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Abstract  
 

Alzheimer’s disease (AD) is the most common form of dementia in humans, with disease 

course involving initial memory loss, a subsequent debilitative state and eventually death.  It 

is a polygenic disorder, meaning its genetic component comprises many known and unknown 

mutations. This complexity alongside further influences from a range of lifestyle factors, 

have made the prediction of disease risk a challenging pursuit.  

 

The initial attempts to predict AD risk from genetic data arose due to the identification of risk 

loci in genome wide association studies (GWAS). Resulting variants are used to assess risk of 

disease onset through polygenic risk scoring (PRS). This score is generated through the 

summation of risk alleles multiplied by their respective effect sizes derived from GWAS. 

Publication results demonstrate PRS to be a useful method for assessing lifetime risk, 

however it has also been proven that PRS can only cover a fraction of genetic liability for 

AD. A possible explanation for this inadequacy is the inability for PRS to assess non-linear 

relationships between loci due to the use of linear modelling. Given AD is a complex 

polygenic disorder, it is likely that onset is the result of interactions between loci. A format 

which holds the capability to analyse non-linear patterns is machine learning (ML). Interest 

in these algorithms has increased in recent decades due to their predictive power, ability to 

analyse large datasets, and capabilities in disease prediction.  

 

Initial results demonstrated a superior performance for PRS compared to ML when using 

datasets comprising smalls amount of AD associated single nucleotide polymorphisms 

(SNPs). However, in some instances ML achieved accuracies close to that of PRS. This 

occurred when using the algorithm support vector machine with various kernels. However, it 

was acknowledged these algorithms would result in excessive training times when using 

larger datasets in subsequent chapters. Therefore, only decision tree-based algorithms were 

employed moving forwards. It was also deduced that techniques such as balancing by age and 

sex had made no discernible difference on model performance. 

 

Further investigation involved the use of variants sourced on a genome wide scale, as it was 

reasoned that using a greater number of SNPs might improve upon results from the previous 
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chapter. However, increasing the number of variants resulted in issues relating to high 

dimensionality. Despite efforts to alleviate this through the use of feature selection 

techniques, prediction performance for ML models was still inferior to PRS. Further avenues 

were also explored such as using a more lenient threshold of r2 when clumping and removing 

this step completely for SNP selection, but this again failed to improve upon ML prediction 

accuracy. PRS continued to achieve better performance when using an imputed version of the 

dataset used in previous analyses, this was still evident when again exploring method such as 

feature selection. However, the observed difference between ML and PRS was reduced in the 

final investigations conducted in this thesis. Analysis on datasets comprising SNPs derived 

from biologically associated AD pathways resulted in improved ML performance. This result 

identified the possibility of focusing on the underpinning biological mechanisms of AD when 

selecting datasets.  
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1 Introduction to Alzheimer’s disease 
 

 

1.1 Introduction 
 

Mankind has been aware of dementia for millennia, with knowledge of cognitive decline with 

age recorded in ancient Egypt (Yang et al., 2016). A common cause of cognitive decline is 

Alzheimer's Disease (AD), a form of dementia found primarily in individuals aged 65 and 

over (Yang et al., 2016b). Recognition of AD came in the early 1900’s due to the work of the 

German scientist Alois Alzheimer, in which he treated a patient at Frankfurt psychiatric 

hospital named Auguste Deter. Aged 51, Deter displayed different symptoms to other 

patients such as amnesia and disorientation. Following her death, Alzheimer conducted a 

biopsy of Deter’s brain in which he discovered substantial thinning in the hippocampus, a 

region of the brain associated with controlling memory, language and thinking. Further 

investigation revealed the presence of senile plaques in neurons and neurofibrillary tangles 

within nerve fibres. It had long been considered that plaques were present in only those over 

70 years old, whilst neurofibrillary tangles were a novel discovery (Yang et al., 2016b).  

 

As understanding of AD developed, it became clear that two forms of the disease existed in 

humans. These are classified by age of onset, with those before the age of 65 diagnosed with 

early onset Alzheimer’s disease (EOAD), whilst persons above the age of 65 are classified as 

having late onset Alzheimer’s disease (LOAD). EOAD can be broken down into two further 

categories, the autosomal dominant type, also known as ‘familial’ EOAD, and the sporadic 

disease. Familial EOAD is caused by single genetic mutations and comprises 10-15% of all 

EOAD cases. However, the genetic component of the sporadic form of EOAD is polygenic in 

nature, due to the involvement of multiple loci (Awada, 2015). This is also the case for 

LOAD. However, a large proportion of the heritability for both forms of AD remains 

uncovered (Lynn M Bekris et al., 2010). Despite one hundred years of subsequent research 

and growing prevalence, an effective treatment to reverse the progression of AD has yet to be 

found (Yiannopoulou and Papageorgiou, 2020).  
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1.2 Overview 
 

Alzheimer’s Disease is the most common form of dementia, with estimates suggesting that it 

accounts for over 50% of all cases (Lynn M Bekris et al., 2010). As of 2019, it was estimated 

that 27 million people were affected by AD globally (Silva et al., 2019). Additionally, it is 

estimated that five million new cases of AD are diagnosed each year. AD is also ranked 

among the top ten leading causes of death in the United States, with 121,499 deaths in 2019 

(‘Alzheimer’s disease facts and figures’, 2021). Alongside the traumatic effect of AD on a 

patient, the disease also inflicts economic burdens at both personal and national levels. As of 

2005, AD was surpassed by only cancer and heart disease when considering the costliest 

disorders in the United States with the global estimate of total financial cost at around 315 

million dollars (Castro et al., 2010). The high costs associated with AD originate from the 

need for progressive levels of care for patients as the disease develops. As an individual 

enters the latter stages of the disease, they will lose all cognitive and physical abilities, 

resulting in the need for 24-hour intensive care. These can have significant financial 

implications for the individual, their next of kin and health systems (Castro et al., 2010). 

Concerns are growing regarding the capability of health services to cope with these costs, 

given that prevalence within the global over 65's population is estimated to rise from 6.8% to 

16.2% percent by 2040 (Castro et al., 2010). 

 

1.3 Epidemiology 
 

EOAD is diagnosed in individuals who are below the age of 65, with development possible 

as early as the 5th decade of life (Mendez, 2017). When considering the overall incidence of 

AD, EOAD comprises around 5% of cases. Despite this, the early onset form of AD is still 

the most common form of dementia in the 45-64 age category, with an incidence rate of 

about 6.3/100,000 in the United States. There is often a delay in diagnosis of EOAD 

compared to LOAD (Mendez, 2017). This can be attributed to clinicians assigning symptoms 

to other conditions, whilst also possibly overlooking their severity. Such oversight originates 

from the belief that AD is an ‘elderly persons’ disease only (Mendez, 2019).  

 

LOAD is diagnosed in those individuals who are aged 65 and above. The incidence of LOAD 

increases with age, with rates increasing from 2/1000 from ages 65 to 74, to 30/1000 at age 

85 (Qiu, Kivipelto and von Strauss, 2009). Women are more likely to develop LOAD than 
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males, with two-thirds of patients being female. This is partially explained by women having 

longer life expectancies than men, however analyses corrected for age have identified further 

factors. These include greater risks compared to men for comorbidities such as depression, 

myocardial infarction and coronary heart disease (Nebel et al., 2018). In terms of incidence 

amongst different ethnicities, black populations are more at risk of developing LOAD than 

Caucasians. This is also the case for Hispanic individuals; however, it has been shown that 

Asian populations are at a similar risk to Caucasians (Barnes, 2022). Survival periods post 

diagnosis vary across individuals, with average life expectancy between 4-5 years (Rait et al., 

2010). This period can be affected by several factors including age of onset, sex, and medical 

comorbidities (Rountree et al., 2012).   

 

1.4 Neuropathology of AD 
 

Despite extensive research into methods to diagnose AD, post-mortems remain the only 

definitive test for diagnosis (Weller and Budson, 2018). However, upon first inspection with 

the human eye, the brain of an AD patient may not present differently to that of a non-

diseased individual. Visible diagnostic factors such as brain lesions or other alterations are 

not typical (Perl, 2010). Also, it has been shown that clinical features such as reduced brain 

weight and cerebral cortical thickness cannot be used as markers for AD. This is due to age 

matched cognitively healthy brains displaying similar reductions. The only change in brain 

anatomy which might be an indicator of AD is significant atrophy of the hippocampus, with 

associated dilation of the adjacent temporal horn of the lateral ventricle. However, this alone 

cannot be used as definitive evidence that an individual had AD (Perl, 2010). Due to this, the 

only method to reach a conclusive diagnosis is through examination of tissue using 

microscopes. Two pathological features must be present to confirm AD, these are known as 

senile plaques and neurofibrillary tangles (NFTs) (Perl, 2010).  

 

1.4.1 Neurofibrillary Tangles 
 

The protein tau has the primary role of maintaining the stability of microtubules in axons. 

However, alterations in the function of tau leads to the development of neurofibrillary 

tangles. As this protein undergoes abnormal changes, its ability to support microtubules 

reduces, leading to a reduction in nutrient transport between neurons. The development of 

NFTs typically follows three levels of maturity. Initially, abnormal tau deposits accumulate 

outside of the nucleus of the cell. Eventually, this accumulation of tau overwhelms the entire 
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neuron, as fibres are formed. This leads to the development of the mature tangle, in which the 

neuron becomes shrunken. The final stage of the process is the death of the neuron, with the 

NFT remaining in a tomb like presence (Moloney, Lowe and Murray, 2021).  

 

The presence of NFTs in a diseased brain typically presents in the entorhinal cortex, 

hippocampus, amygdala, and the neocortex. The degree to which NFTs have spread in these 

regions has been positively associated with the severity of disease and duration. This suggests 

that NFTs have a direct impact on the impact of AD. However, the presence of NFTs doesn’t 

exclusively suggest that AD is present, as they are also linked to other neurological disorders 

(Perl, 2010). 

 

1.4.2 Senile Plaques 
 

The second neuropathological sign of AD is the presence of senile plaques in the 

hippocampus and surrounding cortical regions. Typically, these are spherical deposits 

comprising of the 38-42 amino acid long peptide called amyloid beta (A). This peptide is 

derived from the protein amyloid-B precursor protein (APP). The APP protein is cleaved to 

form various species of A. The most common of these is the form A 40, mostly produced 

by astrocytes and neurons (Brothers, Gosztyla and Robinson, 2018). A has been shown to 

have several beneficial roles within the human brain. These include the suppression of 

tumour growth, promoting recovery from brain injuries and regulating synaptic function. 

Levels of A in the brain are regulated by cerebrospinal fluid (CSF) and microglia (Brothers, 

Gosztyla and Robinson, 2018). 

 

Mutations in the APP protein have been linked to the development of AD. In a healthy 

functioning brain, the peptide A42 is less prevalent than A 40. However, mutations of APP 

have been linked to increased levels of A42. This peptide of A has a regular function and 

has also been associated with the early development of senile plaques. This association has 

been reinforced in those individuals with Down’s syndrome, in which an additional copy of 

chromosome 21 contributes to increased expression of APP and in turn greater levels of A. 

Patients with Down’s syndrome develop senile plaques and eventually succumb to AD, 

suggesting a relationship between APP mutations and plaque development (Findeis, 2007).  
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The role of A in AD development was termed the amyloid cascade hypothesis. This 

postulated the deposition of A into senile plaques was the initial trigger of AD progression. 

This trigger leads to further degeneration such as neuritic injury, NFTs and cell death. 

Experimental approaches have produced results which reinforced this hypothesis. 

Approaches aimed at reducing the levels of A within mice achieved reductions in synaptic 

loss and reprisal of some memory functions (Ricciarelli and Fedele, 2017). However, in 

recent decades questions have been asked regarding the suitability of the cascade hypothesis, 

due to the failure of A targeted drug therapies. Furthermore, some investigations suggest 

that A deposition may not have a definitive correlation with neuronal loss. Individuals have 

been clinically assessed as having significant levels of simile plaques and NFTs, whilst 

presenting as cognitively healthy. Given this, it is clear that both tau and A have significant 

roles in AD development, however the aetiology of AD is more complicated than initially 

thought (Ricciarelli and Fedele, 2017).  

 

Figure 1.1: Microscopic image of both senile plaques and NFTs relating to AD 

 (Perl, 2010). 

 

 
Figure 1.1: A Photomicrograph image of the temporal cortex of a patient with Alzheimer’s disease. A senile plaque is 

identified with a black arrow, whilst the red arrow points towards an NFT. This image has not been altered from the  

original source. 
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1.5 Symptoms 
 

The symptoms of AD can be categorised into three main areas, these are cognitive 

impairments, physiological illness, and physical disabilities. The combination of these three 

areas makes AD a severe disorder. 

 

1.5.1 Cognitive symptoms 
 

1.5.1.1 Early onset AD 
 

Several studies have suggested that the cognitive symptoms of EOAD are partially different 

to those of LOAD, e.g., (Koedam et al., 2010). Patients with EOAD tend to have better 

memory recognition than those at a similar stage of LOAD. However, they exhibit worse 

attention skills, whilst also having more deteriorated visuospatial skills. EOAD is also linked 

with a greater decline in executive functions, such as planning and organisation (Toyota et 

al., 2007). Several studies have also indicated that the disease progression of EOAD is more 

aggressive and rapid than LOAD, e.g., (Toyota et al., 2007). 

 

1.5.1.2 Late onset AD 
 

The most well-known symptom of LOAD is increasing memory loss, observed in all cases of 

the disease (Ricciarelli and Fedele, 2017). The deterioration in memory is often a gradual 

process, with onset being decades before clinical diagnosis. Difficulties exist in 

distinguishing this symptom from the natural process of ageing, in which cognitive abilities 

also decline. However, symptoms in AD patients develop well beyond those of normal 

ageing (Weller and Budson, 2018). The initial loss of memory function may manifest itself in 

signs such as difficulty with word finding, naming of individuals or locations and locating 

objects. Suspicion of AD may arise when symptoms begin to impact an individual’s social 

and work activities. These may include failure to remember important information such as 

home addresses and existence of close relationships.  

 

Progression of the disease will lead to an inability to conduct everyday tasks. Examples of 

these include driving, cooking and employment. As the disorder develops into the final 

stages, the decline in cognitive ability becomes absolute. Individuals will no longer recognise 

even those with closest relationships (Weller and Budson, 2018). 
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1.5.1.3 Psychological symptoms 
 

Alongside cognitive issues, AD has been linked with a range of mental health issues. 

Depression is a common comorbidity of AD, with estimates of incidence ranging from 25% 

to 75% (Li et al., 2014). Despite its high prevalence, it is still unclear whether depression 

leads to an increased risk of AD, or whether it is a result of developing AD. Studies which 

have examined the link between AD and depression have shown association between illness 

and the level of A 42 in in the brain. This suggests depression maybe linked to AD 

development. However, other schools of thought have asked whether depression results from 

AD, or whether it is a response to the diagnosis. Patients will be initially aware of their 

prognosis, with the likelihood of a reduced life span. Such knowledge could potentially lead 

to a reduction in general mood (Li et al., 2014). 

 

Apathy is also a common psychological symptom of both EOAD and LOAD (Toyota et al., 

2007). This is categorised by a reduction in responses such as concern and interest. For 

example, this might be observed through a lack of interest in loved ones or a reduced 

motivation in previously favoured tasks such as hobbies. Incidence of apathy in AD patients 

is estimated to be around 40% of all cases (Li et al., 2014). Similarly, to other psychological 

symptoms, an increased level of apathy has been linked with faster disease progression (Li et 

al., 2014). 

 

Two further symptoms of AD which can cause issues for both patients and caregivers are 

aggressiveness and psychosis. Aggressive behaviour can manifest in both physical actions 

and verbal attack. These issues have been more prevalent in male patients, whilst their 

presence has been associated with more rapid cognitive decline (Li et al., 2014). Psychosis is 

classed as a severe mental health disorder, with patients experiencing a significant alteration 

in the way they perceive their surroundings. Examples of symptoms include both 

hallucinations and delusions, such as fear of being in danger. Such symptoms tend to be 

linked to the later stages of AD progression. The presence of psychosis has also been more 

associated with the LOAD form of the disease (Toyota et al., 2007). Clearly, psychosis can 

be associated with increased levels of stress for both care givers and the patient. At a certain 

level, the presence of psychosis may result in the involvement of mental health services and 

police intervention (Frederick, O’Connor and Koziarski, 2018). 
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1.5.1.4 Physical symptoms 
 

Greater focus has often been placed on the cognitive symptoms of AD. However, as the 

function of the brain deteriorates, a patient will also experience a range of physical 

symptoms. These will typically become more apparent in the mid-later stages of disease. 

Unlike memory loss, which is a universal symptom, some patients experience different 

physical symptoms to others. Some of the more common issues relate to the weakening of 

important muscle groups. This can cause symptoms such as difficulty walking, loss of 

coordination and general fatigue. 

 

Despite leading to a reduced lifespan in most cases, AD is usually not the direct cause of 

death in individuals, rather patients succumb to complications caused by the disease (Manabe 

et al., 2019). One of the leading reasons for death in AD patients is the reduced ability to 

swallow. This will impact the quality of diet for an individual, which can lead to issues such 

as malnourishment and dehydration. Alongside this, a reduction in swallowing ability leads 

to an increased risk of choking (‘2020 Alzheimer’s disease facts and figures’, 2020). With a 

significant chance of food becoming trapped in the trachea. The presence of trapped food can 

also increase the risk of infection, which the patient’s immune system may struggle to treat. 

Other types of infection are also common in AD patients, such as pneumonia and sepsis 

(‘2020 Alzheimer’s disease facts and figures’, 2020). 

 

1.6 Diagnosis 
 

The only definitive method to diagnose AD remains a postmortem biopsy (DeTure and 

Dickson, 2019). However, the requirement to attempt to diagnose AD during a patient’s 

lifetime remains important. There are two main reasons for this. Treatments for the different 

forms of dementia are diverse, with varying forms of drug treatments. The use of incorrect 

drug treatment has the potential to cause harm to an individual. Therefore, it is important the 

correct form of dementia is diagnosed, and the corresponding medication is prescribed (Iddi 

et al., 2019). Also, research has shown that medication for AD works most effectively when 

administered in the early stages of disease development. Therefore, it is important to 

diagnose AD early when attempting to sustain an individual’s quality of life (Rasmussen and 

Langerman, 2019). 
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1.6.1  Issues with diagnosing EOAD 
 

EOAD manifests in patients typically between 40-60 years of age. This presents problems 

from both the patient and clinician point of view when diagnosing the disease. An individual 

in their 40’s may be reluctant to seek medical advice following atypical symptoms, due to a 

perceived belief of good health (Mendez, 2017). Similarly, a doctor may not consider the 

possibility of AD due to the individual’s age. A clinician may also have limited experience of 

EOAD, as well as low confidence in diagnosing it. These issues arise from the perception that 

AD is disease prevalent only in those aged over 65. This hesitancy can lead to a delay in 

diagnosis for patients, with a large percentage waiting a year of more (Mendez, 2019). 

 

1.6.2 Issues with diagnosing LOAD 
 

The difficulty of diagnosing the correct form of dementia lies in the similarity that LOAD 

shares with other forms of illness, such as frontotemporal dementia, vascular dementia and 

dementia with Lewy bodies (Gaugler et al., 2013). Studies have shown that clinical diagnosis 

differs from examination for a certain percentage of individuals, with estimates ranging from 

20-30% (Klatka et al., 1996). 

 

1.6.3 Cognitive tests 
 

Advances in technology have led to the use of biomarkers in partnership with cognitive tests 

for AD diagnosis. However, access to biomarkers may be limited in some areas due to the 

costly nature of obtaining them (Palmqvist et al., 2012). In this instance, the more traditional 

technique of cognitive tests is used. The most used psychometric test used in AD diagnosis is 

the mini-mental state examination (MMSE) (Arevalo-Rodriguez et al., 2015). This assesses a 

range of cognitive functions including memory, attention, and language. Advantages of the 

MMSE lie in its ease in implementation, consistent scoring system and implementation in 

many countries. The title of 'mini' relates to the short nature of the test, with 11 questions 

used. These focus on topics such as dates, location, and self-awareness. Despite its 

widespread usage, concerns have arisen regarding the MMSE's ability to distinguish between 

MCI and AD, with some published studies suggesting MMSE has a predictive ability of zero 

(Palmqvist et al., 2012). 
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1.6.4 Biomarkers 
 

Despite their widespread usage, sole employment of cognitive tests is often not considered 

sufficient for diagnosis. Another set of tools used for decision making are biomarkers. 

Biomarkers are elements of the human physiology which can be used to indicate phenotypes. 

The increase in the use of biomarkers in AD diagnosis has occurred due to the development 

of computer technology (Mayeux, 2004). Neuroimaging has had initial success in the 

diagnosis of tumours; however, its use is also becoming more prevalent in AD (Ferreira and 

Busatto, 2011). One form of this is the use of positron emitting topographers (PET) scanners, 

which are used to assess cerebral metabolic rates of glucose. As the human brain ages, the 

average metabolic rate of neurons reduces (de la Monte and Tong, 2014). However, these 

rates decline at a greater rate at an earlier stage in AD patients. Early studies suggest a 

promising ability for PET scanning to differentiate between cognitively healthy patients and 

AD. This has also extended to separating those with MCI and AD (Grueso and Viejo-Sobera, 

2021). Published studies have also shown that PET scanning may also be effective in 

distinguishing between the different types of dementia and are important when considering 

treatment options (Marcus, Mena and Subramaniam, 2014). 

 

In the last decade, several radioactive imaging agents have been developed. These highlight 

possible AD affected areas of the brain when scanned. Cerebrospinal Fluid (CSF) is a clear 

fluid which surrounds the brain and spinal cord. A form of this fluid named CSF A42 has 

been identified as a biomarker for AD. Studies have shown that decreased levels of this fluid 

have been linked to an increased likelihood of AD (Tarawneh, 2020). Further to this, another 

CSF variation which has been linked to AD is CSF p-tau181. Measurements of this 

biomarker have been proven to be strong predictors for AD progression. However, extracting 

CSF from individuals is both a costly and invasive process. Therefore, efforts have been 

concentrated on finding simpler methods, including assessment of blood samples (Tarawneh, 

2020). 
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1.7 Treatment methods 
 

1.7.1 Current treatment 
 

Current treatment strategies for AD are aimed at reducing the severity of symptoms. 

Unfortunately, treatments to reverse or prevent the diseases are still yet to be developed. The 

most common form of treatment is Cholinesterase Inhibitors (CIs). The cholinergic 

hypothesis of AD states that systems in the basal forebrain are damaged early in the disease 

process. This damage is thought to result in the common symptom of memory loss, as well as 

other neuropsychiatric symptoms. The use of cholinesterase inhibitors has been shown to 

slow the progression of this decline (Yiannopoulou and Papageorgiou, 2013). Currently three 

CIs have been approved for general use, donepezil, rivastigmine and galantamine. However, 

these drugs are only effective when treating the initial stages of the disease. This again 

emphasises the importance of early diagnosis for AD (Yiannopoulou and Papageorgiou, 

2013).   

 

A drug used in the more advanced stages of AD is memantine. This treatment is believed to 

protect neurons from excitotoxicity, which is a phenomenon involving the toxic actions of 

certain neurotransmitters. Studies have shown improvements in cognition in individuals with 

an advanced stage of the disease (Yiannopoulou and Papageorgiou, 2013). Alongside the 

common cognitive symptoms of AD, patients also often experience certain behaviour and 

psychological symptoms, including psychosis, affective symptoms, hyperactivity, and apathy. 

In the early stages of these symptoms, CIs and memantine can reduce severity (Yiannopoulou 

and Papageorgiou, 2013). However, as the disease progresses and symptoms worsen, further 

drug treatment may be required.  

 

Serotonin reuptake inhibitors are often used to treat AD related depression. These can also be 

used to reduce symptoms of psychosis. However, this is more often treated with 

antipsychotics such as olanzapine, risperidone, and ziprasidone. The use of these drugs has 

been met with some criticism, as patients have been linked higher mortality risk after use 

(Yiannopoulou and Papageorgiou, 2013). To treat anxiety related to AD, benzodiazepines are 

commonly used. Similarly, to antipsychotic drugs, caution has been exercised over the use of 

these. This is due the association with more rapid cognitive and functional decline 
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(Yiannopoulou and Papageorgiou, 2013). Despite the partial success of some treatment 

methods such as CIs, an effective treatment for AD has yet to be derived. A possible avenue 

for research is the identification of the biological mechanisms for disease development. These 

can be determined by assessing which genes are significant for the onset of disease, with 

subsequent analysis of their role within the body. Treatments can then be tailored to reversing 

the effect of genes in AD development (Calabrò et al., 2021). 

 

1.8 Genetics in Alzheimer’s disease 
 

1.8.1 Twin studies 
 

Twin studies are used to establish the heritability of a particular trait, with the aim of 

removing the effect of an individual’s shared environment. Heritability is the measure of the 

variation of a phenotype in a population which can be explained by the genetic variation. 

Twin studies are derived by analysing twins raised within the same family. Reasoning behind 

the use of twin studies is the monozygotic nature of identical twins who are expected to have 

the same genetic material (Sahu and Prasuna, 2016). Dizygotic (fraternal) twins on the other 

hand share around 50 percent of all genetic material. This is a similar percentage to nontwin 

siblings. Analysis of both types of twins leads to the calculation of a concordance rate, which 

can be defined as the probability that two individuals with the same genetic makeup will 

develop a certain trait. 

 

Several twin studies for AD have been conducted over the past 80 years. One study used a 

cohort of Finnish twins to assess concordance for a range of dementia types. It was found that 

monozygotic twins had significantly higher concordance rates of AD than dizygotic twins. 

This relationship was not prevalent in both vascular and mixed dementia (Raiha et al., 1996). 

Breitner et al., 1993, identified a significantly higher rate of concordance rate for 

monozygotic twins (78%), than dizygotic twins (39%). Similarly, to the previous study, this 

relationship was not observed for vascular dementia. Alongside this, the study estimated that 

the total heritability for AD was around 60%. 

 

One of the largest twin studies compiled to date used a cohort comprised of Swedish twins 

(392 pairs). Results found in the two previously mentioned studies were reinforced. However, 
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unlike earlier studies, findings were adjusted for factors such as age and genetic differences 

between genders (Gatz et al., 2006). From this, the study estimated the heritability of AD to 

be 58-79%. Additionally, results demonstrated no significant difference with respect to 

gender for the prevalence or heritability of AD. Therefore, when assessing results across all 

twin studies, it can be estimated that the heritability of AD is around 60-80% (Ertekin-Taner, 

2007). However, this estimate varies with age of individuals (Baker et al., 2022)  

 

1.8.2 Early onset AD 
 

The ‘familial’ version of EOAD is a hereditary illness, with estimates of heritability ranging 

between 92-100%. Risk of familial EOAD is extensive in families, with nearly half of all 

patients having at least one first-degree relative with the disease (Cacace, Sleegers and Van 

Broeckhoven, 2016). Genetic studies have revealed three causative genes for EOAD. These 

are the amyloid precursor protein (APP), presenilin 1 (PSEN1) and presenilin 2 (PSEN2). 

The genetic component of the more common sporadic form of EOAD is similar to LOAD, 

this will be covered in greater detail in the next section. 

 

1.8.3 Late onset Alzheimer’s disease 
 

Research has continually identified the presence of genetic variants associated with LOAD 

(Lynn M Bekris et al., 2010). The genetic aspect of AD has been shown to be polygenic in 

nature, with several genes being associated with disease risk but not causative, e.g., 

(Wightman et al., 2021). The gene which has shown to be greatest risk factor for AD is 

apolipoprotein E protein (APOE) (Husain, Laurent and Plourde, 2021). The APOE gene is a 

major lipid transporter, which plays a role in the development, maintenance and repair of the 

central nervous system (CNS). Three different forms of the APOE status exist within the 

human population, these are defined by 2, 3 and 4 alleles. These isoforms are the result of 

the haplotype combinations of two APOE SNPs. These are rs429358 (C > T) and rs7412 (C > 

T) which lead to an amino acid change at position 112 and 158 within the APOE protein. The 

3 and 4 variants are the most common alleles, with 70% and 25% of all alleles respectively. 

The remaining 5% of the APOE alleles are comprised of the 2 form (Husain, Laurent and 

Plourde, 2021). 
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The presence of the 4 allele has been associated with an increased risk of developing AD. 

With heterozygote carriers having a 3-4-fold increased risk of disease compared to non-

carriers, this increases to 9-15 times for homozygote individuals (Husain, Laurent and 

Plourde, 2021). The presence of 4 allele a has been linked to increases in A accumulation 

and deposition in the brain, as well as exacerbating the construction of senile plaques. 

Microglia are cells of the CNS which have various roles within the brain. The removal of 

unwanted A is one of these, however the presence of the 4 allele has also been associated 

with a reduced ability to clear extracellular A (Fernandez et al., 2019).  

 

1.8.4 Genome wide association studies 
 

Genome-wide Association Studies (GWAS) examine the relationship between a range of 

genetic variants (single nucleotide polymorphisms (SNPs)) and a phenotype. SNPs are 

defined as an alteration in the DNA base sequence of an individual, where one of the four 

bases has been replaced by another. A variation in the base sequence is defined as a SNP if it 

is present in at least one percent of the population (Johnson, 2009). The purpose of a GWAS 

is to compare the allele frequencies between individuals with the disease (cases) and 

unaffected individuals (controls), which is typically done via a logistic regression. The 

significance of a SNP within a GWAS is defined by its effect size and p-value. A SNP’s 

effect size is the log-odds ratio for disease risk associated with one copy of the minor allele. 

A p-value is a result of the test for association, representing the likelihood of a result being 

due to random chance. The smaller the value, the less likely the result is spurious (Andrade, 

2019).  

 

Statistical power in GWAS refers to the ability to correctly reject the null hypothesis and 

thereby infer a SNP has significant effect on disease status. Therefore, considerable 

importance is placed upon using an adequate number of samples (Sham and Purcell, 2014). A 

GWAS typically comprises 100,000-1,000,000 genotyped SNPs, however the estimated 

number of common variants (minor allele frequency  0.05) is greater than ten million (Li et 

al., 2009a). Therefore, modern GWAS can study only a proportion of possible disease 

heritability.  
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1.8.5 Imputation of missing genotypes 
 

A method developed to increase the number of SNPs within GWAS is genotype imputation, 

in which missing genotypes are estimated from collections of previously sequenced 

individuals known as reference panels. Imputation techniques allow geneticists to include 

genetic markers not directly genotyped when conducting association analyses, whilst also 

allow the combining of separate GWAS and thereby increasing the number of available 

samples. This boosts the statistical power of GWAS, increasing the likelihood of deriving 

significant markers (Li et al., 2009b), due to rare variants (minor allele frequency (MAF) < 

1%) being more likely to occur within larger cohorts (Korte and Farlow, 2013). It has been 

estimated that 24% of the phenotypic variance of AD can be attributed to directly genotyped 

common variants. This estimation reaches 33% following the inclusion of imputed SNPs 

(Ridge et al., 2013). Whilst this is still below the estimated level of 58-79% of heritability 

from twin studies, it is clear that increasing the number of SNPs can account for some of the 

missing heritability in AD (Wang et al., 2021).  

 

A common cause for limitations in the number of SNPs for GWAS is the use of genotyping 

arrays, as these can only genotype a certain number of SNPs and regions of the genome. The 

limited nature of genotyping arrays has resulted in the development of imputation, this 

process is achieved using a ‘reference’ dataset, which contains many genotyped SNPs. 

Reference markers are then used to impute missing SNPs in a separate sample, with the 

underlying assumption that individuals from the reference set were sampled from a 

genetically similar population as the target samples, as this increases the likelihood of 

accurate imputation (Halperin and Stephan, 2009). Furthermore, the genome coverage of 

genotyping arrays can also be restricted due to the choice of reference panels used (Tam et 

al., 2019). For example, early genome-wide SNP arrays were mostly designed from reference 

panels based on European populations only. Due to different population structures across 

ethnic groups, these arrays provide poor coverage for non-European populations (Tam et al., 

2019).  
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Several reference datasets have been compiled, these include the 1000 Genomes project, the 

Human Genome Diversity Project, the Haplotype Reference Consortium (Schurz et al., 2019) 

and recently the trans-omics for precision medicine (TOPMED) (Taliun et al., 2021). As the 

number of samples used in reference panels continue to increase, the ability to impute rare 

variants will also rise. For example, the use of TOPMED has resulted in the imputation of 

SNPs with minor allele frequency (MAF) of 0.01%. However, some rare variants may still 

only be detectable using whole genome sequencing (Prokopenko et al., 2021). In addition, 

imputation can also be used to aid meta-analyses of GWAS. It is often the case that different 

genotyping platforms are used across different studies. These platforms can in practice have 

little overlap in SNPs. Therefore, the most common practice is to impute individual cohorts 

separately, to maximise the number of SNPs common across studies (Verma et al., 2014). As 

well as the reference dataset, the type of imputation software used is also important (Hancock 

et al., 2012). Several ‘free to use’ packages have been developed to achieve high imputation 

accuracy. The method IMPUTE2 is a popular two-step algorithm used in imputation 

(Roshyara et al., 2016). Haplotype information is inferred using a Markov Chain Monte 

Carlo approach. Following this, a hidden Markov model (HMM) is used to impute missing 

genotypes. SHAPEIT2 uses a graph based HMM to impute genotypes (Delaneau, Zagury and 

Marchini, 2013), whilst Minimac2 employs a state space reduction HMM to reduce 

computational burden (Das et al., 2016). 

 

Non-imputed genotypes are often coded as zero, one or two, according to the number of 

copies of the minor allele (Strandén and Christensen, 2011). The result of imputation is often 

three probability values, which represent the likelihood of the possible genotypes for a 

sample. For example, for two alleles ‘A’ and ‘B’, possible genotypes would be AA, AB and 

BB (Shin et al., 2020). These are known as genotypic probabilities and always sum to one, 

for instance, a possible set of genotypic dosages could be 0.6, 0.3, 0.1 for the AA, AB and 

BB genotypes respectively. For further analysis such as the calculation of polygenic risk 

score (PRS), the three imputed genotype probabilities must be converted to a single value.  

This can be done in two ways, either through the usage of allelic dosages or by best-guess 

genotypes (Collister, Liu and Clifton, 2022a). Allelic dosages are calculated from the three 

genotype probabilities derived from imputation. This depends on which allele is determined 

as the effect allele. For instance, when using the example in the previous paragraph and 

delegating ‘A’ as the effect allele, the allelic dosage would be calculated as: 
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2*(0.6) +1*(0.3) = 1.5 

 

This is the format with which the statistical software PLINK handles dosage values (Purcell, 

Neale, Todd-Brown, Thomas, Manuel A R Ferreira, et al., 2007). Once in this format, values 

can then be used for analysis such as PRS. The second option known as best-guess genotypes 

involves the conversion of allelic dosages to ‘best guess’ genotypes, with resulting values in 

the same format as directly genotyped SNPs. This process is carried out using a set of 

thresholds for the conversion of allelic dosages, an example of which is given below: 

 

 

Whilst the conversion of dosages to best-guess genotypes allows imputed values to be stored 

in the same format as genotyped SNPs, the process results in some loss of information 

(Collister, Liu and Clifton, 2022b). This is due to the possibility of some dosage values not 

falling within thresholds and subsequently being marked as missing (Collister, Liu and 

Clifton, 2022a). For example, the value of 1.5 calculated in the above example does not fall 

within the given thresholds, therefore the best-guess genotype would be recorded as missing 

for this sample. This is perhaps not surprising given that the highest genotype probability was 

0.6, suggesting that the imputation of this genotype was not made with high confidence when 

compared to the true genotype. If this occurs often enough for any given SNP, the variant 

might be removed due to quality control measures.  

 

The process of imputing genotypes is susceptible to errors as the quality of imputation relies 

on the reference dataset and imputation software used (Verma et al., 2014). To reduce the 

possibility of spurious results from subsequent analysis, the quality of imputation should be 

assessed. A metric commonly used to examine imputation quality is the r2 method. This is 

calculated by comparing the variance of the result of imputation (dosages) to genotypes if 

known by certainty (Chanda et al., 2012). The formula for this is given by:  
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𝑟2 =  
𝑣𝑎𝑟(𝑔)

2𝑝(1 − 𝑝)
 

where 𝑔 is the set of dosage values for a sample, with var(g) its variance. The frequency of 

the effect allele (p) is calculated as the sum of the dosage values across all samples divided 

by 2N. A score between zero and one is returned, with imputation quality increasing as r2 

increases (Schurz et al., 2019). 

 

1.8.6 Multiple testing correction methods 
 

An element related to the statistical power of GWAS is multiple-testing correction. A typical 

GWAS may analyse several hundreds of thousands of markers, resulting in many association 

tests (Moskvina and Schmidt, 2008). The large number of tests performed in GWAS is 

therefore likely to result in some spurious results. A method to correct for this issue is 

multiple-testing correction, whereby the significance level  is adjusted to a value which 

reduces the possibility of spurious associations. A commonly used method known to achieve 

this is Bonferroni correction. In this process, a new value of  is derived by dividing the p-

value 0.05 by the number of variants to be tested ‘m’. This reduces the possibility of spurious 

associations due to a lower significance threshold. The Bonferroni correction assumes that 

tests are independent, which is not the case for a GWAS due to linkage disequilibrium 

between SNPs and will thus be overly conservative. The genome-wide testing burden was 

estimated to be the equivalent of approximately one million independent tests, leading to the 

commonly used p-value criterion of 5x10-8 for genome-wide significance (Pe’er et al., 

2008). Given this stringent significance level, sample sizes of several thousand individuals 

are typically required to achieve power in GWAS of complex traits (Wang and Xu, 2019). 

 

Most historical studies used cohorts formed of mostly Caucasian individuals. One limitation 

of GWAS is the lack of diversity of study populations (Haga, 2010). As the geographic range 

of humans expanded past the African continent, sub populations have arisen due to isolation, 

interbreeding and adaptation to the local environment. To rectify this, a limited number of 

subsequent studies have been conducted in non-Caucasian cohorts. Findings have shown that 

results often derived in Caucasian cohorts are not similar to those in non-Caucasian 

populations (Haga, 2010). In some instances, variants were deemed associated with a disease 

in both cohorts, however the level of their significance was different, whilst in other 
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instances, SNPs associated with a phenotype in one set of samples were not significant in a 

different population. These variations in results are of concern when considering using 

prediction algorithms developed using purely Caucasian cohorts.  

 

Given the concerns surrounding differences in the genetic structure of populations, methods 

have been developed to correct for this issue if a sample of mixed population was used for a 

GWAS. The most popular method was developed by Price et al., 2006 and implemented in a 

program called EIGENSTRAT. Here, principal components (PCs) are estimated using SNPs 

within a GWAS. Prior to the calculation of PCs, it is usually necessary to” prune” the entire 

SNP set by removing variants in high linkage disequilibrium (LD) with other variants, thus 

preventing the PCs being dominated by genomic regions of high LD, such as the major 

histocompatibility complex (MHC) region. Such regions might introduce ‘nuisance’ clusters 

which can be falsely interpreted as population structure (Zhao et al., 2018). The results of 

EIGENSTRAT PCs then used as covariates in a logistic regression when computing the 

association between each SNP and disease status. Each included PC can be thought of as a 

representative of separate population structures within the overall dataset. Therefore, the 

inclusion of these components adjusts each SNP for all possible variations of ancestry (Zhao 

et al., 2018). The selection of the appropriate number of PCs can involve plotting PCs against 

one another in a scatter plot. If underlying populations exist within the set of SNPs, these will 

be identified by clusters of samples. The maximum number of PCs plotted before clusters 

disappear is equal to the number used for adjustment (Zhao et al., 2018). 

 

1.8.6.1 Quality control measures 
 

A key step for GWAS is quality control (QC) for both samples and SNPs. The avoidance of 

such steps may lead to systematic biases in the outcome and increased risk of false positive 

associations (Coleman et al., 2016). The likelihood of false positive results in a GWAS is 

increased due to the large amounts of SNPs involved, which can be susceptible to random 

errors in genotyping. Therefore, stringent QC steps are required prior to analysis (Coleman et 

al., 2016). 
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Quality control measures focus on both SNPs and samples. In terms of variants, the majority 

of GWAS begin by filtering SNPs based upon their minor allele frequency (MAF). Low 

MAF has been linked with issues related to spurious results, including an increased risk of 

genotyping error and incorrect size of the association statistic. The threshold for removing 

SNPs is typically a MAF presence of less than 1% in the sample. This removes SNPs termed 

as rare variants. On certain occasions in which a sample size is deemed small, a threshold of 

5% might be employed. This is due to SNPs with low MAF having greater potential effect on 

results within small sample sizes (Coleman et al., 2016).  

 

A method used to detect genotyping errors is assessing deviation from Hardy-Weinberg 

equilibrium (HWE). In this process, observed genotypes are compared to expected values. 

These expected values are derived from the HWE assumption. This law states that the 

genotype frequencies AA, AB and BB will occur in proportions of p2, 2pq and q2. In which p 

is the allele frequency of A, with q = 1-p being the respective value for B (Graffelman and 

Weir, 2016). A P-value of P < 1 x 10-5 is typically used, to remove SNPs showing large 

deviations from HWE, while retaining SNPs with small deviations that may have arisen by 

chance. This process is often only carried out in controls only, since, under the assumption 

that penetrance of risk genotypes is low, deviations from HWE due to associations of 

genotypes with disease risk will be small (Coleman et al., 2016). Individuals who are closely 

related will typically share more of their genome than randomly chosen members of the 

population. The presence of related individuals in a GWAS may skew analysis. The identical-

by-descent (IBD) is a metric derived by assessing the overlap in alleles between samples, 

with a typical score used to remove individuals being a pi-hat of > 0.1875 (Coleman et al., 

2016). This value removes closely related samples whilst avoiding reducing the cohort size 

drastically (Coleman et al., 2016).  

 

 

A QC step for imputed genotypes is to assess the accuracy of imputation, as the quality of 

derived alleles can affect subsequent analysis. Several factors can influence the quality of 

imputation, these include the type of software used, as well as the reference panel chosen for 

genetic information. Ideally, samples in the GWAS to be imputed should be from the same 

ethnic population of the reference panel (Stahl, Gola and König, 2021). The accuracy of 

imputation is calculated by comparing predicted genotypes to genotype values directly 

genotyped in separate cohorts. Several different methods have been developed to calculate 
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the quality of imputation. The concordance rate is defined as the proportion of the correctly 

imputed genotypes with respect to all imputations (Krithika et al., 2012). The r2 statistic is 

also used as a common method to assess accuracy and is measured as the correlation between 

imputed and true genotypes (Iwata and Jannink, 2010). Values lie between zero and one, with 

imputation quality increasing as values tend towards one (Zheng et al., 2015).  

 

1.8.6.2 GWAS in AD 
 

The first GWAS in AD research used a cohort of 1808 LOAD cases and 2062 control from 

the United Kingdom and United States of America. 17,343 SNPs were tested for association 

in a case-control sample. Three AD significant markers present on Chromosome 19 and in 

high LD with the APOE gene were discovered (Grupe et al., 2007). Following this, several 

subsequent GWAS emerged which used greater numbers of SNPs and samples. As 

techniques for collecting samples and computing greater amounts of data developed, sample 

sizes used in GWAS continued to increase. The GWAS of Harold et al., 2009 analysed a 

cohort of 3,941 AD cases and 7,848 controls, using 529,218 SNPs. In agreement with 

previous GWAS, the significance of the APOE region was again demonstrated. However, 

two novel loci were also associated with AD at genome-wide significance (p-value threshold 

of 9.4x10-8), near to the clusterin (CLU) and phosphatidylinositol blinding clathrin assembly 

protein (PICALM) genes. These were further replicated in a secondary dataset comprising 

2,023 cases and 2,340 controls, strengthening evidence for association. A further 13 SNPs 

were shown to be associated with AD but not at genome wide significance. The association 

of the CLU gene (rs11136000 SNP) with AD was also identified at genome-wide significance 

in a separate study (Lambert, Heath, Even, Campion, Sleegers, Amouyel, et al., 2009a). This 

study conducted a GWAS using a French cohort comprising of 2,032 cases and 5,328 

controls.   

 

Lambert et al., 2013 continued research with a GWAS comprising of 74,046 total samples. 

Association was tested using a two-stage meta-analysis. In contrast to both Harold et al., 

2009 and Lambert et al., 2009, this study used imputed variants. The use of the 1000 

genomes reference panel resulted in a dataset of 7,055,881 SNPs (17,008 cases and 37,154 

controls), with samples collated from four previously published GWAS. These were the 

Alzheimer’s Disease Genetic Consortium (ADGC) (Naj et al., 2011), the Cohorts for Heart 

and Aging Research in Genomic Epidemiology (CHARGE) Consortium (Frisoni et al., 
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2008), the European Alzheimer’s Disease Initiative (EADI) (Lambert, Heath, Even, 

Campion, Sleegers, Hiltunen, et al., 2009) and the Genetic and Environmental Risk in 

Alzheimer’s Disease (GERAD) (Harold et al., 2009) Consortium.  

 

For replication purposes, 11,632 SNPs reaching a significance level of P < 1 x 10-3 in the 

original dataset were tested for association in an independent sample (8,572 cases and 11,312 

controls). In addition to the APOE region, a further 19 SNPs were identified as genome-wide 

significant in both stages. Of these 19 variants, 11 were newly associated with AD. More 

recently, further GWAS have been undertaken using larger sample sizes. The study of 

Kunkle et al., 2019 used 94,737 individuals (35,274 cases and 59,163 controls). Twenty 

previous risk variants were confirmed for GWAS significance, whilst a further five novel loci 

were also identified. Pathway analysis also confirmed the influence of genes related to APP 

and amyloid beta. This implies that these processes are not only associated with EOAD, but 

also with the development of LOAD (Kunkle et al., 2019).  

 

Figure 1.2: Manhattan plot of Genes containing SNPs significant at a genome wide level 

from Kunkle et al., 2019. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2: This Manhattan plot demonstrates the results from (Kunkle et al., 2019). The red horizontal line signifies the 

genome wide significant level of P < 5x10-8. Genes marked in blue resemble previously associated loci, whilst those newly 

associated are shown in red. This image has not been altered from the original source. 
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One limitation of GWAS is the difficulty of obtaining sufficiently large numbers of AD cases 

(Marioni et al., 2018). Marioni et al., 2018, used a novel GWAS approach. This study used a 

proxy-AD status for analyses, with cases defined as those with a familial history of AD 

(maternal and/or paternal). This enabled the use of the UK Biobank cohort, whose members 

are typically too young to develop LOAD. A dataset comprising of 314,1278 samples was 

used, with 27,696 maternal cases and 14,338 paternal cases, meta-analysed with the Lambert 

et al., 2013 sample. The proxy AD status increased the sample size; however, the disease 

measure was less accurate due to an increased risk of including non-AD dementia cases. 

Analyses resulted in the discovery of three novel AD associated loci (Marioni et al., 2018). A 

similar approach was also investigated in (Jansen et al., 2019), in which both clinically 

diagnosed cases and AD by proxy were used (71,880 cases, 383,378 controls). Analysis 

identified 29 risk loci and implicated a further 215 potential related genes (Jansen et al., 

2019).  

 

The GWAS of Wightman et al., 2021, comprised 13 cohorts totalling 1,126,563 individuals 

(90,338 cases and 1,036,225 controls). Meta-analysis identified 3,915 SNPs across 38 

independent loci as being genome-wide significant. Of these, five loci were associated with 

AD for the first time. Further analysis also implicated both immune cells and microglia as 

cells of interest (Wightman et al., 2021). The most recent GWAS for AD Bellenguez et al., 

2022 performed a two-stage GWAS, in which 75 risk loci were identified, 42 were unknown 

at the time of analysis (Bellenguez, Küçükali, Iris E Jansen, et al., 2022). The first stage of 

analysis was carried out in 39,016 cases and 46,828 controls, with results replicated in 25,392 

cases and 276,086 controls. Pathway analysis also implicated both amyloid and tau in AD 

development, as well as microglia involvement. 

 

 

When reviewing all GWAS in AD research, the number of genome-wide significant loci 

discovered has increased as sample sizes have become larger. This is a similar outcome to 

other disorders considered polygenic such as schizophrenia and major depression. Therefore, 

it can be hypothesised that results of GWAS support the existence of a polygenic component 

of AD. However, this is still subject to debate amongst various researchers. Zhang et al., 

2020 investigated the genetic loading of AD using a genetic risk score. They concluded the 

genetic component of LOAD was the result of several hundred common variants, equivalent 
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to 0.01% of the SNPs used with MAF  1%. This percentage suggests an oligogenic model of 

AD, in which the genetic component of the disease is the result of a few genes and not many 

(polygenic). This estimate was also lower than other disorders considered polygenic such as 

schizophrenia 17.5%, major depression 3.2% and Parkinson’s disease 16.4% (Zhang et al., 

2020). 

 

1.9 Biological factors 
 

1.9.1 Microglia 
 

Microglia are stable, long living cells with low renewal rates, with the primary role of 

supporting the brain’s neurons from issues such as infection, trauma, or neurodegeneration 

(Bachiller et al., 2018). Despite their role of preserving homeostasis in the brain, microglia 

have been associated with AD development under the amyloid cascade-inflammation 

hypothesis, which suggests microglial activation links the development of A plaques and the 

creation of NFTs.  

 

1.9.2 The synapse 
 

Synapses are defined as cellular junctions, which pass information from a presynaptic neuron 

to a postsynaptic cell (Burns and Augustine, 1995). These synaptic junctions are diverse, with 

differences in types of neurotransmitters, synapse composition and roles. As discussed 

previously, the two main hallmarks of AD are the presence of both A and tau protein. 

Neurofibrillary tangles have become strongly associated with the development of AD. 

However, the presence of tangles has not been associated with the reduction of synaptic 

density in neurons. Rather, the presence of soluble forms of tau might be more related to the 

reduction of synapse function (Robbins, Clayton and Kaminski Schierle, 2021). Brains with 

AD have been shown to have higher levels of hyperphosphorylated species of tau, with these 

forms of tau spreading between synapses, encouraging the spread of disease (Robbins, 

Clayton and Kaminski Schierle, 2021). The presence of such forms of tau have been related 

to impaired axonal transport in post-mortem AD brains. This reduces the transport of 

organelles such as mitochondria, which are important in maintaining synapses (Robbins, 

Clayton and Kaminski Schierle, 2021). 

 



 43 

1.9.3 Biological pathways enriched in AD. 
 

Pathway analysis, also known as gene-set enrichment analysis, is a strategy in which prior 

biological information is used to assess the relationship between sets of variants and a 

phenotype. A common method for defining gene sets is known as functional annotation, in 

which genes are selected based upon their involvement in molecular and biological functions. 

Information regarding a gene’s function is typically extracted from a knowledge base. A 

widely used database is Gene Ontology (GO), which breaks gene function down into 

molecular function, cellular component and biological process (Ashburner et al., 2000). 

However, a more descriptive database known as the Kyoto Encyclopaedia of Genes and 

Genomes (KEGG) is also used. This details how groups of genes result in biomolecular 

activities through interactions and reactions (Silberstein et al., 2021). However, the use of 

databases to define gene sets relies on prior knowledge of the biological function of genes. 

This is not always available for genes which have not been studied at length. A further 

technique to derive sets of related genes is the use of omics data, which can be defined as sets 

of biological data used to assess biological functions. An example of this is the weighted 

correlation network analysis (WGCNA), which produces groups of related genes by 

computing correlations of gene expression data (Langfelder and Horvath, 2008). 

 

Numerous studies have focused on identifying further pathways related to AD. The first 

systematic pathway analysis of late-onset AD GWAS was performed by Jones et al., 2010. A 

combination of two GWAS GERAD (Harold et al., 2009) and EADI (Lambert, Heath, Even, 

Campion, Sleegers, Hiltunen, et al., 2009) comprising of 19,000 participants were used. 

Processes related to both cholesterol metabolism and innate immune response were 

established as significant for disease development. These biological aspects have been 

previously associated with disease onset (Jones et al., 2010). However, uncertainty still exits 

on whether these are causal effects, or the result of the disease process. Analysis identified 

that both processes were aetiologically relevant in this instance (Jones et al., 2010). Cui et al., 

2018, also conducted analysis into biological pathways linked with AD. Results demonstrated 

that pathways linked with both Toll-like receptors and natural killer cell mediated 

cytotoxicity were associated with AD. Toll-like receptors are a class of protein which form 

part of the immune system. They recognise certain types of microbes and trigger appropriate 

responses. It is accepted that Toll-like receptors play a role in microglia induced A 

settlement. Natural killer cells are lymphocytes which form part of the innate immune system 
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and function by destroying virus-infected cells. However, research has shown that the 

presence of these cells might increase neuroinflammation in certain circumstances (Cui et al., 

2018). 

 

Identification of AD associated pathways was carried out by Silver et al., 2012. Single 

nucleotide polymorphisms (SNPs) from the Alzheimer’ Disease Neuroimaging Initiative 

(ADNI) dataset were mapped to genes previously implicated in biological pathways. In total 

66,162 SNPs were allocated to 4425 genes, which in turn were mapped to 185 known 

pathways, derived from the KEGG database. A form of sparse reduced-rank regression was 

used to assess the association between pathways and AD. Phenotypes were derived from 

magnetic resonance (MR) images for 99 cases and 164 controls. The top 30 most associated 

pathways were ranked, with results replicating previous findings (Silver et al., 2012). This 

included pathway implicated in processes such as insulin production, cardiac motion, 

melanogenesis and Huntington’s disease. Type 2 diabetes through the disruption of insulin 

production has been linked with increased risk of AD development. Research has identified 

insulin involvement in the maintaining of synapses, with reductions linked to learning and 

memory loss. Insulin has also been associated with the metabolism of both beta-amyloid and 

tau, the two main hallmarks of AD (Biessels, Kappelle and Utrecht Diabetic Encephalopathy 

Study Group, 2005). 

 

Pathway analysis was conducted by Kunkle et al., 2019, a large GWAS which identified five 

new genome-wide loci. Analysis implicated pathways related to immunity, lipid metabolism, 

tau binding proteins and APP. This showed that variants associated with APP and Aß are not 

only linked to EOAD but LOAD as well. These pathways are used for analyses conducted in 

Chapter 7 of this thesis. The most recent pathway analysis for AD was conducted by 

Bellenguez, Küçükali, Iris E. Jansen, et al., 2022), in which a two-stage GWAS comprising 

111,326 diagnosed and proxy cases with 677,663 controls identified 75 risk loci (42 novel). 

Further pathway enrichment analysis identified the involvement of amyloid/tau pathways, as 

well as links to microglia implication. These pathways were not used in this thesis (Chapter 

7) as this research was not published at time of analysis. 
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1.10 Risk prediction in Alzheimer’s disease 
 

1.10.1 Polygenic risk score 
 

Since the development of the GWAS, it has become apparent that many disorders are 

polygenic in nature, suggesting the genetic components of these diseases are the result of 

multiple variants (Lvovs, Favorova and Favorov, 2012). Each SNP will most likely have a 

minimal effect on disease development and cannot be used on an individual basis for 

assessing disease risk. A common method to calculate risk is to combine the effects of SNPs 

in an individual’s genome, commonly achieved through polygenic risk score (PRS). This is 

calculated through a weighted sum of an individual’s risk variants and their effect sizes 

calculated in a GWAS (Lewis and Vassos, 2020a). 

 

An important aspect of PRS calculation is the use of two independent cohorts. The first of 

these is the training set, in which p-values and effect sizes for each SNP are generated. The 

second cohort termed the test set, is used for the generation of PRS values for each 

individual. SNP effect sizes generated in the training set are multiplied to their allele counts 

in the test set. It is important that samples in the test are independent to those in the training 

cohort, as this separation of individuals will avoid spurious results when estimating PRS 

association (Choi, Mak and Paul F O’Reilly, 2020). Following the derivation of PRSs for 

each individual in a cohort of cases and controls, these values are typically used to predict the 

disease risk using logistic regression (LR). The model’s ability to discriminate between cases 

and controls is then assessed.  

 

SNP association effect sizes generated for each variant can be uncertain, and not all SNPs 

within a GWAS will influence the trait (Choi, Mak and Paul F O’Reilly, 2020). To remove 

variants unrelated to disease when deriving the PRS, SNPs can be filtered by their respective 

p-values from a GWAS, however, the optimal threshold is not always known prior to 

analysis. Therefore, PRS is typically calculated across a range of thresholds. The best 

performing threshold is then chosen from results. This process can be seen as a form of 

feature selection in machine learning field, as a forward selection is used to choose a set of 

optimal variants. One further issue when selecting the relevant risk variants for a trait is 

Linkage Disequilibrium (LD). Variants in the genome often share strong correlation, making 
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it difficult to extract the desired signal between risk alleles and a trait (Choi, Mak and Paul F 

O’Reilly, 2020). Two methods are used to reduce this correlation, known as pruning. For 

pruning, a window of SNPs is selected, within this window SNPs are then sorted by their 

genomic position. Correlations are calculated between the first ordered SNP and all others 

within the window. If a correlation is greater than a predefined value, one of the correlated 

pair is removed. Once either the index SNP or the correlated SNP has been removed, the 

algorithm moves on to the second SNP. The result of this process is a set of (almost) 

uncorrelated (or LD-pruned) variants (Calus and Vandenplas, 2018).  

 

Clumping also removes correlated SNPs but achieves this is in a different way. Similarly, to 

pruning, a predefined genomic window is selected. Within this window, the most statistically 

significant SNP is chosen to be the index SNP. SNPs in the same window whose correlation 

with the index is greater than a predefined value are removed. Following this, the next 

remaining SNP is chosen as the index variant and the process repeats. The result of this is a 

set of significant SNPs which are largely independent of each other (Choi, Mak and O’Reilly, 

2020). Clumping is most often preferred to the pruning process due to preferentially selecting 

the most associated SNPs with the trait, as well as retaining further significant variants in the 

same genomic region. These variants run the risk of being removed during pruning due to the 

almost random nature of how variants are discarded (Choi, Mak and O’Reilly, 2020). The 

method of clumping is often combined with the p-value thresholding process, which produces 

multiple sets of variants.  

 

Despite the clumping and thresholding method for PRS successfully producing results in AD 

research, studies have shown that discarded SNPs through the clumping process might be 

limiting prediction accuracy (Ge et al., 2019). Bayesian methods such as LDpred have 

allowed for the incorporation of genome-wide markers, as the effect of LD is allowed for 

when deriving statistics. However, Bayesian priors used in this instance often introduce 

significant computational challenges. A Bayesian method which has reduced this burden is 

PRS-CS, in which effect sizes are inferred using a high-dimensional Bayesian regression 

framework. This method has been known to outperform traditional PRS methods in 

simulation trials (Ge et al., 2019).  
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Several published studies have used PRS for AD prediction purposes. Leonenko et al., 2021 

used samples from a range of different cohorts to calculate PRS (p-value thresholds  5e-

8.1e-5,0.1 and 0.5). Performance using these scores ranged from 55.7 – 73.7% AUC. 

Differences in prediction accuracy were due to alterations in methodology for modelling. 

These included removing SNPs within the APOE region, reintroducing these removed 

variants and using scores for the APOE (2,4) alleles. A further study calculated PRS for 

LOAD patients from the brains for dementia research (BDR) cohort (Hayes, Hudspith and 

Francis, 2012). A multivariate regression was used for AD prediction with PRS, SNPs within 

the APOE region, age and gender used as predictors. These features were used to 

discriminate between controls and cases, with a prediction accuracy 82.5% AUC. 

Discrimination was then assessed in a separate cohort, in which prediction accuracy between 

mild cognitive impairment (MCI) and cases was calculated. A prediction score of 61.0% 

AUC was achieved (Chaudhury et al., 2019). Further research assessed the prediction 

performance of PRS in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. 

Similarly, to previous studies, age, gender and both the APOE alleles were included as 

covariates to the model, alongside PRS generated from chosen SNPs. When discriminating 

between cases and controls, an accuracy of 80% AUC was obtained. Further analysis was 

then conducted between MCI and cases, with an accuracy of 73.5% AUC (Daunt et al., 

2021). 

 

1.10.2 The use of machine learning for prediction of complex genetic disorders 
 

Following the widespread usage of PRS for prediction in AD, questions have been raised 

regarding the possibility of using machine learning (ML). ML can be defined as a set of 

algorithms which derive patterns within datasets, these insights can then be used to make 

informed predictions on independent data. Despite achieving AUC of 80% in certain studies, 

PRS is limited by its use of aggregating the SNP’s effects with linear methods. These 

limitations include an assumption of independent predictor effects, normally distributed data 

and uncorrelated features (Ho et al., 2019a). Neurodegenerative conditions such as AD are 

known to be polygenic in nature, in which a complexity of genetic factors is thought to 

contribute to disease development (McCarroll and Hyman, 2013). The assumptions of linear 

modelling and the restriction to additive effects only reduce the possibility of capturing 

complex interactions between genes (Ho et al., 2019). In comparison, ML algorithms use 
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non-parametric methods which can derive insights from large datasets with the ability to 

assess non-linear interactions between variables. It is these factors which have increased the 

interest in ML approaches within bioinformatics. 

