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Thesis Summary

In the context of a rapidly ageing global population, understanding the influence
of age on cognitive functioning becomes imperative. The Medial Temporal Lobe (MTL)
is widely acknowledged to be important for memory. This thesis applies a novel digital
neuropsychological tool - Memory in Neurological Disorders (MiND) tablet-based
application - which is informed by recent advancements in our understanding of MTL
function (Graham et al., 2010) to investigate age-related changes in MTL-dependent
cognition and assess if these effects generalise across cultures (UK and India).

Episodic memory - which is thought to be supported by the hippocampal
operation of pattern separation - is known to be particularly vulnerable to age-related
cognitive decline. In Chapter 2, I use a novel translational task on MiND to assess spatial
pattern separation. I find that this hippocampal-dependent operation is not sensitive to
age-related decline in middle-to-older aged adults. My results suggest that education
may act as a protective factor, while culture-specific factors may contribute to risk.

Beyond memory, the hippocampus is specialised for scene representations which
support various cognitive functions. In Chapter 3, on MiND, I test the boundary
extension phenomenon which depends upon scene construction ability. Results show that
boundary extension is universal but constrained by age and stimulus characteristics.

Finally, in Chapter 4, I examine the broader specialisations of MTL sub-regions
for higher-order perception across representational categories. I use the MiND Oddity
perceptual discrimination task to study age effects across stimulus categories. I find that
age impairs MTL-dependent higher-order conjunctive processing. Importantly, object
perception is more vulnerable to age-related cognitive decline than scenes across cultures.

Taken together, this thesis contributes towards a deeper theoretical
understanding of cognitive ageing of the MTL and offers valuable insights for the early
detection of cognitive decline, cognitive assessment of culturally diverse populations, and

advancement of digital assessments in global health research.

iii



To my dear grandmothers -

Catherine, who lost her memory but still remembered to dust the shelves;

and Katherina, with whom I hope to spend more time once I submit this thesis.

iv



Acknowledgments

My supervisors and mentors — Andrew, your support, guidance, and the numerous
readings you have sent my way have been invaluable in shaping both this thesis and my
academic journey so far. Kim, thank you for encouraging me to begin this PhD and for
ensuring that I persisted during the pandemic. Suvarna, thank you for playing a pivotal

role in my growth as a cross-cultural researcher.

My academic circle and collaborators — Through this PhD, I have had the
opportunity to work with two fantastic research teams. My colleagues at CUBRIC, you
have been a source of inspiration to me. Special thanks to Rikki and Lucie for all your
advice. I would like to acknowledge the “MiND - GCRF” team and Ounce Technology
for their contribution to the development of the tasks, stimuli, and analytical pipelines
applied in this thesis. To collaborators at NIMHANS, your continued support with my
research is much appreciated. A special acknowledgement goes to the Navrachana

Education Society in India who supported me with data collection amidst the pandemic.

My friends, near and far — 1 feel lucky to have shared this four-year journey of
successes, struggles, and growth with incredible friends and fellow PhD students. Teddy
and Abi, I look forward to celebrating together soon. All my other friends, I promise to

return your calls as soon as I finish writing.

My family, my support system — Mummy and Daddy, words cannot express my
gratitude for everything you have done for me. My dear sister, Kimi, you have helped
me through this PhD in more ways than I can acknowledge here. And Alex, thank you
for being by my side through the ups and downs of this journey. I feel so grateful to have

such a remarkable support system in my life — I owe my achievements to all of you.

Lastly, all the participants in my studies — Even during a pandemic, thank you
very much for generously contributing your time and support to my work. I value your

contribution far beyond the research data you have provided.

A%



Table of Contents

List of AbbreviationsS.....cccoiiuieiiiiiiiiiiiiiiiiiiiiiiirc e viii
Preface oo X
Chapter 1: General INtroduction ......cccueiiiiniiiiiiiiiiiiiiiiiiiiiieeeceieeeeeeeeeenes 11
1.1.  Understanding Cognitive AGEINg .............uuuuumuuimimiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiaees 11
1.2.  Role of the Medial Temporal Lobe (MTL)......cccccoiiiniiiniiiiiiiiciiiciec, 13
1.2.1. Theoretical AAVANCES .........oviiiiiiiiiiiiiiiii e 13
1.2.2.  Evidence for a Representational-Hierarchical View ............ccccccoviiininnnnn. 15

1.3.  Influence of Age on MTL Function ...........cccccoocoiiimiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiies 19
1.4.  Variation in Cognitive Ageing of the MTL .........cccooiiiiiiiiis 22
1.4.1.  Cross-cultural Evidence ............cccccoiiiiiiiiiiiiiiiiiiiiiiiiiiii 22
1.4.2.  Considerations in Cross-cultural Research...................ccccoiiiiiiiiinnnn, 26

1.5, AIMS Of TRESIS ..viiiiiiiiiiiiiiii e 29
Chapter 2: Influence of Age on Pattern Separation across Cultures.......... 31
2.1 IntroduCtion ..o 31
2.2, Methods ..o 36
2.2. 1. PartiCIPAnts....coooiiiiiiii e 36
2.2.2. PTOCEAUTE ...ceiiiiiiii e 38
2.2.3. Materials ... 40
22,4, ANALYSIS ..ottt 46

2.3 RESUIES e 52
231, Study A: UK oo 52
2.3.2. Study B: India ..ooooeeiiii 65
2.4, DISCUSSION -ttt 7
Chapter 3: Influence of Age on Boundary Extension across Cultures........ 82
3.1 INtrodUCHION «oceeieie e 82
.20 MeEthOdS coeee e 87
3.2. 1. PartiCiPambs...ccoooiiiiiiiie e 87

vi



3.2.2.  PrOCEAULC ..o e 88

3.2.3. Materials ....oooiiiiii 88
324, ANALYSIS. .o 90
3.3 ReSUlbs oo 94
331, Study A: UK oo 94
3.3.2. Study B: India ..ooooeiii 105
e DISCUSSION -ttt 116
Chapter 4: Influence of Age on Complex Perception across Cultures....... 125
4.1 INETOAUCTION L.ttt 125
A.20 MEBROMS oo 133
4.2.1. PartiCiPAnts.....oouiiiiii e 133
A4.2.2. PTOCEAUTE ...coiiiiiiiiiii e 133
4.2.3. Materials ... 134
424, ANALYSIS..eiiiiiiiieiiii e 138
430 RESUIES oo 143
4.3.1.  Study A: UK 143
4.3.2.  Study B: India .....cooooo 155
A4, DISCUSSION c. ettt et 167
Chapter 5: General DiSCUSSION...cccuiiiiiiiiiiiiiiiiiiiiiieieereneeeeeneeeeneeeanans 173
5.1.  Summary of Key Findings..........cccccoooi 173
5.2.  Theoretical Contributions...........c.cccccoiiiiiiii 175
5.3.  Practical Implications...........ouuiiiiiiiiiii e 176
5.4. Limitations and Future Directions ...........ccoooooiiiiiiiiiiiiiiiiieeeeeeees 181
5.5, Conclusions of Thesis ... 183
REfErencCes «cuvuiuiiniiiiiiiiiiiiiiiiiiiii e e a e 184
A DD ENAICES «uiniiiiiiiiiiiiiiiiiieteeeeeeeeteetettetetetetetatatatetateataenenenensnennn 232

vii



ACE

AD

AIC
ALSPAC
APOE
AT
ANOVA
BE
bvFTD
COVID-19
c¢TUNL
CUBRIC
DG

DOF
EAM
EM

ERC
fMRI
GDPR
GLMM
HC

HIC
hTUNL
IES

IT

List of Abbreviations

Addenbrooke’s Cognitive Examination
Alzheimer’s Disease

Akaike Information Criterion

Avon Longitudinal Study of Parents and Children
Apolipoprotein E

Anterior-Temporal network

Analysis of Variance

Boundary Extension

Behavioural-variant Frontotemporal Dementia
Coronavirus Disease 2019

Continuous Trial-Unique Non-match to Location
Cardiff University Brain Research Imaging Centre
Dentate Gyrus

Depth of Field

Evolutionary Accretion Model

Episodic Memory

Entorhinal Cortex

Functional Magnetic Resonance Imaging
General Data Protection Regulation

Generalised Linear Mixed Model

Hippocampus

High Income Country

Human Trial-Unique Non-match to Location
Inverse Efficiency Score

Inferior Temporal cortex

viii



LASI Longitudinal Ageing Study in India

LME Linear Mixed Effects model

LMIC Low-to-Middle Income Country

MCI Mild Cognitive Impairment

MiND Memory in Neurological Disorders

MMSE Mini Mental State Examination

MRI Magnetic Resonance Imaging

MST Mnemonic Similarity Task

MTL Medial Temporal Lobe

NET Neurofibrillary Tangles

NIMHANS National Institute of Mental Health And Neurosciences
PART Primary Age-Related Tauopathy

PCC Posterior Cingulate Cortex

PHC Parahippocampal Cortex

PM Posterior-Medial network

PMAT Posterior-Medial Anterior-Temporal framework
PRC Perirhinal Cortex

PS Pattern Separation

RSC Retrosplenial Cortex

RSVP Rapid Serial Visual Presentation

RT Response Time

SC Scene Construction

SD Semantic Dementia

TUNL Trial-Unique Non-match to Location

UF Uncinate Fasciculus

vmPFC Ventromedial Prefrontal Cortex

WEIRD Western, Educated, Industrialized, Rich, and Democratic

ix



Preface

In the history of medicine, it has long been recognised that an elevation in body
temperature (i.e., a fever) is a marker of an infection. The subsequent development of a
thermometer to objectively measure a change in body temperature was a significant
milestone which made it possible to accurately detect, monitor, and treat infectious
diseases. This instrument was built upon the “ground truth” that normal human body
temperature - established from a database of patients in Germany in the 19th century -
is 37°C (Wunderlich, 1871). Recent research, however, has refuted the idea of a universal
normal body temperature, showing that mean body temperature has decreased by 0.03°C
per birth decade since the Industrial Revolution (Protsiv et al., 2020). The COVID-19
global pandemic (which played an influential role in this PhD project) revealed that
immune responses to infections, usually associated with an increased body temperature,
can vary between individuals of different ages, cultural or environmental exposures, or
genetic vulnerabilities (Bajaj et al., 2021; Melenotte et al., 2020; Ovsyannikova et al.,
2020; Samadizadeh et al., 2021). The accuracy of measurement may also be limited by
the type of thermometer (Niven et al., 2015). These findings highlight two key
considerations in health research: i) the identification of valid and measurable correlates
of health (or, biomarkers), and ii) the application of measurement tools sensitive to these
biomarkers across diverse populations. The field of cognitive ageing - a relatively new

focus in this period of global population ageing - faces similar challenges.



Chapter 1 General Introduction

Chapter 1: General Introduction

1.1. Understanding Cognitive Ageing

The global demographic landscape is currently undergoing a notable
transformation, marked by a substantial rise in the number of older individuals.
According to recent projections, by 2050, the world’s population above 60 years of age
will rise to 2.1 billion, nearly doubling current figures (United Nations Department of
Economic and Social Affairs, 2017). More strikingly, by 2050, it is estimated that 80%
of the global population over 60 will be living in developing countries' (United Nations
Department of Economic and Social Affairs, 2017). This demographic shift presents a
complex challenge for societies worldwide, particularly in developing regions such as
India. In this context, the issue of cognitive decline associated with normal ageing
emerges as a pressing concern. As individuals age, a decline in cognitive functions may
affect their ability to actively contribute to their communities, placing pressure on social
and economic systems. Adding to this challenge, population ageing is associated with a
rise in age-related neurodegenerative diseases, such as dementia (Fleming et al., 2020),
which further exacerbates the cognitive health crisis. To address these concerns, it is
imperative for health research to develop cognitive assessments which are sensitive to

age-related cognitive decline and to expand these efforts to cross-cultural populations.

' As reported in the United Nations Department of Economic and Social Affairs (2017) population ageing
statistics, the term "developed' regions encompasses Europe, Northern America, Australia, New Zealand,
and Japan, whereas "developing" countries includes all other areas globally. The use of these terms in this
thesis does not intend to imply a hierarchy or make any assessment regarding the current developmental
stage of specific regions. It is important to recognise that labels such as developed/ developing, West/
East, or HIC/ LMIC tend to oversimplify complex socio-economic dynamics and may perpetuate
misconceptions. However, given the lack of suitable alternatives, this thesis adopts this terminology while
acknowledging challenges in accurately representing diversity. For relevant discussions on terminology

applied in global health research and implications, see Khan et al. (2022) and Lencucha & Neupane (2022).
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Chapter 1 General Introduction

Figure 1. Estimates and Projections of the global population aged 60 years or over
between 1980 - 2050 (reprinted from United Nations Department of Economic and Social

Affairs, 2017)
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Cognitive decline is a normal part of the ageing process - yet there is still
variability in the influence of age on specific cognitive functions - some cognitive
functions become increasingly impaired with age, while others are relatively spared
(Wisdom et al., 2012). Among these functions, episodic memory (EM) - which refers to
the ability to recall and remember specific events in time and space (O’Keefe, 1990;
Tulving, 1985) - is found to be particularly susceptible to the effects of age (Grady, 2012;
Maass et al., 2018; Tromp et al., 2015). Longitudinal studies have revealed that age-
related impairments in EM may manifest as early as 60 years of age (Nyberg et al., 2012;
Ronnlund et al., 2005). A surge of studies has emerged to investigate the underpinnings
of age-related cognitive decline in the brain and explore the factors contributing to
variability in EM (Bishop et al., 2010; Christensen et al., 2001; for a review, see Deary

et al., 2009).
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Chapter 1 General Introduction

1.2. Role of the Medial Temporal Lobe (MTL)

1.2.1. Theoretical Advances

It is well established that the Medial Temporal Lobe (MTL) brain region -
comprised of the hippocampus (HC), entorhinal cortex (ERC), perirhinal cortex (PRC),
and parahippocampal cortex (PHC) - plays a critical role in the formation and retrieval
of episodic memories (Easton & Eacott, 2010; Eichenbaum et al., 2012; Nyberg et al.,
1996; Scoville & Milner, 1957). Over the years, several proposals have been put forward
to explain how this key brain region, and the structures it is composed of, support
episodic memory (Aggleton & Brown, 1999; Eichenbaum et al., 2007; Graham et al.,
2010; Maguire & Mullally, 2013; Ranganath, 2010; Saksida & Bussey, 2010; Yonelinas,

2013).

In episodic memory research, a long-standing view has been that there are two
separate processes involved: recollection and familiarity (Aggleton & Brown, 2006;
Yonelinas et al., 2010). Recollection involves the retrieval of information from memory
without external cues, while familiarity refers to the identification of a previously
encountered item from novel items. Both processes are thought to dissociate within the
MTL - the HC is proposed to be critical for recollection, while the PRC is implicated in
familiarity (Aggleton & Shaw, 1996; Baddeley, 2001; Hirsh, 1974; Moscovitch et al., 2006;
Turriziani et al., 2019). However, this dual-process conceptualisation of the MTL
functions (Aggleton & Brown, 2006; Yonelinas et al., 2010) is inconsistent with findings
which have shown that associative recognition (involving item-context relationships) is
selectively impaired in patients with hippocampal lesions, while item recognition is
relatively normal (Bird & Burgess, 2008; Cipolotti et al., 2006; Lacot et al., 2017; Mayes
et al., 2004). Thus, emerged frameworks conceptualising MTL sub-regions in terms of
the content they process and bind together (Diana et al., 2007; Ranganath, 2010;
Shimamura, 2010). Beyond memory processes, extensive work with animal models

revealed a specialisation for the HC in spatial navigation (O’Keefe & Nadel, 1978),
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Chapter 1 General Introduction

leading to the idea that the HC was important for representations of spatial scenes (Bird
et al., 2010). Encompassing these seemingly disparate views of the HC, proposals by
Maguire and Mullally (2013) and Hassabis and Maguire (2009) assign a central role for
the HC in scene construction. But how does this integrate with a broader understanding

of MTL specialisations?

