
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/16 8 6 7 5/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Alqu r a s hi, N a w al, Li, Yuhu a  a n d  Sido rov, Kirill 2 0 2 4.  Im p roving  s p e e c h  e m o tion

r e co g ni tion  t h ro u g h  hi e r a r c hic al cla s sifica tion  a n d  t ex t  in t e g r a tion  for  e n h a nc e d

e m o tion al a n alysis  a n d  con t ex tu al  u n d e r s t a n din g.  P r e s e n t e d  a t :  In t e r n a tion al Join t

Confe r e nc e  on  N e u r al  N e t wo rks,  Yokoha m a,  Jap a n,  3 0  June  – 5  July 2 0 2 4.  

P u blish e r s  p a g e:  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



 

Improving Speech Emotion Recognition through 

Hierarchical Classification and Text Integration for 

Enhanced Emotional Analysis and Contextual 

Understanding 
 

 

Nawal Alqurashi 
School of computer Science and 

Informatics 
Cardiff University 

Cardiff, UK 

alqurashinm@cardiff.ac.uk 

 

Yuhua Li 
School of computer Science and 

Informatics 
Cardiff University 

Cardiff, UK 

liy180@cardiff.ac.uk 

 

Kirill Sidorov 
School of computer Science and 

Informatics 
Cardiff University 

Cardiff, UK 

sidorovk@cardiff.ac.uk 

 

Abstract—Speech emotion recognition (SER) systems are 

designed to classify spoken audio samples into different emotion 

categories. However, misclassifying emotional samples and 

predicting them as neutral remains a challenging problem in 

these systems. One primary contributing factor to this issue is 

the limitation of speech features to recognize emotions from 

neutral spoken samples that convey emotional context, as these 

features do not account for contextual or meaning-based 

features. To address this issue and improve the recognition 

performance in SER, we propose a hierarchically structured 

classification model and integrate text features as a supportive 

modality to address the misclassification of emotional samples. 

Text-based features provide valuable contextual information 

that can aid in identifying emotional content in otherwise 

neutral speech. This work could be potentially applied in 

various fields, such as healthcare, education, and entertainment, 

where recognizing emotions from speech can be crucial for 

effective communication and decision-making. 

Keywords—speech emotion recognition, human-computer 

interaction, multimodal speech emotion recognition 

I. INTRODUCTION  

Speech Emotion Recognition (SER) systems are designed 

to categorize spoken audio samples into various emotion 

classes. Several researchers have employed various methods 

to enhance emotion classification performance across diverse 

datasets. Nevertheless, they commonly encounter a shared 

challenge: accurately discerning emotional samples and 

preventing their misclassification as neutral poses a 
significant obstacle [1] - [5]. A key factor contributing to this 

challenge is the inadequacy of speech features in capturing 

emotions from neutral spoken samples, which convey 

emotional context [1, 6]. 

As human beings, we judge the emotion from different 

modalities[7]. Individuals typically rely on their ability to 

recognize and interpret signals from various modalities. For 

example, if only the speech is available, determining the 

associated emotions can rely on the voice tone rather than the 

semantic content of the words. Alternatively, it could be 

based on comprehending the context irrespective of the voice 

tone, or the process often involves integrating information 

from multiple factors to form a more comprehensive 

understanding of the emotions being expressed. However, 

recognising emotions is subjective and may not be agreed 

upon by all people [8 , 9]. Additionally, each modality might 

reveal totally different emotions. The information obtained 

from each modality may not necessarily align, and different 

aspects of a person's behaviours or communication might 
convey disparate emotional experiences. For instance, when 

emotionally charged words are spoken with a neutral tone, 

the emotional context may not be immediately apparent from 

the spoken modality alone. The individual might express 

strong feelings or sentiments through their choice of words, 

but the neutral tone obscures the emotional intensity.  