 

1.11 Outline of thesis 
 

Interest for ML in disease prediction is increasing on a yearly basis. This thesis assesses 

whether the ability of ML algorithms to identify non-linear patterns in the data can enable 

greater prediction accuracy than PRS for AD prediction. As discussed throughout the 

introductory chapter, AD is the most common form of dementia (Duong, Patel and Chang, 

2017) and it was for this reason it was chosen for a subject matter. Common issues such as 

population structure, imbalances between samples and features and computional burdens are 

discussed.  

 

The central aim of this thesis is to compare the performance of both ML and PRS for AD 

prediction using genetic data. It is theorised that ML algorithms could have future potential to 

be used in clinical settings. The ability to predict disease status from genetic data could 

improve outcomes for patients through early detection and subsequent correct treatments. 

However, models must achieve high levels of accuracy for this possibility, as the impact of 

incorrect predictions could be severe on patients (Kappen et al., 2018). Initially, the 

prediction performance of a range of ML techniques shall be assessed on a small set of AD 

associated SNPs. The best achieving algorithms will then be used on much larger sets of 

variants. This includes the use of both imputed and non-imputed genotypes, as well as SNPs 

related to specific AD related biological pathways.  

 

Chapter 2 provides an overview of the field of ML. This includes a brief introduction to the 

history of ML. Then aspects of supervised learning are discussed at length. Aspects of the 

learning process such as loss functions and optimisation are then covered. Focus then shifts to 

common challenges when developing ML models, including overfitting, high dimensionality 

issues and missing data. The remainder of the chapter covers the ML methods used in the 

thesis. This includes in depth descriptions of decision tree-based methods, support vector 

machines, gradient boosting and naïve bayes approaches.  
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A systematic review of the literature for ML in AD is detailed in Chapter 3. In this review 

articles were included only if the main source of data used was SNPs. However, exceptions 

were made for studies who used imaging data alongside genetic variants. The included 

studies were assessed for risk of bias using the prediction model risk of bias assessment tool 

(PROBAST). Inferences drawn from the review included common usage of the ADNI 

dataset, alongside the consistent underreporting of metrics such as AUC and calibration. 

Sample size was also an area of focus, as most studies used datasets with imbalances between 

samples and features.  

 

Analyses in Chapter 4 introduce the comparison between ML and PRS for AD prediction. 

ML algorithms were selected to make predictions based upon a small set of SNPs deemed 

AD significant in Kunkle et al., 2019. These predictions accuracies were then compared to 

PRS. Focus is also given to the impact on prediction from adjusting predictors using principal 

components (PCs), in order to correct for possible population stratification. Further 

techniques to avoid confounding due to age and sex were also investigated. 

 

Following the establishment of the most accurate ML algorithms in Chapter 4, a greater 

number of SNPs are used for AD prediction in Chapter 5. The Genetic and Environmental 

Risk in Alzheimer’s Disease (GERAD) (Harold et al., 2009) dataset was clumped at differing 

p-value thresholds to obtain sets of variants, with the largest SNP set containing over one 

hundred thousand predictors. To reduce the burden of high dimensionality, several feature 

selection techniques are tested. This includes both traditional methods such as decision tree 

algorithms, embedded techniques such as regularisation and biological importance. The 

performance of ML algorithms following the use of feature selection was then compared to 

not using dimensionality reduction. This is alongside comparing the predictive capability of 

both PRS and ML. 

 

Chapter 6 focuses on using imputed variants. The progression from non-imputed to imputed 

variants increases the number of SNPs for analysis from 400,000 to over 6,000,000. 

Therefore, the most efficient feature selection techniques from Chapter 5 are used, alongside 

the same ML techniques. To compare the ML performance with the PRS, SNPs were chosen 

using the clumping method.  
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The selection of SNPs for prediction purposes in Chapter 7 altered from the methods used in 

Chapters 5&6. Instead of selecting variants across the whole genome, SNPs associated with 

the genetic pathways deemed AD significant in Kunkle et al., 2019 are used. The 

performance of ML is compared against to both PRS using thresholding and polygenic risk 

score continuous shrinkage (PRS-CS) for each pathway. This is then expanded upon, within a 

multivariate model. The 9 sets of genotypes are used in one model, for both ML and PRS 

methods. This analysis is then replicated using PRS generated from the 9 pathways as inputs 

to both ML and PRS methods. A univariate model is then assessed, in which SNPs from all 9 

pathways are combined into one set, following the removal of duplicate SNPs, PRSs 

generated from these SNPs are used as an input to ML, as well as a LR.  

 

Finally, Chapter 8 provides a summary of results across all chapters. This is followed by 

interpretation of what these results suggest for the prediction of AD using ML. Discussion is 

also had regarding possible further steps for the development of ML in AD research, as well 

as limitations for analyses in this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 51 

2 Machine learning methods 
 

 

2.1 Background of machine learning 
 

Definitions of the term 'learning' vary depending on the subject matter at hand. In general 

terms, it can be defined as a change in behaviour caused by an experience. The ability to 

learn has enabled species to adapt and climatise to their surroundings. Homo-sapiens have the 

greatest ability to do this, due to their superior intelligence in the animal kingdom. Therefore, 

the ability to learn and reason in the biological sense has been present for billions of years 

(Roth, Krochmal and Németh, 2015). Despite this, the question of whether a machine could 

learn has only come to the forefront in recent centuries.  

 

The increased usage of computers in recent decades has resulted in greater amounts of data 

being generated and stored. Sources of this data include smartphones, social media, 

healthcare and businesses (Elgendy and Elragal, 2014). The presence of this data has resulted 

in increased demand to understand patterns and nuances which can be beneficial to users. A 

paradigm fitting this requirement known as machine learning (ML) has increased in 

popularity in recent decades (Sarker, 2021). ML can be defined as the study of algorithms 

which learn from patterns within datasets with the intention of then making informed 

decisions. The term was introduced in 1959 by computer scientist Arthur Samuel (Awad and 

Khanna, 2015). The increase in popularity for ML algorithms is the result of their ability to 

analyse large datasets and assess complex non-linear relationships between features. This is 

an advantage over linear methods which only assess linear relationships (Ryo and Rillig, 

2017).  

 

2.2 Types of machine learning 
 

Machine Learning models can be separated into four broad categories. These are supervised, 

semi-supervised, unsupervised and reinforcement algorithms. The following section provides 

background knowledge of the supervised paradigm, as all algorithms used in this thesis fall 

into this category.  
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2.2.1 Supervised learning 
 

Supervised learning is a ML technique used for data sets which contain labelled examples, in 

which each data point comprises a set of features related to a label (output). Features can be 

defined as individual measurements of properties related to the label and can be both 

continuous and categorical in nature. The core aim of supervised learning is the 

approximation of a function which maps features to outputs. The prediction to a discrete 

output is known as classification, whereby inputs are mapped to a set of class labels 

(categorical output). Whilst mapping inputs to a continuous output is known as regression. A 

formal depiction of the supervised learning process is shown in Figure 2.1:  

 

Figure 2.1: A Block diagram that outlines the supervised learning process within 

machine learning (Liu and Wu, 2012).  

 

 

 
 
Figure 2.1: (Xi, Yi) represents a supervised training sample, with ‘x’ representing an input and ‘y’ representing the 

corresponding label. The data inputs Xi are provided to the learning system, which generates an output of ỹi. These outputs 

are then compared to the ground truth labels Yi. This image has not been altered from the original source. 

 

The difference between the predicted output (ỹi) of the learning system and truth labels (yi) is 

termed the error signal. This value is propagated back to the learning system in order to 

update model parameters, with the central aim of minimizing the difference between model 

outputs and truth labels (Liu and Wu, 2012). This difference is termed ‘generalisation error’, 

which can be defined as a measure of how accurately an algorithm can predict on unseen 

data. 

 

Broadly there are three types of classification. Binary classification refers to observations that 

are to be predicted into one of two classes only. These classes are often termed ‘positive’ and 

‘negative’, in which the positive class represents the target, such as having a disease, whilst 

the negative represents an individual without the disease (Yousef, 2019). Multi-class 

classification is a scenario in which observations can be predicted into one of three or more 
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classes. In this instance, none of the classes are defined as positive or negative. An example 

of this might be a face recognition system, in which an image is classified as belonging to a 

particular person. Therefore, the number of potential classes can be very large depending on 

the problem. Multi-label classification refers to when a sample can be predicted to have 3 or 

more labels. This scenario may occur in the field of photo classification, in which an image 

might contain multiple objects.  

 

Supervised learning for regression purposes has certain parallels with classification. The data 

in question contains a set of features, however these are linked to a continuous target 

variable. Linear regression uses the mathematical equation, i.e., y =a+ bx + e, which 

describes the line of best fit between a dependent variable (y) and independent variable (x). 

The regression coefficient b represents the amount of variability between y and x, which is 

also known as the ‘slope’ in linear modelling. Whilst e represents the error term, and a is the 

‘intercept’. This can also be extended to multivariate regression, in which more than one 

input is used to influence a dependent variable (Kumari and Yadav, 2018). 

 

2.3 Algorithmic learning 
 

All analyses conducted in this thesis predicted to a binary class containing either ‘control’ or 

‘case’, resulting in the requirement of supervised techniques only. Therefore, the rest of this 

chapter is going to focus on methodology concerning classification algorithms.  

 

2.3.1 Optimisation 
 

Optimisation is the process of finding a set of inputs which results in the minimum or 

maximum of an objective function. The field of supervised learning can be defined in terms 

of a function proximation, whereby the unknown function which maps inputs to outputs can 

be approximated by a learning algorithm. To determine this approximate function, an 

optimisation algorithm is used in most ML architectures. The function of which is to 

calculate optimal parameters learned from the given data (Sun et al., 2019). Popular 

optimisation methods can be divided into three general categories, these are first-order, 

higher-order and heuristic derivative-free optimisation methods.  
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When considering optimisation problems in supervised learning, the goal is to find a function 

f(x) which minimises the error in training samples. This is defined below:  

 

min
θ

1

𝑁
∑ 𝐿 (𝑦𝑖 , 𝑓(𝑥𝑖 , 𝜃)) ,𝑁

𝑖=1                                       (2.1) 

 

 

, where N is defined as the number of training samples,  is the parameter of the mapping 

function. The variables xi and yi are a feature vector and label respectively, with as the loss 

function.  

 

When considering first order methods, one of the most used in ML is the gradient descent 

procedure (Ruder, 2016). The function of this process is to update the weights of a model in 

an iterative fashion, with the aim of minimising the error of classification. This is achieved by 

moving in the negative direction of the gradient for the objective function. This process is 

controlled by a learning rate , which controls the size of adjustment for weights with respect 

to the loss gradient. A formal definition of gradient descent for regression purposes is as 

follows. F(x) is a function to be learned, L() is the objective function and  is a parameter to 

be optimised. The function to be optimised is:  

 

𝐿(𝜃) =
1

2𝑁
∑ (𝑦𝑖 − 𝑓𝜃(𝑥𝑖))

2
,𝑁

𝑖=1                              (2.2) 

𝑓𝜃(𝑥) =  ∑ 𝜃𝑗𝑥𝑗 ,𝐷
𝑗=1                                                           (2.3)                                                                         

, where N is the number of training samples, D is the number of features, whilst xi is an 

independent feature with yi as the corresponding target variable. The gradient descent process 

alternates between the next two steps: 

Compute L() for j to arrive at the gradient for each j: 

 

𝑑𝐿(𝜃)

𝑑𝜃𝐽
=  −

1

𝑁
∑ (𝑦𝑖 − 𝑓𝜃(𝑥𝑖)) 𝑥𝑗

𝑖𝑁
𝑖=1                                (2.4) 

 

Update each j in the opposite direction to minimise the function: 
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𝜃𝑗
′ =  𝜃𝑗 + 𝜂.

1

𝑁
∑ (𝑦𝑖𝑁

𝑖=1 − 𝑓𝜃(𝑥𝑖))𝑥𝑗
𝑖                            (2.5) 

 

Despite its popularity, the gradient descent algorithm has a computational drawback. All 

training samples are used during the optimisation process, this can incur long training times 

when learning within large data sets (Ruder, 2016).  

 

2.3.2 Loss functions 
 

Loss functions are a key component of ML as they aid the process of learning. They compare 

model predictions to actual observations, with the aim of minimising the difference between 

these two sets of values. The selection of an appropriate cost function is related to the 

effectiveness and development of a model (Wang et al., 2022). The type of loss function used 

is often decided by the learning problem, with different options for supervised and 

unsupervised learning.  

 

For classification purposes, loss functions range in complexity. The perceptron loss function 

is a piecewise function. For a predicted class membership equal to the real label, the loss 

value is zero. Otherwise, the value is considered as the absolute value of the predicted value. 

This loss function is easy to optimise as it continuous and therefore differentiable 

everywhere. However, the function has poor generalisability and is not robust in the presence 

of noisy data (Wang et al., 2022). An alternative method is the logarithmic loss function that 

operates by calculating the conditional probability of a sample being predicted as its label, 

with a greater conditional probability leading to a smaller loss value (Wang et al., 2022). 

Another example of a loss function for classification is the sigmoid cross entropy. The 

prediction probability of a sample is projected using the sigmoid activation function. The loss 

of each is sample is then calculated by taking the difference between projected score and 

observed values. This process is most often termed cross-entropy loss in ML (Wang et al., 

2022). A combination of logarithmic loss and sigmoid cross entropy was used for algorithms 

in this thesis.  

 

 

 

 

 

 



 56 

2.4 Model training and validation 
 

Training and validation are important steps in producing accurate ML algorithms (Tan et al., 

2021). The central terms involved are ‘training’, ‘test’ and ‘validation’. These represent 

sections of the dataset used for differing purposes. The training phase allows the algorithm to 

learn the underlying patterns between features and class targets, with model parameters such 

as feature weights and biases estimated. This also extends to hyperparameters, which are 

external model parameters set prior to the training phase and control the learning process. 

Optimal values can be determined through trials during training. To maximise the possibility 

of accurate representation, a sufficiently large proportion of the dataset is required for 

training. The percentage of samples used is often determined by the user, however the 

recommended amount is 70% (Maleki et al., 2020). Following the training phase, the next 

step assesses how successfully the algorithm learned the nuances of the dataset. This is 

achieved by testing the trained model on a separate section of the dataset. Sections of a 

dataset containing independent samples are known as both test and validation sets, derived 

from the remaining 30% of the dataset. Confusion has arisen due to these terms being used 

interchangeably, with their definitions altering depending on the method of development.  

 

The process known as holdout validation described in the previous paragraph performs 

poorly when estimating hyperparameters. This is due to the same split of data being used to 

both select hyperparameter values and assess model performance, which has been shown to 

result in over optimistic predictions (Maleki et al., 2020). Another method of algorithm 

development used is the nested approach. This uses a training, validation and test set to 

derive a prediction model. The nested method overcomes this issue by deriving 

hyperparameter values in the validation set, a separate entity to both the training and test set. 

This separation of hyperparameter selection and model evaluation reduces the possibility of 

over-optimistic model performance. A typical split of a dataset might be 70% training data, 

15% validation and 15% test data (Maleki et al., 2020).  

 

An issue which affects all methods described in this section is termed the ‘easy test set’. This 

refers to the possibility that model performance might be associated with how the data was 

split. If an algorithm is developed through one dataset split only, this might result in bias 

when reporting performance, as the composition of samples in the test could differ 
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significantly on each occasion (Crisci, Ghattas and Perera, 2012). A method to overcome this 

is to report average performance across multiple splits, this reduces the effect of test set 

selection bias (Crisci, Ghattas and Perera, 2012).  

 

2.4.1 Cross-validation 
 

One method developed to deal with the shortcomings of the train/test split process is cross-

validation (CV). This is a resampling approach, which aims to provide an unbiased estimate 

of model performance. This is relevant to the issue of small datasets, in which resampling can 

reduce the issue of single split bias on model performance (Maleki et al., 2020). This process 

also uses a train-test split; however, it is used multiple times. Instead of developing one 

model, several are built and validated using different sections of the data. Prediction accuracy 

is then aggregated across all models.  

 

A commonly used approach is K-fold CV. In this approach, the dataset is firstly split into K 

equal portions. A commonly used number for K is 10 (Maleki et al., 2020). Subsequently, 10 

rounds of CV are processed, with one section used as the validation set and K-1 sections used 

as training. This process is repeated K times, with a different portion of the data used as the 

test set on each occasion. Following K rounds of training, prediction performance is averaged 

across all rounds of CV. The advantage of CV over train-test split is the use of all data for 

validation. This reduces the effect of random chance in prediction performance, as variances 

in test sets are averaged across multiple splits (Maleki et al., 2020). However, one drawback 

of K-fold CV is the increased computational resources required in comparison with hold out 

validation. This is due to the requirement of building K number of models (Maleki et al., 

2020). The process of K-fold CV is detailed in Figure 2.2 below: 
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Figure 2.2: The process of K-fold CV for algorithm development (Cristianini and 

Shawe-Taylor, 2000). 

 

 
 
Figure 2.2: The dataset has been split into ten folds (denoted by boxes), with the training and test sets altering in each 

iteration. Model error denoted by E is averaged across all runs of training and validation. This image has not been altered 

from the original source. 

 

 

There are other types of CV used in ML development. A slight variation of the K-fold CV is 

stratified K-fold CV. In this version, each fold is stratified to contain approximately the same 

proportion of class labels as the original dataset. This is important addition due to the 

common issue of class imbalance in ML, in which there is a substantial difference between 

the number of samples in the classes. If such a scenario occurs when using ordinary K-fold 

CV, the presence of very few samples in any fold might lead to large differences in prediction 

performance (Maleki et al., 2020). Despite reducing the random variation in test data when 

compared to the holdout method, K-fold CV uses only K-1 partitions for learning. A process 

which uses further information for training and validation is leave one out cross-validation 

(LOOCV). This uses a single sample as the validation set for each round of CV. In this 

instance, the remaining samples are used for training. Therefore, the number of CV rounds is 

equal to the number of samples in the dataset. However, this method can cause significant 

computational cost due to using all samples as validation sets (Berrar, 2019).  
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Most ML algorithms rely on several hyperparameters to achieve optimisation. These are 

parameters which are derived outside of the initial training phase. Optimum values for these 

parameters are rarely known prior to model building, therefore they are estimated 

experimentally (Kassraian-Fard et al., 2016). As detailed in Section 2.4, research has shown 

that if these values are estimated in the same validation set as model testing, model accuracy 

can be artificially inflated (Kassraian-Fard et al., 2016). Therefore, hyperparameter 

optimisation is often carried out in separate test set. This has led to the development of nested 

CV. In this process, two rounds of CV are used during development. An outer loop of CV is 

used for model validation, whilst an inner loop optimises model hyperparameters. The 

process of nested CV is shown in Figure 2.3. 

 

Figure 2.3: The process of nested CV for algorithm development (Zhong, Chalise and 

He, 2020). 

 

 
 
Figure 2.3: The dataset is split into an outer loop of CV which is used to assess model performance, whilst an inner split of 

data is used for the training of hyperparameters. This image has not been altered from the original source. 
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2.4.2 Evaluation metrics 
 

Following training and validation, algorithm performance can be evaluated using a range of 

metrics. Most metrics can be based upon the confusion matrix for binary classification. 

During classification, true positives (TP) and true negatives (TN) denote the number of 

positive and negative instances correctly classified. Conversely, false positives (FP) and false 

negatives (FN) represent the number of misclassified positive and negative instances (M and 

M.N, 2015). This matrix is shown in Figure 2.4. 

 

Figure 2.4: A confusion matrix for a binary classification problem (Xia et al., 2015). 

 

 

 

 
 
Figure 2.4: Confusion matrix for a standard binary classification problem. The output of the classifier is compared to actual 

class memberships. Predictions are separated into true positives, false positives, false negatives, and true negatives. Metrics 

such as the true positive rate, true negative rate, precision and f-measure are also shown. This figure has not been altered 

from the original source. 

 

Metrics of accuracy which use elements of the confusion matrix are detailed further in Table 

2.1 
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Table 2.1: Classification metrics for prediction problems (M and M.N, 2015). 

 

 
Table 2.1: Metrics, formulas and descriptions of accuracy metrics formed from the confusion matrix. This has not been 

altered from the original source. 

 

 

The simplest and perhaps the most widely used metric is accuracy. This is calculated as the 

number of correct predictions, divided by the total amount of predictions made. Predictions 

can be defined as correct by comparing model predictions to actual observations. Despite its 

simplicity and popularity, research has recommended that accuracy should not be used in ML 

evaluation. This is due to the scenario known as the 'accuracy paradox’ (Uddin, 2019). This 

relates to the effect that imbalances in datasets have on the values of accuracy. A dataset is 

imbalanced if one of the present classes is dominant over the other. This relationship skews 

the calculated accuracy (Francisco J Valverde-Albacete and Peláez-Moreno, 2014). 
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The drawback of the accuracy method has led to the development of more robust methods. 

An example of these is receiver operating characteristics (ROC), which in turn leads to the 

area under the curve (AUC) metric. AUC can be defined as the probability of a classifier 

ranking a positive sample above a negative example. This metric can be calculated from the 

ROC curve. An example of AUC is given in Figure 2.5: 

 

Figure 2.5: The ROC-AUC curve, in which the TPR and FPR are plotted against each 

other over different thresholds (Majnik and Bosnić, 2013). 

 

 
 
Figure 2.5: ROC curves for four classifiers are plotted. Classifier A shows the best performance, with classifier D displaying 

performance no better than chance (AUC < 0.5). This figure has not been altered from the original. 
 

 

The ROC curve is calculated by plotting the false positive rate versus (FPR) the true positive 

rate (TPR). The TPR can be defined as the probability of an actual positive being classified as 

positive, calculated by dividing the number of TP by the sum of TP and FN. The FPR is the 

likelihood of a negative instance being classified as negative. This is calculated by dividing 

the number of FP by the sum of FP and TN. ML algorithms will often output a prediction 

probability for each sample belonging to a class. The predicted labels of each sample can 

therefore be determined by choosing an arbitrary threshold. Usually, a value of 0.5 is used, 

with all predicted probabilities below this value labelled as negative, whilst all those above 

delegated as positive (Hajian-Tilaki, 2013). These predicted labels are then compared to real 
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labels to calculate both the true positive and false positive rates. The ROC curve is plotted by 

calculating these two values at a range of probability thresholds for FPR and TPR, from 0 to 

1. AUC is the area between the X-axis and the ROC curve. The diagonal signifies a baseline 

classifier of 0.5 AUC (Kumar and Indrayan, 2011). For a model to be deemed successful, 

AUC must be ≥ 0.5, as a classifier below this threshold has not performed better than random 

chance. However, the general standard for an algorithm to be an effective diagnostic tool is  

0.8 (Nahm, 2022). 

 

2.4.3 Calibration 
 

Predictions from ML models are used in a wide variety of disciplines. Some of these involve 

high risk decisions, such as diagnosing conditions in healthcare. Prediction errors in such a 

high-risk area could cause harm to individuals. Therefore, assurances in model performance 

must be met prior to usage (Van Calster et al., 2019). Calibration can be defined as a measure 

of the degree to which predicted probabilities for each class match actual observations. This 

can be put in more simple terms as the ‘confidence’ of a ML algorithms predictions (Nixon et 

al., 2019). Despite its importance due to high-risk decision making, calibration has received 

little attention in prediction studies. Greater emphasis has often been placed on reporting 

discrimination statistics, such as AUC. However, it is possible for an algorithm to achieve 

high AUC, but still be poorly calibrated (Van Calster et al., 2019).  

 

There are several reasons why an ML algorithm could be poorly calibrated. For example, the 

variation in variables not related to model development. Quantities such as disease incidence 

can vary significantly between cohorts. Larger hospitals maybe more likely to treat patients 

with a certain disease than localised units. Models trained on areas with higher incidence are 

more likely to overestimate the likelihood of disease when used in a less likely setting (Van 

Calster et al., 2019).  

 

To address the issues of poor calibration, probabilities can be adjusted following the 

modelling process. A common technique is to process the output of a classifier without 

retraining the algorithm. The two most used methods are Platt scaling and isotonic regression 

(Guo et al., 2017).  Platt scaling, also known as sigmoid scaling, is often used when classifier 

probabilities follow a sigmoidal relationship: 
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Figure 2.6: An example of sigmoidal relationship between two variables (Tsikliras and 

Froese, 2019). 

 
Figure 2.6: This image provides an example of a sigmoidal relationship. The logistic (sigmoid) curve of population growth 

for a species of fish, with maximum sustainable yield (MSY) the level of fishing required to maintain the population. This 

figure has not been altered from the original source. 
 

 

For a real-valued function f and probability P, the platt scaling process can be defined as: 

 

𝑃(𝑦 = 1|𝑓) =  
1

1+𝑒𝑥𝑝 (𝐴𝑓+𝐵)
                                                         (2.6) 

 

 

The parameters A and B are learned using maximum likelihood estimation from a training 

set. The fitting of this function is achieved using gradient descent:  

 

𝑎𝑟𝑔𝑚𝑖𝑛𝐴,𝐵{∑ 𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖)log (1 − 𝑝𝑖)𝑖 }, 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 =
1

1+exp (𝐴𝑓+𝐵)
       (2.7) 

 

 

To avoid the possibility of overfitting, these parameters should be learned on a separate 

dataset to the one used for model fitting. This can be achieved by using CV (Fonseca and 

Lopes, 2017).  

Isotonic regression is a non-parametric form of regression. Predictions from a classifier fi and 

real targets yi are fitted to the following regression:  

𝑦𝑖 = 𝑚(𝑓𝑖) +∈𝑖                                                                               (2.8) 
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The parameter m is a non-increasing function. In comparison with platt-scaling, isotonic 

regression is more prone to overfitting (Fonseca and Lopes, 2017). For calibration purposes 

in thesis, both platt scaling and isotonic regression were used, with the method which 

realigned predicted probabilities to observations most effectively chosen. 

 

2.4.4 Tuning hyperparameters 
 

In ML, hyperparameters can be defined as parameters which have a controlling effect on the 

training process. Most ML models comprise hyperparameters, however, these will often 

differ between algorithms. Software packages in programming languages such as Python 

provide default values (these will be implemented if user values are not specified). However, 

users may wish to tune hyperparameters in order to determine optimum values for the given 

dataset. These optimal parameters can be defined as the set of values which minimise the 

generalisation error for the chosen ML model (Probst, Bischl and Boulesteix, 2018). 

 

Several methods to tune hyperparameters are generally used in ML development. A manual 

search involves a user selecting values for hyperparameters. Generally, this requires a good 

knowledge of both the ML algorithm and hyperparameters in question. This can in some 

circumstances prove to be a quick solution, but in general even experienced users will 

struggle to select appropriate values (Yu and Zhu, 2020). A more methodical approach is to 

use the grid search procedure. All possible combinations from a range of pre-specified values 

are tested, with the set of values which minimise model error chosen. Advantages of this 

process lie in its automation and ease of implementation. However, the extensive nature of 

testing all possible combinations can lead to significant resource usage and time. A 

background knowledge of hyperparameters is still also required (Yu and Zhu, 2020).  

 

A more efficient way to tune hyperparameters is by the random search method. This process 

draws random combinations of parameters from a range of pre-defined values. The search 

process continues until either the desired accuracy is achieved, or a predetermined time or 

memory is reached. This selective nature reduces the computational burden experienced 

during grid-search, as not all possible combinations are explored (Shekhar, Bansode and 

Salim, 2022). This method has proven to out-perform grid search in a number of studies 

(Elgeldawi et al., 2021). 
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A more complex approach to hyperparameter tuning is Bayesian optimisation. This can be 

termed as an informed algorithm, meaning that each iteration uses information from previous 

rounds to make decisions. Similarly, to the random search algorithm, Bayesian optimisation 

samples combinations of hyperparameters from a predefined space. The process uses a 

‘surrogate’ model to achieve an optimal set of values. The most common type of surrogate 

model used is the Gaussian Process (GP). Initially, sets of hyperparameter values are chosen 

randomly. These combinations are tested on the chosen ML model, with accuracy used as the 

metric for choosing best performing values. A decision is then reached on whether to 

continue to search for a superior combination in this region of parameter values. If not, the 

algorithm draws a new set of random combinations from a different range of values. This 

method does not conduct an exhaustive search of all possible combinations and does use 

prior information to select values. Therefore, it is a more viable option than both random and 

grid search (Elgeldawi et al., 2021). However, the random search method was used to derive 

hyperparameters for algorithms in this thesis, due to its proven ability to outperform the grid 

search method and reduced complexity of implementation when compared to the Bayesian 

approach.  

 

2.5 Common ML modelling challenges 
 

2.5.1 Overfitting 
 

In terms of ML, generalisability refers to the ability of a ML algorithm to predict unseen data. 

A poorly generalised model may lead to a poor performance, which could have adverse 

effects in various domains (Ying, 2019). There are two general terms used when assessing 

generalisability, these are ‘underfitting’ and ‘overfitting’. Underfitting occurs when a ML 

algorithm fails to learn most of the nuances within a training set. This leads to an inability to 

make inferences on the validation data. Overfitting, results from an algorithm becoming too 

reliant on training data. The algorithm’s ability to deal with slight differences in validation 

data is therefore weakened, resulting in poorer generalisation (Salman and Liu, 2019).  

 

The relationship between underfitting and overfitting can be defined further in terms of both 

variance and bias. This is shown in Figure 2.7. 
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Figure 2.7: The Bias-Variance trade-off in ML (Neal et al., 2018). 
 

 
Figure 2.7: The relationship between bias and variance in ML, with the demonstration of increased model complexity and 

variance. In circumstances where model bias is high the model has higher likelihood over underfitting, however increased 

model variance raises the likelihood of overfitting. This image has not been modified from the original source. 
 

 

Model bias is defined as the difference between the predicted value and expected value of a 

single observation. The variance of prediction errors in a model is the change in prediction 

performance when independent datasets are used for training. For example, a model with 

high variance will produce a wide range of accuracies when given alternative datasets 

(Ghojogh and Crowley, 2019). In ideal circumstances, an ML algorithm should minimise 

both factors to create a stable and accurate model. However, a trade-off exists between the 

two elements; if one factor is altered, it has a direct impact on the other. For instance, 

increasing the bias of a model will decrease the level of variance, whilst increasing the 

variance will decrease the bias (Ghojogh and Crowley, 2019). 

 

When considering the bias-variance trade off, underfitting is caused by low variance and high 

bias, also known as over-generalisation. In contrast, overfitting occurs due to low bias and 

high variance (Ghojogh and Crowley, 2019). The reasons for high variance and in turn 

overfitting can be broadly categorised into two areas. One is the presence of noise in a 

training set, which is not representative of the underlying target relationship. This is most 

likely when the training dataset contains too fewer observations, however this can also occur 

in larger datasets. A well-functioning algorithm should be able to distinguish between this 
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unwanted noise and desired data (Ying, 2019). A further cause of overfitting can be the 

abundance of features within a large dataset. The presence of many variables leads to a range 

of possible hypotheses during analysis, which in turn can lead to high performance, but poor 

consistency across multiple datasets. Figure 2.7 also demonstrates that the complexity of a 

model is related to the possibility of overfitting. A more complex model contains a greater 

number of parameters, which increases the likelihood of an algorithm becoming too reliant 

on the training data (Ghojogh and Crowley, 2019).  

 

The curse of dimensionality is a further obstacle in the realm of ML and is linked to 

overfitting. Despite advances in computing technologies, modern computers still encounter 

obstacles when analysing large datasets (Fan, Han and Liu, 2014). Such datasets can be 

termed as ‘high-dimensional’, meaning that each sample has a high number of features. This 

is relevant in the field of genome wide association studies (GWAS), as each case/control can 

have many thousands of SNPs (Marttinen et al., 2013). This increase in dimensionality has 

several effects on ML development. Datasets richer in features require greater resources in 

terms of compute power and memory. This in-turn leads to longer time required for algorithm 

training (Debie and Shafi, 2019).  

 

A statistic related to the curse of dimensionality is events per variable (EPV). The number of 

events is defined as the number of instances for the minority class in a binary variable. EPV 

is calculated by dividing the number of events by the total number of predictors in the model. 

The acceptable threshold for EPV in ML has been a topic of debate amongst researchers. A 

minimum threshold of 10 is generally accepted for modelling, however, if possible, a 

presence of 20 observations is preferred (Austin and Steyerberg, 2017). The reason that EPV 

is an important aspect of ML development is the risk of overfitting if its value falls below the 

recommended value. EPV’s below 10 increase the likelihood of random noise in the dataset 

and reduces the likelihood of an algorithm generalising well to unseen data. However, it has 

been suggested that the threshold of 10 is more appropriate to less complex algorithms such 

as regression techniques. Algorithms such as deep learning and other more complex ML 

algorithms may require values of 100 or greater (Austin and Steyerberg, 2017). 
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2.5.1.1 Methods to overcome overfitting. 
 

Several different methods have been developed to reduce the possibility of overfitting; these 

are outlined below.  

 

2.5.1.1.1 Ensemble learning 
 

Ensemble learning is a paradigm in which multiple ML models are used in parallel for 

prediction. Ensemble learning is based upon the theory of the ‘weak learner’. A weak learner 

is defined as an ML algorithm which achieves prediction accuracy of just higher than chance 

(AUC greater than 0.5) (Vaghela, Ganatra and Thakkar, 2009). An example of a weak learner 

is a single decision tree, whose performance is susceptible to variances within training data, 

leading to overfitting. The combined use of multiple algorithms has been shown to reduce 

this effect of variance, converting multiple weak learners to a ‘strong learner’ (Vaghela, 

Ganatra and Thakkar, 2009). Two aspects which impact the performance of an ensemble 

method are accuracy and diversity. The accuracy of a model is related to its error rate, a 

model becomes more accurate as this rate is minimised. Two classifiers are said to be diverse 

if they produce different errors on unseen data. Research has established that the performance 

of ensemble methods improves as models become more diverse (Fawagreh, Gaber and Elyan, 

2014).  

 

There are three main methods for training algorithms in ensemble learning. These are 

bagging, boosting and stacking. Bootstrap aggregation (bagging) functions by choosing 

random samples of a dataset with replacement. Every algorithm within this ensemble method 

is provided with one of these samples, with each learner used to make predictions on unseen 

data. The method arrives at a final decision via a voting system. Perhaps the most common of 

these is known as ‘majority voting’, in which each learner within an ensemble framework is 

asked to predict one observation. The decisions are then summed, with the option receiving 

the most votes chosen as the overall decision (Fawagreh, Gaber and Elyan, 2014).  

 

For boosting, a model is fitted to a random sample of samples. Further models are then fitted 

sequentially with the aim of improving upon the previous algorithm. This process continues 

until model accuracy can improve no further. Stacking is a less commonly used method for 
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ensemble learning. This involves combining the predictions of multiple machine learning 

models, these are then provided to a separate learner known as a ‘meta-learner’. Boosting has 

been shown to outperform bagging in data when low levels of noise are present in training 

data, however this relationship reverses as noise increases (Fawagreh, Gaber and Elyan, 

2014). 

 

2.5.1.1.2 Regularisation methods 
 

An area of research developed to improve the generalisability of ML models is regularisation. 

This is achieved by applying constraints to the minimised loss function. These constraints are 

in the form of ‘penalties’, in which the complexity of a model is reduced (Tibshirani, 1996). 

Techniques outlined in this section focus on regularisation methods employed on linear 

estimators. When considering a regression, with a set of explanatory and response variables, 

coefficients are learned through minimising the residual squared error, known as the ordinary 

least squares (OLS). There are several reasons why this process can often lead to inadequate 

results, such as overfitting and a reduction in interpretability (Tibshirani, 1996).  

 

A common approach to improving OLS estimates is the least absolute shrinkage and 

selection operator (LASSO). In which L1 regularisation is used to shrink coefficients towards 

zero. When defining LASSO, there is a set of variables (Xi, yi), in which Xi and yi are 

predictor and responses variables, respectively, alongside of set of feature coefficients termed 

betas . When the assumptions of linear regression are met, such as independence of 

observations, the minimisation problem becomes:  

 

𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑝) 𝑎𝑟𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑏𝑦                                                  (2.9) 

(𝛽̂, 𝛽̂𝑙𝑎𝑠𝑠𝑜) = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑ (𝑌𝑖 − (𝛽0 + 𝛽𝑋𝑖
𝑇))

2
+ 𝜆 ∑ |𝐵𝑗|𝑃

𝑗=1
𝑁
𝑖=1 }                       (2.10) 

 

 

The  parameter is a non-negative tuning parameter used to control the strength of the L1 

penalty. If this parameter is set to zero, none of the model’s parameters (betas) are reduced to 

zero. In this instance, the resulting model is an ordinary regression model (Musoro et al., 

2014). As the value of  increases, greater numbers of betas are set to zero. The greater the 
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value of , the more variance is reduced. However, this leads to an increase in bias of model 

predictions due to the bias-variance trade-off. LASSO can be used either as a stand-alone 

prediction model, or a form of feature selection prior to further prediction. Non-penalised 

features are passed onto an additional algorithm algorithms or what algorithm (Musoro et al., 

2014).  

 

However, despite the ability to reduce a feature space, the LASSO algorithm has several 

disadvantages. If the number of features (p) is larger than the number of samples (n), i.e., 

p>n), LASSO can only select at most n features before saturating. The presence of pairwise 

correlations within a dataset can also introduce disadvantages, as LASSO tends to only select 

one of the correlated variables. This can lead to the rejection of features which may have 

predictive value (Zou and Hastie, 2005).   

 

Another commonly used technique for penalised regression is ridge regression. This is a 

tuning method, which aims to address multicollinearity, in which features in a dataset are 

correlated in such a manner that one can be predicted from another. The presence of such a 

characteristic can increase the likelihood of overfitting (Shariff and Ferdaos, 2017). 

Similarly, to LASSO, ridge regression uses a penalty term, known as L2. This penalty term is 

added the loss function and is a squared value of the beta coefficient for the variable. For the 

following regression model:  

 

               𝑌 = 𝑋𝑏 + e                                                              (2.11) 
 
where, as above, X and Y are predictor and responses variables, respectively. The values 

denoted by b are coefficients for the explanatory variables, with e representing an error term.  

 

𝑏̂ = (𝑋𝑡𝑋)−1𝑋𝑇𝑌                                                   (2.12) 
 
 

To address the issue of multicollinearity, a constant k is added to the XtX This reduces the 

dependency in explanatory variables and results in the following:  

 

𝑏𝑅̂ = (𝑋𝑡𝑋 + 𝐾𝐼𝑛)−1𝑋𝑇𝑌                                    (2.13) 
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The value of k is an important part in how ridge regression performs. If the value of k is zero, 

the loss function represents a linear regression. However, if this value becomes too large, the 

model will most likely underfit the data. Therefore, optimising the k parameter is advisable. 

Despite the main advantage of ridge regression in reducing model complexity and the 

likelihood of overfitting, the method has several disadvantages (Shariff and Ferdaos, 2017). 

For example, for the purposes of feature selection, ride regression only penalises the 

coefficients of inputs, it does not remove their presence. This contrasts with LASSO, which 

reduces certain effect sizes to zero. Given this, ride regression cannot be used if the aim is to 

reduce the feature space.  

 

A technique developed to overcome the disadvantages of both ridge regression and LASSO is 

the elastic net (Zou and Hastie, 2005). We have a set of features X for n observations, with a 

corresponding group of response variables y. For any two positive values for 1 and 2, the 

elastic net criterion can be defined as:  

𝐿(𝜆1, 𝜆2, 𝛽) = |𝑦 − 𝑋𝛽|2 + 𝜆2|𝛽|2 + 𝜆1|𝛽|1                     (2.14) 

|𝛽|2 = ∑ 𝐵𝑗
2,

𝑝
𝑗=1                                                                    (2.15) 

|𝛽|1 = ∑ |𝛽𝑗|.
𝑝
𝑗=1                                                                   (2.16) 

 

Where the estimator of the elastic net problem can be realised by minimising:  

 

𝛽̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽{𝐿(𝜆1, 𝜆2, 𝛽)}.                                                     (2.17) 

 

By letting   be defined as:  

𝛼 =
𝜆2

𝜆1+𝜆2
                                                                                       (2.18) 

The minimisation function becomes: 

𝛽̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽|𝑦 − 𝑋𝛽|2,                                            (2.19) 
 
 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (1 − 𝛼)|𝛽|1 + 𝛼|𝛽|2 ≤ 𝑡 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑡                                        (2.20) 

 
 

The elastic net penalty is a convex combination of both the LASSO and ridge penalties. For 

the scenario where  = 1, the elastic regression behaves as a ridge regression. Conversely, a 
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penalty of zero causes the estimator to act as LASSO. Similarly, to the LASSO algorithm, the 

elastic net method achieves feature space reduction. However, correlated variables can also 

be selected in groups, avoiding the issue of random selection within LASSO (Shariff and 

Ferdaos, 2017).  

 

2.5.1.1.3 Cross-validation as an approach to overcome overfitting.  
 

Overfitting occurs when a model becomes too reliant on training data. As CV separates the 

original data into different training sets, training multiple ML algorithms on different sections 

of the data can average out the variance and random noise within the dataset across all 

models. Therefore, the combination of all ML algorithms reduces the likelihood of overfitting 

(Brodeur, Herman and Steinschneider, 2020). 

 

2.5.1.1.4 Dimensionality reduction methods 
 

The curse of dimensionality is a further obstacle in the realm of ML and is linked to 

overfitting. Despite advances in computing technologies, modern computers still encounter 

obstacles when analysing large datasets (Fan, Han and Liu, 2014). Such datasets can be 

termed as ‘high-dimensional’, meaning that each sample has a high number of features. This 

is relevant in the field of GWAS, as each case/control can have many thousands of SNPs 

(Marttinen et al., 2013). This increase in dimensionality has several effects on ML 

development. Datasets richer in features require greater resources in terms of compute power 

and memory. This in-turn leads to longer time required for algorithm training (Debie and 

Shafi, 2019).  

 

The increasing burden of dimensionality issues has led to the development of techniques to 

reduce their impact. These come under the umbrella term of dimensionality reduction, 

whereby the number of features is reduced to a size where the effects of high dimensionality 

are suppressed (Xie, Li and Xue, 2017). This reduction can be achieved in two ways: feature 

selection and feature extraction. During the process of feature selection, features deemed 

redundant by statistical tests are removed (Velliangiri, Alagumuthukrishnan and Thankumar 

joseph, 2019). This results in a reduced set of features which are likely to comprise variables 

most appropriate for predicting the target class. On the other hand, feature extraction involves 

extracting important information from the set of original features. This information is then 
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used to create a new set of variables with fewer dimensions (Velliangiri, 

Alagumuthukrishnan and Thankumar joseph, 2019).  

 

2.5.1.1.5 Feature selection 
 

The advantages of feature selection include removing detrimental features and reducing the 

possibility of overfitting (Hira and Gillies, 2015). Features can be defined as detrimental if 

they have the potential to reduce the performance of an algorithm. Such features could 

include outliers, large amounts of missing data or may not be statistically useful. The 

inclusion of such features will increase the level of noise in a dataset. This could reduce the 

algorithm’s ability to learn the desired patterns within the dataset (Ying, 2019) and to 

perform well on previously unseen data (Salman and Liu, 2019). 

 

Methods of feature selection can be broadly split into two categories: supervised and 

unsupervised techniques. Supervised feature selection is used on datasets with labelled data, 

whilst unsupervised methods focus on data without labels. Supervised methods can be further 

subdivided into three classes: filter methods, wrapper methods and embedded feature 

selection. A filter method is where univariate models are built between each feature and the 

target variable. Features are then either retained or deemed redundant depending on the 

acceptance criteria used. Acceptance criteria could be derived from for example, information 

gain, the chi-squared statistic and correlation coefficient. This method is computationally 

efficient and therefore useful in situations with high dimensionality. However, correlations 

between different features are not taken into consideration (Sánchez-Maroño, Alonso-

Betanzos and Tombilla-Sanromán, 2012). 

 

Wrapper methods involve selecting a subset of the original feature set which produces the 

best prediction accuracy. This can be achieved in two ways: either forward or backwards 

feature selection. Forward feature selection starts with an empty set of features, predictors are 

then added sequentially. These new predictors are then assessed, with emphasis on whether 

the new variable hinders or improves ML performance. The feature is retained if its effect is 

positive and rejected otherwise (Talavera, 2005). This recursive process continues until a 

feature set of a pre-defined size is reached. Backwards feature elimination functions in a 

similar manner, however the algorithm begins with all possible features and recursively 

removes one at a time. The effect of removing a feature is then tested to assess the impact on 
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ML performance. Depending on whether the feature improved or reduced performance, the 

feature is either kept or removed. Wrapper methods usually produce more predictive feature 

sets than filter methods, however the process is more computationally intensive and so is not 

suitable in high dimensional datasets (Talavera, 2005). 

 

Embedded feature selection is a paradigm in which the feature selection stage is built into the 

modelling process. An example of this is the least absolute shrinkage and selection operator 

(LASSO). A method used to reduce training errors known as regularisation is used to 

penalise the regression coefficients of features that are deemed to be contributing to 

overfitting. This penalisation reduces regression coefficients of the targeted features to zero, 

removing their role in modelling. Embedded methods combine the advantages of both filter 

and wrapper methods, due to assessing the correlations between features, whilst also 

promoting computational efficiency (Jovic, Brkic and Bogunovic, 2015) 

 

2.5.1.1.6 Feature extraction 
 

Feature extraction differs from feature selection as it is an unsupervised technique. 

Information regarded as important is extracted from the original feature set and is used to 

create a reduced feature space. One of the most common examples of this is principal 

component analysis (PCA) (Karamizadeh et al., 2013). In this process, orthogonal vectors 

named principal components (PCs) are computed. These are linear combinations of the 

original features, which capture the variance within the dataset (Jolliffe and Cadima, 2016). 

The number of PCs created is predefined by the user. The advantages of this method are that 

it can retain important information and reduce dimensionality. This lowers the possibility of 

overfitting due to the reduction of both dimensionality and unwanted noise in the feature set. 

Additionally, smaller sets of inputs reduce both the training times and computational burden 

for algorithms (Karamizadeh et al., 2013). However, some information is always lost in the 

process of creating PCs. This loss of information can lead to a reduced performance of ML 

algorithms if an appropriate number of principal components for the data in question is not 

chosen (Karamizadeh et al., 2013). 

 

 



 76 

2.6 Missing data 
 

Most pre-processing techniques and ML models will be affected by missing data. One 

common method to deal with this issue is to remove features with missing values (Kang, 

2013). However, if missing values are spread along multiple features, samples with missing 

data may be removed instead. Despite having the option to choose between methods, both 

have the drawback of removing information from the dataset. This may hinder the 

performance of a ML algorithm, therefore other methods which do not remove data have 

been developed (Kang, 2013). 

 

Data imputation is the process where missing values are replaced with predicted values. One 

method of data imputation is the replacement of missing values with the expected value of 

that variable. This can be achieved by using a measure of central tendency (mean, median, 

mode). The advantage of using averages for imputation is that it is easy to implement, 

prevents data loss and does not change the distribution of the variable (Kang, 2013). 

However, the method has been shown to have unwanted consequences. These consequences 

are related to the type of missing data within a dataset, where the missingness can be defined 

in terms of its random nature. If the missing values are defined as missing completely at 

random (MCAR), then the probability of a value missing is only dependent on itself. If the 

missing values are statistically related to the observed features, these missing values are 

known as missing at random (MAR). If the missing values are dependent on both the 

observed data and other missing values, these are known as missing not at random (MNAR). 

The type of randomness is important as it dictates which imputed method will work most 

effectively (Kang, 2013).  

 

When missing values are defined as MCAR and MAR, the reasons for missing values can be 

ignored and any method of imputation can be used. However, this does not imply that all 

methods have equal effectiveness (Kang, 2013). For instance, the use of expected (or central 

tendency) values can reduce the variability in a dataset. This will lead to a reduction of 

estimated errors during modelling. Alongside this, when imputing features with central 

tendency measures, the correlations with other features could be altered. This could hinder 

modelling performance. A method which has been deemed more reliable than central 

tendency imputation is the regression imputation (Kang, 2013). In this instance, the missing 

data variable is defined as the target variable, with other features in the dataset being used as 
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explanatory variables. The regression model is originally trained on observed data points. 

The regression coefficients from this model are then used to predict missing values and 

impute them. The advantage of this method over central tendency methods is that correlations 

between variables are preserved (Kang, 2013).  

 

2.7 Imbalanced classes 
 

A common issue concerning classification tasks is the imbalanced nature of datasets. This 

occurs when the quantity of samples in one class is greater than the other. For most cases, the 

negative class outweighs the positive class (Yadav and Bhole, 2020). The presence of these 

imbalances can be detrimental for ML classification purposes. The majority class tends to 

bias the algorithm, leading to poor prediction accuracy in the positive class. This could have 

detrimental implications in areas such as disease classification (Johnson and Khoshgoftaar, 

2019). 

 

Several methods have been developed to resolve the issue of class imbalances. Resampling 

techniques adjust the class ratio prior to prediction. These can be broadly split into two 

different categories, namely under and over sampling. Random under-sampling reduces the 

number of majority samples by removing instances at random. This occurs until the number 

of samples in each class are equal. However, the removal of samples can reduce the amount 

of predictive information in the dataset (Susan and Kumar, 2021). To avoid this loss, the 

method of oversampling has been developed. An example of this is the synthetic minority 

over sampling technique (SMOTE). In which, synthetic samples of the minority class are 

created using interpolation. At first, random samples of the minority class are chosen. A k-

nearest neighbour algorithm is then used to select nearest neighbours for the chosen samples. 

Synthetic samples are then generated whose values lie between the chosen random samples 

and nearest neighbours. The aim of the technique is not to alter the variance of the dataset, 

however issues with random noise and overfitting have been reported (Guo et al., 2008). 

 

Another method designed to overcome the issue of poorly distributed classes is reweighting. 

This is simpler process than resampling and works by altering the influence the minority 

class has during classification. One example of this from the programming language Python 
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is the class_weight function in scikitlearns RandomForestClassifier. The ‘balanced’ input 

option calculates the inverse relationship between the two classes, this is achieved by 

dividing the number of samples in the minority class by the number of majority samples. This 

relationship is then inversed, and the minority samples are reweighted to balance the 

relationship before training. This process does not involve removing samples or introduce 

random noise and can be used across many ML algorithms (Aljohani, Fayoumi and Hassan, 

2021).  

 

2.8 Types of learners 
 

A variety of ML algorithms shall be used for analyses in this thesis. Section 2.8 gives an in-

depth overview of all of these classifiers.  

 

2.8.1 Decision tree 
 

The popularity of decision tree-based algorithms has increased due to several advantages, 

such as ease of use, interpretability and robustness when encountering missing values (Song 

and Lu, 2015). Decision trees are also flexible in nature, as both continuous and discrete 

variables can be used for either features or class values. Decision trees can be used for feature 

selection, as an intermediate step during the classification process, in which redundant 

variables are removed prior to further modelling. They can also be used as stand-alone 

predictors, for both classification and regression purposes (Song and Lu, 2015).  

 

The structure of a decision tree comprises nodes, branches and splitting lines. Nodes consist 

of three types, a root (decision) node is a choice which results in the division of samples into 

two mutually exclusive sets. Internal nodes can be defined as chance nodes, which represent 

choices at a point in the tree. This node is connected to its parent node, whilst also connected 

to leaf nodes. Leaf nodes represent the end of the tree, which display the final result of the 

decision tree. Branches represent the outcomes that result from root and internal nodes. These 

can be defined as if-then rules, which result in splitting (Song and Lu, 2015) 
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Figure 2.8: An example of a decision tree, including a root node, internal nodes and 

decisions (Ma and Qin, 2009). 

 

 
 
Figure 2.8: A depiction of a decision tree model. Customer churn can be defined as the rate for loss of customers or 

subscribers for businesses. Exponents typically use decision tree models to root causes for customer decision making. 

This figure has not been altered from the original source. 
 

 

2.8.2 Risk of overfitting 
 

Decision trees are prone to overfitting, this is due to the continual splitting nature of the 

algorithm. As the depth of the tree increases, the model learns to predict training data more 

accurately (Amro et al., 2021). Accuracy will eventually reach 100%, as the algorithm learns 

to split the dataset perfectly. This leads to a reduction in the model's generalisability, as the 

decision tree becomes more reliant on training data. Aspects such as random noise are 

learned, which reduce the algorithm’s ability to predict unseen  samples (Amro et al., 2021). 

 

 

2.8.3 Random forests 
 

The Random Forest (RF) is an ensemble which combines the predictive power of decision 

trees (weak learners) to achieve either classification or regression. The algorithm is trained 

using the bagging method, as described in Section 2.5.1.1.1. For each tree, a sample of 

features are used to continually split until a stopping criterion is reached. This sequential 
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splitting is known as the CART (Classification and Regression Trees), in which a greedy 

algorithm splits on features using a binary method (Sarica, Cerasa and Quattrone, 2017).  

 

Figure 2.9: An example of the RF process (Kirasich, Smith and Sadler, 2018). 
 

 

 
 
Figure 2.9: An example of an ensemble of decision trees (RF). N sets of features from the dataset X are used, with blue dots 

representing decision nodes. A prediction is made by each decision tree, with a majority decision made for final prediction. 

This image has not been altered from the original source. 
 

Single decision trees are defined as high-variance estimators due to variance exhibiting a 

large impact on predictions. The bagging method of using random sections of data to train 

multiple trees with replacement reduces the impact of variance on prediction (Altman and 

Krzywinski, 2017). A final decision for an unseen instance is made using the majority voting 

technique as seen in Figure 2.9.  

 

2.8.3.1 Splitting criterion 
 

The aim of a decision tree when splitting at a node is to produce homogenous subsets, in 

which each subset contains samples from one class only. In practice, this is difficult to 

achieve, as resulting subsets will likely contain a mixture of classes. This notion has been 

termed the ‘goodness of split criterion’, which is derived from the idea of impurity. A 

decision tree whose splitting leads to a greater mixture of classes, is deemed to be more 

impure. Therefore, splitting criteria look to minimise this impurity. Two of the commonly 

used methods are GINI index and information gain (Tangirala, 2020).                                                                                                             
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Information gain is defined as a measure of how much information a feature can provide 

about a class variable. This is an estimation of the effectiveness of a feature for classification. 

The feature that maximises information gain is considered the best option for splitting 

(Tangirala, 2020). The GINI index measures the purity of a class following splitting on a 

particular feature. A split is determined the best if the purity of the resulting classes increases. 

When comparing the performance for both splitting criteria, studies have identified that 

models using either criterion perform to a similar degree. Therefore, it is difficult to choose 

between a method when considering methodologies (Raileanu and Stoffel, 2004).   

 

2.8.3.2 Hyperparameter tuning. 
 

The RF contains a range of hyperparameters which can be tuned to optimise the algorithm 

(Probst, Wright and Boulesteix, 2018). The depth of a decision tree has an impact on the 

possibility of overfitting. The deeper a tree becomes, the better it can fit training data. 

However, this will reduce the performance of the algorithm on unseen data. Therefore, 

establishing an optimum cut off value for tree depth can achieve acceptable performance on 

training data whilst producing a generalisable model (Biau, 2010). Packages within the 

programming language Python allow users to specify values for hyperparameters. For 

instance, the max_depth parameter controls the number of splits a decision tree is permitted 

to make. Another hyperparameter which can influence overfitting is the number of samples at 

each leaf node. In general terms, low minimum leaf samples can promote overfitting, whilst 

values above a certain threshold can lead to underfitting (Wickramasinghe, 2020). The 

number of samples at a leaf node can be specified by the parameter min_samples_leaf. This 

specifies the number of samples which must be present in a leaf node after splitting. If this 

criterion is not met, the leaf node cannot be used for decision purposes.  

 

When building a RF, the width of the forest is another criterion to consider. Initially, adding 

further decision trees to the RF can improve prediction performance. However, a point of 

saturation is then reached, in which the addition of further learners does not contribute to 

performance. At this point, including more trees will increase the computational resources 

required (Oshiro, Perez and Baranauskas, 2012). The number of decision trees in a RF can be 

specified by the hyperparameter n_estimators. Another factor which can influence the 

performance of a RF is the number of samples provided to each decision tree. Similarly, to 
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the number of learners, performance of a RF will increase as the percentage of the dataset 

provided increases. However, a point of saturation is reached, in which a larger proportion of 

samples will increase training time for the RF (Contreras et al., 2021). This can be controlled 

by the hyperparameter called max_samples.  

 

2.8.4 Gradient boosted trees 
 

Similarly, to bagging, boosting is an ensemble technique used in ML. It combines multiple 

weak learners into a more robust algorithm. Unlike bagging, models are not trained in unison, 

rather learners are fitted sequentially until no further improvement for prediction can be 

achieved. Many different types of learners can be boosted. The algorithm adaptive learning 

(AdaBoost) provides a background of understanding for GB. AdaBoost is an ensemble 

method which uses decision trees as learners. However, these trees are known as ‘stumps’ as 

they only contain one split (Chengsheng, Huacheng and Bing, 2017). AdaBoost begins by 

assigning all observations within a dataset an equal weighting. A single ‘stump’ is then fitted 

to this dataset. The results of this model are then analysed, with particular attention paid to 

misclassified instances. The algorithm then employs a reweighting scheme to all samples. 

Instances which were previously classified correctly are down weighted, whilst data points 

who were misclassified are upweighted. Prediction is then tested with the addition of a new 

‘stump’, this process continues until the classification error can be reduced no further 

(Chengsheng, Huacheng and Bing, 2017).  

 

Gradient boosting is similar to AdaBoost as it combines the performance of weak learners 

into a more accurate algorithm. However, GB is more flexible, as it allows for the use of a 

range of cost functions, whilst also being available to use on different ML algorithms 

(Natekin and Knoll, 2013). Similarly, to AdaBoost, GB works by reducing prediction error 

using the addition of further learners. However, the two methods differ on how this is 

achieved. For GB, the error rate is reduced by fitting the next model on the residuals of the 

previous. These residuals are calculated from the difference between the predicted outcomes 

of the base model and observed frequencies. Residuals are then used as the target variable for 

the next sequential model. The aim of this process is to minimise the cost function until no 

further improvement can be made (Natekin and Knoll, 2013). The process of gradient 

boosting is depicted in Figure 2.10. 



 83 

Figure 2.10: The GB tree process, in which individual trees are used in an ensemble 

fashion (Deng et al., 2021). 

 

 

 
 
Figure 2.10: An example of the gradient boosting process for decision trees. The changing sets of dots represent the updating 

of features using the residuals from the previous decision tree. Similarly, to the bagging process, the predictions of each 

decision tree are combined into a final ensemble prediction. This image has not been altered from the original. 

 

 

2.8.4.1 Hyperparameter tuning 
 

There is an overlap between the hyperparameters used in RFs and GB trees, due to both using 

decision trees. However, some parameters are unique to GB. The parameter learning rate 

effects the contribution of each tree on prediction. A small learning rate results in a small step 

when minimising a cost function. It has been shown that using small alterations improves the 

chances of effective prediction (Touzani, Granderson and Fernandes, 2018). This can be 

implemented by the hyperparameter learning_rate in Python. A further factor which aims to 

prevent overfitting is earlystopping. Prior to algorithm training, the maximum number of 

sequential learners to be used is defined. However, if this is set too high, the model could 

begin to overfit on the training data. Therefore, the earlystopping algorithm stops the addition 

of sequential learners. The hyperparameter earlystopping can be tuned by the user (Zhang 

and Yu, 2005). 
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2.9 Support vector machines 
 

The support vector machine (SVM) is a classification algorithm, it was developed by Cortes 

and Vapnik, 1995. The idea was based loosely upon the separating nature of the perceptron, 

which can be defined as a single layer neural network or linear classifier (Collobert and 

Bengio, 2004). In which a set of weights are multiplied by inputs, corresponding values are 

then passed to an activation function which determines classification. This formed the basis 

of the SVM, in which a hyperplane is used to separate instances. The algorithm aims to 

maximise the distance between data points and this hyperplane, hence achieving effective 

classification (Collobert and Bengio, 2004). However, the algorithm is computationally 

expensive due to the complex mathematical calculations involved, this leads to longer 

training times when compared to other algorithms. Therefore, this algorithm is better suited 

to smaller datasets (Yu, Yang and Han, 2003). 

 

2.9.1 Optimal hyperplanes 
 

As previously stated, the SVM classifier is based upon a separating hyperplane. The simplest 

version of this is the optimal hyperplane, in which all points in a dataset can be separated 

without error.  

 

 

In order to derive the optimum hyperplane for separation, the distance between the dividing 

line and the surrounding points is maximised (James et al., 2013). For linearly separable 

datasets, there exists an infinite number of hyperplanes which can separate the two classes. 

The ‘margin’ can be defined as the distance between any hyperplane and the surrounding 

points. Therefore, an algorithm which employs this method is known as the maximal margin 

classifier (James et al., 2013). This process is illustrated in Figure 2.11. 
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Figure 2.11: An example of the maximal margin classifier with demonstration of 

maximising the distance between the hyperplane and nearest data points (James et al., 

2013). 

 

 
Figure 2.11: A maximal margin classifier for two features (X1, X2). Two classes of observations are represented by blue and 

purple dots. The maximal margin hyperplane is detailed by the solid line, with the margin represented by the distance 

between the solid and dashed lines. Those blue and purple dots which lie on the dashed lines are support vectors. This figure 

has not been altered from the original source. 
 

