., 
2022) 

WPP, WPN InVEST eFAST eFAST n.a. no  

a CSS: carbon sequestration and storage, eFAST: extended Fourier Amplitude 
Sensitivity Test, FP: freshwater provisioning, LH: Latin hypercube sampling, MC: 
MonteCarlo sampling, MM: Method of Morris, MS: Morris sampling, RS: random 
sampling, SRC: Standardised regression coefficient, SR: sediment retention, 
WPN: retention of Nitrogen, WPP: retention of phosphorus. 
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Table 2 
Brief literature review of global sensitivity analysis (GSA) applications in the life cycle assessment (LCA) domaina.  

Reference ES modelling ES model(s)/sectors of LCA Sampling 
method 

ES LCA ES-LCA 

(Padey et al., 2013) n.a. Wind power electricity MC n.a. SSI no 
(Groen et al., 2017) n.a. Electricity production + Fishery 

production 
MC, RBD n.a. KEI, SCC, SRC, SSI, 

RF 
no 

(Lacirignola et al., 2017) n.a. Geothermal energy MC n.a. SSI no 
(Elias et al., 2021) n.a. Bioethanol production MS n.a. MM, SSI no 
(Jaxa-Rozen et al., 2021a) n.a. Geothermal energy LH, SS n.a. SSI, DM, PAWN no 
(Paulillo et al., 2021) n.a. Geothermal energy SS n.a. SSI no 
(Zhao et al., 2021) n.a. Geothermal energy LH, SS n.a. SSI, RF, PAWN no 
(Cucurachi et al., 2022) n.a. Photovoltaic system MC n.a. DM no 
(García-Velásquez and Van Der Meer, 

2022) 
n.a. Bio-based PET production MC n.a. SCC no 

(Gkousis et al., 2022) n.a. Geothermal energy MC n.a. SSI no 
(Jouannais and Pizzol, 2022) n.a. Microalgal production MC, SS n.a. SSI no 
(Kim et al., 2022a) 

(screening) 
n.a. Food consumption MC n.a. MM, SSI, DM no 

(Kim et al., 2022b) 
(background LCI) 

n.a. Food consumption MC n.a. SSI, DM no 

(Lin et al., 2022) n.a. Delivery package recycling MC n.a. SSI no 
(Paulillo et al., 2022) n.a. Geothermal energy MC n.a. SSI no 
(Ravi et al., 2022) n.a. Struvite and wastewater sludge 

recovery 
MC n.a. SSI, DM no 

(Xu et al., 2022) n.a. Rice farming MS n.a. MM, SSI no 
(Xiao et al., 2023) n.a. Secondary aluminium recycling MC n.a. SRC no 
(Baaqel et al., 2023) n.a. Early-stage chemical production MS n.a. SSI no 
This study CSS, GR, WPN, WPP, 

AF 
Brownfield remediation LH, SS MM SSI, RF, PAWN SSI, RF, 

PAWN  

a AF: air filtration, CSS: carbon sequestration and storage, GR: groundwater recharge, WPP: retention of phosphorus, WPN: retention of Nitrogen, MC: MonteCarlo 
sampling, LH: Latin hypercube sampling, RS: random sampling, MS: Morris sampling, eFAST: extended Fourier Amplitude Sensitivity Test, SCC: Spearman correlation 
coefficient, SRC: Standardised regression coefficient, PAWN: the PAWN method, DM: Delta moment-independent method. MM: Method of Morris, SSI: Sobol's 
sensitivity indices, RF: RBD-FAST, KEI: key issue analysis. 

Fig. 1. The proposed uncertainty assessment (UA) protocol of the ES-LCA assessment (ES: ecosystem services, GSA: global sensitivity analysis, LCA: life cycle 
assessment, SA: sensitivity analysis). 

K. Alshehri et al.                                                                                                                                                                                                                                



Sustainable Production and Consumption 47 (2024) 499–515

503

in the ES domain is still limited. To our knowledge, no uncertainty 
assessment framework for integrated ES-LCA exists. Introducing GSA to 
the ES-LCA context could significantly improve sustainability assess
ments and decision-making for NbS. Reducing uncertainty in NbS 
modelling is vital for land planners, potentially lowering design and 
implementation costs while boosting ES in human-altered landscapes. 

3. Methods 

3.1. Uncertainty assessment protocol 

A comprehensive multi-method uncertainty assessment (UA) proto
col was devised to assess the uncertainty of the ES-LCA integration 
across the foreground LCI, LCIA's CFs and ES assessment factors. We 
excluded the uncertainty of background LCI flows from our analysis due 
to large number (hundreds of thousands) of sources that would require 
consideration (Wernet et al., 2016). Including these flows would 
significantly increase the complexity of the analysis (Kim et al., 2022b) 
and impose unmanageable operational limitations on computational 
resources (Cucurachi et al., 2022) necessary for the scope of this work. 
Moreover, while ecoinvent includes uncertainty details for background 
LCI, this aspect is notably absent in other background LCI databases 
(Ciroth et al., 2016). Fig. 1 shows the structure of the proposed UA 
protocol follow the structure of n Pianosi et al. (2016)'s workflow con
sisting of 4 general steps: computational setup, input sampling, model 
execution, and post processing. We have adapted Pianosi et al.'s broad 
recommendations into specific strategies, including sampling tech
niques, GSA methods, and tailored post-processing approaches for ES- 
LCA assessments. 

