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Robust Resilience Enhancement by EV Charging
Infrastructure Planning in Coupled Power
Distribution and Transportation Systems

Jianfeng Wen, Student Member, IEEE, Wei Gan, Member, IEEE, Chia-Chi Chu, Senior Member, IEEE,
Lin Jiang, Member, IEEE, Jiajie Luo

Abstract—Due to the recent rapid developments in fast charg-
ing technology for electric vehicles (EVs), these flexible mobile
storage resources can provide auxiliary services to the power
grid in emergency circumstances. Therefore, it is imperative
to develop a resilient enhancement planning scheme for this
coupled network under severe contingencies. To this end, this
paper investigates a novel robust resilient enhancement scheme
for planning charging infrastructure in coupled networks. The
objective is to minimize both (i) the investment and operation cost
of the coupled network under uncertain traffic demands, and (ii)
the EV participation cost for the grid support scheme during
contingencies. The investment scheme for power distribution
lines and charging stations is determined before the uncertainty
realization in the first stage, while the objective function is
minimized in the worst possible manner within a specified
uncertainty set in the second stage. The nested column-and-
constraint generation (NC&CG) algorithm is applied to solve
this robust optimization problem. Numerical simulations of two
coupled networks are conducted to demonstrate the effectiveness
of the proposed robust resilience enhancement scheme

Index Terms—Electric vehicles, fast charging stations, robust
resilience enhancement, coupled traffic and power networks,
nested column-and-constraint generation algorithm.
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Abbreviations
EV Eletric Vehicle
EVA EVs require charging
EVB EVs with sufficient electricity
EVC non-EV
FCS Fast Charging Station
NC&CG Nested Column-and-Constraint Generation
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SOCP Second-Order Cone Programming
TN Transportation Networks
V2G Vehicle-to-Grid
Indices and Sets
F (b) Set of bus
l, b Index of line and bus
Le Set of power line ends
Ls Set of power line starts
r, a, k Index of O-D pair, road, and route
Parameters
α, β Weight coefficients of normal and contingency

scenarios
∆ch Conversion factor between charging power of

FCS and traffic flow
∆TC Conversion factor between traffic flow and

charging power
ω Economic parameter of travel time cost
ϕ Economic parameter of the load shedding pun-

ishment and unserved electric loads
Crt

a Additional road toll of road a
ca Road a capacity
NB , NSub Number of bus and substation
nFCS , nV 2G Real number of charging units and V2G units in

each FCS
N line, NFCS , NV 2G Maximum number of electric line, fast

charging station and V2G devices locations
PFC
max, P

V 2G
max Max charging power and supporting power of

each charging unit
Sl0, S

Sub
b0 Apparent power capacity of electric line l and

bth substation
βr
ka Incidence coefficient between route traffic flow

and road traffic flow
Variables
C̃rt

a The additional road toll of traveling through each
road under contingency state

ẽrk,f Binary variable to denote EVAs charging selec-
tion of FCS of route k in O-D pair r under
contingency state, 1: selected, 0: unselected

ẽsk,v Binary variable to denote contingency-supported
EVBs supporting selection of FCS of route k in
O-D pair s under contingency state, 1-selected,
0-unselected

m̃a, t̃a Traffic flow and real travel time of road a under
contingency state

P̃V 2G
v Supporting power flow of FCS v
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C̃A
r

The lowest cost of EVA traveling through O-D
pair r under contingency state

C̃BC
r

The lowest cost of EVB and VC traveling
through O-D pair r under contingency state

C̃B
r

The lowest cost of contingency-supported EVB
in O-D pair r under contingency state

C̃B
s

The lowest cost of EVs in EVB traveling through
O-D pair s for grid-supported under the contin-
gency state

P̃FCS
b Charging power of FCS at each bus under con-

tingency state
P̃LS
b , Q̃LS

b Load shedding of active and reactive power at
the bth bus under the contingency state

P̃Sub
b , Q̃Sub

b Active and reactive power of substation at each
bus under contingency state

P̃S
b Total power flow of FCS at each bus under

contingency state
P̃l, Q̃l Active and reactive loads at each bus under

contingency state
R̃A

r

k, R̃BC
r

k Traffic flow of EVA, contingency-unsupported
EVB and VC of route k in O-D pair r under
contingency state

R̃BC
s

k,v Traffic flow which is allocated to FCS with
V2G v from EVB in route k, O-D pair r under
contingency state

R̃B
s

k Traffic flow of contingency-supported EVB of
route k in O-D pair r under contingency state

R̃B
s

v Supporting traffic flow which is allocated to FCS
v

T̃B
s

Traffic demand of EVs in EVB for grid-
supported under the contingency state

T̃B
se
, T̃B

ss
Traffic demand of EVs in EVB for remote and
on-site grid-supported under contingency state

Cr
0 , C

s
0 Ideal travel time cost of vehicles traveling

through O-D pair r and s
CE Cost of purchasing electricity
Cs

in Base payment for EVs in EVB traveling through
O-D pair s for grid-supported under the contin-
gency state

CAr The lowest cost of EVA traveling through O-D
pair r under normal state

erk,f Binary variable to denote EVAs charging selec-
tion of FCS of route k in O-D pair r under
normal state, 1-selected, 0-unselected

ma, ta Traffic flow and real travel time of road a under
normal state

PFCS
b Charging power of FCS at each bus under nor-

mal state
PL
b , QL

b Active and reactive loads at each bus under
normal state

PSub
b , QSub

b Active and reactive power of substation at each
bus under normal state

PFCS
f Charging power flow of FCS f

PV ir
l Virtual power flow of line l

RFCS
f Charging traffic flow which is allocated to FCS

f
RAr

k, RBCr
k Traffic flow of EVA, EVB and VC of route k in

O-D pair r under normal state
RACr

k,f Traffic flow which is allocated to FCS f from
EVA in route k under normal state

s Proportion of EVs in EVB that participate in
grid-supported

t0a Vehicles travel time in road a without congestion
TAr, TBr, TCr Traffic flow of O-D pair r for vehicles in

EVA, EVB and EVC.
zl, z

E
l , zHl Line states, line expanding and line hardening

variables
CBCr The lowest cost of EVB and VC traveling

through O-D pair r under normal state

I. INTRODUCTION

MORE recently, electrical vehicles (EVs) have been
regarded as promising environmentally friendly trans-

portation options due to their energy sustainability and lower
emissions. Many countries have already implemented policies
to promote EVs and the development of charging infrastruc-
ture to achieve the goal of zero-carbon emissions [1]. As a
result, a significant number of fast charging stations (FCSs)
have been rapidly deployed to meet the growing demand for
fast charging. However, the widespread deployment of FCSs
can lead to strong interactions between power distribution
networks (PDN) and transportation networks (TN) [2]. The
transportation mode, travel costs, and charging prices at FCSs
can all influence traffic congestion, which, in turn, impacts the
location and size of FCSs [3]. In fact, each FCS’s high charg-
ing power can be considered a significant power load with
profound implications for PDNs [4]. Thus, FCS infrastructure
establishes inter-dependencies between TN and PDN. These
locations of FCSs significantly affect driver behavior, while
these capacities of FCSs limit the charging traffic flow within
the TN.