 

To calculate a maximal separating plane, the margin of 2M is maximised, where M can be 

defined as follows: 

 

𝑀 =
1

||𝑤||
                                                                                      (2.30) 

 

, where ||w|| is described as the Euclidean norm of the set of weights w1, ………, wp where p 

is the number of features in the dataset. The resulting hyperplane is termed the maximal 

margin hyperplane. Those points which lie closest to the hyperplane have the greatest 

influence on its placement, these points are known as support vectors (James et al., 2013).  
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2.9.2 Support vector classifier  
 

The maximal classifier relies on a dataset to be linearly separable, in practice many datasets 

are not separable in this manner (James et al., 2013). To classify these non-linearly separable 

datasets, an element of tolerance can be implemented. In this instance, a small minority of 

points lie on the incorrect side of the hyperplane. This element of tolerance can be described 

as using a ‘soft margin’ (James et al., 2013). To achieve this, a set of errors for all support 

vectors known as ‘slack’ variables are defined. The inclusion of this variable alters the 

optimisation problem to inclusion of a hyperparameter C, that can be described as an upper 

bound to the sum of the ‘errors’ to the hyperplane. This value is pre-determined and defined 

as the acceptable level of error (Prosvirin, Duong and Kim, 2019). Whilst T is the number of 

samples in the dataset. 

 

2.9.3 Support vector machine 
 

The SVM uses a combination of both the maximal margin hyperplane and a soft margin to 

separate classes. This allows for the classification of non-linearly separable datasets. The 

optimal way to classify a non-linear dataset is to transform the feature set to a higher 

dimensional space. This is achieved by using a technique called a kernel function. In which 

the original dataset can be considered linearly separable in its projected state (James et al., 

2013). There are several choices when considering a suitable kernel. A commonly chosen 

first choice is the radial basis function (RBF). When implementing a SVM with an RBF 

kernel, focus is given to optimising two hyperparameters. The first of these, gamma, controls 

the impact of each training sample on the projection into the 3rd dimension. If the value of 

gamma is chosen to be too low, model accuracy will be poorer. This is also the case for 

values which are too high for the given dataset. Therefore, the value must be tuned in order to 

achieve maximum performance (James et al., 2013).  

 

As introduced in Section 2.9.2, the hyperparameter C determines the tolerance of the model 

to classification error. The toleration of misclassified samples is increased with high values of 

C, in which the resulting model will represent a maximal-margin classifier. Decreasing the 

value of C reduces the tolerance of errors, which achieves greater generalisation than the 

maximal-margin classifier. A higher value of C results in an increased possibility of 

overfitting, whilst a value considered too low could result in a loss of training accuracy. 
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Therefore, similarly to gamma, the correct estimation of C is important for model 

performance (James et al., 2013). Another used kernel function is the polynomial kernel with 

a hyper-parameter (p) representing the order of the polynomial. A value of p=1 renders the 

kernel equivalent to a linear kernel. In general, the flexibility of the decision boundary 

increases as the order of the polynomial also increases (Savas and Dovis, 2019). 

 

2.10 The naïve bayes classifier 
 

The naïve bayes (NB) classifier receives its naïve title due to the underlying assumption of 

independence for all input features. In practice, absolute independence between predictors is 

extremely rare (H. Chen et al., 2021). The independence assumption is included as it 

simplifies the calculations required for estimating the conditional probabilities. This 

simplification exists due to the way in which the NB method calculates the joint probability 

between a target variable y and a set of features X.  

 

Due to the condition of feature independence being rarely met, probability estimates from NB 

are usually poor. However, NB has often been known to perform as well as other 

classification algorithms (Zolnierek and Rubacha, 2005). This is due to relative prediction 

values driving classifications rather than absolute values. If correlations between features 

support certain classification results, then the classifier is likely to perform well. This is also 

true if relationships between features cancel themselves out during prediction (Zolnierek and 

Rubacha, 2005). The NB classifier is easy to implement and can perform well in noisy 

datasets. It also performs robustly when data points are missing (Zolnierek and Rubacha, 

2005).  
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3 Machine learning approaches for the life-time risk prediction of 
Alzheimer’s disease (literature review) 

 

 

 

3.1 Introduction 
 

Advancements in biotechnology have resulted in various aspects of human biology being 

reliably recorded, including genetic data and other commonly used biomarkers, e.g., cerebral 

blood flow, brain imaging. This has led to the accumulation of large biological datasets 

which ML algorithms can learn from, with the aim of classifying the participants or predict 

the membership of predefined classes (Cho et al., 2019). The combination of genetic data 

with other data modalities often leads to complexity, which cannot be processed easily by 

humans in an un-biased way (Sivarajah et al., 2017). 

 

Risk prediction modelling is an approach to assist diagnosis of a disease or a condition. To 

accomplish this, statistical models are used to make informed decisions using disease relevant 

predictors. For the case of AD, the ability to predict the likelihood of disease early can not 

only prevent misdiagnosis but also assist treatment if detected early (Iddi et al., 2019). In 

conjunction with an individual’s age, genetics has been shown to be a strong risk factor for 

developing AD. However, genome wide association studies (GWAS) have failed to explain 

the level of heritability shown in twin studies (Sierksma, Escott-Price and De Strooper, 

2020). GWAS-based heritability estimates assume an additive model, which, in statistical 

terms, is equivalent to looking for the main effects of common variants contributing to 

disease risk. However, for the genetics of complex diseases, it is unknown whether and to 

what extent non-additive genetic interaction effects contribute to risk (Hardy and Escott-

Price, 2019). This inability to assess non-linear relationships between loci might explain the 

missing heritability between GWAS and twin studies (Escott-Price and Hardy, 2022).  

 

This chapter reviewed the ability of ML methods to predict lifetime risk for AD using 

primarily genetic data in the form of single nucleotide polymorphisms (SNPs), however, 

studies in which SNPs had been combined with other forms of data were also considered. A 

systematic literature review was employed, where initially all forms of dementia were 

examined, however searches returned publications focused on AD only. The review was 
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written in line with the Preferred Reporting Items for Systematic Reviews and Meta-analyses 

(PRISMA) guidelines (Liberati et al., 2009). Databases were searched for relevant scientific 

articles, followed by an assessment on how prediction models were developed. Reviews in 

this area have been conducted previously (Mishra and Li, 2020), however this review is 

unique in its assessment for the possibility of bias for prediction models in this subject area, 

as well as in the number of ML methods that it includes. The risk of bias was assessed by 

using the prediction model risk of bias assessment tool (PROBAST) (Wolff et al., 2019).  

 

3.2 Materials and methods 
 

3.2.1 Search strategy 
 

The online article databases Scopus, PubMed and Google Scholar were used to identify 

relevant publications for this review. Search terms used were exclusively machine learning, 

genetics, dementia, Alzheimer’s, Single Nucleotide Polymorphism (SNP), polymorphism, 

mutation, variant and marker. It was decided not to use the names of ML algorithms such as 

‘Random Forest’ directly as publications would use the phrase ‘machine learning’ in either 

the title or abstract. These terms were used to retrieve studies published between December 

2009 – June 2020. An initial search and screening for relevant publications was conducted by 

assessing both abstracts and titles. Based on eligibility criteria (listed below), publications 

from the initial search were then further assessed by two independent reviewers. Any 

discrepancies were then resolved by a third reviewer.   

 

Inclusion Criteria  

• Written in the English language. 

• Subject matter of Alzheimer’s disease. 

• The use of SNP data only unless it was combined with other forms of non-genetic 

information. 

• Supervised ML techniques. 

• Prediction resulting in a binary outcome (i.e., case/control). 

 

Exclusion Criteria 

• Prediction of Alzheimer’s disease related sub-phenotypes (e.g., MCI vs. controls).  
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• The use of genetic variants other than SNPs as predictors. The search was deliberately 

broad (see Search Strategy section) to capture papers from non-genetic fields, which 

do not apply a refined definition of genetic variants. 

 

Articles published between December 2009 and June 2020 were identified. ML techniques 

have been used in studies prior to this time frame. However, interest in ML in biological 

research has increased mostly in the last decade (Camacho et al., 2018). Therefore, studies 

previous to this were sparse and hence a recently defined window was used. SNPs were the 

only form of genetic variation accepted to facilitate comparisons between studies, therefore 

articles focusing on gene expression data or other forms of genetic data (e.g., rare variants) 

were not included. Instances where authors had combined SNP data with other forms of 

predictive biological variables were included, e.g., Magnetic Resonance Imaging (MRI) and 

Positron Emitting Tomography (PET). Only models which predicted a binary outcome 

between cases and controls were included, with instances of mild cognitive impairment 

(MCI) excluded. For those studies which assessed a binary event and also developed models 

predicting between MCI individuals and AD cases, information for models used to predict 

the binary relationship referenced were extracted only. This was due to historic difficulties 

for clinicians to distinguish between MCI and AD status (Forlenza et al., 2013). Therefore, 

accepting models which discriminated between case and control status allowed a clearer 

assessment of the predictive performance. 

 

For the purpose of assessing the suitability and comparability of ML approaches, prognostic 

and diagnostic models are usually considered separately. Prognostic models are defined as 

those which focus on future events and use longitudinal data, whereas diagnostic models are 

based upon current events using cross-sectional data. The search limited to binary outcomes 

only revealed no prognostic models. 

 

3.2.2 Data extraction 
 

The Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling 

Studies (CHARMS) (Moons et al., 2014) was used as a tool to perform data extraction. 

CHARMS provides two tables of check points to be considered by the reviewer. The first 

table provides guidelines on how to frame the aim of a review, including how to search and 
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filter extracted publications. The second table lists aspects to be extracted from each study for 

comparison, including predictor type, sample size and the amount of missing data. CHARMS 

also gives guidance on assessing how certain aspects were reported such as model 

development, model performance and model evaluation. Advantages of using CHARMS 

includes replicability across different types of reviews, its ease of use, and assisting reviewers 

in producing transparent publications (Moons et al., 2014). 

 

The ability of ML methods to discriminate between two classes was extracted independently 

from all studies by two authors. Accuracy (ACC) describes the performance of a classifier 

with respect to all samples, it is calculated as the number of correct predictions divided by the 

total number of predictions made. However, it does not provide information on how well the 

model performs within the positive and negative classes (Flach, 2019). Sensitivity is 

calculated by using observed positive outcomes to determine the proportion of classifications 

correctly made in the positive class, while specificity measures the same statistic in the 

negative class. Area under the receiver operating characteristic curve (AUC) represents the 

trade-off between these two measurements at different thresholds, aiming to find the optimal 

balance (Flach, 2019). AUC was extracted in order to draw comparisons between the studies. 

Confidence intervals for AUC were also extracted if provided, otherwise these were 

calculated using the Newcombe method (Debray et al., 2019). Precision can be defined as the 

ratio of correct predictions in the positive class, divided by the total number of positive 

predictions. Measures of performance such as accuracy, sensitivity, specificity and precision 

were also recorded alongside AUC if present. As the true positive rate and recall are different 

terms used for sensitivity, while specificity is also known as the true negative rate, they were 

categorised under sensitivity or specificity (if reported). Statistics such as age and gender for 

participants, types of predictors and ML models were also extracted, as per the CHARMS 

checklist guidance. Figures in this study were created using Microsoft Word (Fig. 3.1) and 

the programming language Python (Fig. 3.2 and 3.3).  

 

Studies were analysed in order to determine whether they reported the calibration of their 

models. Calibration is defined as the accuracy of risk estimates and demonstrates how well 

predicted and observed probabilities of the class membership line up.  Previous systematic 

reviews conducted for prediction models across a number of research areas have shown that 
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calibration is rarely reported (Van Calster et al., 2019b). Poor calibration could lead to 

healthcare professionals or patients having false expectations for certain events (Van Calster 

et al., 2019b).  

 

3.2.3 Data analysis 
 

When assessing a number of studies in a review, meta-analyses are often conducted.  A meta-

analysis produces a weighted average of the reported measures, where the heterogeneity 

between studies is taken into consideration. If studies overlap, e.g., contain (partially) the 

same individuals, the resulting correlation between the studies will bias the results of the 

meta-analysis (Bom and Rachinger, 2020), unless taken into account. Since the majority of 

the extracted publications used the same dataset, a meta-analysis was not performed in this 

review. 

 

Risk of Bias (ROB) is another component to critically assess when conducting a systematic 

review of prediction models within studies. PROBAST uses a system of questions split over 

four categories: participants, predictors, outcome and analysis. Each category contains 

multiple choice questions assessing an occurrence of shortcomings in that category (with 

choice of answers from: “yes”, “probably yes”, “no”, “probably no” and “no information”). If 

any question is answered with no or probably no, this flags the potential for the presence of 

bias, however assessors must use their own judgement to determine whether a domain is at 

ROB or not. An answer of no does not automatically result in a high ROB rating. PROBAST 

does offer assistance on how to reach an overall conclusion on the level of bias in that 

category. All included studies were assessed for ROB. 

 

3.3 Results 
 

3.3.1 Search results 
 

Following an initial search, a total of 4,020 publications were returned. This number was 

reduced by assessing whether both titles and abstracts aligned with the inclusion criteria, 

resulting in 500 studies. A more in-depth analysis was then conducted on the full texts, 

removing publications which did not pass the inclusion criteria upon a detailed inspection, 25 

texts remained at this stage. These were further reduced to 21 due to the presence of 
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duplicates, comprising both pre-prints and conference abstracts. Nine further publications 

were then removed due to non-relevant methodologies, leaving a final set of 12 studies to be 

included. A visual representation of the selection process is given in Fig. 3.1.  

 

Figure 3.1: Visual breakdown of publication selection based on a similar diagram found 

in PRISMA. 

 

 
 

 

The majority of publications (10/12) used the publicly available Alzheimer’s Disease 

Neuroimaging (ADNI) (R. C. Petersen et al., 2010a) dataset. ADNI is a longitudinal study 

measuring various biomarkers in both AD cases and healthy age-matched controls. However, 

all studies reported here analysed a particular subset of the cohort at a fixed timepoint only. 

Therefore, only cross-sectional format data were used, and hence models throughout 

publications were classed as diagnostic rather than prognostic. Out of the publications using 
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ADNI, four used the initial five-year study (ADNI-1), whilst the remaining studies did not 

specify which cohort was used. There were two studies that did not use ADNI. Wei, 

Visweswaran and Cooper (Wei, Visweswaran and Cooper, 2011a) used a combination of 

three datasets (Reiman et al., 2007) in which biomarkers were collected at a fixed time point, 

therefore data were cross-sectional. Romero-Rosales et al., 2020  used a longitudinal source 

of data known as the National Institute on Aging-Late-Onset Alzheimer’s Disease Family 

Study (NIA-LOAD) (Lee, 2008). Again, values for predictors were taken at a fixed time 

point, thus the data used was cross-sectional. All models across the included studies were 

classified as diagnostic.  

 

A range of ML approaches were used across the 12 reviewed studies. Table 3.1 outlines all 

types of models used and their frequency across the publications. The most commonly used 

ML approach across the analysed publications was Support Vector Machines (SVM), 

followed by Naïve Bayes (NB) and penalised regression. The number of tested models was 

also the highest for SVMs. This approach allows the most flexibility when adapting models 

via kernel functions (Auria and Moro, 2008). Penalised regression was commonly used in the 

form of the Least Absolute Shrinkage and Selection Operator (LASSO). This type of 

regularisation shrinks coefficients closer to zero when compared to their maximum likelihood 

estimates and simultaneously reduces variance in predictions and performs predictor 

selection. These aspects make penalised regression a popular method in prediction analysis 

(McNeish, 2015). Random forests (RF) were also used across three studies, these algorithms 

are intuitive in their use of decision trees, are invariant to scaling, and provide an in-built 

measure of predictor importance, which likely explains their favour in biology (Chen and 

Ishwaran, 2012).  
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Table 3.1: Summary of ML methods used in the analysed publications. 

ML approacha Number of 

publicationsb 

Number of 

models reported 

across 

publicationsc 

Additional Informationd 

Support Vector Machine 

(SVMs) 

8  44 Linear kernels (22 models, 5 studies). Quadratic 

polynomials (4 models, 2 study). Cubic Polynomials 

(4 models, 2 study). Radial basis functions (3 

models, 2 studies). Pearson kernel function (2 

models, 1 study). Unreported kernels (9 models, 3 

studies). A supervised method which uses distance-

based calculations to separate samples into groups. 

Penalised Regression 

(LASSO) 

4 15 All 15 LASSO regressions across 3 studies. A 

regression analysis which performs both feature 

selection and regularisation.   

Naïve Bayes (NB) 4 10 Six ordinary NB models, three tree-augmented NB 

and one model averaged NB. A probabilistic 

classifier which uses bayes theorem to make 

predictions. 

Random Forest (RF) 3  

 

5  Five classification RFs used, two of which used the 

RPART package. These are an ensemble of decision 

trees which produce aggregated classifications.  

Bayesian Networks (BN) 2  4  2 BNs with K2 learning algorithm, one markov 

blanket and one minimal augmented markov blanket. 

A graphical model which calculates conditional 

dependencies between variables using Bayesian 

statistics.  

Linear Models 2 4 Bootstrapping Stage-Wise Model Selection 

(BSWiMS). A supervised model-selection algorithm 

which uses a combination of linear models for 

prediction. 

K Nearest Neighbour 

(KNN) 

2  3  This is a distanced based algorithm which uses 

similarities in features to classify. 

Ensemble Methods 1  2 Ensembles are the use of a number of ML models, 

these arrive at a collective prediction result.  

Logistic Regression (LR) 1  1 A form of linear regression whereby the outcome is a 

categorical variable. 

Multi-Factor 

Dimensionality Reduction 

(MFDR) 

1  1  A technique used to detect combinations of 

independent variables that influence a dependent 

variable.   

Random Forest (RF), Bayesian Networks (BN), K Nearest Neighbour (KNN), Logistic Regression (LR), Multi-Factor Dimensionality Reduction (MFDR) a – Type of machine learning 

model; b – The number of publications models were used in; c – The number of publications these models occurred in.  
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3.3.2 Risk of bias (ROB) 
 

For diagnostic models, data sources with the lowest risk of ROB for participants are of the 

cross-sectional form. The publications which used the ADNI dataset assessed it in a cross-

sectional format. This assertion is reinforced in Gross et al., 2016, where ADNI is described 

as a cross-sectional study with longitudinal follow up. A similar decision was reached when 

considering the two studies which did not use ADNI, Wei, Visweswaran and Cooper, 2011 

and Romero-Rosales et al., 2020. After considering this, ROB was deemed low for 

participants. 

 

The focus of PROBAST for predictors is to assist the researcher in determining whether the 

procedures for measuring biomarkers were equal for all members of the study. ADNI 

provides publicly available documents which outline the methods for biomarker collection. 

Predictors derived from blood samples or MRI scans were collected using the same protocols 

for all participants. Therefore, the process of collecting predictors was deemed to be of low 

ROB. Genotyping of SNPs for the NIA-LOAD dataset (Lee, 2008) was performed in the 

same way across all samples, therefore ROB for predictors was low for Romero-Rosales et 

al., 2020. Procedures for collecting predictors in Wei, Visweswaran and Cooper, 2011 were 

not provided. This was also the case when assessing the original source of the data by 

Romero-Rosales et al., 2020, therefore ROB for predictors for these publications was stated 

as not known.  

 

Blinding is the process whereby samples from patients are collected without prior knowledge 

of their disease status. Such knowledge has been shown to introduce bias to collection 

procedures (Karanicolas, Farrokhyar and Bhandari, 2010). According to the ADNI data 

generation policy, samples were collected using blinding and only unblinded when uploaded 

to databases. Imaging data were collected and processed using standardised automated 

pipelines, thereby reducing the possibility of multiple clinicians using different methods 

when collecting predictors (Davis-Turak et al., 2017). ROB was deemed low for blinding in 

ADNI. Policies for blinding were not provided by either Wei, Visweswaran and Cooper, 

2011 or Romero-Rosales et al., 2020. Therefore, a judgement could not be made for either 

publication. 
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ROB in the PROBAST category “outcome” was considered to be low for the majority of 

studies. PROBAST’s questions regarding this section focus on how the outcome was 

determined and whether this determination was applied equally to all participants. ADNI 

used a range of clinically accepted methods to determine an individual’s AD status, including 

the Mini Mental State Examination and the Clinical Dementia Rating. The use of multiple 

methods of cognitive performance reduced the possibility of misdiagnosis, which in turn 

reduced the ROB. Diagnosing the outcome for participants in the NIA-LOAD (Lee, 2008) 

study was also achieved using a range of stringent methods. NINCD-S-ADRDA (Varma et 

al., 1999) criteria were used for AD diagnosis at recruitment, while diagnosis was 

pathologically confirmed for participants who were deceased. Controls were determined 

using neuropsychological tests in which memory function was examined, coupled with 

examination for any previous history of neurological disorders. As methods for both controls 

and cases were applied uniformly across the study participants, with the exception of 

deceased and alive AD individuals, the ROB for Romero-Rosales et al., 2020b was deemed 

low for outcome. In Wei, Visweswaran and Cooper, 2011 all brain donors for cases satisfied 

clinical and neurobiological criteria for cases of late onset AD, while clinical cases satisfied 

criteria for probable AD (McKhann et al., 2011). Also, brain donor controls did not have 

significant cognitive impairment at the time of death and clinical controls exhibited no 

cognitive impairment. However, the methods used to determine these diagnoses were not 

elaborated upon. For instance, whilst there was a mention of using clinical criteria, these were 

not defined. Therefore, ROB for outcome was unclear. 

 

The fourth and final category in which PROBAST aids investigation is in the analysis phase 

of a study. All studies exhibited high ROB for this section, with a consistent lack of reporting 

for calibration; additionally, 5 out of 12 publications did not report possible missing values in 

their data and how these were dealt with if present. To assess whether sample sizes used in 

modelling are adequate, PROBAST suggests the use of the metric Events per Variable 

(EPV). EPV is defined as the number of events in the minority class (i.e., the smaller of either 

cases or controls), divided by the number of candidate predictors used. In cases where more 

in depth algorithms (e.g., Neural Networks (NNs)) are used, model parameters are also 

included in the calculation of EPV. We evaluated ROB using a value of at least 10 EPVs, 

following common recommendations (Austin and Steyerberg, 2016). However, this threshold 

may be tailored more to the accurate estimation of regression coefficients in a logistic 
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regression model. More complex algorithms which require the tuning of hyperparameters 

(RFs, SVMs, NNs) may require a value of over 100 (van der Ploeg, Austin and Steyerberg, 

2014). Values across all studies were assessed to be below this threshold. The study with the 

highest EPV of 9.43 was  Chang et al., 2020. The lowest EPV, 0.0018, was found for Wei, 

Visweswaran and Cooper, 2011.  

 

Values of EPV below the recommended threshold of 10 introduce the possibility of 

overfitting, which in turn could result in spurious results (Austin and Steyerberg, 2017b). 

However, efforts were made by most studies to overcome the problem of overfitting, mostly 

in the form of Cross-Validation (CV) (11/12 studies). During this process, the data is divided 

into k partitions, with k-1 partitions used as training data and the remaining partition used as 

the test set. This process is then repeated k times. It has been demonstrated that using CV is a 

viable method for authors to address overfitting (Hosseini et al., 2020). Despite this, the 

possibility of bias could still be present if the correct form of CV is not used. To investigate 

the importance of CV type selection, several methods of CV were used on datasets with low 

EPV values (Vabalas et al., 2019). The simplest form of CV (k-partitioning) was shown not 

to counteract the issue of overfitting in some instances and could even exacerbate the 

problem. Nested-CV has been shown to achieve the best performance of all methods (Varma 

and Simon, 2006) and it operates by using an outer and inner loop of CV. The outer loop 

splits k times to perform model validation while hyperparameters and feature selection are 

conducted in the inner loop. This method was only reported by two of the included studies (Zhou, 

Liu, et al., 2019). 
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3.3.3 Machine learning performance 
 

As discussed in Section 3.3.1, 12 studies were accepted for inclusion in this review. For each 

publication, a range of statistics were extracted, some of which are outlined in Table 3.2. 

 

Table 3.2: Summary of the reviewed publications. 

Publication title and 

authors/publication datea 

Machine learning 

approachesb 

AUC for modelsc Accuracy for 

modelsd 

Data source usede Sample sizef 

1. 

Benchmarking machine 

learning models for late-

onset Alzheimer's disease 

prediction from genomic 

data  

 

52 

2LASSO, 2RF, 2RPART, 

2KNN, 2SVM (no-

kernel),2 ensemble of all 

methods, 2BSWIMS = 

Linear models 

 

 (0.494-0.719) N/A ADNI SNPs only Discover 

dataset: 

230 Cases 

241 Controls 

 

Validation 

dataset: 

37 Cases 

130 Controls 

2. 

Effective Diagnosis of 

Alzheimer’s Disease via 

Multimodal Fusion Analysis 

Framework 

 

51 

 

5 SVMS kernel unspecified 

 

N/A Accuracy 

(0.70-0.87) 

 

ADNI MRI and 

SNPs 

37 Cases 

35 Controls 

3. 

Latent Representation 

Learning for Alzheimer's 

Disease Diagnosis with 

Incomplete Multi-Modality 

Neuroimaging and Genetic 

Data 

 

41 

 

9 SVMs kernel unspecified 

 

 (0.62-0.65) Accuracy (0.59 

– 0.67) 

ADNI 1 MR images 

and SNPs 

171 cases 

204 Controls 

4. 

Discovering Alzheimer 

Genetic Biomarkers Using 

Bayesian Networks 

 

48 

 

NB, TAN NB, Markov 

blanket, minimal 

augmented markov blanket  

 

N/A Accuracy (0.62-

0.66) 

 

ADNI – SNPs only 282 Controls 

48 Cases 
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5. 

The application of naive 

Bayes model averaging to 

predict Alzheimer's disease 

from genome-wide data 

 

24 

 

NB, FSNB, MANB 

 

 (0.59-0.72) 

 

N/A GWAS collected and 

analysed originally 

by Reiman (M 

Reiman et al, 2008) 

LOAD 

GWAS – SNPs only 

 

550 Controls 

861 Cases 

 

6. 

A Hierarchical Feature and 

Sample Selection 

Framework and Its 

Application for Alzheimer's 

Disease Diagnosis 

 

42 

 

5 SVMS all linear 

 

 (85.5-0.97) 

 

SNPs only model 

= 85.5 

 

MR + SNP model 

= 97.4 

 ADNI 1 – MRI and 

SNPs 

204 Controls 

171 Cases 

7 

Integrated higher-order 

evidence-based framework 

for prediction of higher-

order epistasis interactions 

in Alzheimer's disease 

 

79 

 

NB, RF, KNN, LR, SVM (rbf), 

multi-factor dimensionality 

reduction 

 

N/A Accuracy 

(0.62-0.78) 

ADNI – SNPs only 306 Cases  

125 Controls 

 

8. 

Integrative analysis of 

multi-dimensional imaging 

genomics data for 

Alzheimer’s disease 

prediction 

 

80 

 

4 SVMS - all linear 

 

N/A Accuracy (0.88-

0.95) 

 

ADNI MRI and 

SNPs 

49 Cases 

47 Controls 

9. 

Identifying genetic 

biomarkers associated to 

Alzheimer's disease using 

Support Vector Machine 

 

45 

10 SVMS 2 linear, 2 

quadratic polynomial, 2 

cubic polynomial, 2 RBF, 

2PUK 

 

N/A Accuracy 

(0.62-0.77) 

ADNI 1 SNPs only 214 Controls 

177 Cases 
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10. 

Improving predictive 

models for Alzheimer's 

disease using GWAS data 

by incorporating 

misclassified samples 

modelling 

 

26 

 

2BSWiMS-logistic, 2GALGO-

SVM (no-kernel). 2LASSO 

 

8 LASSOs 

 

 (0.68-0.844) N/A National Institute 

on Aging—Late-

Onset Alzheimer’s 

Disease 

SNPs only 

2000 Controls 

1856 Cases 

11. 

GenEpi: Gene-based 

Epistasis Discovery Using 

Machine Learning 

 

37 

 

3 Lasso regressions 

 

N/A Accuracy 

(0.83-0.94) 

ADNI SNPs only 241 Controls 

123 Cases 

12. 

Developing an early 

predictive system for 

identifying genetic 

biomarkers associated to 

Alzheimer’s disease using 

machine learning 

techniques  

 

46 

 

2 SVM(Linear-kernel), 2 

SVM(Quadratic-

polynomial), 2 SVM(Cubic-

polynomial), 2 Naïve Bayes, 

2 Naïve Bayes(tree-

augmented) and 2 Bayesian 

networks (K2) 

N/A Accuracy 

(0.95-0.99) 

ADNI 1 data set. 

Also, a separate 

ADNI whole 

genome sequencing 

data set, genotyped 

using Illumina Omni 

2.5 M. 

SNPs only 

214 Controls 

177 Cases 

 

321 Controls 

49 Cases 

a – Publication title; b – The range of sensitivity values detailed within each study. – c AUC values reported by models; - d ACC values reported for models; - e The source of data used in 

the study; - f the sample size used by cases and controls. 

 

Five studies recorded AUC for the performance of models, ranging from 0.49 to 0.97. The 

remaining seven studies reported mainly ACC, sensitivity and specificity The highest AUC 

value was achieved by (An et al., 2017), where the authors used a hierarchal method to find 

the optimal set of features for the prediction of AD. Manifold regularisation was used to 

combine both genetic and MRI data in a semi-supervised hierarchal feature and sample 

selection framework. This method utilised both labelled and unlabelled data in order to 

maximise the amount of information for prediction. For classification purposes, SVMs were 
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used to discriminate between controls and cases. However, the EPV score was 0.919 and this 

is below the recommended threshold of 10. This could introduce the possibility of overfitting 

which can in turn lead to spurious results (Austin and Steyerberg, 2017b). The authors used 

CV to alleviate the potential for overfitting. 

 

A single study reported calibration statistics (Wei, Visweswaran and Cooper, 2011a) 

(Publication 5 in Table 3.2). The authors compared the predictive capability of a model using 

averaged NB with both standard NB and NB with feature selection. The method used to 

report calibration was calibration curves. The results highlighted that the model using 

averaged NB achieved better calibration than the standard NB model and achieved similar 

performance to the NB with feature selection. The prediction accuracy of these models was 

0.59-0.72. Further conclusions which can be drawn from Table 3.2 include the consistent use 

of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (R C Petersen et al., 2010) 

dataset, with 10/12 publications using the publicly available source. However, despite the 

majority of studies using the ADNI, cohort sizes differed between analyses. This is most 

likely due to different quality control procedures used across publications. 

 

The prediction performance of ML methods in each study are further summarised further in 

Figures 3.2 and 3.3. The first column shows the reference number of the publication as listed 

in Table 3.2 along with the sample size used in the respective ML model. ML approaches 

used are shown in the second column. The third column displays information which assists 

the reader in distinguishing between models in the same study, this includes factors such as 

number of SNPs used, and methodologies implemented. Studies were sorted by sample size 

in ascending order. The vertical dashed line shows the accuracy of 0.5, which indicates a 

50% chance of the result being correct. The last column shows the actual values of the 

accuracy achieved. Confidence intervals of AUC values in Figure 3.2 were calculated using 

the Newcombe method (Debray et al., 2019). These confidence intervals reflect the 

variability of AUC controlling for sample size. This allows for comparison between studies 

with large sample size differences. If the intervals overlap between studies, then the AUCs 

are not significantly different between models.  
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Fig 3.2: A forest plot displaying models used across publications which reported AUC, 

with the addition of confidence intervals derive using the Newcombe method 

 

 
Column1 – Publication number as found in Supplementary Table 1, along with sample size. Column2 – Type of machine learning model. Column3 – Information to help distinguish 

between models in publications, including differing SNP numbers and methodologies.  

 

 

 

 

 

 

 

 

 

 



 104 

Fig 3.3: A forest plot displaying all models used across publications which reported 

ACC 

 
Column1 – Publication number as found in Supplementary Table 1, along with sample size. Column2 – Type of machine learning model. Column3 – Information to help distinguish 

between models in publications, including differing SNP numbers and methodologies.  

 

Alongside both AUC and accuracy, additional measures of model performance were used 

across publications. These are detailed in Table 3.3. 
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Table 3.3: Sensitivity and specificity values per publication.  

Publication title Sensitivity Specificity Precision 

Benchmarking machine 

learning models for late-

onset Alzheimer’s disease 

prediction from genomic 

data  

 

0.033 – 0.719 

 

0.62 – 0.981 

 

N/A 

Effective Diagnosis of 

Alzheimer’s Disease via 

Multimodal Fusion Analysis 

Framework 

 

N/A 

 

N/A 

 

N/A 

Latent Representation 

Learning for Alzheimer’s 

Disease Diagnosis with 

Incomplete Multi-Modality 

Neuroimaging and Genetic 

Data 

 

 

 

 

N/A 

 

 

 

N/A 

 

 

 

N/A 

Discovering Alzheimer 

Genetic Biomarkers Using 

Bayesian Networks 

 

 

0.59-0.89 

 

0.16 – 0.66 

 

N/A 

The application of naïve 

Bayes model averaging to 

predict Alzheimer’s disease 

from genome-wide data 

 

 

 

N/A 

 

 

 

N/A 

 

 

N/A 

A Hierarchical Feature and 

Sample Selection 

Framework and Its 

Application for Alzheimer’s 

Disease Diagnosis 

 

 

 

0.75 – 0.86 

 

 

0.85 – 0.96 

 

 

N/A 

Integrated higher-order 

evidence-based framework 

for prediction of higher-

order epistasis interactions 

in Alzheimer’s disease 

 

 

 

0.62 – 0.75 

 

 

0.55 – 0.82 

 

 

N/A 
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Integrative analysis of 

multi-dimensional imaging 

genomics data for 

Alzheimer’s disease 

prediction 

 

 

 

0.90 – 0.94 

 

 

0.85 – 0.96 

 

 

N/A 

Identifying genetic 

biomarkers associated to 

Alzheimer's disease using 

Support Vector Machine 

 

 

 

0.62 – 0.77 

 

 

 

N/A 

 

 

0.59 – 0.67 

Improving predictive 

models for Alzheimer’s 

disease using GWAS data 

by incorporating 

misclassified samples 

modelling 

 

 

 

 

0.61-0.83 

 

 

 

 

0.73 – 0.86 

 

 

 

N/A 

GenEpi: Gene-based 

Epistasis Discovery Using 

Machine Learning 

 

 

0.66 – 0.85 

 

N/A 

 

0.77 – 0.96 

Developing an early 

predictive system for 

identifying genetic 

biomarkers associated to 

Alzheimer’s disease using 

machine learning 

techniques  

 

 

 

 

0.57 – 0.98 

 

 

. 

 

N/A 

 

 

 

0.59 – 1.00 

 

a – Publication title; b – The range of sensitivity values detailed within each study. c – The range of specificity values detailed within each study. D – Values for precision if reported 

 

Validation methods are an important factor in the development of ML models. The type of 

method chosen can influence algorithm performance, with emphasis on reducing the 

possibility of overfitting (Maleki et al., 2020). All types of validation methods used across the 

included publications are outlined in Table 3.4. 
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Table 3.4: Methods of validation used. 

Methodsa Number of Studiesb Number of Modelsc 

Cross-validation – Number 

of folds not specified.  

1 14 

Cross-validation – 20 Folds 1 14 

Cross-validation – 10 Folds 7 50 

Cross-validation – 5 Folds 1 3 

Cross-validation – 2 Folds 1 2 

Leave-one-out (LOO) CV 1 1 

Training/Test split 60:40 1 5 

a – Publication title; b – The range of sensitivity values detailed within each study. c – The range of specificity values detailed within each study 

 

Ten-fold CV was the most common form of validation used, however a range of other values 

of k were also documented. One further study used a nested CV approach to optimise both 

model performance and hyperparameter tuning. Leave one out CV was also used by one 

study, this functions by creating a number of folds equal to the number of data points in the 

training set. Within each fold a single data point is removed to be used as the test set, the 

algorithm is then trained on the remaining points. Prediction performance is calculated by 

averaging over the results for all folds. Also, one publication explored a different approach of 

dividing the data into training and test datasets called a split sample. In this process, a model 

is trained using a training set and is subsequently tested on a validation (test) set, where the 

test dataset contains the remainder of the original data not included in the training dataset. All 

of these methods are known as internal validation, where model optimisation and 

hyperparameter tuning is achieved using a single dataset. External validation involves using a 

completely separate cohort to validate an already trained model, usually this cohort has been 

independently gathered and assessed to the initial training data (Ramspek et al., 2021). This 

method was not used by any study in this review.   

 

3.3.4 Sample size 
 

Sample sizes ranged from 72 to 3,856 individuals, with the largest cohort being the NIA-

LOAD dataset (Vardarajan et al., 2014). As discussed in Section 3.2.1, it was decided to only 

include those studies who focused on AD prediction. All other forms of dementia were 

purposely excluded. Another aspect of criteria used was the exclusion of any models which 
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predicted progression from MCI to AD, with the classification of those with AD (cases) and 

cognitively healthy individuals (controls) included only. The breakdown of cohorts by cases 

and controls is outlined in Table 3.5, as well as Imbalances between classes, as a ratio 

between controls over cases. These ranged from 0.408-6.55, with a median value of 1.193. 

The accuracy for the study with the highest-class imbalance (6.55) was 0.95-0.99 ACC (Abd 

El Hamid, Mabrouk and Omar, 2019).  

 

Table 3.5: Class imbalances for each study. 

Publication titlea Number of Controlsb Number of Casesc Class Imbalanced 

Benchmarking machine 

learning models for late-

onset Alzheimer’s disease 

prediction from genomic 

data  

 

Discovery dataset: 230 

 

Validation dataset: 130 

 

Discovery dataset: 241 

 

Validation dataset: 37 

 

0.954 

 

3.514 

Effective Diagnosis of 

Alzheimer’s Disease via 

Multimodal Fusion Analysis 

Framework 

 

35 

 

37 

 

0.946 

Latent Representation 

Learning for Alzheimer’s 

Disease Diagnosis with 

Incomplete Multi-Modality 

Neuroimaging and Genetic 

Data 

 

 

 

 

204 

 

 

 

171 

 

 

 

1.193 

Discovering Alzheimer 

Genetic Biomarkers Using 

Bayesian Networks 

 

 

282 

 

 

48 

 

5.875 

The application of naïve 

Bayes model averaging to 

predict Alzheimer’s disease 

from genome-wide data 

 

 

 

550 

 

 

861 

 

 

0.639 

A Hierarchical Feature and 

Sample Selection 

Framework and Its 

 

 

204 

 

 

 171 

 

 

1.193 
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Application for Alzheimer’s 

Disease Diagnosis 

 

Integrated higher-order 

evidence-based framework 

for prediction of higher-

order epistasis interactions 

in Alzheimer’s disease 

 

 

 

125 

 

 

306 

 

 

0.408 

Integrative analysis of 

multi-dimensional imaging 

genomics data for 

Alzheimer’s disease 

prediction 

 

 

 

47 

 

 

49 

 

 

0.959 

Identifying genetic 

biomarkers associated to 

Alzheimer's disease using 

Support Vector Machine 

 

 

 

214 

 

 

177 

 

 

1.209 

Improving predictive 

models for Alzheimer’s 

disease using GWAS data 

by incorporating 

misclassified samples 

modelling 

 

 

 

2000 

 

 

 

 

1856 

 

 

 

1.078 

GenEpi: Gene-based 

Epistasis Discovery Using 

Machine Learning 

 

 

241 

 

 

132 

 

1.826 

Developing an early 

predictive system for 

identifying genetic 

biomarkers associated to 

Alzheimer’s disease using 

machine learning 

techniques  

 

 

214 

 

 

321 

 

177 

 

 

49 

 

1.209 

 

 

6.551 

a – Publication title; b – The number of controls in the study; c – The number of cases in the study; d – The ratio of cases versus controls – Imbalance. 
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The number of SNPs used in models varied between studies, with numbers ranging from 21 

to 561,309 SNPs. The large range in the number of SNPs used was due to differences in the 

used methodologies. The study which used the greatest number of SNPs (Romero-Rosales et 

al., 2020) investigated improving AUC by reintroducing initially misclassified samples to the 

final models. The study which used the least number of SNPs focused only on the top 10 

genes associated with AD (Mostafa Abd El Hamid, Omar and Mabrouk, 2016a), thereby 

limiting the number of SNPs included in the study. EPV ranged from 0.0018-9.43 for eleven 

studies, with one study not providing enough information to calculate EPV. These values are 

displayed in Figure 3.4, this also includes the number of samples, number of predictors used 

and values of either ACC or AUC for each study. The publication number corresponds to 

those used in Figures 3.2 and 3.3. Due to the large difference between two values and the 

rest, two scales were used to allow for all points to be plotted on the same figure.  

 

Fig 3.4: A forest plot displaying all available EPV values across the included studies 

 
Column1 – Publication number as found in Supplementary Table 1 Column2 – Number of samples. Column3 – Number of predictors used, Column 4 – AUC of models if reported, 

Column 5 – ACC of models if reported, Column 6 – values of EPV.  
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3.3.5 Predictors  
 

Criteria used for inclusion specified that SNPs were the only form of genetic data used as 

predictors. However, other predictors were also considered, whereby other forms of 

predictive material were used alongside SNPs. Table 3.6 outlines the different types of data 

modalities used across publications, as well as further statistics. 

 

 

Table 3.6: Information extracted for the type of predictive materials used 

and methods for the pre-processing of SNPs.  

Publication 

titlea 

Types of data 

modality usedc 

SNPs QC General MAF Missing value 

rate 

Benchmarking 

machine learning 

models for late-

onset Alzheimer’s 

disease prediction 

from genomic data  

 

 

SNPs 

 

 

 

Marker call rate -  99% 

Hardy Weinberg 

Equilibrium test -   0.05 

LD based clumping – p-

value  0.01 and r2  

0.05. 

 

 

 

 0.01 

 

 

 

N/A 

Effective Diagnosis 

of Alzheimer’s 

Disease via 

Multimodal Fusion 

Analysis 

Framework 

 

SNPs/MRI  

Sample call rate – 95% 

Genotyping – 99.9% 

Hardy Weinberg test 

0.0001 % 

 

 

4% 

 

 

N/A 

Latent 

Representation 

Learning for 

Alzheimer’s 

Disease Diagnosis 

with Incomplete 

Multi-Modality 

Neuroimaging and 

Genetic Data 

 

 

 

 

SNPs/MRI/PET 

 

(Positron emitting 

tomography) 

Selected SNPs were 

imputed to estimate 

missing genotypes. 

Illumina annotation 

information was used to 

select a subset of SNPs 

  

Discovering 

Alzheimer Genetic 

 

 

Hardy Weinberg test   

0.001 

 

0.01 

 

 



 112 

Biomarkers Using 

Bayesian Networks 

 

SNPs  

The application of 

naïve Bayes model 

averaging to 

predict Alzheimer’s 

disease from 

genome-wide data 

 

 

 

SNPs 

 

 

 

N/A 

 

 

 

N/A 

 

 

 

N/A 

A Hierarchical 

Feature and 

Sample Selection 

Framework and Its 

Application for 

Alzheimer’s 

Disease Diagnosis 

 

 

 

SNPs/MRI 

Gender Check 

Hardy Weinberg 

Equilibrium test  

Population Stratification 

Percentage 

not 

specified  

 

Integrated higher-

order evidence-

based framework 

for prediction of 

higher-order 

epistasis 

interactions in 

Alzheimer’s 

disease 

 

 

 

SNPs 

 

 

 

N/A 

 

 

 

N/A 

 

 

 

N/A 

Integrative analysis 

of multi-

dimensional 

imaging genomics 

data for 

Alzheimer’s 

disease prediction 

 

 

 

SNPs/MRI/PET/CSF 

 

(Cerebrospinal fluid) 

Call rate check per 

subject, gender check, 

The Hardy Weinberg 

Equilibrium test, 

Population stratification 

Percentage 

not 

specified 

 

Identifying genetic 

biomarkers 

associated to 

Alzheimer's disease 

 

 

SNPs 

Removing individuals 

with discordant gender 

information, LD pruning, 

subjects with high IBD are 

removed, Hardy 

 

 

 

 0.001 

 

 

 

 10% 
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using Support 

Vector Machine 

 

Weinberg Equilibrium 

test  0.000005 %. 

Improving 

predictive models 

for Alzheimer’s 

disease using 

GWAS data by 

incorporating 

misclassified 

samples modelling 

 

 

 

 

SNPs 

Marker call rate removal 

 98%, monomorphic 

markers also removed, 

Hardy Weinberg 

Equilibrium rate  0.000. 

 

 

 

 

N/A 

 

 

 

 

N/A 

GenEpi: Gene-

based Epistasis 

Discovery Using 

Machine Learning 

 

 

SNPs 

Missing data imputation 

according to the 1000 

genome haplotypes. 

  

Developing an 

early predictive 

system for 

identifying genetic 

biomarkers 

associated to 

Alzheimer’s 

disease using 

machine learning 

techniques  

 

 

. 

 

SNPs 

Removing individuals 

with discordant gender 

information, LD pruning, 

subjects with high IBD are 

removed, Hardy 

Weinberg Equilibrium 

test  0.000005 %. 

 

 

 

 

 

 0.01 

 

 

 

 

 

 10% 

a – Publication title; b – Hyperparameter tuning methods. c – Types of data modality used; d – Pre-processing steps for SNPs. 

 

The most common form of secondary data used was MRI, included in four publications. PET 

imaging data was also used in two studies. Additionally, Cerebrospinal Fluid (CSF) was used 

in one publication. Pre-processing techniques for SNPs were reported in the majority (10/12) 

of studies. All these studies excluded SNPs which did not satisfy Hardy-Weinberg 

equilibrium (Namipashaki, 2015). SNPs were selected with a variety of AD association 

significance thresholds (0.00007 – 0.05), leading to different numbers of SNPs being retained 

across studies. Seven of the studies which discussed pre-processing for SNPs also used 

minimal minor allele frequency (MAF), i.e., rare variants were removed from a SNP set 

based on their allele frequency. Thresholds used for MAF varied (0.01 – 0.04) across studies. 
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Two studies did not report steps taken to pre-process SNPs; this could lead to questions 

regarding data quality.  

 

Common steps required when conducting ML analyses include handling missing data and the 

tuning of hyperparameters for algorithm optimisation. Methods used to approach these 

factors for the included publications are outlined in Table 3.7.  

 

Table 3.7: Methods to deal with missing data and to optimise algorithms. 

Publication title Were methods used 

to deal with missing 

data. 

Missing data 

Methods used. 

Hyperparameter 

Tuning Methodsb 

Benchmarking machine 

learning models for late-

onset Alzheimer’s disease 

prediction from genomic 

data  

 

No 

 

N/A 

 

 

N/A 

Effective Diagnosis of 

Alzheimer’s Disease via 

Multimodal Fusion Analysis 

Framework 

 

No 

 

N/A 

 

Model aspects such as 

number of trees in RF and 

tree inputs were optimised.  

Latent Representation 

Learning for Alzheimer’s 

Disease Diagnosis with 

Incomplete Multi-Modality 

Neuroimaging and Genetic 

Data 

 

 

 

 

Yes 

 

 

The formulation of a latent 

representation learning 

method, which used 

incomplete samples. 

 

 

 

Hyperparameters were 

tuned using CV 

 

Discovering Alzheimer 

Genetic Biomarkers Using 

Bayesian Networks 

 

 

Yes 

 

Missing values imputed by 

Expectation Maximization 

algorithm.  

 

N/A 

The application of naïve 

Bayes model averaging to 

predict Alzheimer’s disease 

from genome-wide data 

 

 

 

No 

 

 

N/A 

 

 

N/A 
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A Hierarchical Feature and 

Sample Selection 

Framework and Its 

Application for Alzheimer’s 

Disease Diagnosis 

 

 

 

Yes 

 

 

Missing genotypes were 

imputed, no method given. 

 

 

Parameters for feature 

selection method were 

optimised using CV 

Integrated higher-order 

evidence-based framework 

for prediction of higher-

order epistasis interactions 

in Alzheimer’s disease 

 

 

 

No 

 

 

N/A 

 

 

N/A 

Integrative analysis of 

multi-dimensional imaging 

genomics data for 

Alzheimer’s disease 

prediction 

 

 

 

Yes 

 

 

Missing genotypes were 

imputed using MaCH 

software. 

 

 

Parameters of SVM tuned 

using grid search 

Identifying genetic 

biomarkers associated to 

Alzheimer's disease using 

Support Vector Machine 

 

 

Yes 

 

Those samples who had 

greater than 10% of 

samples missing were 

discarded. 

 

N/A 

 

Improving predictive 

models for Alzheimer's 

disease using GWAS data 

by incorporating 

misclassified samples 

modelling 

 

 

 

 

Yes 

 

 

 

Missing values replaced 

with median of nearest 

neighbours 

 

 

 

CV was used for the tuning 

of lambda hyperparameter 

GenEpi: Gene-based 

Epistasis Discovery Using 

Machine Learning 

 

 

Yes 

 

Missing genotypes imputed 

according to the 1000 

genome haplotypes 

 

N/A 

Developing an early 

predictive system for 

identifying genetic 

biomarkers associated to 

Alzheimer’s disease using 

machine learning 

techniques.  

 

 

 

Yes 

 

Those samples who had 

greater than 10% of 

samples missing were 

discarded. 

 

 

 

N/A 
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a – Publication title; b – Whether methods were employed to deal with missing data. c – Methods used to deal with missing data. 

 

Eight out of 12 studies used methods to address missing data values. Two studies excluded 

samples with >10% missing predictor values. A further four publications described processes 

for the imputation of missing genotypes. For instance, Sherif, Zayed and Fakhr, 2015 

imputed missing SNP values by using the expectation maximisation algorithm. Another study 

Romero-Rosales et al., 2020b imputed missing genotypes by using the median value of the 

nearest neighbours, this was the only example of using a measure of central tendency. Zhou 

et al., 2019 did not remove or impute missing data, rather they designed a method in which 

samples with missing values were incorporated in the models. All complete samples were 

used to develop a latent representation space. Samples with missing values were used to learn 

independent modality specific latent specifications. These latent representations were then 

used as an input for the AD classifier. This process allowed these authors to produce models 

which outperformed comparable methods of dealing with missing data and selecting features.  

 

None of the analysed studies which reported the use of imputation methods specified whether 

this process was undertaken before CV or afterwards, which may be prone to the issue of data 

leakage (Samala et al., 2021).  

 

3.3.6  Hyperparameter search 
 

Hyperparameter tuning is a common step in developing prediction models, it is implemented 

to ensure the optimisation of AUC (Probst, Bischl and Boulesteix, 2018). Reporting of 

techniques for hyperparameter optimisation was inconsistent across studies as detailed in 

Table 3.7, with seven publications not providing values or the process of tuning. For the 

remaining five studies, a range of differing techniques were used. Zhou et al., 2019 used a 

nested approach to optimise model parameters. Ten-fold CV was used to fit models, whilst an 

inner loop of five-fold CV trained model hyperparameters. However, this was only the case 

for some hyperparameters, as some were fixed at pre-determined values to reduce training 

times. This arbitrary fixing of values could introduce bias. Hao et al., 2016 also used a nested 

approach for hyperparameter tuning. Five-fold CV was used to optimise parameters for 

regularisation, with a separate loop of five-fold CV used for model validation. These were the 
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only two studies which reported the use of nested CV for hyperparameter tuning. The 

remaining 3 studies reported hyperparameter optimisation but did not specify whether a 

nested approach was used. 

 

 Bi et al., 2019 used an iterative process to determine the optimum number of decision trees 

to use in their RF approach. Furthermore, grid search and CV techniques were employed to 

optimise varying hyperparameters across the studies. In this process, CV is used to test 

different combinations of hyperparameter values, with the aim of producing the set which 

leads to the highest value of AUC. Seven publications did not report optimisation methods. 

Of these seven studies, four used NB methods, which do not require hyperparameter tuning. 

For the remaining three studies, hyperparameter tuning was required but not reported. 

 

3.3.7 Descriptive statistics 
 

Descriptive details for cohorts used in the included studies are outlined in Table 3.8. Eight 

studies did not report values regarding both age and gender for study participants. The 

remaining four reported the age and gender distributions in both classes (cases and controls). 

De Velasco Oriol et al., 2019 reported age and gender for both the discovery and validation 

sets. Values for the mean age for both cases (75.4-75.5) and controls (76.1-77.4) were similar 

across studies. This similarity is due to the consistent use of the ADNI dataset throughout the 

analysed studies. The proportion of males to females in controls ranged from 0.59-1.22; in 

cases this proportion ranged from 1.05-1.22.  

 

Table 3.8: Descriptive statistics if reported. 

Publication titlea Ageb Genderc 

Benchmarking machine 

learning models for late-

onset Alzheimer's disease 

prediction from genomic 

data  

Discovery dataset: 

 Mean age – 75.57 

Validation dataset: 

 Mean age – 72.17 

Discovery:  

Males – 252, Females – 219 

 

1.15 

  

Validation:  

Males – 92, Females - 75 

 

1.23 
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Effective Diagnosis of 

Alzheimer’s Disease via 

Multimodal Fusion Analysis 

Framework 

Cases: 

Mean age - 75.35 

Controls: 

Mean age – 77.14 

 

Cases: 

Males – 19, Females – 18 

1.05 

 

Controls: 

Males – 13, Females – 22 

0.59 

 

Latent Representation 

Learning for Alzheimer's 

Disease Diagnosis with 

Incomplete Multi-Modality 

Neuroimaging and Genetic 

Data 

 

Cases: 

Mean age – 75.5 

Controls: 

Mean age – 76.1 

 

Cases: 

Males – 94, Females – 77 

 

1.22 

 

Controls: 

Males – 112, Females – 92 

 

1.33 

 

Discovering Alzheimer 

Genetic Biomarkers Using 

Bayesian Networks 

 

 

N/A 

 

N/A 

The application of naive 

Bayes model averaging to 

predict Alzheimer's disease 

from genome-wide data. 

 

 

N/A 

 

N/A 

A Hierarchical Feature and 

Sample Selection 

Framework and Its 

Application for Alzheimer's 

Disease Diagnosis 

 

Cases: 

Mean age – 75.5 

Controls: 

Mean age – 76.1 

 

Cases: 

Males – 94, Females – 77 

 

1.22 

 

Controls: 

Males – 112, Females – 92 

 

1.22 

 

Integrated higher-order 

evidence-based framework 

for prediction of higher-

 

N/A 

 

N/A 
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order epistasis interactions 

in Alzheimer’s disease. 

 

Integrative analysis of 

multi-dimensional imaging 

genomics data for 

Alzheimer’s disease 

prediction 

 

 

N/A 

 

N/A 

Identifying genetic 

biomarkers associated to 

Alzheimer's disease using 

Support Vector Machine 

 

 

N/A 

 

N/A 

Improving predictive 

models for Alzheimer's 

disease using GWAS data 

by incorporating 

misclassified samples 

modelling 

 

 

N/A 

 

N/A 

GenEpi: Gene-based 

Epistasis Discovery Using 

Machine Learning 

 

 

N/A 

 

N/A 

Developing an early 

predictive system for 

identifying genetic 

biomarkers associated to 

Alzheimer’s disease using 

machine learning 

techniques.  

 

 

N/A 

 

N/A 

a – Publication title; b – The mean age of study participants, recorded either by case/control split or by different datasets.  

c – The breakdown of males/females for participants, by case/control split or by dataset. With the ratio of males to females. 
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3.4 Conclusion  
 

This review assessed a selection of studies which used ML to predict AD from mainly 

genetic data. Using a systematic approach (PRISMA), 12 studies were identified which met 

inclusion criteria. This could be perceived as a low number of studies; however, this amount 

is consistent with other ML reviews (Bracher-Smith, Crawford and Escott-Price, 2021). A 

potential reason for this small number is that ML is a relatively novel technique in AD 

prediction. Also, the disease risk associated with SNP data in complex genetic disorders has 

gained recent interest due to the appearance of GWAS, followed by prediction using 

polygenic risk scores (Escott-Price, Sims, Bannister, Harold, Vronskaya, Majounie, 

Badarinarayan, Morgan, et al., 2015). In addition, difficulties exist in accessing datasets with 

sufficient sample size for prediction. These manuscripts were reviewed to identify the type of 

models used, model development and the validity of the reported results.  

 

AUC results in the included studies (5 out of 12) varied (0.49-0.97) for AD risk prediction. 

The most accurate models were shared across two studies, with the authors recording AUC 

>0.8, which could be considered as high (e.g., approved clinical prediction models in 

cardiovascular disease and diabetes typically achieve AUCs of 0.8-0.85 (Lewis and Vassos, 

2020)). Given that genetic prediction for complex traits is bounded by heritability and the 

disease prevalence (Wray et al., 2010), these results match and outperform the theoretical 

maximum prediction accuracy in AD using Polygenic Risk Scores (AUC=0.82, assuming 

SNP-based heritability h2=0.24 and life-time disease prevalence of 2% (Escott-Price et al., 

2017). Seven out of 12 publications did not report AUC for their models, with accuracy and 

sensitivity being the preferred choices. The most common measure of performance used other 

than AUC was ACC. Four studies reported ACC >0.8, which is considered important when 

attempting to reduce the possibility of miss-communicating risk to clinicians and the public. 

However, ACC can be skewed by the presence of class imbalances (Sun, Wong and Kamel, 

2009). In addition, ACC is calculated from all predictions against all observed outcomes, 

although this does not clarify how the model performs per class. For these reasons we 

advocate that AUC should be used as a standard measure for reporting performance. 

 

Continued research and development in the field of ML has led to an increasing number of 

algorithms available for use in risk prediction (Sun et al., 2019). This is reflected in the use of 
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10 different types of approaches across all studies, the most popular of these being Support 

Vector Machines. SVMs are known for their simple application and predictive accuracy and 

are therefore used regularly in prediction modelling (Cervantes et al., 2020). Other notable 

algorithms used in the assessed studies were Random Forests (RFs) and Naïve Bayes (NB). 

Similar to SVMs, NB is known for its easy implementation. However, its performance can be 

hindered due to correlations between features used for prediction, which negates the naïve 

assumption that all input features are independent (Langley and Sage, 2013). If correlation 

between features is present, the importance of these features will be overemphasised during 

modelling (Misra and Li, 2020). Random Forests (RFs), used in three studies, are a popular 

classifier due to their ability to negate overfitting. However, applying RFs to prediction 

problems can be challenging due to the need for hyperparameter tuning (Wyner et al., 2015). 

Given the success of the forementioned algorithms in a range of application areas, it is 

perhaps not surprising that these three algorithms were the most used across all publications 

(Pretorius, Bierman and Steel, 2016). 

 

None of the included studies used Neural Networks (NNs) to predict AD. NNs are powerful 

predictive algorithms, with the ability to learn non-linear patterns in complex datasets. In 

some scenarios, they can infer relationships in the data which are beyond the scope of other 

ML techniques (Kumar, 2014). A possible explanation for their absence could be the 

structure of datasets used across the selected models, where the number of predictors often 

outnumbered individuals. In the scenario where a dataset has many more predictors than 

individuals, a prediction algorithm is more susceptible to overfitting (Pavlou et al., 2015). 

NNs are known for being complex to implement, as well as difficult for hyperparameter 

tuning and susceptible to overfitting (Pavlou et al., 2015). This could explain why they were 

not present in the reviewed studies. 

 

Another potential reason for the absence of NNs in this review is the omission of the term 

from our keyword search, that is we searched for the term machine learning, rather than 

specific ML techniques. This could be purported as the main limitation of this review as 

some research papers might have been mistakenly excluded. A subsequent search for the use 

of NNs for AD prediction returned a study (de Velasco Oriol, 2019), which used deep NNs to 

predict AD from SNP data. Using the ADNI dataset, the authors conducted several 
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experiments to predict case-control status. A standard architecture was implemented for the 

NN, along with 5-fold CV for model validation. Results for the NN across experiments 

centred around 65% AUC. However, this paper would not have been included in the review 

due to it being a pre-print, and therefore lacking a peer review. A secondary study using NNs 

was also found, that used SNPs and MRI data from ADNI (Zhou, Thung, et al., 2019). The 

authors developed a novel stage-wise deep learning framework, which fused multimodal data 

in stages. This method achieved a classification accuracy of 64.4%. 

 

Greater focus in recent years has been given to the possibility of bias when authors introduce 

novel concepts. For instance, authors may aim to achieve the best prediction accuracy 

possible in order to supersede previous publications. This may have been achieved by 

choosing datasets which produce the best accuracy only, leading to a lack of generalisation in 

the research area. This possibility has led to comparative studies which draw comparisons 

between novel techniques and historic models (Hand, 2006).  

 

A number of consistent issues were highlighted across the included studies. One of the main 

focus points was the widespread usage of the ADNI dataset, where 10 of the 12 included 

studies used this as a data source. Methods used to demonstrate model performance were 

reported inconsistently. The combination of low EPV values and inconsistent model 

performance reporting led to the possibility of bias in the analysis phase of modelling.  In 

terms of model implementation, the main aspects scrutinised were the use of any 

hyperparameter tuning, as well as the methods used for model validation. Hyperparameter 

tuning has become an increasingly important part of ML development. The majority of 

algorithms require certain values for hyperparameters which are specified by the user. If 

these values are not optimised, then the model is susceptible to overfitting and inaccurate 

predictions (Weerts, Mueller and Vanschoren, 2020). Five out of the 12 studies referenced 

the use of hyperparameters, the remaining 7 studies did not outline any tuning methods. 