A more holistic view is offered by contemporary representational accounts of MTL
function, such as the representational-hierarchical model (Saksida & Bussey, 2010), the
emergent memory account (Graham et al., 2010) and, more recently, the evolutionary
accretion model (Murray et al., 2017). These have emerged from findings that MTL sub-
regions involved in memory also play a role in supporting perception (Buckley et al.,
2001; Bussey & Saksida, 2005; Graham et al., 2010). At the core of these contemporary
models lies the shared premise that brain regions, such as the MTL, are organised in a
hierarchical continuum of representations (or, patterns of neural firing). Lower levels of
the hierarchy represent basic sensory information (such as features), and higher levels
represent more complex, abstract information (such as feature conjunctions). As
information passes through the ventral visual-perirhinal-hippocampal pathway (Cowell
et al., 2010), the level or complexity of representations increases: beginning from early
visual areas, sensory information is represented as lower-level features e.g. colour and
shape, moving to more anterior regions such as PRC where complex conjunctions or
combinations of features are represented and, finally, spatial associations and context are
represented and resolved in the hippocampus. The specialisations of brain regions,
therefore, are for the level of representation, and each region plays a role in various
cognitive processes which rely on these representations, e.g. memory, perception, and
attention (Graham et al., 2010; A. C. H. Lee & Rudebeck, 2010; Ruiz et al., 2020).
Moreover, research has revealed specialisations within MTL regions for processing
different types of stimulus representations i.e., scenes in HC and objects in PRC (Buckley

et al., 2001; Bussey & Saksida, 2005; A. C. H. Lee, Buckley, et al., 2005; A. C. H. Lee,
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Chapter 1 General Introduction

Bussey, et al., 2005; A. C. H. Lee et al., 2006).

Figure 2: Tlustration of the Representational Hierarchical Framework (reprinted from

Cowell et al., 2019)
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1.2.2. Evidence for a Representational-Hierarchical View

Strong support for representational hierarchical models (Graham et al., 2010;
Murray et al., 2017; Saksida & Bussey, 2010) comes from applications of the Oddity
perceptual discrimination task, in both animal and human studies. The Oddity paradigm
involves the presentation of an array of visual stimuli, from which two are identical and
the other is perceptually similar but a different stimulus - the goal is to identify the
“odd-one-out”. Buckley et al (2001) were amongst the first to develop and apply the
Oddity task in a study investigating the role of the perirhinal cortex in perceptual
processing in macaques. They compared the performance of controls and macaques with
PRC lesions on a series of Oddity tasks, each presenting different stimuli involving either
simple feature discriminations (such as colour, shape, and size) or more abstract
discriminations of conjunctions of features or objects (such as objects, degraded objects,

scenes, human faces, and monkey faces). It was found that macaques with PRC lesions
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Chapter 1 General Introduction

did not show significant performance impairments on the former but were significantly
impaired on the tasks that required processing at the conjunction level. Furthermore,
these impairments were more pronounced when these stimuli (i.e., objects and faces)
were also presented from different viewpoints. These results support the hypothesis that
the PRC plays a selective role in the perceptual processing of stimuli which involves
complex conjunction- or object-level discriminations. Furthermore, the authors suggest
that the impairments observed on scene processing could be because the monkeys

perceived these stimuli as objects or images of objects.

Stark and Squire (2000) applied the same stimuli used with monkeys in a study
with amnesic patients who had damage to PRC regions. In contrast to results from the
animal study, they found that patients performed all tasks at par with controls. But
performance was still found to be lower on the face Oddity in some patients. Building
upon this, the Oddity task was adapted by Lee, Buckley et al. (2005) with the application
of trial-unique stimuli, thereby reducing any reliance on memory. They tested four types
of stimuli on their Oddity task (same-view scenes, different-view scenes, same-view faces,
and different-view faces) with patients who showed selective hippocampal damage and a
group with damage to wider MTL regions including the PRC. Results revealed that HC
patients were selectively impaired only on the different-view scene condition, while
patients with wider MTL (including HC and PRC) damage were impaired on both
different-view scenes and faces on the perceptual discrimination task. Importantly, no
differences were found on the same-view stimuli between patients and controls,
suggesting that MTL regions such as the HC and PRC are necessary for viewpoint-
independent perception. These results in human participants strengthened the proposal
that MTL sub-regions such as the HC and PRC are involved in perception, and they are
selectively involved in processing complex representations of scenes and faces,
respectively. Lee et al. (2006) also found striking evidence for a double dissociation on

the Oddity task: AD patients - who show predominantly HC atrophy - were selectively
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Chapter 1 General Introduction

impaired on a scene Oddity task; SD patients - who have greater PRC atrophy - showed
impairments only on a face Oddity task but not a scene Oddity task. Converging evidence
for scene Oddity specificity to the HC and object/ face specificity to the PRC comes

from neuroimaging studies (Barense et al., 2009; A. C. H. Lee et al., 2008).

Localised structures of the MTL, such as the hippocampus and perirhinal cortex,
are now understood to operate within large-scale neurocognitive networks (Mesulam,
1990) which are specialised for generating specific and dissociable types of
representations, such as for scenes and objects. The evolutionary accretion model (EAM)
proposed by Murray and colleagues (2017) describes two distinct cortical networks which
contribute to memory: a medial network, which includes an extended hippocampal
navigation system; and a lateral network, which includes a feature system. The former
network consists of the hippocampus (HC), parahippocampal cortex (PHC),
retrosplenial cortex (RSC), posterior cingulate cortex (PCC) and is connected via the
cingulum bundle; the latter includes the perirhinal cortex (PRC), various prefrontal
regions, anterior temporal regions, and is connected via the uncinate fasciculus. A related
‘PMAT’ framework described by Ranganath and Ritchey (2012), identifies the Posterior
Medial (PM) and Anterior Temporal (AT') networks, which closely map on to the medial
and lateral networks respectively. The PM network includes the parahippocampal cortex
(PHC), retrosplenial cortex (RSC), cingulum bundle tract, and is involved with scene or
spatial representations; the AT network comprises of the perirhinal cortex (PRC),
prefrontal regions, uncinate fasciculus tract, and is associated with object-level feature
representations, including semantic concepts and categories. These networks extend
towards the entorhinal cortex (ERC) — the posterior-medial ERC is involved with scene
content, while the anterior-lateral ERC is strongly connected with the PRC and plays a
greater role in object processing (Knierim et al., 2014; Maass et al., 2015; Reagh & Yassa,
2014). Corresponding network distributions and distinctions are also identified by Catani

and colleagues (2013) in their limbic system model. Their model includes the
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Chapter 1 General Introduction

hippocampal-diencephalic and parahippocampal-retrosplenial network and dorsomedial
default network, which covers structures and functions that are comparable to the medial
network (Murray et al., 2017) or PM network (Ranganath & Ritchey, 2012) described

earlier.

Using a diffusion MRI approach in combination with the Oddity task, Hodgetts,
Postans et al. (2015) identified functionally dissociable MTL neurocognitive networks for
scene and face perception i.e., fornix (white matter tract connecting HC) and inferior
longitudinal fasciculus (connecting PRC) respectively. Given connections between the
PRC and frontotemporal regions via the uncinate fasciculus (UF) tract, Coad et al.
(2020) applied the face Oddity and a novel face emotion Oddity task to isolate the
functional contributions of the UF to emotion perception. Results revealed an
involvement of right UF microstructure in emotion perception, but not face perception
tasks. Performance on the Oddity task is also associated with genetic AD risk: Shine and
colleagues (2015) showed that young adult carriers of the APOE-e4 allele were impaired
on scene perceptual discrimination but not face or object discrimination. Performance
on scene perception was linked with lesser ability to modulate the posteromedial cortex,
which is implicated in episodic memory (Buckner et al., 2008) and is part of the spatial
processing brain network (Ranganath & Ritchey, 2012). Taken together, these findings
provide strong support for a representational-hierarchical view of the MTL, which
conceptualises this brain region in terms of its specialisations for processing different
types/ categories of complex conjunctive representations, which support diverse

functions such as memory and perception (Graham et al., 2010; Saksida & Bussey, 2010).

Returning to EM processes such a recall and recognition, Cowell et al. (2019)
argue that by focusing on these high-level mental phenomena, one may overlook the
underlying components which may actually drive certain behaviours. This may explain
the difficulties faced by earlier MTL models, which focused on recall and recognition, in
explaining contradictory findings (Aggleton & Brown, 2006; Yonelinas et al., 2010).
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Chapter 1 General Introduction

Instead, Cowell et al. (2019) propose that cognitive processes can be broken down further
into “operations” and “representations”. Operations can be defined as algorithmic
computations performed by the brain, such as pattern separation, which involve the
generation of neural signals corresponding with memory strength; while representations
consist of patterns of neural firing for a particular stimulus or event (Cowell et al., 2019).
A process such as recollection, therefore, involves both an operation and representation
- identifying and treating these components in isolation allows for a deeper understanding

of the mechanisms underlying memory and age-related cognitive decline.

1.3. Influence of Age on MTL Function

As part of normal ageing, there are significant structural and functional
alterations within the MTL (Berron et al., 2018; Fjell et al., 2009, 2014; Raz et al., 2004;
Stoub et al., 2012), which are associated with age-related deficits (Head et al., 2009; Van
Petten, 2004; Wolf et al., 2001). EM, as a result, is particularly susceptible to age-related
cognitive decline (Nyberg et al., 2003; Ronnlund et al., 2005). In this section, to
understand the mechanisms underlying these age-related impairments, I will decompose
memory into its underlying components i.e., operations and representations (Cowell et

al., 2019), and examine evidence for specific age-related changes.

An example of an operation performed within the HC is pattern separation
(Bakker et al., 2008) - this involves the differentiation of similar inputs or patterns of
neural activation to create distinct, non-overlapping inputs before storage (Marr, 1971;
for a review, see Yassa & Stark, 2011). In simpler terms, when we are presented with
new information/ events which need to be stored in memory, the process of encoding
involves differentiating this information from already stored memory of similar
information/ events to avoid interference at a later point of retrieval. It has been argued

that pattern separation (PS) is a crucial component of episodic memory and a failure to
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Chapter 1 General Introduction

pattern separate results in episodic memory impairments in normal ageing (Yassa &
Stark, 2011). PS has been linked with the dentate-gyrus (DG) sub-field of the
hippocampus (Marr, 1971; O'Reilly & McClelland, 1994). Age-related changes in this
structure may contribute to the deficits observed in PS with age (Bennett et al., 2015;
Yassa et al., 2010; Yassa, Mattfeld, et al., 2011). Since PS occurs at the cellular level
and is not possible to directly study in humans, one approach that has been taken in the
literature is to use a proxy behavioural measure such as a mnemonic discrimination
paradigm. On this task, participants are required to differentiate between previously
encountered stimuli and new, but perceptually-similar stimuli. Successful performance
on this task involves the correct identification of “similar” items (as opposed to
categorising them as “old”). Several studies have found evidence for a significant age-
related decrease in performance on such tasks (Huffman & Stark, 2017; Leal & Yassa,
2015; S. M. Stark et al., 2015; S. M. Stark & Stark, 2017) - in this case, older adults are
more likely to confuse similar stimuli with previously encountered stimuli, thereby

resulting in false memories or false alarms.

An increase in false memories, such as those observed on behavioural pattern
separation tasks (S. M. Stark et al., 2013, 2015; Yassa, Lacy, et al., 2011), is a common
observation in ageing literature (Devitt & Schacter, 2016; Gellersen et al., 2021; Jacoby
& Rhodes, 2006). It has been linked with age-related changes in the MTL (Devitt &
Schacter, 2016). A specific type of false memory which is linked with the HC is called
boundary extension (BE). The BE error is demonstrated when recalling a visual scene -
for certain close-up images, it has been observed that viewers recall a wider context
surrounding the scene than what was actually shown to them (Intraub & Richardson,
1989). The memory error has been linked with scene construction ability in the HC
(Maguire & Mullally, 2013; Mullally et al., 2012). Paradoxically, it offers an adaptive
advantage in integrating views and predicting spatial layout (Gottesman, 2011).

Although studies have found that healthy adults across the lifespan commit the BE error
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(Intraub & Richardson, 1989; Quinn & Intraub, 2007; Seamon et al., 2002; Spano et al.,
2017), some report that the BE error increases with age (H. Te Chang et al., 2021;

Seamon et al., 2002).

From a representational lens (Graham et al., 2010; Murray et al., 2017; Saksida
& Bussey, 2010), it has been suggested that high-feature ambiguity between conjunctive
representations is associated with poorer performance in ageing (Gellersen et al., 2021;
Newsome et al., 2012; Ryan et al., 2012). In participants with memory impairments due
to PRC damage, Newsome et al. (2012) found that increasing the degree of perceptual
interference reduced task performance. Following up on this, Ryan et al. (2012)
conducted a neuroimaging study to compare the performance of healthy young and older
adults on an object perceptual discrimination task previously shown to be sensitive to
PRC lesions (Barense et al., 2012). Ryan et al. (2012) used an object matching paradigm
which consisted of pairs of complex blob-like objects and relatively simpler squares. They
found that older adults, relative to young adults, were impaired at object discrimination
when the stimuli were more complex/ more perceptually-similar i.e., blob-like objects
which involved discrimination of more overlapping features than simpler square stimuli.
These behavioural deficits were related to lower levels of activation of the left anterior
PRC in older adults compared to young adults, suggesting that age-related changes in
PRC function cause impairments in complex object perceptual discrimination — a finding

that is supported by animal research (Burke et al., 2010, 2012).

Gellersen (2021) applied high-ambiguity scene and object Oddity trials in a study
with young and older adults. They found that older adults exhibited a notably greater
decline in performance compared to young participants. This is in line with findings from
the application of memory discrimination tasks with older individuals, where age-related
performance deficits have been observed on conditions involving a high degree of
perceptual similarity between stimuli (Gusten et al., 2021; Reagh et al., 2016; Reagh &
Yassa, 2014; S. M. Stark & Stark, 2017). In fact, numerous studies have found that older
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adults perform more poorly when asked to recall specific details, such as the spatio-
temporal context of an event, rather than gist-based details (Addis et al., 2008; Cansino,
2009). Leal & Yassa (2015) explain that age-related reductions in representational quality
of scene/ spatial details in the HC and object details in the PRC could underlie decline
in EM observed in normal ageing. However, further research is still required to
understand the drivers of episodic memory decline in ageing. Using a fine-grained
approach of testing the integrity of specific MTL-based operations and representations

in ageing may provide greater clarity.

1.4. Variation in Cognitive Ageing of the MTL

1.4.1. Cross-cultural Evidence

Trajectories of age-related cognitive decline are found to be heterogeneous
(Mungas et al., 2010) - many factors have been identified which may contribute to this
variation (Deary et al., 2009; Lenehan et al., 2015; Mortensen & Hggh, 2001; T. A.
Salthouse, 2009). In this thesis, I explore one possible source of variation i.e., culture.
While several studies discussed so far in the cognitive ageing literature have shown
evidence for age-related changes in MTL-dependent cognition, it must be noted that
most of this research arises from High-Income Countries (HICs)/ developed nations/
Western societies/ WEIRD societies (Henrich et al., 2010; for discussions on terminology,
see Khan et al., 2022; Lencucha & Neupane, 2022). As limited research has examined
these changes in Low-to-Middle-Income Countries (LMIC)/ developing nations/ non-
Western societies, the question of whether cognitive ageing is a byproduct of
neurobiological processes or shaped by cultural experiences is still largely unexplored.
As ageing is associated with several neurobiological changes (Erickson & Barnes, 2003;
Kelly et al., 2006; Lacreuse et al., 2020), this is a unique opportunity to probe the age-

old debate of nature versus nurture within the realm of cognitive ageing.
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Brain measures associated with age-related cognitive decline largely reveal similar
effects of ageing across culturally diverse populations. Loss of brain volume, particularly
in temporal lobe regions such as the hippocampus, has been found in healthy older adults
(Fjell et al., 2009, 2014), and this is strongly associated with cognitive decline in an
ethnically and educationally diverse population in the U.S. (Fletcher et al., 2018). Chee
et al. (2011) report a broadly similar pattern of age-related reduction in total cerebral
and hippocampal volume in an elderly East Asian sample as compared to findings from
studies conducted in the West. Early autopsy studies comparing neuropathological
changes revealed that the mean ages of onset of neurofibrillary tangles (NFTs i.e.,
abnormal accumulations of tau protein) in non-demented individuals — which is found
to be associated with age-related cognitive impairments in object processing (Maass et
al., 2019) — are similar between three geographically distinct populations i.e., Brazil,
Germany, and Japan (Dani et al., 1997). Furthermore, NFT depositions are qualitatively
and quantitatively similar between age-matched non-demented cases in East Africa and

USA (Ogeng’o et al., 1996).