Research efforts are being devoted to develop various direc-
tions to tackle out this new challenge, including (i) modeling of
coupled TN and PDN, (ii) scheduling the location and capacity
of FCS, and (iii) TN planning. Initially, several studies ad-
dressed the optimal EV charging fees for the customers’ side,
as documented in [5], and the economic investment plan for
coupled TN and PDN, as discussed in [6]–[11]. In particular,
[6] introduced a data-based multi-scenario model for coupled
traffic and power generation, aiming to jointly optimize both
investment and operational costs. [7] utilized deep learning
techniques to build a predict-then-optimize diagram to provide
traffic flow prediction and build a graph convolutional network
for solving the data missing issue. In [8], a mixed-integer
convex programming approach was studied for expansion
planning of urban electrified transportation networks. In [9],
the authors proposed a model for optimal planning of charging
stations by a stochastic mixed-integer second-order cone pro-
gram (SOCP) formulation for optimal planning of charging
stations. In [10], a novel reinforcement learning framework
within a finite discrete Markov decision process was imple-
mented to deal with the FCS deployment plan. Meanwhile,
several comprehensive coupled TN and PDN models have
been proposed. For example, in [11], the authors examined the
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road capacity expansion scheme under EV driving range. [12]
summarized the coupled power-traffic network model across
three distinct time scales: long-term, mid-term, and short-
term. Several types of models such as time-expanded networks
[13] and spatial-temporal model [14] were implemented to
minimize the total cost of the coupled network. Consideration
of renewable energy was incorporated in the development of
coupling network planning schemes that target the utilization
of EVs for renewable energy consumption in [15], [16].
[17] delved into the interplay between the market and the
coupled system, proposing a market equilibrium strategy to
simultaneously benefit the power network and EV drivers.
Additionally, [18] concentrated on examining the interaction
between vehicles and the electric system along a specific
public transport route, with the goal of minimizing the overall
operational costs.

Due to severe climate changes in recent years, coupled TN
and PDN also face the challenge of maintaining power stability
under extreme weather conditions. PDN often suffers signif-
icant damage when exposed to natural disasters [19], [20].
In such scenarios, the development of resilient enhancement
plans for coupled PDN and TN becomes critical. A common
approach to improving resilience is the hardening of the power
network. Several hardening solutions, such as over-head struc-
ture reinforcement and vegetation management, are commonly
employed [21]. For example, [22] proposed a PDN resilience
enhancement scheme based on the hardening of power distri-
bution lines. However, this approach may appear impractical
due to the high investment required. One alternative solution is
to implement flexible resilience enhancement strategies within
coupled TN and PDN, leveraging EVs that can be dispatched
to different PDN nodes as flexible distributed power sources
via the vehicle-to-grid (V2G) mode of EVs [23]. With the
rapid growth in the number of EVs, they can play a crucial
role as a mobile energy storage system (MESS), which can
further enhance the resilience and flexibility of coupled PDN
and TN [24]. EVs have been harnessed as flexible resources
to support power grid restoration during contingencies [25].
In this direction, [26] proposed a coordinated scheme for
determining the site and size of charging stations, with on-
site storage to support power grid balance. [27] introduced a
distributed model predictive control strategy to regulate PDN
voltage and use V2G as a reactive power resource to balance
power flow. [28] proposed the virtual electric vehicle energy
network to improve the scalability of coupled PDN and TN.

When a natural disaster occurs in the conventional PDN,
multiple power distribution lines may suffer from the disaster,
the power network cannot recover through the automatic
protection. Thus, the demand of electric loads is hardly to
be supplied since individual power grid protection schemes
may lead to significant losses during the incident [29]. On the
other hand, under the framework of coupled PDN and TN,
this severe contingency can be easily avoided since EVs may
support the PDN as standby MESS via FCSs. Therefore, EVs
can be deployed to various PDN nodes as flexible distributed
power sources using the V2G mode. Under this situation,
the route choice of vehicles, the plan of power distribution
lines, locations of FCSs, and uncertainties of traffic flow

will result in new challenges to planning and operations of
this coupled PDN and TN. The stochastic nature of vehicle
operations at each time period poses a challenge. Additionally,
unpredictable power distribution line faults during disasters
can hinder the design of power network planning and EV
dispatching schemes. Therefore, ancillary resilience enhance-
ment with a rational coupled PDN and TN planning become
a critical issue.

From our literature survey, it can be concluded that no
study has considered the robust resilient planning of coupled
PDN and TN in the face of uncertain vehicle flows and
contingencies. In this regard, this paper aims to provide a
general framework to address this task. The innovations of
this work can be summarized as follows:

1) A resilient enhancement scheme by FCSs in coupled PDN
and TN is proposed. The planning model incorporates
a resilience enhancement strategy that utilizes EV re-
dispatching and V2G technologies to support the grid
under severe contingencies. In this proposed planning
model, both the expansion and hardening of power dis-
tribution lines and the placement of FCSs are considered.

2) The planning model is formulated as a two-stage robust
optimization problem under uncertainties of EV travel
demand. This two-stage model ensures the robustness
of the investment scheme and the proposed resilience
enhancement strategy, even when faced with varying
vehicle travel demands. In the first stage, the model
determines the investment plan for power distribution
lines and FCSs. In the second stage, it addresses the
coupled operation of PDN and TN with uncertainties,
involving the optimization of power and traffic flow.

3) To effectively solve the formulated model, a set of
linearization techniques is proposed to transform the orig-
inally nonlinear problem into a mixed-integer quadrat-
ically constrained program. Moreover, by leveraging
strong duality theory, the uncertain second-stage op-
erational problem is converted into a deterministic
one. Then, a nested column-and-constraint generation
(NC&CG) algorithm with dual loops is proposed to solve
the first-stage investment problem and the second-stage
operational problem iteratively. The outer loop determines
the planning scheme, and the inner loop searches for the
worst-case travel demand scenarios.