Greater transparency about the use of hyperparameters and their tuning allows the reader to 

understand whether issues such as overfitting were accounted for. Therefore, researchers 

should report both hyperparameter values and methods used to obtain them. 
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Model validation is also an important aspect of predictive analysis. Correct methods of 

validation reduce the likelihood of overfitting, whereby algorithms become too reliant on the 

training/test data and cannot perform sufficiently when tested on unseen data (Vabalas et al., 

2019). The most commonly used method among the selected studies (11/12) was CV. This 

method has become increasingly popular in prediction models, due to its ability to counteract 

overfitting (Ghojogh and Crowley, 2019). Eleven of the 12 studies which reported CV used a 

varying number of folds, whilst one of these publications used a technique called leave one 

out CV. In the majority of cases, the higher the number of folds, the greater the accuracy 

from CV. However, increasing the number of folds leads to a higher chance of overfitting 

(Ghojogh and Crowley, 2019). Therefore, leave one out CV is only suitable for small 

datasets, where the number of samples is <100 (Yadav and Shukla, 2016). Nested CV was 

used by two studies only. These were the only evidence of using separate validation folds for 

both model optimisation and hyperparameter tuning throughout all included studies. Using 

the same CV split for both of these tasks can introduce overfitting (Varma and Simon, 2006), 

therefore we recommend the use of nested CV for future analysis. The only publication 

which did not report CV used a train and test split method for internal validation. The model 

is trained only once, increasing the chance of a model becoming too reliant on the training 

data and thereby reducing its ability to replicate in independent datasets. Since the split of the 

data is conducted randomly, an argument could be made that the derived results could be 

influenced by this single split (Ibrahim and Bennett, 2014). Therefore, methods which use a 

form of CV are recommended.  

 

Calibration compares the similarity of probabilistic predictions with observed outcomes. This 

metric was only reported in one study (Wei, Visweswaran and Cooper, 2011a). As described 

in Chapter 2 (methods chapter), calibration is of high importance when assessing ML 

performance, this is especially true when considering models which may be implemented in 

the medical sector (Steyerberg et al., 2010). The implications of incorrectly communicating 

the risk of developing AD to an individual could cause considerable harm, by means of both 

physical and psychological trauma. With the potential of causing death due to incorrect 

treatment in the most serious of circumstances (Park and Ho, 2020). Therefore, we 

recommend that authors aim to produce highly calibrated models and also report calibration 

statistics. 
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Another aspect investigated in this review was the sample size used in the training of models. 

These were relatively small with most studies using between 300-900 individuals (due to the 

common use of the ADNI dataset). Different quality control techniques also resulted in the 

number of predictors (SNPs) to vary across publications, ranging between tens of SNPs to 

over 100,000. The combination of small number of samples and large number of predictors 

led to low EPV scores, the highest of which was 9.43 in (Chang et al., 2020). The common 

use of ADNI also contributed to low EPV values due to the consistent implementation of 

small numbers of participants and high numbers of predictors. A more commonly known 

term for low EPV values is the ‘curse of dimensionality’. This refers to the requirement for 

more training data when the number of features is increased. If the number of samples is not 

sufficient with respect to the number of features present, an ML algorithm is more likely to 

overfit. The number of samples therefore must increase at a certain rate in order to balance 

this relationship. Low EPV values suggest this balance has not been achieved (Verleysen and 

François, 2005a).  

 

One method for dealing with a large number of features and the issues that this could cause, 

is feature selection. An example of this is Minimum Redundancy Relevance (mRMR). This 

method is widely used in genetic studies (Radovic et al., 2017). In mRMR, features which are 

significantly correlated with the target variable are identified and this subset is then filtered 

further based upon correlations between features, with heavily correlated features being 

discarded. However, this method was used in only one (de Velasco Oriol, Edgar E. Vallejo, 

et al., 2019) of the 12 studies reviewed.  To summarise, all EPV scores were below the 

threshold recommended by PROBAST. Small sample size may be a difficult issue to 

overcome therefore, it is advisable to use CV to reduce the impact of possible overfitting.  

Further techniques, such as nested CV have been shown to mitigate overfitting more 

effectively (Vabalas et al., 2019). We therefore encourage authors to investigate which type 

of validation technique would be suitable for their models.  

 

This review aimed to assess ML models which used SNP data for AD prediction. Of the 12 

studies reviewed, eight used SNPs only, and the remaining four combined SNPs with other 

data modalities. In terms of AUC, it appears that using a multimodal approach may lead to 

better prediction performance. For example, An et al., 2017  have shown that AUC was 
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85.5% for SNPs alone and 97.4% when both SNP and MRI data were considered together. 

However, for the studies that reported ACC only, there appears to be little difference in 

predictive performance between those which used SNPs only and those which used a 

multimodal approach.  

 

When considering other factors which may cause differences in prediction performance, class 

imbalances appeared to have a negligible effect. Extreme values of class imbalance did not 

lead to largely different accuracy results. Class imbalances can lead to poorer prediction due 

to the model favouring the majority class. Techniques such as under/over sampling can be 

used in order to overcome this issue. Between the two methods, under sampling has been 

found to be more effective in addressing predictive bias (Blagus and Lusa, 2013). This is due 

to a common issue amongst over sampling algorithms, in which the creation of synthetic 

minority samples can introduce noise to the data (Jiang et al., 2021). The issue of class 

imbalance was not of major concern in the reviewed papers, however with the availability of 

large population cohorts (e.g., UK Biobank), care should be taken when analysing diseases 

with small prevalence, which includes AD and other dementias. 

 

Data leakage is another issue to be considered. It occurs when an algorithm’s performance is 

artificially inflated due to information being leaked from the training to test dataset. 

Manipulating data before training and validation may inadvertently leak information and 

boost performance. A way in which this can occur is pre-processing on the entire dataset 

before data is split. This is relevant to imputation of missing values, derivation of and 

adjustment for population structure. In order to avoid this, any pre-processing steps should be 

carried out separately in both the training and test datasets (Samala et al., 2021). To achieve 

non-biased results, an ML algorithm should always be validated on data separate to training 

data. Nested CV can be used to ensure pre-processing is carried out per fold, as this reduces 

the risk of data leakage (Parvandeh et al., 2020). 

 

ROB in the remaining three sections of PROBAST (participants, predictors and outcome) 

was considered to be low for all publications. The usage of cross-sectional data reduced the 

ROB for the study participants. The use of a well-documented dataset (ADNI) provided 

details in areas such as predictor collection, the determination of disease status and inclusion 
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of individuals in these studies. These areas could not be assessed in the two studies which did 

not use ADNI. The widespread use of ADNI also provided the possibility of comparison 

between studies due to the common data samples, however this prevented the possibility of 

performing a meta-analysis. The use of a range of data sources in future studies would be 

beneficial for the development of ML models and is likely to improve their robustness and 

replicability. In particular, the continued use of the same resource does not provide insight 

into the performance of ML in different populations. If used in frontline medicine, models 

will have to be able to predict upon individuals from different genetic backgrounds (Martin et 

al., 2017). For instance, 93% of the participants of ADNI are Caucasian (R. C. Petersen et al., 

2010b). It has been shown that GWAS results from primarily Caucasian subjects do not 

replicate well in other races, which may also impact the prediction success of ML algorithms 

trained on them (Haga, 2010). Overall, despite ROB being low for the first three sections of 

PROBAST, issues within the analysis phase of modelling introduced possibilities of bias. 

This could bring the validity of the results into question.  

 

Reviews in the field of ML for AD prediction have been previously conducted. Tanveer et 

al., 2020  conducted a comparison between three different ML techniques (SVMs, NNs and 

ensemble methods). The type of data used was imaging only, leading to a greater number of 

included texts. Comparisons were drawn between the methods but further detail on ROB was 

not included. Khan, 2015 also conducted a review into ML prediction for dementia which 

included models using imaging data. In their review a large percentage of studies used ADNI 

as their data source, and their results and conclusions follow a similar pattern to this review, 

however the authors did not formally assess ROB. 

 

A potential limitation of this review is the exclusion of models predicting between MCI 

individuals and AD cases. It is known that not all those who experience mild cognitive 

decline develop AD (Knopman and Petersen, 2014). However, it could be argued that future 

diagnostic tools will be used to predict disease likelihood in both cognitively healthy 

individuals and MCI examples. Therefore, models will be required to distinguish between 

cognitively healthy, MCI and AD patients. When considering MCI however, differentiating 

between this and AD status has proven to be difficult (Jekel et al., 2015). It was for this 
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reason that attention was only given to examples of prediction between cognitively normal 

and AD patients.  

 

This review has highlighted a number of areas which require improvement in the field of ML 

for AD prediction using genetic data. Some areas require greater attention than others, 

namely the reporting of model performance and development. Reporting these measures 

thoroughly will allow for an accurate comparison between studies and provide better clarity 

for the performance of the models. More detailed description is also required when 

explaining model implementation, with special emphasis on hyperparameter tuning. This will 

provide greater understanding of how authors have attempted to maximise performance and 

reduce the possibility of overfitting. Furthermore, the majority of studies in this review used 

the publicly available ADNI dataset, which demonstrated a clear overreliance on one 

particular data source of Caucasian origin. Using a wider range of data sources would 

enhance the validity of results and also develop understanding of the applications of ML for 

AD prediction in more diverse populations.  

 

3.4.1 Conclusion 
 

In conclusion, ML will continue to be used more extensively in both academia and the 

industry due to its ability to analyse complex patterns in datasets, which will allow users to 

achieve better risk prediction as compared to more classical statistical methods . The 

continued usage of ML will boost the development of feature selection techniques and lead to 

improvements for classification and model optimisation algorithms. These models have great 

potential to improve clinical risk prediction for AD, and many other complex genetic 

diseases. Since genetic data is classed as sensitive data under General Data Protection 

Regulation, most of the large genetic datasets require strict permissions and exact description 

of usage. UK Biobank is one of the largest cohorts, however it may not be suitable for 

application of ML to AD, as it is a population-based cohort with relatively young 

participants. The Dementias Platform UK (DPUK) (Bauermeister et al., 2020) is an attempt 

to provide a secure computational platform collecting genomic data from UK cohorts suitable 

for dementia research. The future of artificial intelligence (AI) applied to large genomic data 

lies with specifically designed secure computing facilities to store and analyse the sensitive 

data. 
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This chapter was published as a systematic review (Rowe et al., 2021a). Analyses conducted 

in this thesis will be guided by some of the issues highlighted in this review. For instance, 

model performance shall be reported using AUC in all cases. Emphasis will also be given to 

providing calibration statistics for algorithms, as this review revealed a consistent lack of 

reporting of these. Another important factor which shall be implemented is the use of nested 

CV when tuning algorithm hyperparameters, with the intention of avoiding inflated 

prediction results. This process will be clearly outlined, as the majority of studies included in 

this review failed to detail whether models had been developed in this manner.  
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4 Assessment of machine learning versus PRS for the prediction of 
AD 

 

 

4.1 Introduction 
 

Analyses conducted in Chapter 4 focused on evaluating initial comparisons between 

polygenic risk score (PRS) and a selection of machine learning (ML) algorithms to predict 

Alzheimer’s Disease (AD). As discussed in the Introductory chapter, AD exists in a number 

of different forms. Analyses in this chapter and throughout the thesis predicted examples of 

the sporadic version only, however both late and early onset cases were present. Genetic 

variants used as predictors were those deemed GWAS significant in Kunkle 2019 (Kunkle et 

al., 2019). Methods to control for confounders such as population stratification, age and sex 

were also investigated. Calibration statistics for ML models were also reported, with methods 

to improve calibration also explored. 

 

A commonly used method for genetic prediction of a phenotype or a disease risk is the PRS 

(described in Section 1.10.1, Chapter 1) (Collister, Liu and Clifton, 2022b). Disease risk 

predictions derived from a regression model are used to discriminate between cases and 

controls, with accuracy often measured by means of the area under the curve (AUC). When 

assessing the neurodegenerative disorder AD, empirical evidence has suggested that AD is a 

polygenic disease (Escott-Price et al., 2015) with its genetic component most likely the result 

of many mutations, with potential gene-gene interactions (Zhou et al., 2021). Accuracies 

differ across psychiatric and neurodegenerative disorders. For instance, studies have 

produced AUCs of 70% for schizophrenia (Calafato et al., 2018), up to 82% for AD 

(Leonenko, Shoai, et al., 2019) and ~58% for major depressive disorder (Fullerton and 

Nurnberger, 2019). A potential drawback of linear modelling (and in turn PRS) is the 

inability to assess complex non-linear relationships between SNPs, leading to the possibility 

of reduced accuracy when predicting AD by genetic variants (Slunecka et al., 2021).  

 

Machine learning classifiers function by learning complex patterns between inputs and 

outcomes, with in turn could lead result in the assessment of complex non-linear relationships 

between SNPs. Similarly, to PRS, ML models using SNPs as inputs have been previously 

used to make predictions of disease risk. For example, Wei et al., 2013, used penalised 

regression to predict disease status for Crohn’s disease, a chronic bowel condition. A total of 
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six thousand SNPs were used for predictors, with a discrimination value of 83% AUC 

achieved. SNPs have also been used for the prediction of celiac disease, in which six 

European cohorts were combined for analysis. Prediction accuracy of 90% AUC was 

reported when using a penalised support vector machine. In terms of neuroscience, genomic 

variants have been used to make predictions for various diseases. Yang et al., 2010 combined 

SNPs with neuroimaging features to predict schizophrenia, with a support vector machine 

achieving a prediction of 87% AUC. A number of studies have used ML to predict AD from 

genetic data. Algorithms including the random forest, support vector machine, penalised 

regression and k-nearest neighbours achieved between 60-70% AUC. Despite the growing 

interest in ML applications, the number of research articles investigating ML for prediction 

of AD using SNPs is still relatively small. The majority of studies focus on the use of other 

data sources such as brain imaging data (Rowe et al., 2021b).  

 

As mentioned previously, interest in disease prediction by both PRS and ML has increased 

recently. However, methodological issues have also been discovered. When assessing the 

genetic prediction of AD, population stratification and the difference in age of cases and 

controls have been identified as a potential limitation for ML. These differences may lead to 

false positives if not controlled for, as ML algorithms might predict based upon age (or 

population stratification) and not the underlying genetic structure (Le Guen et al., 2021). 

Techniques to control for the effect of confounders on AD prediction will be explored in this 

chapter. 

 

Efforts have been made to compare the disease prediction capabilities of ML and PRS. As 

stated previously, a limitation of PRS is its use of linear modelling, which renders the method 

unable to assess complex non-linear patterns between SNPs. In contrast, ML algorithms can 

learn complex data interactions between features (if these exist). This advantage should allow 

ML to achieve greater prediction accuracy for complex disorders (Mena Mamani, 2020). This 

has proven to be correct for a number of diseases (Elgart et al., 2022), however published 

results have also demonstrated superior prediction for PRS in some instances (Gola, 

Erdmann, Müller-Myhsok, et al., 2020). A reason for this might be the requirement of large 

amounts of training data for ML to assess non-linear relationships. Such volumes of data are 

not always available due to difficulties in collecting samples and costs associated with 
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sampling (Medina-Gomez et al., 2015). A definitive conclusion cannot yet be reached as to 

which is the superior method, as results appear to be dependent on the phenotype in question 

(Gola, Erdmann, Müller‐Myhsok, et al., 2020). 

 

Bracher-Smith et al., 2022 compared the predictive capability of ML versus PRS using 

logistic regression (LR) for Schizophrenia. Detailed analyses identified that ML did not 

improve prediction accuracy over and above LRs. However, comparisons of PRS based LRs 

and ML algorithms trained using SNPs are yet to be drawn for AD prediction. Given this, the 

central aim of this chapter is to compare the accuracy of PRS-based regression models and 

ML algorithms for AD prediction, with the intention of providing novel insights into whether 

ML can outperform the use of PRS. This investigation is motivated by the variability of 

accuracy when using PRS for disease prediction in the medical sector. Poor accuracy can 

result in incorrect decisions being made when treating individuals, increasing the possibility 

of harm for patients (Kelly et al., 2019). Therefore, health services only employ predictive 

algorithms which have passed stringent testing (Kumar et al., 2022). Given this, it is hoped 

by many in the genetics community that ML methods will be able to outperform PRS in 

predicting life changing disorders such as AD (Ho et al., 2019b).  

 

Main aims:  

• To compare the performance of PRS and ML for the prediction of AD.  

• Explore techniques to correct for the confounding of disease risk. 

 

4.2 Materials and methods 
 

4.2.1 Data  
 

Data used in this chapter were taken from the GERAD consortium GWAS (Harold et al., 

2009). The study comprised 6980 cases and 12022 controls. The Illumina 610-quad chip (610 

array) was used to genotype 4,113 cases and 1,602 controls. A further 844 cases and 8,080 

controls were previously genotyped using either the Illumina HumanHap550 (550 array) or 

Illumina HumanHap300 chips (300 arrays). These previously genotyped samples were from 

seven different studies, making eight studies in total: 1) 610; 2) Mayo; 3) 1958 birth cohort 
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(sanger); 4) 1958 birth cohort (T1DGC); 5) ALS control; 6) Coriell control; 7) Heinz Nixdorf 

Recall (HNR) study; 8) KORA F4. Due to the use of different genotype arrays, stringent 

quality control (QC) methods were applied, in order to minimise the difference in genotyping 

error rates between groups. None of these steps were conducted by myself and were carried 

out prior to this thesis. 

 

Only autosomal SNPs were included in the study, and can be split into four different 

categories: 1) 266,714 SNPs common to all three arrays and all genotyped individuals; 2) 

202,516 SNPs common to the 610 and 550 arrays, but not present in those genotyped using 

the 300 arrays; 3) 7,744 SNPs common to the 610 and 300 arrays, but not present in those 

genotyped on the 550 arrays; 4) 105,614 SNPs genotyped only on the 610 arrays. Further QC 

steps carried out in (Harold et al., 2009) on both samples and variants are described in greater 

detail in Table 4.1. 

 

Table 4.1: A description of the QC procedures used on both samples and SNPs. 

 

QC Stages-

Samples 

Individual Sample 

Exclusions 

QC Stages-

SNPs 

SNP Exclusions 

 

Missing 

Genotypes 

 

1,469 samples were removed due 

to missing genotype rate > 0.01. 

 

MAF and Hardy 

Weinberg 

Exclusion 

 

SNPs were excluded with a MAF of < 

0.01 and Hardy Weinberg P-value < 

1x10-5.  

 

Mean autosomal 

heterozygosity 

 

578 Individuals removed 

 

Further MAF 

exclusion  

 

For SNPs with MAF > 0.05, these 

were excluded if their genotype 

missing rate was > 0.03 in both case 

and controls. For those SNPs with 

MAF between 0.01 and 0.05, variants 

were removed if their genotype 

missing was less than 0.01. These 

steps resulted in 43,542 SNPs being 

excluded. 

 

Inconsistent 

Gender report 

 

A further 71 samples were 

removed due to incorrect gender.  

 

Addressing the 

usage of inter-chip 

and inter-cohorts 

 

To achieve this, minor allele 

frequencies were compared between 

controls in the different groups. 
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Logistic regression analysis was used, 

with the previously determined four 

PCs used as covariates. These 

comparisons were made only on 

individuals from the same 

geographical areas. Quantile – 

quantile plots were used to compare 

cohorts, with chi squared statistics 

used to determine whether SNPs were 

to be excluded or not. A further 9,828 

SNPs were removed due to this 

 

Inconsistent 

Gender by 

genotypes 

 

93 individuals were removed due 

to genotypes not matching 

specified gender. 

 

Final number of 

SNPs following all 

QC stages.  

 

529,218 autosomal SNPs for analysis 

 

 

 

Identity By 

Descent (IBD), 

Hardy Weinberg 

rate and MAF > 

0.01 

 

 

An individual from a pair was 

removed if a value of 0.125 IBD 

or above was calculated. This 

combined with a Hardy-

Weinberg rate of p> 1x10-5 and a 

minor allele frequency of > 0.01, 

led to the removal of a further 

506 samples. 

 

  

 

Detecting 

individuals of 

non-European 

ancestry  

 

 

Genotypic data from the 

remaining individuals were 

merged with the same SNPs from 

210 unrelated individuals from 

the HapMap project.  

IBS distances were again 

computed for all pairs of samples. 

The values from this were then 

used as an input matrix for multi-

dimensional scaling (MDS). Plots 

from this identified three clusters 

of European, Asian, and Yoruba 

samples. A further twelve 

individuals were identified as 

outliers from this and removed. 
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Population 

Structure 

assessment using 

PCA 

PCs were computed on 57,966 

SNPs common to all arrays used. 

PCs were calculated and the 

EIGENSTRAT program was 

used to identify outliers. 188 

individuals were identified as 

outliers and subsequently 

removed. 

  

 

Resulting number 

of Samples after 

all QC stages 

 

Following these QC measures, a 

total of 3,491 AD cases and 7,488 

controls remained. 

 

  

Table 4.1. The first column related to QC stages carried out for samples. The second column describes these stages in detail. 

The third column outlined QC stages for SNPs, whilst the final column explains these steps in detail.  
 

 

As discussed during the introduction chapter, AD can be separated into early onset (EOAD 

and late onset (LOAD) forms of the disease depending on the age of the patient. EOAD can 

further be split into the sporadic and mendelian versions of the disease, whilst late onset 

comprises the sporadic form only. Most cases present in the GERAD dataset are examples of 

the late onset sporadic form of the disease. However, early onset sporadic cases were also 

included. In order to be defined as a case, patients were required to pass one of the national 

institute of neurological and communicative disorders and stroke (NINCDS) (Jack et al., 

2011), the diagnostic and statistical manual of mental disorders (DSM-IV) (GUZE, 1995) or 

the consortium to establish a registry for Alzheimer’s disease (CERAD) (Fillenbaum et al., 

2008) criteria.  

 

 

Although the original source of data for analyses in this thesis was Harold et al., 2009, the 

exact dataset used was from Leonenko, Sims, et al., 2019. In which samples from the 

GERAD dataset were used to predict lifetime risk of AD development. The following table 

provides an outline of all included cohorts and a range of descriptive statistics.  
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Table 4.2: A description of the cohorts present within the dataset. 

 
Statistics/Cohort MRC ART BONN WASHU NIMN UCL-

Laser 

UCL-

PRION 

HNR 1958BC KORA Total 

Cases 1009 960 555 423 127 47 211    3332 

Female (%) 63.7 60.9 63.8 56 63 74.5 58.3     

Mean Age 77.9 76.6 76.6 82.1 80.1 80.6 63.6     

Controls 873 82 37 233    353 5343 434 7355 

Female (%) 51.6 59.8 64.9 66.5    53 49.8 49  

Mean Age 51 77.9 79.5 78.5    54.6 45 56  

Geographical 

Region 

UK/Ire UK Germany USA USA UK UK Germany UK Germany  

Illumina Chip 610 610 610 610 610 610 610 550 550 550  

Table 4.2. Statistics are separated by cases and controls, with values for the different cohorts given in each column. 

 

4.2.2 Sample selection 
 

This sample size used for analyses comprised 10687 people, of which 3332 are AD cases and 

7355 are controls. Box and whisker plots shown in Figure 4.1 demonstrate the distribution of 

age within both cases and controls. 
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Figure 4.1. Distribution of age within GERAD. 

 

 
 

 

 

When observing the box and whisker plots in Figure 4.1, it is clear the distribution of ages for 

cases is different to that of controls. The mean age of cases is 75.3 years, with a median age 

of 77. In contrast, the mean age of controls is 51.2 and a median value of 45. The diagram 

also outlines that controls over the age of 55 are considered outliers. The difference in age 

distribution between the two sets can be explained by the presence of the 1958 birth cohort 

which contains 5443 controls aged 45 years.  

 

The following figure demonstrates the breakdown of gender within the GERAD data set. 
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Figure 4.2. Distribution of gender within GERAD. 

 

 
 

 

Figure 4.2 shows the greater number of females than males within GERAD. When assessing 

the breakdown of cases and controls by gender, controls consist of 48.0% males and 52.0% 

females, whilst cases comprise 36.3% males and 63.7% females.  

 

For all analyses in this thesis, individuals within the 1958 birth cohort were also removed in 

order to make the age of distributions for cases and controls more similar. The result of this 

on the distribution of ages in both cases and controls is shown in Figure 4.3. 
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Figure 4.3. Distribution of age within GERAD, with the 1958 birth cohort removed. 

 

 

 

The box and whisker plots shown in Figure 4.3 demonstrate a change in the distribution of 

ages in controls when compared to Figure 4.1. The spread of age for controls is now more in 

line with that of cases, with a lesser number of outliers. The mean age of controls is now 67.5 

compared to 51.2 previously. This final dataset consisted of 3332 cases and 2012 controls 

(this is discussed further in Section 4.5.2). 

 

4.3 Methodology 
 

4.3.1 Selecting SNPs for analysis 
 

 

Independent genome-wide significant SNPs (p-value < 5x10-8) (N SNPs=23) as reported in 

Kunkle et al., 2019 are likely to be strong predictors of AD due to being the most statistically 

significantly associated. Therefore, these 23 SNPs were used as predictors for all classifiers. 

None of these 23 SNPs were present in the GERAD (Harold et al., 2009) dataset.  This 

absence is likely be due to the genotype data used in this chapter not being imputed. In order 

to overcome this mismatch, each of the 23 SNPs were used as index SNPs and were 

subsequently used to find a set of proxy SNPs, which were available in GERAD (Harold et 

al., 2009). 
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The SNP in GERAD most closely correlated with each GWAS index SNP was identified. 

Two separate methods were used to achieve this. In method one, R-squared (r2) values 

between each index SNP and all variants within a 1MB window around the index SNP were 

calculated using an online calculator https://grch37.ensembl.org/Homo_sapiens/Tools/LD. 

The SNP in each window with the highest r2 with the index SNP was chosen as the proxy 

variant. The second method for selecting a set of proxy SNPs included the use of clumping. 

Clumping is a method which calculates ‘clumps’ (blocks of SNPs in linkage disequilibrium 

(LD)) in a predefined genomic window. These blocks are formed around index SNPs, who 

are deemed significant based on an initial p-value threshold (p-values provided by summary 

statistics). Those SNPs surrounding the index SNP are then pruned based upon an r2 

threshold with relation to the index SNP. Variants whose r2 values are greater than this 

threshold are removed, with those below the threshold remaining. Index SNPs are also 

retained within each clump.  

 

The GERAD (Harold et al., 2009) dataset was clumped using the Kunkle-noGERAD 

summary statistics (18,805 cases and 34667 controls), in which all samples from GERAD 

were excluded to achieve independence. Clumping was performed twenty-three separate 

times, in which the chromosomal position of a different Kunkle SNP was used on each 

occasion. The GERAD SNP with the lowest p-value in each of the 23 sets was then chosen as 

the proxy variant. For each separate action of clumping a p-value threshold of 0.1 was used. 

This was alongside an r2 threshold of 0.1 and window of 500 kilobases. Clumping was 

achieved using the genome association analysis toolset PLINK (Purcell, Neale, Todd-Brown, 

Thomas, Manuel A.R. Ferreira, et al., 2007). This software provides the function --clump, 

which achieves the clumping process. 

 

4.3.1.1 Further SNP selection 
 

The APOE gene has been strongly associated with AD risk (Safieh, Korczyn and Michaelson, 

2019). To assess how the PRS and ML algorithms would perform without the APOE 

influence, SNPs in the associated region (19:45409039-45412650) were removed. Therefore, 

four sets of SNPs were included in the analysis, two sets including the APOE region and two 

without.  

https://grch37.ensembl.org/Homo_sapiens/Tools/LD
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Alongside these sets of variants, a less stringent p-value threshold was used to select a larger 

set of SNPs for analysis. Reasoning for this centred on the possibility that the genome-wide 

significant SNPs reported by Kunkle et al., 2019 may not represent the entire genetic 

component of AD. In order to achieve this, GERAD SNPs (Harold et al., 2009) were 

clumped using Kunkle-noGERAD (Kunkle et al., 2019). To generate a larger SNP set for 

analysis in this chapter, a p-value threshold of 0.01 was used. This was accompanied by an r2 

threshold of 0.1 and window of 500 kilobases (Privé et al., 2019). A total 422 SNPs resulted 

following this process. 

 

4.3.2 Cross-Validation 
 

Cross-Validation (CV) is a resampling technique used in ML and other statistical models to 

reduce the chances of overfitting. Analysis in this chapter used the validation technique 

nested CV, using the StratifiedKFold function from the Python package sklearn. The function 

generates k partitions, with a defined training and test set. This method was chosen as it 

allows for manipulation of both the training and test folds, for the purposes of pre-processing 

data. For ML algorithms to achieve a true estimate of prediction accuracy, all data within the 

test/validation set must be kept separate from model training (Hillel et al., 2021). One of the 

most common practices which can lead to data leakage in ML, is the manipulation of data 

before splitting into training and test sets, with a common example being the standardisation 

of values (Hannun, Guo and van der Maaten, 2021). The ability to manipulate both training 

and test folds separately decreases the risk of data leakage, as pre-processing can be carried 

out separately in each fold. 

 

The ‘stratified’ nature of the process ensures a consistent number of both cases and controls 

throughout folds of CV. In practice, any number of k folds can be used, however the most 

used values are five and 10 (Krstajic et al., 2014). Research has shown that little difference 

occurs in classifier performance when using either value, however five rounds of CV require 

less computational resources than 10 (Krstajic et al., 2014). Therefore, it was determined that 

five rounds of CV were sufficient for modelling. The ‘nested’ aspect of this method refers to 

the tuning of hyperparameters.  
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4.3.2.1 Imputation of missing genotypes 
 

The stratified nature of the CV method used for analyses allowed for pre-processing steps to 

be carried out separately in training and test folds. Missing genotypes in both sets were 

imputed by calculating the modal genotypic value for each SNP respectively. This was 

achieved using the mode function from the Python package statistics. Critics of this technique 

state however, that imputed values are an incorrect representation of the population values 

thereby reducing variance within the data set (Khan and Hoque, 2020). Given the small 

number of missing values, it was decided that such an impact would be minimal due to the 

adjustment of variation being minor. 

 

4.3.2.2 Correction for population stratification 
 

It is widely accepted that SNP associations in GWAS should be adjusted by the inclusion of 

principal components (PCs) in regression models to account for population differences and 

other potential confounders e.g., genotyping platforms. This approach can also be used for 

adjusting PRS values as used in Escott-Price et al., 2015. For the purposes of ML, it is not 

clear how to adjust genotypes for confounders as the inclusion of PCs alongside SNPs will be 

considered as extra predictors by the algorithm. Therefore, PCs were used to adjust genotypes 

of each SNP (predictor) prior to ML (Price et al., 2006). Regression modelling was used, in 

which genotypes for each SNP were response variables and three PCs were used as 

explanatory variables. The residuals from each model were extracted and standardised, with 

the resulting. Z-scores used as input values instead of genotypes to ML algorithms. The same 

method was used to adjust PRS values, with the respective Z-scores used for prediction. 

 

PCs were generated within Python scripts with values derived for samples within the training 

and test set respectively. The function PCA from the package sklearn was used to achieve 

this. The PCA function was fitted on the training set, this same function was then used to 

create PCs in both the training and test sets. It was decided to use three PCs for adjustment 

purposes, as this has been the amount used in previous studies using the GERAD dataset 

(Leonenko, Sims, et al., 2019). In line with other pre-processing techniques, the adjustment 

of genotypes for population stratification was carried out independently in the training and 

test sets. A linear regression was fitted using the LinearRegression function from sklearn in 

Python. Each SNP was adjusted on an individual basis. The response variable was the 
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genotype values of the respective SNP, with explanatory variables comprising PCs. The 

residuals of each regression were then extracted for use in ML.  

 

4.3.2.2.1 Adjusting genotypes for age and sex 
 

As age and sex may be (statistically) related to AD status, increasing the likelihood of a 

confounding relationship, the adjustment of both genotypes and PRS for these factors might 

remove the impact of confounding from analyses. Age information was not available for 

some individuals (N= 233). We imputed the missing values using the mean age of existing 

values, with cases and controls not imputed on a separate basis. Similarly to missing 

genotype values in Section 4.3.2.1, the use of mean imputation was used due to the small 

percentage of missing values and subsequent minimal effect on variation. Following the 

imputation of missing age, both age and sex were added as further variables to the adjustment 

similar to adjustment for PCs.  

 

4.3.2.3 Scaling values 
 

The last pre-processing step was to standardise the resulting residuals using the Python 

function StandardScaler. The function was fitted on the training set for adjustment, with the 

same function was then used to adjust the test set. The resulting values were then used for the 

training and validation of ML algorithms. PRSs generated from genotypes in both the 

training and test sets were also regressed using respective PCs, age and sex. Residuals from 

these adjustments were then standardised separately. Overall accuracy for ML algorithms 

was averaged across performance in the five CV test sets. This was also done for PRS, in 

which a logistic regression was used to assess case/control discrimination. 

 

4.3.2.4 Calculating polygenic risk scores 
 

To generate risk scores from the SNPs for samples in GERAD, score files from Kunkle-

noGERAD summary statistics were compiled. The data set included four columns for each 

variant, namely the SNP ID, reference allele, effect size and p-value. PLINK was used to 

generate risk scores. The PLINK parameters used were –bfile and –score, which indicate the 

original dataset and score (GWAS summary statistics) files, respectively. The output of these 

functions are PRSs generated at a pre-defined set of p-value thresholds. The PRS values 
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calculated at the optimal threshold are then used (this is explained further in the results 

section). Once calculated, the PRS values were then adjusted for PCs and standardised, as 

described previously. Once PRS values were calculated and adjusted, these were then used 

for disease prediction purposes.  

 

4.4 Machine learning methods 
 

To develop a broad understanding of how effectively ML predicts AD, a range of algorithms 

were used. These included Random Forests (RFs), Support Vector Machines (SVMs) with 

two different kernel methods, Gradient Boosted Trees (GB) and Naïve Bayes (NB). 

 

4.4.1 Random forests 
 

The Python function RandomForestClassifier from the package sklearn.Ensemble was used 

to build RFs, with the classifier instance chosen due to the need to predict between cases and 

controls. Hyperparameters are values which are specified prior to the training process. Python 

packages use default values; however, these can be optimised to maximise classifier 

performance. Four hyperparameters were chosen to be adjusted, these were max_depth, 

random_state, min_samples_leaf and min_samples_split. The hyperparameter max_depth is 

the maximum number of levels in each tree allowed and random state controls the random 

seed used by the algorithm. The parameters min_samples_leaf and min_samples_split are the 

minimal number of samples required to be at a leaf node and the minimum number of 

samples required to split an internal node respectively. To address class imbalances, the RF 

hyper-parameter class_weight was used to redistribute class weights. The option balanced 

was used, which determines class distributions in the training set and inversely upweights for 

the minority class. This assigns both classes equal weighting for prediction purposes. 

 

The function RandomizedSearchCV was used to determine the optimum values for all five 

hyperparameters. This functions by assessing the performance of all combinations of 

parameter values from a user defined sample. The hyperparameters values which produce the 

RF with the highest AUC are chosen. These parameters were derived using the nested CV. 

Once the optimum set of hyperparameters are identified using five rounds of inner CV, the 

RF is then validated using the outer loop of CV. 
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4.4.2 Gradient boosting 
 

Python’s function XGBClassifier was used to develop GB trees. RandomizedSearchCV was 

used to find the optimal values for both max_depth and n_estimators. GB includes a further 

parameter known as learning rate, determining how quickly the model corrects training error 

from one tree to another. This parameter was also learned through the RandomizedSearchCV 

method. Similarly, to RFs, a hyperparameter was used to counter the effect of class 

imbalances. The function XGBClassifier includes a hyper-parameter called 

scale_pos_weight. A weight must be passed to the function to redress the imbalance. This is 

calculated by dividing the number of minority class instances in the dataset by the number of 

majority samples, with the result multiplied by 100. In the case of the dataset used in this 

chapter, the result was 66. Models were trained and validated in the same manner as RFs. 

 

4.4.3 Support vector machines 
 

The package used to utilise SVMs was sklearn.svm, which provides the function SVC. Three 

parameters were passed to the function. The linear kernel and the radial basis function 

(gaussian kernel) were tested in order to determine the best performing option. These 

methods require values for the hyperparameter C, which controls the size of the dividing 

margin between classes The function RandomizedSearchCV was used to determine the 

optimum values. The use of a radial basis function kernel results in the need to define the 

second parameter gamma, which controls the curvature of a decision boundary. The setting 

for this was chosen as automatic. The effect of class imbalances on predictions was 

accounted for in the same manner as RFs, using the hyperparameter class_weight with the 

option balanced. Hyperparameter values were tuned using the nested CV approach. 

 

4.4.4 Naïve Bayes 
 

Software used for NB was sklearn. naive_bayes, which provides the function GaussianNB. In 

this instance no hyperparameters were used. The NB package sklearn. naive_bayes does not 

provide a method for dealing with unbalanced classes. The algorithm was trained and 

validated using stratified CV. 

 



 145 

4.4.5 Logistic regression for PRS 
 

Following the derivation and PC adjustment of PRS, the next step is to use these to assess 

discrimination between cases and controls. To achieve this the function LogisticRegression 

from the sklearn package in Python was employed. To ensure fair comparison, the same 

individuals in each test set used for ML models were also used in the LR. Therefore, PRS 

generated for the samples in each test fold were inputs, whilst disease status was the target 

variable. For the purposes of this chapter and thesis, this method will be known as ‘PRS-LR’ 

when comparing to ML algorithms. 

 

4.4.5.1 Further data balancing methods 
 

A further method tested to address the issue of age-based confounding in AD prediction was 

case-control matching (de Graaf et al., 2011). The matching process reduces the effect of 

confounding by ensuring an equal distribution of the confounding variables throughout both 

cases and controls, where cases are matched to controls based on suspected confounding 

variables. In the case of this study, they were matched on both age and sex. 

 

The process of matching was carried out in Python, in which custom functions were 

developed. Firstly, cases and controls were separated into two data frames. Following this, 

the ages of controls were taken and matched to each case. Once a match was determined both 

the case and control were appended to a new data frame. The matched case was then removed 

from the data frame of cases, this was to ensure the same sample could not be chosen twice. 

Once this was completed, the new data frame was then passed to a second function. Within 

this function, the same process was conducted, however this time individuals were matched 

on sex. The result of application of these two functions, was a data set with an equal number 

of controls and cases, whilst also being matched in sex and age. Prediction performance of 

both ML and PRS-LR was then assessed on this balanced dataset. The balancing 

hyperparameters for ML explained in previous sections were not employed for ML 

algorithms, as their use would be redundant due to the number cases and controls being 

equal. This was also true for adjusting PRS values and genotypes by age and sex. 
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4.4.6 Comparison of ML Performance 
 

Prediction performance for ML algorithms and PRS-LR in this chapter was reported by 

calculating the mean of all AUC values across test sets corresponding to each cross-

validation fold. However, when assessing classifier performance, comparing means visually 

does not provide statistical evidence to determine comparative relationships. Therefore, the t-

test was used to examine whether any differences in performance could be derived. As five 

rounds of CV were used, the number of paired observations will consist of five values of 

AUC (equal to the number of CV folds), with tests conducted on two classifiers at a time. 

The function stats.ttest from the package scipy was used to employ the paired t-test.  

 

In this and future chapters, the false discovery rate (FDR) controlling method Benjamini-

Hochberg was used to adjust for possible false positives. The adjustment was made using the 

statistical programming language R, with the function p.adjust used. Corrections were made 

for the number of pairwise comparisons between algorithms on an analyses-wide basis (for 

each supplementary table at one time).  

 

4.4.7 Model calibration 
 

Initial prediction probabilities were calculated using the predict_proba function. These were 

then plotted using a histogram from matplotlib. A loess smoother was used to aid in assessing 

the relationship between predicted and observed probabilities. The initial classifier 

probabilities were then calibrated using the function CalibratedClassifierCV with five rounds 

of CV. Probabilities were calibrated using the isotonic option. These calibrated probabilities 

were then plotted using the same method for uncalibrated probabilities.  
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4.5 Results 
 

The below table demonstrates SNPs which have been chosen using the r2 method (see 

Section 4.3.1): 
 

Table 4.3: GERAD Proxy SNPS’s selected using the r2 method from Index SNP’s from Kunkle 

et al., 2019. 

 

Original Marker 
code from Kunklea Chrb 

 
 

 
Effect Sizec 

 
 
 
P-valued 

Most related SNP In 
GERADe 

r2 

between index 

and proxy 

SNPf 

Proxy SNP 
chromosome/
positiong 

rs4844610 1 0.1466 8.246e-16 rs3818361 0.896 1:207784968 

rs6733839 2 0.1693 4.022e-28 rs744373 0.508 2:127894615 

rs10933431 2 0.1001 2.552e-07 rs11678851 0.558 2:233825947 

rs9271058 6 0.094 5.136e-08 rs1063355 0.515 6:32627714 

rs75932628 6 0.6989 2.948e-12 rs9367085 0.027 6:40848013 

rs9473117 6 -0.0823 2.323e-07 rs9381563 0.722 6:47432637 

rs12539172 7 -0.0674 2.093e-05 rs5015756 0.511 7:100013457 

rs10808026 7 -0.1018 3.058e-08 rs11767557 0.971 7:143109139 

rs73223431 8 0.0936 8.342e-10 rs755951 0.800 8:27226790 

rs9331896 8 0.1269 3.624e-16 rs11136000 0.911 8:27464519 

rs3740688 11 0.0935 9.702e-11 rs10769258 0.546 11:47391039 

rs7933202 11 0.1165 2.150e-15 rs7926344 0.916 11:59962166 

rs3851179 11 -0.1198 5.809e-16 rs7941541 0.769 11:85858538 

rs11218343 11 0.2053 2.633e-08 rs3781834 0.618 11:121445940 

rs17125924 14 -0.1222 6.621e-07 rs17125944 0.960 14:53400629 

rs12881735 14 0.088 4.876e-07 rs12878418 0.322 14:92923032 

rs3752246 19 -0.124 6.621e-10 rs2072102 0.548 19:1073073 

rs429358 19 -1.2017 0 rs8106922 0.127 19:45401666 

rs6024870 20 -0.1279 1.102e-06 rs6064392 0.913 20:54984768 

rs7920721 10 -0.0782 1.942e-07 rs7094380 0.637 10:11723257 

rs138190086 17 0.2535 7.463e-06 rs2440139 0.174 17:61285198 

rs190982 5 0.0564 0.0002809 rs304132 0.885 5:88215594 

rs4723711 7 0.0538 0.0002727 rs2718058 0.813 7:37841534 
a – Marker code for the original 23 significant SNPS from Kunkle; b – Kunkle SNP’s chromosome; c – Each Kunkle SNP’s effect size; d – The p-value of each SNP e –; The SNP from 

GERAD which is most related with each Kunkle SNP using the r-squared method. f – R-squared value between Kunkle SNP and GERAD SNP; g – The GERAD SNP’s chromosome 

position.  

 

When assessing the values of r2 for each proxy variant, it can be deduced that some of these 

were below 0.5. It could be argued that such values represent a small amount of association 

between the index and proxy SNP. However, it was decided to accept these low values as 

they were still larger than any other variants association in the genomic region. 
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The following table displays SNP’s chosen by the method of the best p-value, also described 

in Section 4.3.1. 
 

Table 4.4: GERAD Proxy SNP’s selected using a p-value (GERAD) method with Index SNP’s 

from Kunkle et al., 2019. 

 

Original Marker 
code from 
Kunklea Chrb 

Chr Position in 
kbc 

 

Effect 

Sized 

 

 

P-valuee 

Most Significant 

SNP in GERADf 

 
 
P Valueg 

rs4844610 1 1:207802552 0.1466 8.246e-16 1:207786289 2.84E-13 

rs6733839 2 2:127892810 0.1693 4.022e-28 2:127889637 2.00E-17 

rs10933431 2 2:233981912 
0.1001 2.552e-07 2:233977318 0.000172 

rs9271058 6 6:32575406 
0.094 5.136e-08 6:32224388 6.28E-05 

rs75932628 6 6:41129252 0.6989 2.948e-12 6:41150591 7.9E-05 

rs9473117 6 6:47431284 -0.0823 2.323e-07 6:47432637 6.84E-07 

rs12539172 7 7:100091795 
-0.0674 2.093e-05 7:99633385 2.30E-05 

rs10808026 7 7:143099133 -0.1018 3.058e-08 7:143109139 9.15E-08 

rs73223431 8 8:27219987 0.0936 8.342e-10 8:27226790 2.69E-06 

rs9331896 8 8:27467686 0.1269 3.624e-16 8:27464519 9.95E-13 

rs3740688 11 11:47380340 
0.0935 9.702e-11 11:47391039 2.17E-10 

rs7933202 11 11:59936926 0.1165 2.150e-15 11:59975078 3.72E-14 

rs3851179 11 11:85868640 -0.1198 5.809e-16 11:85868640 5.82E-13 

rs11218343 11 11:121435587 0.2053 2.633e-08 11:121436270 0.0000168 

rs17125924 14 14:53391680 
-0.1222 6.621e-07 14:53400629 3.09E-06 

rs12881735 14 14:92932828 0.088 4.876e-07 14:92344244 0.000526 

rs3752246 19 19:1056492 -0.124 6.621e-10 19:1051214 1.90E-05 

rs429358 19 19:45411941 -1.2017 0 19:45382034 1.78E-81 

rs6024870 20 20:54997568 -0.1279 1.102e-06 20:54984768 5.03E-06 

rs7920721 10 10:11720308 -0.0782 1.942e-07 10:11720308 3.32E-06 

rs138190086 17 17:61538148 0.2535 7.463e-06 17:61560763 0.000654 

rs190982 5 5:88223420 0.0564 0.0002809 5:88215594 0.00031 

rs4723711 7 7:37844263 0.0538 0.0002727 7:37882317 0.00019 
a – Marker code for the original 23 significant SNPS from Kunkle; b – Kunkle SNP’s chromosome; c – Each Kunkle SNP’s chromosome position; d – The effect size of each Kunkle SNP 

e – Each Kunkle SNPs p-value; f – SNP from GERAD which is most related with each Kunkle SNP after clumping. g – P-value of GERAD SNP after clumping.  

 

These methods resulted in two sets of SNPs, with an overlap of 30%. A larger set of SNPs 

was also created using the second method explained in Section 4.3.1.1, this led to a set of 422 

independent (r2=0.1) SNPs from GERAD at a p-value threshold of 0.01. 



 149 

4.5.1 Removal of the APOE region 
 

For SNPs chosen using the r2 method (from Table 4.3), rs2072102 and rs8106922 were 

removed. For the second method of SNPs chosen using the p-value method, rs6859 and 

rs3752240 were extracted (from Table 4.4). SNPs in the APOE region were not removed 

from the larger SNP set of 422 variants, with the intention of assessing whether SNPs in this 

region plus other variants would outperform the smaller datasets. Therefore, in total, five sets 

of SNPs were formed for analysis in this study. 

 

4.5.2 The removal of the 1958 birth cohort 
 

The presence of the 1958 birth cohort, consisting of 5343 controls all 45 years of age, skews 

the age distribution of the dataset in favour of controls. One of the aims of analyses in this 

chapter was to investigate methods to control for the confounding effects of both age and sex 

on AD prediction. However, it soon became apparent the presence of the 1958 birth cohort 

would result in spurious results even when accounting for these factors. This is displayed in 

results shown in Supplementary Tables 1 & 2. Analyses in Supplementary Table 1 represent 

the use of age and sex when adjusting both PRS values and genotypes. This resulted in high 

values of AUC for the two-decision tree-based algorithms (RFs and GB). Values for age and 

sex were then added as separate predictors to both ML and PRS-LR in Supplementary Table 

2, resulting in very high AUC for all classifiers. It was decided that these values were too 

high and biased due to the presence of the 1958 birth cohort. Therefore, it was decided to 

remove all birth cohort samples from GERAD. After removing 5343 controls, 5344 

individuals remained for all analyses, with 3332 cases and 2012 controls. Therefore, the class 

balancing techniques discussed in this chapter were still required due to the unequal numbers 

of cases and controls.  

  

4.5.3 Selection of the optimal threshold for PRS 
 

In addition to the set of 23 genome-wide significant SNPs, the clumping and thresholding 

method will be used to generate PRSs throughout analyses in this thesis. Following the 

selection of LD pruned SNPs through clumping, a range of PRS values are generated at 

different p-value thresholds. The next stage of the process is to determine which of these p-

value thresholds explains the highest phenotypic variance. This is achieved by fitting PRSs 

versus phenotype values in a series of LRs. The p-value threshold which returns the highest r2 
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value is considered to explain the highest phenotypic variance (Choi, Mak and Paul F 

O’Reilly, 2020b). The p-value thresholds compared in this thesis were 1e-8, 1e-6, 1e-4, 0.01, 

0.05, 0.1, 0.5. The use of PRS combined with prediction through a LR will be denoted as 

PRSS-LR for analyses.  

 

4.5.4 Results of analyses 
 

Results are detailed in figures, in which prediction performance is grouped by classifier (x-

axis). These results are given as AUC (y-axis), with the mean performance across five rounds 

of CV denoted by a coloured dot. Each dot represents one of the five types of datasets used 

(varying by number of SNPs). The mean performance of each classifier across these five sets 

is given. Classifier performance was compared statistically using the paired t-test, with test 

fold AUC values from two classifiers compared on each occasion. Statistics for each t-test 

calculated can be found in Supplementary Tables 7-9. Calibration statistics for each plot were 

also reported in accompanying figures. In this instance, each calibration plot represents the 

RF trained using the SNPs chosen by p-values (including APOE). 
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Figure 4.4 displays results in which genotypes and PRS were adjusted by PCs only. For each 

classifier, the mean AUC across five folds of CV is shown for each dataset. 

 
Figure 4.4: Results of PRS versus all ML algorithms: genotypes and PRS have been adjusted by 

PCs. 

 
Y-axis represents AUC in %; with classifiers placed on the X axis. Each dot represents the mean score for the prediction 

algorithm across SNP sets, with an accompanying 95% CI bar. The numbers placed centrally are the mean of the three p-

value threshold scores; GB Gradient Boosting; RF Random Forest; PRS-LR Polygenic Risk Scores Logistic Regression; 

AUC Area Under the Curve. Datasets described in the legend relate to how SNPs were chosen, including the larger SNP set 

denoted as ‘Increased SNPs. 

 
 

When assessing results in Figure 4.4, PRS-LR achieved higher accuracy than all ML 

algorithms by 2-4% AUC. This is supported by the majority of t-tests conducted between 

PRS-LR and ML classifiers returning a significant p-value (<0.05) (Supplementary Table 7). 

However, little variability occurred between ML methods. Results show that all classifiers 

achieved higher accuracy when using a p-value threshold of 0.01 to derive the PRS. This is 

not a surprising outcome as the algorithms were provided with more information to predict 

upon.  
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Figure 4.5: The comparison of non-calibrated vs calibrated prediction probabilities  
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These figures represent pre a) and post b) calibration plots for the related RF algorithm (Figure 4.4) (p-value 0.0001). The x-

axis represents the prediction output of the classifier in terms of the probability of being a case. With the y-axis denoting 

observed class frequencies. Perfect calibration in which predicted probabilities match observed accuracies is denoted by the 

diagonal dotted line. The blue dots represent the mean probability values within each quantile and are accompanied by a 

95% confidence interval (blue bar). The overall relationship between predicted probabilities and observed frequencies 

(calibration curve) is given by the fitted loess smoother (red line), with a 95% (grey shaded area) used. 

 

 

Plot 4.5a represents the uncalibrated output of the RF from Figure 4.4. The red line indicates 

a mixture of both under and over-estimation of case probabilities. This is due to the red line 

sitting underneath the diagonal between (0.4-0.5) and residing above the diagonal thereafter. 

Plot 5.b represents all probabilities post calibration, with some alteration in predicted 

probabilities. Probabilities between 0.4-0.5 are now underestimated, however a greater 

amount of predicted probabilities now lie on the diagonal, suggesting an improved level of 

calibration.  
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Figure 4.6: Results of PRS versus all ML algorithms with the 1958 birth cohort removed from 

GERAD, genotypes and PRS values have been adjusted by PCs, age and sex 

 
Y-axis represents AUC in %; with classifiers placed on the X axis. Each dot represents the mean score for the prediction 

algorithm across SNP sets, with an accompanying 95% CI bar. The numbers placed centrally are the mean of the three p-

value threshold scores; GB Gradient Boosting; RF Random Forest; PRS-LR Polygenic Risk Scores Logistic Regression; 

AUC Area Under the Curve. Datasets described in the legend relate to how SNPs were chosen, including the larger SNP set 

denoted as ‘Increased SNPs. 

 

Prediction accuracies displayed in Figure 4.6 are similar to those in Figure 4.4. Adjusting 

both genotypes and PRS by age, sex and PCs lead to no discernible difference to adjusting by 

PCs only. T-statistics generated again showed a significant difference between PRS-LR and 

ML classifiers, the only exception to this was SVM-Linear, which returned non-significant p-

values for some datasets (Supplementary Table 8). Comparisons between ML classifiers were 

largely non-significant, however algorithms such as SVM-Linear and NB returned some 

significant values when compared with GB.  
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Figure 4.7: The comparison of non-calibrated vs calibrated prediction probabilities  
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These figures represent pre a) and post b) calibration plots for the related RF algorithm (Figure 4.6) (p-value 0.0001). The x-

axis represents the prediction output of the classifier in terms of the probability of being a case. With the y-axis denoting 

observed class frequencies. Perfect calibration in which predicted probabilities match observed accuracies is denoted by the 

diagonal dotted line. The blue dots represent the mean probability values within each quantile and are accompanied by a 

95% confidence interval (blue bar). The overall relationship between predicted probabilities and observed frequencies 

(calibration curve) is given by the fitted loess smoother (red line), with a 95% (grey shaded area) used. 

 

 

When assessing pre-calibrated probabilities in Figure 4.7.a, an under-estimation of risk was 

between for all predicted probabilities. This under-estimation was reduced in Figure 4.7.b, as 

probabilities lay closer to the diagonal between 0.5 and 0.7. However, under estimation and 

over estimation of risk occurred at either end (0.35-0.5, 0.7-0.85).  
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4.5.5 Predictions with balanced data set  
 

 

All previous analyses only balanced the numbers of cases and controls prior to training and 

validation. A further method of balancing using both sex and age was used in this section. 

This was to counteract their confounding effect.  

 

Figure 4.8: Results of PRS versus all ML algorithms with CV balanced for sex and age, with 

genotypes and PRS have been adjusted by PCs  

 
Y-axis represents AUC in %; with classifiers placed on the X axis. Each dot represents the mean score for the prediction 

algorithm across SNP sets, with an accompanying 95% CI bar. The numbers placed centrally are the mean of the three p-

value threshold scores; GB Gradient Boosting; RF Random Forest; PRS-LR Polygenic Risk Scores Logistic Regression; 

AUC Area Under the Curve. Datasets described in the legend relate to how SNPs were chosen, including the larger SNP set 

denoted as ‘Increased SNPs. 

 

Results displayed in Figure 4.8 can be compared with those in Figure 4.4, with prediction 

performance for all algorithms similar between the two plots. As with all previous analyses, 

PRS-LR achieved higher AUC across the five datasets than all ML algorithms. This was 

supported by significant statistics generated when comparing AUCs across CV 

(Supplementary Table 9). Similarly, to previous analyses, little variability existed when 

comparing the performance of ML algorithms, with the only discernible pattern being the 

superior performance of SVMs and NB when compared to GB for some datasets.  
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Figure 4.9: The comparison of non-calibrated vs calibrated prediction probabilities  
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These figures represent pre a) and post b) calibration plots for the related RF algorithm (Figure 4.8) (p-value 0.0001). The x-

axis represents the prediction output of the classifier in terms of the probability of being a case. With the y-axis denoting 

observed class frequencies. Perfect calibration in which predicted probabilities match observed accuracies is denoted by the 

diagonal dotted line. The blue dots represent the mean probability values within each quantile and are accompanied by a 

95% confidence interval (blue bar). The overall relationship between predicted probabilities and observed frequencies 

(calibration curve) is given by the fitted loess smoother (red line), with a 95% (grey shaded area) used. 

 

Similarly, to Figure 4.7a, pre-calibrated probabilities in Figure 4.9a show a complete under-

estimation of risk for all predicted probabilities. Following calibration, this over-estimation 

was reduced as demonstrated in Figure 4.8b.  

 

4.6 Conclusions 
 

The central aim of this chapter was to compare ML and PRS approaches for the prediction of 

AD from genetic data, age and sex. Alongside this, a further aim was to assess methods to 

counteract the possible effect of age confounding.  

 

4.6.1 Results of analyses 
 

All analyses performed in this chapter were conducted on GERAD (Harold et al., 2009) 

following the removal of the 1958 birth cohort. This was due to the bias leading to the high 

prediction accuracies achieved, with AUC reaching 80-90% for all classifiers (Supplementary 

Table 2) when the 1958 birth cohort was part of the dataset. It was determined the most likely 

cause for these suspiciously high results was the presence of the 1958 birth cohort within 
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GERAD, resulting in the controls being on average younger than the cases. The consequence 

of this led to prediction accuracy ignoring the genetic component of AD. Thus, the decision 

was made to remove the 1958 birth cohort from GERAD. 

 

Following the exclusion of the birth cohort, results of all analyses demonstrated PRS-LR 

generally outperformed all ML algorithms. When excluding SNPs within the APOE region, 

AUC was between 57-59%. This increased to 60-61% when reintroducing the two APOE 

related SNPs, with prediction increasing by 1-2% further when using the increased SNP set 

(p-value threshold = 0.01). On occasion, SVMs achieve 60% AUC, which is similar to with 

PRS-LR. However, in most cases the AUC of PRS-LR is 2-5% greater than that of all ML 

methods. The superior performance of PRS-LR when compared to ML algorithms was 

confirmed by comparing AUC values using the t-test. Most p-values were less than the 

significance level threshold of 0.05 following correction for comparisons between multiple 

classifiers and SNP sets (Supplementary Table 7). In terms of ML methods, little variability 

occurred when considering prediction performance. All algorithms achieved a prediction 

performance of around 55% when excluding APOE related SNPs, with AUC increasing to 

56-59% when including the removed SNPs. AUC again increased for all ML classifiers 

except NB when using the larger SNP set. Despite the small amount of variability in ML 

performance, NB and SVMs did outperform GB for some datasets. This is outlined by the t-

test statistics shown in Supplementary Table 7. Following the use of PCs only for genotype 

and PRS adjustment, both sex and age were introduced into the regression (Supplementary 

Table 5). The results of this analysis did not alter from the previous analysis, demonstrating 

that the inclusion of both variables had no effect on classifier performance.  

 

The last section of analysis in this chapter investigated the use of a dataset balanced on both 

age and sex. As previously discussed, age could be defined as a confounding variable for AD 

prediction (Falahati et al., 2016). Methods such as genotype adjustment and stratification 

have been used to counteract its effect, however, debate still exists surrounding the most 

efficient technique (Dukart et al., 2011). Cases and controls were balanced on both age and 

sex, leading to a dataset of around 1500 samples, with size depending on the number of SNPs 

used in analysis. Nested CV was used for the training and validation of models, with both 

genotypes and PRS adjusted by PCs only. It was determined that adjusting variables by age 
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and sex would be unnecessary due to using a balanced dataset, as this would be accounting 

for both variable twice. Performance of for all prediction algorithms remained similar with 

and without the use of balanced dataset (Supplementary Table 6).  

 

4.6.2 Assessment of calibration statistics 
 

Calibration statistics assess the confidence with which ML predictions have been made. The 

presence of well-calibrated algorithms in scenarios where high importance decisions are 

made is important. Calibration statistics in this chapter were plotted using calibration curves, 

with values belonging to the corresponding RF algorithm. This was trained and validated 

using SNPs chosen by the p-value method (including APOE). Calibration figures display a 

consistent underestimation of risk across analyses for pre-calibrated probabilities. This 

underestimation is of concern, as this may result in undiagnosed individuals, which could 

lead to harm if appropriate treatment methods are not administered. However, following the 

use of calibration, predicted probabilities were more in line with observed frequencies, 

resulting in greater confidence for prediction.  

 

4.6.3 Comparison of classifiers 
 

When assessing ML performance across all analyses, little variability existed between the 

chosen methods. One noticeable difference was the reduction in prediction accuracy for NB 

when increasing the number of SNPs. As discussed, a reason for this could be the lack of a 

regularisation method in NB methodology, which is often used to reduce the possibility of 

overfitting (Sánchez García and Cruz Rambaud, 2022). No reduction in AUC when 

increasing the number of SNPs occurred for any other algorithm. SVMs achieved levels of 

AUC similar to those observed for both decision tree-based methods (RFs, GB), as well as 

occasionally matching PRS-LR. This is not surprising as SVMs have been shown to be 

effective prediction models across many domains (Ben-Hur et al., 2008).  