In India, autopsy studies with non-demented older adults have found that the
incidence of age-related changes in NFTs reported in HICs is comparable with studies
conducted with small samples in North-west India (S. K. Mohanty et al., 2004), and
South India (Yasha et al., 1997). Despite the similarities reported in these studies, direct
cultural comparisons are often challenging due to limitations in the size and
characteristics of the samples compared, and the use of different research protocols.
Purohit et al. (2011) attempted to address this by recruiting a larger sample and
employing strict protocols to directly compare non-clinical autopsy cases in India with
age- and gender-matched cases in USA for AD-related pathology such as NFTs. After
excluding any cases with a diagnosis of AD, results indicated no significant differences
in the mean density and counts of NF'Ts between both geographical samples. These

studies suggest that biological processes associated with age-related cognitive decline
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(such as reduction in brain volume and tau accumulation) may be largely generalisable,
but whether culture also influences the trajectory of cognitive decline is yet to be

determined.

In the context of cognition, Park et al. (1999) provided a framework to understand
the combined influences of culture and age. They propose a distinction between
fundamental cognitive processes (hardware) and culturally acquired knowledge
(software) in cognitive ageing research. From this perspective, any cultural differences
observed in culturally acquired knowledge may magnify with age. On the other hand,
differences in basic cognitive processes may reduce with age as neurobiological changes
in ageing may reduce capacity and limit flexibility in mental processes, thereby resulting

in cross-cultural similarities in age effects.

Chee et al. (2009) compared the performance of young and older cohorts in
Singapore on basic cognitive processes such as processing speed, executive function,
attention, and visuospatial measures. They report similar patterns of age-related
cognitive decline in older adults as found in Western populations. Similarly, Hedden
(2002) found that patterns of age-related performance decline on visuospatial measures
of processing speed and working memory were comparable between Chinese and
American participants. However, a different pattern emerged on the verbal tasks — while
this may indicate cultural differences in this function, it could also be attributed to the
characteristics of the measurement tool — translating or equating the properties and
difficulty level of linguistic stimuli across diverse groups is a common challenge with
verbal assessments. When cross-cultural differences are observed in performance on such
cognitive tasks, it is difficult to determine whether this reflects differences in the
underlying cognitive abilities or if it is due to the cultural in-appropriateness of the task.
Category fluency is another area known to decline with age due to changes in the
semantic network (Levine et al., 2002) — it has been found that older adults across
cultures show a similar decline in free recall (Gutchess et al., 2006). Interestingly, even
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though East Asians used less categories than Americans in this study, these differences
in categorisation did not result in differences in the number of words recalled.
Neuroimaging evidence from Goh et al. (2007) has indicated that, irrespective of cultural
background, ageing uniformly results in decreased activation of the hippocampus.
Research in the area of cross-cultural differences across the lifespan seems to indicate
that, despite differences in strategies or content of recall, the trajectory of age-related

decline is comparable across cultures.

A few recent investigations have focused on understanding MTL-dependent
mechanisms underlying memory across cultures. Previous studies on memory have found
some evidence for cross-cultural behavioural differences in memory specificity i.e.,
memory of specific object features or events. Millar et al. (2013) showed that Western
populations tend to remember more object details than Eastern populations, suggesting
that culture may influence the quantity/ quality of representations encoded/ retrieved
in memory. Building on this, Leger & Gutchess (2021) compared pattern separation
performance between North Americans and East Asians and tested whether any
differences were related to cultural values often studied in the context of cognitive
differences (see Masuda & Nisbett, 2001). On the first experiment, they predicted that
both cultural groups would show similar performance when distinguishing between old
and new stimuli (or, general memory), but North Americans would be better than East
Asians when discriminating old stimuli from similar-looking new stimuli (or, specific
memory). Interestingly, a main effect of culture was observed across conditions - North
Americans performed better than East Asians on both, discriminations of old and new
stimuli as well as old and similar-looking new stimuli. Moreover, personal values
(Schwartz, 1992; Singelis, 1994) were not strongly correlated with pattern separation
ability. These results indicate that North Americans may have more detailed
representations of previously studied stimuli, and this may be partly attributed to

pattern separation ability as well as broader memory mechanisms such as memory
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resolution for stimuli previously encoded.

From a representational-hierarchical view, Leger et al. (2023) expanded previous
work to evaluate whether the representational component of memory may explain
cultural differences observed in earlier studies (Leger & Gutchess, 2021; Millar et al.,
2013). They tested memory for higher-level feature conjunctions (i.e., objects) and lower-
level features (i.e., shape, colour, size). Similar to Leger & Gutchess (2021), they found
a general effect of culture, with North American participants performing better across
representational levels. Taken together, these results support the idea that culture
influences memory, and adds novel insights by showing that MTL-dependent operations
and representations do not fully explain these cultural differences. However, based on
the framework provided by Park et al. (1999) for understanding cross-cultural cognitive
ageing, it can be argued that MTL-dependent operations and representations are the
“hardware” of higher-level cognitive phenomena. From this perspective, one may expect
to see greater convergence with age in terms of cognitive decline. It is possible to gain a

deeper understanding of memory in ageing by testing these basic MTL components.

1.4.2. Considerations in Cross-cultural Research

Cross-cultural research is far from straightforward - a recent article by Fischer &
Poortinga (2018) identifies several methodological issues in the literature. I focus on
three key issues here, which I have attempted to address in my research. First, the most
apparent issue - and yet the most overlooked - is the difficulty in defining ‘culture’. The
concept is usually used in reference to the core values and beliefs shared by a group
(Faulkner, 2003) - yet, in practice, this is difficult to measure. Therefore, several proxy
measures have been utilised e.g., language (Laesser et al., 2014) or geographical location
(Brewer & Venaik, 2012; Taras et al., 2016). Another difficulty arises in trying to
determine the relative cultural distance between studied groups. As Fischer & Poortinga
(2018) point out, in ethnography, the concept of culture was traditionally applied to an
isolated group of people with a unique lifestyle different from other groups. In such
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conditions of isolation, cultural characteristics of the group were believed to be relatively
homogeneous, unique, and persisting over time. Today’s globalised world, however,
presents a very different picture - cultural and geographical borders are increasingly
blurred and it is extremely unusual to come across a group of people who live in complete
isolation. Nonetheless, in cross-cultural comparative research, Fischer & Poortinga
(2018) concede that there needs to be an acceptance of some degree of “essentialism”
between groups i.e., the idea that there are some traits and characteristics that are

specific to a particular culture and not shared with other cultures (e.g, Fuchs, 2001).

The majority of research in cross-cultural psychology, so far, has focused on the
East-West divide (i.e., comparing East Asian populations with North Americans).
Therefore, little is known about the cognitive performance of South Asian populations,
such as Indians, in the context of ageing. On the cultural dimension of individualism-
collectivism, Indian culture is found to fall in the middle of the spectrum, between
typically studied Western cultures (e.g., United States) and East Asian cultures (e.g.
China) respectively (Hofstede, 1984, 2011). More recently, Muthukrishna et al., (2020)
adopted a data-driven approach in systematically quantifying the cultural distance and

psychological distance between countries (http://www.culturaldistance.com/). By

applying the fixation index, a concept from population biology, to the World Values
Survey (2005 —2014), they calculate and visualise on a scale the relative distance between
countries. For reference, the distance between two Western/ HIC societies (i.e., US and
UK) is 0.056 (a larger value indicates a larger distance), while the distance between
typically compared Western and Eastern countries (i.e., North America and China) is
0.170, and the distance between lesser compared countries (i.e., UK and India) is 0.141
(Muthukrishna et al., 2020). In my thesis, I diverge from other cross-cultural studies in
the field by comparing UK and India. As revealed by the cultural distance scale
(Muthukrishna et al., 2020), these two cultures are closer to each other on average than

the East-West/ China-North America focus in cross-cultural research, thus providing
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novel insights into cultural differences. To define culture, I have applied a combination

of language and geographical proxies to determine group belonging.

A second issue relates to the cultural bias of cognitive measures and constructs
developed in the West and then implemented in other societies (Rosselli & Ardila, 2003;
van de Vijver & Tanzer, 2004). Many cognitive tasks used in cross-cultural research were
developed and validated in Western societies, so they need to be adapted and translated
to be applied in other countries. However, translation can result in subtle changes in the
task's meaning and difficulty. For example, some cultures may not have exact linguistic
equivalents for certain concepts. In this thesis, to avoid the influence of such effects, I
have applied tasks which use non-verbal and computer-generated stimuli designed to be
“culture-free” (as per software parameters). Though it can be argued that cultural bias
is an inherent characteristic of cognitive assessments transferred from one group to

another, this is a first step towards addressing these issues in research.

The third issue is that of drawing direct comparisons between cultural groups. It
is challenging to equate groups on different dimensions, so any observation of group
differences may actually arise from unaccounted factors. Historically, cross-cultural
studies have primarily centered around highlighting group 'differences" (Fischer &
Poortinga, 2018). However, there are alternative approaches, such as a focus on
generalization - this involves identifying universal principles or patterns that apply across
diverse cultural contexts. Ultimately, the choice between these contrasting approaches
depends on the specific research aims i.e., whether the goal is to understand mechanisms
underlying different group behaviours (e.g., Leger et al., 2023; Leger & Gutchess, 2021)
or to uncover overarching principles that transcend cultural boundaries (see Haeffel &
Cobb, 2022). In this thesis, I was interested in understanding how the trajectory of age-
related cognitive decline generalises across cultures, and not how culture influences
performance levels within particular age groups. Hence, I have adopted a generalisation
approach in my analysis and interpretation of findings.
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1.5. Aims of Thesis

In this section, I have traced developments in our understanding of the role of the
MTL, culminating in the formulation of the representational-hierarchical account of
MTL function (Graham et al., 2010; Murray et al., 2017; Saksida & Bussey, 2010). By
reviewing literature in the area of cognitive ageing and cross-cultural psychology, I have
identified several research gaps which I aim to address in my thesis. While a large body
of literature has examined how age influences EM and underlying cognitive processes,
an understanding of the specific components of memory processes - operations and
representations (Cowell et al., 2019) - which are susceptible to age requires further
attention. Furthermore, population ageing is a global phenomenon - it is imperative to
bridge the gap in our understanding of how cognitive ageing generalises cross-culturally.
Previous cross-cultural research has predominantly compared two distinct cultural
groups along the East-West divide. It is yet to be understood how populations closer on
the cultural distance scale (Muthukrishna et al., 2020), such as UK and India, compare

in terms of trajectories of cognitive ageing.

To expand cognitive ageing studies to wider global populations, the use of digital
technologies is emerging as a potential solution. Over recent years, there has been an
increased interest in the application of digital assessments with older adults (Ohman et
al., 2021; Rienzo & Cubillos, 2023; Staffaroni et al., 2020; Zygouris & Tsolaki, 2015).
More recently, researchers at Cardiff University and Ounce Technology

(https://ouncetech.co.uk/) have developed the Memory in Neurological Disorders

(MiND) tablet-based application. MiND is a novel digital cognitive tool for the
assessment of M'TL-based cognitive function such as memory and perception. The tasks
on MiND draw upon latest insights into the role of the MTL and specialisations of its
sub-regions (Graham et al., 2010). Moreover, tasks on the MiND app are designed to be
visual rather than verbal, thereby facilitating cross-cultural transferability. In this thesis,

I have applied the MiND App with healthy young and older adults cross-culturally (Study
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A: UK and Study B: India) to examine age effects on paradigms known to be sensitive

to MTL function.

In Chapter 2, 1 aim to understand the influence of normal ageing on the
hippocampal-dependent operation of spatial pattern separation, and I will expand this
study to a different cultural context (i.e., India) to examine whether patterns of ageing

observed in spatial pattern separation generalise more broadly.

In Chapter 3, T turn towards the representational component of memory
processes. I focus on the specialisation of the HC for scene representations. Here, I aim
to investigate whether age influences scene construction ability by testing the
phenomenon of boundary extension (Intraub & Richardson, 1989). I ask whether
boundary extension is demonstrated across age groups and whether any changes are
observed with increasing age. I then apply this task with an Indian sample to understand

how this generalises.

In Chapter 4, 1 take a broader view by studying different MTL-dependent
representational specialisations (e.g., scenes and objects) in complex perception. I apply
a perceptual discrimination task assessing multiple content categories to test whether
age influences complex perception. I also ask whether vulnerabilities differ between

representational content, and I aim to replicate these findings with an Indian sample.

Finally, in Chapter 5, 1 discuss how findings from Chapters 2 - 4 enhance our
understanding of the vulnerabilities of the MTL in normal ageing, and how this
generalises cross-culturally. I will reconcile my findings with existing theoretical accounts
of memory and MTL function; and I will discuss implications for the early detection of
cognitive decline, development of digital cognitive assessments, and the wider application

of these tools cross-culturally.
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Chapter 2: Influence of Age on Pattern Separation

across Cultures

2.1. Introduction

The hippocampus (HC) is known to play an important role in episodic memory
(Eichenbaum & Cohen, 2004; Squire et al., 2004; Squire & Zola-Morgan, 1991; Vargha-
Khadem et al., 1997), which involves memory of previous experiences and events in time
and space (Tulving, 1983, 2002). The key operation of pattern separation (PS) within
the hippocampus is proposed to underlie episodic memory (Leal & Yassa, 2018; for a
review, see Yassa & Stark, 2011). Pattern separation involves the transformation of
similar inputs into unique, non-overlapping representations to reduce interference
(O’Reilly & McClelland, 1994; Yassa & Stark, 2011). In other words, this operation
distinguishes between similar experiences and events to allow for the formation of unique
traces in memory which are not confused with existing memories. By creating distinct
representations, PS is crucial for maintaining the specificity and detail which is important
for EM. In normal ageing, a marked decline is observed in EM (Grady, 2012; Hedden &
Gabrieli, 2004), and this may be associated with an attenuation in the pattern separation
ability in the HC (Yassa & Stark, 2011). The development of cognitive tasks specifically
targeting PS is crucial as it would provide insight into how age impacts this hippocampal

operation and whether age-related changes in PS generalise across cultures.

Within the hippocampal formation, the dentate gyrus (DG) sub-field is proposed
to be the neural substrate for pattern separation (Marr, 1971; O’'Reilly & McClelland,
1994). Evidence for this comes from electrophysiological studies in rodents - Leutgeb et
al. (2007) found that dentate granule cells, compared to cells in other hippocampal sub-
fields, are particularly sensitive to small differences between stimuli. This sensitivity is
crucial for discriminating between similar inputs - a key aspect of PS. Furthermore,

lesion studies with rats have shown that the DG is necessary for pattern
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separation(Gilbert et al., 2001; Kesner et al., 2004). An fMRI investigation in humans
by Bakker et al. (2008) found support for activity consistent with pattern separation in
the DG, compared to other hippocampal sub-fields, and this was supported by a more
recent 7T fMRI study by Berron et al. (2016). These findings from both animal and
human studies underscore the importance of the DG sub-field of the hippocampus for

pattern separation.