3.1.1. Computational setup 
The input parameters considered fall under one of the three groups 

including foreground LCI, ES-LCA's CFs, and corresponding ReCiPe's 
CFs. Those parameters are fully reported in Tables A.1–A.4 of the sup
plementary material (SM). The well-known data quality “pedigree” 
matrix concept developed to include uncertainty parameters in life cycle 
inventories (Weidema and Wesnæs, 1996) was applied to the foreground 
LCI base values. This resulted in the definition of semi-quantitative data 
quality indicators (DQIs). 

Those data quality indicators were then transformed into probability 
distribution functions (PDFs) using Muller et al. (2016)'s approach. Two 
independent DQI assessments were performed to limit the potential 
subjectivity of the DQI results. The lower and upper bounds for PDFs of 
ES-LCA's CFs were obtained through as the minimum and maximum 
stochastic values of spatial ES modelling biophysical parameters as 
highlighted in Table A.1 included in the SM. Santos et al. (2022)'s 
approach was applied to obtain the PDFs of standard LCIA's CFs which 
implied varying the CF value by a certain ±% based on the perceived 
uncertainty in the impact category methodology, the common elemen
tary flows from the modelled with the largest contributions (≥99 %) to 
LCIA scores were selected to assign uncertainty ranges to ReCiPe's CFs 
(refer to Table A.2-A.3 in the SM). 

The selected GSA methods in the UA strategy were Sobol's sensitivity 
indices (Saltelli et al., 2010), PAWN (Pianosi and Wagener, 2015), and 
the Random Balance Designs-Fourier Amplitude Sensitivity Test (RBD- 
FAST) (Tarantola et al., 2006). 

The use of several GSA methods is recommended to cross-check the 
GSA results (European Commission. Joint Research Centre, 2020). We 
implemented the Sobol's sensitivity index, a variance-based method 
which is considered the gold standard of GSA (Iooss and Prieur, 2019). 
Due to its wide applicability across models such as ES and LCA, and its 
ability to discern interaction effects of input parameters on output un
certainty (Saltelli, 2008)., Yet the high computational cost and depen
dence on specific input sampling strategy remained major drawbacks 
(Iooss and Prieur, 2019). Therefore we used a distribution-based GSA 
method such as PAWN, which is becoming popular as sampling strategy- 

agnostic and computationally-efficient alternative/complementary tool 
to the variance-based method (Pianosi and Wagener, 2018). Addition
ally, we used the improved RBD-FAST which requires significantly less 
computational costs and works with several input sampling strategies 
(Tissot and Prieur, 2012). Hence, we were able to obtain multi-method 
GSA results using a single input sampling strategy with no additional 
computational costs. 

A screening step using the method of Morris (1991) was imple
mented to filter the less influential parameters to reduce the computa
tional cost of the more sophisticated GSA method. The method of Morris, 
also known as the elementary effects test, is a widely used computa
tionally inexpensive screening method that determines the influence of 
input parameters on the model's uncertainty (Saltelli, 2008). 

3.1.2. Input sampling 
The Morris (1991)'s sampling for elementary effects with Campo

longo et al. (2007)'s optimal trajectory improvements, which pertains to 
the required model simulations per input parameter, was used to sample 
the inputs for the screening step. We assumed 200 optimal trajectories as 
suggested by Garcia et al. (2019), who found that the Morris method 
converges at 200 trajectories for complex models. 

For the multi-method GSA step, we implemented the Sobol Sequence 
(SS) required by the Sobol's sensitivity index is a well-known quasi- 
random low-discrepancy sequence used to produce uniform samples of 
input parameter space (Sobol, 2001). We assumed N = 1000 simulations 
per parameter for the multi-global sensitivity analysis step. To under
stand the impacts of sampling strategy on multi-method GSA results, We 
applied the Latin hypercube (LH) sampling technique that samples the 
input variable into distinct strata to ensure equal representation of every 
input variable in the sample (Mckay et al., 2000). 

3.1.3. Model execution 
In this step, we first model ES stochastically based on literature un

certainty ranges of the biophysical inputs of the InVEST models (refer to 
Table A.1), to assess the changes on ES delivery for each modelled 
scenario. Then the minimum and maximum stochastic values are 
assumed to be the lower and upper bounds of the novel CFs of ES-LCA 
(refer to Alshehri et al. (2023b)) for more details about the ES-LCA 
framework). Pianosi and colleagues recommend evaluating the robust
ness and convergence of sampling-based Sensitivity analysis(SA) tech
niques (Pianosi et al., 2016). Convergence of SA results indicates that the 
sensitivity indices are no longer influenced by the sample size (by 
plotting the sensitivity index value vs the sample size as line graph), 
indicating that the number of samples meets the requirements for GSA 
methods (Wainwright et al., 2014). Additionally, the model behaviour 
was assessed and compared to the deterministic ES-LCA results reported 
in Alshehri et al. (2023b). 

3.1.4. Post-processing 
In this step, we assessed the robustness of GSA results by plotting 

heatmaps of the selected GSA sensitivity indices. We also applied the 
Kruskal-Wallis (KW) test and Dunn's post-hoc pairwise comparison test 
to determine if there was a statistically significant difference in the 
stochastic ES-LCA results of the modelled scenarios. The statistical sig
nificance is determined by comparing p-values of the employed tests 
against a predefined alpha level (α = 0.05), if the p-value is less than a it 
indicates the differences among between is not due to chance (Hollander 
et al., 2014). 