The discrepancy between the emotional content of the 

words and the neutral tone underscores the complexity of 

emotional communication and the need to interpret cues 

beyond the spoken language. In the literature, most of the 

previous work in SER neglects this fact and tries to train 

supervised learning models with speech features that cannot 
be used to extract underlying emotions from the context of 

words. Although some work in SER includes textual 

information alongside speech features to capture the 

emotions in context and enhance the recognition of speech  

[1, 10, 11], they don’t account for the issue of conflicting, 

where different emotions can be revealed from the same 

speech instance through different modalities[5]. The rationale 

for emphasizing this case lies in the prevalence of neutrality 

in everyday conversations, as seen in real-life discussions, 

TV shows, and series. Despite the wealth of underlying 

emotions, neutrality often serves as the prevailing state. By 
developing SER systems that specifically address the 

commonly employed neutral voice tone, we may potentially 

streamline the research process, leading to improved 

recognition accuracy. This approach could also pave the way 

for further exploration into leveraging multiple modes of 

information. Mental health conditions, such as depression, 

often manifest in individuals' language use, particularly in the 

way they express emotions. Depressed individuals tend to 

employ neutral or toneless language while conveying highly 

emotional or charged meanings through their choice of words 



and the context in which they are spoken. Consequently, this 

poses a challenge for conventional SER systems that heavily 

rely on the identification of emotional states based on 

acoustic features, such as pitch, intensity, and speech rate. 

This leads to potential misinterpretation or misclassification 
of emotions in depressed individuals. Furthermore, autistic 

individuals can exhibit a wide range of communication styles 

and patterns, and this can include speaking neutrally or 

without typical emotional inflection even when discussing 

emotionally charged topics. It's important to recognize and 

respect these differences in communication style and to focus 

on understanding the individual's perspective and emotions, 

rather than solely relying on traditional emotional cues such 

as tone of voice or facial expressions. Incorporating inclusion 

and diversity into human-computer interaction (HCI) using 

SER involves ensuring that the technology is designed to be 

sensitive to a wide range of users including autistic 
individuals with different emotional expressions. We seek to 

explore and provide solutions for the following research 

question: How can the problem of classifying samples with 

emotional content as neutral in SER systems be effectively 

mitigated through the integration of text-based information? 

In addressing this question, we aim to investigate the 

potential of leveraging textual cues and context to enhance 

the precision and reliability of speech emotion recognition. 

This paper extensively examines and focuses on the case of 

misclassifying samples of emotional classes as neutral class, 

despite their underlying emotional significance. We propose 
a hierarchically structured classification for SER considering 

the integrating of text features as a supportive modality. 

Extensive experiments are conducted to investigate the 

efficacy of the proposed model. In the proposed hierarchical 

classification system, we explore three methods including 

LSTM, wav2vec and wav2vec with automatic speech 

recognition (ASR) fine-tuning. We also introduce a 

consistency and confidence threshold approach to moderate 

the impact of text model on the proposed system. 
The structure of this paper is as follows: the Section 2 

introduces in detail the proposed multi-modal emotion 
recognition framework which mainly includes speech models 
and text model; The Section 3 explains the experimental 

results of the proposed system followed with results of the 
consistency and confidence threshold approach. The Section 
4 summarizes the work content and outlines the direction of 
the future work. 

II. PROPOSED MULTIMODAL FRAMEWORK 

Fig. 1 illustrates the block diagram of the proposed 

multimodal emotion recognition framework. The subsequent 

sections offer a concise overview of the framework, including 

descriptions of the overall structure, as well as the speech and 

text-based models and systems integrated into this 
framework. 

A. Framework overview 

In this section we present the structure and hierarchy of the 
proposed hierarchical classification system and the process we 
applied in the training phase and the prediction phase. 