In ageing, the dentate gyrus sub-field is found to be particularly vulnerable -
electrophysiological studies in rats have shown reduced synaptic activity in the DG,
pointing towards a decline in functional capacity with age (Barnes, 1979; Barnes et al.,
1980). While it is not possible to directly measure PS at the cellular level in human
studies, indirect behavioural measures of PS such as mnemonic discrimination paradigms
also find supporting evidence for an age-related decline (Gellersen et al., 2021; Rizzolo
et al., 2021; S. M. Stark et al., 2015; S. M. Stark & Stark, 2017). A behavioural tool
which is commonly applied to measure PS is the Mnemonic Similarity Task (Kirwan &
Stark, 2007; S. M. Stark et al., 2013, 2019). On this task, participants are shown a series
of items in the study/ encoding phase and later tested on their memory of these items.
In the test phase, participants are presented with three types of images: repeats (identical
to previously presented images, also referred to as ‘targets’ in the literature), novel
images (not shown before, also referred to as ‘foils’), and lures (perceptually similar to
previously shown images but not identical). Participants are asked to respond to each
test item with “old”, “new” or “similar” judgments. In the context of PS, the key measure
is the identification of lures as “similar” images rather than “old”. Successful PS would
involve the discrimination of similar inputs from existing traces in memory. Several
studies have shown that ageing is associated with impairments in lure discrimination
performance in older adults (Huffman & Stark, 2017; S. M. Stark et al., 2015; S. M.
Stark & Stark, 2017), and this is correlated with structural and functional age-related

changes in hippocampal regions such as the DG (Yassa et al., 2010; Yassa, Lacy, et al.,
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2011).

Evidence discussed so far indicates that the observation of an age-related decline
on PS measures converges across species (Ces et al., 2018; Leal & Yassa, 2015; S. M.
Stark et al., 2013, 2015; Yassa & Stark, 2011). Within our own species, however, there
is a dearth of research examining how the influence of age on PS generalises to other
cultures. Leger and Gutchess (2021) applied the MST (Kirwan & Stark, 2007; S. M.
Stark et al., 2013) across a series of experiments to compare pattern separation
performance in two cultures, North Americans and East Asians. They found some
evidence for cultural differences in PS, with North Americans showing higher
performance than East Asians at the identification of similar items as similar (indicating
successful PS), but they did not find significant correlations between value measures
(Schwartz, 1992) and pattern separation performance. Interestingly, Leger and Gutchess
(2021) also found that North American participants performed better on other task
conditions which do not assess PS per se. These results demonstrate a general effect of
culture on the task rather than a specific effect on conditions which tax pattern
separation, suggesting that other influences may be at play. However, the question as to
whether the trajectory of age-related changes in PS is similar across cultures remains

largely unanswered.

A notable criticism of the application of discrimination paradigms such as the
MST for the assessment of PS is that performance may not reflect pattern separation
per se, but may reveal complex memory processes which depend upon pattern separation
(Aimone et al., 2011; Leal & Yassa, 2018; for discussions, see Yassa & Stark, 2011).
Recent studies have revealed that mnemonic discrimination tasks are not ‘process-pure’
and may also rely on cognitive control (Gellersen et al., 2021; Pishdadian et al., 2020).
Furthermore, stimuli on mnemonic tasks such as the MST (Kirwan & Stark, 2007; S. M.
Stark et al., 2013) involve everyday objects which may not be appropriate to apply cross-
culturally. For the development of cognitive assessments of PS, Hunsaker and
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Kesner(2013) put forward two key requirements that must be met by pattern separation
paradigms: i) the level of interference (or, overlap) between stimuli should be
systematically varied; and ii) there should be a way of measuring how behaviour changes
as a function of the level of interference. A key attribute of pattern separation is that it
occurs at the encoding phase (Marr, 1971; McClelland et al., 1995), and tasks assessing

PS should manipulate the degree of interference at this stage.

In line with the guidelines provided by Hunsaker and Kesner (2013), Talpos et al.
(2010) developed a paradigm which was originally applied to investigate hippocampus-
dependent pattern separation ability in rodents, called ‘Trial-Unique Non-matching-to-
Location’ (TUNL). The experiment begins by presenting a single rectangular stimulus
on a touchscreen. Following a brief interval, the original stimulus reappears with a novel
target stimulus in a new location on the screen, and the subject must touch the new
stimulus location on every trial. The location of target stimuli is varied across trials (i.e.,
trial-unique), and the spatial separation between the original and target stimuli (or,
interference) is manipulated with small (highest interference), medium, and large (lowest
interference) spatial distance conditions. This design can be used to probe spatial
working memory and spatial pattern separation ability (i.e., the ability to differentiate
between similar spatial locations on a screen); smaller spatial separation distances (or
greater similarity between original and target stimuli locations) increase the demand on
pattern separation operations. Talpos et al. (2010) found that performance accuracy
decreased as spatial distance decreased, and rodents with hippocampal lesions
demonstrated a greater impairment than controls in smaller separation conditions. These
results reveal the sensitivity of the TUNL paradigm to hippocampal lesions. Moreover,
McAllister et al. (2013) found that lesions of the medial prefrontal cortex — a region
associated with working memory (Courtney et al., 1998) — do not contribute to
separation-dependent deficits observed on the TUNL task, suggesting that PS

performance on the TUNL task is specific to hippocampal integrity. To probe specific
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hippocampal sub-fields implicated in PS, Oomen and colleagues (2015) developed a
variation of this paradigm called continuous TUNL (¢TUNL). In this modification, the
novel target location on a previous trial is carried forward as an incorrect location on a
subsequent, trial beside a new novel stimulus location. This combines the original
presentation and test phases, creating a continuous test paradigm, which allows for
spatial separation to be manipulated at encoding and retrieval stages. It also allows for
the number of stimuli on the screen to be increased, thereby increasing spatial working
memory load. Oomen et al. (2015) found that, in rodents, cTUNL performance was
sensitive to damage in the dentate gyrus sub-region of the hippocampus, which is
regarded as the key neural substrate for pattern separation in rodents and humans alike

(Bakker et al., 2008; Berron et al., 2016; Leutgeb et al., 2007).

More recently, researchers at Cardiff University have adapted the ¢TUNL task for
implementation with human subjects i.e., human Trial-Unique Non-match to Location
(hTUNL). In the present study, I apply this novel translational task as part of the MiND
tablet-based app (introduced in Chapter 1) with healthy young and older adults in the
UK and India. First, I aim to understand how normal ageing influences hippocampal-
dependent spatial pattern separation. A growing body of animal and human literature
has shown that ageing impairs pattern separation performance (Bakker et al., 2008;
Burke et al., 2010; Dillon et al., 2017; for a review, see Holden & Gilbert, 2012). Similarly,
on mnemonic discrimination tasks - a behavioural proxy measure for PS (Kirwan &
Stark, 2007; S. M. Stark et al., 2013) - age-related impairments are commonly observed
(Leal et al., 2014; Reagh et al., 2014; S. M. Stark et al., 2015). On hTUNL - a spatial
pattern separation measure - I expect to see similar age-related declines, with older
adults demonstrating lower accuracy than young adults, particularly on small spatial
separation distances (high interference condition which increases demand on fine pattern
separation). Second, I investigate how age effects on pattern separation generalise across

cultures, specifically in the UK and India. I do not test an a priori hypothesis here as
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the present study is the first to apply a spatial pattern separation paradigm with an

Indian population to study cognitive ageing.

2.2.  Methods
2.2.1. Participants
Study A: UK

For this study, data collection was carried out in Cardiff, UK, after the study
received approval from the Cardiff University School of Psychology Research Ethics
Committee. Young adults were recruited through Cardiff University School of
Psychology’s undergraduate student participant panel. For the older group, participants
were recruited from the wider Cardiff University population using University mailing
lists and message boards, and from the pool of volunteers in the Cardiff University School

of Psychology Community Panel.

The inclusion and exclusion criteria for all participants were: (i) Must be between
18 — 25 years of age (for the young sample), or 50 — 70 years of age (for the older sample),
(ii) Must have normal or corrected-to-normal vision (e.g., glasses), (iii) Must not have
any known memory impairments, neurological conditions, or brain injury, (iv) Must not
be taking any psychoactive or neuroactive medications, (v) Must speak English or Welsh
as a first language. It should be noted that inclusion criterion (v) was added
retrospectively, as it was recognised that the student and staff community at Cardiff
University came from diverse cultural and linguistic backgrounds. To avoid an overlap
in cultural characteristics between the samples tested in Study A and Study B, first
language was used as a proxy definition for culture. Furthermore, due to the difficulty in
recruiting participants in the older group, the pre-determined age range was wider than
that of the young sample. As this study was disrupted by the COVID-19 pandemic, the

sample size was determined and limited by travel, time, and resource constraints. While
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the initial sample tested included 164 adults, after applying the language criterion (v),
23 adults (21 young and 2 older) were excluded from the study, and an additional young
adult was excluded due to incomplete task data. The final sample size for Study A after
exclusions was N = 140 (n = 71 young adults, n = 69 older adults). These sample

characteristics are summarised in Table 1.

Study B: India

Data collection for this study was initially carried out in Bangalore, India.
However, due to travel restrictions during the COVID-19 pandemic, a part of the sample
was recruited and tested in Vadodara, India. This study received ethical approval from
the National Institute of Mental Health and Neurosciences (NIMHANS) Research Ethics
Committee, India. In Bangalore, participants were identified and contacted with help
from study collaborators at NIMHANS. Young adults were recruited from the
Psychology postgraduate student community at Bangalore University. The older adults
were either volunteers from local community groups, or teachers at the Mahila Seva
Samaja Senior Secondary School in Bangalore. In Vadodara, participants were identified
and contacted with help from the Navrachana Education Society and the Vadodara
Psychology Club. Young adults were recruited either from the student population at
Navrachana University, or the student members database at Vadodara Psychology Club.
Participants were studying different University disciplines (i.e., Journalism, Sociology,
and Business Administration), and degree levels (i.e, Bachelor’s and Master’s). Older
adults tested in this study were either teachers based at the Navrachana Education
Society institutions (i.e., Navrachana International School Vadodara, Navrachana
University, Navrachana Vidyani Vidyalaya, and Neev Prep School), or community

members of the Vadodara Psychology Club.

The inclusion and exclusion criteria (i), (ii), (iii), and (iv) were similar to Study
A. Additionally, the language criterion (v) for this study was that participants must
speak English or Kannada fluently (as the MiND app was only available in both these
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languages at the time of testing). In this study, it was not possible to include participants
based on a shared first language/ majority language due to the wide heterogeneity in
linguistic backgrounds that exists in India. As this study was delayed by the COVID-19
pandemic, the sample size was determined by the maximum number of participants who
met the criteria above and could be tested within the limited time-frame. From the initial
sample tested (152 adults), two participants from the young group were excluded due to
errors in data recording, one young participant did not complete all the tasks, and one
participant from the older group chose to withdraw from the study. After these
exclusions, the final sample size for Study B was N = 148 (n = 76 young adults, n = 72

older adults). The sample characteristics are summarised in Table 3.

2.2.2. Procedure

Participants were invited to attend in-person testing sessions where they were
asked to complete a series of tasks. In Study A: UK, data collection was carried out with
each participant individually at the Cardiff University Brain Research Imaging Centre
(CUBRIC) cognitive testing labs. In Study B: India, data collection was carried out at
multiple locations (i.e., during university, school, or home visits). Testing was carried
out either individually or in groups of 2 - 6 participants in this study, to accommodate
for time, travel, and room availability restrictions set by the host institutions or arising
from the COVID-19 pandemic. Care was taken to avoid interruptions and limit
environmental distractions during testing. In both studies, the testing room and
equipment was set up in a similar manner, and the test administration was kept constant.
In Study A: UK, with all participants, the test was administered in English using the
original English version of the MiND app. In Study B: India, participants were given the
option to complete the study either in English or Kannada (a commonly spoken language
in Bangalore, India). Kannada translations (and back translations) for the study
instructions and tasks were written and piloted by collaborators at NIMHANS, India,

before implementing it on MiND.
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At the start of the study, participants were provided with an information sheet
and consent form, and given the opportunity to clarify any doubts before deciding to
provide their written consent. For the rest of the study, a tablet device was used to carry
out all the tasks. The device used was an Apple© (Apple Inc, 2023) iPad 6™ generation
with a 9.7-inch (diagonal) screen size, and a 2048-by-1536-pixel screen resolution. The
operating software used was iOS 11 - 15, depending on the latest available version at the
time of testing with each participant. Following each software update, rigorous piloting
was carried out to ensure that the app functions and task presentation remained constant
for all participants. The iPad was set-up on a tablet stand with an approximately 45°

recline angle measured by eye.

On the tablet, participants were administered the following tasks on the MiND
application (introduced in Chapter 1) in a fixed order: i) Touchscreen practice task
(called “Getting Started” on MiND), (ii) Rapid Serial Visual Presentation (RSVP) task
(“Judge the Distance” on MiND), (iii) Human Trial Unique Non-Match to Location task
or hTUNL (“Spot the New Dot” on MiND), and (iv) Oddity perceptual discrimination
task (“Odd-One-Out” on MiND). After attempting the tasks on the MiND app,
participants were asked to complete a Demographics and Digital Experience survey
which was administered on the Qualtrics online survey platform (Qualtrics, 2022). Task
(i) was a digital training task to give participants an opportunity to get familiar with
the tablet and practice responding on it by touching the screen. They were simply asked
to touch stars on the screen until they disappeared. The design and results for task (iii)
and the Qualtrics survey will be discussed further in this chapter. At the end of the
study, participants were debriefed, given an opportunity to ask any questions, and
reimbursed for their time. On average, each study session took 72 minutes to complete.
See Figure 3 for a summary of the MiND app tasks and presentation order. Also see

Appendixz A for a screenshot of the MiND app home screen with the task menu.
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Figure 3: Summary of tasks on the MiND tablet-based application

i. MiND “Getting Started” ii. MiND “Judge the Distance” iii. MiND “Spot the New Dot”  iv. MiND “Odd-One-Out”

Touchscreen Practice task Rapid Serial Visual Human Trial-Unique Non- Oddity task measuring
Presentation (RSVP) task match to Location (hTUNL) Perceptual Discrimination
measuring Boundary task measuring Pattern (Lee et al,, 2005)
extension (Mullally et al,, separation (Oomen et al,,
2012) 2015)

v

Note. Screenshots of the four tasks on the MiND application administered on a tablet device. Each of
these tasks is selected from the MiND home screen to commence; at the end of each task, an option
appears to return to the MiND home screen and select the next task in the sequence. The four tasks were
presented in a fixed order on the home screen, and participants were instructed to follow this sequence.
Participants had to respond on each task by touching an option or stimulus on the screen. In the current

chapter, task (iii) will be described further; see Chapter 3 for task (ii) and Chapter 4 for task (iv).
2.2.3. Materials
MiND human Trial-Unique Non-matching to Location (hTUNL) Task

This is a novel translational task adapted from paradigms designed to study
working memory and spatial pattern separation in rodents i.e., the continuous trial-
unique non-matching to location (¢TUNL; Oomen et al., 2015) and, an earlier version,
the trial-unique non-matching to location (TUNL; Talpos et al., 2010) tasks. In the
present study, human participants were tested using a modified version of ¢TUNL

(Oomen et al., 2015), referred to as human Trial-Unique Non-match to Location

(hTUNL; Postans et al., in prep; Palmer et al., 2021).