 

However, one drawback of the SVM algorithm is the longer time required for training when 

compared to other methods, due to the more complex mathematical calculations required 

(Ghaffari, 2021). Training periods increase substantially as the number of features used rise. 

Training times in this chapter remained manageable despite using up to 422 SNPs, however 
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since the number of SNPs will increase to thousands in following chapters, only the decision 

tree-based algorithms will be used moving forward. In general, PRS-LR outperforms all ML 

algorithms by a margin of 4-5%. A possible reason for this difference in AUC is that PRS 

was calculated using an external dataset comprising a cohort of around 53,000 samples. 

Therefore, PRS-LR may have an advantage over ML, as effect sizes used were derived from 

a larger population than used for ML training. This will be taken into consideration for 

analyses in further chapters.  

 

4.6.4 Summary 
 

In summary, the core aim of this chapter was to compare the predictive accuracy of PRS-LR 

to several ML algorithms, with the secondary aim of assessing whether methods to minimise 

the confounding nature of age on AD risk might alter prediction performance. Results 

demonstrated superior performance for PRS-LR on most occasions. In some instances, SVMs 

returned similar prediction performance to PRS, however this was inconsistent with the 

general trend. A possible reason for this greater performance by PRS-LR is the use of 

external data (Kunkle-nogerad summary statistics) to generate PRS. However, in some 

instances ML was able to achieve 60% AUC. Techniques used to supress the confounding 

effect of age had no effect on prediction accuracy. The balancing method reduces the number 

of samples available for prediction by around three quarters. This could be considered a 

limitation and was not used for analyses in later analyses.  
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5 Assessment of feature selection methods 
 

 

5.1 Introduction 
 

Analyses conducted in this chapter explored the use of variants on a genome wide scale. 

Datasets used in Chapter 4 comprised a small number of statistically informed single 

nucleotide polymorphisms (SNPs), however it was hypothesised that providing a larger range 

of variants might enhance prediction performance. The methodology for creating PRS was 

also adjusted in this chapter. Previous scores were generated by clumping GERAD Harold et 

al., 2009 using Kunkle no-gerad summary statistics Kunkle et al., 2019, however concern 

was raised as to whether PRS gained an advantage over ML due to a larger cohort size. 

Therefore, both ML models and PRSs were generated within CV in this chapter. A GWAS 

was conducted within the training set (80% of samples) with subsequent PRSs calculated 

within the test set (20% of samples). Techniques to overcome potential dimensionality issues 

such as feature selection and extraction were tested. Whilst further methodological 

approaches such as removing clumping and varying pruning thresholds were also explored to 

assess the impact on prediction performance. 

 

The emergence of ‘Big Data’ in recent years has led to larger datasets being compiled in both 

industry and academia (Gupta and Rani, 2019). In the case of biological data, this has not 

only led to the expansion of the number of subjects (people) but also an increase in the 

number of predictor variables (features) (Ching et al., 2018). Despite advances in 

computational technology, issues have arisen when analysing ever-increasing datasets. 

Examples of these include the requirement of greater resources such as memory and 

computational power (Tsai et al., 2015). Whilst more predictors may provide a better 

understanding of variability of the outcome variable, large amounts of features can also result 

in a reduction in predictive performance when assessed in an independent dataset, known as 

the curse of dimensionality (Verleysen and François, 2005b). Previous analyses in this thesis 

used a relatively small number of predictors (SNPs) for Alzheimer’s Disease (AD) risk 

prediction. Analyses in this chapter focused on using larger number of predictors with 

techniques employed to reduce the issues caused by increased dimensionality. These 

techniques are termed feature selection methods, which involve choosing features based upon 

certain statistical criteria. 
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There have been various attempts of using such methods for selecting SNPs in AD 

prediction. Osipowicz et al., 2021 investigated the use of the ‘Boruta’ algorithm for feature 

selection. This is a random forest-based approach which uses feature importance measures to 

retain important variables and remove redundant variables. In this instance, SNPs from the 

combined dataset of Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

https://adni.loni.usc.edu, the Religious Orders Study and the Rush Memory and Aging 

Project (ROSMAP) https://www.radc.rush.edu were used for predictors. To assess the impact 

of possible data leakage on prediction performance, two separate methodologies for SNP 

selection were compared, with feature selection conducted prior to splitting samples into 

training and test folds and subsequent selection within the training set only. Selected features 

were used for the training of RF classifiers, with results varying between the two methods. 

Classifiers trained on SNPs prior to sample split achieved 98% AUC, whilst conducting 

feature selection within the training set only resulted in 67% AUC. Therefore, 

recommendations were made to conduct selection in the training set only, in order to avoid 

over optimistic models due to data leakage. 

 

Muhammed Niyas and Thiyagarajan., 2022 investigated the use of feature selection when 

predicting AD from the Alzheimer’s disease prediction of longitudinal evolution (ADNI-

TADPOLE) https://adni.loni.usc.edu/tadpole-challenge-dataset-available/ and Australian 

Imaging Biomarkers (AIBL) https://adni.loni.usc.edu/aibl-australian-imaging-biomarkers-

and-lifestyle-study-of-ageing-18-month-data-now-released/ datasets. These are publicly 

available longitudinal data sources comprising of a range of AD related biomarkers including 

magnetic resonance imaging (MRI), positron emitting tomography (PET), cerebrospinal fluid 

(CSF) and genetic information. Feature selection was achieved using the Fisher score (FS), a 

scoring metric which selects features based upon their ability to maximise between class 

distance. The use of FS was combined with a greedy search algorithm. All features were 

ranked in terms of their FS score, with the most significant variable in terms of FS was 

selected to test classifier performance. Other features were then added sequentially in the 

order of FS importance, with each feature either retained or removed depending on if it 

improved classifier performance. The final set of features were then used to assess AD 

prediction, using both the support vector machine (SVM) and k-nearest neighbour (KNN) 

classifier methods. The use of feature selection resulted in 97 and 91% AUC for the SVM 

and KNN approaches respectively. 

https://adni.loni.usc.edu/
https://www.radc.rush.edu/
https://adni.loni.usc.edu/tadpole-challenge-dataset-available/
https://adni.loni.usc.edu/aibl-australian-imaging-biomarkers-and-lifestyle-study-of-ageing-18-month-data-now-released/
https://adni.loni.usc.edu/aibl-australian-imaging-biomarkers-and-lifestyle-study-of-ageing-18-month-data-now-released/
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5.1.1 Methods for feature selection 
 

The effectiveness of dimensionality reduction techniques to reduce overfitting was assessed 

in this chapter. A range of techniques commonly used in ML development were used and 

their performance was compared. The methods used are listed below. 

 

5.1.1.1 Linkage disequilibrium 
 

To reduce dimensionality due to LD, methods have been developed to remove SNPs in high 

LD, creating sets of independent variants at a chosen LD (r2) threshold and further informed 

by the trait association (p-value)) threshold. The clumping algorithm was used throughout the 

analyses in this chapter. It could be argued that clumping is a form of feature selection, as 

SNPs are removed based upon their correlations with one another whilst the most statistically 

relevant SNP remains. Therefore, whilst it was not directly tested as a feature selection 

method, it was still necessary to consider its influence.  

 

 

5.1.1.2 Random forests for feature selection 
 

Random Forests (RFs) conduct a form of feature selection when classifying data. Each 

decision tree within the RF is trained on a bootstrap of samples, with the tree sequentially 

splitting on features deemed significant for discrimination. Therefore, across all bootstraps 

and decision trees, those features which are deemed to be of little importance are used less 

often or not at all (Hasan et al., 2016). The RF is fitted on the training set, with the algorithm 

assessing the importance of all features in the dataset. Features which pass certain pre-

defined criteria are then passed to the final ML algorithm. Due to the effectiveness of RFs as 

feature selection techniques, they have been used in varying fields. Sylvester et al., 2018 used 

this method to identify SNPs proficient in assigning Salmon to different populations. The RF 

algorithm identified related SNPs more effectively than the traditional method of fixation 

(Sylvester et al., 2018). Reasoning suggested for this was ML’s ability to consider 

relationships between loci, rather than individual importance considered when using the 

traditional method. 
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5.1.1.3 Extra trees classifier for feature selection 
 

Similarly, to RFs, ExtraTrees are used as an intermediate step in feature selection. Features 

deemed significant due to a predefined criteria are passed to the final ML model. The 

algorithm selects features based upon information gain and entropy. Those features with the 

greatest information gain are deemed to be the most useful for classification. This is due to 

their ability to separate the class variable (Latha and Mohanasundaram, 2019).  

 

5.1.1.4 LASSO regression and Elastic net for feature selection 
 

The least absolute shrinkage and selection operator (LASSO) is a technique for feature 

selection and optimisation in linear regression models. Due to the need for prediction 

between classes defined by a binary variable, a logistic regression (LR) will be used in this 

chapter. Despite the ability to reduce the dimensionality of feature sets, the LASSO algorithm 

has disadvantages, performing inadequately in the presence of correlated features, with 

features deemed important omitted incorrectly (Freijeiro‐González, Febrero‐Bande and 

González‐Manteiga, 2022). 

 

Elastic net is a further form of regularised regression and is related to the LASSO technique. 

The algorithm performs both variable selection and shrinkage, whilst also assessing groups of 

correlated features.  

 

5.1.1.5 Feature selection based on biological relevance of SNPs 
 

Thus far, discussed feature selection techniques have been based on statistical methods only. 

However, known properties of AD biology can also be used to select SNPs from genes 

relevant to the disease development and progression.  

 

5.1.1.6 Microglia 
 

Microglial degeneration has been linked to the formation of plaques within the brain, one of 

the two neuropathological signs of AD (Edler, Mhatre-Winters and Richardson, 2021).  SNPs 

in genes which have been associated with microglial function (Gosselin et al., 2017)(Tansey, 

Cameron and Hill, 2018) were used as features and the prediction by this set of SNPs was 

compared to prediction by the SNPs selected genome-wide. 
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5.1.1.7 Synapses 
 

Synapses can be defined as intercellular junctions, which are designed for fast information 

transfer from a presynaptic neuron to a postsynaptic cell (Südhof, 2018). Similarly, to 

microglia, SNPs in genes associated with synaptic function were used as features for ML and 

PRS (Koopmans et al., 2019).  

 

 

5.1.2 Modelling the APOE region 
 

SNPs which lie within the APOE gene have been consistently shown to be the most 

significant genetic factor for AD risk.  Leonenko et al., 2021 investigated different methods 

for modelling the APOE region for PRS prediction analysis. The most accurate prediction 

was achieved when the APOE region was removed from the set of SNPs and PRS was 

calculated without these variants.  

 

For discrimination between case/control status the PRS and APOE 2 and 4 alleles were 

added to the LR as two variables. Instead of using effect sizes derived in Kunkle et al., 2019, 

coefficients were generated within each CV fold through the use of a LR. Disease status was 

used as the target variable, whilst genotypes for all selected SNPs including the 2/4 alleles 

were features. The coefficients for the 2/4 alleles were then extracted and used as weights 

for the allele counts. This provided values of greater accuracy as those derived from Kunkle 

et al., 2019 were calculated on a larger cohort. The weighted counts for each individual were 

then added as an extra predictor to the PRS-LR model. 

 

The APOE genotypes (ε2/ε2, ε2/ε3, ε3/ε3, ε3/ε4 and ε4/ε4) were constructed from the two 

SNPs within the APOE gene, r429358 and rs7412 (Correa et al., 2014). Table 5.1 shows 

which SNP combinations lead to the different haplotype.  
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Table 5.1: APOE Alleles (Crawford et al., 2022). 
 

 

rs429358  

 

rs7412  

 

APOE name  

 

C  

 

T  

 

1 

 

T  

 

T  

 

2 

 

T  

 

C  

 

3 

 

C  

 

C  

 

4 

 

Description of APOE SNPs and corresponding  values 
 

Analyses used in this chapter will use a similar method to represent the APOE region. 

 

5.1.3 Parallel programming 
 

Despite advances in computing, certain tasks which require large resources can take long 

periods of computing time. A facility developed in recent decades to improve upon these long 

run times, is high performance computing (HPC) (Lee et al., 2011). One of the elements of 

HPC which developers use to improve efficiency is termed parallel programming, which 

separates a large task into multiple subtasks run in parallel. This can be achieved in two 

different ways, either using multiple computers concurrently, or utilising multiple cores 

within a central processing unit (CPU). This functionality was used to assist with analysing 

large datasets. The process of CV was made more efficient by using parallelisation, this 

functioned by separating folds over multiple cores and run in parallel. The result of this is 

then concatenation of all folds. 

 

5.1.4 Aims and objectives 
 

In this chapter I will build upon analysis conducted in Chapter 4 in which a small sample of 

genome wide significant (GWS) variants were analysed. Larger numbers of SNPs will be 

used here to assess a possible improvement of predictive utility of AD status by SNPs. The 

inclusion of more predictors may incur both computational and dimensionality issues. 

Therefore, this chapter will also test a range of feature selection methods (RFs, LASSO, 
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ElasticNet, Extra Trees and biological information). All methods will be compared in terms 

of AUC in order to establish their effectiveness in mitigating dimensionality issues. The 

levels of calibration for algorithms will also be assessed, with methods to recalibrate 

predictive probabilities also tested. Further, all ML methods will be again compared to the 

predictive performance of PRS. 

 

5.2 Materials and methods 
 

5.2.1 Data analyses 
 

Analyses conducted in this chapter were separated into five main sections. Figure 5.1 gives 

an outline of these. 

 

Figure 5.1: Outline of analyses across the sub-sections in this chapter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Section One: Analyses with the inclusion of variants from the APOE region but 

not APOE Alleles 

 

 

Section Two: Analysis of LD clumped SNPs and feature selection 

 

 

 

 

Section Four: Analysis of non-LD pruned SNPs 

 

 

Section Five: Feature selection using biological information 

 

 

 

Section Three: Analysis of SNPs using a less stringent r2 value for clumping 

when compared to analyses in Section Two. 
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Analyses differed through the alteration of parameters used for SNP selection, along with the 

use of biological information to select specific set of variants. The below section named 

“SNP Selection Process”, explains the methodology for selecting SNPs. Following this, 

common methodology between each section of analysis is outlined. 

 

5.2.1.1 SNP selection process 
 

The Python function StratifiedKFold was used to create five folds of cross-validation (CV) 

for analysis. This function was used due to being able to access both training and test folds 

within each round of CV. This enabled any pre-processing to be carried out per training and 

test fold, to avoid data leakage. The ratio of data between train and test folds was 80:20, with 

the number of cases and controls evenly distributed between the two datasets. 

 

Despite the use of different parameters when selecting SNPs, the method used to select SNPs 

was consistent. Within each CV fold, a GWAS was conducted for the “training” individuals 

only. This was preferred to clumping SNPs prior to CV, in which all samples would have 

been clumped using summary stats derived from (Kunkle et al., 2019) as the latter may give 

PRS an advantage over ML due to effect sizes being calculated on a much larger sample size. 

To run a GWAS, PLINK was called within Python. This was achieved using the Python 

package subprocess which allows separate software processes to be run within Python. This 

process was run per CV fold and the output from the LR stored.  Several parameters are 

required for clumping. A range of p-value threshold values were used to compare between 

analyses, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5. These values were chosen as 

they provided SNP sets in which the number of variants were wide ranging. The value for r2 

was also specified at 0.1, with a clumping window of 500 kilobases (Privé et al., 2019). SNPs 

from each output were then saved for each level of p-value threshold. 

 

5.2.1.1.1 The analysis of LD clumped SNPs and modelling of APOE region (r2 < 0.1)  
 

The APOE region in this chapter was modelled in two ways. Firstly, the analysis was run for 

the whole genome including the APOE region prior to clumping (but excluding APOE 

alleles). Secondly, to match the method outlined in Section 5.1.2, SNPs within the 

chromosomal region for APOE (19:45409039-45412650) were removed before analysis, and 
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the 4 and 2 alleles were added separately and the aggregate scores for the 2/4 alleles for 

each individual were added to the SNP set for both PRS-LR and ML. Then feature selection 

methods were applied for ML only. 

 

5.2.1.1.2 The analysis of LD clumped SNPs (r2 < 0.5)  
 

Analysis in this section focused on using a different level of r2 when clumping SNPs to that 

used in Section 5.2.1.1.1. This was to assess the hypothesis that too stringent values of r2 may 

remove useful SNPs for AD prediction. The threshold used for r2 was altered from 0.1 to 0.5. 

Analyses were conducted with and without the use of feature selection, with the selection 

techniques which achieved the highest AUC in Section 5.2.1.1 used. 

 

5.2.1.1.3 Selecting SNPs using biological information  
 

16,095 SNPs related to the function of microglia were used as predictors. Further analysis 

was also conducted using 35,997 variants related to synapses within the brain. These two 

SNP sets were clumped using the same p-value thresholds as in Section 5.2.1.1. Clumped 

SNPs were then passed to both ML algorithms and PRS. 

 

 

5.2.1.2 Population stratification 
 

To adjust SNPs for population stratification, PCs were calculated for both the training and 

test sets by using the PCA package within Python. Three PCs were used for adjustment, as to 

be consistent with analyses conducted in previous studies using the GERAD dataset 

(Leonenko, Shoai, et al., 2019). The same fit-transform function was used to generate PCs in 

both the training and test sets.  

 

For deconfounding, a custom scikit-learn transformer was used. For adjustment, n 

regressions were performed, whereby n was equal to the number of SNPs in the chosen data 

set. These regressions were performed using the statsmodels package, in which the Ordinary 

Least Squares OLS function was used, regressing PCs from the SNP variables. Variants 

within the training and test sets were adjusted in separate functions, with the intention of 
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minimising the risk of data leakage. The standardised residuals from each regression were 

then used instead of SNP genotypes for inputs to both ML algorithms and PRS calculation. 

 

5.2.1.3 Machine learning methodology 
 

Chapter Four investigated the performance of the following ML approaches: Random forests 

(RFs), gradient boosting (GB), Naïve Bayes (NB) and support vector machines (SVMs). 

Results showed little difference between the decision tree-based algorithms RFs and GB and 

SVMs for the prediction of AD. However, it was also noted that the use of SVMs resulted in 

longer training times than their counterparts. Therefore, only the decision tree-based 

algorithms were used thereafter. 

 

5.2.1.3.1 Random forest methodology 
 

The RF algorithm was implemented using the function RandomForestClassifier from 

Pythons’ sklearn package. Values for hyperparameters were specified for the following 

parameters max_depth, min_samples_leaf, min_samples_split. The package 

RandomizedSearchCV was used for tuning. This fits several models with a range of values 

for the defined hyperparameters, with the set of values which produce the best AUC chosen 

as the final inputs.  

 

The RF was trained using the standardised residuals (as described in Section 5.2.1.2) to 

discriminate between cases and controls. These residuals were standardised using the Python 

function StandardScaler. This was carried out in training and test folds separately to avoid 

possible data leakage. Once the algorithms were trained, prediction performance was 

assessed in terms of AUC. This was calculated using the roc_auc_score function, which is 

also part of the sklearn package in Python. The probabilities of being a case are calculated 

using the sub-function predict_proba. The overall score of each ML algorithm was computed 

as the mean AUC across the five CV folds.  
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5.2.1.3.2 Gradient boosting methodology 
 

The Python package xgboost was used to implement this technique. The function 

XGBClassifier was used to fit the model, with residuals of genotypes used as inputs. The 

hyperparameters were tuned using the same RandomizedSearchCV function (similar to RFs). 

Once hyperparameters were tuned, AUC was computed in the same manner as RFs. To 

calculate AUC, both the predict_proba and roc_auc_score functions were used. Both 

predicted and observed values were passed to the roc_auc_score function to calculate AUC. 

As with RFs, the overall value of AUC was computed as the mean across the five CV folds. 

 

5.2.1.4 Polygenic risk score calculation 
 

SNPs used for PRS calculation were taken from variants deemed significant at the clumping 

stage (p-value thresholds = 0.0001,0.001,0.01,0.05,0,1,0.2,0.3,0.4,0.5). As discussed in 

Section 5.2.11, SNPs were selected using an in built GWAS within each round of CV. This 

allowed for the creation of SNP effect sizes and p-values in training samples only. PRS 

values were then subsequently calculated using allele scores in test samples only, ensuring 

separation of samples. This method was used due to the concerns of advantages afforded to 

PRS when using the Kunkle-nogerad summary statistics in Chapter 4. The same SNPs were 

used for both ML and PRS calculation to ensure a direct comparison between prediction 

methods. However, when feature selection techniques were employed, only a fraction of the 

same SNPs were used for ML. This was done intentionally to compare the traditional method 

of clumping and thresholding for PRS, with ML and the use of embedded feature selection. 

Therefore, more SNPs were used for the calculation of PRS on these occasions. LR is used to 

discriminate between case and control status. AUC for the LR was calculated in the same 

manner as the ML techniques. Due to the use of a LR, PRS modelling will be defined as 

PRS-LR from now on. 

 

5.2.1.5 Missing data imputation 
 

Missing genotypes were imputed using the same process outlined in Chapter 4 Section 

4.3.2.1. This process was carried out per CV fold and after training/test splitting.  
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5.2.1.6 Parallel computing 
 

To optimise run times, the Multiprocessing package in Python was used. This package 

enables users to parallelise computations, so they can be run simultaneously. For analysis in 

this chapter, the Multiprocessing package allowed CVs to be run in parallel, which is faster 

than running each fold sequentially. To achieve this the function sub-class Pool was used. A 

pool of five CPUs were used to allow for five rounds of CV to be run in parallel. 

 

5.2.1.7 Calibrating prediction probabilities 
 

Prediction probabilities were calculated using the predict_proba function and then plotted 

using a histogram from the matplotlib and seaborn libraries. A loess smoother was used to 

aid in assessing the relationship between predicted and observed probabilities. The initial 

classifier probabilities were then calibrated using the function CalibratedClassifierCV with 

five rounds of CV. Probabilities were calibrated using the sigmoid technique and then plotted 

against uncalibrated probabilities. All AUC values reported for analyses in this chapter were 

updated using the calibrated probabilities.  

 

5.2.1.8 Feature selection methods 
 

The central aims of this chapter was to use and compare a range of feature selection 

techniques. The implementation of these methods is outlined below.  

 

5.2.1.8.1 Random forests for feature selection 
 

RFs were used both as classifiers and as a form of feature selection in this chapter. For 

feature selection, the function RandomForestClassifier from Python was used to define a 

model. This model was fitted on the entire set of SNPs. A RF assigns weights to features 

based upon on their importance in prediction. The Python function SelectFromModel was 

used to assess these weights and select those features whose weights are greater than a 

defined threshold. If a threshold value is not pre-defined, the mean value of all weights is 

used. However, to ensure the optimum number of predictors were chosen, a for loop was 

used to select the threshold which returned the highest AUC for the subsequent ML 

algorithm. 
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5.2.1.8.2 ExtraTree classifier 
 

The Extra Trees classifier was used as an alternative option for feature selection. For this, the 

Python function ExtraTreesClassifier from sklearn library was used. First, an Extra Trees 

model was developed. This model was then fitted using training data specified by the CV 

fold. Following this, the optimum set of features were selected using the same method for 

RFs outlined in Section 5.2.1.3.1. 

 

5.2.1.8.3 LASSO regression 
 

The function SelectFromModel from the package sklearn.feature_selection was used. This 

model was fitted on the adjusted SNPs in each CV fold. Those features whose coefficients 

were reduced to zero were then identified and removed from both the training and test sets. 

These reduced datasets were then passed to the ML algorithm for training and testing. 

 

5.2.1.8.4 Elastic net algorithm 
 

Lastly, the Elastic Net algorithm was tested for feature selection. To implement this, the 

ElasticNet function from the Python package sklearn. linear_model was used. The model was 

instantiated with two specified hyperparameters, these were alpha and l1_ratio. Where alpha 

is the constant with which the penalty term is multiplied and l1_ratio is the penalty. Those 

features which were penalised were then removed from the original dataset and then used for 

ML as inputs.  

 

5.3 Results 
 

Results of all analyses are supplied in Supplementary Tables 10-28, with analyses separated 

into five sections (detailed in Section 5.2). Those analyses described in Supplementary 

Tables 10-23 which achieved the highest overall AUC across methods were chosen to be 

displayed in plots in this chapter, created using Python packages seaborn and matplotlib. 

Calibration plots are also present displaying both non-calibrated and calibrated probabilities 

at a p-value threshold for SNP selection of 0.0001, with the classifier chosen to a RF from the 

previous figure. 
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5.3.1 Analysis without APOE alleles 
 

Analyses in this section included SNPs within the APOE region. The use of feature selection 

was also omitted, results are shown in Figure 5.2. 

 

Figure 5.2: The comparison of PRS-LR vs selected classifiers (RF, GB) for LD pruned 

SNPs, without the inclusion of APOE alleles. 

 

 
 

Y-axis represents AUC in %; with classifiers placed on the X axis. Each dot represents the score for the prediction algorithm 

for all p-value thresholds. The numbers placed centrally are the mean score across p-value threshold values; GB Gradient 

Boosting; RF Random Forest; PRS-LR Polygenic Risk Scores Logistic Regression; AUC Area Under the Curve. 

 

 

Analysis represented in Figure 5.2 compared prediction performance of PRS-LR against both 

RFs and GB. The set of SNPs used for prediction included the APOE region but not APOE 

alleles. This is the only analysis in which SNPs within this region are included. For 

subsequent analyses, this region will be represented by allele counts for the 2 and 4 APOE 

variants. Results demonstrate that PRS-LR outperformed both RFs and GB, with mean AUC 

across all p-value thresholds 3-4% higher. This difference in prediction performance is shown 

to be statistically significant by analyses in Supplementary Table 24, where PRS-LR 

outperformed both ML algorithms in some of the p-value thresholds reported (PRS-LR vs 

GB = 0.0001, 0.01, 0.1, 0.3, 0.5) (PRS-LR vs RFs = 0.01, 0.1, 0.3, 0.5). AUC for PRS-LR 

improved from 52% towards 60% as p-values become less stringent (best performing p-value 



 174 

threshold of 0.05), whereas discrimination for both RFs and GB followed a different pattern 

as performance worsens as SNPs increase with an optimal p-value cut-off of 0.0001. This 

suggests that both ML algorithms are susceptible to overfitting as predictors number into the 

tens and hundreds of thousands. 

 

5.3.2 Analysis of LD clumped SNPs (r2 = 0.1) including APOE counts and feature selection 
 

This section of analysis assessed the use of feature selection techniques on LD pruned SNPs. 

Three experiments were chosen to be portrayed in plots, the first of these being analysis 

where no feature selection was used, followed by the two feature selection algorithms which 

achieved the highest overall AUC across algorithms. 
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Figure 5.3: The comparison of PRS-LR vs chosen classifiers (RF, GB) for LD pruned 

SNPs, with a) no feature selection method used, b) the use of a RF for feature selection 

and c) the use of the ExtraTrees algorithm for feature selection. 
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Y-axis represents AUC in %; with classifiers placed on the X axis. Each dot represents the score for the prediction algorithm 

for all p-value thresholds. The numbers placed centrally are the mean score across p-value threshold values; GB Gradient 

Boosting; RF Random Forest; PRS-LR Polygenic Risk Scores Logistic Regression; AUC Area Under the Curve. 

 

Results shown in Figure 5.3a demonstrate the introduction of the APOE alleles 2 and 4, 

where ML algorithms were trained without the use of feature selection. Mean AUC across all 

p-value thresholds indicates an increase in prediction performance when compared to Figure 

5.2, suggesting that the introduction of both APOE alleles benefited disease prediction. 
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However, similarly, to results in Figure 5.2, ML performance slightly worsened as the 

number of SNPs increased (typically after including SNPs with association p-values>0.05), 

with AUC for PRS-LR increasing and then stabilising as p-values become less significant. 

Unlike performance shown in Figure 5.2, AUC for PRS-LR remained more consistent as the 

number of variants increased. Significance of t-tests shown in Supplementary Table 25 also 

demonstrate that PRS-LR outperformed both ML algorithms across the majority of tested p-

value thresholds (PRS-LR vs GB = 0.0001, 0.01, 0.1, 0.3, 0.4, 0.5) (PRS-LR vs RFs = 0.01, 

0.1, 0.3, 0.4, 0.5). 

 

Prediction performance for both GB and RFs increased further following the introduction of 

feature selection algorithms. Results shown in Figures 5.3b and 5.3c demonstrate an increase 

of 3-6% mean AUC across all p-value thresholds when compared to displayed results in 

Figure 5.3a. The grouping of coloured dots suggests that the use of feature selection reduced 

the impact on AUC of increasing numbers of SNPs, thereby enabling ML algorithms to deal 

efficiently with large numbers of predictors. However, despite the increase in prediction 

performance for both ML algorithms, PRS-LR still achieved superior mean AUC (71.6%). 

The better performance of PRS-LR is shown to be statistically significant when compared to 

using RFs for feature selection (PRS-LR vs GB = 0.0001, 0.01, 0.1, 0.3, 0.5) (PRS-LR vs 

RFs = 0.0001, 0.01, 0.1, 0.3, 0.5). This was also true for the use of ExtraTrees for feature 

selection (PRS-LR vs GB = 0.0001, 0.01, 0.1, 0.3, 0.5) (PRS-LR vs RFs = 0.0001, 0.01, 0.1, 

0.3, 0.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 177 

Figure 5.4: The comparison of non-calibrated vs calibrated prediction probabilities for 

RFs using LD pruned SNPs 

 

               No Feature Selection  
a)                                                                    b) 

 
 

             RF Selection 
a)                                                                       b) 

 
          ExtraTrees 

a)                                                                            b) 

 



 178 

These figures represent pre a) and post b) calibration plots for the related RF algorithm (Figure 5.3) (p-value 0.0001). The x-

axis represents the prediction output of the classifier in terms of the probability of being a case. With the y-axis denoting 

observed class frequencies. Perfect calibration in which predicted probabilities match observed accuracies is denoted by the 

diagonal dotted line. The blue dots represent the mean probability values within each quantile and are accompanied by a 

95% confidence interval (blue bar). The overall relationship between predicted probabilities and observed frequencies 

(calibration curve) is given by the fitted loess smoother (red line), with a 95% (grey shaded area) used. 

 

 

The calibration plots in Figures 5.4 suggest that predictions were initially underestimating 

risk for RFs, this is evidenced by loess smoothers lying above the diagonal. Following 

calibration, predictive probabilities are now more aligned with the diagonal line. However, 

this is not true for initial predictions in which the loess smoother still lies above the line. 
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5.3.3 Analysis of LD clumped SNPs (r2 = 0.5) including APOE and feature selection 
 

Analyses in Section 5.3.2 used an r2 of 0.1 when clumping SNPs, this was altered to 0.5 in 

this section. This resulted in set of variants with greater levels of LD and therefore a greater 

volume then in previous analyses. 

 

Figure 5.5: The Comparison of PRS vs RF, GB for LD Pruned SNPs using a Value of 

0.5 for r2, with a) no Feature Selection Method, b) used the use of a RF for Feature 

Selection and c) ExtraTrees. 
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Y-axis represents AUC in %; with classifiers placed on the X axis. Each dot represents the score for the prediction algorithm 

for all p-value thresholds. The numbers placed centrally are the mean score across p-value threshold values; GB Gradient 

Boosting; RF Random Forest; PRS-LR Polygenic Risk Scores Logistic Regression; AUC Area Under the Curve. 
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The three plots shown in Figure 5.5 display similar analyses to those displayed in Figures 5.3, 

however a more lenient value off r2 (0.5) was used when clumping. Prediction performance 

for both ML classifiers when not using feature selection was lower than those displayed in 

Figure 5.3a when using an r2 value of 0.1 (Figure 5.5a vs Figure 5.3a) (GB = 59.6-61.4, RFs 

= 59.6-60.4, PRS-LR = 69.9-71.6). A reason for the reduced AUC for ML in Figure 5.5a 

could be the increase in the number of SNPs provided to algorithms by using a higher value 

of r2 when clumping. An increased number of features will lead to increased dimensionality, 

which results in higher likelihood of overfitting.   

 

The introduction of feature selection (Figures 5.5b, 5.5c) improved prediction performance 

for both GB and RFs. However, mean AUC across all p-value thresholds was similar to those 

in Figures 5.3, in which analyses were conducted using an r2 of 0.1 for clumping. Therefore, 

the use of a more lenient value of r2 did not result in a difference in classifier performance, 

with PRS-LR again outperforming ML algorithms. This is true without the use of feature 

selection (PRS-LR vs GB = 0.0001, 0.01, 0.1, 0.3, 0.5) (PRS-LR vs RFs = 0.0001, 0.01, 0.1, 

0.3, 0.5), when using RFs for feature selection (PRS-LR vs GB = 0.01) (PRS-LR vs RFs = 

0.3) and using ExtraTrees (PRS-LR vs GB = 0.01) (PRS-LR vs RFs = 0.01, 0.3). 
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Figure 5.6: The Comparison of non-Calibrated vs Calibrated Prediction Probabilities 

for RFs where a More Lenient Value of r2 (0.5) for Clumping 
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These figures represent pre a) and post b) calibration plots for the related RF algorithm (Figure 5.5) (p-value 0.0001). The x-

axis represents the prediction output of the classifier in terms of the probability of being a case. With the y-axis denoting 

observed class frequencies. Perfect calibration in which predicted probabilities match observed accuracies is denoted by the 

diagonal dotted line. The blue dots represent the mean probability values within each quantile and are accompanied by a 

95% confidence interval (blue bar). The overall relationship between predicted probabilities and observed frequencies 

(calibration curve) is given by the fitted loess smoother (red line), with a 95% (grey shaded area) used. 

 

Calibration plots in Figure 5.6 demonstrate a consistent over estimation of risk for classifiers 

as loess smoothers lie above the diagonal prior to calibration. However, prediction 

probabilities realign with the diagonal following calibration, suggesting that the model was 

now estimating risk accurately. 

 

5.3.4 Analysis of non-LD pruned SNPs. 
 

This section displays results for three different analyses, a) no feature selection, b) RFs and c) 

ExtraTrees used for feature selection. Here SNPs were not clumped before being passed to 

feature selection techniques. The first analysis compared the performance of PRS and ML 

algorithms, with no feature selection techniques employed. 
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Figure 5.7: The comparison of PRS-LR vs chosen Classifiers (RF, GB) for non-LD 

pruned SNPs, with a) no feature selection method used, b) the use of a RF for feature 

selection, and c) the use of a ExtraTrees for feature selection. 
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Y-axis represents AUC in %; with classifiers placed on the X axis. Each dot represents the score for the prediction algorithm 

for all p-value thresholds. The numbers placed centrally are the mean score across p-value threshold values; GB Gradient 

Boosting; RF Random Forest; PRS-LR Polygenic Risk Scores Logistic Regression; AUC Area Under the Curve. 

 

Plots represented in Figure 5.7 display the same analyses conducted in Figures 5.3 & 5.5, 

however on this occasion the clumping process was removed. When not using feature 

selection, AUC for both GB and ML algorithms detailed in Figure 5.7a were similar to those 

in Figure 5.5a. This suggests that increasing the number of SNPs through removing the 
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clumping phase did not result in alterations in performance. When comparing classifier 

performances, statistics detailed in Supplementary Table 26 demonstrate that PRS-LR 

achieved higher prediction than both ML algorithms (PRS-LR vs GB = 0.0001, 0.01, 0.1, 0.3, 

0.5) (PRS-LR vs RFs = 0.0001, 0.01, 0.1, 0.3, 0.5). 

 

The use of feature selection represented in Figures 5.7b and 5.7c resulted in an increase in 

prediction performance for both GB and RFs when compared to AUC in Figure 5.7a, with 

mean AUC increasing by 7-8% for both ML algorithms. Mean AUC values using both RFs 

and ExtraTrees algorithm were similar to those in Figures 5.3b, 5.3c, 5.5b and 5.5c. 

Similarly, to analyses in Section 5.3.2, the use of feature selection did not alter higher 

performance of PRS-LR over ML algorithms. This was true for the use of both RFs (PRS-LR 

vs GB = 0.0001, 0.01, 0.1, 0.3, 0.5) (PRS-LR vs RFs = 0.0001, 0.01, 0.1, 0.3, 0.5) and the 

ExtraTrees algorithm (PRS-LR vs GB = 0.0001, 0.01, 0.1, 0.3, 0.5) (PRS-LR vs RFs = 

0.0001, 0.01, 0.1, 0.3, 0.5). 

 

When summarising findings from Figures 5.2 – 5.7, two main conclusions can be drawn. The 

linear method PRS-LR consistently outperforms the more complex ML algorithms 

throughout analyses. The margin between methods can be reduced following the use of 

feature selection, however PRS-LR remains the superior prediction method. These trends are 

observed irrespective of the pruning method used, either through the removal of clumping or 

alterations in the value of r2 used. 
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Figure 5.8: The comparison of non-calibrated vs calibrated prediction probabilities for 

RFs when removing clumping. 
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These figures represent pre a) and post b) calibration plots for the related RF algorithm (Figure 5.7) (p-value 0.0001). The x-

axis represents the prediction output of the classifier in terms of the probability of being a case. With the y-axis denoting 

observed class frequencies. Perfect calibration in which predicted probabilities match observed accuracies is denoted by the 

diagonal dotted line. The blue dots represent the mean probability values within each quantile and are accompanied by a 

95% confidence interval (blue bar). The overall relationship between predicted probabilities and observed frequencies 

(calibration curve) is given by the fitted loess smoother (red line), with a 95% (grey shaded area) used. 

 

 

Similarly, to previous plots, the RFs appear to be underestimating risk in Figure 5.8. 

However, following calibration, predictive probabilities lie more closely to the perfect 

calibration line. However, initial predictions between 0.3-0.5 remained above the diagonal in 

all tree plots, suggesting an underestimation of risk. 

 

5.3.5 Feature selection using biological information. 
 

Previous sections used statistical techniques to reduce dimensionality. Further investigation 

was also conducted in which biological information was used to select SNPs for analysis. The 

results of which are shown in Supplementary Figure 1. In comparison with Figure 5.3a where 

SNPs were selected through clumping all SNPs within GERAD, mean AUC for RFs was 

similar, although the performance of GB was reduced. Discrimination between classes here 

for PRS was lower, with AUC falling by around 2%. Therefore, the use of biologically 

informed SNP sets reduced the prediction performance of both GB and PRS-LR, which is 

expected as other genes/SNPs associated to AD are not included in these analyses. Despite 

this reduction, PRS-LR still outperformed both ML algorithms, this is evidenced in statistics 

provided in Supplementary Table 28. This was true for the use of SNPs related to the 

function of Microglia (PRS-LR vs GB = 0.01, 0.1, 0.3, 0.5) (PRS-LR vs RFs = 0.01, 0.1, 0.3, 

0.5), as well as those variants related to the function of synapses (PRS-LR vs GB = 0.001, 

0.01, 0.1, 0.3, 0.5) (PRS-LR vs RFs = 0.001, 0.01, 0.1, 0.3, 0.5). In contrast with previous 

analyses, RFs outperformed GB for some p-value thresholds, this was the case for microglia 

related variants (RFs vs GB = 0.01, 0.1, 0.3) and synapse related SNPs (RFs vs GB = 0.0001, 

0.01, 0.1, 0.3, 0.5). 

 

As can also be seen in Supplementary Figure 2, both RFs were underestimating risk initially. 

After calibration, predicted probabilities lie closer to perfect calibration for Microglia related 

SNPs. However, calibration has not improved the distribution of probabilities for Synapse 

related variants. 

 



 187 

5.4 Discussion 
 

Work conducted in this chapter focused on two main aims. The first of these was to examine 

whether using larger number of SNPs could improve AD prediction beyond analyses 

conducted in Chapter 4. The second aim was to assess the performance of several feature 

selection techniques, with the purpose of determining whether any of these reduced the issues 

associated with high dimensionality. 

 

5.4.1 Machine learning performance 
 

Analyses conducted in Chapter 4 focused on testing the performance of a series of ML 

algorithms on a small selection of AD related SNPs. Prediction algorithms achieved AUC of 

57-60% when using 23 and 422 SNPs (including SNPs in the APOE region). Analyses in this 

chapter used variants selected on a genome-wide scale, with the intention of assessing 

whether using increased amounts of SNPs could improve upon this level of AUC. Results 

shown in Supplementary Table 10 demonstrate that AUC fell to 55% and 52% AUC for RFs 

and GB respectively when increasing the number of SNPs to ~50,000 (including SNPs in the 

APOE region without special consideration of the APOE-specific effects). Thus, increasing 

the number of SNPs resulted in decreased performance for all algorithms. A possible reason 

for this could be the issue of increased dimensionality, whereby increasing the number of 

features alongside a fixed number of samples can reduce prediction performance. This issue 

is known as overfitting and occurs when an ML algorithm becomes too reliant on training 

data, reducing performance when using unseen samples (Ying, 2019). However, increased 

dimensionality would not have the same outcome for PRS-LR as the same number of 

predictors are used irrespective of the number of SNPs. Therefore, the decrease in AUC for 

PRS could be linked to the calculation of GWAS statistics per CV fold, where effect sizes for 

less significant SNPs might become less reliable due to sample sizes. 

 

All subsequent analyses differed in how the APOE region was represented. To reiterate, all 

variants within this region were removed from the original SNP set, with direct allele counts 

for both the 2 and 4 APOE variants used instead. Results demonstrated a difference in 

prediction performance (see Figures 5.2 and 5.3), with the inclusion of the 2/4 alleles 

improving prediction by around 10% AUC when compared with results shown in 

Supplementary Table 10. This effect was observed throughout all subsequent analyses, with 
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the increase in performance potentially explained by the significant association between 

2/4 alleles and AD risk. Therefore, we conclude that this approach may provide greater 

prediction utility than when including SNPs within the APOE region and not alleles. A 

further possible reason for the difference in AUC could be the poor coverage of the APOE 

region by the genotyping array used. This lack of coverage might result in missed variation 

attributed to AD, in addition to 2/4 alleles. 

 

5.4.2 The performance of statistical feature selection techniques 
 

Another aim of this chapter was to assess the capability of feature selection algorithms to 

reduce the effect of the curse of dimensionality for ML. A range of different techniques were 

explored. Analysis represented in Figures 5.3 and 5.4 display the impact of dimensionality 

issues on prediction. As the r2 used for clumping becomes less stringent, the number of SNPs 

used for classification increases. Initially, this may provide more predictive information to 

classifiers, which might explain increases in AUC until a certain number of SNPs is reached. 

However, AUC decreases from 65% to 55% for p-value threshold <0.1. This decrease in 

discrimination may be related to the increased number of predictors (SNPs) relative to the 

fixed number of samples used during training.  

 

The best performing feature selection techniques were RFs and the Extra Trees algorithm. 

These consistently selected variables across all p-value thresholds which retained AUC with 

a mean 65%. For the more stringent of p-value thresholds (0.0001), most often only the 4 

APOE allele was chosen. Therefore, the overlap in features selected between p-value 

thresholds was often 100%, as only the APOE allele was selected. As p-value thresholds 

became less lenient and the number of SNPs provided to the feature selection increased, 

further SNPs were selected in addition to the APOE allele. However, despite this increase in 

selected SNPs, the overlap in selected features between p-value thresholds was low, with 

overlap ranging between 1-3%. Therefore, prediction performance appears to be mostly 

driven by the APOE e4 allele, with additional SNPs providing little utility, proven by 

inconsistent selection across thresholds. 
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Both the LASSO and Elastic Net algorithms did not perform as well as the decision tree-

based algorithms with respect to prediction accuracy. These approaches selected SNPs at 

each p-value threshold but did not retain AUC as well when compared to the decision tree-

based algorithms. Whilst the number of SNPs selected by these two algorithms were less than 

when no feature selection method was used, greater amounts were still selected when 

compared to both RFs and ExtraTrees. Feature selection techniques were effective in 

retaining AUC across p-value thresholds, however none of the methods resulted in ML 

performing above PRS-LR. None of the reduced sets of SNPs from feature selection resulted 

in discrimination >70%. The dimensionality reduction approaches could only replicate the 

performance of the most significant threshold for clumping with a p-value threshold of 

0.0001. Increasing the number of SNPs through less stringent p-values and selecting SNPs 

using statistical techniques provided no greater prediction utility.  

 

However, there is one obvious advantage of feature selection, which is the reduction in 

training times for ML algorithms. Fewer features are passed to the ML, which in turn reduces 

the number of calculations and computational memory required. Both LASSO and Extra 

Trees feature selection reduced computation times as compared to not using any technique. 

Another advantage of using feature selection techniques is the freedom to employ more 

extensive hyperparameter searches for ML algorithms. This stems from the reduced training 

times and strain on computational resources due to reduced amounts of features. These 

reductions increase available resources for hyperparameter searches, which might result in 

more accurate algorithms. 

 

5.4.3 Biological information for feature selection 
 

16,095 SNPs relating to the function of microglia and 35,997 relate to the synapse were used 

as features. Selecting SNPs based on their relatedness to two potential neuropathological 

aspects of AD, microglia and the synapse, reduced prediction performance for both GB and 

PRS-LR, with only RFs retaining similar prediction accuracy. Restricting the available set of 

SNPs might remove SNPs from other relevant to neurodegeneration biological functions, 

which provide better predictive utility (in combination with microglia and synapse SNPs 

sets).  
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5.4.4 LD-based pruning as feature selection 
 

To ascertain whether LD clumping for removing SNPs was important for prediction, I 

analysed datasets which had not been clumped prior to classification. Here, SNPs were 

selected based upon their association to AD (p-values) after each AD GWAS was computed 

per CV fold. The removal of the clumping phase resulted in a larger number of SNPs used for 

analysis. For instance, p-value thresholds of 0.5 returned >200,000 SNPs. Results show that 

omitting the clumping phase made no difference to the performance of ML. AUC for RFs 

and GB were similar, the only difference occurring in the number of SNPs present in each p-

value threshold. Interestingly PRS-LR without clumping performed similarly to when 

clumping was used, with AUC again greater than any ML algorithm.  

 

It was also hypothesised that using a more stringent value of r2 during LD-clumping may 

remove SNPs important for prediction. In the first section of analysis, an r2 value of 0.1 was 

used. Using a less stringent value (r2 of 0.5), resulted in larger numbers of SNPs after LD 

pruning. Results show that this had no significant impact on classifier performance. This was 

also true for the two chosen methods of feature selection: RF selection and ExtraTrees. In 

line with the previous analysis, PRS-LR again outperformed all ML techniques.  

 

5.4.5 The use of parallel computing 
 

Analyses conducted in this chapter involved the use of up to hundreds of thousands of SNPs. 

The parallel computing through the Python package multiprocessing was used to quicken 

analysis. Analysis of feature sets containing 100,000 or more SNPs which were previously 

taking up to a week to complete, were now running in up to 24 hours. Parallel Computing 

allowed greater flexibility in making alterations to analysis and also enabled larger amounts 

of SNPs to be processed in time.  

 

5.4.6 Calibration statistics 
 

Following calibration, predictions tended to lie more closely to the diagonal line of perfect 

calibration, in which predicted probabilities match class values better. AUC values for all ML 

algorithms in this chapter were adjusted using calibrated probabilities, resulting in a marginal 

increase for prediction performance. 
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5.4.7 PRS versus ML 
 

The results presented in this chapter show that the PRS-LR outperformed ML across all 

sections of analysis. This was evidenced by statistics generated from paired t-tests 

(Supplementary Tables 24-28), in which the mean difference between values of AUC were 

tested. The superior performance of PRS-LR occurred despite the use of effect sizes and p-

values calculated from a GWAS within CV, rather than using statistics from an external 

source (Kunkle et al., 2019). The only occasion in which the performance of PRS-LR 

reduced was the use of biological information for selecting SNPs, instead of using variants 

from the whole genome. Reasoning for the superior performance of PRS-LR may be due to 

the simplicity of the PRS model, thus reducing overfitting and resulting in more robust risk 

prediction. In addition, ML uses individual genotypes adjusted using population stratification 

and not accounting for the effect sizes (B-coefficients from logistic regression). These 

coefficients might be providing PRS-LR with additional predictive information.  

 

Several studies have attempted to compare the predictive capabilities of PRS-LR and ML in 

other diseases, with results demonstrating mixed outcomes, with ML outperforming PRS-LR 

in some cases, whilst PRS-LR was superior in others (Attaran and Deb, 2018a). The reasons 

for this are not yet clear, factors such as the quality of data, genetic disease architecture and 

ML models used may influence this (Attaran and Deb, 2018a). 

 

5.4.8 Limitations 
 

Analyses conducted in this chapter were subject to some limitations. The first limitation is the 

imputation of missing values (SNP genotypes), in which the overall modal value of the 

variant was used to fill missing values (Section 5.2.1.5). The use of the modal value may 

reduce the variance of genotypes for each imputed SNP, which in turn might have reduced 

effect sizes of SNPs (Das, Nayak and Pani, 2019). A technique for imputation which avoids 

skewing variances for imputed features is the use of ML, however this requires greater 

computational resource than using averages. (Das, Nayak and Pani, 2019). Considering the 

large number of SNPs used in analyses in this chapter, the use of ML methods for imputation 

would result in longer training times. Therefore, the use of modal values was continued.  
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A second limitation is the use of thresholding and clumping approaches for PRS-LR. This 

could be considered a traditional approach for assessing disease risk. There are novel recent 

approaches to PRS generation, which may be better performing methods for discrimination 

between cases and controls with PRS (Lewis and Vassos, 2020c). Therefore, other techniques 

of PRS might outperform ML by a greater margin than clumping and thresholding. This 

thought process has resulted in the use of more complex methods of PRS (PRS-CS) in 

subsequent chapters (Chapter 7) of this thesis.  

 

5.4.9 Conclusions 
 

The two main aims of this Chapter were 1) to analyse a larger number of SNPs for disease 

prediction and compare the results with PRS-LR, and 2) evaluate the performance of feature 

selection techniques. For the case of ML, the introduction of larger number of SNPs did not 

provide any further improvement for disease prediction. As the number of SNPs increased, 

discrimination further reduced. This can most likely be explained by the increase in 

dimensionality and overfitting. The two statistical feature selection algorithms used (RFs and 

Extra Trees Algorithm) reduced the effects of increased dimensionality; but they didn’t 

improve discrimination beyond SNPs chosen at the most significant p-value thresholds. 

However, feature selection enabled ML to be trained in shorter periods of time and so 

provided an efficiency advantage. PRS-LR consistently outperformed ML across all analyses, 

with prediction performance increasing until plateauing with increasing number of SNPs, 

suggesting that ML’s ability to analyse complex patterns in this data is still outperformed by 

the linear method. The importance of efficient programming was also highlighted in this 

chapter, as the use of parallelisation decreased run times from days to hours. This is 

important message for the field of genetics as analysis can often involve the use of many 

thousands of predictors (Kalina, 2014).  
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6 Assessment of the predictive capability of machine learning using 
imputed genotype data 

 

 

 

6.1 Introduction 
 

Investigations in this chapter focused on the use of imputed sets of variants when conducting 

comparisons between machine learning (ML) and polygenic risk score (PRS). Analyses in 

previous chapters used non-imputed variants, however it was theorised that increasing the 

number of single nucleotide polymorphisms (SNPs) might increase prediction performance. 

The same methodology used to develop PRS in Chapter 5 was used for analyses in this 

chapter, with a genome wide association study (GWAS) run within each fold of cross 

validation (CV). 

 

 

Datasets consisting of non-imputed genotypes typically comprise 10,000-1,000,000 single 

nucleotide polymorphisms (SNPs) (Li et al., 2009b). Whilst genome wide association studies 

(GWAS) using this number of common variants (MAF > 1%) have published significant 

results in AD (Harold et al., 2009), a large proportion of the genetic heritability of the disease 

is yet to be explained (Ridge et al., 2013). Analyses in this chapter will use imputed 

genotypes for AD prediction, with original SNPs (Harold et al., 2009). Imputed best-guess 

genotypes and dosages are used for prediction, with the aim of comparing the performance 

between them. The same machine learning (ML) algorithms used in Chapters 5 and 6 were 

also used, with the intention of evaluating prediction in both imputed and non-imputed SNPs. 

Two of the feature selection algorithms tested in Chapter 5 were also employed (Random 

Forest, ExtraTrees algorithm). This was to establish whether their use resulted in a better 

prediction performance in comparison to non-imputed genotypes. Alongside this analysis, the 

predictive performance of ML was also compared to PRS.  

Aims:  

1. To compare the performance of both ML and PRS on predicting AD using imputed 

variants.  

2. To assess whether there were differences in prediction performance for both ML and 

PRS between allelic dosage values and best-guess genotypes. 
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3. To compare the results of both ML and PRS to those achieved when using non-

imputed SNPs (Chapters 4&5). 

4. To assess the use of feature selection on ML performance, with the intention of 

comparing whether feature selection using imputed variants leads to different results 

than non-imputed SNPs (Chapter 4&5). 

 

6.2 Methods 
 

6.2.1 Data 
 

Data used in this chapter originated from the GERAD consortium (Harold et al., 2009). 

Following quality control (QC) and exclusion of the 1958 birth cohort (described in Chapter 

4), 4603 samples remained for prediction, with 1554 controls and 3049 cases. 

 

6.2.2 Predictors 
 

Analyses in this chapter used imputed SNPs. Two different imputation formats were 

analysed: genotypic dosages and best-guess genotypes, with the intention of comparing the 

performance of PRS and ML on both. Further comparisons were also drawn prediction 

performance between imputed variants and non-imputed SNPs in previous chapters. 

 

6.2.2.1 Imputed dosages 
 

The non-imputed version of the GERAD (Harold et al., 2009) dataset was imputed within 

University by Dr Aura Frizzati. The haplotype reference consortium (HRC) was used as the 

reference panel of European ancestry, with 39,235,157 SNPs for imputation. The Michigan 

imputation server was used for this task https://imputationserver.sph.umich.edu/index.html#!. 

To conduct analyses using the dosage format, I conducted a number of pre-processing and 

quality control (QC) steps. SNPs were initially in the format of genotype dosages (later 

converted to allelic dosages) and resided in 22 (one for each chromosome) genset files. These 

were converted to the pgen format using the genetic software package PLINK 2.0 (Chen et 

al., 2019). QC steps were then used to remove SNPs considered poor quality; carried out 

using PLINK 2.0. Imputation quality can be measured using the metric r2. Variants with r2 

scores <0.7 were excluded (Hanks et al., 2022), with the intention of removing variants with 

https://imputationserver.sph.umich.edu/index.html#!
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substandard imputation quality. The function --extract from PLINK 2.0 was used to achieve 

this in each chromosome separately.  

 

Further QC steps then followed, with the --maf function used to retain all SNPs with a minor 

allele frequency (MAF) ≥0.01. The PLINK 2.0 function --geno was then used to exclude all 

SNPs with missing genotype frequency ≥0.05. Following this, the command --hwe was used 

to test each variant for departure from Hardy Weinberg equilibrium (HWE), with a value of 

1e-6 (Hanks et al., 2022) used to accept or reject variants. Following QC, the resulting .chr 

files were combined into a single file using the command --pmerge-list. 

 

6.2.2.2 Imputed genotypes 
 

All pre-processing and QC steps for the imputed genotyped version of the dataset were 

conducted by a separate individual prior to this thesis. Dosage files were initially converted to 

VCF format, with subsequent transformation into the standard binary PED format for PLINK 

1.9. QC steps were then used to remove variants using PLINK 2.0, with SNPs whose INFO 

score was less than 0.4 filtered out. An INFO score can be defined as a measure of 

uncertainty for imputation, with scores ranging from zero to one. Scores close to zero 

represent inaccurate imputation, with confidence increasing as values tend towards one (Mitt 

et al., 2017). SNPs were filtered using MAF, geno (SNPs were excluded based on missing 

genotype rate %) and HWE, in which thresholds of 0.1, >0.05 and <1e-06, respectively.  

 

6.2.3 Methods 
 

6.2.3.1 ML training and testing 
 

Analyses conducted in this chapter assessed large number of SNPs, which required 

significant amounts of computational resources. Therefore, all analyses were run using the 

high-performance computing cluster ‘Hawk’ (Supercomputing Wales) 

https://www.supercomputing.wales. Classifiers were trained and evaluated using a nested 

cross-validation (CV) approach. The Python function StratifiedKFold was used to achieve 

this, with five rounds of CV. The stratified nature of this function leads to the class ratio of 

the entire dataset being preserved in each round of CV. This reduces the possible variation in 

model performance per CV round, which may occur if class labels are poorly distributed 

https://www.supercomputing.wales/
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through CV folds (Prusty, Patnaik and Dash, 2022). Another advantage of StratifiedKFold is 

the ability to access training and test folds separately within each round of CV. This allows 

pre-processing techniques to be applied per data split, reducing the possibility of data leakage 

(Bey et al., 2020). 

 

6.2.3.2 SNP selection 
 

SNPs were selected for both ML and PRS using an inbuilt GWAS performed per CV fold. 

This was achieved by calling PLINK within Python, made possible by a function known as a 

subprocess. For analyses involving imputed genotypes, PLINK 1.9 was used. Effect sizes and 

p-values were calculated using a logistic regression (LR) generated from the PLINK function 

--logistic. PCs were used to account for population stratification and were computed using 

Python’s sklearn package. Only those individuals from the training sets of CV were used in 

the LR, as well as when computing PCs. This was to avoid possible data leakage between 

training and test sets. Clumping was performed using PLINK 1.9’s --clump function, this was 

called within Python using subprocess. A window of 1,000 kb was used, with r2 = 0.1 (Privé 

et al., 2019). Three p-value thresholds were used, 0.0001, 0.1 and 0.5. Similarly, to the 

GWAS phase, only individuals from the training set were used. Following clumping, the 

resulting SNP from each p-value threshold were formatted for ML. This was achieved by the 

function --recodeA within PLINK 1.9, which codes genotypes in a 0-2 format.  

 

The method of conducting the per-CV GWAS when using dosages performed with PLINK 

2.0 and the .pgen file format. PCs used were calculates in the same manner when using 

genotypes, with only samples within the training folds of CV used. The output of the GWAS 

was again formatted into summary statistics. PLINK 1.9 was used for clumping. As this 

version of the tool cannot handle pgen format files, these were converted to VCF format. The 

genomic window and r2 values were the same as those used for genotypes, with the same 

three p-value thresholds used (0.0001, 0.1, 0.5). SNPs chosen through clumping were then 

converted into a format suitable for ML. The PLINK 2.0 functions --export and --A were used 

to achieve this. 
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6.2.3.3 Imputed SNPs QC 
 

SNPs with more than 5% of genotypes missing were excluded and then were additionally 

imputed, as further removal of missing values could result in a loss of samples. The modal 

value of each SNP was calculated from the variant’s genotypes using mode from Pythons’ 

package NumPy. Missing values within each SNP were then imputed with the respective 

modal value. The additional imputation was applied per CV fold to avoid a possibility of data 

leakage.  

 

6.2.3.4 Population stratification correction 
 

To adjust SNPs for population stratification, PCs were calculated for both the training and 

test sets separately by using the PCA package within Python. Three PCs were used for 

adjustment, as this is the number of PCs used in previous analyses conducted using the 

GERAD dataset (Leonenko, Sims, et al., 2019). The same function was used to generate PCs 

in both the training and test sets. To control for population stratification, a custom scikit-learn 

transformer was used (outlined in previous chapters).  

 

6.2.3.5 Machine learning methodology 
 

Two types of supervised ML algorithms were used in this chapter, Random Forests (RFs) and 

the gradient boosted decision tree (GB). The Python package RandomForestClassifier was 

used to implement RF. SNPs were chosen using a similar approach used in Chapter 5, 

whereby the imputed SNP sets were clumped at three p-value thresholds (0.0001,0.1,0.5) 

(Escott-Price, Sims, Bannister, Harold, Vronskaya, Majounie, Badarinarayan, Morgan, et al., 

2015). APOE alleles were also included and adjusted for population stratification (as 

described in Section 6.2.3.4). Since the GERAD dataset is imbalanced, comprising almost 

twice as many cases as controls (1554 controls, 3049 cases), the option balanced was used, 

which determines class distributions in the training set and inversely adjusts the weighting for 

the minority class. Discrimination was assessed using area under the curve (AUC), calculated 

using the function roc_auc_score from sklearn. The function predict_proba was used to 

calculate prediction probabilities for each classifier, which were then passed to 

roc_auc_score to calculate AUC. 
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To implement GB, the Python package XGBoost with the classifier XGBClassifier. The 

Python function RandomizedSearchCV was again used to tune hyper-parameters. These were 

max-depth, n-estimators and learning rate. Similarly, to RFs, GB performance can be 

affected by class imbalances in the training data. The function XGBClassifier includes a 

hyper-parameter called scale_pos_weight which functions in the same manner as 

class_weight for RFs. A weight must be passed to the function to redress the imbalance. This 

is calculated by dividing the number of minority class instances in the dataset by the class 

number, with the result multiplied by 100. In the case of the GERAD data, the result was 66. 

For both classifiers, an individual score for AUC was calculated per CV fold, leading to five 

scores per classifier. The mean of each set of AUCs was reported as the overall performance 

of each classifier. 