3.2. Illustrative case study 

We employed the London Olympic Park case study which is a mega 
brownfield redevelopment project (200 ha) undertaken to host the 
London 2012 Summer Olympics, formerly described at length in 
Alshehri et al. (2023b). To this end, we explored three modelled sce
narios reflecting different remediation strategies including conventional 
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remediation technologies, a NbS remediation system, and no-action 
scenario each of which is outlined in Table 3: 

3.3. Computational implementation 

We adapted the sensitivity analysis computational workflow devel
oped by Jaxa-Rozen et al. (2021b), which was based on the openLCA IPC 
python wrapper. The Morris and Sobol input sampling, as well as the 
implementation of global sensitivity methods, were performed using 
SALib, a well-known sensitivity analysis python library (Usher et al., 
2016; Herman and Usher, 2017). The input sampling for stochastic ES 
modelling was achieved by uniform sampling function from Numpy 
(Harris et al., 2020), while the stochastic ES modelling was implemented 
using the InVEST API python (Natural Capital Project, 2022), the 
modelling approach for each ES is detailed in the InVEST user guide for 
interested readers (InVEST® User Guide — InVEST® Documentation, 
2024). However, for air filtration (AF) ES modelling, a different 
approach was used because the InVEST suite does not have module of AF 
modelling, as highlighted in Alshehri et al. (2023b). The KW test was 
implemented using the relevant Scipy function (Virtanen et al., 2020), 
whereas the Dunn's test for pairwise comparison was applied using the 
scikit-posthocs python package (Terpilowski, 2019). 

4. Results 

4.1. Screening step 

In this section, we present the results of the screening step in the 
experimental setup of the proposed protocol. There are 58, 59, and 53 
input parameters in the initial lists for the LOP, NbS, and NA modelled 
scenarios respectively (see the SM, Tables A.5–A.7 for detailed 
description of the input parameters). The screening step aims to retain 
the 33 most influential input parameters for further GSA analysis. Fig. 3 
shows a scatterplot of the method of Morris results, with the y-axis 
representing the standard deviation of the elementary effects (EEs) and 
the x-axis showing the mean of EEs. As input parameter markers move to 
the top-right corner of the plot, they indicate higher contributions to 
output variance, signifying greater relevance in terms of uncertainty 
(Pianosi et al., 2016). 

In the LOP scenario (refer to Fig. B.1 in the SM), the uncertainty of 
the global warming potential (GWP) category was mainly dominated by 
CF's uncertainty, except for the foreground LCI of CHEM (chemical 
stabilisation). The uncertainty of the water consumption (WC) category 
was primarily controlled by foreground LCIs of remediation technolo
gies, notably chemical and geotechnical remediation. For the fine par
ticulate matter formation (FMPF), freshwater eutrophication (FE), and 
marine eutrophication (ME) categories, contributions to model uncer
tainty came mainly from CFs and the LCI of CHEM and bioremediation. 
In the land use (LU) category, the CF's contribution to the output vari
ance was significantly higher than the foreground LCI aside from CHEM. 

Regarding the NbS scenario (see Fig. B.2), a prominent contribution 

to uncertainty is observed from the foreground land use LCI (LU-LCI) of 
the NbS remediation across various impact categories. In both the GWP 
and FMPF categories, the primary contributors to output variance are 
the foreground LU-LCI and diesel consumption in agricultural activities 
within the NbS system. Within the ME, FE, and LU categories, the CFs 
are a significant contributor to uncertainty, ranking second only to the 
LU-LCI. It is worth noting that the foreground LCI of the NbS_D11 
parameter (which represent diesel consumed in harvesting activities) 
consistently appears in close proximity to the LU-LCI, suggesting a 
positive correlation. 

In the context of the NA scenario (refer to Fig. B.3), a parallel pattern 
of LU-LCI dominance in terms of contribution to uncertainty becomes 
evident. In the GWP, WC, and FMPF categories, the foreground LCI 
associated with collecting samples from monitoring well samples closely 
follows the LU-LCI. This noteworthy contribution could be attributed to 
the sampling frequency (4 times a year) which is reflected in the total 
distance travelled to testing facilities (Table A.2). For the FE and LU 
categories, it is observed that the corresponding CFs closely trail the LU- 
LCI in terms of their contribution to the variance of the output. In the ME 
category, it is apparent that the contribution to uncertainty is exclu
sively dominated by foreground LCIs. 

4.2. Comparison of deterministic and stochastic ES-LCA results 

In this section, we compare the stochastic ES-LCA results of the 
modelled scenarios in with the deterministic figures presented in 
Alshehri et al. (2023b). Fig. 2 represents the GWP results, while the 
remaining impact categories are detailed in Fig. B4–6 in the SM. Upon 
visual inspection of the results, it becomes evident that the deterministic 
value closely aligns with the mean value across the six impact categories 
under investigation, specifically for the LOP. 

In contrast, for the NbS and NA scenarios, the deterministic values 
consistently fall below the mean value, exhibiting varying margins 
across the impact categories. Notably, the WC category stands out as an 
exception, where the two values are approximately equivalent. With the 
exception of the LU and WC categories, the dispersion of the ES-LCA 
outcomes remains minimal, as evidenced by a standard deviation (SD) 
of 0.However, a substantial degree of variability becomes apparent in 
the WC category, with SDs ranging from 27 to 200 times the mean. The 
LU results display a comparatively more moderate level of variance. 