To increase the complexity of hTUNL for humans compared to earlier paradigms
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used with rodents, the number of stimuli presented on the screen and the complexity of
the visual array have been increased, and a distraction task has been introduced. The
task began with the presentation of a single white dot location on a black screen, and
participants were instructed to touch the dot in order to proceed. Following this initial
stimulus, a 10 secs distractor screen involving orange stars and purple triangles randomly
distributed across the screen would appear - participants were asked to touch all the
stars and ignore the purple triangles (the orange stars used here were similar to the
stimuli used in the touchscreen practice task on MiND i.e., Getting Started). The
distractor task involved two screens of stars and triangles to respond to, with each screen
lasting either 5 secs or the time taken to touch all the stars and complete the task
(whichever was longer). Following this delay, participants were shown two white dot
locations on the screen - this time, one dot was the previously touched location (S -),
and the other was in a novel/ target location (S +); participants were asked to touch
the new dot (S +). There was no time limit applied, and the stimuli remained on the
screen until a response was given. If the participant responded correctly, a happy smiley
face would appear at the top of the screen, and the task would proceed to the distractor
task, after which a new trial would appear. If an incorrect response was provided (i.e.,
participant touched the old dot location (S -), a sad smiley face would appear, and the
task would proceed to the distractor task, after which it would repeat the same trial
(correction trial) until the participant provided the correct response. Once the trial and
distractor screens were successfully resolved, a new trial would appear with three white
dot locations on the screen, including the previously touched location (S -), the target
from the earlier trial (S - -), and a novel dot location (S +). Once more, participants had
to successfully select the new dot (S +) to trigger the next trial (correction trials if
wrong, and distractor screens before every new trial or correction trial applied for all

trials).
A 3- and 4-stimulus version of hTUNL were piloted with young participants,
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before selecting the 4-stimulus design for this study as there were no ceiling effects in
performance on this version. In this version, the number of dot locations on the screen
increased until there were 4 presented at a single time i.e., the previously touched
location (S -), the earlier target location (S - -), the target prior to that (S - - -), and the
novel location (S +). Once the task reached this point, all subsequent trials involved the
simultaneous presentation of 4 stimuli, with one of these being the target dot location.
See Figure 4 for the task sequence on correctly and incorrectly answered trials with 4
stimuli. This task always began with a practice round where detailed instructions were
provided to participants at every step until participants reached a point where 4 stimuli
were presented to them on the screen and they were able to successfully resolve the trial.
There was also an opportunity to repeat practice trials before proceeding to the test
phase which involved a total of 48 trials with new dots appearing on the screen. The
location of the novel dot on every trial (S +) was assigned randomly from a screen grid
of 6 options of separation distances from the previous target location on the screen (S -
) i.e., 1 - 2 spaces were assigned as a small separation distance, 3 - 4 spaces were medium,
and 5 - 6 were large. This breakdown of separation distances met Hunsaker and Kesner’s
(2013) criteria for parametric alteration of the degree of interference, and behavioural
responses would be expected to scale with this interference. This screen grid was used to
break down task performance by levels of separation distance at retrieval (or, separation
at retrieval) i.e., small, medium, or large. Moreover, combining the six separation
distances to form three levels also served to maximise power in each condition. See Figure
§ for a diagram of how the screen was divided into a grid composed of equal separation
spaces. It was hypothesized that accuracy on this task would scale with the level of
retrieval separation for each novel dot location (S +) from a previous dot location (S -)

on every trial.
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Figure 4: MiND human Trial-Unique Non-matching to Location (hTUNL) Task

Schematic for (A) Correctly answered trials and (B) Incorrectly answered trials

A

Note. (A) Four dots are presented on the screen, one of these was not presented on the previous trial and
is a new/ target dot location. The participant has to identify the new dot location (S +) by non-matching
to previously rewarded dot locations (S -/ S --/S ——). The distance between S + and S - was manipulated
as either small, medium, or large spatial separation at retrieval. If the participant correctly touches the
new dot, a smiley face appears to indicate that it was the correct option. Two distractor screens will then
appear, where the participant has to touch all the orange stars and ignore the purple triangles to continue.
Each distractor screen lasts for 5 secs or the time taken for the participant to touch all the stars, whichever
is longer. The next trial will then begin where one older dot will disappear and a new target dot will
appear in place of it, and the participant needs to touch the new dot once again. (B) Four dots are
presented on the screen, one of these is new and was not presented on the previous trial. If the participant
selects the incorrect dot, a sad face appears to indicate that it was the incorrect option. The distractor
task will then appear, followed by the same presentation of dots again - this is a correction trial. This

correction trial sequence is repeated until the participant provides the correct response.
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Figure 5: Screen Grid applied for separation distances between dots on the hTUNL Task

(Reprinted from Postans et al., in prep)
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Note. This grid demonstrates how the spatial separation distance between stimulus S - (i.e., the target
location on the previous trial) and stimulus S + (i.e., target dot location on the current trial) is randomly
assigned on the screen. The grey box 28 in (A) and box 25 in (B) represent stimulus S - on different trials.
On a given trial, the location of S + will be either 1, 2, 3, 4, 5, or 6 spatial separation distances away.
This is randomly selected from the corresponding distance circles e.g., the smallest circle around box 28
represents all grid locations which are 1 spatial separation distance away, the second circle represents
distances which are 2 spatial separation distances away, and so on. Locations of target stimulus S + are

not repeated across trials.

Demographics and Digital Experience Survey

This survey was used to collect basic demographic information on participants,
their previous experience/ familiarity with using digital devices (with the aim to
ascertain whether this may be a potential confound), and qualitative user experience
feedback on the tablet assessments. This self-report survey was designed using Qualtrics
XM Platform (Qualtrics, 2022), and participants responded to it on the tablet after
completing the MiND cognitive tasks. Multiple-choice, short text entry, or Likert scale
style questions were used on the survey. As per GDPR guidelines, providing responses
was not mandatory on any of the questions, and participants could skip a question if
they wished to. However, the questionnaire completion rate for all participants was 100%.

The design of survey items is described here:

(1) Demographics: There were 7 demographic questions which asked participants
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(i)

about their age, gender, education, current employment status, whether they
resided in an urban or rural area, their first language, and how many languages
they could speak. For education, participants were asked to select the current/
highest degree or level of school completed from a list of options. Halfway through
the study, an additional question was added for education — participants were
also asked how many years of formal education they had completed. However,
data collected with this additional question was not analysed due to the following
reasons: the missing data for earlier participants, the unreliability of self-report
estimates for this question (as older participants, in particular, did not always
remember exactly how many years they had spent in formal education), and due
to the difficulty in equating diverse educational backgrounds, schooling systems,
or countries of schooling that participants had been a part of (e.g., part-time vs.
full-time, repeated qualifications, school starting age). The rural vs. urban
residence question was used as a proxy measure for socioeconomic status.
However, data from this question was not included in analyses due to the lack of
clear, objective socioeconomic or geographic demarcations between urban and
rural areas. The ‘first language’ question was only used to perform sample
exclusions (as explained in Chapter 2.2.1). All other demographic questions were
analysed further.

Digital Experience: First, participants were asked whether they used their own
smartphone. If they responded “yes”, this was followed by a set of 5 questions
asking them whether their device had a touchscreen, approximately how long they
had been using their device, what purpose(s) they usually used their device for,
and their rating for how comfortable they are with a smartphone on a scale from
1 - 10 (1 = Not at all comfortable; 10 = Extremely comfortable) and how
competent they would say they are with a smartphone (1 = Beginner; 10 =

Expert). If participants answered “no” to the initial question, they were presented
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(ii1)

2.2.4.

with 3 questions asking them whether they had any experience with using a
smartphone, and their ratings for their comfort and perceived competence with a
smartphone. Finally, all participants were asked whether they had experience with
using any other digital devices. As this experiment was carried out with
participants from different age groups and countries (in Study A: UK and Study
B: India), this part of the questionnaire was used to quantify and further analyse
the variable levels of experience that participants may have had with digital
devices. As most participants reported that they extensively used their own
smartphones with touchscreens, the rating scale questions on comfort and
perceived competence were found to be more informative about the quality of
their digital experiences. Therefore, only these two measures were analysed
further.

Feedback: Participants were asked a set of 4 questions to understand how their
experience was with using the tablet to perform the tasks, whether all the task
instructions were clear to them, if there were any technical issues with the tablet
and/ or applications while completing any of the tasks, and whether they had
any additional comments or suggestions. The data collected from this set of
questions was not included in any analyses reported in this thesis but was used
to check data quality and participant engagement with the tasks, and to identify

any issues in the experimental setup, equipment, or paradigms.

Analysis

All data cleaning and statistical analyses reported in this thesis were conducted

with R version 4.2.2 (R Core Team, 2022) using R Studio (RStudio Team, 2022).

Descriptive statistics, outlier identification, statistical tests, and effect sizes were

calculated using the rstatix package (Kassambara, 2021) and coin package (Hothorn et

al., 2006). Where appropriate, linear mixed effects models (LME) and Generalised linear

mixed effects models (GLMM) were built using the Ime4 package (Bates et al., 2015).

46



Chapter 2 Pattern Separation

The lmerTest package (Kuznetsova et al., 2017) was applied with LME models to
calculate p-values for model fits using Satterthwaite's degrees of freedom method. For
GLMM, the car package (Fox & Weisberg, 2019) was used to produce ANOVA tables
for model effects. Estimated marginal means for main effects, trends, and comparisons
of slopes were analysed using the emmeans package (Lenth, 2022), and model predictions
using marginal means were calculated using the ggeffects (Liidecke, 2018) package. The
level of significance for all statistical tests was set at p < .05. Where Cohen’s d effect
sizes are reported, they have been interpreted according to Cohen’s (1988) criteria: 0.20
- 0.50 is a small effect, 0.50 - 0.80 is a medium effect, and 0.80 or greater is a large effect.
For correlations, the strength of association between variables is interpreted as low for
correlations between 0.30 - 0.50, medium for correlations between 0.50 - 0.70, and high
for correlations which are 0.70 and above. It should be noted that the order or direction
of all comparisons run on R is alphabetical by default, and coefficients should be
interpreted accordingly - in the present analysis, performance of older adults was
evaluated against young adults. For data visualisations in R, the packages ggplot2
(Wickham, 2016) and plotly (Sievert, 2020) were used. The methods described here were

independently applied to both, Study A — UK and Study B — India.

Data for this task was first aggregated at the participant level (i.e., combined by
calculating means or sums for trial-level variables for each participant) before carrying
out any cleaning and analysis steps. As this task involved correction trials which would
be triggered if a participant provided a wrong response on any given trial, and the
correction trials would be repeated until the participant was able to provide the correct
response (i.e., choose the new dot location) on that particular trial, it is possible that
participants who did not follow the instructions appropriately, were distracted, or found
the task very challenging had an unusually high number of correction trials across the
task. To avoid the influence of such anomalies on the analysis, the boxplot method was

applied separately in each study and with each age group to identify any extreme outliers
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(high outliers which fall outside the “whiskers” of a box plot) in the total number of
correction trials on the task for each participant. This method uses the Interquartile
range (IQR) and identifies extreme points as values which are above Quartile 3 + 3 x
IQR or below Quartile 1 - 3 x IQR. In Study A: UK, two participants were identified,
one from the young and one from the older sample, who had extremely high numbers of
correction trials. By investigating the trial-level data for these participants, it was found
that the young participant performed corrections on 33 of 48 trials with new dot
locations, and up to 9 corrections on a single trial in the small separation condition
(which was designed to be the highest difficulty condition). The older participant
performed corrections on 31 of 48 trials, and up to 14 corrections on a single trial in the
small separation condition. Two extreme points were also identified in Study B: India: a
young participant who performed corrections on 37/48 trials, and up to 8 corrections on
a single trial in the small separation condition, with none correct on the first attempt in
this condition; a participant from the older sample had corrections on 39/48 trials, with
up to 29 corrections on a single trial in the small separation condition. These participants
were excluded from both studies respectively before further cleaning was applied. Further
inspection of accuracy (i.e., trials where participants correctly identified the new dot
location (S +) from an array of older dot locations on the first attempt) was carried out
to identify participants who may have performed at or below chance. As this task
employed a 4-choice design, the probability of selecting the target response on each trial
was 25%, so the probability of answering at or below chance was 25%. Mean task
accuracy was calculated for each participant to identify any participants who may have
responded randomly throughout the task. This criterion identified 4 participants from
Study B: India (n = 1 young, n = 3 older adults) who performed at or below chance on
this task, and these participants were excluded from further analysis. Interestingly, the
participants with low mean accuracy also had quicker mean RTs, suggesting that there

might have been a speed accuracy trade-off at play. Further checks were conducted with
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mean response time for correctly answered trials only. An absolute minimum mean RT
threshold of 200 ms was applied on this task to filter any responses which may have been
provided randomly (Ashby & Townsend, 1980; see Gusten et al., 2021 for a similar
implementation of RT cut-off; Whelan, 2008) — however, no exclusions had to be made
based on this criterion. Since the task did not enforce an upper time limit or time-out,
the box plot method was applied in both studies to identify any extreme outliers. Four
participants (n = 2 healthy young, n = 2 healthy older) were identified from Study B:
India with extremely high mean RTs. However, these participants also had mean
accuracy scores which were well over chance, possibly due to a speed-accuracy trade-off,

so they were not excluded from the analysis at this stage.

Finally, a combined speed-accuracy measure - Inverse Efficiency Scores (IES)
(Bakun Emesh et al., 2022; also see Bruyer & Brysbaert, 2011; Townsend & Ashby, 1978)
- was also calculated. TES is calculated as Mean RT of correct responses (Liesefeld &
Janczyk, 2019) divided by Proportion Correct. Townsend and Ashby (1983) explain that
IES can be best interpreted as “the average energy consumed by the system over trials”
(p.204) - or a measure of inefficiency. It uses the same unit of measurement as RT and
is useful in cases where a speed-accuracy trade-off may be suspected i.e., slower RTs
associated with higher accuracy, and faster RTs associated with lower accuracy. A further
step of cleaning was carried out here by applying the box plot method with IES scores
in both studies. In Study B: India, two extreme points were found (n = 1 healthy young,
n = 1 healthy older) with high IES scores, and these participants were excluded from
the dataset. The cleaning steps described here resulted in the exclusion of 2 participants
(n = 1 healthy young, n = 1 healthy older) from Study A: UK; and 8 participants (n =

3 healthy young, n = 5 healthy older) from Study B: India.

For analysis, participant-level outcome measures were aggregated by retrieval
separation distances/conditions (i.e., small, medium, and large distances). Earlier
iterations of the TUNL paradigm have similarly grouped participant performance by
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spatial separation distance as performance is expected to decline with reductions in
spatial separation distance (e.g. Oomen et al., 2015). I focus on three outcome measures
here: i) Mean Accuracy (calculated as proportion correct) by Retrieval Separation, ii)
Mean Response Time (RT) by Retrieval Separation, and iii) Inverse Efficiency Scores
(IES) by Retrieval Separation. i) Mean Accuracy was calculated by taking the sum of
all correct responses on each separation condition and dividing it by the sum of all
correct and incorrect responses on that particular condition. ii) Mean RT was RT
averaged across all correctly answered trials on each separation condition. iii) Mean TES
was calculated by dividing the Mean RT of correct responses on each separation
condition by the Mean Proportion Correct. Speed-accuracy correlations were also
calculated by separation group to determine whether IES was an appropriate measure
for the data. The relationship between speed and accuracy may vary between spatial
separation distances of varying difficulty, such as there may be a more evident trade-off
on a harder condition such as the small separation distance; hence, a combined

performance measure may provide additional insights here.