 

6.2.3.6 Polygenic risk score 
 

PRS were generated only for individuals in the test set, determined from the CV split with 

GWAS statistics being calculated in the training set. Following this, the APOE counts alleles 

(e4 and e2) for each individual were derived and subsequently multiplied by their respective 

effect sizes and then summed to produce a final variable “APOE” to be used as an additional 

covariate to PRS.  

 

The next stage was to adjust PRS to account for population stratification. This was achieved 

using a linear regression, whereby risk scores were regressed on PCs. The residuals of the 

regressions were then normalised to enable comparisons between different risk scores within 

CV. Following this, the final model for PRS classification was developed. The two variables 

(PRS_without_APOE APOE and “APOE” variable) were used as explanatory variables for a 

LR. The Logit function from the Python package statsmodels was used to fit the model, with 

the AD phenotype as the response variable. For the purposes of comparisons between ML 

and PRS, this LR will be denoted as PRS-LR. 

 

6.2.3.7 Discrimination 
 

Discrimination for prediction algorithms was assessed using AUC. For analyses in this 

chapter, AUC was reported as the mean value across five rounds of CV. Therefore, for each 
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p-value threshold, a single value was reported for both ML algorithms and PRS-LR. Paired t-

tests were used to test for differences in prediction performance across the five rounds of CV.  

The false discovery rate (FDR) controlling method Benjamini-Hochberg was used, with the 

programming language R employed to make adjustments through the function p.adjust. 

Corrections were made on an analysis wide basis (for each supplementary table at one time), 

with all p-values corrected using the same function.  

 

6.2.3.8 Calibration 
 

The function CalibratedClassifierCV from Python’s sklearn was used to calibrate results.  

Inputs to the function were the original classifier, the method isotonic and three rounds of 

rounds of CV used. The function was fitted on the original training data, with predictions 

made in the test data. These newly calibrated probabilities were then plotted against observed 

probabilities for assessment, and further examined. 

 

6.2.3.9 Feature selection algorithms 
 

Following the results of Chapter 5, for the use of RFs for feature selection, the function 

RandomForestClassifier was used. Hyper-parameters were left as the default values from 

scikit-learn, with only the class_weight parameter specified as balanced. Once the RF had 

been fitted on the training data provided, relevant features were selected using the function 

SelectFromModel. The second method of feature selection used was the ExtraTrees 

algorithm using function ExtraTreesClassifier in the training data. The function 

SelectFromModel was then used to select features with the specified threshold from the 

previous ExtraTrees model. Features chosen were then passed onwards for classification 

purposes. 

 

6.2.3.10 Comparing features selected across AD association p-value thresholds 
 

The stability of a feature selection algorithm is a core metric for assessing its performance. 

To assess the performance of feature selection algorithms used in this chapter, SNPs selected 

when using the three p-value thresholds (0.0001, 0.1, 0.5) were compared. The overlap 

between SNPs selected for the p-value threshold of 0.0001 were compared to 0.1, with 0.1 
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then compared to 0.5. These statistics were calculated for both feature selection algorithms 

used.  

 

6.3 Results 
 

6.3.1 SNPs 
 

Following several QC steps, 6,756,941 SNPs were available for analyses in dosage format, 

with 6,107,587 variants also available as best-guess genotypes. 

6.3.1.1 Prediction without the use of feature selection 
 

Results for ML and PRS-LR analyses are given Supplementary Tables 29–34. These tables 

provide the mean AUC of each classifier across five folds of CV for each p-value threshold. 

The results also include the average number of SNPs used for classification across five folds 

of CV, as well as the mean number of features used for feature selection. The overlap in 

features between the p-value thresholds are also provided. Results of the t-tests are detailed in 

Supplementary Tables 35-40. Results for this chapter are only reported if the comparison 

between any two algorithms was significant (p-value  0.05).  

 

6.3.1.1.1 Best-guess genotypes 
 

Initial analysis focused on comparing the performance of ML vs PRS-LR using best-guess 

genotypes. Three p-value thresholds were used for the clumping process: 0.0001, 0.1 and 0.5. 

Figure 6.1 displays results for the chosen ML algorithms versus PRS-LR.  
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Figure 6.1:  PRS-LR vs Selected Classifiers (RF, GB) for LD Pruned SNPs in Imputed 

Genotypes, with the Inclusion of APOE Alleles. 

 

Y-axis represents AUC in %; X-axis represents each classifier’s results for a p-value threshold. Each dot represents the mean 

score for the prediction algorithm across 5 folds of CV, with an accompanying 95% CI bar. The numbers placed centrally 

are the mean of the three p-value threshold scores; GB Gradient Boosting; RF Random Forest; PRS-LR Polygenic Risk 

Scores Logistic Regression; AUC Area Under the Curve. 

 

Performance of the decision tree-based classifiers is below that of PRS-LR, with mean AUC 

at 60.3 and 60.5% for ML (GB, RFs) and 68.1% for PRS-LR. The higher performance for 

PRS-LR is supported by t-test statistics reported in Supplementary Table 35, where PRS-LR 

outperformed GB and RFs for two p-value thresholds (0.1,0.5) (PRS-LR vs GB p-values = 

1.79e-02, 5.90e-04) (RFs p-values = 8.09e-03, 5.61e-06). Prediction performance for ML 

reduced with the increase of the p-value threshold, with AUC for the RF reducing from 67% 

to 54% and performance for GB reducing from 64 to 56%. Confidence intervals for each data 

point demonstrate that scores for GB were more varied than those of PRS and RFs. 

The decrease in ML performance could be attributed to an increase of the number of SNPs 

used for prediction, from 100 to 128,000. As the p-value used for clumping becomes less 

stringent and the resulting number of variants increases, it might become more difficult for 

ML to distinguish the true signal between SNPs and AD from random noise. Random noise 

may reduce the algorithm’s ability to identify the true underlying pattern within the dataset, 

leading to overfitting. The prediction performance of GB was similar to RFs, with the 
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average prediction performance across the five folds of CV 0.2% less than RFs. This is less 

of an issue for PRS-LR, as only one or two predictors are used. Performance for PRS-LR was 

similar across the three p-value thresholds, with mean AUC of 68.1%.  

 

Figure 6.2: Non-Calibrated vs Calibrated Prediction Probabilities for GB 

 
a) Pre-calibrated probabilities                                      b) Post calibration probabilities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

These figures represent pre a) and post b) calibration plots for the related GB algorithm (Figure 6.1) clumped at a p-value of 

0.1. The x-axis represents the prediction output of the classifier in terms of the probability of being a case. With the y-axis 

denoting observed class frequencies. Perfect calibration in which predicted probabilities match observed accuracies is 

denoted by the diagonal dotted line. The blue dots represent the mean probability/observed values within each quantile and 

are accompanied by a 95% confidence interval (blue bar). The overall relationship between predicted probabilities and 

observed frequencies (calibration curve) is given by the fitted loess smoother (red line), with a 95% confidence interval 

(grey shaded area) used. 

 

 

Figures 6.2a and 6.2b demonstrate the calibration plots for the GB (Figure 6.1) at a p-value 

threshold of 0.1 Model probabilities have been calibrated using the isotonic regression 

method. Results in Figure 6.2a show that the model is generally underestimating disease risk 

between 0.25-0.5 predicted probabilities, due to the calibration curve being above the 

diagonal line. This is due to the algorithm underestimating the likelihood of samples being 

cases, suggesting that they are controls. However, as the predicted probability moves towards 

0.5, probabilities are closer to the diagonal, suggesting that the model is making predictions 

with greater confidence. Figure 6.2b demonstrates the GB algorithm post calibration. Overall, 

the calibrated line lies closer to the diagonal, which indicates that calibrating probabilities 

resulted in more accurate predictions. However, probabilities are still underestimated 

between 0.25 and 0.5 predicted probabilities.  
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A consistent observation made for the majority of calibration plots in this chapter is the 

widening of the confidence interval (grey shaded area) for the loess smoother at the left-hand 

side. This can be explained by the greater number of cases than controls in the dataset and in 

turn reduced number of predicted probabilities less than 0.5. This reduction in information 

results in a reduced confidence for the fitted loess line.  

 

6.3.1.1.2 Dosages 
 

Results shown in Figure 6.3 show analyses when using dosages and no feature selection. 

 

Figure 6.3: PRS-LR vs Selected Classifiers (RF, GB) for LD Pruned SNPs in Imputed 

Dosages, with the Inclusion of APOE Alleles. 

 

Y-axis represents AUC in %; X-axis represents each classifier’s results for a p-value threshold. Each dot represents the mean 

score for the prediction algorithm across 5 folds of CV, with an accompanying 95% CI bar. The numbers placed centrally 

are the mean of the three p-value threshold scores; GB Gradient Boosting; RF Random Forest; PRS-LR Polygenic Risk 

Scores Logistic Regression; AUC Area Under the Curve. 

 

Results displayed in Figure 6.3 are similar to those in Figure 6.1. Mean AUC for all three 

classifiers show that prediction performance between imputed genotypes and dosages was 

similar (GB 60.3-60.5, RFs 60.5-60.6, PRS-LR 68.1-68.9). Prediction performance for both 

decision tree-based algorithms worsened as the p-value threshold used for clumping became 

less stringent. The performance comparison between the decision tree-based ML methods 
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and PRS-LR was also similar when compared to Figure 6.1. Results of paired t-tests in 

Supplementary Table 36 demonstrate that PRS-LR outperformed both GB and RFs across 

two p-value thresholds (0.1,0.5) (GB p-values = 1.79e-02, 5.90e-04) (RFs p-values = 8.09e-

03, 5.67e-06). When assessing confidence intervals for each classifier, it can be determined 

that scores were less varied for PRS-LR than both GB and RFs.                  

 

Figure 6.4: Non-Calibrated vs Calibrated Prediction Probabilities for GB 

 
a)  Pre-calibrated probabilities                           b)     Post calibration probabilities                                                                                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

These figures represent pre a) and post b) calibration plots for the related GB algorithm (Figure 6.3) clumped at a p-value of 

0.1. The x-axis represents the prediction output of the classifier in terms of the probability of being a case. With the y-axis 

denoting observed class frequencies. Perfect calibration in which predicted probabilities match observed accuracies is 

denoted by the diagonal dotted line. The blue dots represent the mean probability/observed values within each quantile and 

are accompanied by a 95% confidence interval (blue bar). The overall relationship between predicted probabilities and 

observed frequencies (calibration curve) is given by the fitted loess smoother (red line), with a 95% confidence interval 

(grey shaded area) used. 

 

Prediction probabilities shown in Figure 6.4a demonstrate that prior to calibration, the GB in 

Figure 6.3 was underestimating risk for class memberships predicted probabilities between 

0.3 and 0.5. This is due to the algorithm predicting true cases with a greater likelihood of 

being controls. Following this, the calibrated line moves above and below the line of perfect 

calibration, demonstrating that prediction accuracy was inconsistent. After calibration using 

isotonic regression, the calibration line follows more in line with the diagonal in Figure 6.4b. 

This suggests the recalibrated model estimates risk more accurately.  

 

 



 205 

6.3.1.2 Prediction with the use of an RF for feature selection 
 

6.3.1.2.1 Best-guess genotypes 
 

Results displayed in Figure 6.5 show analyses when using genotypes and RF for feature 

selection. 

 

 

Figure 6.5: PRS-LR vs Selected Classifiers (RF, GB) for LD Pruned SNPs in Imputed 

Genotypes, with the Inclusion of APOE Alleles and a RF used for Feature Selection. 

 

Y-axis represents AUC in %; X-axis represents each classifier’s results for a p-value threshold. Each dot represents the mean 

score for the prediction algorithm across 5 folds of CV, with an accompanying 95% CI bar. The numbers placed centrally 

are the mean of the three p-value threshold scores; GB Gradient Boosting; RF Random Forest; PRS-LR Polygenic Risk 

Scores Logistic Regression; AUC Area Under the Curve. 

 

When comparing results shown in Figure 6.5 with those shown in Figure 6.1, a similarity 

between both sets of analyses is the better performance of PRS-LR when compared to GB 

and RFs, with mean AUC 2% greater for PRS-LR. However, this difference is less than 

results observed in Figure 6.1. Therefore, the use of an RF for feature selection resulted in the 

reduced the loss of AUC for ML as p-values become less significant, as observed for results 

in Figures 6.1& 6.3. The algorithm may only be selecting the most relevant SNPs, despite the 

number of available features increasing. Therefore, features deemed redundant are removed. 

This suggests that the employment of feature selection may have reduced the possibility of 

dimensionality issues. Despite the use of feature selection, mean AUC for PRS-LR was still 
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higher than both GB and RFs, however these differences were shown not to be statistically 

significant (Supplementary Table 37). The size of confidence intervals for all three classifiers 

were larger than in both Figures 6.1& 6.3. Therefore, it would appear that the introduction of 

feature selection increased the variation of AUC values.  

 

A further point of discussion is the increase in AUC for both RFs and GB from a clumping p-

value threshold of 0.0001 to 0.1. This may indicate that hyperparameter optimisation is 

succeeding in reducing the effect of increased dimensionality on prediction performance. 

However, AUC falls for both algorithms when using a p-value threshold of 0.5. This suggests 

that differences in AUC between p-value thresholds might be due to random variation across 

five folds of CV when using feature selection. 

 

Figure 6.6: Non-Calibrated vs Calibrated Prediction Probabilities for GB 

 
a)  Pre-calibrated probabilities                      b)     Post calibration probabilities                                                         

 

 

 

 

 

 
 

 

 
 

 
 
 

These figures represent pre a) and post b) calibration plots for the related GB algorithm (Figure 6.5) clumped at a p-value of 

0.1. The x-axis represents the prediction output of the classifier in terms of the probability of being a case. With the y-axis 

denoting observed class frequencies. Perfect calibration in which predicted probabilities match observed accuracies is 

denoted by the diagonal dotted line. The blue dots represent the mean probability/observed values within each quantile and 

are accompanied by a 95% confidence interval (blue bar). The overall relationship between predicted probabilities and 

observed frequencies (calibration curve) is given by the fitted loess smoother (red line), with a 95% confidence interval 

(grey shaded area) used. 

 

Risk is underestimated for predicted probabilities between 0.3–0.5 (Figure 6.6a). Subsequent 

probabilities follow the perfect calibration line consistently. However, post-calibrated 
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probabilities between 0.3–0.5 were still underestimated. In contrast, subsequent predictions 

were relatively close to the diagonal.  

 

6.3.1.2.2 Dosage data 
 

Analyses in this section involved the use of dosages and RFs for feature selection. 

 

Figure 6.7: PRS-LR vs Selected Classifiers (RF, GB) for LD Pruned SNPs in Imputed 

Dosages, with the Inclusion of APOE Alleles and an RF used for Feature Selection. 

 

   
Y-axis represents AUC in %; X-axis represents each classifier’s results for a p-value threshold. Each dot represents the mean 

score for the prediction algorithm across 5 folds of CV, with an accompanying 95% CI bar. The numbers placed centrally 

are the mean of the three p-value threshold scores (dots); GB Gradient Boosting; RF Random Forest; PRS-LR Polygenic 

Risk Scores Logistic Regression; AUC Area Under the Curve. 

 

When comparing results when using either best guess genotypes (Figure 6.5) or dosages 

(Figure 6.7), classifier performance is approximately similar in in both analyses (GB 65.7-

65.6, RFs 66.4-67.0, PRS-LR 68.2-68.9). Therefore, the use of RFs for feature selection 

resulted in no difference when using either genotypes or dosages. However, similarly to 

genotypes, the use of feature selection increased AUC by 5-6% for ML performance when 

compared to results shown in Figure 6.3. In line with all previous analyses, mean AUC for 

PRS-LR was higher as compared to GB or RFs. This superior performance of PRS-LR is 

supported by the significant results of t-tests (Supplementary Table 38), whereby t-statistics 
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for paired t-tests are significant for PRS-LR versus GB at one threshold (0.1) (GB p-values = 

1.4e-02) and RFs at two p-value thresholds (0.1,0.5) (RFs p-values = 5.9e-03, 5.17e-03).  

 

As discussed previously, the difference in AUC between p-value thresholds when using 

feature selection is generally less than 1% AUC, therefore these alterations are most likely 

due to random variations across CV. Confidence intervals shown in Figure 6.7 are again 

larger than those observed when not using feature selection (Figures 6.1& 6.3). 

 

Figure 6.8: The Comparison of non-Calibrated vs Calibrated Prediction Probabilities 

for GB 
a)     Pre-calibrated probabilities                            b)     Post calibration probabilities 

 

 

 

 

 

 
 

 
 

 

 
 

 

 

These figures represent pre a) and post b) calibration plots for the related GB algorithm (Figure 6.7) clumped at a p-value of 

0.1. The x-axis represents the prediction output of the classifier in terms of the probability of being a case. With the y-axis 

denoting observed class frequencies. Perfect calibration in which predicted probabilities match observed accuracies is 

denoted by the diagonal dotted line. The blue dots represent the mean probability/observed values within each quantile and 

are accompanied by a 95% confidence interval (blue bar). The overall relationship between predicted probabilities and 

observed frequencies (calibration curve) is given by the fitted loess smoother (red line), with a 95% confidence interval 

(grey shaded area) used. 

 

Results shown in Figure 6.8a demonstrate the predicted versus the observed probabilities of 

the GB tree from Figure 6.7. The plotted red line shown lies close to the diagonal, suggesting 

that the model was assessing risk well. Figure 6.8b shows the comparison of calibrated 

probabilities and observed probabilities. The loess smoother again followed the diagonal, 

suggesting that on this occasion calibration made negligible difference to risk prediction.  
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6.3.1.3 Prediction with ExtraTrees for feature selection 
 

6.3.1.3.1 Best-guess genotypes 
 

Analyses in this section involved the use of genotypes and Extra Trees for feature selection. 

 

Figure 6.9: PRS-LR vs Selected Classifiers (RF, GB) for LD Pruned SNPs in Imputed 

Genotypes, with the Inclusion of APOE Alleles and an ExtraTrees algorithm used for 

Feature Selection. 

 

 
Y-axis represents AUC in %; X-axis represents each classifier’s results for a p-value threshold. Each dot represents the mean 

score for the prediction algorithm across 5 folds of CV, with an accompanying 95% CI bar. The numbers placed centrally 

are the mean of the three p-value threshold scores; GB Gradient Boosting; RF Random Forest; PRS-LR Polygenic Risk 

Scores Logistic Regression; AUC Area Under the Curve. 

 

When comparing the performance of classifiers in Figure 6.9 with those in Figure 6.5, the use 

of the ExtraTrees algorithm for feature selection results in similar results to using RFs. When 

comparing both ML algorithms and PRS-LR, it can be seen that the use of feature selection 

does not improve classification above PRS-LR. Supplementary Table 39 displays the results 

of paired t-tests between classifiers. Results show that PRS-LR significantly outperformed 

GB for one p-value threshold (0.5) (p-value = 3.43e-02), whilst RFs also outperformed GB 

for the 0.5 threshold (p-value = 2.48e-02). Similarly, to those observed in Figures 6.5& 6.7, 

confidence intervals in Figure 6.9 were larger than when not using feature selection. 
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Figure 6.10: The Comparison of non-Calibrated vs Calibrated Prediction Probabilities 

for GB 

 
a)  Pre-calibrated probabilities                         b)      Post calibration probabilities 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

These figures represent pre a) and post b) calibration plots for the related GB algorithm (Figure 6.9) clumped at a p-value of 

0.1. The x-axis represents the prediction output of the classifier in terms of the probability of being a case. With the y-axis 

denoting observed class frequencies. Perfect calibration in which predicted probabilities match observed accuracies is 

denoted by the diagonal dotted line. The blue dots represent the mean probability/observed values within each quantile and 

are accompanied by a 95% confidence interval (blue bar). The overall relationship between predicted probabilities and 

observed frequencies (calibration curve) is given by the fitted loess smoother (red line), with a 95% confidence interval 

(grey shaded area) used. 

 

The comparison of model predictions versus observed frequency in Figure 6.10a 

demonstrated the model was underestimating risk in most cases. This is evidenced by the 

loess smoother lying above the diagonal in most instances. Following calibration in Figure 

6.10b, the curve still did not follow the diagonal. This indicates that calibration did not 

correct the issue of poor risk assessment.  
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6.3.1.3.2 Dosages 
 

Analyses in this section involved the coding of genotypes as dosages and Extra Trees for 

feature selection. 

 

Figure 6.11: PRS-LR vs Selected Classifiers (RF, GB) for LD Pruned SNPs in Imputed 

Dosages, with the Inclusion of APOE Alleles and an ExtraTrees algorithm used for 

Feature Selection. 

 

Y-axis represents AUC in %; X-axis represents each classifier’s results for a p-value threshold. Each dot represents the mean 

score for the prediction algorithm across 5 folds of CV, with an accompanying 95% CI bar. The numbers placed centrally 

are the mean of the three p-value threshold scores; GB Gradient Boosting; RF Random Forest; PRS-LR Polygenic Risk 

Scores Logistic Regression; AUC Area Under the Curve. 

 

Mean AUC across CV for all three classifiers in Figure 6.11 is similar to those shown in 

Figure 6.7. Therefore, using either RFs for feature selection or the ExtraTree algorithm 

resulted in similar levels of ML performance. Mean AUC for PRS-LR was again above that 

of both ML algorithms, however, results of paired t-tests detailed in Supplementary Table 40 

were different to previous analyses. PRS-LR was only shown to significantly outperform GB 

for one p-value threshold (0.5) (p-value = 2.13e-02), with all other comparisons not returning 

significant results. In line with previous instances when using feature selection, confidence 

intervals suggest that scores for ML were more varied following the use of feature selection.  

 

Another point for discussion is the contrast in AUC for both RFs and GB as the number of 

SNPs increase for prediction. AUC for GB decreases as the p-value threshold used for 
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clumping becomes more lenient, whereas prediction performance for RFs increases. 

Explanations in previous figures suggested that these apparent trends might be the result of 

random variation across folds of CV. However, another possibility could be the success of 

hyperparameter tuning for dealing with the increasing amounts of features. The range of 

hyperparameters used and subsequent combination might have allowed RFs to overcome 

dimensionality issues to a better extent to those used for GB. 

 

 

Figure 6.12: The Comparison of non-Calibrated vs Calibrated Prediction Probabilities 

for the GB 

              
a)  Pre-calibrated probabilities                                b)   Post calibration probabilities 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

These figures represent pre a) and post b) calibration plots for the related GB algorithm (Figure 6.11) clumped at a p-value 

of 0.1. The x-axis represents the prediction output of the classifier in terms of the probability of being a case. With the y-axis 

denoting observed class frequencies. Perfect calibration in which predicted probabilities match observed accuracies is 

denoted by the diagonal dotted line. The blue dots represent the mean probability/observed values within each quantile and 

are accompanied by a 95% confidence interval (blue bar). The overall relationship between predicted probabilities and 

observed frequencies (calibration curve) is given by the fitted loess smoother (red line), with a 95% confidence interval 

(grey shaded area) used. 
 

 

The pre-calibration plot in Figure 6.12a showed the loess smoother followed the diagonal line 

of perfect calibration reasonably well. There were some areas such as 0.4–0.5 predicted 

probabilities in which risk was underestimated, and 0.5 -0.65 where risk was overestimated. 

However, in general, risk assessment was balanced. Figure 6.12b demonstrated the 

comparison between calibrated probabilities and observed frequencies. An overestimation of 

risk between 0.4 and 0.5 predicted probabilities occurred post-calibration, suggesting that the 

algorithm was inaccurately predicting that samples had AD. For other predictions, the loess 

smoother followed the diagonal, therefore the algorithm was more accurately predicting the 

probability of AD occurring. 
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6.4 Discussion 
 

Analyses in this chapter involved the introduction of imputed variants for AD prediction. 

Two different types of inputs were used in the form of allelic dosages and best guess 

genotypes. Emphasis was placed on whether the use of imputed variants would result in 

different outcomes to analyses in Chapter 5, as well as comparing the performance of ML 

algorithms versus PRS-LR.  

 

6.4.1 Comparison of ML and PRS on imputed variants 
 

One of the central aims of this chapter was to assess the performance of ML vs PRS-LR 

when using imputed SNPs. The overriding conclusion drawn from the performed analyses 

was that PRS-LR outperformed ML classifiers in all scenarios. Prior to the use of feature 

selection, AUC for ML declined as the number of SNPs used increased. This could be further 

evidence for the existence of the curse of dimensionality, where an increase in features 

alongside a fixed number of samples will most likely result in a reduction of prediction 

performance (Verleysen and François, 2005b). The addition of extra SNPs may contribute 

random noise to the feature set, reducing the ML algorithm’s ability to learn the true 

underlying pattern within the dataset. In a formal sense this is known as ‘overfitting’, where a 

classifier fails to generalise to unseen data (Verleysen and François, 2005b). Following the 

use of feature selection, mean AUC across the three p-value thresholds for both ML 

algorithms improved. This was similar to results demonstrated in Chapter 5, in which non-

imputed genotypes were used. Therefore, using feature selection might assist in reducing the 

increase in random noise when increasing SNPs through more lenient p-values at the 

clumping stage. 

 

However, whilst performance was retained when increasing the number of SNPs, AUC did 

not improve beyond prediction performance when using ML with no feature selection at a p-

value of 0.0001 (Figure 6.1). Also, despite the use of feature selection, PRS-LR still achieved 

higher levels of AUC than ML. This superior performance was evidenced by pairwise t-tests, 

in which comparisons of AUC between PRS-LR and GB/RFs were significant 

(Supplementary Table 37). Another observation made when introducing feature selection was 

the increase in variance of ML scores across CV folds. This was true for all uses of feature 

selection when compared to confidence intervals in Figures 6.1& 6.3 (no feature selection 

used). A possible reason for this could be the consistency of features selected between CV 
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folds. Assessments to analyse the stability of feature selection algorithms (discussed at 

further length in Section 6.4.2) revealed SNPs were inconsistently chosen between folds. This 

inconsistency might result in differences of prediction performance (AUC) between folds.  

 

6.4.2 The comparison between allelic dosages and best guess genotypes 
 

When comparing classification performance between best-guess imputed genotypes and 

dosages, PRS-LR and ML algorithms showed little differences. This suggests that using 

either genotype dosages or best-guess genotypes made no difference in prediction outcome. 

The only difference between the two data types was the number of SNPs used for prediction, 

with the dosage format providing over 200,000 SNPs per round of CV for the 0.5 p-value 

threshold, in comparison to ~128,000 variants for best-guess genotypes. This was the first 

occasion in this thesis thus far that such a large number of SNPs have been assessed. 

 

6.4.3 Comparison performance between imputed and non-imputed SNPs 
 

Analyses comparing the prediction performance of ML and PRS-LR in Chapter 5 used the 

non-imputed GERAD dataset. A core aim of this chapter was to use imputed SNPs, with the 

intention of comparing results to the use of non-imputed genotypes. When comparing ML 

performance using dosages and best-guess genotypes, AUC was similar across both data 

types. This is not surprising as despite a loss of SNPs due to the use of a threshold converting 

dosages to best-guess genotypes the overlap of SNPs between the two sets remained high 

(90.1%).  

 

When comparing the performance of prediction algorithms in this chapter with results in 

Chapter 5, the use of imputation did not result in noticeable alteration in AUC.  However, 

AUC for PRS-LR reached 69% only, a reduction of 3-4% from results from when non-

imputed genotypes were used (Chapter 5). Logic would suggest that increasing the number of 

SNPs available for PRS-LR would boost performance, however this is not always the case. 

Chen et al., 2020, compared the calculation of PRS for several diseases from directly 

genotyped SNPs and three forms of imputation. Results demonstrated that imputation 

methods can introduce variations of PRS values at an individual level. The magnitude of 

variability differed depending on the type of imputation software used, with the method using 

scholastic elements (error terms) causing the most variation. These variations tend to be 

small, however in some rare circumstances PRS are substantially different from those 
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computed from non-imputed genotypes. Therefore, it is possible that the imputation of 

GERAD might have resulted in differences in PRS for some individuals, with the result of a 

reduction in AUC for PRS-LR.  

 

6.4.4 Feature selection Performance 
 

The stability of a feature selection algorithm relates to the impact of changes in composition 

of training data through splitting procedures such as CV can have on its performance. A 

feature selection method can be defined as unstable if a small alteration in training data 

causes a large change in the features selected. Stability is important as it increases confidence 

in the viability of the feature selection method and classification performance (Balakrishnan, 

Dhanalakshmi and Khaire, 2022). To assess the stability of feature selection algorithms used 

in this chapter, features selected between p-value thresholds were compared. The results of 

this were recorded in Supplementary Tables 31–34.  

 

Results demonstrate that both RF and ExtraTrees performed poorly in terms of stability. The 

overlap in SNPs between p-value thresholds was low, with usually only one feature shared 

between SNP sets. This was most often the ε4 allele, which is unsurprising given its 

association to AD risk. The small amount of overlap of SNPs between p-value thresholds 

could be due to in-built GWAS per CV round. The sample used to generate summary 

statistics changes on each occasion, therefore effect sizes and p-values may also alter. These 

variations across CV might result in different SNPs being chosen through clumping. 

However, despite this variation of features, classifier performance remained similar. 

Therefore, this could suggest that selected SNPs had low effect on AD prediction, with the 

majority of predictive information coming from the ε4 allele which is consistently selected.  

 

When assessing the overall performance of feature selection for analyses in this chapter, it 

can be deduced that its use can improve ML performance at less stringent p-values. However, 

this improvement does not increase AUC above levels achieved for PRS-LR. These patterns 

were also observed for analyses in Chapter 5, suggesting that the use of non-imputed or 

imputed variants when using feature selection methods.  
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6.4.5 Model calibration 
 

Results of calibration varied across all analyses run in the chapter. Figure 6.2 shows the 

calibration plots for the GB tree analysis in Supplementary Table 29, in which no feature 

selection was used for genotyped data. The plots demonstrated that GB was under-forecasting 

risk probabilities between 0.25-0.5, with true cases predicted as controls by the model. 

Overestimation of risk was observed in only a few instances, with predicted probabilities 

lying below the diagonal in Figure 6.12 for example. It is worth stating that overestimation 

mostly occurred following the use of feature selection prior to classification. Whilst the use 

of feature selection has advantages in terms of reducing possible overfitting and resources 

required for computation, issues can also arise following its use. 

 

6.4.6 Processing Large Numbers of Variants 
 

Initial analysis in Chapter 4 focused on using a small number of GWAS significant SNPs 

(N=23) as predictors. In subsequent chapters larger number of SNPs have been used for 

prediction. ML allows for large number of predictors to be analysed within short run times 

(Attaran and Deb, 2018b). However, despite advances in modern computing and memory 

storage, limits still apply on the number of variables which can be analysed (Qiu et al., 2016). 

Following the increase in large datasets being compiled, these restrictions are becoming more 

prominent.   

 

Analysis in this chapter used large numbers of SNPs for prediction. This was especially true 

in the case of dosages, in which the least stringent p-value threshold of 0.5 resulted in 

200,000 SNPs being processed per round of CV. Analysing this number of SNPs is not 

common for ML approaches in AD prediction, as evidenced when reviewing the studies 

included in our systematic review (Rowe et al., 2021a). Here it was achieved due to a 

combination of techniques used during the methodology phase. The first of these being the 

ability to call PLINK from within Python. The subprocess function allowed data intensive 

processes such as GWAS and clumping to be run by PLINK separately to Python. It has also 

meant that large files such as bed, bim and fam files do not have to be loaded into memory 

for each set of analysis. The deconfounding method used also led to reduced run times. This 

was due to running large numbers of regressions using the statsmodels package, whilst also 

using NumPy arrays. These have been shown to be computationally efficient and quicker than 

other pythonic methods (van der Walt, Colbert and Varoquaux, 2011). 
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6.4.7 Conclusions 
 

Results in this chapter closely aligned to those in Chapter 5. AUC for both RFs and GB were 

similar, with PRS-LR also consistently outperforming both algorithms. The only difference 

between using non-imputed and imputed genotypes was the reduction in PRS performance, 

with AUC 2-3% less when using imputed SNPs. The analysis of >200,000 SNPs in this 

chapter has not occurred often for ML prediction in AD. When assessing studies for the 

systematic review in Chapter 3, only one of the articles analysed a similar number of variants 

(Wei, Visweswaran and Cooper, 2011b). On this occasion, variations of the ML technique 

naïve bayes (NB) were used on 312, 318 SNPs. Despite using a larger number of features 

than analyses in this chapter, the underlying mathematical calculations of the NB algorithm 

are not as complex as other methods such as decision tree-based classifiers. Therefore, 

greater computational resources are required to analyse datasets of the same dimension. The 

ability to process datasets comprising 200,000 SNPs therefore appears to be novel in AD 

prediction when using decision tree-based approaches. This however is not the case for PRS 

as other studies have used such numbers of variants. 

 

The use of feature selection methods reduces the random noise but does not improve the 

predictive performance of ML over when a p-value threshold of 0.0001 is used for clumping. 

Therefore, using smaller feature sets with higher association with AD appears to result in 

better disease prediction. This suggests that a different approach may be required to explore 

whether ML can outperform PRS. One possible option is to use variants linked with 

biological pathways which have been associated with AD. This will reduce the number of 

SNPs used but retain variants related to AD development. 
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7 Assessment of the predictive capability of genetic pathways in 
Alzheimer’s disease 

 

 

7.1 Introduction 
 

 

 

The aim of this chapter is to assess the capability of SNPs to predict AD by Machine 

Learning (ML) within the 9 pathways detailed in Kunkle et al., 2019. Motivation for the use 

of pathways was to assess whether using prior biological information could improve 

predictive ability above that of genome wide variants. Analysis in previous chapters used 

large sets of SNPs derived on a genomic scale. Analysing large sets of variants may impair 

the performance of ML algorithms due to excess dimensionality, with use of statistically 

based feature selection methods required to limit the impact. Therefore, analyses in this 

chapter will aim to reduce this issue through the use biological information to select relevant 

variants to AD. This will assess whether prediction performance can be improved by 

selecting SNPs likely to be associated with disease risk.  

 

The GERAD dataset will be filtered to contain only those SNPs within each pathway. ML 

will then be used to assess the prediction of disease status obtained from each pathway. 

Prediction accuracy will be compared to that obtained from a logistic regression (LR) based 

polygenic risk score (PRS-LR), as well as the use of PRS-CS-LR. The latter is explained 

further in Section 7.2.2.2. 

 

7.2 Methods 
 

7.2.1 Outline of analysis 
 

Analysis in this chapter was split into three sections: 1) The assessment of predictive 

accuracy for individual pathways, 2) assessment of the accuracy of risk prediction obtained 

from analysing the nine pathways simultaneously in a multivariable model, using both 

genotypes and PRS for inputs to LR and ML, and 3) assessment of risk prediction accuracy 

given by the amalgamation of all SNPs across pathways into a unified set. Analyses for 

individual pathways were firstly carried out in non-imputed (genotyped) SNPs, then repeated 



 219 

in imputed variants (as described in Chapter 6). The subsequent multivariable and unified set 

analyses used imputed variants only. The methodology used to perform the analyses varied 

by analysis type; an overview of these is given below: 

 

• Fivefold stratified nested cross-validation was used for algorithm development. 

• Prediction algorithms used were Gradient Boosting (GB), Random Forests (RFs), 

PRS-LR (p-value =0.1) and PRS-CS-LR (p-value = 0.1).  

• Prediction performance for ML, PRS-LR and PRS-CS-LR was assessed by averaging 

area under the curve (AUC) across the five test sets from CV. 

• Both non-imputed and imputed genotyped SNPs were used individual pathway 

analysis. 

• A GWAS was conducted within each round of cross-validation for samples in the 

training sets to ensure PRS did not gain an unfair advantage over ML due to the use of 

external information. Summary statistics generated in training samples were then used 

to generate PRS in test samples.  

• Discrimination between cases and controls was then assessed, with comparisons 

between LR performed on PRS values and ML.  

• ML and LR were also trained and tested using pathways-specific PRS generated with 

the Kunkle-noGERAD summary statistics in both training and test samples.  

 

7.2.2 Individual pathway analysis 
 

For analysis in this section, pathways were treated as separate entities. RFs, GB, PRS-LR and 

PRS-CS-LR were trained and validated using SNPs (both non-imputed and imputed) from 

each pathway. Eighteen sets of SNPs were created (nine non-imputed, nine imputed) using 

the genomic positions of genes within each pathway including 35kb upstream and 10kb 

downstream regions around the genes as suggested by (Network and Pathway Analysis 

Subgroup of Psychiatric Genomics Consortium, 2015). The effect of the APOE gene was 

modelled in three ways: 1) variants within APOE were removed from each pathway, 2) 

variants within APOE were included, 3) variants within APOE were removed and replaced by 

counts of the APOE alleles 2 and 4.  
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7.2.2.1 Data analysis 
 

We used the same software in this chapter as in previous chapters. The Python function 

StratifiedKFold was used to derive five rounds of Cross-Validation (CV). Principal 

Components (PCs) were produced using the package PCA from the sklearn package within 

Python. The GWAS was performed by calling PLINK within Python using the function 

subprocess. Genotypes of chosen SNPs present in training and test sets were then adjusted for 

population stratification using the Deconfounding method observed in Chapters 5 and 6, with 

subsequent residuals for both the training and test sets were then scaled using the Python 

function StandardScaler. The PLINK function --score was used to generate PRS and then 

adjusted by PCs using the Python package statsmodels.OLS, and standardised. 

 

7.2.2.2 PRS-CS 
 

PRS-CS uses a high-dimensional Bayesian framework to derive SNP effect sizes. The 

novelty of PRS-CS lies with its use of a continuous shrinkage method to adjust SNP effect 

sizes, thus removing the need for both threshold and LD pruning. The amount of shrinkage 

applied to a variant’s effect size is related to its strength of association within a GWAS. 

Multiple effect sizes are updated at once, reducing computation time when compared to 

updating weights on a singular basis (Choi, Mak and Paul F. O’Reilly, 2020). Another 

advantage of PRS-CS is that it imposes heavy shrinkage on variants with small effect sizes, 

thereby reducing random noise in the SNP set. Also, SNPs with high effect sizes are lightly 

pruned, preserving the signal between variants and phenotype (Choi, Mak and Paul F. 

O’Reilly, 2020). A difference between the clumping and thresholding method and PRS-CS is 

the absence of clumping which is instead achieved by the shrinkage process in PRS-CS 

(Choi, Mak and Paul F. O’Reilly, 2020). 

 

To implement PRS-CS, the tool from https://github.com/getian107/PRScs is required. The 

Python function subprocess was then used call the tool within each CV fold. Linkage 

disequilibrium statistics were provided by the file ‘ldblk_1kg_eur’. PRS values were then 

derived in test samples using the effect sizes provided by the online tool with PLINK function 

–score was run using --subprocess. Similarly, to ordinary PRS, scores were then adjusted for 

population and the residuals were then standardised. 

 

https://github.com/getian107/PRScs
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7.2.2.3 Calibration statistics 
 

The output of all ML algorithms used in this chapter was calibrated, using the same 

techniques described in Chapters 4,5 and 6. Calibration statistics are then plotted to assess 

how calibration altered probability distributions. 

 

7.2.3 Multivariable analysis of pathways 
 

The next set of analyses focused on using a multivariable method, in which the PRS for the 9 

pathways were used as separate predictors for modelling. Subsequent analyses assessed the 

predictive capability of using both genotypes and PRS as inputs to ML. Analyses were 

conducted for imputed SNPs only, with the intent of further establishing whether using 

imputed variants would result in better prediction performance than non-imputed SNPs. 

 

7.2.4 Multivariable Analysis of pathways using genotypes as inputs 
 

When selecting pathway-specific SNPs, GWAS statistics were generated (training samples 

only) within each round of CV and then used to select SNPs through clumping. For each CV 

fold, the nine pathways were clumped separately with two p-value thresholds of 0.1 and 1, a 

clumping distance of 500 kb and an r2 of 0.1. These values were used to ensure a reasonable 

number of variants were present within each pathway. Some genes are present in more than 

one pathway, suggesting that certain SNPs might occur more than once following the 

clumping phase. All duplicate copies of SNPs were removed, leaving a set of unique variants. 

PRS were generated for each of the nine separate sets of SNPs. For the PRS-CS method, PRS 

values were also generated individually for each pathway. Following the derivation of scores 

for each pathway, the nine sets of values were adjusted for population stratification using the 

same method for PRS-LR.  

 

7.2.5 Multivariable analysis of pathways using PRS as inputs 
 

The second form of analysis in this section used PRS values where SNP effect sizes and p-

values were taken from an external source (Kunkle-noGERAD summary statistics). As 

before, both sets of PRS (clumping and thresholding, PRS-CS) were adjusted for population 

stratification and standardised. 
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7.2.6 All pathways combined into a single set of SNPs. 
 

The last section of analyses in this chapter focused on using a unified set of SNPs, in which 

SNPs from all 9 pathways were combined. Duplicate SNPs were removed, producing a set of 

unique variants. If the multivariable method used nine different datasets, each clumped 

separately, the unified method used in this section clumped the combined pathway set once, 

therefore the SNPs used in the for both analyses might differ. The combination of all 

pathways into one set altered methodology for PRS-LR and PRS-CS more than ML. This is 

due to the LR used for disease prediction being reduced from a multivariable method to a 

singular predictor (in the instance when APOE alleles were not included). 

 

To calculate PRS for PRS-LR and PRS-CS-LR, imputed genotypes from the unified pathway 

dataset were used. Unlike previous analyses in which ML was provided with multiple 

features, the use of PRS for training resulted in one variable only. Although seemingly 

counterintuitive, decision trees can be trained using only one variable. In the case of the RF, 

each decision tree will take a selection of samples with replacement. As only one feature is 

present, the decision tree will continue to split on this variable until a decision is reached. 

PRS values were also generated using the PRS-CS method and were only used to test disease 

prediction in the test set.  

 

7.2.7 Machine learning methodology 
 

Two ML algorithms were used for classification in this chapter, these were random forests 

(RFs) and gradient boosted trees (GB). SNPs and PRSs were used as features for ML. RFs 

were implemented using the Python package RandomForestClassifier. A further 

hyperparameter specified was class_weight, required due to the class imbalance within the 

dataset. This is achieved by specifying the balanced option. Classification performance was 

assessed using area under the curve (AUC). Overall performance was calculated by taking 

the mean AUC across all five folds of CV. 

 

For GB, the Python package XGBClassifier was used to develop models. A hyperparameter 

to correct for class imbalance was also passed to XGBClassifier. Scale_pos_weight calculates 

the ratio of the minority to majority class. The minority class is then upweighted during 

classification. AUC was calculated using the same method as RFs.  
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7.2.8 Comparing predictive performance of classifiers 
 

As in previous chapters, AUC values for classifiers were compared within each type of 

analysis using a paired t-test. Values of test set AUCs from each round of CV were compared 

for each pair of algorithms. The t-test was calculated using the Python function ttest_rel from 

the package stats. The false discovery rate (FDR) controlling method Benjamini-Hochberg 

was used to adjust for possible false positives with the function p.adjust in R. Corrections 

were made on an analysis wide basis (for each supplementary table at one time).  

 

7.3 Results 
 

All results for analyses are detailed in Supplementary Tables 41-44, with mean AUC across 

either 9 pathways or five folds of CV. Classifier comparison statistics from t-tests are also 

reported only if they were significant (p-value < 0.05) (Supplementary Tables 45-50). 

 

7.3.1 SNPs collected per pathway 
 

7.3.1.1 Non-imputed genotypes 
 

Analysis in this chapter used SNPs from 9 AD associated pathways. Variants within these 

pathways were extracted from the non-imputed GERAD dataset. The resulting 9 sets of SNPs 

are detailed in Table 7.1.  

 

 

 

Table 7.1: A Breakdown of the Number of non-imputed SNPs within each Pathway 

 
Pathway Description Number of SNPs Number of Genes 

1 Protein-lipid complex 

assembly 

277 20 (Including APOE) 

2 Regulation of beta-amyloid 

formation 

206 10 (Including APOE) 

3 Protein-lipid complex 611 40 (Including APOE) 
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4 Regulation of amyloid 

precursor protein catabolic 

process 

232  

12 (Including APOE) 

5 Tau protein building 145 11 (Including APOE) 

6 Reverse cholesterol transport 321 17 (Including APOE) 

7 Protein-lipid complex subunit 

organisation 

560 35 (Including APOE) 

8 Plasma lipoprotein particle 

assembly 

201 18 (Including APOE) 

9 Activation of immune 

response 

6603 432 (No APOE) 

 

 

The number of SNPs in pathways 1-8 is relatively similar. However, the number of SNPs in 

pathway 9 is far greater. 

 

Table 7.2: The Overlap of non-imputed SNPs between Pathways given by the Jaccard 

Index 

 
Pathway 1 2 3 4 5 6 7 8 9 

1 (277 SNPs) X 15 143 15 26 110 271 195 14 

2 (206 SNPs) 0.032 X 58 206 5 21 15 15 16 

3 (611 SNPs) 0.200 0.079 X 58 26 217 261 122 31 

4 (232 SNPs) 0.031 0.888 0.076 X 5 21 15 15 16 

5 (145 SNPs) 0.067 0.014 0.037 0.013 X 5 26 5 10 

6 (321 SNPs) 0.230 0.042 0.316 0.040 0.011 X 301 110 56 

7 (560 SNPs) 0.489 0.020 0.297 0.019 0.039 0.528 X 195 40 

8 (201 SNPs) 0.720 0.039 0.185 0.036 0.015 0.274 0.352 X 14 

9 (6603 SNPs) 0.002 0.002 0.005 0.002 0.002 0.008 0.006 0.002 X 

The overlap of SNPs between pathways is detailed in two ways. Below the diagonal represents the Jaccard index, this is 

calculated by dividing the intersection (number of SNPs) of two sets by the union of two sets. Values above the diagonal 

represent the number of SNPs in common between two pathways.  
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Table 7.2 demonstrates varying degrees of overlap in SNPs between pathways. Some 

examples of high overlap include pathways 1&7, 6&7, 2&4, and 1&8. The degree of overlap 

(measured by the Jaccard coefficient) is lowest between pathway 9 and the others, suggesting 

a greater degree of independence. 

 

Table 7.3: The Number of overlapping Genes between Pathways. 

 
Pathway 1 2 3 4 5 6 7 8 9 

1 (277 SNPs) X 2 11 2 2 8 20 18 0 

2 (206 SNPs) 0.071 X 3 10 1 2 2 2 1 

3 (611 SNPs) 0.224 0.064 X 3 2 13 17 10 1 

4 (232 SNPs) 0.067 0.833 0.061 X 1 2 2 2 1 

5 (145 SNPs) 0.069 0.050 0.041 0.045 X 1 16 8 2 

6 (321 SNPs) 0.276 0.080 0.295 0.074 0.037 X 16 8 2 

7 (560 SNPs) 0.571 0.047 0.293 0.044 0.045 0.444 X 18 1 

8 (201 SNPs) 0.9 0.077 0.208 0.071 0.036 0.296 0.514 X 0 

9 (6603 SNPs) 0.000 0.002 0.002 0.002 0.002 0.004 0.002 0.000 X 

The overlap of genes between pathways is detailed in two ways. Below the diagonal represents the Jaccard index, this is calculated by 

dividing the intersection (number of genes) of two sets by the union of two sets. Values above the diagonal represent the 

number of genes in common between two pathways. 

 

The overlap in genes between pathways shown in Table 7.3 follows a similar pattern to the 

overlap in SNPs demonstrated in Table 7.2. 

 

7.3.1.2 Imputed genotypes 
 

For imputed variants, the imputed version of GERAD was filtered using the same genomic 

locations as non-imputed variants (Table 7.1). 
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Table 7.4: A Breakdown of the number of imputed SNPs within each pathway 

 
Pathway Description Number of SNPs Number of Genes 

1 Protein-lipid complex 

assembly 

3770 20 (Including APOE) 

2 Regulation of beta-amyloid 

formation 

3396 10 (Including APOE) 

3 Protein-lipid complex 7871 40 (Including APOE) 

4 Regulation of amyloid 

precursor protein catabolic 

process 

2669  

12 (Including APOE) 

5 Tau protein building 2318 11 (Including APOE) 

6 Reverse cholesterol transport 3413 17 (Including APOE) 

7 Protein-lipid complex subunit 

organisation 

6981 35 (Including APOE) 

8 Plasma lipoprotein particle 

assembly 

2958 18 (Including APOE) 

9 Activation of immune 

response 

87710 432 (No APOE) 

 

The number of variants in each pathway is greater when comparing with non-imputed SNPs. 

The imputed set of variants contains fifteen times the number of SNPs, therefore greater 

numbers of SNPs would be expected per pathway. Similarly, to the non-imputed pathways, 

the final pathway has significantly more SNPs than others. 
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Table 7.5: The overlap of imputed SNPs between Pathways given by the Jaccard Index 

Pathway 1 2 3 4 5 6 7 8 9 

1 (3770 SNPs) X 129 1475 130 394 1160 3770 2743 83 

2 (3396 SNPs) 0.018 X 555 2199 52 210 129 129 158 

3 (7871 SNPs) 0.152 0.054 X 556 394 1895 2646 1134 184 

4 (2669 SNPs) 0.021 0.569 0.058 X 184 211 130 130 158 

5 (2318 SNPs) 0.069 0.009 0.042 0.011 X 53 394 53 210 

6 (3413 SNPs) 0.202 0.033 0.218 0.038 0.010 X 2984 1160 523 

7 (6981 SNPs) 0.557 0.013 0.229 0.014 0.045 0.431 X 2743 365 

8 (2958 SNPs) 0.728 0.021 0.125 0.025 0.011 0.246 0.405 X 83 

9 (87710 SNPs) 0.001 0.002 0.002 0.002 0.002 0.006 0.004 0.001 X 

The overlap of SNPs between pathways is detailed in two ways. Below the diagonal represents the Jaccard index, this is 

calculated by dividing the intersection (number of SNPs) of two sets by the union of two sets. Values above the diagonal 

represent the number of SNPs in common between two pathways.  

 

Table 7.5 demonstrates overlaps in SNPs between pathways for imputed SNPs were similar to those 

for non-imputed SNPs (Table 7.2). 
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7.3.2 General overview of results 
 

An overview of all analyses produced in this chapter is given in Figure 7.1. Results across the 

three different forms of analyses are shown, these are individual pathways, the multivariable 

approach and amalgamated dataset. Heatmaps show a consistent increase in classifier 

performance from the exclusion of APOE related SNPs, to the inclusion of APOE SNPs and 

subsequent APOE alleles. Results are then investigated further in subsequent sections. 

 

Figure 7.1: Heatmaps to display results for individual pathways analysis, the 

investigation of a multivariable approach and the combined dataset 

 

                       Singular Pathways                                                          Multivariable Approach                                                           
a)                                                                                                  b) 

 

 

 

 

 

 

                   Amalgamated Dataset 

c) 

 

 

 

 

 

 

Classifier performance is recorded in AUC. Values for singular pathways are mean performance across 9 pathways, whilst multivariable and combined values are computed across five 

folds of CV. For singular pathways, datasets are separated by whether SNPs were imputed or not. The method of analysing the APOE region is also detailed, with no APOE related SNPs, 

APOE SNPs included and APOE alleles plus other SNPs. Multivariable and combined analyses are separated by types of input to ML methods, genotypes (where summary statistics were 

generated using an in-built GWAS) (internal information) and PRS (in which the Kunkle-nogerad summary statistics were used to generate PRS) (external information). 
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7.3.3 Individual pathway analysis 
 

The predictive performance of both ML and PRS-LR in each pathway was assessed in this 

section. For all figures, prediction performance is grouped by classifier and is reported as 

AUC. Each coloured dot represents prediction performance for a particular pathway, with the 

mean value given across all 9 pathways. Calibration plots are also presented for analyses. 

Figures show a model’s predicted output versus observed class memberships in the dataset. A 

loess smoother is used to outline this relationship. The left-hand plot of each figure 

demonstrates probabilities prior to calibration, with calibrated probabilities shown in the 

right-hand plot. The classifier chosen for each example is the RF, with data provided from 

pathway 1 for individual pathway analyses, with APOE SNPs included. It was decided not to 

plot calibration statistics for every analysis as this would result in too many figures, with 

similarities observed across many analyses also.  
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7.3.3.1 Non-imputed data 
 

The first set of analyses represent the comparison of PRS-LR and ML techniques using non-

imputed genotypes for all 9 pathways. 

 

Figure 7.2: The Comparison of PRS-LR (P-value threshold 0.1), PRS-CS vs Selected 

Classifiers (RF, GB) for LD Pruned SNPs (non-Imputed Genotypes) 

 

            No APOE SNPs                                                           APOE Region included                
a)  

                                                                                         b) 
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c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Y-axis represents AUC in %; with classifiers placed on the X axis. Each dot represents the score for the prediction algorithm 

for all p-value thresholds, with accompanying 95% CI. The numbers placed centrally are the mean score across pathway 

SNP sets; GB Gradient Boosting; RF Random Forest; PRS-LR Polygenic Risk Scores Logistic Regression; AUC Area 

Under the Curve. Plots b and c contain 8 pathways only as pathway 9 does not include SNPs within the APOE region.  
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Figure 7.2 displays the three different sets of analyses conducted for non-imputed singular 

pathways. When considering analyses without APOE SNPs and their subsequent re-inclusion, 

results demonstrate the removal of SNPs led to a 5-6% reduction in AUC for all classifiers. 

When excluding SNPs within the APOE region, the best performing ML algorithm was RFs. 

This was evidenced by results of pairwise t-tests shown in Supplementary Table 45, in which 

RFs achieved better prediction than other algorithms in several pathways (1, 2, 3, 5 and 7). 

When including the APOE region, both RFs and PRS-CS achieved the highest mean AUC 

across all pathways. This was corroborated by the results of pairwise t-tests, as both RFs and 

PRS-CS performed significantly better than GB and PRS-LR across several pathways (3, 6, 

7) (Supplementary Table 45). After inclusion of SNPs in the APOE region (Figure 7.2b), 

AUC for both GB and RFs was superior (1-3%) to comparative analyses in Chapters 5&6, in 

which SNPs were selected on a genome-wide basis.  

 

When including APOE alleles for ML, PRS-CS and PRS-LR, AUC increased when 

compared to the two previous analyses, with an increase of 7-15% for all classifiers. This 

level of increase in prediction was also observed when using genome-wide variants in 

Chapters 5&6. Mean AUC for both PRS methods was 2-3% greater than both GB and RFs. 

This increase in performance was statistically significant in six pathways (1, 2, 3, 4, 6, 7) as 

shown in Supplementary Table 45. When comparing the performances of PRS-LR and PRS-

CS-LR, PRS-CS achieved higher mean AUC across all three analyses. However, this increase 

in prediction performance was only significant in one pathway (6) as shown by statistics in 

Supplementary Table 45. 
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Figure 7.3: The Comparison of non-Calibrated vs Calibrated Prediction Probabilities. 
 

a)                                                                                            b) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

These two figures display calibration plots for the RF (Pathway one) in Figure 7.2. The left-hand plot a) displays pre-

calibrated probabilities, whilst the right-hand plot b) shows post-calibration. The predicted probabilities are marked along 

the X-axis, whilst observed probabilities are measured on the Y-axis. Grouped observations represent the average observed 

prediction value for each decile of predicted probabilities, accompanied by a 95% confidence interval. The overall 

relationship between predicted probabilities and observed frequencies is given by the fitted loess smoother, with a 95% (grey 

shaded area) used. 

 

 

Figures 7.3a and 7.3b demonstrate calibration statistics for a RF from Figure 7.2b. The left-

hand plot demonstrated an under-estimation of risk due to the loess smoother lying above the 

diagonal, suggesting that the algorithm was not predicting disease risk accurately. Following 

Platt scaling (Platt, 1999) (sigmoidal correction) (Figure 7.3b), probabilities remained mostly 

underestimated and therefore the model can still be determined to be poorly calibrated. 

However, the loess smoother in the right-hand plot lies closer to the diagonal from 0.7-0.9 

predicted probabilities.  

 

 

7.3.3.2 Imputed genotypes 
 

Analyses conducted in the previous section were repeated using imputed genotypes. SNPs 

were selected using the in-built GWAS method per CV. PRS-CS-LR was not used for 

analyses using imputed SNPs. This was due to the reference panels provided by the designers 

of PRS-CS not covering a large enough amount of the SNPs in imputed GERAD. 
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Figure 7.4: The Comparison of PRS-LR (P-value threshold 0.1) vs Selected Classifiers 

(RF, GB) for pathways defined by LD Pruned SNPs (Imputed Genotypes) 

  

                        No APOE SNPs                                            APOE SNPs included                 
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Y-axis represents AUC in %; with classifiers placed on the X axis. Each dot represents the score for the prediction algorithm 

for all p-value thresholds, with accompanying 95% CI. The numbers placed centrally are the mean score across pathway 

SNP sets; GB Gradient Boosting; RF Random Forest; PRS-LR Polygenic Risk Scores Logistic Regression; AUC Area 

Under the Curve. Plots b and c contain 8 pathways only as pathway 9 does not include SNPs within the APOE region. 

 

When comparing results in Figure 7.4 with those in Figure 7.2, prediction performance for 

classifiers was similar. When excluding SNPs within the APOE region, RFs achieved a 

higher mean AUC than GB, PRS-CS and PRS-LR. The increased performance of RFs over 
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both PRS-LR and PRC-CS was statistically significant in some pathways (1,3,4,5,7,8) 

(Supplementary Table 46), this was also true for GB when compared to PRS-LR (2, 4) 

(Supplementary Table 46). In comparison with Figure 7.2b, AUC for SNP-based analyses 

including the APOE region increased by 1-2% for imputed variants (Figures 7.2b and 7.4b). 

Prediction performance for both RFs and GB when including variants from the APOE region 

was also 2-3% greater than similar genome-wide analyses conducted in Chapters 5&6, 

however, AUC for PRS-LR remained similar. This provided further evidence for the 

observation of biologically informed SNP sets resulting in better prediction performance than 

variants chosen on a genome wide scale. 

 

When comparing classifier performance for results within 7.4b, paired t-tests demonstrated 

that differences between algorithms were only statistically significant in two pathways (4,6). 

RFs achieved superior prediction performance to PRS-LR in one pathway (6), whilst the 

higher values of AUC for GB were also shown to be statistically significant when compared 

to PRS-LR in one pathway (4). The inclusion of the APOE alleles resulted in an increase of 

prediction performance as also observed in Figure 7.2. PRS-CS and PRS-LR achieved higher 

mean AUC when compared to GB and RFs, and this was shown to be statistically significant 

for several pathways (2, 3, 4, 5,6,7) (Supplementary Table 46). 
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Figure 7.5: Comparison of non-Calibrated vs Calibrated Prediction Probabilities. 

 
a)                                                                                       b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

These two figures display calibration plots for the RF (Pathway one) in Figure 7.4. The left-hand plot a) displays pre-

calibrated probabilities, whilst the right-hand plot b) shows post-calibration. The predicted probabilities are marked along 

the X-axis, whilst observed probabilities are measured on the Y-axis. Grouped observations represent the average observed 

prediction value for each decile of predicted probabilities, accompanied by a 95% confidence interval. The overall 

relationship between predicted probabilities and observed frequencies is given by the fitted loess smoother, with a 95% (grey 

shaded area) used. 

 

 

All predicted probabilities in Figure 7.5a were above the diagonal, representing a consistent 

underestimation of risk. This underestimation was partially corrected following calibration, 

as shown in Figure 7.5b. The loess smoother lies closer to the diagonal with some deviation. 

 

7.3.3.3 Multivariable analysis 
 

Following analysis of singular pathways, a joint modelling approach was used for AD 

prediction. The nine separate imputed SNP sets were used in a multivariable model for both 

ML and PRS prediction. Two different types of inputs were used for ML, these were 

genotypes and PRSs. Calibration plots were again used to assess model prediction, on this 

occasion, values from one round of CV within the multivariable method were used. 
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7.3.3.3.1 Pathway analyses results using SNPs  
 

Analyses described below in Figure 7.6 represent the use if a multivariable approach imputed 

using genotypes as inputs. 

 

Figure 7.6: The Comparison of PRS-LR (P-value threshold 0.1) vs Selected Classifiers 

(RF, GB) for LD Pruned SNPs in Imputed Genotypes.  

 

 

                 No APOE SNPs                                                      APOE region Included                     
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APOE Alleles Included 
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Y-axis represents AUC in %; X-axis represents each classifier’s results for each round of CV; The numbers placed centrally 

are the mean prediction performance across 5 folds of CV; GB Gradient Boosting; RF Random Forest; PRS-LR Polygenic 

Risk Scores Logistic Regression; AUC Area Under the Curve. 
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When comparing analyses shown in Figure 7.6a with results in Figure 7.4a, prediction ML 

performance for the multivariable analysis did not increase relative to analyses of single 

pathways when excluding SNPs within the APOE region. When including SNPs within the 

APOE gene (comparing Figure 7.6b to Figure 7.4b), AUC for RFs increased by 3%, however 

prediction performance for GB reduced by 1-2%. Therefore, a definitive conclusion on 

whether using pathways in a multivariate method improved ML performance could not be 

made. 