1) Training phase 

Training a single classifier for all emotions directly at 

once might be challenging due to the nuances and variations 

in emotional expressions. Therefore, we use a two-level 

hierarchy classification to organise classes and their 

relationships allowing for specialised training. In the first 

level we train the first classifier (Model 1) on all samples 

using speech features to classify between emotional samples 

and neutral samples, simplifying the problem by initially 

categorizing into broad emotional categories. This order 

aligns with the objectives of our study, particularly centred 
around the neutral class, as we intend to analyse it with text 

data later. Then in the second level, we applied two further 

classifiers. One classifier (Model 2) in the second level 

focuses on the more refined task of classifying specific 

emotions using the same speech features and is trained on 

only with emotional samples to classify between happy, sad 

and angry. The deliberate exclusion of the neutral class from 

Model 2 in the classification process is motivated by its 

inherent ambiguity and difficulty in identification using 

speech features[12, 6]. This intentional omission seeks to 

prevent the blending of neutral samples with other emotional 
classes, thereby contributing to the effective management of 

the overall complexity of the classification task. Another 

speech  samples

MODEL 1

Neutral

Extracted speech features

Emotional

MODEL 2MODEL 3Extracted text features

Sad SadAngryAngry HappyHappy Sad Neutral

Transcriptions

Fig. 1.    Overall architecture of the proposed multimodal based hierarchical structure for speech emotion recognition. 



classifier (Model 3) in the second level uses text features and 

is trained on all samples to classify between 4 classes 

(neutral, happy, sad and angry). The later text-based Model 

functions to reclassify the predicted classes as neutral from 

the previous level and assigns them into 4 classes based on 
text features. Beyond the possible conflicts that may arise 

when fusing audio and text in the first level, leading to 

interference between the combined modalities and ultimately 

compromising result accuracy[5], integrating text and audio 

does not align with our objective to analyse the influence of 

text features on predicting the class as neutral. Consequently, 

we opt not to merge text and speech in the first level, choosing 

instead to employ a specific text-based model in the second 

level. To do this hierarchical process, we adjust the dataset’s 

annotation to align with the desired classifier outputs by 

keeping all neutral samples as they are and changing the class 

of all the three emotional classes to Emotional for the first 
level classification. In the second level classification, we keep 

the original annotation for the classes without changing as in 

this level we classify among emotional classes (angry, happy, 

and sad) in speech model and among four classes in text 

model (angry, happy, sad and neutral). It's important to 

highlight that our approach is adaptable and capable of being 

expanded to encompass a wider range of emotion categories, 

nevertheless, our selection prioritizes the emotions most 

prevalent in the SER field. 

2) Prediction phase 

 In the prediction phase, the trained hierarchical 

classification model in the first level determines each sample 
from the test data whether they are emotional or neutral. 

Model 2 in the second level classification in the hierarchy 

takes all the samples in the first hierarchical level that are 

predicted as emotional and classifies them further into angry, 

happy, or sad classes. Model 3 in the second level 

classification in the hierarchy takes all the samples in the first 

hierarchical level that are predicted as neutral and reclassifies 

them further if they are still neutral or one of the emotional 

classes angry, happy, or sad. The classifiers in the second 

level are connected to the output of the first level including 

the misclassified instances of the first level for realistic/ 

applicable results. 

B. Speech model 

For speech models structures i.e. model 1 and model 2 in 

the hierarchical we employ three different variants of 

classifiers as follows. 

1) LSTMs- based speech model 

Both speech models in the hierarchical system applied 
LSTMs followed by two fully connected networks using the 

speech features set described below: 

• Mel-frequency cepstral coefficients (MFCCs) are a 

representation of sound as heard by the human ear 

[13]. We use Librosa [14] toolkit to extract 39 

dimensional (MFCCs) with 16000 Hz of sampling 

frequency and calculate the mean of the frames to 

produce 39-dimensional vector per utterance. 

• The handcrafted speech features used in [15], 

including Pitch, Harmonics, Speech Energy, Pause 

and Central resulting eight speech feature vector per 
utterance We used the same toolkit Librosa for 

features extraction. 

• The Geneva minimalistic acoustic parameter set [16] 

(GeMAPS) is a minimal feature set of eGeMAPS that 

proposed by Eyben et al [16]. GeMAPS set contains a 

compact set of 18 low-level descriptors (LLD) 

including frequency related parameters, amplitude 
related parameters and spectral parameters. We 

compute GeMAPS using the OpenSimle toolkit [17]. 

The batch size is set to 64 and we adopt the Adam method 

to optimize the parameters with cross entropy loss. To select 

the other hyperparameters we use Optuna optimization [18]. 