Statistical Tests and Modelling

The distributions of the data were checked before running further tests. To
compare performance measures between age groups, Welch independent sample t-tests
were used. Performance differences between age groups were investigated further using
linear mixed effects (LME) models to understand which variables were significant
predictors. Compared to traditional regression models, an LME approach offers several
advantages, such as it is better at accounting for variability in data as it combines fixed
effects (similar to predictor variables in linear regression models) with random effects
(e.g., individual- and group-level differences which may influence measures such as RT).
The model estimation is also better at handling unbalanced data, where in the number
of observations varies between groups being compared in the same model (e.g., due to

outlier exclusions). Finally, the LME model is relatively robust to violations of normality
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in a dataset, compared to simple linear models (Brown, 2021; Schielzeth et al., 2020).
This is an important advantage, especially when working with Response Time data which
typically follows an Ex-Gaussian distribution (Balota & Spieler, 1999). The lme4 package
(Bates et al., 2015) and the lmerTest package (Kuznetsova et al., 2017) on R (R Core
Team, 2022) were used to model the data and test the significance of effects. For all
outcome measures, fixed effects and a random participant-level effect were added to the
model; the latter is useful to account for individual variation in the data (Gellersen et
al., 2021; for a similar analysis, see Gusten et al., 2021). The models were fitted using
the Restricted Maximum Likelihood method as it reduces bias in estimates. In Study A:
UK, the following equation was used to build each model: Qutcome measure = Retrieval
Separation Group*Age + Education + Digital experience score + (1 | Participant ID).
The Education variable was not included in Study B: India as it did not differ
significantly between age groups and there was only one participant in this sample who
had an education below University-level. The modelling equation applied in Study B:
India was: Outcome measure = Retrieval Separation Group*Age + Digital experience

score + (1 | Participant ID).

For the separation condition, which is a categorical variable with three levels, the
deviation method was applied to contrast-code each level of the factor with values which
represent deviations from the overall mean. This allows for coefficients to be interpreted
as how much each level differs from the mean of the variable. To make the interpretation
of effects more practical in terms of original units of measurement, variables were not
standardised or rescaled before entering them into the model. Age was treated as a
continuous variable to capture the variability in performance across the age spectrum
studied here (for a similar analysis, see Gusten et al., 2021). A group by age interaction
is tested as age is expected to impair performance particularly on the small spatial
separation condition (Yassa & Stark, 2011). Where appropriate, education was entered

into the model as a binary variable to maximise power i.e., education “At/ Above
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University-level” and “Below University-level”; Digital experience was entered as a
continuous numeric variable. To avoid overfitting, Gender and Number of Spoken
Languages were not included in the models as they did not differ significantly between
age groups, and the addition of these variables did not improve the fit of the models. All
models built using the parameters described here met the assumptions of model
diagnostic tests, and any outliers which were identified as influential points based on
Cook’s distance cut-off of 1 were investigated further. Finally, using the emmeans
package (Lenth, 2022) on R (R Core Team, 2022), post-hoc tests with a 95% confidence
level were run to contrast age trends between spatial separation groups (i.e., pattern
separation difficulty levels) after correcting for multiple comparisons using the Tukey

method.

2.3. Results
2.3.1. Study A: UK
Sample Characteristics

The final sample for this study comprised of 140 participants (n = 71 young and
n = 69 older adults). The characteristics of this sample are summarised in Table 1 by
age group. The age of the young participants ranged from 18 to 24 years (M = 19.35,
SD = 1.22), while the older participants had a broader age range between 50 and 70
years (M = 60.74, SD = 6.22). The number of women outnumbered the men, with a

gender ratio of 3.73:1 in the young group and 2.83:1 in the older group. A Pearson Chi-

squared test showed that both groups did not differ significantly by gender (X 2(1) =

0.24, p = .623). See Figure 6 for a histogram displaying the age and gender distribution.

As the young group was recruited from a University population, it was largely
homogeneous as 100% of participants had an education level at or above University-level

and were enrolled in University degrees at the time of testing. On the other hand, the
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older group was characterised by a comparatively greater variation in education and
employment. In this group, 73.91% of participants had an education level at or above
University-level, while 26.09% were below University-level. As the age range of this group
overlapped with retirement age, 37.68% of participants reported that they were not
employed/ retired at the time of the study. Since the data were non-parametric, a
Wilcoxon-Mann-Whitney test was run and the results indicated that the young group
had a significantly higher education level than the older group (z = -4.58, p < 0.001). A

Pearson Chi-squared Test showed that the group differences for the employment status

were also statistically significant (X2(2) = 128.48, p < 0.001). On the other hand, the
linguistic background of the young and older groups did not differ significantly (z = -
1.27, p = .201). The number of spoken languages in both groups was between 1 and 4,
with 66.20% of young adults and 76.81% of older adults reporting that they were
monolingual. The digital experience score, which was calculated as an average of the
digital comfort and digital competence self-ratings in the survey, differed significantly for
both groups (z = -4.95, p < 0.001), with the young group demonstrating higher digital

experience (M = 8.78, Mdn = 9) than the older group (M = 7.63, Mdn = 8).
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Table 1: Sample Characteristics by Age Group in Study A: UK

Pattern Separation

Age Group

Characteristic (N = 140)

Young (n = 71)

Older (n = 69)

Age (years)

M (SD) 19.35 (1.22) 60.74 (6.22)

Range 18-24 50 - 70
Gender

Women 56 (78.87%) 51 (73.91%)

Men 15 (21.13%) 18 (26.09%)

Highest/ Current Education level **
At/ Above University 71 (100.00%) 51 (73.91%)

Below University 0 (0.00%) 18 (26.09%)

Employment Status *

Student 71 (100.00%) 3 (4.35%)
Employed/ Self-employed 0 (0.00%) 40 (57.97%)
Not employed/ Retired 0 (0.00%) 26 (37.68%)

No. of Spoken Languages
M (SD) 1.41 (0.64) 1.32 (0.67)
Mdn [IQR] 111, 2] 11, 1]

Digital Experience Score *P
M (SD) 8.78 (1.09) 7.63 (1.44)
Mdn [IQR] 9 [8.25, 9.50] 8 [7, 8.50]

Note. Values represent the number of participants and percentage (in parentheses) in each category, the
mean and standard deviation (in parentheses), or the median and interquartile range (in parentheses). M
= Mean, SD = Standard Deviation, Mdn = Median, IQR = Interquartile Range.

* Statistically significant differences between age groups (p < .05).

* The Highest/ Current Education Level was measured as a categorical variable with 10 education levels
in the survey. As there was limited representation in this sample for levels below University, to maximise
statistical power, the survey levels have been collapsed into a binary variable consisting of “At/ Above
University” and “Below University” levels.

b The Digital Experience Score was calculated as the average of the Digital Comfort and Digital

Competence self-ratings provided by participants in the survey. Digital Comfort was measured on a scale
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from 1 (Not at all comfortable) to 10 (Very comfortable), and Digital Competence was measured on a
similar scale from 1 (Beginner) to 10 (Expert). In cases where self-ratings were reported only for one of
the two scales and missing for the other, the reported value was assigned as the Digital Experience Score.
In cases where self-ratings were missing for both scales because participants did not own a smartphone
but had experience with other digital devices (e.g., laptop), the minimum calculated group (age by

country) mean for the Digital Experience Score was assigned to each of these cases.

Figure 6: Histogram displaying the Age and Gender distribution of the sample in Study
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Note. The histogram bars represent the number of participants within each age bracket in the study
sample. Overlapping bars display the gender distribution within each age bracket. The age criteria for

recruitment to the healthy young group was 18 - 25 years, and 50 - 70 years of age in the healthy older

group.
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Human Trial-Unique Non-matching to Location (RTUNL) Task Performance

Table 2 provides a summary of the mean values and standard deviations for all
the outcome measures presented in this section, including Accuracy, Response Time, and
Inverse Efficiency Scores across spatial separation conditions and age groups. Figure 10

graphically displays the model estimates for each of these outcome measures.

Table 2: Group Descriptive Statistics for h"TUNL Task Performance in Study A: UK

Young Adults Older Adults

Proportion Correct (0 — 1) M SD M SD
Small Separation at Retrieval 0.74 (0.14) 0.71 (0.16)
Medium Separation at Retrieval 0.80 (0.13) 0.77 (0.13)
Large Separation at Retrieval * 0.83 (0.11) 0.77 (0.14)
Response Time (ms) M SD M SD
Small Separation at Retrieval *** 4336.04 (775.05) 5027.95 (1177.78)
Medium Separation at Retrieval *** 4049.81 (726.39) 4773.34 (1136.34)
Large Separation at Retrieval *** 3972.69 (570.06) 4549.62 (1042.26)
Inverse Efficiency Score (ms) M SD M SD
Small Separation at Retrieval ** 6103.13 (1535.13) 7502.02 (2493.73)
Medium Separation at Retrieval ** 5251.08 (1421.41) 6319.11 (1592.06)
Large Separation at Retrieval *** 4398.16 (1095.23) 6207.34 (2377.35)

Note. M and SD are used to represent Mean and Standard Deviation, respectively.

* Indicates the level of significance of age differences at p < .05, ** p < .01, *** p < .001.

Proportion Correct

Mean accuracy, measured as proportion correct on a scale of 0 - 1, was
significantly above chance (0.25) with large effect sizes for the healthy young adults on
the small (#(69) = 29.45, p < .001, Cohen’s d = 3.52), medium (#(69) = 34.83, p < .001,
Cohen’s d = 4.16), and large (#69) = 42.32, p < .001, Cohen’s d = 5.06) spatial
separation conditions. Similarly, the healthy older adults also performed well above
chance, with large effect sizes, on all spatial separation conditions: small (#(67) = 23.15,

p < .001, Cohen’s d = 2.81), medium (#(67) = 32.19, p < .001, Cohen’s d = 3.90), and
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large (#(67) = 31.19, p < .001, Cohen’s d = 3.78). Between age groups, young adults
demonstrated higher accuracy than older adults on all spatial separation distances, but
these group differences were significant only on the large separation distance with a small
effect size (#(130.02) = -2.61, p = .010, Cohen’s d = -0.44), and not significant on the
small (#(130.88) = -1.01, p = .313, Cohen’s d = -0.17) or medium (#(135.71) = -1.12, p
= .267, Cohen’s d = -0.19) conditions. Table 2 shows that mean accuracy was highest
on the large separation condition and lowest on the small separation in the young group,
and highest on the large and medium separations, and lowest on the small separation in
the older group. Figure 7 displays proportion correct across spatial separation categories

and age groups as box plots.

The linear mixed effects model built to predict Accuracy (i.e., Proportion Correct)
had a significant main effect of Spatial separation condition (F(2, 272) = 9.63, p < .001),
but not Age (F(1,134) = 1.22, p =.272), or the interaction between Separation condition
and Age (F(2, 272) = 1.57, p = .210). Post-hoc comparisons using estimated marginal
means showed that the age trend for performance on all separation groups was
characterised by a slightly negative slope, and the gradient on the large separation
condition was steeper than other categories (i.e., a greater decline in performance on this
condition over age), possibly driving the main effect of Separation group seen in the
model. However, there were no significant differences between the age trends for the
Large and Small separation (#(272) = -1.59, p = .253), Large and Medium (#(272) = -
1.48, p = .303), or the Small and Medium (#(272) = -0.11, p = .993) separation groups.
See Figure 10 for a visualisation of these age trends. Interestingly, there was a significant
main effect of Education in the mixed effects model (F(1, 134) = 5.66, p = .019), and
further examination revealed that Education below University-level had a significantly
negative effect on Proportion Correct (8 = -0.07, SE = 0.03, #(134) = -2.38, p = .019).
As only a small sub-sample of healthy older adults had an education below University-

level (all young adults had an education level of University or above), the main effect of
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Education seen here should be interpreted with caution as there is limited power to
investigate this variable.? However, as shown in Figure 8, the mean accuracy for these
participants across separation categories was lower than healthy older participants with
education above University-level (plotted only for UK Older adults group). Finally,
Digital experience was not a significant predictor of Accuracy on this task (F(1, 134) =

0.29, p = .592).

2 An exploratory model was built with a subset of participants, all of whom who had an education level

of University and above, to check whether the lower Education level was influencing the Age effect observed
in the full model. Results of this model showed that there was a significant main effect of Separation
condition for TES (F(2, 238) = 9.39, p < .001), but still no effect of Age (F(1, 119) = 1.45, p = .230) or
the interaction between Separation condition and Age (F(2, 238) = 1.24, p = .290), similar to the effects

seen in the full model.
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Figure 7: Box and whisker plots displaying (A) Mean Proportion Correct, and (B) Mean

Response Time compared across Spatial Separation at Retrieval and Age groups in Study
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Note. Boxes represent the Interquartile Range (i.e., the middle 50% of values), with a horizontal line drawn
within each box to mark the Median value. The whiskers, or the lines extending from either side of the
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box, display the dispersion of data, with the error bars representing the 95% confidence interval. Raw data
points have been added to the plots, with a small amount of jitter. The black dot on each box shows the
Mean value. An intercept has been added to plot (A) to display performance at chance (0.25 or 25%
accuracy).

Figure 8: Box and whisker plot displaying Mean Proportion Correct compared across
Spatial Separation at Retrieval and Education groups in the Study A: UK Older adults

sample
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Note. Boxes represent the Interquartile Range (i.e., the middle 50% of values), with a horizontal line drawn
within each box to mark the Median value. The whiskers, or the lines extending from either side of the
box, display the dispersion of data, with the error bars representing the 95% confidence interval. Raw data
points have been added to the plots, with a small amount of jitter. The black dot on each box shows the
Mean value. An intercept has been added to plot (A) to display performance at chance (0.25 or 25%

accuracy).
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Response Time

In terms of mean response time for correctly answered trials, young adults had
lower RTs (i.e., quicker responses) than older adults on all separation conditions. These
differences were significant with moderate effect sizes on the small (#(76.03) = 3.48, p <
.001, Cohen’s d = 0.66), medium (#(77.26) = 3.60, p < .001, Cohen’s d = 0.69), and
large (#(81.91) = 3.69, p < .001, Cohen’s d = 0.70) spatial separation distances. As
shown in Table 2, in both age groups, mean RT was highest on the small separation
condition, and lowest on the large separation condition. See Figure 7 for a box plot

displaying RT across categories and age.

In terms of predictors of RT in a Linear Mixed Effects model, a significant main
effect was found for the Separation condition (F(2, 272) = 3.41, p = .034) and Age (F(1,
134) = 19.25, p < .001), but not for the interaction between Group and Age (F(2, 272)
= 0.76, p = .470). Post-hoc analyses showed that, across all separation conditions, the
age trend for RT was positive i.e., there was an increase in RT as age increased - see
Figure 10. The gradient of the age trend was comparatively flatter for the large
separation condition, but this was not significantly different from the small (#(272) = -
0.91, p =.634) or medium (#(272) =-1.17, p = .471) conditions; differences were also not
significant between the small and medium conditions (#272) = 0.26 , p = .963).
Additionally, the effects of Education (F(1, 134) = 0.13, p = .718) and Digital experience

(F(1, 134) = 0.0004, p = .985) were not significant predictors of RT in the model.

Inverse Efficiency Score

Results from correlation tests run between accuracy and RT revealed no
significant correlations in the young adults group: small separation distance (r = 0.15, p
= .211), medium (r = 0.04, p = .722), and large (r = 0.03, p = .788). In the older adults
group, there were small correlations on the small (r = 0.23, p = .104), medium (r = 0.21,

p = .140), and large (r = -0.10, p = .472) separation conditions, but none of these
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reached statistical significance. See Figure 9 for a graphical display of the correlations.
These results suggest that a speed-accuracy trade-off may have been unlikely on this
task. However, in order to get a complete picture of performance on this task, results for

a combined speed-accuracy measure - Inverse Efficiency Score - will be described here.

Young adults showed better performance (indicated by lower IES) than older
adults on all separation distance conditions. All differences were statistically significant
with moderate effect sizes on the small separation (#(81.35) = 2.95, p = .004, Cohen’s d
= 0.56), medium (#(98.53) = 3.15, p = .002, Cohen’s d = 0.58), and large (#(80.72) =
3.50, p < .001, Cohen’s d = 0.66) conditions. In both age groups, IES scores were lowest
on the large separation condition (indicating better performance), and highest on the
small separation condition (indicating poorer performance). These results are consistent
with findings from accuracy and RT, where performance was better on the large
separation condition and lower on the small separation condition. In line with the
hypothesis, these results show that performance declines as spatial separation at retrieval

decreases between dots. See Figure 9 for a visualisation of results for IES.