 

Prediction performance for both PRS-LR and PRS-CS increased by 4-6% when including 

SNPs within the APOE region, in comparison to singular pathways. This increased 

performance for both PRS methods resulted in significant results in Supplementary Table 47 

for comparisons with mean AUC for GB (p-values = 0.003, 0.003) (no APOE) (p-values = 

0.003, 0.003) (including APOE). This was also true for when comparing performance 

between RFs and GB, as RFs were shown to be statistically superior (p-values = 0.003 and p-

value = 0.006, without and with including APOE, respectively). When comparing the 

prediction performance after inclusion of the APOE alleles between Figure 7.6c and Figure 

7.4c, mean AUCs were similar for both GBs and RFs in the multivariable method, whilst 

prediction performance for PRS-LR was increased. As previously, both PRS-LR and PRS-CS 

outperformed RFs and GB (p-values = 0.003, 0.003), whilst GB achieved greater prediction 

accuracy than RFs (p-value = 0.012) when including the APOE alleles (Supplementary Table 

47). 

 

The reason for the increased performance of PRS-LR and not ML when comparing 

multivariable to single pathway analysis could be related to dimensionality issues. When 

combining the nine available pathways, the number of SNPs present for prediction is greater 

than analyses of single pathways. This increase might contribute random noise to the ML 

algorithms, limiting predictive accuracy. Similar observations were also seen when 

increasing the amount of SNPs for prediction in Chapters 5&6. PRS-LR is this instance is not 

limited by the same issue, as the LR has only nine inputs irrespective of the number of SNPs 

used, therefore dimensionality issues are not as important. Analysis was also conducted to 

assess the significance of each pathway in the multivariable PRS-LR analyses displayed in 

Figures 7.6b and 7.6c. Mean values for both p-values and beta coefficients were taken across 
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five folds of CV and recorded in Supplementary Tables 49&50. The only variable shown to 

be significant (p-value < 0.05) was the summation of the APOE alleles multiplied by their 

respective effect sizes. None of the 9 pathways were shown to be individually significant 

after correcting for the effects of other pathways. Some pathways were significant for 

individual CV folds, however this altered when calculating average values across CV. 

 

Figure 7.7: The Comparison of non-Calibrated vs Calibrated Prediction Probabilities 
 

a)                                                                                                  b) 

 

 

 

 

 

 

 

 

 
These two figures display calibration plots for the RF (Protein-lipid complex assembly) in Figure 7.6. The left-hand plot a) 

displays pre-calibrated probabilities, whilst the right-hand plot b) shows post-calibration. The predicted probabilities are 

marked along the X-axis, whilst observed probabilities are measured on the Y-axis. Grouped observations represent the 

average observed prediction value for each decile of predicted probabilities, accompanied by a 95% confidence interval. The 

overall relationship between predicted probabilities and observed frequencies is given by the fitted loess smoother, with a 

95% (grey shaded area) used. 

 

Non-calibrated probabilities in Figure 7.7a were consistently above the diagonal, therefore 

risk was under-estimated. Following calibration, probabilities lay beneath the diagonal, 

showing that calibration did not improve the estimation of risk.  
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7.3.3.3.2 Pathway analyses results using SNPs PRSs as inputs 
 

Analysis in this section differed to Section 7.3.2.3.1, as ML, PRS-CS and PRS-LR algorithms 

were run using PRS values generated using external information from the Kunkle-noGERAD 

summary statistics.  

Figure 7.8: The Comparison of PRS-LR (P-value threshold 0.1) vs Selected Classifiers 

(RF, GB) for LD Pruned SNPs, with PRS used as inputs. Variants in the APOE region 

initially excluded, included and followed by the inclusion of APOE alleles. 
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Y-axis represents AUC in %; X-axis represents each classifier’s results for each round of CV. The numbers placed centrally 

are the mean prediction performance across 5 folds of CV; GB Gradient Boosting; RF Random Forest; PRS-LR Polygenic 

Risk Scores Logistic Regression; AUC Area Under the Curve. 

 

When comparing analysis in Figure 7.8 with results in Figure 7.6, prediction performance for 

ML was altered. Mean AUC for RFs fell by 3.5% when excluding the APOE region, there 

was also a reduction of 2.5% AUC for RFs when including SNPs within the APOE region. 

However, this reduction in prediction performance for RFs was not seen when including 

APOE alleles. This might suggest that the combination of SNPs into a unified dataset results 

in poorer performance, however the inclusion of APOE alleles increases AUC to levels seen 

in previous analyses. Therefore, the method used for non APOE related SNPs might not 

matter as alleles are the main component for prediction. Prediction performance for PRS-LR 

and PRS-CS were similar however when compared to results in Figure 7.6 when both 

including and excluding SNPs in the APOE region. This is surprising given PRS for analyses 

shown in Figure 7.6 were generated using Kunkle-noGERAD (external information) 

summary statistics, this should have provided greater information than the PRS generated 

from internal GWAS used in the analyses in Figure 7.6. 

 

However, when comparing prediction performance between methods within Figure 7.8, both 

PRS-C and PRS-LR were shown to still significantly outperform RFs and GB both removing 

(p-values = 0.020, 0.019) and including SNPs within the APOE region (p-values = 0.008, 

0.011) as shown in Supplementary Table 47. When using APOE e2/e4 alleles as an extra 

predictor, AUC for both GB and PRS-LR was similar to those seen in previous analyses. 

However, on this occasion only PRS-LR achieved superior performance to both GB when 

comparing AUCs using pairwise t-tests (p-values = 0.047) (Supplementary Table 47). 
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Figure 7.9: The Comparison of non-Calibrated vs Calibrated Prediction Probabilities 
 

a)                                                                                                   b) 

 

 

 

 

 

 

 

 

 

 
Figure 7.8. These two figures display calibration plots for the RF (Protein-lipid complex assembly) in Figure 7.8. The left-

hand plot a) displays pre-calibrated probabilities, whilst the right-hand plot b) shows post-calibration. The predicted 

probabilities are marked along the X-axis, whilst observed probabilities are measured on the Y-axis. Grouped observations 

represent the average observed prediction value for each decile of predicted probabilities, accompanied by a 95% confidence 

interval. The overall relationship between predicted probabilities and observed frequencies is given by the fitted loess 

smoother, with a 95% (grey shaded area) used. 
 

 

Initial probabilities depicted in Figure 7.9a displayed an under-estimation of risk as most of 

the loess smoother resided above the diagonal. Following calibration, probabilities were 

aligned more to the diagonal, suggesting a better estimation of risk.  

 

7.3.3.4 Combined pathway dataset 
 

Analysis in this section used a single combined dataset derived from the 9 imputed pathway 

SNP sets. Results are shown in Supplementary Figures 3-6. When comparing the use of 

genotypes for prediction, (Supplementary Figure 3) to the multivariable approach (Figures 

7.6a and 7.6b), mean AUC was reduced for PRS-LR and PRS-CS by 5-9%. Therefore, it 

appears that modelling PRS-LR and PRS-CS in a multivariable fashion achieves better 

disease prediction than using a unified SNP set. AUC for GB and RFs was also generally 

lower when compared to results in Figures 7.6a and 7.6b. This reduction in AUC for both 

PRS-LR and ML classifiers was true both when including and excluding variants within the 

APOE region. When comparing classifier performance within analyses, there were no 
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significant differences. When including APOE alleles, prediction performance was similar to 

multivariable methods. 

 

When assessing calibration statistics for the use of genotypes, pre-calibrated probabilities 

shown in Supplementary Figure 4 were under-estimating risk due to all probabilities lying 

above the diagonal. This issue was not addressed as most probabilities resided above or 

below the diagonal following attempted correction. 

                                                                                                                                                                              

The second half of analyses in this section used PRS values for inputs to ML algorithms, with 

results displayed in Supplementary Figures 5 and 6. When comparing performance with that 

in Supplementary Figure 3, prediction performance for RFs was lower by 4%. This was the 

only noticeable difference, as all other comparisons between results were within 1-2% AUC. 

The performances of PRS-LR and PRCS-CS were again lower than that observed under the 

multivariable modelling of pathway (Figure 7.6), whether SNPs within the APOE region 

were included. This reinforces the finding that, under a PRS-LR analysis, modelling 

pathways in a multivariable fashion gives greater prediction performance than either 

modelling single pathways or combining SNPs in all pathways into a single PRS. When 

comparing prediction performance between ML and PRS-LR within each plot, none of the 

pairwise t-tests conducted returned significant results. Prediction probabilities were initially 

underestimating risk as shown in Supplementary Figure 6. Calibration realigned probabilities 

closer to the diagonal, however some deviation from the diagonal was still present.  

 

7.4 Discussion 
 

Analyses in this chapter assessed the predictive performance of the 9 AD associated 

pathways reported in Kunkle 2019 (Kunkle et al., 2019). Predictions from two ML 

algorithms (RFs and GB) were compared to both PRS-LR, and PRS-CS-LR. Genotypes used 

were from non-imputed and imputed variant sets. Pathways were initially assessed separately, 

before multivariate and joint models gauged the predictive performance of combining all 

SNP sets.  
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7.4.1 Individual pathway analysis 
 

Comparing performance for ML vs PRS-LR/PRS-CS-LR for non-imputed genotypes, both 

RFs and GB achieved higher mean AUC than both PRS techniques when excluding the 

APOE region. These differences were shown to be statistically significant when comparing 

CV AUCs of classifiers within pathways (Supplementary Table 45). This is the first occasion 

in which ML has achieved higher mean AUC than PRS based models in this thesis. However, 

both PRS-LR and PRS-CS achieved marginally greater mean AUC when reintroducing 

APOE related variants when compared to GB and RFs. The marginal difference in mean 

AUC across CV resulted in only three instances in which PRS based algorithms significantly 

outperformed ML (Supplementary Table 45). When including APOE alleles instead of APOE 

SNPs for modelling purposes, PRS methods outperformed RFs and GB when using both non-

imputed and imputed variants. These differences were again shown to be statistically 

significant when using t-tests in a number of pathways, with results shown in Supplementary 

Table 45. 

 

RFs and GB continued to achieve higher mean AUC than both PRS-LR and PRS-CS when 

excluding APOE related SNPs, with differences across several pathways shown to be 

statistically significant (Supplementary Table 46). Similarly, to observations made when 

using non-imputed genotypes, PRS based methods regained superiority over both GB and 

RFs when reincluding variants in the APOE region. However, the difference between 

prediction methods was marginal. Results when including the APOE alleles were also similar 

to when using non-imputed SNPs, with prediction performance for PRS methods shown to 

statistically significant when compared to ML in some pathways (Supplementary Table 46). 

Analyses conducted in Chapter 5&6 involved the use of SNP sets derived on a genome wide 

basis. The highest achieved AUC for both GB and RFs without the inclusion of APOE alleles 

was 57-58%, with prediction performance declining as greater amounts of SNPs were 

introduced. Therefore, both GB and RFs achieved AUC  2-3% greater in this chapter when 

assessing single pathways. Analyses conducted in Chapter 4 used a select number of SNPs 

assessed to be genome-wide significant in Kunkle et al., 2019. Prediction performance for 

classifiers was again below that observed in this chapter, with only a few examples of AUC 

close to 60% when using an increased amount of SNPs (422 SNPs).  
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This suggests that using SNP sets selected due biological relevance in AD appears to be a 

good strategy for ML. This might be due to the increase in the proportion of disease related 

variants and simultaneously removing nonrelated SNPs included. The overall reduction in 

SNP volume might also reduce the impact of dimensionality issues.  

 

7.4.2 Multivariable and combined pathway analysis 
 

Following analysis of individual pathways, focus moved to assessing prediction of disease 

status when using all pathways simultaneously. When assessing results detailed in Figure 7.1, 

prediction performance for ML when using a multivariable analysis was not superior to 

analysing pathways individually. When using imputed variants, mean AUC across the 9 

pathways was similar for individual pathway analysis to that given by the multivariable 

model. This was true both when including the APOE region and excluding variants within it. 

Including the APOE alleles also resulted in little difference between the two types of pathway 

analysis. This was also true for using PRS as inputs to ML in the multivariable method, as 

AUC for ML was similar between the singular pathway analysis and multivariable model.  

 

The only noticeable difference in prediction performance between individual and 

multivariable pathway analyses was the performance of both PRS-LR and PRS-CS. AUC for 

the multivariable model using both internal and external information was 4-6% higher than 

individual pathways. This suggests that using multiple pathways can achieve higher 

discrimination for PRS based linear methods. Comparisons between the multivariate PRS-LR 

and PRS-CS with ML resulted in superior performance for the linear based models in most 

circumstances (Supplementary Table 47). As previously discussed in Section 7.3.2.3.1, 

reasoning for the increased performance of PRS-LR and PRS-CS over ML when analysing 

pathways in a multivariable manner might be due to dimensionality issues. Increasing the 

number of SNPs for PRS calculation does not elevate the number of predictors in the LR, 

whilst number of features for ML is directly increased. This rise in the number of inputs 

might limit prediction due to the introduction of random noise. 

 

Further analysis used a combined pathway SNP set for prediction. Results for both RF and 

GB were marginally lower (1-2% AUC) in comparison to using the multivariate method, this 

was true when either using an in-built GWAS to generate summary statistics and effect sizes 
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form Kunkle-noGERAD. Prediction performance for both PRS-LR and PRS-CS (internal and 

external information) fell by 5-8% AUC when compared to results for the multivariable 

model. The use of external information (Kunkle-noGERAD summary statistics) did not result 

in better prediction performance than when using an internal GWAS. This was also true for 

ML.  

 

7.4.3 Predictive capability of pathways versus genome wide analyses 
 

When comparing ML performance to analyses in previous chapters, the use of pathway 

related variants appeared to increase predictive performance for RFs and GB. Previous 

analyses which used SNPs as inputs reached AUC of 57% (Chapters 5&6). However, 

analyses for individual pathways in this chapter achieved AUC of 59-60% when using 

imputed genotypes (including APOE region SNPs). Prediction performance of PRS-LR and 

PRS-CS using a multivariate approach, including SNPs within the APOE region, also 

outperformed the whole-genome analyses. A similar result was observed for ML analyses 

trained on non-imputed genotypes. However, when including the APOE alleles, AUC for the 

multivariate PRS approach did not reach the level of 72% recorded for whole genome wide 

analyses in Chapter 5. 

 

 

7.4.4 Comparing the performance of different inputs to ML 
 

When combining the SNPs in all 9 pathways into both multivariable and amalgamated 

analyses, inputs to ML could take the form either of genotypes or PRS values. The latter were 

generated using external information. When assessing results in Figure 7.1, it can be 

determined that using external information to generate PRS values did not improve prediction 

performance over using genotypes as inputs. This is likely due to the loss of flexibility 

incurred by combining multiple SNPs into a single input. More surprisingly, using external 

information to generate the PRS for PRS-LR and PRS-CS did not result in better prediction 

performance than using an internal GWAS. This was true for both the multivariable and 

amalgamated analyses. This can be considered a surprising result as using external 

information are expected to provide classifiers with greater information for prediction. 
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7.4.5 Comparing the performance of PRS-CS and PRS-LR 
 

Results demonstrated that PRS-CS was able to achieve increased prediction accuracy over 

PRS-LR when using non-imputed variants and including SNPs within the APOE region. 

However, the increase in prediction accuracy was not observed when using imputed 

genotypes. The most likely reason is the reference panels provided by PRS-CS. Both the 

1000 genomes and UK biobank reference panels provided information for around one million 

SNPs, whereas the imputed GERAD dataset comprises six million variants. Therefore, only a 

fraction of SNPs can be used in PRS-CS modelling, many fewer than for PRS-LR. Despite 

this disadvantage however, PRS-CS gave similar prediction accuracy to PRS-LR for most 

analyses using imputed variants. This provided further evidence that PRS-CS could provide 

greater accuracy for AD prediction compared to the traditional approach of clumping and 

thresholds, provided reference panels of the future cover a larger number of genomic 

variants. 

 

7.4.6 Calibration 
 

All models were shown to be underestimating risk. Following calibration using platt scaling, 

calibrated probabilities produced a mixture of results. In some circumstances, risk estimation 

was realigned successfully, however in other scenarios, calibration had no effect on the 

distribution of probabilities. The underestimation of risk by models in this chapter was 

similar to calibration statistics also seen for the whole genome analyses previous chapters. 

 

7.4.7 Conclusions 
 

The central focus of this chapter was to assess prediction for both ML and PRS linear 

methods using the 9 pathways deemed significantly enriched for AD risk SNPs (Kunkle et 

al., 2019). Performance of individual pathways reached 58-60% AUC for ML when including 

variants within the APOE region. This is higher than comparable analyses run in previous 

chapters, in which variants from the whole genome were used. This suggests narrowing 

feature sets by using biologically relevant AD related SNPs instead of variants from the 

whole genome may improve classifier performance.  
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Despite the improved prediction performance for ML algorithms, AUC for both PRS-LR and 

PRS-CS was not higher than previous analyses using genome wide approaches. The use of a 

multivariable approach for ML did not result in higher AUCs, suggesting that combining 

pathways does not assist ML performance. However, this was not the case for both PRS-LR 

and PRS-CS, as the multivariable model achieved 4-5% greater AUC than single pathways.  

Comparing ML versus the PRS bases approaches of PRS-LR and PRS-CS, using both non-

imputed and imputed genotypes with APOE related SNPs removed in individual pathways, 

both GB and RFs achieved better performance than PRS-LR and PRS-CS. This was the first 

occasion throughout this thesis in which ML outperformed PRS based algorithms. This was 

supported through statistically significant outcomes when comparing performance by using 

pairwise t-tests. However, when reincluding SNPs within the APOE region, both PRS-CS and 

PRS-LR outperformed ML in most subsequent analyses. 

 

In summary, analyses in this chapter have shown the use of pathway SNPs on an individual 

basis resulted in superior prediction than analyses using whole genome variants in Chapters 

5&6. This suggests that using biologically informed SNP sets can aid prediction performance 

for AD. ML performance for singular pathways also resulted in similar performance to PRS 

based methods, this is not in line with results shown in Chapters 5&6, where PRS 

outperforms ML by a clear margin. However, PRS based methods regained superiority over 

ML when using a multivariate approach in this chapter. Values for AUC increased above 

those observed for PRS for singular pathway analyses, suggesting that greater prediction 

accuracy can be achieved when combining pathway SNPs.  

 

8 Discussion 
 

8.1 Overview 
 

Alzheimer’s Disease (AD) is a neurological condition which impairs an individual’s 

cognitive abilities. Onset of disease is most common after the age of 65, with initial 

symptoms involving loss of memory and motor skills (Farfel et al., 2019). As the disease 

progresses, care requirements increase until the individual becomes solely reliant on others 

and loses self-awareness. The final stage of illness is most commonly death through infection 

(Allen et al., 2003). The burden of AD on patients and society is predicted to increase in 

coming decades due to increasing life expectancies and population growth (Nichols et al., 
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2022). Therefore, the ability to understand the underlying causes of the disease for treatment 

purposes is crucial. Causal mutations in genes have been identified for the less common 

autosomal form of the disease, however no causal variant has yet been identified for the 

sporadic form. The genetic component of the more prevalent type of AD has been shown to 

be polygenic, with genetic causality the likely effect of interactions between many variants 

(Baker and Escott-Price, 2020).  

 

A common approach for assessing the risk of an individual at a genome-wide scale for a 

certain phenotype is polygenic risk score (PRS). Its simplicity of use and predictive 

capability has resulted in its use in various research fields (Lewis and Vassos, 2020c). For 

AD prediction, PRS has achieved prediction accuracy of between 75-84% AUC in multiple 

publications (Baker and Escott-Price, 2020). Despite this, research has suggested that PRS is 

limited when predicting complex disorders. Linear prediction models such as PRS assess 

linear relationships between SNPs. However, it is most likely that polygenic disorders such as 

AD are the result of interactions between multiple genes. A method more suited to assessing 

non-linear relationships is machine learning (ML). However, comparisons of both PRS and 

ML performance for the prediction of AD are rare.  

 

A systematic review to assess the current literature for ML prediction in AD using genetic 

data was conducted as a part of this thesis. Twelve articles from an initial set of 4,020 were 

included for review. Several insights into the current literature for AD prediction were 

highlighted. Metrics used for reporting results varied, with only 5 studies reporting area under 

the curve (AUC). The majority of the remaining 7 articles used accuracy to report prediction 

performance, however this method has been shown to be susceptible to imbalanced class 

distributions (Francisco J. Valverde-Albacete and Peláez-Moreno, 2014). Calibration 

statistics represent the confidence with which predictions are made by ML algorithms. 

Prediction tools used in medical settings are required to make well informed decisions, as 

mistakes can result in issues such as misdiagnosis and incorrect treatment (Van Calster et al., 

2019). Only one article of the 12 reviewed reported calibration statistics. Sample size was 

another area highlighted. Events per variable (EPV) is a metric used to assess the balance 

between samples and predictors. Research has identified that values below 20 features per 

sample can increase the likelihood of overfitting (Austin and Steyerberg, 2017c). It was 

identified that most datasets used across the 12 articles were below this threshold. Finally, 
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most articles used the ADNI dataset, which is publicly available, reducing the diversity of 

sources used.  

 

Analyses in Chapter 4 were an exploratory assessment of the predictive capabilities of PRS 

and ML for AD prediction. Twenty-three genome-wide significant SNPs from Kunkle et al., 

2019 were used for predictors, as these were likely to have strong contribution with AD risk. 

However, these were not present within the non-imputed GERAD dataset (Harold et al., 

2009), most likely due to the differences in genotype platforms used. Therefore, two sets of 

proxy SNPs were tested. The analyses in this chapter identified the spurious effect on results 

caused by the presence of the 1958 birth cohort. Therefore, these samples were removed from 

GERAD for analyses from Chapter 4 onwards. The predictive performance of PRS using a 

LR (PRS-LR) was compared to several ML algorithms, including random forests (RFs), 

gradient boosting (GB), naïve bayes (NB) and SVMs with several kernels. Initial analyses 

using the reduced dataset focused on adjusting SNPs for population stratification. 

Comparisons of classifier performance identified a superior performance for PRS-LR to all 

other ML algorithms. RFs, GB and SVMs achieved similar levels of AUC, with prediction 

performance generally increasing as the number of SNPs for prediction also increased from 

23 to 422. This increase in AUC did not occur for NB however, most likely due to the 

absence of a penalisation method for Bayesian models. Adjusting genotypes with principal 

components, age and sex values and also using a balanced dataset, with cases and controls 

matched upon both sex and age did not change classification accuracy. 

 

Analyses conducted in Chapter 5 involved the use of variants on a genome-wide scale. 

Datasets for prediction were generated by LD-clumping using a range of p-value thresholds 

(0.0001-0.5). It was hypothesised that using external summary statistics might be providing 

PRS-LR with greater information than ML for predictions. Therefore, in this chapter an in-

built GWAS was calculated within each training fold of CV, with subsequent summary 

statistics used to select SNPs for prediction.  

 

Two decision tree-based algorithms were used for ML, these were RFs and GB. The least 

stringent p-value thresholds of (0.2-0.5) resulted in SNP sets comprising 50,000-100,000 

variants. Since ML algorithms are susceptible to an issue known as the ‘curse of 
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dimensionality’, feature selection algorithms were used to reduce the impact of this issue. 

When not using feature selection, prediction performance for both RFs and GB ranged from 

66-57% AUC, with mean performance across all p-value thresholds residing at 60-61% 

AUC. This was however below the mean performance of 71.5% AUC for PRS-LR. The use 

of feature selection also improved average performance for ML, with the use of the RFs and 

ExtraTrees feature selection algorithms improving mean AUC to 65-66%. Whilst this was an 

improvement on not using feature selection, it was still below the mean performance of PRS-

LR. This result was unaltered when exploring other methodology, such as removing the 

clumping phase and using a less significant r2 when clumping.  

 

Chapter 6 introduced the use of imputed genotypes for prediction algorithms. Imputation 

techniques have been used to increase the coverage by the GWAS by estimating values of 

SNPs not directly genotyped. Imputed genotypes were initially in the format of genotype 

dosages and then subsequently converted to best-guess dosages. Analyses in this chapter 

were conducted on both formats of imputed data. Results demonstrated that the use of 

imputed variants did not improve ML performance above the use of non-imputed SNPs. No 

discernible difference was seen when using either dosages or best-guess genotypes.  

 

Chapter 7 used a different approach to select relevant SNPs for AD prediction. Analyses in 

this chapter derived SNPs from 9 biological pathways associated with AD reported by 

(Kunkle et al., 2019). These biological processes were mainly related to lipid assembly and 

the regulation of tau and beta-amyloid. The non-imputed and imputed GERAD datasets were 

filtered using the genomic base positions of genes within each pathway. Initial analyses 

assessed prediction performance of each pathway on an individual basis. Results 

demonstrated that PRS using clumping and thresholding and PRS-CS approaches 

outperformed ML. AUC achieved for both RFs and GB, was 1-3% higher than analyses in 

previous chapters. This was true when using both non-imputed and imputed genotypes. 

 

Following the analysis of single pathways, further analysis assessed the joint predictive 

capability of all pathways. This combined approach resulted in an increase in AUC for PRS 

based methods when compared to singular pathway analyses, whereas prediction 

performance for ML remained unchanged. The analysis of joint pathways also investigated 
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the use of PRS for inputs to ML, with the intention of assessing whether this could result in 

better prediction than using genotypes. Despite the use of the external summary statistics to 

generate PRS, results for this analysis were no different to using genotypes. A further method 

for assessing the joint prediction of pathways was the amalgamation of all SNPs within each 

pathway into one large SNP set. Results for this method involved a reduction in AUC for 

PRS based methods when compared to the multivariable model, whilst prediction 

performance for ML remained similar. This was true for when using either genotype or PRS 

as inputs to models. 

 

8.2 How well can machine learning predict Alzheimer’s disease from genetic data? 
 

One of the main aims of this thesis was to assess the capability of ML for predicting AD from 

SNPs. Analyses have shown that performance ranged from 57-62% AUC for the best 

performing algorithms across all chapters. This increased to 69% when including the APOE 

alleles (e2, e4) directly. Therefore, ML is yet to significantly outperform previously used 

linear methods. One reason for this might be the use of the clumping to selecting significant 

SNPs for prediction. This allows PRS to use main effects to discriminate between 

case/control status but may impair the ability to assess interactions (non-linear effects) 

between SNPs, which is one of the main advantages of ML over PRS. 

 

8.3 How does the predictive capability of ML compare to PRS? 
 

It has been hypothesised that ML might achieve greater prediction for polygenic disorders, 

due to their ability to assess complex interactions between predictors (Gola, Erdmann, 

Müller-Myhsok, et al., 2020). The results of comparisons for other polygenic disorders have 

been mixed, with ML outperforming PRS in some instances. Results in this thesis 

demonstrated a consistent trend of superior performance for PRS based methods over ML. 

When using SNPs derived on a genome-wide scale, linear methods achieved 3-5% AUC 

better prediction performance. However, when using smaller datasets informed by biological 

processes, the difference between the two methods reduced, with ML performing as well in 

some instances.  

 



 252 

A possible explanation for a failure of ML to outperform PRS when predicting AD is the 

relatively low number of samples available for analysis. For scenarios involving large 

amounts of features, complex ML algorithms require sufficient cohort sizes in order to 

overcome possible dimensionality issues (Rajput, Wang and Chen, 2023). Sample sizes can 

be restricted due to the cost of recruiting individuals and collecting measurements for 

biomarkers. Prediction performance for ML is optimised when the ratio between data 

instances follows a ratio of 10:1 or greater. As discussed throughout this chapter, prediction 

of complex diseases through genetic data usually results in an imbalance between features 

and samples. This imbalance reduces the likelihood of developing generalisable models. 

Increases in cohort sizes will reduce this, whilst also increasing the ability of the dataset to 

represent underlying trends in the population. 

 

8.4 Notable achievements  
 

One of the highlights of this thesis was the ability to analyse large amounts of SNPs. Previous 

studies using PRS based methods for the prediction of AD have analysed 100,000 to 250,000 

SNPs. However, the use of this many variants when using ML algorithms is rare. Analyses in 

Chapters 5 and 6 in this thesis used up to 200,000 when comparing both ML and PRS 

methods. This was made possible due to the use of the subprocess function in Python, in 

which external processes are facilitated whilst the main program runs. However, despite the 

ability to run complex processes within Python, analysing SNP sets comprising 50,000 

variants or more required greater computational resources available to a local machine. 

Therefore, the supercomputing system Hawk was used to run large datasets. The combination 

of Hawk and the use of the subprocess function allowed for the analysis of an uncommon 

number of SNPs for AD prediction.  

 

Another highlight of this thesis was the comprehensive review of the use of ML for the 

prediction of AD using SNPs. This was the first investigation of its kind and highlighted 

several key issues in this research field. These included the consistent use of the same data 

source (ADNI), as well as sample sizes below the desired threshold when comparing the 

number of samples and predictors. Areas of concern in methodology were also found, such as 

inconsistent reporting of cross-validation methods and calibration statistics. This review gave 

an insight into requirements for analyses in subsequent chapters.  
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8.5 Limitations 
 

Several limitations have been discussed throughout this thesis. Cohorts used for the 

prediction of AD using genetics typically comprise of more features than samples. 

Challenges in collecting data for analysis involve the financial cost of recruiting individuals 

and bureaucratic barriers to accessing previously assembled datasets (Moore, Asselbergs and 

Williams, 2010). Imbalances between samples sizes and the number of predictive variables 

are prevalent in GWAS as the human genome comprises of millions of SNPs. These 

imbalances increase the likelihood of non-generalisable ML algorithms due to the curse of 

the dimensionality (Chattopadhyay and Lu, 2019). The issue of sample size is also relevant to 

analyses in this thesis following the removal the 1958 birth cohort from GERAD, reducing 

the size of the cohort from 10687 samples to 4603. This was required due to the skewing of 

the age distribution from the presence of 5400 controls aged 45. The skewed nature of the 

dataset resulted in spurious prediction results due to relationship between age and AD. Using 

a smaller sample size for analyses may have limited ML performance, as SNPs with low 

minor allele frequency or effect sizes might not contribute to prediction.  

 

Despite the relatively small sample size of 4603 individuals, the number of SNPs used for 

analyses caused computational issues. When less significant p-value thresholds such as 0.4 

and 0.5, were used in the clumping process, the resulting number of SNPs was 200,000 or 

more. Modelling this number of variables for ML could be considered an achievement due to 

the computational requirements needed. However, further computational burdens were 

realised when optimising hyperparameters for ML algorithms. Methods for optimisation 

typically fit multiple models from predefined parameter distributions to find the combination 

which achieve the highest AUC. This requires additional amounts of time and memory, 

which are expanded when using larger datasets. Despite the use of the supercomputing 

system, the amount of resources available limited the depth of the hyperparameter search.  

 

8.6 Future work 
 

The main question arising from this thesis is whether larger sample sizes might further 

improve the capabilities of ML for AD prediction. As the number of AD cases rise in coming 

decades alongside improvements in resource collection, data sources will inevitably increase 

in size. This is already being seen in the increasing size of cohorts used for GWAS, which 
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have led to the discovery of further GWAS significant SNPs (Bellenguez, Küçükali, Iris E. 

Jansen, et al., 2022). However, as shown in this thesis, larger datasets require greater 

computational resource to analyse. This is relevant to ML algorithms, which typically require 

large sample sizes and thorough hyperparameter searches for optimisation (Adadi, 2021). 

Despite the use of supercomputing hardware, hyperparameter tuning was limited when vastly 

increasing the number of predictors. Therefore, computational capabilities will also need to 

improve to assess the optimum ability of ML to predict polygenic diseases.  

 

Analyses within thesis used SNPs for prediction only. Future work might involve the use of 

other forms of genetic variants, such as CNVs (copy number variants) and rare SNVs (single 

nucleotide variants) derived from whole genome sequencing. The use of this form of data has 

increased in recent years, as issues initially existed concerning both the financial and 

computational cost of mapping genomes. However, as advancements in technology have 

continued, the burdens of retrieving such data have reduced but not disappeared (Muir et al., 

2016). Despite being in its relative infancy, comparisons have been drawn between the use of 

sequencing and genotyping for disease prediction. The result of which was substantial 

differences in the risk predictions for various polygenic disorders (Morgan, Chen and Butte, 

2012).  

 

The presence of correlation (LD) between variants can result in inaccurately assigned effect 

sizes and masking of the true signal between causal variants and disease risk (Grady, 

Torstenson and Ritchie, 2011). Methods such as clumping and pruning have been introduced 

to limit the impact of such correlations, however the effect cannot be completely removed. 

An avenue for future analyses might involve comparisons of how LD between causal and 

proxy variants effects disease predictions for ML and PRS on an individual basis.  

 

A further avenue not explored in this thesis is the use of deep learning. Traditional ML 

algorithms such as RFs, GB and SVMs are shallow learners. Deep learning algorithms known 

as neural networks (NN) use layers of interconnected nodes to learn complex patterns 

between features and targets. This interconnection of nodes allows for the transformation of 

data inputs in a non-linear fashion, allowing the model to assess complex non-linear 

relationships. Deep learning models have achieved greater prediction accuracies than less 
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complex ML algorithms for a range of applications (Najafabadi et al., 2015). Therefore, it is 

hoped that NNs can improve upon the performance of ML for complex disorders. However, 

as discussed in the previous paragraph, ML algorithms require large datasets to achieve 

desired outcomes. This is more of an issue for NNs, as deep learning requires richer data 

sources than shallow learning to assess more complex patterns. The interconnected 

architecture of the model and the large datasets analysed also result in significant 

computational burden (Lippmann, 1987). Therefore, large amounts of computational 

resources shall be required to analyse larger GWAS.  

 

8.7 Clinical Applications 
 

Research into the ability of ML algorithms to predict AD is conducted with the aim of 

assessing its use in a clinical setting. The results of this thesis suggest that further 

development is required as model accuracies were below clinically accepted thresholds. 

Prediction tools used by clinicians are required to achieve high levels of success due to the 

severity of false predictions. Errors could result in incorrect treatment packages and potential 

harm to patients (Verma et al., 2021). 

 

8.8 Conclusion 
 

The results of analyses across chapters demonstrate that ML can only at best compete with 

PRS, with the linear method outperforming ML in most cases. The difference between two 

methods varied by chapter, with PRS methods achieving the highest difference in prediction 

accuracy when selecting SNPs on a genome wide level. The gap between both methodologies 

reduced when selecting variants using biological information (pathways), with AUC for ML 

algorithms improving when compared to genome wide analyses. This suggests that selecting 

variants using prior AD related information might enrich SNP sets for better prediction.  

 

Reasons for the consistent superior performance of PRS over ML methodologies lie in the 

structure of datasets. Situations in which features outnumber samples increase the likelihood 

of overfitting, whereby algorithms perform poorly on unseen samples (Ying, 2019). This 

scenario is relevant in the field of disease prediction using genetics as economic factors often 

limit the number of available samples, whilst the human genome comprises millions of SNPs 
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(Manthena et al., 2022). Results in this thesis demonstrated that prediction accuracy reduced 

as the number of variants increased, reinforcing the issue of dimensionality burden for ML. 

However, increasing the number of variants for PRS does not result in an increase for LR as 

only a singular score variable is used. Therefore, PRS related methods do not suffer from the 

same dimensionality related issues, with this pitfall overriding any ability of ML to assess 

non-linear patterns. 

 

Results of this thesis suggest that ML is yet to improve upon PRS based methods for AD 

prediction. It is hypothesised that this improvement might not occur until sample sizes for 

GWAS increase. Therefore, the recommendation based on results is to continue with use of 

both PRS and ML related methodologies in the near future. However, as available cohort 

sizes increase and advances in computational technologies increase, research into ML 

techniques should continue. The use of increased amounts of features in this thesis prevented 

the use of SVMs despite adequate performance in Chapter 4. As barriers to computation 

decrease, further investigation into the use of these algorithms should be explored. Increased 

cohort sizes could also aid the use of neural networks, which have been shown to be powerful 

prediction algorithms in some circumstances. Results also suggest that disease prediction also 

benefits from datasets generated using prior biological information, therefore efforts should 

be made to continue the development of these. 

 

8.9 Supplementary Information 
 

The code used to develop all analyses in this thesis has not been published. The dataset used 

in this thesis is also not publicly available. 
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9 Supplementary Tables 
 

Supplementary Tables for Chapter 4: 

Supplementary Table 1. Results of comparison between PRS-LR and ML, in which genotypes 

and PRS were adjusted by three PCs, age and sex. 

SNP Typea PRSb 

 

Random 

Forestc  

PRS2d 

 

Gradient 

Boostinge 

PRS3f 

 

Naïve 

Bayesg  

PRS4
h 

 

SVM 

Lineari 

PRS5j 

 

SVM 

RBFk 

P-values 

(23-SNPS) 

56.90 89.30 54.10 90.50 

 

56.90 55.10 60.30 59.70 60.50 58.70 

R-squared 

(23-SNPS) 

55.90 90.20 53.80 90.80 55.60 55.20 59.80 59.50 59.30 59.10 

No-apoe-

pvalues(21-

SNPS) 

54.13 89.40 54.80 69.80 54.00 51.90 57.50 56.80 55.90 56.50 

No -apoe-

rsquared 

(21 - 

SNPS) 

54.00 89.90 54.70 71.20 53.90 53.20 56.80 55.90 57.10 55.20 

Increased 

SNP’s 

(422- 

SNPS) 

57.50 90.70 57.60 92.10 57.70 52.80 61.20 

  

60.40 60.50 61.70 

a – Type of SNP data set explained in method section; b – First PRS % score compared to machine learning method. c – Random forest algorithm % compared 

to column b; d – Second PRS % score compared to machine learning method; e – Gradient Boosting algorithm % compared to column d; f - Third PRS % score 

compared to machine learning method; g – Naïve Bayes algorithm % compared to column f; h – Fourth PRS % score compared to machine learning method; i – 

SVM-Linear algorithm % compared to column h; j -  Fifth PRS % score compared to machine learning method; k – SVM-RBF algorithm % compared to 

column j. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 258 

Supplementary Table 2. Comparison between PRS-LR and ML, in which both PRS and 

genotypes were adjusted by PCs, with age/sex added as separate variables. 

SNP Typea PRSb 

 

Random 

Forestc  

PRS2d 

 

Gradient 

Boostinge  

PRS3f 

 

Naïve 

Bayesg  

PRS4h 

 

SVM 

Lineari 

PRS5j 

 

SVM 

RBFk 

P-values 

(23-SNPS) 

90.80 91.20 90.90 91.40 90.90 90.90 90.00 90.30 90.70 90.50 

R-squared 

(23-SNPS) 

90.80 91.60 90.70 91.70 90.70 90.50 90.60 90.60 90.20 90.40 

No-apoe-

pvalues(21-

SNPS) 

90.70 91.10 90.60 91.00 90.60 90.60 90.80 89.80 89.90 90.10 

No -apoe-

rsquared 

(21 - 

SNPS) 

90.40 91.30 90.40 91.30 90.30 89.80 89.90 90.20 90.10 90.60 

Increased 

SNP’s 

(422- 

SNPS) 

91.30 91.20 91.30 91.70 91.30 89.50 91.10 

  

91.20 91.50 91.00 

a – Type of SNP data set explained in method section; b – First PRS % score compared to machine learning method. c – Random forest algorithm % compared 

to column b; d – Second PRS % score compared to machine learning method; e – Gradient Boosting algorithm % compared to column d; f - Third PRS % score 

compared to machine learning method; g – Naïve Bayes algorithm % compared to column f; h – Fourth PRS % score compared to machine learning method; i – 

SVM-Linear algorithm % compared to column h; j -  Fifth PRS % score compared to machine learning method; k – SVM-RBF algorithm % compared to 

column j. 

 

 

Supplementary Table 3. Results of PRS-LR versus all ML algorithms with the 1958 birth cohort 

removed from GERAD, genotypes and PRS have been PC adjusted.  

SNP Typea PRSb 

% 

Random 

Forestc % 

Gradient 

Boostingd % 

Naïve Bayese % SVM% 

Linearf 

SVM 

RBFg 

P-values 

(23-SNPS) 

60.00 65.00 65.50 56.70 58.00 56.90 

R-squared 

(23-SNPS) 

59.80 67.30 67.40 58.10 58.10 57.70 

No-apoe-

pvalues(21

-SNPS) 

57.00 64.40 63.40 54.10 54.90 54.50 

No -apoe-

rsquared 

(21 - 

SNPS) 

58.30 67.00 65.40 56.00 56.50 54.20 

Increased 

SNP’s 

(422- 

SNPS) 

61.50 66.00 66.60 55.60 59.10 59.50 
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a- Type of SNP data set explained in method section; b – PRS % score compared to machine learning methods; c - Random Forest algorithm % compared to 

column b; d - Gradient Boosting algorithm % compared to column b; e - Gradient Boosting algorithm % compared to column b; d - Gradient Boosting 

algorithm % compared to column c; e NB algorithm % compared to column b;  f SVM- Linear algorithm % compared to column b; g SVM-RBF algorithm 

compared to column b, 

 

 

 

 

 

Supplementary Table 4. Results of PRS-LR versus all ML algorithms with the 1958 birth cohort 

removed and CV used, genotypes and PRS have been PC adjusted only. 

SNP 

Typea 

PRSb 

% 

Random 

Forestc % 

Gradient 

Boostingd % 

Naïve Bayese 

% 

SVM % 

Linearf 

SVM% 

RBFg 

P-values 

(23-

SNPS) 

60.10 57.80 55.70 57.90 57.50 56.70 

R-squared 

(23-

SNPS) 

60.60 57.80 55.90 58.10 57.30 57.30 

No-apoe-

pvalues(2

1-SNPS) 

57.40 54.30 53.00 55.30 54.10 55.40 

No -apoe-

rsquared 

(21 - 

SNPS) 

57.70 54.60 53.00 55.90 53.80 54.00 

Increased 

SNP’s 

(422- 

SNPS) 

61.60 59.60 58.40 55.80 59.00 59.60  

a- Type of SNP data set explained in method section; b – PRS % score compared to machine learning methods; c - Random Forest algorithm % compared to 

column b; d - Gradient Boosting algorithm % compared to column b; e - Gradient Boosting algorithm % compared to column b; d - Gradient Boosting 

algorithm % compared to column c; e NB algorithm % compared to column b;  f SVM- Linear algorithm % compared to column b; g SVM-RBF algorithm 

compared to column b, 
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Supplementary Table 5. Results of PRS-LR versus all ML algorithms with the 1958 birth cohort 

removed, with CV used and genotypes and PRS adjusted by PCs, age and sex.  

SNP Typea PRSb 

% 

Random 

Forestc % 

Gradient 

Boostingd % 

Naïve Bayese 

% 

SVM % 

Linearf 

SVM % 

RBFg 

P-values 

(23-SNPS) 

60.70 58.40 57.10 58.30 57.80 57.20 

R-squared 

(23-SNPS) 

59.10 56.60 56.00 58.20 56.00 57.00 

No-apoe-

pvalues(21

-SNPS) 

59.30 54.50 52.00 55.60 54.20 55.10 

No -apoe-

rsquared 

(21 - 

SNPS) 

57.70 54.80 53.80 55.80 53.50 53.80 

Increased 

SNP’s 

(422- 

SNPS) 

64.60 59.40 56.10 56.20 59.40 60.20 

a- Type of SNP data set explained in method section; b – PRS % score compared to machine learning methods; c - Random Forest algorithm % 

compared to column b; d - Gradient Boosting algorithm % compared to column b; e - Gradient Boosting algorithm % compared to column b; d - 

Gradient Boosting algorithm % compared to column c; e NB algorithm % compared to column b;  f SVM- Linear algorithm % compared to column 

b; g SVM-RBF algorithm compared to column b, 

 

Supplementary Table 6. Results of PRS-LR versus all ML algorithms with the 1958 birth cohort 

removed and balanced dataset, CV used, and genotypes and PRS have been PC adjusted. 

SNP 

Typea 

PRSb 

% 

Random 

Forestc % 

Gradient 

Boostingd % 

Naïve Bayese 

% 

SVMf % 

Linear 

SVM 

RBF 

P-values 

(23-SNPS) 

62.50 58.60 55.80 58.80 59.30 58.70 

R-squared 

(23-SNPS) 

60.40 56.10 55.80 57.90 57.60 57.30 

No-apoe-

pvalues(21

-SNPS) 

59.70 55.80 53.20 56.10 55.80 54.30 

No -apoe-

rsquared 

(21 - 

SNPS) 

61.80 57.80 55.70 59.30 57.90 56.80 

Increased 

SNP’s 

(422- 

SNPS) 

59.80 57.30 55.30 53.80 58.80 58.80 

a- Type of SNP data set explained in method section; b – PRS % score compared to machine learning methods; c - Random Forest algorithm % compared to 

column b; d - Gradient Boosting algorithm % compared to column b; e - Gradient Boosting algorithm % compared to column b; d - Gradient Boosting 

algorithm % compared to column c; e NB algorithm % compared to column b;  f SVM- Linear algorithm % compared to column b; g SVM-RBF algorithm 

compared to column b, 
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Supplementary Table 7. Comparison of classifier performance using pairwise t-tests for 

analyses with the 1958 birth cohort removed, the use of CV and both PRS/genotypes adjusted 

by PCs only. 

Classifier 

Comparisona 
No-apoe-

pvaluesb (21-

SNPS) 

No -apoe-rsquaredc 

(21 - SNPS) 
P-valuesd (23-

SNPS) 
R-squarede (N 

SNPs = 23) 
Increased SNP’sf 

(422- SNPS)  

PRS vs RF Statistic = 8.31  
p-value = 0.031 

Statistic = 1.65   
p-value = 0.284 

Statistic = 2.18   
p-value = 0.198 

Statistic = 2.35   
p-value = 0.173 

Statistic = 0.625   
p-value = 0.663 

PRS vs GB Statistic = 5.793 

p-value = 0.031 

Statistic = 3.00    
p-value = 0.120 

Statistic = 5.69   
p-value = 0.044 

Statistic = 3.86   
p-value = 0.066 

Statistic = 2.03   
p-value = 0.228 

PRS vs NB Statistic = 5.15 

p-value = 0.125 

Statistic = 2.56   
p-value = 0.162 

Statistic = 3.84   
p-value = 0.066 

Statistic = 3.93   
p-value = 0.066 

Statistic = 5.19  
p-value = 0.050 

PRS vs SVM-

Lin  
Statistic = 4.74  
p-value = 0.062 

Statistic = 2.56  
p-value = 0.162 

Statistic = 2.48  
p-value = 0.165 

Statistic = 8.06  
p-value = 0.031 

Statistic = 7.56  
p-value = 0.031 

PRS vs SVM-

RBF 
Statistic = 2.38  
p-value = 0.173 

Statistic = 4.13  
p-value = 0.066 

Statistic = 3.72  
p-value = 0.070 

Statistic = 8.34  
p-value = 0.031 

Statistic = 4.31 

p-value = 0.070 
RF vs GB Statistic = -0.794 

p-value = 0.589 
Statistic = 1.60  
p-value = 0.295 

Statistic = 3.52  
p-value = 0.080 

Statistic = 1.15  
p-value = 0.443 

Statistic = 4.423 

p-value = 0.066 

RF vs NB Statistic = -2.53  
p-value = 0.162 

Statistic = -0.445  
p-value = 0.760 

Statistic = -0.470  
p-value = 0.754 

Statistic = 1.15  
p-value = 0.443 

Statistic = 1.84  
p-value = 0.261 

RF vs SVM-

Lin 

Statistic = -0.152  
p-value = 0.923 

Statistic = -1.242 
p-value = 0.415 

Statistic = -1.21  
p-value = 0.423 

Statistic = -1.67 
p-value = 0.284 

Statistic = 0.719 
p-value = 0.620 

RF vs SVM-

RBF 

Statistic = -1.74  
p-value = 0.272 

Statistic = 0.914  
p-value = 0.533 

Statistic = 0.637  
p-value = 0.663 

Statistic = -0.032   
p-value = 0.989 

Statistic = 0.377 
p-value = 0.777 

GB vs NB Statistic = -1.10  
p-value = 0.459 

Statistic = -1.66  
p-value = 0 

Statistic = -2.21  
p-value = 0.092 

Statistic = -1.95   
p-value = 0.243 

Statistic = 1.09 
p-value = 0.337 

GB vs SVM-

Lin 

Statistic = 0.432 
p-value = 0.770 

Statistic = -2.60 
p-value = 0.162 

Statistic = -5.80 
p-value = 0.044 

Statistic = -3.00 
p-value = 0.120 

Statistic = -0.404 
p-value = 0.768 

GB vs SVM-

RBF 

Statistic = -0.844 
p-value = 0.567 

Statistic = -0.103 
p-value = 0.948 

Statistic = -1.81 
p-value = 0.263 

Statistic = -0.953 
p-value = 0.519 

Statistic = -0.962  
p-value = 0.519 

NB vs SVM-

Lin 

Statistic = -1.85 
p-value = 0.261 

Statistic = 1.51 
p-value = 0.319 

Statistic = 1.79 
p-value = 0.147 

Statistic = 2.38 
p-value = 0.173 

Statistic = 3.95  
p-value = 0.066 

NB vs SVM-

RBF 

Statistic = 0.009 
p-value = 0.993 

Statistic = -1.32 
p-value = 0.386 

Statistic = -1.33 
p-value = 0.386 

Statistic = -0.582 
p-value = 0.682 

Statistic = 4.21  
p-value = 0.066 

SVM-RBF vs 

SVM-Lin 

Statistic = 0.763 
p-value = 0.600 

Statistic = -4.00 
p-value = 0.066 

Statistic = -4.53 
p-value = 0.066 

Statistic = -5.69 
p-value = 0.044 

Statistic = 2.67  
p-value = 0.161 

a- The comparison of classifiers; b – SNPs chosen by the p-value method and APOE SNPs removed; c - SNPs chosen by the r-squared method and APOE SNPs 

removed; d - SNPs chosen by the p-value method;  e - SNPs chosen by the r-squared method;  ; f – SNPs chosen by the clumping method 
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Supplementary Table 8. Comparison of classifier performance using pairwise t-tests for 

analyses with the 1958 birth cohort removed, the use of CV and both PRS/genotypes adjusted 

by PCs, age and sex. 

Classifier 

Comparisona 

No-apoe-

pvalues(21-

SNPS)b 

No -apoe-rsquared 

(21 - SNPS)c 
P-values (23-

SNPS)d 
R-squared (23-

SNPS)e 
Increased SNP’s 

(422- SNPS)f  

PRS vs RF Statistic = 4.57  
p-value = 0.033 

Statistic = 3.61  
p-value = 0.054 

Statistic = 2.97  
p-value = 0.082 

Statistic = 2.33  
p-value = 0.139 

Statistic = 7.57  
p-value = 0.011 

PRS vs GB Statistic = 7.27  
p-value = 0.011 

Statistic = 4.067  
p-value = 0.004 

Statistic = 6.90  
p-value = 0.012 

Statistic = 4.36  
p-value = 0.036 

Statistic = 9.28  
p-value = 0.006 

PRS vs NB Statistic = 9.97  
p-value = 0.006 

Statistic = 1.88  
p-value = 0.195 

Statistic = 4.72  
p-value = 0.031 

Statistic = 1.11  
p-value = 0.425 

Statistic = 9.52  
p-value = 0.006 

PRS vs 

SVM-Lin  
Statistic = 11.6  
p-value = 0.005 

Statistic = 0.990  
p-value = 0.473 

Statistic = 6.86  
p-value = 0011 

Statistic = -0.629 
p-value = 0.650 

Statistic = 12.2 
p-value = 0.005 

PRS vs 

SVM-RBF 
Statistic = 7.17   
p-value = 0.011 

Statistic = 5.79  
p-value = 0.019 

Statistic = 5.33 
p-value = 0.023 

Statistic = 4.10 
p-value = 0.038 

Statistic = 14.2 
p-value = 0.005 

RF vs GB Statistic = 1.81   
p-value = 0.145 

Statistic = 0.096 
p-value = 0.954 

Statistic = 4.25 
p-value = 0.036 

Statistic = 0.794 
p-value = 0.561 

Statistic = 3.15   
p-value = 0.072 

RF vs NB Statistic = -0.585  
p-value = 0.671 

Statistic = -3.29 
p-value = 0.067 

Statistic = 0.769  
p-value = 0.568 

Statistic = -1.96 
p-value = 0.181 

Statistic = 3.12 
p-value = 0.072 

RF vs SVM-

Lin 

Statistic = -2.03   
p-value = 0.171 

Statistic = -5.03   
p-value = 0.026 

Statistic = 1.86   
p-value = 0.197 

Statistic = -4.22  
p-value = 0.036 

Statistic = 0.223   
p-value = 0.869 

RF vs SVM-

RBF 

Statistic = -0.542   
p-value = 0.690 

Statistic = -0.970   
p-value = 0.476 

Statistic = 2.27  
p-value = 0.140 

Statistic = -0.512   
p-value = 0.700 

Statistic = -1.19 
p-value = 0.394 

GB vs NB Statistic = -4.29   
p-value = 0.036 

Statistic = -8.37   
p-value = 0.008 

Statistic = -0.891   
p-value = 0.512 

Statistic = -2.51   
p-value = 0.118 

Statistic = -0.023 
p-value = 0.983 

GB vs 

SVM-Lin 

Statistic = -5.78   
p-value = 0.019 

Statistic = 12.4   
p-value = 0.005 

Statistic = -0.307   
p-value = 0.818 

Statistic = -4.48    
p-value = 0.034 

Statistic = -2.91 
p-value = 0.082 

GB vs 

SVM-RBF 

Statistic = -3.02 
p-value = 0.077 

Statistic = -1.67 
p-value = 0.236 

Statistic = -0.066   
p-value = 0.964 

Statistic = -1.51    
p-value = 0.279 

Statistic = -3.46  
p-value = 0.061 

NB vs 

SVM-Lin 

Statistic = 3.17 
p-value = 0.034 

Statistic = 2.10 
p-value = 0.162 

Statistic = -1.23 
p-value = 0.384 

Statistic = 2.31 
p-value = 0.139 

Statistic = 3.81  
p-value = 0.019 

NB vs 

SVM-RBF 

Statistic = -0.338 
p-value = 0.806 

Statistic = -2.75 
p-value = 0.094 

Statistic = -0.994 
p-value = 0.473 

Statistic = -2.15    
p-value = 0.155 

Statistic = 5.05  
p-value = 0.026 

SVM-RBF 

vs SVM-Lin 

Statistic = -2.30 
p-value = 0.083 

Statistic = -6.77 
p-value = 0.012 

Statistic = -0.415 
p-value = 0.760 

Statistic = -26.8 
p-value = 1.6e-05 

Statistic = 3.32 
p-value = 0.067 

a- The comparison of classifiers; b – SNPs chosen by the p-value method and APOE SNPs removed; c - SNPs chosen by the r-squared method and 

APOE SNPs removed; d - SNPs chosen by the p-value method;  e - SNPs chosen by the r-squared method;  ; f – SNPs chosen by the clumping 

method 
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Supplementary Table 9. Comparison of classifier performance using pairwise t-tests for 

analyses with the 1958 birth cohort removed, the use of a balanced dataset by age and sex, with 

PRS/genotypes adjusted by PCs only. 

Classifier 

Comparisona 
No-apoe-

pvalues(21-

SNPS)b 

No -apoe-rsquared 

(21 - SNPS)c 
P-values (23-

SNPS)d 
R-squared (23-

SNPS)e 
Increased SNP’s 

(422- SNPS)f  

PRS vs RF Statistic = 1.64 
p-value = 0.307 

Statistic = 2.66   
p-value = 0.137 

Statistic = 7.44   
p-value = 0.043 

Statistic = 3.25 
p-value = 0.103 

Statistic = 4.78   
p-value = 0.067 

PRS vs GB Statistic = 2.084 
p-value = 0.208 

Statistic = 4.53   
p-value = 0.011 

Statistic = 4.97  
p-value = 0.067  

Statistic = 6.20 
p-value = 0.043 

Statistic = 3.35  
p-value = 0.103 

PRS vs NB Statistic = 2.35 

p-value = 0.080 
Statistic = 2.67 
p-value = 0.137 

Statistic = 6.22  
p-value = 0.043 

Statistic = 4.61 
p-value = 0.066 

Statistic = 3.72 
p-value = 0.103 

PRS vs 

SVM-Lin  
Statistic = 1.89   
p-value = 0.243 

Statistic = 4.71 
p-value = 0.066 

Statistic = 3.15   
p-value = 0.107 

Statistic = 7.02  
p-value = 0.043 

Statistic = 0.890 
p-value = 0.539 

PRS vs 

SVM-RBF 
Statistic = 2.19   
p-value = 0.196 

Statistic = 4.011  
p-value = 0.092 

Statistic = 3.25  
p-value = 0.103 

Statistic = 8.09 
p-value = 0.043 

Statistic = 0.990 
p-value = 0.498 

RF vs GB Statistic = 0.798    
p-value = 0.578 

Statistic = 2.83 
p-value = 0.132 

Statistic = 1.54 
p-value = 0.311 

Statistic = 3.53   
p-value = 0.103 

Statistic = 0.100 
p-value = 0.957 

RF vs NB Statistic = -0.071   
p-value = 0.957 

Statistic = -1.54 
p-value = 0.311 

Statistic = -6.53 
p-value = 0.043 

Statistic = -0.621 
p-value = 0.657 

Statistic = 1.94 
p-value = 0.238 

RF vs SVM-

Lin 

Statistic = 0.079 
p-value = 0.957 

Statistic = -0.994 
p-value = 0.498 

Statistic = -5.00  
p-value = 0.066 

Statistic = 0.368 
p-value = 0.807 

Statistic = -1.38 
p-value = 0.355 

RF vs SVM-

RBF 

Statistic = 1.62   
p-value = 0.307 

Statistic = -0.538 
p-value = 0.703 

Statistic = -2.46  
p-value = 0.158 

Statistic = 0.09 
p-value = 0.957 

Statistic = -1.35 
p-value = 0.358 

GB vs NB Statistic = -0.954   
p-value = 0.510 

Statistic = -2.78 
p-value = 0.132 

Statistic = -3.42  
p-value = 0.103 

Statistic = -3.65 
p-value = 0.103 

Statistic = 2.66 
p-value = 0.137 

GB vs SVM-

Lin 

Statistic = -0.620 
p-value = 0.657 

Statistic = -2.20   
p-value = 0.196 

Statistic = -2.325   
p-value = 0.049 

Statistic = -1.56   
p-value = 0.311 

Statistic = -1.02  
p-value = 0.498 

GB vs SVM-

RBF 

Statistic = 1.88    
p-value = 0.243 

Statistic = -1.40  
p-value = 0.350 

Statistic = -3.63 
p-value = 0.103 

Statistic = -2.16  
p-value = 0.197 

Statistic = -1.14 
p-value = 0.450 

NB vs SVM-

Lin 

Statistic = -0.293    
p-value = 0.852 

Statistic = -3.28 
p-value = 0.103 

Statistic = 0.782  
p-value = 0.578 

Statistic = -1.54 
p-value = 0.311 

Statistic = 2.50  
p-value = 0.157 

NB vs SVM-

RBF 

Statistic = -1.70    
p-value = 0.292 

Statistic = -3.11 
p-value = 0.107 

Statistic = -0.056   
p-value = 0.957 

Statistic = -0.661 
p-value = 0.649 

Statistic = 2.94 
p-value = 0.122 

SVM-RBF 

vs SVM-Lin 

Statistic = -1.52    
p-value = 0.311 

Statistic = -0.830    
p-value = 0.566 

Statistic = 0.782   
p-value = 0.578 

Statistic = 0.464 
p-value = 0.746 

Statistic = -0.268 
p-value = 0.860 

a- The comparison of classifiers; b – SNPs chosen by the p-value method and APOE SNPs removed; c - SNPs chosen by the r-squared method and APOE SNPs 

removed; d - SNPs chosen by the p-value method;  e - SNPs chosen by the r-squared method;  ; f – SNPs chosen by the clumping method 
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Supplementary Tables for Chapter 5: 

 

Supplementary Table 10. Comparison between ML and PRS with no Feature Selection 

and no APOE Alleles. 