2) Pretrained wav2vec 2.0 without ASR fine-tuning 

Transfer learning techniques have gained recent attention 

in SER[19, 20, 21]Consistent with these efforts, we 

investigate the application of the wav2vec 2.0 model for 

speech models within our proposed hierarchical system. 

Wav2vec 2.0 [22], a transformer-based model, is specifically 

trained to extract contextualized representations from raw 

audio signals. The architecture of the wav2vec2.0 model 
comprises three key sub-modules: the feature encoder, the 

transformer module, and the quantization module. The 

feature encoder operates as a multi-layer CNN, processing 

the input signal into fundamental low-level features. Utilizing 

this representation, the transformer module generates 

contextualized representations, while the quantization 

module discretizes these low-level features into a trainable 

codebook. During model training, a portion of the low-level 

features is masked from the transformer module. The primary 

objective is to accurately identify the quantized version of the 

masked features, utilising the contextual information 
available. For fine-tunning progress, we used the publicly 

released wav2vec2.0 model, which has been pretrained on a 

substantial dataset comprising 960 hours of Librispeech. The 

wav2vec2.0 model is comprised of two main components: a 

CNN-based feature encoder and a transformer-based 

contextualized encoder. To preserve the knowledge learned 

in the initial training, we freeze the CNN-based feature 

encoder, thereby keeping all parameters of these CNN blocks 

fixed. During fine-tuning, we exclusively update the 

parameters of the transformer blocks. The pretrained models 

are fine-tuned to serve as classifiers within our hierarchical 
speech models. Specifically, the classifier at the first level is 

tasked with distinguishing between neutral and emotional 

states, while the classifier at the second level is responsible 

for discerning between various emotional classes. 

3) Pretrained wav2vec 2.0 with ASR fine-tuning  

In this methodology, we employed wav2vec 2.0 with 

ASR fine-tuned model. It is the base model pretrained and 

fine-tuned on 960 hours of Librispeech. The learned 

representations are fine-tuned on labelled data, and a 

randomly initialized output layer is added atop the 

Transformer for character prediction, Aligning with the ASR 

objective. For our SER fine-tuning process, following a 
similar approach as previously outlined, the CNN-based 

feature encoder is frozen, keeping its parameters fixed. 

Throughout the fine-tuning, we update the parameters of the 

transformer blocks. Considering ASR fine-tuned models for 

wav2vec is deemed important due to the assumption that both 

ASR and emotion recognition rely on understanding acoustic 

features in speech. ASR fine-tuning enhances the model's 

sensitivity to these features, heightening its ability to discern 

subtle variations in speech patterns that could potentially 

convey emotional states. 



C. Text model 

For text model we use LSTMs followed by two fully 

connected networks in the second level as re-classifier using 

the text embeddings. For the text transcripts we use 

Embedding4BERT [23] for extracting word embeddings of 

pretrained language model  (BERT) [24]. BERT allows the 

model to learn the context of a word based on all its 

surroundings. The result of the embedding process is a matrix 

with dimensions of t by 768, where t represents the length of 

the utterance and 768 is the embedding dimension of the 

BERT model for each word. The batch size is configured as 
64. We employ the Adam method for parameter optimization, 

utilizing cross-entropy loss. Optuna optimization is employed 

to choose the remaining hyperparameters. 

III. EXPERIMENTS 

A. Dataset description 

IEMOCAP [25] is an acted, multimodal, and multi-
speaker database and contains five recorded sessions of 
conversations by 10 speakers. Each session contains 
utterances from two speakers (1 male and 1 female). The 
dataset consists of nearly 12 hours of audio-visual information 
along with provided transcriptions. The dataset’s emotions are 
classified into 10 categories: neutral, happiness, sadness, 
anger, surprise, fear, disgust frustration, excited, and other. 
Aligning with similar studies, this study focuses on the four 
most frequently used emotions, namely anger, happiness, 
neutrality, and sadness, by merging the excitement dataset 
with the happiness dataset[26, 27, 28]  In total, 5331 audio 
utterances and transcriptions are used in this research. 