The rest of the paper is organized as follows. Sect. II
presents general model descriptions for resilience enhance-
ment of coupled PDN and TN. In Sec. III, model descriptions
with uncertainties are considered, and robust optimization
techniques are employed to solve this problem. Comprehensive
simulation results to validate the effectiveness of the proposed
robust resilient enhancement planning scheme are reported in
Sec. IV. Finally, some conclusions are made in Sec. V.

II. RESILIENCE ENHANCEMENT VIA EVS

Modeling aspects of the proposed resilience enhancement
strategy via EVs will be described in this section. For simplic-
ity, it is assumed that the vehicles in the TN can be categorized
into three groups: (a) EVA: EVs that require charging, (b)
EVB: EVs with sufficient electricity, and (c) VC: non-EVs.
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Fig. 1: The proposed robust resilient enhancement strategy.

When power distribution line disconnections occur due to
serious natural calamities, certain electric loads may remain
unserved despite network reconfigurations. In such situations,
EVB is considered as MESS to provide electricity to the PDN
through nearby FCSs. Simultaneously, the proposed strategy
involves re-dispatching EVA vehicles to be charged at FCSs
with adequate electricity supply. Fig. 1 illustrates the concept
of the re-dispatching process of EVA and EVB, as well as the
proposed two-stage enhanced resilient strategy for charging
infrastructure in the coupled PDN and TN under uncertainties.

The coupled model under study consists of three com-
ponents: (i) the TN model, (ii) the PDN model, and (iii)
the FCS model, which serves as the interface that couples
the TN and the PDN. Unlike the conventional TN model,
various V2G equipment is implemented in the FCS. Therefore,
EVBs can support the PDN through FCSs. In situations where
power distribution lines suffer severe damage due to extreme
weather conditions, these EVBs can serve as a temporary
power resource for the PDN. Under such conditions, the power
flow of FCSs can be expressed by the following equation:

P̃S
b = P̃FCS

b − P̃V 2G
v . (1)

It should be noted that these V2G devices are assembled on
charging units. Thus, the number of V2G devices should not
be more than charging units in each FCS:

nV 2G ≤ nFCS . (2)

In addition, we will also consider the uncertain nature of
these traffic flows. The varying traffic flows throughout the
day and across different seasons have a significant impact on
the ability of EVBs to support the grid. To account for this
impact, uncertainties stemming from vehicle flows are also
included in the second stage of the proposed model.

III. ROBUST RESILIENT ENHANCEMENT PLANNING

The proposed EV-based resilient enhancement planning in
coupled PDN and TN can be illustrated in Fig. 1. The first
stage is the investment problem, while the second stage is the
operation problem.
A. Objective

The objective is to minimize the investment and operation
cost of both PDN and TN under normal and contingency states.
Typically, contingency constructions are considered using an
N-1 criterion [30]. Subsequent planning considerations con-
centrate solely on severe contingencies selected from the N-1

contingency list. Under this framework, the objective can be
expressed as:

min

(
IL + αON +

n∑
i=1

βiOCi

)
, (3)

which is composed by three terms IL, ON and OC . IL
represents the investment cost of power distribution lines
and charging stations. ON and OC are the total operation
cost in normal and contingency states respectively. α and β
are weight coefficients of normal and contingency scenarios.
The determination of weight coefficients relies on empirical
evidence as addressed in [36]–[39]. n is the total number of
contingency scenarios under study. Their detailed expressions
can be described as follows:

IL = cEz
E
l + cRz

H
l + cFCS

(
zFCS
n + zV 2G

n

)
, (4)

ON =
∑
r

[TArCAr + (TBr + TCr)CBCr]

−
∑
r

(TAr + TBr + TCr)Cr
0 + CF

∑
b

PSub
b ,

(5)

OC =
∑
r

[
TArC̃A

r
+ ((1− s)TBr + TCr) C̃BC

r]
−
∑
r

(TAr + (1− s)TBr + TCr)Cr
0

+
∑
s

T̃B
se
(
C̃B

s
− Cs

0

)
+
∑
s

T̃B
s
Cs

in

+ CF

∑
h

PSub
h + φ

(
P̃LS
h +

∑
c

∆TC · T̃B
s
C̃B

se
/ω

)
,

(6)

where cE , cR, and cFCS represent cost coefficients. zEl , zHl ,
zFCS
n and zV 2G

n are binary variables denoting the planning
status of power distribution line expansion, power distribution
line hardening, and charging station planning, respectively.

Physical interpretations of each term in (5) and (6) can
be illustrated as follows. The first summation term in (5)
represents the real travel cost of all types of vehicles, while
the second summation term in (5) is the ideal travel cost of all
vehicles. In our formulation, each vehicle is assumed to choose
the shortest route, avoiding any traffic congestion. Thus, these
two terms constitute the actual extra cost of traffic demand,
considering traffic congestion with heavy traffic loads. The
third summation term in (5) is the electricity network operation
cost, containing the total cost of purchasing electricity. On the
contrary, the first two summation terms in (6) are similar to
those in (5). However, a variable ’s’ is appended to EVB-
type EVs. Therefore, the travel cost of EVBs that participate
in grid support is excluded and placed in the third term
alone. A fundamental fee is paid to the grid-supported EVs
to stimulate their participation, and this is included in the
fourth summation term of (6). The fifth summation term in
(6) represents the electricity network operation cost under
congestion states. Finally, the last summation term in (6)
relates to those electric loads that remain unserved, including
some loads under load shedding actions and those loads that
were already unserved before the grid-supported EVs arrived
at the destination charging station.
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B. First Stage Constraints

In the first stage, planning schemes are developed for both
power distribution lines and FCSs. The FCS planning scheme
encompasses not only the sitting of FCSs but also the selection
of FCSs equipped with V2G technology. (7) and (8) ensure
that the total numbers of expanded lines, hardened lines, and
charging stations fall within reasonable ranges.∑

l

zEl ≤ N line ,
∑
l

zHl ≤ N line , (7)

∑
n

zFCS
n ≤ NFCS ,

∑
n

zV 2G
n ≤ NFCS , (8)

where zEl , zHl , zFCS
n , and zV 2G

n are binary variables to be
determined if these devices or planning are implemented.

After planning the power distribution line, its capacity cl can
be represented by (9). The planning scheme also affects the
connection state of electric lines. If a electric line is hardened,
this line remains connecting regardless of the disaster. These
V2G devices should be implemented to pre-existing FCSs.
Thus, EVs can only support the power grid through FCSs
with V2G devices.