A direct comparison between deterministic results reported in 
Alshehri et al. (2023b) and stochastic ES results of this study is not 
feasible because a different modelling approach has been used for the 
NA scenario to obtain values for CSS, ME, FE, and GR by using land cover 
map (LCM) 2000 as a reference point (refer to Section 6 for further 
discussions). The stochastic ES results are presented in Fig. B.7–9. 

4.3. Results of GSA methods 

In this section, we present the outcomes of the multi-method GSA 
applied to the filtered input parameters of the modelled scenarios. We 
emphasize the significant trends observed in the GSA results of fore
ground LCIs and CFs across these scenarios. Fig. 5, Fig. B.10a, and 
Fig. B.10b display the normalised GSA results for the LOP, NbS, and NA 
scenarios, respectively. These normalised results are scaled from zero 
(indicating the least importance) to one (representing the highest 
importance), enabling a straightforward comparison among the selected 
GSA methods. 

In the LOP scenario, the CHEM (Chemical stabilisation of soil 
contaminant) parameter appears to be the most influential foreground 
parameter within the FMPF, ME, and LU impact categories given 
CHEM's high DQI score which is translated in higher variability of the 
input value. However, the uncertainty of CFs varies in its impact across 
the categories, as indicated in Fig. 5. Generally, the GSA methods yield 
consistent results, particularly in identifying the most influential 
parameter. Nevertheless, this observation appears to diminish as the 

Table 3 
Modelled scenarios.  

Scenario Description 

London Olympic 
Park (LOP) 

This scenario represents the soil remediation activities 
preceding the construction of LOP, including soil washing, 
chemical and geotechnical stabilisation, bioremediation, and 
material sorting, with a duration of 3 years. 

Nature-based 
solution (NbS) 

A simulated large-scale hybrid poplar phytoremediation 
scenario with 5000 trees/ha over 12 years, 30 % die-out, and 
anaerobic digestion of phyto-biomass post-remediation. 

No action (NA) A no-action scenario involving monitored natural 
attenuation with a total of 27 monitoring wells over 30 years 
assuming the 2000 land cover map (LCM) as reference and no 
land use change of the LCM2007  
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importance value approaches zero. Notably, the PAWN method appears 
to produce false positive values, evident in the PAWN index values of 
CFs displaying sensitivity beyond their respective categories 

corroborating Puy et al. (2020)'s findings. There seems to be minimal 
impact from the interaction between model parameters, as indicated by 
the near-zero values of the Sobol's total-order index (ST). Finally, Sobol's 

Fig. 2. Case study map and modelled scenarios (LCM: land cover map, LOP: London Olympic park, NA: no action scenario, NbS: nature-based solution scenario).  

Fig. 3. Screening step results of global warming potential (GWP) results of the LOP scenario; (EEs: Elementary Effects, Tables B.1–B3 present full description of the 
investigated input parameter). 
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first-order index (S1) and RBD-FAST S1 demonstrate better agreement 
compared to the results of other indicators. 

In parallel with the LOP scenario, a consistent pattern emerges 
among the agreement of GSA results of the NbS and NA scenarios, 
extending to less influential parameters in terms of the output uncer
tainty. Moreover, the PAWN results exhibit greater consistency when 
compared to the LOP results. In contrast to the GSA findings of the LOP 
scenario, both the NbS and NA GSA indices point to the foreground land 
use (LU)-LCI flow as the most significant parameter across the impact 
categories. This occurs with exception for the WC category, where CFs 
take dominance, mirroring the LOP scenario results shown in Fig. B.10a, 
and Fig. B.10b. 

In the FE and LU GSA results of the NbS scenario, the second most 
important parameters are the CFs from the respective impact categories, 
and a similar trend is observed in the NA's LU indices. Finally, the 
substantial contribution of the LU-LCI to uncertainty could be attributed 
to its higher correlation with other parameters, as indicated by the ST 
results. 

4.4. Post processing 

4.4.1. Convergence analysis: impact of the sample size 
In this section, we assess the robustness of GSA results based on 

Sobol's sequence sampling by analysing the convergence of sensitivity. 

Fig. 4. Comparison of the stochastic global warming potential (GWP) results for the three scenarios relative to the deterministic values; (KW: Kruskal-Wallis test, 
LOP: London Olympic park, NA: no action scenario, NbS: nature-based solution scenario, Std Dev: standard deviation). 
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Convergence of sensitivity indices occurs when the values of sensitivity 
indices stabilize at a certain sample size. Fig. 6, along with Fig. B.15, and 
Fig. B.19, illustrates S1 value in relation to the sample size. S1 measures 
the contribution of parameters to the model's variance. 

Upon inspecting Fig. 6, Fig. B.15, and Fig. B.19 for the LOP, NbS, and 
NA scenarios, we observe that in the LOP scenario, S1 values converge at 
a sample size of 8704 for the WC and FPMF categories, while they 

reached stability at a sample size of 17,408 for the remaining categories. 
In the NbS scenario, S1 convergence for the GW and FMPF categories 
occurred at a sample size of 8704, and at 17408 for the remaining cat
egories. In the NA scenario, S1 convergence for the GW and WC cate
gories took place at a sample size of 8704, while for the rest of the 
categories, the sensitivity results converged at 17408 sample size. 