 Two different split settings were employed for the 
experiments: Speaker-Dependent (SD) setting and Speaker-
Independent (SI) setting. In SD setting, all the 5 sessions are 
merged and split by 80/10/10, the 80% data were used for 
training ,10% for validation set and 10% for test the model. In 
SI setting, we use 4 sessions for training the model (4 male, 4 
female), while the last session was split into validation set 
containing only male samples and test set containing female 
samples to evaluate the model ensuring that there is no 
overlapping between the speakers in all sets. 

B. Results and analysis 

We set only speech-based baselines for each system to 

facilitate the comparisons and analysis with the proposed 

system, providing a reference point for evaluating the 

effectiveness of our approach. There is no text model added in 

the baselines and the results are based on only speech features. 

We designate the models including the baselines with the 

following abbreviations based on this organisation: (Classifier 

Name-Modalities used-Setting), with the classifier part we 
refer to the classifier approach in each model as discussed in 

the methodology section LSTM/w2v/w2vASR. The modality: 

S /ST baselines with S denotes speech only, while ST denotes 

to proposed model using speech and text modalities. The last 

part refers to the dataset setting either speaker dependent 

setting or speaker independent setting with D or I, 

respectively. For example, LSTM-S-D is the baseline model 

applied LSTM classifier using only speech features in 

speaker dependent setting, while w2vASR-ST-I refers to the 

model applied w2vec model with ASR fine-tuning in speaker  

independent setting using speech and text modalities. Fig. 2 
represents the impact of text model on the misclassified 

emotional samples that were predicted as neutral by speech 

model for all three used methods and settings. For example, 

upon utilizing the text model in LSTM-ST-D model, 59.5% 

of the samples originally misidentified as neutral by the 

speech model were accurately reclassified. We can see also 
from LSTM-ST-I model that 44.6% of the incorrectly 

predicted samples by the speech model were reclassified and 

accurately predicted by the text model. A noteworthy 

observation is that many of these instances encompass 

emotional contexts. For example, expressions such as "Wow, 

are you so excited?" and "I am very excited" were identified 

as happy by the text model, whereas the speech model 

initially labelled them as neutral. Similarly, phrases like "I 

rather not remember somethings, I rather not hope for 

somethings" and "It must be really really hard to lose a child" 

were categorized as sad, by the text model, in contrast to the 

speech model's neutral labelling, despite the presence of 
explicit words associated with sad feelings and expressions. 

Table I shows additional examples of reclassified samples 

extracted from the used models, offering further insights into 

the correction process. As illustrated in Fig. 2 and detailed in 

Table I, the text model demonstrates efficacy in identifying 

expressions with emotional content, previously labelled as 

neutral by the speech model. This underscores the distinct 

knowledge captured through the text modality that is absent 

in the speech features. During the process of experimentation, 

we found that the experimental outcomes under the 

dependent speaker setting are better than in independent 
setting, particularly in terms of Unweighted Average (UA) 

accuracy. This can be attributed to several factors. In a 

dependent speaker setting, certain conditions or 

characteristics may enhance the performance of the system. 

One possible explanation is that the model is better adapted 

to handle specific speaker dependencies, leading to a more 

accurate recognition of unique speech patterns and emotional 

expressions with those speakers. Furthermore, we observed 

that implementing the wave2vec model significantly 

improved accuracy and achieved the best results in our 

system. However, the ASR fine-tuned model did not prove  

Fig. 2.   Corrected and uncorrected misclassification samples by Text 

model in percentage. 



 

advantageous for SER task when compared to the 

performance of wave2vec without ASR fine-tuning. This 

observation is consistent with findings from other 

studies[21], suggesting that this lack of improvement is due 

to the loss of prosodic information during the ASR fine-

tuning process. Table II provides the performance metrics for 

all models in our experiments and their baselines across the 

chosen classes (Angry, Happy, Sad, Neutral). The metrics 

include Precision, Recall, Unweighted Accuracy (UA), and 
Weighted accuracy (WA). Furthermore, Table III presents a 

comparison between our proposed approach and several 

existing studies in the literature focusing on SER. These 

studies specifically employ text modality and utilize the same 

dataset and classes as in our study. 