Sl = zEl Sl0. (9)

C. Second Stage Constraints Under Normal State

Different from the planning scheme studied in the first stage,
the model of coupled PDN and TN under the normal state and
the contingency state are different in the second stage. Detailed
descriptions will be stated below.

1) PDN Constraints under Normal States: In the second
stage, both power flow in the PDN and traffic flow in the
TN are addressed. A simplified lossless AC power flow in a
radial PDN is adopted [8]. The initial line status variable zl
describes the network topology. The equivalent formulation is
described by (10) and (11). This set of constraints ensures the
connectivity of each bus in the radial PDN.∑

l

zl ≤ NB −NSub, −Ml · zl ≤ PV ir
l ≤ Ml · zl, (10)

∑
l∈Ls

PV ir
l −

∑
l∈le

PVir
l = −1. (11)

The active power and reactive power balance equation will
be denoted by (12) and (13) respectively. The power flow of
FCSs is also included in (12).

PSub
b − PL

b − PFCS
b =

∑
l∈Ls

Pl −
∑
l∈Le

Pl, (12)

QSub
b −QL

b =
∑
l∈Ls

Ql −
∑
l∈Le

Ql. (13)

(14) expresses the voltage drop of each line and the line
voltage lies in the tolerance range:

ULs − ULe = rlPl + xlQl, Umin
b ≤ Ub ≤ Umax

b . (14)

Substation and line constraints are described by (15).

SSub
b ≥

√(
PSub
b

)2
+
(
QSub

b

)2
, Sl ≥

√
(Pl)

2 + (Ql)
2. (15)

2) TN Constraints Under Normal States: In the TN, con-
straints primarily describe the relationship between traffic flow
on roads, paths, and traffic demands. In this context, we
use Origin-Destination (O-D) pairs to describe the origin and
destination of each vehicle. Each O-D pair may contain several

routes, and each route is composed of several roads. Traffic
demand balance constraints are presented in (16):∑

k

RAr
k = TAr,

∑
k

RBCr
k = TBr + TCr. (16)

The traffic demand of the routes set in each O-D pair is related
to the roads. The traffic flow balance for EVs in each category
is given by (8). (17) describes the relationship between road
traffic flow and route traffic flow of EVs through the incidence
coefficient βr

ka.

ma =
∑
r

∑
k

(RAr
k +RBCr

k)β
r
ka. (17)

A typical Bureau of Public Roads function which demonstrates
the relationship between real travel time ta and road traffic
flow is stated in (18):

ta = t0a
[
1 + 0.15 (ma/ca)

4] . (18)

(19) depicts the real travel cost for vehicles using route k
within the O-D pair r, in which the additional road toll for
each road is also considered.

Cr
k =

∑
a

(
ωta + Crt

a

)
βr
ka. (19)

Here we adopt the user equilibrium principle, ensuring that
in each O-D pair, all vehicles must select the route with the
lowest travel cost.

RAr
k · (Cr

k − CAr) = 0, RAr
k ≥ 0, (Cr

k − CAr) ≥ 0, (20)

RBCr
k · (Cr

k − CBCr) = 0, RBCr
k ≥ 0, (Cr

k − CBCr) ≥ 0.
(21)

3) FCSs Constraints Under Normal States: Since FCSs
serve as coupling facilities between the PDN and the TN, FCS
constraints primarily describe the relationship between traffic
flow and charging demands or discharging power provided by
grid-support EVs. In this work, (22) relates the traffic flow
of EVA on route k and each FCS through erk,f , and the total
traffic flow of EVA allocated to each FCS.

RACr
k,f = erk,fRAr

k, RFCS
f =

∑
r,k

RACr
k,f . (22)

Despite the charging traffic flow balance of each route, the
charging demand of each O-D pair also needs to be satisfied
as follows: ∑

k,f

RACr
k,f = TAr. (23)

(24) establishes the relationship between the charging traffic
flow of each FCS and the corresponding charging power flow
at that FCS. This captures the coupling effect of the TN on
the PDN and the total charging power should be within an
available range. The maximum charging power of each FCS
depends on the total number of charging units invested at
each FCS. The charging power flow of each bus is determined
by (25), which aggregates all the charging power from FCSs
connected to the bus.

RFCS
f ∆ch = PFCS

f , 0 ≤ PFCS
f ≤ PFCS

max ·NFCS , (24)

PFCS
b =

∑
f∈F (b)

PFCS
f . (25)

D. Second Stage Constraints Under Contingency States

Since faults in the PDN are considered in the contingency
state, and EVs will participate in PDN support via FCSs
equipped with V2G for the re-dispatch scheme, the charging
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and supporting power flow will change, and the power flow
within the PDN will be redistributed. Under this strategy,
EVBs will change their destinations and move to assigned
charging stations to support the PDN. Therefore, the traffic
flow of all vehicles will be re-allocated by the TN.

1) PDN Constraints Under Contingency States: When a
contingency occurs under abnormal conditions, the connec-
tivity status of each power distribution line will also change.
Thus, the connection status of each line can be described by:

z̃l = 0, ∀l ∈ ld. (26)

(27) depicts the connection status of each line. When a line
is planned to be hardened, it maintains its connection status
even if the line is attacked under contingency conditions.

cl ≥ zHl , cl ≥ z̃l. (27)

The active and reactive power flow balance under the contin-
gency state is described by constraints (28) and (29).

P̃Sub
b − PL

b − P̃FCS
b + P̃LS

b =
∑
l∈Ls

P̃l −
∑
l∈Le

P̃l, (28)

Q̃Sub
b −QL

b + Q̃LS
b =

∑
l∈Ls

Q̃l −
∑
l∈Le

Q̃l. (29)

Compared to these constraints under normal conditions as
shown in Sec. III.C, load shedding actions are considered in
(28) and (29) due to the insufficient power line capacity under
fault conditions. Constraints (12) to (14) under normal states
must also be satisfied.