Fig. B.12, Fig. B.17, and Fig. B.21 depict convergence plots of the 

Fig. 5. GSA results of the LOP scenario; (Tables B.1–B3 present full description of the investigated input parameter, FE: freshwater eutrophication, FPMF: fine 
particulate matter formation, GWP: global warming potential, LU: Land Use, ME: Marine Eutrophication, PAWN norm: normalised PAWN indicator, RBD-FAST S1 
norm: normalised 1st order indicator of random balance designs Fourier amplitude sensitivity test, S1 norm: normalised 1st order Sobol's index, ST norm: normalised 
total order Sobol's index, WC: water consumption). 
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total-order Sobol's sensitivity indices (ST), which assess the impact of 
interactions on the model's output variance. In both the LOP and NbS 
scenarios, ST converged at a sample size of 17,408, while for the NA 
scenario, the results stabilized at a sample size of 34,816. 

The convergence analysis of PAWN indices is depicted in Fig. B.13, 
Fig. B.17, and Fig. B.21 while the RBD-FAST S1 indices are shown in 
Fig. B.14, Fig. B.18, and Fig. B.20 for the LOP, NbS, and NA scenarios 
respectively. Both indices exclusively assess the first-order impacts of 
the parameters and do not account for parameter interactions. The 
convergence of both the RBD-FAST S1 and PAWN indices was observed 
at a sample size of 17,408 across all impact categories in the modelled 
scenarios. 

4.4.2. Convergence analysis: impact of the sampling strategy 
In this section, we consider the impact of the sampling strategy on 

the robustness of sampling-agnostic GSA methods employed in this 
study, specifically the PAWN and RBD-FAST methods. We utilized SS 
sampling and LH sampling strategies. Our analysis unfolds in two steps. 
Firstly, we examine descriptive statistics through the analysis of box
plots for model outputs (refer to Fig. 7 for the NbS scenarios, Fig. B.23 
for the LOP, and Fig. B.25 for NA scenarios). Secondly, we conduct 
convergence analyses of PAWN and RBD-FAST results, as presented in 
Fig. 8 for the NbS scenario GWP's PAWN results (the remaining NbS 
results are in Fig. B.38–49), and Figs. B.23–34 for the LOP scenario, and 
Figs. B.50–61 for the NA scenario. 

Fig. 6. Convergence analysis of S1 index of the LOP scenario; (Tables B.1–B3 present full description of the investigated input parameter).  
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Upon analysing the boxplots, several observations emerge. Firstly, 
the means of the output groups tend to be approximately equal for both 
SS and LH samplings at sample sizes of 2176 and 4353, across all the 
modelled scenarios, except for the FMP and FE results in the LOP sce
nario, where equality of means was achieved at a sample size of 8704 
(refer to Fig. B.23 The second observation pertains to the data spread of 
the output, as indicated by the 25th and 75th percentiles. The output 
distributions were fairly similar at a sample size of 2076, suggesting that 
lower sample sizes are insufficient to ensure result robustness. 

The third observation relates to the presence of outliers, as indicated 
by the length of the boxplot whiskers and data points located farthest 
from the whiskers. Generally, LH sampling produced more outliers 
compared to SS sampling. This result is anticipated due to the way LH 
sampling is designed to fill the sample space in equal intervals, 
regardless of the density (Mckay et al., 2000). 

The convergence analysis of LH and SS sampling's GSA results offers 
clearer trends about the GSA results of the PAWN and RBD-FAST results. 
For the PAWN method, while the input parameters influence ranking 

was similar for both sampling strategies, the LH sampling offered faster 
convergence at sample size of 2176 across all the modelled scenarios. In 
contrast, the SS sampling achieved a similar convergence at sample size 
of 8704 and 17,408. A second remark pertains to the fluctuation of the 
PAWN indices of the less influential parameters, we notice that LH 
sampling offer more consistent values while the SS values continue to 
fluctuate even at larger sample sizes of 34,816 and 69,032. Although this 
result might be model-specific, it indicates higher compatibility of LH 
sampling to the PAWN method. 

Regarding the RBD-FAST S1 convergence, we noticed that LH sam
pling offered a superior performance relative to SS converging at sample 
sizes of 1088 and 2176 while the SS indices converged at samples sizes of 
8704 and 17,408. A similar observation of the fluctuation of the RBD- 
FAST S1 values of the less influential parameters is noticed. Moreover, 
we notice that LH sampling offer more consistent values while the SS 
values continue to fluctuate even at larger sample sizes of 34,816 and 
69,032. 

Fig. 7. Stochastic results of the NbS scenario based on the sampling strategy; (LHS: Latin hypercube sampling, SS: Sobol's sampling).  
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Fig. 8. Comparison of PAWN indices convergence of the NbS scenario's GWP results based on sampling strategy; (x-marker: latin hypercube sampling, dot-marker: 
Sobol's sampling, Tables B.1–B3 present full description of the investigated input parameter). 

Table 4 
Dunn's test resultsa.  