 

C. Modality Consistency and Confidence threshold 

In this study, precision is the measure of accurately predicted 

neutral instances relative to all instances predicted as neutral, 

and a high precision means a low rate of false predictions as 

neutral. Precision is particularly critical in our work as we are 

interested in minimizing the cases where a sample is 

mistakenly classified as neutral. High precision ensures a 

higher probability that content identified as neutral is 

genuinely neutral. As shown in Table II, the proposed system 

demonstrates enhancements in precision for the neutral class 

across all classifiers in comparison to baseline models. 
However, the overall accuracy of the proposed system did not 

exhibit an increase. A closer examination reveals that this 

lack of accuracy improvement is attributed to a decline in 

recall for neutral class, thereby influencing the overall 

accuracy. Although that our approach is more accurate and 

trustworthy in identifying genuinely neutral content, it's also 

important to consider the trade-off between precision and 
recall. In addressing considerations of robustness and 

achieving a harmonious balance between recall and precision 

within the neutral class, we introduce the Modality 

Consistency and Confidence algorithm based on probabilistic 

thresholds. Specifically, we employ consistency and 

confidence threshold to moderate the full impact of the text 

model on predicted samples categorised as neutral, 

originating from the speech model. This process aims to filter 

results, allowing the adoption of outcomes from the speech 

model only when the text model demonstrates sufficient 

consistency with speech model result and confidence in 

classifying an instance as neutral, devoid of emotional 
context. The algorithm determines the ultimate predicted 

class by evaluating whether the predicted class should be 

derived from the speech model (in our scenario, the neutral 

class) or from the text model, which includes emotional and 

neutral classes This decision is made by comparing the 

prediction probability associated with the neutral class in the 

text model for a given instance against a specified threshold. 

The threshold indicates the level of consistency required for 

the text model to align with the speech model in classifying 

the instance as neutral. If the text model is sufficiently 

consistent with the speech model's outcome, the predicted 
class is deemed neutral, affirming the speech model's 

prediction. Conversely, if the text model's results do not align 

adequately, the predicted class will be determined by the text 

model output. Algorithm 1 provides pseudo-code that 

implements this procedure. Different threshold values (0.25, 

0.30, 0.35, 0.40) are systematically applied to ascertain an 

optimal threshold for each model. The precision-recall curve 

for the neutral class is visually depicted in Fig. 3 for each 

model, and Table II presents the corresponding results, 

emphasizing the superior accuracy achieved under specific 

threshold conditions. 

 

 

 

Sentence SM’s 

prediction 

TM’s 

prediction 

Ture 

label 

Well, if she does, then that's 

the end of it. But from her 

letters, I think she's forgotten 

him. I'll find out. And then 

we'll thrash it out with Dad, 

right? Mom don't avoid me" 

neutral sad sad 

Yeah, that's awesome  neutral happy happy 

Wow, are you so excited? neutral happy happy 

I rather not remember 

somethings; I rather not hope 

for somethings 

neutral sad sad 

I am very excited neutral happy happy 

It must be really really hard 

to lose a child 

neutral sad sad 

Are you crazy? neutral angry angry 

We will have fun neutral happy  happy 

Yeah. It's really cool neutral happy  happy 

Oh, I am so glad neutral happy happy 

you are far too 

temperamental, try to control 

yourself. 

neutral angry angry 

Who-whoooo…, neutral happy happy 

really hard to imagine that 

like you are going to 

continue to live, and that 

person’s just going to have 

stopped 

neutral sad sad 

It’s a good idea neutral happy  happy 

He cried hard neutral sad sad 

Congratulations…, neutral happy  happy 

On the contrary, a child of 

two can get violently drunk 

on only one glass of brandy, 

neutral angry angry 

TABLE I. OUTCOMES OF SOME SAMPLES, ILLUSTRATING 

PREDICTIONS FROM BOTH SM-SPEECH MODEL AND TM- TEXT MODEL 

Algorithm 1:  Modality consistency and confidence threshold 

calculation   

Input: Predicted probability from Text model ModelT for neutral 

class of an instance 𝑃!"#$%&'(𝐼), Threshold T. 