In the LME model for Inverse Efficiency Score, there was a significant main effect
of Separation group (F(2, 272) = 6.62, p = .002) and Age (F(1, 134) = 17.66, p < .001),
but not the interaction term (F(2, 272) = 0.43, p = .653). Estimated marginal trends
revealed that, across separation groups, IES had a positive association with age - in other
words, inefficiency increased with age. No significant differences were seen between the
age trends for the small and large (#(272) = 0.03, p = .9996), small and medium (#(272)
=-0.79, p = .712), and medium and large (#(272) = -0.81, p = .695) separation distances.
Similar to the pattern observed with Accuracy, there was a significant main effect of
Education (F(1, 134) = 7.98, p = .005) in the model predicting IES. A positive
association was found between Education below University-level and higher IES/ poorer
performance (g = 1118.16, SE = 395.91, #(134) = 2.82, p = .005). Finally, there was no
significant effect of Digital experience (F(1, 134) = 1.18, p = .279) for IES.
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Figure 9: (A) Scatter plot visualising the relationship between Mean Response Time and
Mean Proportion Correct, and (B) Box and whisker plot displaying Mean Inverse

Efficiency Scores compared across Spatial Separation at Retrieval and Age groups in

Study A: UK
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Note. The scatter plot in (A) displays the raw data points with regression lines (formula = y ~ x) drawn
through them, and the bands represent the 95% confidence interval. In the box plot in (B), boxes represent
the IQR, horizontal line within boxes = Median, Error bars = 95% confidence interval, coloured dots =
jittered raw data points, black dots = Mean.

Figure 10: Line plots visualising the effect of Age on (A) Mean Proportion Correct, (B)
Mean Response Time, and (C) Mean Inverse Efficiency Scores compared across Spatial

Separation at Retrieval groups in Study A: UK
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Note. The line plots display the mixed effects model predictions of the marginal means (i.e., averaged over
different levels of the fixed effects Age and Spatial Separation condition, and adjusted for Education and
Digital experience) for each of the outcome measures in (A), (B), and (C). The bands represent the 95%
confidence intervals for the predicted values. These calculations were done using the ‘ggemmeans’ function
in the R ‘ggeffects’ package. The raw data points have been added to each of the plots. As seen from the
dispersion of the data points, the age range of the participants tested in the older group was wider than
the young group; no jitter has been added to these points. Outliers displayed here were not removed as

they did not change the model results.
2.3.2. Study B: India
Sample Characteristics

This study had a final sample of 148 participants (n = 76 young and n = 72 older
adults). Table 3 summarises the characteristics of this sample for both age groups. The
young participants recruited in India were between 18 and 25 years (M = 21.34, SD =
1.72), while the older group was between 50 and 69 years (M = 55.57, SD = 4.87). In
both groups, there was a greater representation of women than men (a gender ratio of

3.47:1 in the young group and 6.2:1 in the older group). There was no significant

2
difference in the gender distribution between the young and older groups (X (1) = 1.26,

p = .262). Figure 11 graphically displays the age and gender distribution.

In the young group, all participants had an education level at or above University-
level. Of these, 75 (98.68%) participants were currently enrolled in degrees and 1
participant was in employment. Whereas, in the older group, 71 (98.61%) older
participants had an education level at or above University-level and only 1 participant
had an education level below University-level education. Additionally, 68 (94.44%)
participants were employed or self-employed at the time of testing. Due to the selection
bias in the recruitment of these participants (through Schools and Universities in India),
the present sample is characterised by high levels of education and employment. The
difference between education levels of the young and older participants is not statistically

significant in this sample (z = -1.03, p = .304). However, there is a significant difference
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between the employment status of the young and older groups (4 2(2) = 144.06, p <
0.001). The number of spoken languages also did not differ significantly between both
groups (z = -0.03, p = .979), with 100% of participants in both groups reporting that
they were bilingual i.e., could speak two or more languages (A. K. Mohanty, 1994).
Finally, the young group had higher digital experience scores (M = 8.32, Mdn = 8.5)
than the older group (M = 7.53, Mdn = 8), and the difference between both groups was

statistically significant (z = -2.67, p = .008) for this measure.
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Table 3: Sample Characteristics by Age Group in Study B: India

Age Group

Characteristic (N = 148) Young (n = 76) Older (n = 72)
Age (years)

M (SD) 21.34 (1.72) 55.57 (4.87)

Range 18- 25 50 - 69
Gender

Women 59 (77.63%) 62 (86.11%)

Men 17 (22.37%) 10 (13.89%)
Highest/ Current Education level ®

At/ Above University 76 (100.00%) 71 (98.61%)

Below University 0 (0.00%) 1 (1.39%)
Employment Status *

Student 75 (98.68%) 0 (0.00%)

Employed/ Self-employed 1 (1.32%) 68 (94.44%)

Not employed/ Retired 0 (0.00%) 4 (5.56%)
No. of Spoken Languages

M (SD) 3.50 (0.87) 3.56 (1.15)

Mdn [IQR] 3 (3, 4] 33, 4]
Digital Experience Score *P

M (SD) 8.32 (1.22) 7.53 (1.73)

Mdn [IQR] 8.5 7.5, 9.12] 8 [6.5, 9.00]

Note. Values represent the number of participants and percentage (in parentheses) in each category, the
mean and standard deviation (in parentheses), or the median and interquartile range (in parentheses). M
= Mean, SD = Standard Deviation, Mdn = Median, IQR = Interquartile Range.

* Statistically significant differences between age groups (p < .05).

* The Highest/ Current Education Level was measured as a categorical variable with 10 education levels
in the survey. As there was limited representation in this sample for levels below University, to maximise
statistical power, the survey levels have been collapsed into a binary variable consisting of “At/ Above
University” and “Below University” levels.

b The Digital Experience Score was calculated as the average of the Digital Comfort and Digital

Competence self-ratings provided by participants in the survey. Digital Comfort was measured on a scale
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from 1 (Not at all comfortable) to 10 (Very comfortable), and Digital Competence was measured on a
similar scale from 1 (Beginner) to 10 (Expert). In cases where self-ratings were reported only for one of
the two scales and missing for the other, the reported value was assigned as the Digital Experience Score.
In cases where self-ratings were missing for both scales because participants did not own a smartphone
but had experience with other digital devices (e.g., laptop), the minimum calculated group (age by

country) mean for the Digital Experience Score was assigned to each of these cases.

Figure 11: Histogram displaying the Age and Gender distribution of the sample in Study
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Note. The histogram bars represent the number of participants within each age bracket in the study
sample. Overlapping bars display the gender distribution within each age bracket. The age criteria for

recruitment to the healthy young group was 18 - 25 years, and 50 - 70 years of age in the healthy older

group.
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Human Trial-Unique Non-matching to Location (RTUNL) Task Performance

In Table 4, you will find a summary of the average values and standard deviations
for all the outcome measures reported in this chapter, namely Accuracy, Response Time,
and Inverse Efficiency Score across spatial separation conditions and age groups.

Furthermore, Figure 14 visualises the model estimates for each of these measures.

Table 4: Group Descriptive Statistics for hTUNL Task Performance in Study B: India

Young Adults Older Adults

Proportion Correct (0 — 1) M SD M SD
Small Separation at Retrieval *** 0.67 (0.16) 0.57 (0.17)
Medium Separation at Retrieval ** 0.71 (0.13) 0.62 (0.18)
Large Separation at Retrieval *** 0.77 (0.13) 0.67 (0.18)
Response Time (ms) M SD M SD
Small Separation at Retrieval * 4589.48 (962.89) 5218.53 (1875.78)
Medium Separation at Retrieval 4513.75 (1111.45) 4968.14 (1603.48)
Large Separation at Retrieval 4367.85 (967.25) 4733.37 (1239.91)
Inverse Efficiency Score (ms) M SD M SD
Small Separation at Retrieval ** 7610.24 (4981.44) 10122.78 (5286.31)
Medium Separation at Retrieval *** 6715.25 (2879.92) 8859.57 (4124.71)
Large Separation at Retrieval *** 5860.92 (1696.55) 7645.24 (3122.54)

Note. M and SD are used to represent Mean and Standard Deviation, respectively.

* Indicates the level of significance at p < .05, ** p < .01, *** p < .001.

Proportion Correct

In the healthy young adults group, mean proportion correct was significantly
above chance (0.25) with large effect sizes on the small (#(72) = 22.21, p < .001, Cohen’s
d = 2.60), medium (#(72) = 29.70, p < .001, Cohen’s d = 3.48), and large (#(72) = 35.38,
p < .001, Cohen’s d = 4.14) spatial separation conditions. The healthy older adults group
also demonstrated performance which was statistically above chance with large effect
sizes on the small (#(66) = 15.63, p < .001, Cohen’s d = 1.91), medium (#(66) = 16.74,

p < .001, Cohen’s d = 2.05) and large (#66) = 19.53, p < .001, Cohen’s d = 2.39)
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separation conditions. Young adults scored significantly higher than older adults, with
moderate effect sizes, in all separation groups: small (#(135.83) =-3.54, p < .001, Cohen’s
d =-0.60), medium (#(120.18) =-3.33, p = .001, Cohen’s d = -0.57), and large (#(118.12)
= -3.77, p < .001, Cohen’s d = -0.64) distances. Across both age groups, accuracy was
highest on the large spatial separation condition, and lowest on the small separation
condition. See Figure 12 for a box plot of proportion correct (on a scale of 0 - 1) across

separation condition and age groups.

Turning towards the predictors of Accuracy in this study, the linear mixed effects
model showed that Separation condition (F(2, 276) = 3.30, p = .038) and Age (F(1, 137)
= 15.80, p < .001) had significant main effects on Accuracy, but not the interaction term
between Separation condition and Age (F(2, 276) = 0.18, p = .839). Further investigation
with estimated marginal means showed that the age slope for all separation conditions
was characterised by a negative gradient (i.e., decrease in accuracy with age) and the
slope was steepest on the small separation condition. However, there were no significant
differences between the age trends for small and large (£(276) = 0.50, p = .873), small
and medium (#(276) = 0.53, p = .857), or medium and large (#(276) = -0.03, p = .9994)
separation conditions. Figure 14 presents these age trends graphically. Furthermore, no
significant effect was noted for Digital experience (F(1, 137) = 1.08, p = .301) in this

model.
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Figure 12: Box and whisker plots displaying (A) Mean Proportion Correct, and (B)
Mean Response Time compared across Spatial Separation at Retrieval and Age groups

in Study B: India
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box, display the dispersion of data, with the error bars representing the 95% confidence interval. Raw data
points have been added to the plots, with a small amount of jitter. The black dot on each box shows the
Mean value. An intercept has been added to plot (A) to display performance at chance (0.25 or 25%

accuracy).

Response Time

Across all spatial separation conditions, healthy young adults performed faster
than older adults, but these group differences were only significant on the small
separation condition with a small effect size (#(96.60) = 2.46, p = .015, Cohen’s d =
0.42). Performance differences between young and older adults did not reach statistical
significance on the medium (#(116.31) = 1.93, p = .056, Cohen’s d = 0.33), and large
(#(124.67) = 1.93, p = .055, Cohen’s d = 0.33) separation conditions. In both age groups,
mean RT was quickest on the large separation condition, and slowest on the small
separation condition. Figure 12 provides a box plot visualising RT across separation

condition and age groups.

In the LME model for RT, there was a significant main effect of Age (F(1, 137)
= 6.30, p = .013), but not of Separation condition (F(2, 276) = 0.14, p = .867), or the
interaction term (F(2, 276) = 1.70, p = .184). Post-hoc comparisons with estimated
marginal means showed that there was a positive age slope for RT (i.e., longer RTs with
age) across all separation categories, and this slope was steepest for the small separation
condition - see Figure 14. The differences between age trends, however, were not
significant between small and large (#(276) = -1.78, p = .177), small and medium (#(276)
=-1.30, p = .394), or medium and large (#(276) = -0.48, p = .880) separation conditions.
Finally, there was no significant effect of Digital experience on RT (F(1, 137) = 0.46, p

= .500).
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Inverse Efficiency Score

Correlations between accuracy and RT in the young adults groups showed
negligible and non-significant associations between both measures on the small (r = -
0.06, p = .585), medium (r =-0.04, p = .744), and large (r =-0.06, p = .629) separation
conditions. In the older group, a small but non-significant correlation was seen on the
large separation condition (r = 0.22, p = .070), and negligible correlations were found
on the small (r =-0.04, p = .730), and medium (r = 0.02, p = .843) conditions. Figure
13 displays these associations graphically. As no significant relationships have been found
between accuracy and RT in either of the groups, a speed-accuracy trade-off may be
unlikely. However, there is still added value of calculating a combined speed-accuracy
measure, as it would give further insight into performance, allowing for direct
comparisons using a single metric. It may also be sensitive to individual differences in
performance efficiency not picked up by average measures (i.e., accuracy and RT) used

to calculate correlations here.

As shown in Table 4, on all spatial separation conditions, young adults performed
more efficiently (demonstrated by lower IES) than older adults. These group differences
were significant and characterised by a moderate effect size on the small (#(135.14) =
2.89, p < .001, Cohen’s d = 0.56), medium (#(116.83) = 3.54, p < .001, Cohen’s d =
0.59), and large (#(99.89) = 4.15, p < .001, Cohen’s d = 0.66) separation distances.
Between separation at retrieval distances, both groups showed higher performance on
the large condition and lowest performance on the small condition, thereby mirroring
the pattern of results observed on accuracy and RT. As hypothesized, this shows that
performance declines as the spatial separation between dots decreases. For box plots

showing IES between conditions and age groups, see Figure 13.

The main effect of Age was significant in this model (F(1, 137) = 16.51, p <
.001), but Separation group (F(2, 276) = 0.65, p = .521) and the interaction between

Separation group and Age (F(2, 276) = 1.20, p = .303) were not significant effects. Post-
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hoc analysis of estimated marginal means showed a positive age slope for all separation
conditions, indicating an increase in inefficiency with age, especially on the small
separation condition. Similar to performance patterns observed on Accuracy and RT, no
significant differences were found between age trends on the small and large (#(276) = -
1.54, p = .273), small and medium (#(276) = -0.90, p = .639), and medium and large
(#(276) = -0.64, p = .798) separation conditions. For completeness, it should be reported
that Digital experience (F(1, 137) = 0.0001, p = .991) was not a significant predictor of

IES.
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Figure 13: (A) Scatter plot visualising the relationship between Mean Response Time
and Mean Proportion Correct, and (B) Box and whisker plot displaying Mean Inverse
Efficiency Scores compared across Spatial Separation at Retrieval and Age groups in

Study B: India
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Note. The scatter plot in (A) displays the raw data points with regression lines (formula = y ~ x) drawn
through them, and the bands represent the 95% confidence interval. In the box plot in (B), boxes represent
the IQR, horizontal line within boxes = Median, Error bars = 95% confidence interval, coloured dots =
jittered raw data points, black dots = Mean.

Figure 14: Line plots visualising the effect of Age on (A) Mean Proportion Correct, (B)
Mean Response Time, and (C) Mean Inverse Efficiency Scores compared across Spatial

Separation at Retrieval groups in Study B: India
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Note. The line plots display the mixed effects model predictions of the marginal means (i.e., averaged over
different levels of the fixed effects Age and Spatial Separation condition, and adjusted for Digital
experience) for each of the outcome measures in (A), (B), and (C). The bands represent the 95% confidence
intervals for the predicted values. These calculations were done using the ‘ggemmeans’ function in the R
‘geeffects’ package. The raw data points have been added to each of the plots. As seen from the dispersion
of the data points, the age range of the participants tested in the older group was wider than the young
group; no jitter has been added to these points. Outliers displayed here were not removed as they did not

change the model effects.