Impact FE WC LU ME 

Scenario LOP NbS NA LOP NbS NA LOP NbS NA LOP NbS NA 

LOP  1  0  0 1 2.53E-07 2.48E-11  1  0  0  1  0  0 
NbS  0  1  0 2.53E-07 1 0.032957  0  1  0  0  1  0 
NA  0  0  1 2.48E-11 0.032957 1  0  0  1  0  0  1   

Impact GWP FPMF CSS P retention 

Scenario LOP NbS NA LOP NbS NA LOP NbS NA LOP NbS NA 

LOP  1  0  0  1  0  0  1  0  0  1  0  0 
NbS  0  1  0  0  1  0  0  1  0  0  1  0 
NA  0  0  1  0  0  1  0  0  1  0  0  1   

Impact AF N retention GR 

Scenario LOP NbS NA LOP NbS NA LOP NbS NA 

LOP  1  0  0  1  0  0  1  0  0 
NbS  0  1  0  0  1  0  0  1  0 
NA  0  0  1  0  0  1  0  0  1  

a AF: air filtration, CSS: carbon storage and sequestration, FE: freshwater eutrophication, FPMF: fine particulate matter formation, GR: groundwater recharge, GWP: 
global warming potential, LU: Land Use, ME: Marine Eutrophication, WC: water consumption. 
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4.4.3. Hypothesis testing 
In the post-processing phase of the proposed uncertainty protocol, 

we conducted the Levene's test on the impact categories of the modelled 
scenarios to ascertain the appropriate analysis of variance test. The re
sults of the Levene's test are depicted in Fig. B4–6. Across all the 
modelled scenarios and impact categories, the p-values were found to be 
less than α = 0.05. Consequently, we rejected the null hypothesis of the 
Levene's test, which posits that all the samples are drawn from pop
ulations with equal variances. 

Given that the homogeneity of variances condition required for the 
ANOVA test was not met, we opted for the KW test, a non-parametric 
alternative to ANOVA. The results of the KW test are also presented in 
Fig. B4–6. In all cases, the p-values from the KW test were less than α =
0.05, leading to the rejection of the KW test null hypothesis, which 
postulates that the medians of all groups are equal. While the rejection of 
the KW test null hypothesis suggests differences between the groups, it 
does not specify which group(s) differ(s). 

Consequently, it becomes necessary to conduct a post-hoc test, such 
as Dunn's test, to determine the specific group(s) exhibiting differences. 
Dunn's test was employed to evaluate pairwise differences among mul
tiple groups within the dataset, revealing statistically significant dis
tinctions between specific group combinations (p < 0.05). Table 4 
displays the results of the Dunn's test with the Bonferroni correction 
applied to both traditional LCIA and ES-LCA results. A p-value less than 
α = 0.05 leads to the rejection of the Dunn's test null hypothesis which 
states that there is no significant difference between any of the pairwise 
group comparisons. 

Analysing Table 4, we see significant differences across all impact 
categories among the scenarios. The very low p-values are due to the 
Bonferroni correction, which controls Type I error by adjusting the 
significance level for the number of comparisons (Armstrong, 2014). 
Larger sample sizes entail higher number of comparisons which improve 
detection power but demand a stricter significance threshold. 

5. Discussion 

5.1. Applicability of the proposed UA protocol 

As discussed in Section 2, despite the increasing integration of ES- 
LCA assessments for NbS systems, they often lack adequate statistical 
treatment for managing multiple sources of uncertainty inherent in in
tegrated assessments. Therefore, we have introduced a comprehensive 
uncertainty assessment protocol to support decision-making in NbS 
systems. This protocol has been demonstrated using an illustrative case 
study, showcasing its applicability to complex LCA models representing 
various scenarios. 

As shown in Section 4.1, the screening step efficiently identifies 
influential input parameters at a low computational cost, facilitating 
early-stage design adjustments or the acquisition of higher-quality data. 
Section 4.2, with its visualization and descriptive statistics of stochastic 
outputs, aids in understanding the effects of input parameter uncertainty 
on ES-LCA outcomes. Additionally, the multi-method GSA results pre
sented in Section 4.3 bolsters the robustness of integrated ES-LCA by 
comparing multiple GSA indices. The post-processing findings in Section 
4.4 illustrate how we can evaluate the performance of the GSA methods 
used in the study. While the case study is specific to a particular domain, 
the proposed protocol has been designed to accommodate NbS systems 
across various sectors, including for instance green infrastructure and 
ecological farming systems. 

5.2. Assigning uncertainty information to standard and ES-LCA CFs 

Assigning reasonable probability distributions is a critical part of the 
uncertainty assessment exercise, but obtaining relevant uncertainty in
formation in practice remains a challenge. Therefore, semi-quantitative 
data quality indicators such as the pedigree matrix have been 