2) TN Constraints Under Contingency States: If the power
line capacity cannot meet the load demand under the contin-
gency state, load shedding may occur to balance the power
supply. In such a situation, EVBs that have sufficient elec-
tricity will provide power support to the PDN via FCSs
equipped with V2G technology. This model provides an EVB
re-dispatching strategy aimed at minimizing the total cost
of the coupled network. (30) describes the portion of EVs
participating in power support in EVBs.∑

r

sTBr =
∑
s

T̃B
s
. (30)

This category of EVs contains two terms, as shown in (31):∑
s

T̃B
s
=
∑
s

(
T̃B

se
+ T̃B

ss
)
. (31)

EVs will go to nearby FCSs to provide V2G support on-
site. The traffic demand balance under the contingency state
is shown in (32) and (33):∑

k

R̃B
s

k = T̃B
s
,
∑
k

R̃A
r

k = TAr, (32)

∑
k

R̃BC
r

k = (1− s)TBr + TCr. (33)

The relationship between road traffic flow and route traffic
flow is described by:

m̃a =
∑
r

∑
k

(
R̃A

r

k + R̃BC
r

k

)
βr
ka +

∑
s

∑
k

R̃B
s

kβ
r
ka. (34)

From (34), the travel time of each road is depicted by

t̃a = t0a
[
1 + 0.15 (m̃a/ca)

4] . (35)

(36) describes the travel cost of EVA under the contingency
state, considering additional charging fees and road tolls:

C̃A
r

k =
∑
r

C̃FCS
r ẽrk,f +

∑
a

(
ωt̃a + C̃rt

a

)
βr
ka. (36)

(37) ensures that each car needing charging selects only one
FCS: ∑

n

ẽrk,f ≤ 1. (37)

Compared to (36), the travel cost of contingency-unsupported
EVBs and VCs does not include charging fees, and road
tolls are omitted from the travel cost of contingency-supported
EVBs in (38).

C̃BC
r

k =
∑
a

(
ωt̃a + C̃rt

a

)
βr
ka, C̃B

s

k =
∑
a

ωt̃aβ
r
ka. (38)

(39), (40), and (41) ensure that the user equilibrium is satisfied
in the contingency state.

R̃A
r

k ·
(
C̃A

r

k − C̃A
r
)
= 0, (39)

R̃BC
r

k ·
(
C̃BC

r

k − C̃BC
r)

= 0, (40)

R̃B
s

k ·
(
C̃B

r

k − C̃B
s
)
= 0. (41)

3) FCS Constraints Under Contingency State: In the con-
tingency state, the charging requirements of EVAs are ful-
filled priority. The contingency-supported EVBs will sup-
port the PDN via FCS equipped with V2G technology. The
contingency-supported traffic flow allocated to each FCS im-
plemented with V2G devices is determined by (42).

R̃BC
s

k,v = ẽsk,vR̃B
s

v , R̃V 2G
v =

∑
s,k

R̃BC
s

k,v ,
∑
k,v

R̃BC
s

k,v = T̃B
s
.

(42)
(43) specifies the grid-supporting power derived from the
contingency-supported EVBs’ traffic flow, and restricts the
total supporting power within the allowed range. (44) depicts
the charging power flow of each bus under contingency.

R̃V 2G
v ∆ch = P̃V 2G

v , 0 ≤ P̃V 2G
f ≤ PV 2G

max ·NV 2G, (43)

P̃FCS
b =

∑
f∈F (b)

P̃FCS
f −

∑
v∈F (b)

P̃V 2G
v . (44)

IV. ROBUST PLANNING UNDER UNCERTAINTY

A. Descriptions of the Uncertainty Set

To address these uncertainties in traffic flow, the variable
representing traffic flow at time t, denoted as Mn,t, is treated
as falling within an interval of [−∆Mn,t,∆Mn,t] around its
forecasted value, which is denoted as M0

n,t. This interval
represents the range of potential deviations from the forecasted
value. An uncertainty budget, denoted as Γ, where 0 ≤ Γ ≤ T ,
is introduced to modify the robust planning conservatism
coefficient. The uncertainty set is defined by (45), which
presumably outlines the specific mathematical representation
of the uncertainty set.

χ =

{
Mn,t ∈ RNn×T ,

T∑
t=1

(
yS+
t + yS−

t

)
≤ Γn,

Mn,t = M0
n,t +

(
yS+
t − yS−

t

)
∆Mn,t

}
.

(45)
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After incorporating these uncertainty terms, the robust plan-
ning model aims to find the optimal solution within the range
of upper and lower bounds of uncertainty scenarios. This
means that the model will take into account the uncertainty in
traffic flow represented by ∆Mn,t and the uncertainty budget
Γ when making planning decisions, ensuring that the plan
remains robust and adaptable to potential variations in traffic
conditions.

B. Linearization

It is noteworthy that T̃B
s
C̃B

se
in (6) is a nonlinear function

which is composed by multiplications of two continuous
decision variables. To simplify its computation, the lineariza-
tion technique will be exploited. First, T̃B

s
is chosen to be

discretized and expressed by a binary variable ws
j as shown

below:

T̃B
s
= ∆TB

J∑
j=1

2j−1ws
j . (46)

With ws
j , T̃B

s
can be divided into several intervals and the

length of each interval is ∆TB. The value of T̃B
s

depends on
the chosen of j. Now T̃B

s
C̃B

se
can be re-written as (47) by

using (46) to represent T̃B
s
. Thus, this item is converted into

a continuous variable multiplying a binary variable as follows:

T̃B
s
· C̃B

se
= ∆TB

J∑
j=1

2j−1ws
j C̃B

se
. (47)

After such a replacement, the big-M method can be applied to
(47) and T̃B

s
C̃B

se
will be replaced by (47), (48), and (49).

−bigM ·
(
1− ws

j

)
≤ ws

j C̃B
se

− C̃B
se

≤ bigM ·
(
1− ws

j

)
, (48)

−bigM · ws
j ≤ ws

j C̃B
se

≤ bigM · ws
j . (49)

M is a large number containing all possible values of C̃B
se

.
It is worthy of noting that the linearization of (20) and (21)

can be accomplished using the big-M method. The procedure
aligns with the approach applied to handle (47)-(49). To
maintain conciseness, we omit technical details.

C. Robust Optimization
After considering the uncertainty set, the original optimiza-

tion problem will be converted into the following two-stage
robust problem (50):

min
C,Z

µT ·C + max
M∈χ

min
D,U

σT ·D

s.t. ϕC +φZ ≤ h,κC + λZ + θU + ϑD ≤ γ(M),

Z ∈ {0, 1}, U ∈ {0, 1}.

(50)

where ϕC + φZ ≤ h is the first stage constraint. C and Z
are the continuous and binary variables. κC + λZ + θU +
ϑD ≤ γ(M) is the second stage constraint. D and U are the
continuous and binary variables. γ(M) represents the traffic
flow uncertain variable and its a linear function with respect
to uncertain variable Mn,t. µ, σ and h are these coefficient
vectors in two stages. κ, λ, θ, ϑ, ϕ and φ are coefficient
matrices. Detailed developments are shown in Appendix A.