  

Output: The final predicted class based on threshold condition of 

instance I 

 Require: Predicted class from speech model ModelS, 

Predicted class from text model ModelT.    

and 

1: 

 
set Final prediction  ¬ predicted class from ModelS 

2: 

 
if  𝑃!"#$%&'(𝐼) > T then 

3: 

 

 set Final prediction¬ predicted class from ModelS 

4: else 

5:  set Final prediction¬ predicted class from 

ModelT 

6: end if 

7: return Final prediction 

8: end 



 

 

 

IV. CONCLUSION 

The present study aims to investigate the feasibility of using 

text-based emotions classification in SER, with the ultimate 

goal of minimising the mistakenly emotional samples as 

neutral. The current study explores the potential means of 

reducing this type of error. In this regard, the IEMOCAP 

dataset, encompassing four distinct classes, is utilised to test 

the hypothesis and determine the effectiveness of our 

hierarchical classification. Additionally, three different 
classifiers, namely LSTM, wav2vec and wave2vec with ASR 

fine-tuning are trained and applied in the proposed system. 

To moderate the impact of text model, we propose the 

Modality Consistency and Confidence algorithm based on 

probabilistic thresholds. Experimental results reveal that our 

proposed method outperforms created speech-based 

baselines. The findings highlight that the incorporation of  

TABLE II.  SUMMARY OF THE EXPERIMENTS RESULTS IN TERM OF CLASS-WISE PRECISION AND RECALL, OVERALL ACCURACY OF THE BASELINES, 

PROPOSED SYSTEM, PROPOSED SYSTEM WITH DIFFERENT THRESHOLDS, UA-UNWEIGHTED ACCURACY, WA- WEIGHTED ACCURACY. 

Model LSTM-S-D LSTM-ST-D Threshold 0.25 Threshold 0.30 Threshold 0.35 Threshold 0.40 

Class Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall 

Angry 66.0 66.0 65.0 70.0 65.0 70.0 65.0 70.0 66.0 69.0 67.0 69.0 

Happy 50.0 56.0 49.0 65.0 49.0 65.0 50.0 65.0 51.0 65.0 52.0 65.0 

Sad 57.0 79.0 58.0 84.0 58.0 84.0 58.0 84.0 58.0 84.0 58.0 84.0 

Neutral 66.0 45.0 79.0 32.0 79.0 32.0 80.0 34.0 80.0 38.0 80.0 41.0 

UA 58.84 59.20 59.92 59.74 59.74 59.56 

WA 61.35 62.80 63.36 63.22 63.22 63.08 

Model W2v-S-D W2v-ST-D Threshold 0.25 Threshold 0.30 Threshold 0.35 Threshold 0.40 

Class Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall 

Angry 79.0 78.0 75.0 82.0 75.0 82.0 75.0 82.0 75.0 82.0 75.0 82.0 

Happy 71.0 67.0 66.0 75.0 69.0 75.0 68.0 75.0 68.0 75.0 66.0 75.0 

Sad 70.0 71.0 55.0 81.0 58.0 80.0 56.0 80.0 55.0 80.0 55.0 81.0 

Neutral 66.0 69.0 77.0 41.0 77.0 49.0 76.0 46.0 76.0 44.0 78.0 41.0 

UA 70.93 66.78 68.95 68.05 67.50 66.96 

WA 71.41 69.77 71.35 70.64 70.22 69.91 

Model W2vASR-S-D W2vASR-ST-D Threshold 0.25 Threshold 0.30 Threshold 0.35 Threshold 0.40 

Class Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall 

Angry 76.0 80.0 73.0 84.0 73.0 84.0 73.0 84.0 73.0 84.0 73.0 84.0 

Happy 67.0 58.0 64.0 68.0 66.0 67.0 66.0 67.0 66.0 67.0 65.0 68.0 

Sad 70.0 71.0 51.0 75.0 55.0 75.0 53.0 75.0 52.0 75.0 51.0 75.0 

Neutral 68.0 73.0 77.0 44.0 77.0 51.0 77.0 48.0 77.0 47.0 77.0 44.0 

UA 70.21 64.98 67.32 66.24 65.88 65.16 

WA 70.69 67.66 69.47 68.62 68.34 67.80 

Model LSTM-S-I LSTM-ST-I Threshold 0.25 Threshold 0.30 Threshold 0.35 Threshold 0.40 