P-value 

Thresholda 

Random 

Forestb 

Gradient 

Boostingc 

PRSd Mean 

Number of 

SNPse 

0.0001  56.7 57.7 54.5 20 

0.001  55.3 55.9 51.3 187 

0.01  53.5 53.5 57.9 1981 

0.05  53.8 54.6 60.6 8909 

0.1  53.9 55.6 60.5 16409 

0.2  51.6 54.5 60.1 29210 

0.3  52.1 56.0 59.8 39984 

0.4  53.8 54.5 59.3 49268 

0.5  55.8 

 

 

54.5 59.0 57225 

a- p-value thresholds used for analyses; b – AUC for RFs across five folds of CV; c – AUC for GB across five folds of CV; d – AUC for PRS across five folds 

of CV; e – Mean number of SNPs used across five folds of CV. 
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Supplementary table 11. Comparison between ML and PRS without Feature Selection 

P-value 

Thresholda 

Random 

Forestb 

Gradient 

Boostingc 

PRSd Mean 

Number of 

SNPse 

0.0001  66.3 65.9 68.7 17 

0.001  65.7 65.5 70.0 191 

0.01  63.0 65.8 71.8 1976 

0.05  59.1 60.2 72.6 8869 

0.1  59.4 60.5 72.6 16403 

0.2  58.3 57.4 72.6 29232 

0.3  56.7 59.3 72.3 40012 

0.4  58.1 58.8 72.1 49301 

0.5  57.4 

 

59.0 71.8 57260 

a- p-value thresholds used for analyses; b – AUC for RFs across five folds of CV; c – AUC for GB across five folds of CV; d – AUC for PRS across five folds 

of CV; e – Mean number of SNPs used across five folds of CV. 
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Supplementary table 12. Comparison between ML and PRS with RF as Feature 

Selection 

P-value 

Thresholda 

Random 

Forestb 

Gradient 

Boostingc 

PRSd Average 

Number of 

SNPse 

Mean 

Number 

of SNPs 

after FSf 

Overlap 

in SNPsg 

0.0001  66.0 65.0 69.5 17 18 N/A 

0.001  65.8 66.2 70.0 191 1 1 

0.01  65.2 66.3 71.8 1975 21 1 

0.05  66.8 67.7 72.5 8920 3 1 

0.1  66.9 65.7 72.4 16435 55 2 

0.2  67.1 66.7 72.4 29192 20 2 

0.3  66.4 65.1 72.4 39980 124 4 

0.4  67.0 66.8 72.1 49245 96 3 

0.5  67.7 65.1 71.8 57239 1715 20 

a- p-value thresholds used for analyses; b – AUC for RFs across five folds of CV; c – AUC for GB across five folds of CV; d – AUC for PRS across five folds 

of CV; e – Mean number of SNPs used across five folds of CV; f –Mean number of SNPs across five folds of CV; - g – Mean number of shared SNPs between 

the current and previous p-value threshold over 5 folds of CV. 

 

 

Supplementary table 13. Comparison between ML and PRS with ExtraTree as Feature 

Selection 

P-value 

Thresholda 

Random 

Forestb 

Gradient 

Boostingc 

PRSd Average 

Number of 

SNPse 

Mean 

Number 

of SNPs 

after FSf 

Overlap 

in SNPsg 

0.0001  65.9 64.7 69.0 18 20 N/A 

0.001  65.6 65.8 70.3 190 1 1 

0.01  65.7 65.9 71.7 1976 1 1 

0.05  66.6 65.7 72.7 8893 3 1 

0.1  67.0 66.4 72.4 16411 4 1 

0.2  66.6 60.6 72.5 29225 579 2 

0.3  66.8 62.2 72.3 40006 496 8 

0.4  66.2 61.5 72.1 49301 1266 10 

0.5  67.7 62.5 72.0 57211 489 8 
a- p-value thresholds used for analyses; b – AUC for RFs across five folds of CV; c – AUC for GB across five folds of CV; d – AUC for PRS across five folds 

of CV; e – Mean number of SNPs used across five folds of CV; f –Mean number of SNPs across five folds of CV; - g – Mean number of shared SNPs between 

the current and previous p-value threshold over 5 folds of CV. 
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Supplementary table 14. Comparison between ML and PRS with LASSO as Feature 

Selection 

P-Value 

Thresholda 

Random 

Forestb 

Gradient 

Boostingc 

PRSd Average 

Number of 

SNPse 

Mean 

Number 

of SNPs 

after FSf 

Overlap 

in SNPsg 

0.0001  65.9 64.3 69.1 18 18 N/A 

0.001  65.4 62.2 70.3 189 190 12 

0.01  64.2 61.7 71.8 1965 1433 60 

0.05  62.4 59.5 72.7 8890 2506 255 

0.1  63.1 62.1 72.3 16404 2653 204 

0.2  62.2 62.1 72.3 29223 2813 188 

0.3  62.0 59.3 72.4 40019 2851 142 

0.4  62.4 61.0 72.3 49304 2997 100 

0.5  62.9 59.5 72.0 57236 2921 84 
a- p-value thresholds used for analyses; b – AUC for RFs across five folds of CV; c – AUC for GB across five folds of CV; d – AUC for PRS across five folds 

of CV; e – Mean number of SNPs used across five folds of CV; f –Mean number of SNPs across five folds of CV; - g – Mean number of shared SNPs between 

the current and previous p-value threshold over 5 folds of CV. 

 

 

Supplementary table 15. Comparison between ML and PRS with Elastic Net as Feature 

Selection 

P-value 

Thresholda 

Random 

Forestb 

Gradient 

Boostingc 

PRSd Average 

Number of 

SNPse 

Mean 

Number of 

SNPs after 

FSf 

Overlap of 

SNPsg 

0.0001  66.4 64.6 69.3 17 19 N/A 

0.001  65.6 62.7 69.8 187 193 8 

0.01  62.4 60.9 71.6 1967 1796 86 

0.05  62.7 60.1 72.3 8883 3558 343 

0.1  62.0 60.5 72.5 16409 3670 337 

0.2  62.5 60.8 72.3 29189 3702 244 

0.3  59.0 60.4 72.2 40012 3941 265 

0.4  57.8 59.5 72.1 49304 3800 274 

0.5  59.0 59.7 72.1 57233 4036 301 

a- p-value thresholds used for analyses; b – AUC for RFs across five folds of CV; c – AUC for GB across five folds of CV; d – AUC for PRS across five 

folds of CV; e – Mean number of SNPs used across five folds of CV; f –Mean number of SNPs across five folds of CV; - g – Mean number of shared 

SNPs between the current and previous p-value threshold over 5 folds of CV. 
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Supplementary Table 16. Comparison between ML and PRS with no Feature Selection, 

with SNPs not Clumped. 

 

P-value 

Thresholdsa 

Random Forestb Gradient 

Boostingc 

PRSd Mean Number 

of SNPse 

0.0001  65.2 64.8 69.3 24 

0.001  65.0 61.8 69.7 269 

0.01  59.8 60.4 71.1 3356 

0.05  58.1 56.7 72.5 18562 

0.1  56.6 58.7 72.4 38806 

0.2  55.9 58.2 72.2 80289 

0.3  55.2 57.9 69.4 122264 

0.4  55.0 57.0 69.4 164508 

0.5 55.1 57.5 69.4 207078 
a- p-value thresholds used for analyses; b – AUC for RFs across five folds of CV; c – AUC for GB across five folds of CV; d – AUC for PRS across five folds 

of CV; e – Mean number of SNPs used across five folds of CV. 
 

 

Supplementary Table 17. Comparison between ML and PRS with RF as Feature 

Selection, with SNPs not Clumped. 

P-value 

Thresholdsa 

Random 

Forestb 

Gradient 

Boostingc 

PRSd Average 

Number of 

SNPse 

Mean 

Number of 

SNPs after 

FSf 

Overlap of 

SNPsg 

0.0001  65.9 65.3 69.6 22 24 N/A 

0.001  66.4 66.4 70.0 269 1 1 

0.01  65.3 65.1 71.3 3372 1 1 

0.05  65.6 66.5 72.3 18612 1 1 

0.1  65.9 66.1 72.5 38856 1 1 

0.2  66.6 65.3 72.2 80319 1562 10 

0.3  67.5 66.3 69.6 122252 186 3 

0.4  65.5 66.4 72.2 164803 215 5 

0.5 68.1 66.4 69.4 207037 295 9 
a- p-value thresholds used for analyses; b – AUC for RFs across five folds of CV; c – AUC for GB across five folds of CV; d – AUC for PRS across five folds 

of CV; e – Mean number of SNPs used across five folds of CV; f –Mean number of SNPs across five folds of CV; - g – Mean number of shared SNPs between 

the current and previous p-value threshold over 5 folds of CV. 
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Supplementary Table 18 Comparison between ML and PRS with ExtraTree as Feature 

Selection, with SNPs not Clumped. 

P-value 

Thresholdsa 

Random 

Forestb 

Gradient 

Boostingc 

PRSd Average 

Number of 

SNPse 

Mean 

Number of 

SNPs after 

FSf 

Overlap of 

SNPsg 

0.0001  65.6 64.0 69.3 22 21 N/A 

0.001  66.0 66.3 69.7 272 1 1 

0.01  65.4 64.8 71.0 3376 1 1 

0.05  67.5 67.4 72.5 18538 2 1 

0.1  66.3 63.0 72.5 38761 297 6 

0.2  67.4 63.1 72.3 80226 54 1 

0.3  67.2 64.4 69.7 122219 105 2 

0.4  67.8 61.7 69.3 164639 84 2 

0.5 68.2 64.4 69.4 206987 128 4 
a- p-value thresholds used for analyses; b – AUC for RFs across five folds of CV; c – AUC for GB across five folds of CV; d – AUC for PRS across five folds 

of CV; e – Mean number of SNPs used across five folds of CV; f –Mean number of SNPs across five folds of CV; - g – Mean number of shared SNPs between 

the current and previous p-value threshold over 5 folds of CV. 

 

 

Supplementary table 19. Comparison between ML and PRS with no Feature Selection, 

with a more Lenient r2. 

P-value 

Thresholdsa 

Random Forestb Gradient 

Boostingc 

PRSd Mean Number 

of SNPse 

0.0001  65.5 63.5 69.0 19 

0.001  65.7 61.0 70.0 208 

0.01  62.6 62.0 71.7 2395 

0.05  58.3 61.1 70.0 12376 

0.1  58.6 58.7 70.2 24924 

0.2  57.0 58.1 69.8 49715 

0.3  55.2 58.9 69.5 73997 

0.4  57.4 56.4 69.5 97693 

0.5 56.3 57.2 69.2 120579 
a- p-value thresholds used for analyses; b – AUC for RFs across five folds of CV; c – AUC for GB across five folds of CV; d – AUC for PRS across five folds 

of CV; e – Mean number of SNPs used across five folds of CV. 
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Supplementary table 20. Comparison between ML and PRS with RF as Feature 

Selection, with a Less Lenient r2. 

P-value 

Thresholdsa 

Random 

Forestb 

Gradient 

Boostingc 

PRSd Average 

Number of 

SNPse 

Mean 

Number of 

SNPs after 

FSf 

Overlap of 

SNPsg 

0.0001  66.3 65.0 69.2 25 21 N/A 

0.001  64.9 65.5 69.7 210 1 1 

0.01  66.1 65.3 71.7 2386 1 1 

0.05  66.1 65.7 70.1 12365 1 1 

0.1  67.9 66.8 69.8 24916 26 1 

0.2  67.6 66.1 69.8 49727 10 1 

0.3  67.2 66.9 69.6 73964 66 2 

0.4  66.7 66.0 69.5 97628 55 1 

0.5 66.7 66.4 69.3 120541 38 1 
a- p-value thresholds used for analyses; b – AUC for RFs across five folds of CV; c – AUC for GB across five folds of CV; d – AUC for PRS across five folds 

of CV; e – Mean number of SNPs used across five folds of CV; f –Mean number of SNPs across five folds of CV; - g – Mean number of shared SNPs between 

the current and previous p-value threshold over 5 folds of CV. 

 

 

Supplementary Table 21. Comparison between ML and PRS with the ExtraTree 

algorithm as Feature Selection, with a less Lenient r2. 

P-value 

Thresholdsa 

Random 

Forestb 

Gradient 

Boostingc 

PRSd Average 

Number of 

SNPse 

Mean 

Number 

of SNPs 

after FSf 

Overlap of 

SNPsg 

0.0001  66.3 66.2 69.2 23 20 N/A 

0.001  65.0 66.5 69.9 188 1 1 

0.01  65.7 66.6 71.7 1982 1 1 

0.05  66.3 65.6 69.9 12378 2 1 

0.1  65.8 67.2 70.0 24925 3 1 

0.2  67.2 64.3 69.9 49680 163 8 

0.3  68.2 63.0 69.6 73905 137 8 

0.4  67.1 62.4 69.4 97639 123 12 

0.5 68.1 63.3 69.5 120571 128 5 
a- p-value thresholds used for analyses; b – AUC for RFs across five folds of CV; c – AUC for GB across five folds of CV; d – AUC for PRS across five folds 

of CV; e – Mean number of SNPs used across five folds of CV; f –Mean number of SNPs across five folds of CV; - g – Mean number of shared SNPs between 

the current and previous p-value threshold over 5 folds of CV. 
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Supplementary Table 22. Comparison between ML and PRS with Microglia related 

SNPs 

P-value 

Thresholdsa 

Random Forestb Gradient 

Boostingc 

PRSd Mean Number 

of SNPse 

0.0001  67.9 66.5 68.9 2 

0.001  67.0 63.8 69.3 12 

0.01  67.0 64.0 68.5 124 

0.05  66.1 59.1 69..4 638 

0.1  66.1 61.7 69.5 1298 

0.2  65.2 59.2 69.2 2593 

0.3  64.0 59.1 69.2 3786 

0.4  63.1 60.9 69.6 4983 

0.5 63.3 60.2 69.4 6096 
a- p-value thresholds used for analyses; b – AUC for RFs across five folds of CV; c – AUC for GB across five folds of CV; d – AUC for PRS across five folds 

of CV; e – Mean number of SNPs used across five folds of CV. 
 

 

Supplementary Table 23. Comparison between ML and PRS with Synapse related SNPs 

P-value 

Thresholdsa 

Random Forestb Gradient 

Boostingc 

PRSd Mean Number 

of SNPse 

0.0001  67.6 65.7 69.0 3 

0.001  66.4 64.5 68.8 17 

0.01  66.9 61.7 69.7 183 

0.05  66.7 59.8 69.5 839 

0.1  65.9 61.6 69.3 1557 

0.2  65.3 60.5 69.4 2753 

0.3  61.8 66.9 69.6 3768 

0.4  63.2 61.8 69.2 4682 

0.5 62.8 60.2 69.0 5452 
a- p-value thresholds used for analyses; b – AUC for RFs across five folds of CV; c – AUC for GB across five folds of CV; d – AUC for PRS across five folds 

of CV; e – Mean number of SNPs used across five folds of CV. 
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Supplementary Table 24: Paired T-test Statistics without the use of Apoe Alleles and 

Feature Selection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a- p-value thresholds used for analyses; b – Reported statistics for pairwise t-tests between classifiers, statistics were only reported if significant (<0.05) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P-value Thresholda Comparison Statisticsb 

0.0001 PRS had superior performance to 

GB. 

 

PRS vs GB = (-4.48, 0.033) 

 

 

0.01 PRS had superior performance to 

GB. 

 

PRS vs GB = (6.39, 0.011) 

PRS vs RFs = (4.11, 0.034) 

0.1 PRS had superior performance to 

both GB and RFs 

 

PRS vs GB = (10.3, 0.004) 

PRS vs RFs = (7.75, 0.007) 

 

0.3 PRS had superior performance to 

RFs. 

 

PRS vs RFs = (9.87, 0.001) 

PRS vs GB = (3.35, 0.050) 

 

 

0.5 PRS had superior performance to 

RFs. 

 

PRS vs RFs = (3.44, 0.050) 

PRS vs GB = (4.04, 0.034) 
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Supplementary Table 25: Paired T-test Statistics with the use of Apoe Alleles and 

Feature Selection on LD Pruned SNPs 

a- p-value thresholds used for analyses; b – Reported statistics for pairwise t-tests between classifiers, statistics were only reported if significant (<0.05); c – 

Statistics for analyses using RFs for feature selection; d - Statistics for analyses using ExtraTrees for feature selection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P-value Thresholda No Feature Selectionb Random Forest used for 

Feature Selectionc 

ExtraTrees used for 

Feature Selectiond 

0.0001 PRS had superior 

performance to GB. 

 

PRS vs GB = (5.12, 0.011) 

PRS had superior performance 

to both GB and RFs 

 

PRS vs GB = (3.40, 0.030) 

PRS vs RFs = (3.63, 0.022) 

PRS had superior performance 

to both GB and RFs 

 

PRS vs GB = (3.26, 0.042) 

PRS vs RFs = (5.30, 0.011) 

0.01 PRS had superior 

performance to both GB 

and RFs. Whilst GB 

outperformed RFs. 

 

PRS vs RFs = (9.12,0.002) 

PRS vs GB = (7.75,0.002) 

RFs vs GB = (-4.07, 0.023) 

PRS had superior performance 

to both GB and RFs 

 

PRS vs GB = (4.76, 0.032) 

PRS vs RFs = (3.93, 0.012) 

PRS had superior performance 

to both GB and RFs 

 

PRS vs GB = (4.03, 0.016) 

PRS vs RFs = (6.37, 0.007) 

0.1 PRS had superior 

performance to both GB 

and RFs 

 

PRS vs RFs = (9.64, 0.001) 

PRS vs GB = (9.41, 0.002) 

 

PRS had superior performance 

to both GB and RFs 

 

PRS vs GB = (4.64, 0.010) 

PRS vs RFs = (6.59, 0.003) 

PRS had superior performance 

to both GB and RFs 

 

PRS vs GB = (8.31, 0.003) 

PRS vs RFs = (10.1, 0.003) 

0.3 PRS had superior 

performance to both GB 

and RFs 

 

PRS vs RFs = (19.5,0.001) 

PRS vs GB = (9.74, 0.002) 

 

PRS had superior performance 

to both GB and RFs 

 

PRS vs GB = (14.6, 0.008) 

PRS vs RFs = (7.18, 0.029) 

PRS had superior performance 

to both GB and RFs.  

 

PRS vs GB = (6.83,0.036) 

PRS vs RFs = (10.1,0.008) 

RFs vs GB = (3.01, 0.050) 

0.5 PRS had superior 

performance to both GB 

and RFs 

 

PRS vs RFs = (24.4, 0.001) 

PRS vs GB = (8.70, 0.002 

 

PRS had superior performance 

to both GB and RFs 

 

PRS vs GB = (10.9, 0.003) 

PRS vs RFs = (6.78, 0.008) 

PRS had superior performance 

to both GB and RFs. Whilst 

GB outperformed RFs. 

 

PRS vs GB = (8.77,0.003) 

PRS vs RFs = (9.80, 0.003) 

RFs vs GB = (4.27, 0.021) 
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Supplementary Table 26: Paired T-test Statistics with the use of Apoe Alleles and 

Feature Selection Without the use of Clumping 

a- p-value thresholds used for analyses; b – Reported statistics for pairwise t-tests between classifiers, statistics were only reported if significant (<0.05); c – 

Statistics for analyses using RFs for feature selection; d - Statistics for analyses using ExtraTrees for feature selection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P-value Thresholda No Feature Selectionb Random Forest used for 

Feature Selectionc 

ExtraTrees used for 

Feature Selectiond 

0.0001 PRS had superior 

performance to both GB and 

RFs 

 

PRS vs RFs = (4.48, 0.018) 

PRS vs GB = (4.25, 0.012) 

PRS had superior performance 

to both GB and RFs 

 
PRS vs RFs = (5.76, 0.011) 

PRS vs GB = (6.11, 0.011) 

There were no significant 

results in this pathway. 

 
PRS vs RFs = (7.15, 0.007) 

PRS vs GB = (3.91, 0.003) 

0.01 PRS had superior 

performance to both GB and 

RFs 

 

PRS vs RFs = (9.20, 0.002) 

PRS vs GB = (7.91, 0.003) 

 

PRS had superior performance 

to both GB and RFs 

 

PRS vs RFs = (9.14, 0.004) 

PRS vs GB = (8.30, 0.004) 

 

PRS had superior performance 

to both GB and RFs 

 

PRS vs RFs = (6.78, 0.007) 

PRS vs GB = (7.05, 0.007) 

 

0.1 PRS had superior 

performance to both GB and 

RFs 

 

PRS vs RFs = (12.6, 0.001) 

PRS vs GB = (16.3, 0.001) 

PRS had superior performance 

to both GB and RFs 

 

PRS vs RFs = (4.02, 0.016) 

PRS vs GB = (3.30, 0.047) 

 

PRS had superior performance 

to both GB and RFs, whilst 

RFs also outperformed GB. 

 

PRS vs RFs = (11.2,0.003) 

PRS vs GB = (3.30, 0.003) 

RFs vs GB = (5.31, 0.011) 

0.3 PRS had superior 

performance to both GB and 

RFs 

 

PRS vs RFs = (28.7,0.0001) 

PRS vs GB = (8.21, 0.003) 

 

PRS had superior performance 

to both GB and RFs 

 

PRS vs RFs = (4.02, 0.034) 

PRS vs GB = (9.13, 0.001) 

 

PRS had superior performance 

to both GB and RFs, whilst 

RFs also outperformed GB. 

 

PRS vs RFs = (5.34, 0.011) 

PRS vs GB = (5.97, 0.010) 

RFs vs GB = (3.00, 0.050) 

0.5 PRS had superior 

performance to both GB and 

RFs 

 

PRS vs RFs = (26.2, 0.0002) 

PRS vs GB = (11.2, 0.006) 

PRS had superior performance 

to both GB and RFs 

 

PRS vs RFs = (3.344, 0.050) 

PRS vs GB = (3.25, 0.050) 

 

PRS had superior performance 

to both GB and RFs 

 

PRS vs RFs = (3.33, 0.043) 

PRS vs GB = (3.19, 0.050) 
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Supplementary Table 27: Paired T-test Statistics with the use of Apoe Alleles and 

Feature Selection and with the use of a More Lenient Value of r2  

a- p-value thresholds used for analyses; b – Reported statistics for pairwise t-tests between classifiers, statistics were only reported if significant (<0.05); c – 

Statistics for analyses using RFs for feature selection; d - Statistics for analyses using ExtraTrees for feature selection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P-value Thresholda No Feature Selectionb Random Forest used 

for Feature Selectionc 

ExtraTrees used for 

Feature Selectiond 

0.0001 PRS had superior 

performance to both GB and 

RFs 

 

PRS vs GB = (7.15, 0.002) 

PRS vs RFs = (3.91, 0.030) 

There were no significant 

results in this pathway. 
There were no significant 

results in this pathway. 

0.01 PRS had superior 

performance to both GB and 

RFs 

 

PRS vs GB = (6.78, 0.007) 

PRS vs RFs = (7.05, 0.007) 

PRS had superior 

performance to GB. 

 

PRS vs GB = (11.8,0.004) 

PRS had superior 

performance to both GB 

and RFs 

 

 

PRS vs GB = (11.8, 0.004) 

PRS vs RFs = (5.85,0.021) 

0.1 PRS had superior 

performance to both GB and 

RFs. RFs also outperformed 

GB. 

 

PRS vs GB = (12.4, 0.002) 

PRS vs RFs = (11.2, 0.002 

RFs vs GB = (5.30, 0.006) 

There were no significant 

results in this pathway. 
There were no significant 

results in this pathway. 

0.3 PRS had superior 

performance to both GB and 

RFs. RFs also outperformed 

GB. 

 

PRS vs GB = (5.97, 0.010) 

PRS vs RFs = (5.34, 0.011) 

RFs vs GB = (3.00, 0.050) 

PRS had superior 

performance to RFs. 

 

PRS vs RFs = (7.21,0.030) 

 

PRS had superior 

performance to RFs. 

 

PRS vs RF = (7.22,0.015) 

 

0.5 PRS had superior 

performance to both GB and 

RFs 

 

PRS vs GB = (3.33, 0.043) 

PRS vs RFs = (3.19, 0.050) 

There were no significant 

results in this pathway. 
There were no significant 

results in this pathway. 
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Supplementary Table 28: Paired T-test Statistics with the use of Apoe Alleles and SNPs 

Selected using Biological Information 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a-p-value thresholds used for analyses; b – Reported statistics for pairwise t-tests between classifiers, statistics were only reported if 

significant (<0.05); c – Statistics for analyses using RFs for feature selection; d - Statistics for analyses using ExtraTrees for feature 

selection. 

 

 

 

 

 

 

 

 

 

 

 

 

P-value Thresholda Microgliab Synapsec 

0.0001 There were no significant 

results in this pathway. 
PRS had superior performance 

to GB. RFs also outperformed 

GB. 

 

 

PRS vs GB = (5.40, 0.010) 

RFs vs GB = (9.24, 0.006) 

   

0.01 PRS had superior 

performance to GB. Whilst 

RFs outperformed GB. 

 

PRS vs GB = (9.09, 0.003) 

RFs vs GB = (11.8, 0.002) 

PRS had superior performance 

to both GB and RFs. RFs also 

outperformed GB. 

 

PRS vs GB = (5.27, 0.010) 

PRS vs RFs = (4.63, 0.015) 

RFs vs GB = (3.19, 0.040) 

0.1 PRS had superior 

performance to GB. Whilst 

RFs outperformed GB. 

 

 

PRS vs GB = (12.8, 0.002) 

RFs vs GB = (4.28, 0.024) 

PRS had superior performance 

to both GB and RFs.  

 

PRS vs GB = (5.45, 0.010) 

PRS vs RFs = (18.3, 0.001) 

 

0.3 PRS had superior 

performance to both GB and 

RFs. RFs also outperformed 

GB. 

 

PRS vs GB = (9.99, 0.003) 

PRS vs RFs = (8.96, 0.003) 

RFs vs GB = (4.00, 0.016) 

PRS had superior performance 

to both GB and RFs. RFs also 

outperformed GB. 

 

PRS vs GB = (5.86, 0.010) 

PRS vs RFs = (5.47, 0.010) 

RFs vs GB = (-3.92, 0.022) 

0.5 PRS had superior 

performance to both GB and 

RFs 

 

PRS vs GB = (6.29, 0.003) 

PRS vs RFs = (7.99, 0.001) 

PRS had superior performance 

to both GB and RFs. RFs also 

outperformed GB. 

 

PRS vs GB = (7.58, 0.008) 

PRS vs RFs = (6.76, 0.009) 

RFs vs GB = (4.16, 0.019) 
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Supplementary Figure 1: The Comparison of PRS vs Chosen Classifiers (RF, GB) for 

LD Pruned (r2 = 0.1) SNPs using Microglia and Synapse related SNPs. 

 

 

 
a)                                                                                         b) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Y-axis represents AUC in %; with classifiers placed on the X axis. Each dot represents the score for the prediction algorithm 

for all p-value thresholds. The numbers placed centrally are the mean score across p-value threshold values; GB Gradient 

Boosting; RF Random Forest; PRS-LR Polygenic Risk Scores Logistic Regression; AUC Area Under the Curve. 
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Supplementary Figure 2: The Comparison of non-Calibrated vs Calibrated Prediction 

Probabilities for RFs when using Biological Information 

 

Microglia  

a)                                                                             b)  

 
Synapse  

a)                                                                             b) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
These figures represent pre a) and post b) calibration plots for the related RF algorithm (Figure 5.9) (p-value 0.0001). The x-

axis represents the prediction output of the classifier in terms of the probability of being a case. With the y-axis denoting 

observed class frequencies. Perfect calibration in which predicted probabilities match observed accuracies is denoted by the 

diagonal dotted line. The blue dots represent the mean probability values within each quantile and are accompanied by a 

95% confidence interval (blue bar). The overall relationship between predicted probabilities and observed frequencies 

(calibration curve) is given by the fitted loess smoother (red line), with a 95% (grey shaded area) used. 
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Supplementary Tables for Chapter 6: 

 

Supplementary Table 29. Comparison between ML and PRS with No Feature Selection 

using Genotypes 

P-value thresholda Random Forestb Gradient Boostingc Polygenic Risk 

Scored 

Mean Number of 

SNPse 

0.0001  65.5 63.0 67.7 100 

0.1 54.7 61.5 68.1 44037 

0.5 53.8 58.0 68.4 128575 

a-p-value thresholds used for analyses; b – Mean value of AUC across 5 p-value thresholds for the RF; c Mean value of AUC across 5 p-

value thresholds for the GB; –  d - Mean value of AUC across 5 p-value thresholds for PRS; - e Mean number of SNPs across p-value 

thresholds 

 

 

Supplementary Table 30. Comparison between ML and PRS with no Feature Selection 

using Dosages 

P-value thresholda Random Forestb Gradient Boostingc Polygenic Risk 

Scored 

Mean Number of 

SNPse 

0.0001  65.6 62.8 68.2 130 

0.1 56.8 58.7 69.6 64374 

0.5 56.6 58.9 69.5 204392 

a-p-value thresholds used for analyses; b – Mean value of AUC across 5 p-value thresholds for the RF; c Mean value of AUC across 5 p-

value thresholds for the GB; – d - Mean value of AUC across 5 p-value thresholds for PRS; - e Mean number of SNPs across p-value 

thresholds 
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Supplementary Table 31. Comparison between ML and PRS with RF Feature Selection 

using Genotypes 

P-value thresholda Random 

Forestb 

Gradient 

Boosting
c 

Polygenic 

Risk 

Scored 

Mean 

Number 

of SNPse 

Mean 

Number of 

SNPs for 

FSf 

Mean 

Number of 

Overlapping 

SNPsg 

0.0001  67.7 67.3 68.1 101 1 N/A 

0.1 66.5 68.1 68.3 44063 16 1 

0.5 65.0 65.0 68.3 128613 1267 1 

a-p-value thresholds used for analyses; b – Mean value of AUC across 5 p-value thresholds for the RF; c Mean value of AUC across 5 p-

value thresholds for the GB; –  d - Mean value of AUC across 5 p-value thresholds for PRS; - e Mean number of SNPs across p-value 

thresholds; -f  Mean number of SNPs across p-value thresholds for feature selection; -g The overlap of SNPs used for feature selection 

between the current and previous p-value threshold. 

 

 

 

Supplementary Table 32. Comparison between ML and PRS with RF Feature Selection 

using Dosages 

P-value thresholda Random 

Forestb 

Gradient 

Boosting
c 

Polygenic 

Risk 

Scored 

Mean 

Number 

of SNPse 

Mean 

Number 

of SNPs 

for FSf 

Mean Number 

of Overlapping 

SNPsg 

0.0001  65.8 65.0 68.6 131 13 N/A 

0.1 66.2 67.1 69.3 66403 1 1 

0.5 65.4 66.1 69.1 204479 5 1 

a-p-value thresholds used for analyses; b – Mean value of AUC across 5 p-value thresholds for the RF; c Mean value of AUC across 5 p-

value thresholds for the GB; –  d - Mean value of AUC across 5 p-value thresholds for PRS; - e Mean number of SNPs across p-value 

thresholds; -f  Mean number of SNPs across p-value thresholds for feature selection; -g The overlap of SNPs used for feature selection 

between the current and previous p-value threshold. 
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Supplementary Table 33. Comparison between ML and PRS with ExtraTrees as 

Feature Selection using Genotypes 

P-value Thresholda Random 

Forestb 

Gradient 

Boostingc 

Polygenic 

Risk 

Scored 

Mean 

Number of 

SNPse 

Mean 

Number 

of SNPs 

for FSf 

Mean Number 

of Overlapping 

SNPsg 

0.0001  66.2 65.7 67.8 100 1 N/A 

0.1 66.5 65.3 68.3 44057 4 1 

0.5 68.6 66.4 67.0 128582 175 1 

a-p-value thresholds used for analyses; b – Mean value of AUC across 5 p-value thresholds for the RF; c Mean value of AUC across 5 p-

value thresholds for the GB; –  d - Mean value of AUC across 5 p-value thresholds for PRS; - e Mean number of SNPs across p-value 

thresholds; -f  Mean number of SNPs across p-value thresholds for feature selection; -g The overlap of SNPs used for feature selection 

between the current and previous p-value threshold. 

 

 

Supplementary Table 34. Comparison between ML and PRS with ExtraTrees Feature 

Selection using Dosages 

P-value 

Thresholda 

Random 

Forestb 

Gradient 

Boostingc 

Polygenic 

Risk Scored 

Mean 

Number of 

SNPse 

Mean 

Number of 

SNPs for 

FSf 

Mean 

Number of 

Overlapped 

SNPsg 

0.0001  66.8 65.8 68.5 132 1 N/A 

0.1 67.9 67.3 69.0 64414 3 1 

0.5 66.4 66.6 69.6 204481 1 1 

a-p-value thresholds used for analyses; b – Mean value of AUC across 5 p-value thresholds for the RF; c Mean value of AUC across 5 p-

value thresholds for the GB; –  d - Mean value of AUC across 5 p-value thresholds for PRS; - e Mean number of SNPs across p-value 

thresholds; -f  Mean number of SNPs across p-value thresholds for feature selection; -g The overlap of SNPs used for feature selection 

between the current and previous p-value threshold. 
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Supplementary Table 35. Pairwise t-test for Classifier Comparisons when using 

Genotypes and no Feature Selection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

a – P-value threshold used; b – Results of classifier comparisons using t-tests when including all SNPs, 

only those tests which returned significant results (p-value <0.05) were are detailed.  

 

 

 

Supplementary Table 36. Pairwise t-test for Classifier Comparisons when using Dosages 

and no Feature Selection. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a – P-value threshold used; b – Results of classifier comparisons using t-tests when including all SNPs, 

only those tests which returned significant results (p-value <0.05) were are detailed.  

 

 

 

 

 

 

 

P-value Thresholda Comparison Statisticsb 

0.0001 PRS had superior performance to 

GB.  

 

 

PRS vs GB = (5.26, 0.011) 

0.1 PRS had superior performance to 

both GB and RFs 

 

PRS vs GB = (7.19, 0.004) 

PRS vs RFs = (17.3, 0.000) 

 

 

0.5 PRS had superior performance to 

both GB and RFs 

 

PRS vs GB = (8.85, 0.003) 

PRS vs RFs = (55.7, 5.61e-06) 

 

P-value Thresholda Comparison Statisticsb 

0.0001 PRS had superior performance to 

GB.  

 

 

PRS vs GB = (5.26, 0.011) 

0.1 PRS had superior performance to 

both GB and RFs 

 

PRS vs GB = (7.19, 0.002) 

PRS vs RFs = (17.3, 6.55e-05) 

 

0.5 PRS had superior performance to 

both GB and RFs 

 

PRS vs GB = (8.85, 0.003) 

PRS vs RFs = (55.7, 6.23e-07) 
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Supplementary Table 37. Pairwise t-test Statistics for Classifier Comparisons when 

using Genotypes and RFs for Feature Selection. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
a – P-value threshold used; b – Results of classifier comparisons using t-tests when including all SNPs, 

only those tests which returned significant results (p-value <0.05) were are detailed.  

 

 

Supplementary Table 38. Pairwise t-test Statistics for Classifier Comparisons when 

using Dosages and RFs for Feature Selection. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
a – P-value threshold used; b – Results of classifier comparisons using t-tests when including all SNPs, 

only those tests which returned significant results (p-value <0.05)  are detailed.  

 

 

Supplementary Table 39. Pairwise t-test for Classifier Comparisons when using 

Genotypes and the ExtraTree Algorithm for Feature Selection. 

 

 

 

 

 

 

 

 

 

 
a – P-value threshold used; b – Results of classifier comparisons using t-tests when including all SNPs, 

only those tests which returned significant results (p-value <0.05) are detailed.  

 

 

 

 

 

P-value Thresholda Comparison Statisticsb 

0.0001 There were no differences between 

methods. 

0.1 PRS had superior performance to 

RFs.  

 

PRS vs RFs = (4.48, 0.050) 

0.5 PRS had superior performance to 

GB.  

 

PRS vs RFs = (5.15, 0.050) 

P-value Thresholda Comparison Statisticsb 

0.0001 There were no differences between 

methods. 

0.1 PRS had superior performance to 

both GB and RFs 

 

PRS vs RFs = (9.60, 0.003) 

PRS vs GB = (7.56, 0.005) 

0.5 PRS had superior performance to 

both GB and RFs 

 

PRS vs RFs = (9.95, 0.003) 

PRS vs GB = (4.44, 0.030) 

P-value Thresholda Comparison Statisticsb 

0.0001 There were no differences between 

methods. 

0.1 There were no differences between 

methods. 

0.5 Both PRS and RFs had superior 

performance to both GB 

 

PRS vs GB = (6.03, 0.020) 

RFs vs GB = (6.58, 0.020) 
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Supplementary Table 40. Pairwise t-test for Classifier Comparisons when using Dosages 

and the ExtraTree Algorithm for Feature Selection. 

 

 

 

 

 

 

 

 

 
a – P-value threshold used; b – Results of classifier comparisons using t-tests when including all SNPs, 

only those tests which returned significant results (p-value <0.05) are detailed .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P-value Thresholda Comparison Statisticsb 

0.0001 There were no differences between 

methods. 

0.1 There were no differences between 

methods. 

0.5 PRS had superior performance GB 

only. 

 

PRS vs GB = (6.85, 0.021) 
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Supplementary Tables for Chapter 7: 

 

Supplementary Table 41. Results of Individual Pathway Analyses using non-imputed 

Genotypes 

Pathwaya No APOEb APOE Includedc APOE Allelesd 

1 RF = 55.0 

GB = 54.0 

PRS-LR = 52.2 

PRS-CS = 51.4 

 

RF = 57.1 

GB = 56.3 

PRS-LR = 59.0 

PRS-CS = 60.4 

 

RF = 68.1 

GB = 67.5 

PRS-LR = 69.0 

PRS-CS = 69.2 

 

2 RF = 53.7 

GB = 53.2 

PRS-LR = 51.4 

PRS-CS = 60.7 

 

RF = 59.2 

GB = 58.9 

PRS-LR = 58.1 

PRS-CS = 60.0 

 

RF = 67.5 

GB = 66.8 

PRS-LR = 69.0 

PRS-CS = 69.4 

 

3 RF = 56.4 

GB = 55.3 

PRS-LR = 53.8 

PRS-CS = 53.0 

 

RF = 60.6 

GB = 58.2 

PRS-LR = 58.1 

PRS-CS = 60.3 

 

RF = 67.9 

GB = 67.4 

PRS-LR = 69.6 

PRS-CS = 69.4 

 

4 RF = 51.9 

GB = 52.5 

PRS-LR = 51.2 

PRS-CS = 51.8 

 

RF = 59.0 

GB = 57.9 

PRS-LR = 57.7 

PRS-CS = 60.0 

 

RF = 67.4 

GB = 67.2 

PRS-LR = 69.1 

PRS-CS = 69.3 

 

5 RF = 55.1 

GB = 54.0 

PRS-LR = 52.3 

PRS-CS = 51.6 

 

RF = 60.4 

GB = 59.7 

PRS-LR = 58.8 

PRS-CS = 60.2 

 

RF = 67.8 

GB = 67.6 

PRS-LR = 69.2 

PRS-CS = 69.0 

 

6 RF = 55.2 

GB = 54.6 

PRS-LR = 53.3 

PRS-CS = 53.6 

 

RF = 60.4 

GB = 59.5 

PRS-LR = 58.3 

PRS-CS = 60.8 

 

RF = 68.3 

GB = 67.7 

PRS-LR = 69.3 

PRS-CS = 69.7 

 

7 RF = 56.2 

GB = 54.1 

PRS-LR = 52.5 

PRS-CS = 52.1 

 

RF = 60.7 

GB = 58.2 

PRS-LR = 58.0 

PRS-CS = 60.7 

 

RF = 68.4 

GB = 67.8 

PRS-LR = 69.6 

PRS-CS = 69.9 

 

8 RF = 53.6 

GB = 52.6 

PRS-LR = 52.0 

PRS-CS = 51.2 

 

RF = 59.6 

GB = 58.6 

PRS-LR = 58.0 

PRS-CS = 58.6 

 

RF = 68.3 

GB = 67.8 

PRS-LR = 68.9 

PRS-CS = 69.0 

9 RF = 55.7 

GB = 51.4 

PRS-LR = 52.2 

PRS-CS = 52.1 
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a – The pathway set used for analysis; b – Results of analysis when all APOE related SNPs were removed from the SNP set. c – Results of analysis when all 

APOE related SNPs were included the SNP set; d – Results of analysis where APOE related SNPs were removed, and alleles included. 

 

Supplementary Table 42. Results of Individual Pathway Analyses using Imputed 

Genotypes 

Pathwaya No APOEb APOE Includedc APOE Allelesd 

1 RF = 52.3 

GB = 51.9 

PRS-LR = 51.1 

PRS-CS = 51.9 

RF = 60.1 

GB = 60.0 

PRS-LR = 60.1 

PRS-CS = 60.9 

RF = 67.5 

GB = 67.0 

PRS-LR = 69.3 

PRS-CS = 69.5 

 

2 RF = 55.5 

GB = 55.3 

PRS-LR = 52.1 

PRS-CS = 52.1 

 

RF = 60.1 

GB = 59.8 

PRS-LR = 61.0 

PRS-CS = 60.7 

RF = 67.9 

GB = 66.8 

PRS-LR = 68.9 

PRS-CS = 

 

3 RF = 56.4 

GB = 54.3 

PRS-LR = 52.9 

PRS-CS = 52.3 

 

RF = 59.8 

GB = 60.6 

PRS-LR = 59.8 

PRS-CS = 60.6 

RF = 67.9 

GB = 66.9 

PRS-LR = 68.9 

PRS-CS = 69.3 

 

4 RF = 55.5 

GB = 54.2 

PRS-LR = 51.9 

PRS-CS = 51.9 

 

RF = 60.6 

GB = 59.6 

PRS-LR = 60.8 

PRS-CS = 61.2 

 

RF = 67.8 

GB = 66.9 

PRS-LR = 68.9 

PRS-CS = 69.3 

 

5 RF = 54.7 

GB = 52.8 

PRS-LR = 52.1 

PRS-CS = 51.2 

 

RF = 60.0 

GB = 58.9 

PRS-LR = 61.5 

PRS-CS = 61.4 

 

RF = 67.8 

GB = 67.4 

PRS-LR = 69.0 

PRS-CS = 69.2 

 

6 RF = 56.5 

GB = 55.0 

PRS-LR = 54.5 

PRS-CS = 53.2 

 

RF = 59.3 

GB = 58.0 

PRS-LR = 61.4 

PRS-CS = 61.9 

 

RF = 68.0 

GB = 67.3 

PRS-LR = 69.0 

PRS-CS = 69.7 

 

7 RF = 56.7 

GB = 53.9 

PRS-LR = 53.4 

PRS-CS = 52.8 

 

RF = 59.3 

GB = 58.7 

PRS-LR = 60.0 

PRS-CS =61.0 

RF = 67.7 

GB = 67.3 

PRS-LR = 68.9 

PRS-CS = 69.7 

8 RF = 55.7 

GB = 54.2 

PRS-LR = 51.9 

PRS-CS = 51.9 

 

RF = 59.8 

GB = 58.8 

PRS-LR = 59.8 

PRS-CS = 61.0 

 

RF = 67.5 

GB = 67.2 

PRS-LR = 69.3 

PRS-CS = 69.3 

9 RF = 57.3 

GB = 53.6 

PRS-LR = 52.6 

PRS-CS = 52.2 
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a – The pathway set used for analysis; b – Results of analysis when all APOE related SNPs were removed from the SNP set. c – Results of analysis when all 

APOE related SNPs were included the SNP set; d – Results of analysis where APOE related SNPs were removed, and alleles included. 

 

 

Supplementary Table 43. Results of Multivariable Analyses using Imputed Genotypes. 

 

Type of Inputa Without APOEb APOE Includedc With APOE Allelesd 

Genotypes RF = 56.0 

GB = 51.1 

PRS-LR = 58.0 

PRS-CS = 57.3 

RF = 62.9 

GB = 57.3 

PRS-LR = 64.3 

PRS-CS = 63.7 

RF = 64.3 

GB = 65.7 

PRS-LR = 71.1 

PRS-CS = 69.8 

PRS Values RF = 52.5 

GB = 51.0 

PRS-LR = 55.9 

PRS-CS = 55.1 

RF = 60.4 

GB = 59.0 

PRS-LR = 63.6 

PRS-CS = 62.6 

RF = 67.6 

GB = 67.6 

PRS-LR = 70.3 

PRS-CS = 68.8 
a – Type of data input to classifiers; b – Results of analysis when including all SNPs. c – Results of analysis when all APOE related SNPs were removed, and 

alleles included. 

 

Supplementary Table 44. Results of Analyses using the Unified SNP set. 

Type of Inputa Without APOEb APOE Includedc With Allelesd 

Genotypes RF = 55.8 

GB = 53.0 

PRS-LR = 52.7 

PRS-CS = 51.7 

RF = 57.8 

GB = 56.0 

PRS-LR = 55.5 

PRS-CS = 5.5 

RF = 68.0 

GB = 66.3 

PRS-LR = 68.3 

PRS-CS = 67.9 

PRS Values RF = 51.0 

GB = 50.8 

PRS-LR = 52.1 

PRS-CS = 51.6 

RF = 55.3 

GB = 56.5 

PRS-LR = 57.5 

PRS-CS = 56.9 

RF = 67.6 

GB = 66.7 

PRS-LR = 67.5 

PRS-CS = 66.7 
a – Type of data input to classifiers; b – Results of analysis when including all SNPs. c – Results of analysis when all APOE related SNPs were removed, and 

alleles included. 
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Supplementary Table 45. Results of Classifier Comparisons for Individual Pathway 

Analysis (non-imputed SNPs) using the t-test. 

Pathwaya No APOEb APOE Includedc APOE Allelesd 

1 Both ML methods outperformed 

both PRS methods. Whilst RFs 

also outperformed GB 

 

RF vs PRS-LR = (-13.0, 0.025) 

GB vs PRS-LR = (-6.34, 0.036) 

RFs vs GB = (4.52, 0.048) 

RFs vs PRS-CS = (-6.03, 0.036) 

There were no differences between 

methods. 
PRS-LR outperformed RFs. 

Whilst PRS_CS outperformed 

RFs and GB.  

 
PRS-LR vs RFs = (4.57, 0.048) 

PRS_CS vs RFs = (6.14, 0.036) 

PRS_CS vs GB = (5.44, 0.040) 

2 RFs achieved greater prediction to 

PRS-LR 

 

RFs vs PRS-LR = (4.91, 0.043) 

 

There were no differences between 

methods. 
Both PRS-LR and PRS_CS 

outperformed RFs and GB.  

 

PRS-LR vs RFs = (4.93, 0.043) 

PRS-LR vs GB = (7.69, 0.029) 
PRS_CS vs RFs = (7.09, 0.035) 

PRS_CS vs GB = (9.83, 0.025) 

3 RFs outperformed both PRS 

methods. 

 

RF vs PRS-LR = (-6.18, 0.003) 

RFs vs PRS_CS = (-8.23, 0.025) 

 

RFs outperformed both PRS-LR and 

GB. Whilst PRS_CS also outperformed 

GB. 

 

RF vs PRS-LR = (-4.66, 0.048) 

RFs vs GB = (5.15, 0.043) 

PRS_CS vs GB = (4.52, 0.048) 

Both PRS-LR and PRS_CS 

outperformed RFs.  

 

 

PRS-LR vs RFs = (6.71, 0.035) 

PRS_CS vs RFs = (8.33, 0.025) 

 

4 There were no differences 

between methods. 
There were no differences between 

methods. 
PRS-LR outperformed RFs. 

Whilst PRS_CS outperformed 

RFs and GB.  

 
PRS-LR vs RFs = (5.03, 0.043) 

PRS-LR vs GB = (8.98, 0.025) 
PRS_CS vs RFs = (9.77, 0.025) 

PRS_CS vs GB = (5.07, 0.042) 

5 RFs achieved greater prediction to 

PRS_CS 

 

RFs vs PRS_CS = (-5.78, 0.037) 

There were no differences between 

methods. 
There were no differences 

between methods. 

 

 

6 There were no differences 

between methods. 
PRS_CS outperformed PRS only. 

 
PRS_CS vs PRS-LR = (5.77, 0.037) 

 

PRS-CS outperformed both 

PRS_LR and GB. 

 

PRS_CS vs PRS_LR = (6.18, 

0.036) 

 

PRS_CS vs GB = (4.95, 0.043) 

7 RFs achieved greater prediction to 

PRS-LR 

 

RF vs PRS-LR = (-4.59, 0.048) 

 

RFs outperformed both PRS-LR and 

GB. Whilst PRS_CS also outperformed 

PRS-LR. 

 

RF vs PRS-LR = (-5.63, 0.039) 

RFs vs GB = (6.82, 0.035) 

PRS_CS vs PRS-LR = (5.06, 0.043) 

Both PRS-LR and PRS_CS 

outperformed RFs.  

 
PRS-LR vs RFs = (5.43, 0.040) 

PRS_CS vs RFs = (8.41, 0.025) 

8 There were no differences 

between methods. 
There were no differences between 

methods. 
There were no differences 

between methods. 

9 There were no differences 

between methods. 
There were no differences between 

methods. 
There were no differences 

between methods. 
a – The pathway set used for analysis; b – Results of classifier comparisons using t-tests when all APOE related SNPs were removed from the SNP set. c – 

Results of classifier comparisons using t-tests when all APOE related SNPs were included the SNP set; d – Results of classifier comparisons using t-tests where 

APOE related SNPs were removed, and alleles included. 
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Supplementary Table 46. Results of Classifier Comparisons for Individual Pathway 

Analysis (Imputed SNPs) using the t-test. 

 

a – The pathway set used for analysis; b – Results of classifier comparisons using t-tests when all APOE related SNPs were removed from the SNP set. c – 

Results of classifier comparisons using t-tests when all APOE related SNPs were included the SNP set; d – Results of classifier comparisons using t-tests where 

APOE related SNPs were removed, and alleles included. 

 

 

 

 

 

 

 

 

 

 

 

Pathwaya No APOEb APOE Includedc APOE Allelesd 

1 There were no differences 

between methods. 
There were no differences 

between methods. 
PRS-CS outperformed RFs only. 

 

PRS-CS vs RFs = (7.59, 0.033) 

2 Both RFs and GB outperformed 

PRS-LR 

 

RF vs PRS-LR = (-5.47, 0.045) 

GB vs PRS-LR = (-5.85, 0.044) 

There were no differences 

between methods. 

PRS-LR outperformed GB only. 

 
PRS-LR vs GB = (7.91,0.044) 

 

3 RFs outperformed PRS-CS 

only. 

 

RF vs PRS-CS = (-5.27, 0.041) 

There were no differences 

between methods. 
PRS-CS outperformed GB only. 

 

PRS-CS vs GB = (5.43, 0.044) 

 

4 Both RFs and GB achieved 

greater prediction than PRS-LR 

 
RFs vs PRS-LR = (-7.45,0.044) 

GB vs PRS-LR = (-6.44, 0.044) 

PRS-LR outperformed GB only. 

 
PRS-LR vs GB = (-5.85, 0.044) 

Both PRS-LR and PRS-CS 

outperformed RFs and GB. 

 

PRS-CS vs GB = (6.58, 0.033) 
PRS-LR vs GB = (5.30, 0.041) 

PRS-LR vs RFs = (5.39 0.041) 

5 There were no differences 

between methods. 
There were no differences 

between methods. 
PRS-LR outperformed GB only. 

 
PRS-LR vs GB = (4.87, 0.045) 

6 There were no differences 

between methods. 
PRS-LR outperformed RFs only. 

 

PRS-LR vs RFs = (4.90, 0.045) 

Both PRS-LR and PRS-CS 

outperformed GB. 

 

PRS-LR vs GB = (5.61, 0.041) 

PRS-CS vs GB = (8.50, 0.033) 

7 RFs outperformed both PRS-LR 

and PRS-CS. 

 

RFs vs PRS-LR = (-5.35, 0.045) 

RFs vs PRS-CS = (-6.73, 0.033) 

 

There were no differences 

between methods. 
PRS-CS outperformed RFs only. 

 

PRS-CS vs RFs = (6.06, 0.039) 

8 RFs outperformed PRS-CS 

only. 

 

RF vs PRS-CS = (-6.45, 0.033) 

There were no differences 

between methods. 
There were no differences between 

methods. 

9 There were no differences 

between methods. 
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Supplementary Table 47. Results of Classifier Comparisons for Multivariable Analyses 

using the t-test. 

Type of Inputa Without APOEb APOE Includedc With Allelesd 

Genotypes PRS-LR, PRS-CS and RFs 

outperformed GB. 

 

PRS-LR vs GB = (8.29,0.003) 

PRS-CS vs GB = (11.0, 0.003) 

RFs vs GB = (11.7,0.003) 

 

PRS-LR outperformed both RFs 

and GB, whilst PRS-CS 

outperformed GB. 

 

PRS-LR vs GB = (11.0, 0.003) 

PRS-CS vs GB = (7.84, 0.007) 

RFs vs GB = (5.24, 0.006) 

 

 

PRS-LR and PRS-CS 

outperformed GB and RFs,  

 
PRS-LR vs RFs = (9.33,0.003) 

PRS-LR vs GB = (9.35,0.003) 

PRS-CS vs RF = (5.31,0.012) 

PRS-CS vs GB = (5.09, 0.020) 

 

PRS Values Both PRS-LR and PRS-CS 

outperformed GB and RFs. 

 

PRS-LR vs GB = (4.32, 0.023) 

PRS-LR vs RF = (4.32,0.022) 

PRS-CS vs RF = (4.74, 0.020) 

PRS-CS vs GB = (4.79, 0.020) 

PRS-LR and PRS-CS 

outperformed GB and RFs. 

 
PRS-LR vs RFs = (4.41, 0.023) 

PRS-LR vs GB = (5.05, 0.020) 

PRS-CS vs RF = (10.6, 0.003) 

PRS-CS vs GB = (7.11, 0.008) 

PRS-LR outperformed GB 

only. 

 
PRS-LR vs GB = (3.45,0.047) 

 

a – Type of data input to classifiers; b – Results of classifier comparisons using t-tests when including all SNPs. c – Results of analysis when all APOE related 

SNPs were removed, and alleles included. 

 

 

Supplementary Table 48. Results of Classifier Comparisons for Unified SNP set 

Analyses using the t-test. 

Type of Inputa No APOEb APOE Includedc With Allelesd 

Genotypes There were no differences 

between methods. 

There were no 

differences between 

methods. 

There were no 

differences 

between methods. 

PRS Values There were no differences 

between methods. 

There were no 

differences between 

methods. 

There were no 

differences 

between methods. 
a – Type of data input to classifiers; b – Results of classifier comparisons using t-tests when including all SNPs. c – Results of analysis when all APOE related 

SNPs were removed, and alleles included. 

 

Supplementary Table 49. Results of Pathway significance in a multivariable PRS-LR 

when including all SNPs (including APOE SNPs) 

 

Pathwaya Coefficientsb Standard Errorc Z Scored P-valuee 

1 0.1797 0.269 0.669 0.504 

2 0.4097 0.187 2.174 0.302 

3 -0.0322 0.110 -0.294 0.769 

4 -0.3283 0.198 -1.656 0.198 

5 0.3160 0.116 2.728 0.455 

6 0.4445 0.155 2.873 0.203 

7 -0.1388 0.175 -0.795 0.427 

8 -0.2322 0.222 -1.044 0.297 

9 0.7270 0.073 1.287 0.198 
a – Type of data input to classifiers; b – Results of classifier comparisons using t-tests when including all SNPs. c – Results of analysis when all APOE related 

SNPs were removed, and alleles included. 
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Supplementary Table 50. Results of Pathway in a Multivariable PRS-LR when 

excluding APOE related SNPs and including APOE alleles 

 

Pathwaya Coefficientsb Standard Errorc Z Scored P-valuee 

1 0.1554 0.201 0.773 0.439 

2 0.3446 0.134 2.571 0.120 

3 -0.0772 0.093 -0.831 0.406 

4 -0.3629 0.133 -2.722 0.306 

5 0.0178 0.087 0.204 0.838 

6 0.1352 0.119 1.137 0.255 

7 0.1194 0.153 0.779 0.436 

8 -0.3092 0.167 -1.856 0.163 

9 0.0787 0.076 1.040 0.298 

10 0.2317 0.001 8.798 0.001 
a – Type of data input to classifiers; b – Results of classifier comparisons using t-tests when including all SNPs. c – Results of analysis when all APOE related 

SNPs were removed, and alleles included. 

 

Supplementary Table 51. Results of Pathway in a Multivariable PRS-LR when 

excluding APOE related SNPs and including APOE alleles 

 
Type of Analysis No APOE Region APOE Region Included APOE Alleles Included 

Individual Pathways Non-Imputed SNPs:  

PRS-LR = 52.4 

PRS-CS = 53.3 

RFs = 54.5 

GB = 53.6 

Imputed SNPs: 

PRS-LR = 52.5 

PRS-CS = 52.2 

RFs = 55.5 

GB = 54.0 

Non-Imputed SNPs:  

PRS-LR = 58.2 

PRS-CS = 60.0 

RFs = 59.7 

GB = 59.0 

Imputed SNPs: 

PRS-LR = 60.6 

PRS-CS = 61.1 

RFs = 59.9 

GB = 59.0 

Non-Imputed SNPs:  

PRS-LR = 69.2 

PRS-CS = 69.4 

RFs = 67.9 

GB = 67.5 

Imputed SNPs: 

PRS-LR = 69.1 

PRS-CS = 69.5 

RFs = 67.7 

GB = 67.0 

Multivariable Analysis Imputed SNPs: 

Genotypes (internal 

information): 

PRS-LR = 58.0 

PRS-CS = 57.3 

Imputed SNPs: 

Genotypes (internal 

information): 

PRS-LR = 64.3 

PRS-CS = 63.7 

Imputed SNPs: 

Genotypes (internal 

information): 

PRS-LR = 71.1 

PRS-CS = 69.8 
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RFs = 56.0 

GB = 51.1 

PRS (external 

information): 

PRS-LR = 55.9 

PRS-CS = 55.1 

RFs = 52.5 

GB = 51.0 

RFs = 62.9 

GB = 57.3 

PRS (external 

information): 

PRS-LR = 63.7 

PRS-CS = 62.6 

RFs = 60.1 

GB = 58.6 

RFs = 64.3 

GB = 65.7 

PRS (external 

information): 

PRS-LR = 70.1 

PRS-CS = 68.8 

RFs = 68.8 

GB = 68.4 

Combined Pathway 

Analysis 

Imputed SNPs: 

Genotypes (internal 

information): 

PRS-LR = 52.7 

PRS-CS = 51.7 

RFs = 55.8 

GB = 53.0 

PRS (external 

information): 

PRS-LR = 52.1 

PRS-CS = 51.6 

RFs = 51.0 

GB = 50.8 

Imputed SNPs: 

Genotypes (internal 

information): 

PRS-LR = 55.5 

PRS-CS = 54.5 

RFs = 57.8 

GB = 56.0 

PRS (external 

information): 

PRS-LR = 57.5 

PRS-CS = 56.9 

RFs = 55.3 

GB =56.5 

Imputed SNPs: 

Genotypes (internal 

information): 

PRS-LR = 68.3 

PRS-CS = 67.9 

RFs = 68.0 

GB = 66.3 

PRS (external 

information): 

PRS-LR = 67.5 

PRS-CS = 66.7 

RFs = 67.6 

GB = 66.7 

Analyses are split into the three sections investigated in Chapter 7, with further splitting into the three different ways APOE was modelled. 
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Supplementary Figure 3: Comparison of PRS vs Selected Classifiers (RF, GB) for LD 

Pruned SNPs in Imputed Genotypes. Variants in the APOE region initially excluded, 

included and followed by the inclusion of APOE alleles.  

 

 

                  No APOE SNPs                                                             APOE region Included                                                                  

 
a)                                                                                                 b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APOE Alleles Included 

 

 

c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Y-axis represents AUC in %; X-axis represents each classifier’s results for each round of CV. The numbers placed centrally 

are the mean prediction performance across 5 folds of CV; GB Gradient Boosting; RF Random Forest; PRS-LR Polygenic 

Risk Scores Logistic Regression; PRS-CS.AUC Area Under the Curve. 
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Supplementary Figure 4: The Comparison of non-Calibrated vs Calibrated Prediction 

Probabilities for the RF from Figure 7.9. 
 

a)                                                                                              b) 
 

 

 

 

 

 

 

 

 

 

These two figures display calibration plots for the RF (Protein-lipid complex assembly) in Figure 7.9. The left-hand plot a) displays pre-

calibrated probabilities, whilst the right-hand plot b) shows post-calibration. The predicted probabilities are marked along the X-axis, whilst 

observed probabilities are measured on the Y-axis. Grouped observations represent the average observed prediction value for each decile of 

predicted probabilities, accompanied by a 95% confidence interval. The overall relationship between predicted probabilities and observed 

frequencies is given by the fitted loess smoother, with a 95% (grey shaded area) used. 
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Supplementary Figure 5: The Comparison of PRS-LR vs Selected Classifiers (RF, GB) 

for LD Pruned SNPs. with PRSs used as inputs. Variants in the APOE region initially 

excluded, included and followed by the inclusion of APOE alleles. 

 

 

  No APOE SNPs                                                       APOE region Included                                                                       

 
a)                                                                                    b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APOE Alleles Included 

 

 

c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y-axis represents AUC in %; X-axis represents each classifier’s results per CV fold. The numbers placed centrally are the 

mean prediction performance across 5 folds of CV; GB Gradient Boosting; RF Random Forest; PRS-LR Polygenic Risk 

Scores Logistic Regression; AUC Area Under the Curve. 
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Supplementary Figure 6: The Comparison of non-Calibrated vs Calibrated Prediction 

Probabilities 

 
a)                                                                                          b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.12. These two figures display calibration plots for the RF (Protein-lipid complex assembly) in Figure 7.11. The left-

hand plot a) displays pre-calibrated probabilities, whilst the right-hand plot b) shows post-calibration. The predicted 

probabilities are marked along the X-axis, whilst observed probabilities are measured on the Y-axis. Grouped observations 

represent the average observed prediction value for each decile of predicted probabilities, accompanied by a 95% confidence 

interval. The overall relationship between predicted probabilities and observed frequencies is given by the fitted loess 

smoother, with a 95% (grey shaded area) used. 
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