Benders decomposition and the column-and-constraint gen-
eration (C&CG) algorithm are both widely used techniques

for addressing the two-stage optimization problem [33]–[35].
However, in our specific problem formulation, the second-
stage problem remains non-convex due to the presence of bi-
nary variables. As a result, the strong duality theory is not ap-
plicable for dualizing the second-stage problem. Consequently,
we will employ the nested C&CG (NC&CG) algorithm in this
study to tackle this problem.

The NC&CG algorithm involves breaking down the opti-
mization problem into two nested loops [35]. In the outer
loop, we focus on the master problem concerning planning
variables. This is achieved by solving the first-stage problem
utilizing scenarios acquired from the inner loop. The inner
loop is designed to identify the worst-case scenarios by solving
the second-stage problem. In this optimization problem, the
outer loop encompasses the planning of the electricity grid,
the determination of FCS locations, and the placement of V2G
devices. The operational solution will be derived from the
inner loop solver.

1) Outer loop: In the outer loop, the master problem is
resolved to ascertain the planning variables for the integrated
network, taking into account the most adverse scenario identi-
fied in the inner loop’s sub-problem. The following procedure
shows the algorithm for solving the master problem in the
outer loop:

1) Set the lower bound (LB) of the master problem as −∞,
set the upper bound (UB) of the problem as +∞, and
m = 0;

2) Solve the master problem (51) to derive an optimal
solution C∗ and update the lower bound LBout = ε:

min
C,Z

µT ·C + ε

s.t. ϕC +φZ ≤ h,

ε ≥ 0, Z ∈ {0, 1}.

(51)

3) Solve the sub-problem in the inner loop with the optimal
solution obtained by the outer loop to update the upper
bound UBout of the master problem.

4) If |UBout − LBout | ≤ ϵ, return the planning variables
and terminate the outer loop. Otherwise set m = m+ 1,
do the following constraint (52) and go back to step 2).

κC + λZ + θUm + ϑDm ≤ χ∗

Um ∈ {0, 1}.
(52)

2) Inner loop: The inner loop focuses on solving the sub-
problem to seek the worst scenario with respect to the objective
function of the master problem [40]–[42]. The algorithm can
be outlined as follows:

1) Preset U as an initial value Un∗, set the lower bound of
the sub-problem LBin = −∞, the upper bound of the
sub-problem UBin = +∞, and n = 1.

2) Solve the sub-problem 1 (53) to update the upper bound
UBin = τ∗, and seek the worst scenario χ∗:

max
M∈χ

τ

s.t. τ ≤ (γ − ϕC∗ − λZ∗ − θUn∗)
T
γ(M)

n
,

ϑTλn = σT , τ > 0.

(53)

3) Solve the sub-problem 2 (54) to update the lower bound
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LBin = max
{
σT ·D, LBin

}
, and obtain the inner loop

optimal solution D:

min
D,U

σT ·D

s.t. κC∗ + λZ∗ + θU + ϑD ≤ χ∗,

U ∈ {0, 1}.

(54)

4) If
∣∣UBin − LBin

∣∣ ≤ ϵ, return the UBin and set
UBout = UBin to represent the worst scenario χ∗

for the master problem and terminate the outer loop.
Otherwise set n = n + 1, add the following constraint
(55) and go back to step 2):

τ ≤ (γ − ϕC∗ − λZ∗ − θUn∗)
T
γn,

ϑTλn = σT .
(55)

D. Solution Algorithm

In summary, the algorithm of applying the NC&CG al-
gorithm to solve the robust resilient enhancement planning
of charging infrastructure in coupled PDN and TN under
uncertainties can be stated as follows:

1) Initialize the coupled model;
2) Set the master problem LBout = −∞, UBout = +∞,

and m = 0;
3) Solve the master problem (51) to obtain solution C∗ and

the updated LBout;
4) set the sub-problem LBin = −∞, UBin = +∞, and

n = 1;
5) Solve the sub-problem 1 (53) to determine the worst

scenario and update the upper bound UBin;
6) Solve the sub-problem 2 (54) to update LBin;
7) If

∣∣UBin − LBin
∣∣ ≤ ϵ, set UBout = UBin, otherwise

set n = n+ 1, update Z∗ and go back to step 5);
8) If |UBout − LBout | ≤ ϵ, return the scheduling variables

and terminate the outer loop. Otherwise set m = m+ 1,
update χ∗ and add constraint (55), then go back to step
3).

In order to illustrate the procedural steps of the NC&CG
algorithm, its flowchart is presented in Fig. 2.

E. Computational Complexity

Generally, the NC&CG algorithm is expected to deliver
superior performance when compared to the conventional
Bender-dual algorithm [35]. Specifically, if p is the number of
extreme points of χ, and q is the number of extreme points of
γ, then the Benders-dual algorithm and NC&CG algorithm are
anticipated to generate an optimal solution in O(pq) and O(q)
iterations, respectively. As indicated in [35], even the NC&CG
algorithm solves the master program with a larger number of
variables and constraints in comparison with the Benders-dual
algorithm, under the relatively complete recourse assumption,
the number of iterations in the NC&CG algorithm can be
reduced by the order of O(q) if the second-stage decision
problem is a linear programming. Therefore, as the coupled
TN and PDN model in this study is linearized, the scalability
of the proposed model is expected to increase linearly. The
computational study in the next section will confirm this issue.

Fig. 2: The flowchart of the NC&CG algorithm.

Fig. 3: Structure of test coupled TN and PDN network.

V. SIMULATION STUDIES

To demonstrate the effectiveness of the proposed robust
resilience enhancement scheme, numerical studies on two
coupled TN and PDN are investigated. The first one is the
coupled 12-node TN and 21-bus PDN, while the second one
is the coupled 24-node TN and 42-bus PDN. A comprehensive
analysis is presented below.

A. Coupled 12-Node TN and 21-Bus PDN

First, a coupled 12-node TN and 21-bus PDN, as shown
in Fig. 3, will be investigated. Under contingency state,
several power distribution lines are destroyed by the natural
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disaster and disconnect. The electricity purchase cost is 141
$/MWh, and the travel time cost of vehicles is set as 0.33
$/min. Detailed system information can be found in [31].
Various scenarios are designed to verify the effectiveness of
V2G supporting and the enhanced resilience V2G supporting
strategy. Simulations are performed on Matlab 2022b platform
with embedded Gurobi.