Class Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall 

Angry 56.0 58.0 52.0 60.0 54.0 60.0 53.0 60.0 52.0 60.0 52.0 60.0 

Happy 40.0 52.0 42.0 60.0 42.0 58.0 42.0 58.0 42.0 58.0 42.0 60.0 

Sad 57.0 65.0 51.0 72.0 53.0 69.0 53.0 70.0 52.0 71.0 52.0 71.0 

Neutral 64.0 45.0 80.0 32.0 71.0 36.0 73.0 34.0 75.0 33.0 79.0 33.0 

UA 52.88 52.20 52.37 52.37 52.03 52.37 

WA 54.80 56.06 55.70 55.89 55.74 56.06 

Model W2v-S-I W2v-ST-I Threshold 0.25 Threshold 0.30 Threshold 0.35 Threshold 0.40 

Class Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall 

Angry 64.0 63.0 40.0 85.0 64.0 63.0 55.0 76.0 48.0 78.0 40.0 83.0 

Happy 71.0 57.0 60.0 74.0 64.0 72.0 64.0 73.0 62.0 74.0 60.0 74.0 

Sad 73.0 58.0 69.0 72.0 75.0 70.0 75.0 70.0 70.0 71.0 69.0 72.0 

Neutral 60.0 76.0 71.0 29.0 69.0 67.0 71.0 57.0 68.0 42.0 69.0 30.0 

UA 65.08 58.30 68.30 66.77 62.03 58.30 

WA 63.41 65.05 68.28 66.26 61.81 64.84 

Model W2vASR-S-I W2vASR-ST-I Threshold 0.25 Threshold 0.30 Threshold 0.35 Threshold 0.40 

Class Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall 

Angry 69.0 54.0 42.0 83.0 69.0 54.0 58.0 71.0 69.0 54.0 69.0 54.0 

Happy 68.0 43.0 60.0 67.0 65.0 65.0 64.0 65.0 69.0 58.0 69.0 58.0 

Sad 61.0 66.0 60.0 74.0 63.0 73.0 62.0 73.0 62.0 67.0 62.0 67.0 

Neutral 58.0 75.0 69.0 30.0 67.0 66.0 69.0 56.0 63.0 71.0 63.0 71.0 

UA 61.52 56.94 65.59 64.06 64.57 64.57 

WA 59.45 63.68 64.35 66.03 62.70 62.70 

System UA WA 

SVM tree ensembles [29] 67.4 67.4 

E-vector + MCNN + LSTM [26] 65.9 64.9 

(ENC1) +(ENC2)[27] 68.4  

Late Fusion-III [28] 59.3 61.2 

ACO(+)Cepstrum(+) 

Cepstral-BoW+GSV-mean 

(+) Lex-BoW(+)Lex-eVector  [30] 

- 

 

69.2 

ASR-SER (Hierarchical co-attention) [31] - 63.4 

Ours (SD)W2v-ST-D 68.9 

 

71.3 

Ours (SI)W2v-ST-I 68.3 68.2 

 

TABLE III.  PERFORMANCE COMPARISON OF OUR PROPOSED 

APPROACH WITH DIFFERENT METHODS ON IEMOCAP 



textual information enables a more comprehensive 

understanding of the emotional context underlying seemingly 

neutral spoken interactions. Future research could also extend 
the scope of individual sentences by considering the 

importance of incorporating contextual information from 

surrounding sentences to better infer emotions from neutrally 

spoken dialogues. By understanding the broader conversation  

or situational context, it becomes feasible to discern emotions 

that might not be explicitly evident in isolated sentences. 

Moreover, it would be valuable to investigate the feasibility 

and implications of learning hierarchical representations 

within a single unified model. Such an investigation holds 

promise in potentially streamlining the model complexity and 

reducing the need for maintaining multiple separate models. 
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