extensively used in previous studies (Ciroth et al., 2016; Spreafico et al., 
2023). Though in our work, the DQI has been assessed twice indepen
dently as discussed in Section 3.1.1 to reduce the potential risk of bias, 
we found that the variability of the output is sensitive to the choice of the 
DQI. Therefore, we recommend obtaining realistic uncertainty ranges 
where feasible. Assigning probability distribution to the CFs of ES-LCA 
was relatively straightforward given the availability of variability 
ranges of the biophysical inputs used in the ES modelling in addition to 
the relatively simple models used by the InVEST models (refer to 
Table A.1). That said, caution must be put in place when dealing with 
hydroclimatic factors such as annual rainfall because it could impact the 
groundwater recharge potential significantly (Moeck et al., 2020). 
Therefore it is suggested to consult multiple data source to ensure the 
robustness of the results (Redhead et al., 2018). The spatial scale and 
resolution of the spatial data is another uncertainty source that could 
impact the stochastic ES results thus affecting the uncertainty distribu
tion of ES-related CFs. However, an extensive assessment of the impact 
of the quality of the spatial data is out of the scope in this work. The CFs 
of standard LCIA are the last part of the uncertainty triad in our protocol 
and was the most challenging component to find reasonable uncertainty 
probability distributions. On one hand, the perceived uncertainty of CF 
is relatively high as reported by Qin et al. (2020). On the other hand 
every impact category is essentially a separate model reflecting a 
different impact pathway and subject to different factors (Huijbregts 
et al., 2017). Additionally, the existing impact assessment methods still 
lack even semi-quantitative uncertainty information (Cucurachi et al., 
2016; Qin et al., 2020). The GSA results of the LOP scenario (Fig. 6) 
indicate that the overall uncertainty is highly correlated with the vari
ability of CFs while the NbS and NA paint a somewhat different image of 
dominant foreground-land use flow that is not always the case in all LCA 
models (see fig. B.10a & B.10b). While we acknowledge the work done 
by Santos et al. (2022), who proposed a semi-quantitative methodology 
for assigning uncertainty ranges to CFs of impact categories, we 
recommend future efforts to further develop stochastic analysis meth
odologies for assessing the quantitative uncertainty of CFs. This will 
enhance the robustness of LCAs by utilizing the numerous existing GSA 
tools. 

5.3. Selection of the GSA methods 

Results of this paper suggest that the selection of GSA methods is an 
important component of the uncertainty assessment exercise. The de
cision of GSA methods is driven by the scope of uncertainty assessment 
(a screening or ranking of input parameters) as well as the order of effect 
of interest (first, second, or total order). The availability of computa
tional resources also controls the selection of GSA method, e.g., 
variance-based GSA methods are computationally expensive relative to 
distribution-based GSA methods. Additionally, the complexity of the 
LCA model is an important aspect since the number of parameters of 
interest often increases as the LCA model gets more complex. The choice 
of GSA method influences the sample size, sampling size, and compat
ibility with other GSA method; therefore, the GSA methods should be 
selected with care. In Section 4.3, we demonstrated the feasibility of a 
multi-method GSA approach at no additional computational cost using 
Sobol's sequence sampling strategy which is compatible with Sobol's 
sensitivity indices, RBD-FAST, and the distribution-based PAWN 
method. 

The level of expertise of the LCA modeller might be another hin
drance as the implementation of GSA in LCA is still absent from major 
LCA software aside from the AcitivityBrowser (Cucurachi et al., 2022). 
However, the advent of GSA tools and easy-to-use scripting interfaces of 
major LCA software is simplifying the GSA application to LCA as 
demonstrated in the present study as well as in Jaxa-Rozen et al. 
(2021a). Since NbS systems provide multiple ES benefits, the un
certainties of which are typically not assessed, we recommend applying 
GSA methods to the LCA of complex systems like NbS. This approach 
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could yield valuable insights and enhance the decision-making process. 
We also recommend exploring additional GSA method such as the delta 
moment-independent method in tandem with other methods. 

5.4. The number of simulations and sampling strategies 

The results of the convergence analysis of sample size presented in 
Section 4.4.1 suggest that Sobol's indices converged at a smaller sample 
size than the assumed number of simulations per parameter (N = 1000). 
The convergence results suggest that a lower number of simulations per 
parameter (N = 500) could be sufficient. As for the PAWN and RBD- 
FAST S1 indices, the convergence took place by N = 250. We also 
observed the convergence speed depends on the complexity of the LCA 
model under study. Given the LCA models in this are fairly complex, we 
suggest a number of simulations per parameter between N = 250 and 
500 as a starting point coupled with a convergence analysis plot to 
ensure the selected GSA method results are robust. A caveat here is that 
the appropriate sample size is still highly debated in the literature and 
depends on the used GSA method and the structure of the model under 
study. Therefore, additional investigation within the uncertainty of LCA 
and ES-LCA models, in particular, is required to draw universal con
clusions about the appropriate sample size. 

We also experimented with the impact of sampling strategy choice 
on the convergence of distribution-based GSA methods (refer to Section 
4.4.2). We observed that choice of sampling strategy had a significant 
impact on convergence of the PAWN and RBD-FAST S1 methods, the LH 
sampling offered superior performance relative to the SS sampling 
strategy. Though using multiple sampling strategies might undermine 
the advantage of the no-additional computational costs of multi-method 
GSA, we found that conducting a distribution-based multi-method GSA 
before attempting the more resource-demanding Sobol's method pro
vided useful insights which were often validated results of the Sobol's 
indices. Hence if the number of parameters is larger than 30, it might be 
useful to conduct PAWN as the second step of the two-stage screening 
phase while using the method of Morris in the first step to reduce the 
overall sample size required by Sobol's. Investigating the feasibility of 
random sampling-based multi-method GSA within the ES-LCA context is 
an interesting line of inquiry that could be explored in future efforts as 
random sampling functionality is already present in modern LCA soft
ware packages reducing the need to learn specialised statistical tools. 

5.5. Selection of appropriate hypothesis testing 

Hypothesis testing plays a crucial role in the post-processing phase, 
quantifying stochastic model outputs and facilitating comparisons be
tween scenarios or systems (e.g., NbS systems vs. conventional active 
remediation). The choice of hypothesis testing depends on the shape of 
the model output probability distribution (normal or non-normal) and 
the number of scenarios or groups involved (two or more). These factors 
determine whether parametric or non-parametric tests are appropriate. 
Additionally, it is essential to verify that the assumptions of the hy
pothesis test are met, along with examining the null hypothesis to ensure 
the accuracy of the result interpretation. 