1) Resilient Enhancement Planning Without Uncertainty:
First, the resilient enhancement planning without uncertain
traffic flow is investigated. Three cases are designed to validate
the effectiveness of the proposed V2G supporting strategy
under the contingency state:

• Case 1: TN and PDN are planned separately.
• Case 2: The plan is made for the coupled TN and PDN

under contingency without EVs support.
• Case 3: The plan is made for the coupled TN and PDN

under contingency. Moreover, EVBs will participate in
the PDN supporting.

Note that since the uncertainty of traffic loads is not consid-
ered in scenario studies in these three cases, the un-served
loads are required to be minimized. Table I shows these
planning results and Table II depicts their investment cost.
Their comprehensive examinations are presented as follows.

• Case 1: Three power distribution lines are selected for
reinforcement, with two of them classified as main lines.
In this scenario, only one of the main lines is extended,
ensuring that, in the event of a contingency, this line can
adequately supply power. However, when more main lines
are incorporated into the plan, the cost of electric line
planning in Case 1 becomes the highest.
FCSs are positioned at six available sites, but their
locations within the PDN are widely scattered. In this
instance, the impact on the PDN is not factored in during
the FCS design process. As a result, a maximum charging
power limit must be imposed to ensure that the lines’
capacity can meet the charging power requirements. The
dispersed placement of FCSs necessitates the hardening
and expansion of main electric lines. Although this plan-
ning approach helps avert load shedding, it results in
a considerable overall cost for the integrated network,
particularly in terms of electric line planning expenses.

• Case 2: We have a plan to reinforce two power distribu-
tion lines, with just one of them serving as the primary
line. Line B21-B14 is disconnected, leading to unmet
power demand for loads connected to this line and ren-
dering the FCS located on this line inoperative. Instead,
EVAs traveling on these routes will opt to charge at FCSs
connected to B21-B7 and B11-B12 lines, necessitating an
expansion of capacity for these two lines. The placement
of charging stations also leans more toward these lines.
The planning scheme of this case is shown in Fig. 4. In
comparison to Case 1, the cost of electric line planning
decreases. However, there is a significant increase in
load shedding under contingency. Since the likelihood
of natural disasters is relatively low, the impact of load
shedding on the overall cost is limited.

• Case 3: Two lines are hardened, with only one of them

Fig. 4: Planing scheme of charging infrastructure in Case 2.

Fig. 5: Planing scheme of charging infrastructure in Case 3.

slated for expansion, which is demonstrated in Fig. 5. In
the figure, the FCS with V2G is marked as red asterisk.
Importantly, no additional primary lines are selected for
planning following the integration of V2G-enabled EVs
into the grid. This strategy leads to a significant 17%
reduction in the total cost of the integrated network while
simultaneously curbing load shedding and maintaining it
within an acceptable range when compared to Case 2. In
this configuration, six FCSs are strategically positioned,
which is more than in Case 2. This increase is due to the
incorporation of V2G modules. Additionally, three V2G
modules are installed in three FCSs, enhancing the power
support derived from EVBs.

2) Robust Resilient Enhancement Planning: Now the ro-
bust resilient enhancement planning is investigated. The uncer-
tainty of traffic flow is considered in the coupled network plan.
Two additional cases under contingency state are designed:

• Case 4: The planning of the coupled network is conducted
in a contingency state, where the total traffic flow is
predictable and kept constant. However, the proportion
of EVBs among all EVs is uncertain.

• Case 5: The coupled network planning under the con-
tingency state takes into account uncertainties in the
traffic flow for each type of vehicle. Additionally, there
is uncertainty assumed in the total traffic flow.

The fluctuation of the traffic flow is set to be ±15%. Table
III shows the planning cost and the total cost in each case.
From Table III, the following observations can be made:

1) In Case 4, the power line planning cost is more than
double those of Case 3, resulting in a 12% increase in
total cost compared to Case 1. This fact addresses the
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TABLE I: RESILIENT ENHANCEMENT WITHOUT UNCERTAINTY
FOR THE COUPLED 12-NODE TN AND 21-BUS PDN

Case Action Results
Load

Shedding
(MWh)

1
Line Hardening B21-B7, B21-B14, B10-B13

0Line Expansion B21-B14
FCS Location T1, T4, T5, T7, T8, T12

2
Line Hardening B21-B7, B11-B8

1.4362Line Expansion B21-B7, B11-B12
FCS Location T1, T3, T4, T9, T12

3

Line Hardening B10-B13, B11-B8

0.5871Line Expansion B11-B12
FCS Location T1, T4, T6, T8, T9, T12
V2G Location T1, T4, T8

TABLE II: COST ($) COMPARISON OF RESILIENT ENHANCEMENT
SCHEMES FOR THE COUPLED 12-NODE TN AND 21-BUS PDN

Action Case 1 Case 2 Case 3
Line Hardening & Expansion 18867 14220 5698
FCS Planning 7776 6480 7776
V2G Implementation 0 0 1166
Operation under Normal State 14989 14968 14989
Operation under Contingency 1727 2485 1498
Extra Contingency-Supported EVBs 0 0 553
Total 43359 38153 31680

TABLE III: COST ($) COMPARISON OF ROBUST RESILIENT
ENHANCEMENT SCHEMES FOR THE COUPLED 12-NODE TN AND

21-BUS PDN
Action Case 3 Case 4 Case 5

Line Hardening & Expansion 5698 9097 8833
FCS Planning 7776 9072 9072

V2G Implementation 1166 778 1166
Total 31680 37147 39390

significant influence of the proportion of EVBs on the
planning of the coupled PDN and TN.

2) When comparing Case 3 to Case 5, both the line planning
costs and the FCS planning costs are notably higher in
Case 5. As a result, it becomes essential to devise distinct
strategies for electric lines, FCSs, and V2G modules to
address the uncertainties in traffic flow. The total cost
of Case 5 exceeds that of Case 3 by 24%, indicating
that the coupled network’s planning approach in certain
conditions struggles to effectively manage traffic flow
uncertainties.

3) The number of scenarios considered in Case 5 is consid-
erably larger than in Case 4. Consequently, the total cost
of Case 5 is 6% higher than that of Case 4. Thus, more
V2G modules are incorporated in Case 5.

In Fig. 6, results across various traffic demand fluctuation
rates are provided. The total cost of the integrated network
climbs from $31,680 to $42,205. With the increasing fluctua-
tion rate, there is a corresponding rise in the total cost. Notably,
the cost increases by $1,443 as the fluctuation rate progresses
from 0% to 5%. Similarly, there is an approximate increment
of 3000$ in each subsequent range: 5%-10%, 10%-15%, and
15%-20%. This trend indicates that as traffic fluctuations
become more pronounced, greater investment is necessary for
the planning and operation of the integrated network.

B. Coupled 24-Node TN and 42-Bus PDN

To assess the scalability of the proposed co-planning
method, an expanded coupled 24-node TN and 42-bus PDN

Fig. 6: Total cost under different fluctuation rate of the traffic
demand.

Fig. 7: Structure of coupled 24-Node TN and 42-Bus PDN.

is employed in Fig. 7. This investigation also includes an
analysis of the flexibility of V2G EVs. Notably, the impact
of natural disasters on the TN is taken into account in this
study, with a decrease in the rated capacity of roads affected
by disasters. The detailed model of the new road capacity for
the contingency state is provided in Appendix B.

1) Case Studies: The expanded model, implemented using
the proposed method, has been evaluated in three cases:

• Case 6: The planning of the expanded coupled TN and
PDN is conducted without V2G implementation and
considers uncertainty under the contingency state.

• Case 7: The planning involves the expanded coupled TN
and PDN with EVs support under the contingency state
but does not take uncertainty into account.

• Case 8: The planning includes the expanded coupled
TN and PDN with consideration for V2G support and
uncertainty under the contingency state.

In Case 8, the traffic flow fluctuation is set to be ±15%, and
the total cost, as well as the cost of each item, are presented
in Table IV.

2) Adaptability of the Proposed Planning Method: The
economic results demonstrate the adaptability of our proposed
planning method. A comparison between the outcomes of Case
6 and Case 7 reveals that V2G implementation significantly
reduces the total cost and load shedding when the coupled
network is damaged. In Case 8, the cost of FCS and V2G
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TABLE IV: COST ($) COMPARISON OF ROBUST RESILIENT
ENHANCEMENT SCHEMES FOR THE COUPLED 24-NODE TN AND

42-BUS PDN
Action Case 6 Case 7 Case 8

Line Hardening & Expansion 18042 6477 19646
FCS Planning 14256 15552 12960

V2G Implementation 0 1944 1555
Total 67895 58441 68058

Load Shedding (MWh) 2.8241 1.2509 0.0232

Fig. 8: Total cost considering the flexibility of supported EVs.

implementation planning is lower than that in Case 7, in-
dicating a clear influence of traffic flow uncertainty on the
coupled network planning. Furthermore, when comparing the
total cost of Case 6 and Case 8, it suggests that with the
proposed planning method, the total costs are nearly identical,
and simultaneously, the total load shedding can be maintained
at a very low level even in the worst situations.

3) Sensitivity Analysis: Furthermore, a sensitivity analysis
regarding the proportion of EVs participating in V2G is
conducted and illustrated in Fig. 8. The maximum proportion
of supported EVs ranges from 5% to 30%. As the proportion
increases, the total cost decreases from $72,462 to $68,058,
highlighting a strong correlation between the number of EVs
engaging in grid support and the total cost. Consequently,
under contingency situations, planners can encourage more
vehicles to participate in V2G by offering higher additional
V2G fees, simultaneously reducing the total cost.

VI. CONCLUSION

This paper provides a robust resilient planning approach
for the integrated PDN and TN by taking into account EVs
re-dispatching and V2G support. The model integrates the
uncertainty associated with traffic flow and the number of EVs
participating in V2G, transforming the optimization problem
into a two-stage framework. In the first stage, the planning
encompasses the reinforcement and expansion of electric lines,
the location of FCSs, and V2G modules. The second stage
addresses the operational aspect, incorporating the uncer-
tainties in traffic flow and fault scenarios. Additionally, an
incentive fee for grid-supported EVs is factored in to ensure
driver willingness to support the PDN. In essence, this model
provides a comprehensive solution for both the planning of the
integrated network and the coordination of vehicle dispatch.

The proposed method has been evaluated by Matlab plat-
form with embedded Gurobi. Simulation results demonstrate

that when V2G participates in grid support during contin-
gency situations without uncertain traffic demand, there is a
substantial reduction in the total cost compared to scenarios
without V2G. Moreover, if uncertain traffic demands are also
considered, the proposed robust resilient planning will also be
an effective solution within reasonable investment plans.

Currently, the fluctuations in the State of Charge (SOC) of
EVs have not been thoroughly addressed. In our forthcoming
research, we plan to take into account EVs with different SOC
levels and investigate their impact on the proposed resilience
enhancement plan. Hopefully, more progress will be reported
soon.

APPENDIX A
CONNECTION WITH THE TWO-STAGES MODEL AND THE

ROBUST MODEL IN (50)

To elucidate variables in (50) and establish their connec-
tion with variables of the two-stages model in Sec. III, this
appendix provides a detailed description of variables in (50).

• Mn,t: the uncertainties of variables in the two-stages
model, specifically the traffic flow of EVA (TAr), EVB
(TBr), and VC (TCr) in this study.

• C: the continuous variables in the first stage model (7)-
(9).

• Z: the binary variables in the first stage model (7)-(9),
encompassing the investment in electric line expansion
and hardening, FLC implementation, and V2G equipment
implementation.

• U : the binary variables in the second stage model (10)-
(44) excluding Z.

• D: the continuous variables in the second stage model
(10)-(44) excluding C.

• ϕ: the coefficient matrix of C in the first stage model
(7)-(9).

• φ: the coefficient matrix of Z in the first stage model
(7)-(9).

• κ: the coefficient matrix of C in the second stage model
(10)-(44).

• λ: to the coefficient matrix of Z in the second stage
model (10)-(44).

• θ: the coefficient matrix of U in the second stage model
(10)-(44).

• ϑ: the coefficient matrix of D in the second stage model
(10)-(44).

APPENDIX B
ROAD CAPACITY OF TN UNDER NATURAL DISASTERS

During a natural disaster event, the TN may experience
disruptions, leading to a decrease in the capacity of each road.
The adjusted road capacity, accounting for road damage, can
be expressed as follows:

ta = t0a

[
1 + 0.15

(
ma

c1a

)4
]
, (56)

c1a = (1− ua) ρc
0
a + uac

0
a, (57)
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where c1a is the new road capacity in the congestion state, ρ is
the reduction coefficient of road capacity, and ua is a binary
variable to indicate the state of the road which is influenced
by the natural disasters. To deal with the nonlinear item ( 1

c1a
)4

in (56), the linearization process is shown in (58):

ta = t0a + ua
0.15mauxt0a

(c0a)
4 + (1− ua)

0.15mauxt0a

(ρc0a)
4 , (58)

where maux equals to ma
4 and the piecewise linearization

method can be implemented to represent maux.
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