In this study, we employed non-parametric KW and Dunn's tests, as 
we observed substantial skewness in several LCIA results, particularly 
for the NbS and NA scenarios (e.g., Fig. 4). It is worth noting that Dunn's 
test is known for its conservative nature, which means it may occa
sionally overlook differences between groups or scenarios. Depending 
on the scope of the uncertainty assessment, other powerful tests may be 
explored such as the Conover-Iman test (Conover, 1999), aligning with 
the context of the uncertainty analysis. 

6. Conclusions 

In this work, we presented a novel quantitative uncertainty assess
ment protocol for integrated ES-LCA to enable a thorough uncertainty 

characterisation and analysis of sensitive parameters and their impacts 
on the uncertainty of the ES-LCA results. Unlike previous studies which 
only focused on a single LCA phase (e.g., LCI), the uncertainty of several 
phases of the ES-LCA approach is assessed including foreground LCI, CFs 
of traditional LCIA, and CFs of ES accounting. We employed a multi- 
method GSA approach at no additional computational cost leveraging 
state-of-the-art uncertainty assessment tools. We also assessed the 
robustness of the multi-method GSA through convergence analysis vis
ualisations as well as statistical hypothesis testing. Furthermore, we 
explored the influence of sampling strategy selection and the number of 
simulations on GSA results, comparing LH sampling with SS sampling 
and highlighting the significance of these choices in the context of un
certainty assessment. We also analysed the results of the proposed un
certainty protocol in the context of an illustrative NbS soil remediation 
case study highlighting the possibility of extending the protocol appli
cation to many other NbS contexts. Moreover, we discussed the results in 
terms of protocol applicability, uncertainty characterisation of the ES- 
LCA phases, selection of the GSA method, appropriate sampling size 
and strategy, and concluded with a discussion of the appropriate hy
pothesis testing for the proposed protocol. 

The absence of uncertainty probability distributions for CFs in 
impact assessment methods posed a significant challenge when con
ducting stochastic simulations for the modelled scenarios. This chal
lenge was especially pronounced when GSA results indicated that CF 
uncertainty played a central role in determining model outputs. As a 
result, we strongly recommend that developers of impact assessment 
methods incorporate suitable uncertainty assessment approaches to 
enhance the overall robustness of LCA analyses, including ES-LCA. In 
this case, special effort should be conveyed in determining spatial or 
other intrinsic uncertainties of the biophysical parameters associated 
with the functioning of ecosystems and the supply of ecosystem services. 

Selecting a reference scenario, specifically the choice of the year for 
the land cover map, presented another challenge. Land Use/Land Cover 
(LULC) effectively serves as a proxy for ES modelling (Koellner et al., 
2013). However, since the work on the case study began around 2007, it 
was challenging to select the reference scenario. Notably, the “no-ac
tion” scenario assumes no land use change occurs. If we had chosen 
LCM2007 as the reference scenario for the “no-action” scenario, we 
would not have been able to calculate changes in ES values (refer to 
Section 3 of Alshehri et al. (2023b) for further discussions). Conse
quently, we opted for LCM2000 as the reference scenario for the “no- 
action” scenario, while LCM2007 served as the reference for the LOP and 
NbS scenarios. Ideally, having a consistent reference scenario across all 
scenarios would be preferred. However, the static structure of InVEST 
models and the nature of the illustrative case study compelled us to 
select two reference scenarios. Lastly, the modelled ESs were limited by 
the availability of data and spatially-explicit ES accounting models. 

Future efforts should consider dynamic ES modelling approaches 
capable of capturing the dynamism in ES delivery. These dynamic ES 
modelling results could then be integrated into a dynamic LCA 
approach. While such a modelling exercise would necessitate extensive 
data collection or an in-depth knowledge of the ecological mechanisms 
representative of the investigated ecosystems, it holds the potential for 
significant insights and advancements in this field. Automating the un
certainty assessment of ES-LCA approaches would streamline the 
application of GSA and eliminate technical hurdles. This automation can 
occur in two phases. The first phase involves automating deterministic 
ES-LCA assessments, initially in script form. Subsequently, a graphical 
user interface could be developed. Once the first phase is accomplished, 
the second phase would entail incorporating stochastic modelling into 
ES-LCA, which would be a relatively straightforward endeavour by 
comparison. Future work should also incorporate the uncertainty of 
background LCI and explore additional GSA methods and post- 
processing techniques. Furthermore, future efforts should aim to 
include additional ESs relevant to the NbS system under investigation, 
such as cultural services, as well as biodiversity. Lastly, integrating the 
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economic uncertainties of NbS into the ES-LCA with an environmental 
life cycle costing approach (by accounting for the variability of eco
nomic inputs and outputs that generate costs and negative externalities) 
can facilitate a comprehensive triple-bottom-line sustainability assess
ment of the NbS system. 

In conclusion, this study introduced a novel quantitative uncertainty 
assessment protocol tailored for integrated ES-LCA models, allowing for 
a thorough analysis of sensitive parameters across multiple ES-LCA 
phases. We utilized a multi-method GSA approach, assessed its robust
ness, examined the influence of sampling strategies, and applied the 
protocol to an illustrative NbS soil remediation case study. This 
demonstration illustrates its potential application in various NbS con
texts. We also highlighted challenges encountered and offered sugges
tions for future research. 
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