2.4. Discussion

By applying a novel translational task of spatial pattern separation (PS) - human
Trial-Unique Non-match to Location (WTUNL) - with healthy young and older adults, I
aimed to understand how age influences PS and whether effects of age generalise cross-
culturally. Across both cultures studied, I found that healthy young and older adults
could perform the task at levels which were well above chance across all conditions of
spatial separation distance at retrieval (which can be understood as levels of
interference). Between conditions, as expected, task performance scaled with the level of
interference - participants in both studies demonstrated a pattern of lowest mean
accuracy and longest mean RTs on the small spatial separation condition which was
designed to place highest demands on PS, and performance was highest on the large
separation condition. The influence of age, however, was less consistent between both
cultures. In Study A: UK, young adults generally showed better PS performance than
older adults, but task accuracy did not show a significant decline with age. Interestingly,
education was found to be a significant predictor of accuracy in this study; a lower level
of education was associated with poorer PS accuracy across interference conditions in
older adults. Contrastingly, Study B: India revealed significant age-related deficits across
all spatial separation distances, with young participants consistently performing better

than older adults at discriminating between old and new dot locations on this task across
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all spatial separation conditions. In both studies, I did not find an interaction between
age and spatial separation condition, the age-related performance deficit was not greater
on the small separation condition than in conditions with lower interference. Here, I will
reconcile these findings with previous literature on PS, offer plausible explanations for
the differing pattern of age effects observed between cultures, and discuss broader

implications for the assessment of behavioural PS.

In human cognitive ageing literature, previous studies which have found age-
related impairments in PS have typically tested older adults aged 60 and above e.g.,
mean age of 71 years in Yassa et al. (2011), 74.4 years in Toner et al. (2009) and Holden
et al. (2013), and 72.9 years in Stark et al. (2015). In Study A: UK, the mean age of
older participants was 60.74 years (SD = 6.22 years) - the comparatively younger sample
in my study may partly explain why a main effect of age was not observed. Clark et al.
(2017) also failed to replicate an age effect on spatial pattern separation performance in
their sample consisting of older adults with a mean age of 67 years. Contrastingly, Stark
et al. (2013) recruited participants from across the adult lifespan in their study (including
the often-overlooked middle age category in cognitive ageing research) and found striking
evidence for a linear decrease in PS performance between 20 to 60 years of age. A
distinction, however, should be made here between tests of spatial and object pattern
separation. Stark et al. (2013) apply an object PS paradigm, which may show greater
sensitivity to age than spatial PS - consistent with recent studies which have found that
performance on mnemonic discrimination of objects shows a greater age-related decline
compared to scenes (Gusten et al., 2021; Reagh et al., 2016). It is possible that spatial

pattern separation is sensitive to the influence of age only later in life (Clark et al., 2017).

On the other hand, I found a significant age-related decline in spatial PS in Study
B: India, which is comparable to previous findings (Holden et al., 2013). Notably, older
participants were significantly impaired on PS compared to young participants in Study
B: India even though the mean age of older adults in this group was 55.57 years (lower
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than Study A: UK). One explanation for these inconsistencies is the variability observed
in the age of onset of episodic memory decline. In healthy ageing, it is widely agreed
that EM is particularly sensitive to the influence of age (Nyberg et al., 1996), but the
question of when impairments begin to appear is still a matter of debate. Some studies
have claimed that EM decline appears as early as in young adulthood (T. A. Salthouse,
2003), but longitudinal studies have found a significant reduction in EM in adults aged
60 years or over (Josefsson et al., 2012; Ronnlund et al., 2005). It should be highlighted,
however, that there is large inter-individual variability in this decline (Habib et al., 2007;
Josefsson et al., 2012). Pattern separation, which is thought to be a core component of
EM (Leal & Yassa, 2018; Yassa & Stark, 2011), may show similar individual variability
in terms of the age of onset. Furthermore, the progression of decline is not necessarily
linear, and longitudinal approaches are required to gain further insight on ageing
trajectories. Interestingly, in their lifespan study of PS, Stark et al. (2013) found that
performance reached a plateau at 60 years of age and did not continue to decline further.
However, this should not be mistaken for stability of age effects upon entering old age -
Stark et al. (2013) suggest that other cognitive factors may contribute to variability in

this age group.

One such factor could be education - my results showed that older adults with
education at University-level or above had better PS accuracy than those with education
below University-level, and education had a significant effect on performance in Study
A: UK. Similarly, the older adults’ sample in Clark et al. (2017) was also characterised
by higher levels of education compared to earlier studies (Holden et al., 2012), but this
was not investigated as a potential predictor of spatial PS performance in their study.
The relationship between education and cognitive performance has been extensively
explored, with findings showing that higher education is linked with better cognitive
performance on a variety of tasks (Opdebeeck et al., 2016; Strenze, 2007). In normal

ageing, Stern (2002; 2012) suggests that educational attainment may act as a protective
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factor against cognitive decline, but the mechanisms are still to be fully elucidated (for
reviews, see Lenehan et al., 2015; Lovdén et al., 2020; Seblova et al., 2020). On the other
hand, older adults in Study B: India were vulnerable to age-related decline in PS
performance even though all participants in this sample were University-level educated.
There may be other risk factors at play here - recent results from the Longitudinal
Ageing Study in India (LASI) have shown that lower socioeconomic status (Muhammad,
2023), female gender (Angrisani et al., 2020; J. Lee et al., 2014), and lower social capital
(Pandey et al., 2023) can contribute to cognitive decline. While a broader investigation
of cognitive risk and protective factors influencing PS performance was beyond the scope
of the present work, it certainly warrants further investigation. Cross-cultural cognitive
ageing studies, in particular, should consider that the populations they study may be
characterised by diverse cognitive, sociocultural, and health variables, making direct
comparisons problematic. Depending on research aims, a generalisation approach - as I

have applied in Study B: India - may be more appropriate.

A notable limitation of the present research is that a standardised memory test,
such as for word learning, was not used to account for differences in memory ability in
healthy adults. This approach has previously been applied in human and rodent studies
to split older participants into aged ‘impaired’ and ‘unimpaired’ groups, to gain further
insight into sources of variation within the group (Gallagher et al., 2006; Holden et al.,
2012; Reagh et al., 2016; S. M. Stark et al., 2013). Holden et al. (2012) showed that
when older adults were divided into ‘impaired’ and ‘unimpaired’ groups, only the
‘impaired’ group performed significantly differently from the young adults on the spatial
pattern separation task. However, to apply this approach in cross-cultural studies, one
also needs to consider the challenge of identifying, adapting, or translating verbal
standardised assessments so that they are culturally appropriate for a given population.
Another limitation is that participants in both studies were characterised by high levels

of education, as most participants were recruited from educational institutions. Although
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education has been analysed as an independent effect in Study A: UK, there was limited
power due to the small group of older adults who had an education below University-
level in this sample; in Study B: India, only one participant had an education below
University-level, so it was not possible to analyse the effect of education on PS
performance. Future studies should aim to recruit more heterogeneous community

samples to gain a better picture of how education impacts hippocampal operations.

Unlike rodent studies which offer more precise insights into hippocampal
operations such as pattern separation, human performance is characterised by greater
complexity. While my findings do not consistently reveal age effects on PS in a middle-
to-older aged sample, it is crucial to consider the influence of education, and individual
and cultural variation in the study of PS. Behavioural assessments of PS - such as the
hTUNL task applied here - are only indirect measures of the integrity of hippocampal
sub-fields and circuity in ageing (for further discussions, see Hunsaker & Kesner, 2013;
Liu et al., 2016), and further work is needed to validate the neural basis of behavioural
performance on this task. Nonetheless, the hTUNL task holds potential for further
application in the study of ageing and age-related neurodegenerative diseases - it draws
upon years of evidence from rodent models where similar paradigms have been applied
(Oomen et al., 2015; Talpos et al., 2010), it meets the criteria proposed by Hunsaker &
Kesner (2013) for the design of PS assessments, various task parameters can be
manipulated to meet research requirements, and it is non-verbal and involves simple dot

stimuli which are unlikely to carry semantic associations if applied cross-culturally.
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Chapter 3: Influence of Age on Boundary Extension

across Cultures

3.1. Introduction

In “The Hippocampus: A Manifesto for Change”, Maguire and Mullally (2013)
advocate for a reconceptualisation of the role(s) of this MTL sub-region in cognitive
functions. Several theoretical accounts place the representation of scenes as central to
hippocampal function (Gaffan, 1991; Maguire et al., 2016; Maguire & Mullally, 2013;
Murray et al., 2018; Robin et al., 2018). It is now acknowledged that the hippocampus
(HC) plays a crucial role in scene construction (Hassabis et al., 2007), and this ability
supports diverse cognitive functions such as recall, imagination, and navigation (Hassabis
& Maguire, 2007). One line of evidence supporting the significance of the HC for scene
representation comes from the boundary extension (BE) phenomenon (Intraub &
Richardson, 1989; Mullally et al., 2012). Boundary Extension is a well-established
cognitive phenomenon displayed by healthy individuals where in observers confidently
recall seeing more of a scene than what was actually viewed. In drawing tasks, for
example, participants draw elements beyond the boundaries of the image originally
shown to them (Intraub & Richardson, 1989); or, when comparing the viewpoint of a
new photo which is identical to a target photo which was briefly viewed before,
participants perceive the new photo as appearing closer to them, suggesting that their
memory of the target photo was broader (Intraub & Dickinson, 2008). Several studies
have found evidence for the BE effect in healthy individuals (Bainbridge & Baker, 2020;
De Luca et al., 2018; Mullally et al., 2012; Seamon et al., 2002). Yet, the impact of
normal ageing on this phenomenon and how this generalises across cultural contexts is

yet to be understood.

According to the multi-source model (Intraub, 2010, 2012), scene perception is a
constructive process which does not correspond with the visual input alone, but instead

integrates multiple sources of information. This includes the actual visual input received,
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but also expectations, past knowledge, and prior experiences - the internal representation
of a scene, therefore, includes more information than what is viewed. This is revealed
when individuals are asked to recall a scene, and incorrectly recall the extended
representation (Intraub & Richardson, 1989). Through this framework, BE can be viewed
as a source monitoring error i.e., a misattribution of the origin of visual information in
memory (Johnson et al., 1993). However, it is important to emphasize that although BE
is characterised as a memory error, it offers adaptive value as the integration of internal
and external sources allows a viewer to make predictions about the broader spatial

context of a scene, which facilitates tasks such as spatial navigation (Gottesman, 2011).

The Boundary extension effect relies upon the integrity of scene construction (SC)
ability in the hippocampus and related regions, as demonstrated by studies with patients
who have suffered damage to brain regions involved in this function (De Luca et al.,
2018; Mullally et al., 2012). Mullally et al. (2012) administered a range of tasks designed
to test the BE phenomenon in patients with bilateral hippocampal damage and amnesia
who showed clear deficits in scene construction ability as measured with an established
paradigm (Hassabis et al., 2007). Importantly, tasks used to test BE with memory-
impaired patients in this study were modified to allow for immediate recall following
stimulus presentation, thereby eliminating the need for long-term memory. In a drawing
task (Intraub & Richardson, 1989), participants were shown photographs of scenes, and
then immediately asked to draw these from memory. In a different modality, a haptic/
tactile task, Intraub (2004) asked participants to study the dimensions of scene
arrangements presented within a wooden border using touch alone; the border was then
removed and participants had to recall the location of each border. Compared to controls,
Mullally et al. (2012) found that patients showed a reduced boundary extension effect
on these tasks i.e., they did not recall an extended representation, but recalled the scene
more accurately than controls. Even more strikingly, this attenuated BE effect in patients

was also demonstrated on a modified version of the Rapid Serial Visual Presentation
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(RSVP) paradigm (Intraub & Dickinson, 2008). On this task, participants were shown
two scenes in rapid succession, separated by a visual noise mask (250ms interval). They
were then asked to rate whether the second picture was a “closer-up”, “same”, or “further
away” view compared to the first picture; unknown to participants, both pictures were
identical (i.e., “the same”). Healthy adults were more likely to rate the second picture
as closer-up, demonstrating the BE error. Contrastingly, patients performed significantly
more accurately (i.e., less BE error). In terms of response distribution, Mullally et al.
(2012) found that patients with bilateral hippocampal damage (n = 7, My = 41.43)
provided “the same” responses most frequently, “closer-up” responses less frequently
(indicating less BE), and “further away” responses only occasionally. Conversely, healthy
controls (n = 12, M,,. = 42.67) in their study showed a different pattern: “closer-up”
responses were most common (indicating more BE), followed by “the same” responses,
and “further away” was least common. Authors conclude that this is due to a scene
construction deficit in patients with HC damage, which impairs the construction of

extended representations of scenes, thereby making performance less prone to the BE

error.

It is now recognised that the hippocampus does not function in isolation but is
part of a wider network involved in scene processing (Murray et al., 2017; Ranganath &
Ritchey, 2012). Functional neuroimaging studies have found activity consistent with
boundary extension in the HC and related circuitry such as the RSC (Chadwick et al.,
2013; S. Park et al., 2007). The HC is also found to interact with other brain regions
such as the ventromedial prefrontal cortex (vimPFC) which support scene construction
ability (Bertossi et al., 2016). More recently, De Luca et al. (2018) applied the RSVP
task from Mullally et al. (2012) and have shown that the finding of attenuated BE error
extends to patients with damage to the vinPFC region. In their study, they tested
patients with vmPFC damage (n = 8, M, = 59.25 years) and found their performance

was similar to the hippocampal patients in Mullally, Intraub & Maguire (2012), while
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control participants with occipital lesions sparing vimPFC (n = 10, M, = 59.30) and
healthy participants (n = 10, M., = 56.50) were comparably more susceptible to the BE
effect. This replicates the pattern of performance observed in Mullally et al. (2012) with
patients and healthy controls. These studies indicate that both the hippocampus and
supporting regions such as the vimPFC are needed to automatically construct scene

representations involving boundary extensions.

Figure 15: Results adapted from Mullally et al. (2012) in A and B; and De Luca et al.

(2018) in C and D

A B . A
_ @ Patients
&3 e
c 3 u Controls
(<] o2
- _E s i =
§ ® >
E e u
7] @ m
2 e 24
8 §¢
@ 23
2 = o
& 5%
o (s
@ "
«< =
1
Closer Up The Same Farther Away Closer Up The Same Farther Away
C D
. . . ) vmPFC 5 - R ] vmPFC
. * patients _— patients
100 Control
- patients o ﬁ:lrl‘:':lll
- @8 vmPFC
2 healthy o @ vmPFC
4 controls healthy
g Hippocampal ] controls
s patients ° Hippocampal
g &2 Hippocampal 8 -5 I patients
2 hosliy w EA Hippocampal
3 controls o
healthy
H controls
g 1.0
H
14
T 15
T T =1 1
The same Closer Farther away

Note. Both studies use the Rapid Serial Visual Presentation task paradigm and identical stimuli to test
participants. In (A) and (C), the frequency of incorrect “closer-up” distance judgments, when comparing
two rapidly presented images which were exactly the same, was higher than incorrect “further away”
responses in healthy controls, compared to patients (Mullally et al., 2012; De Luca et al., 2018). Confidence
ratings in (B) mirror the response pattern in (A) - with healthy controls showing higher confidence on
incorrect “closer up” responses compared to patients (Mullally et al., 2012). The former error indicates
boundary extension (Mullally et al., 2012), while the latter is argued to signify boundary contraction
(Bainbridge & Baker, 2020). In (D), the boundary extension (BE) score demonstrates the direction and

degree of bias towards a particular response type - a mean score of 0 represents no effect, while a negative
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score is linked with BE. Healthy controls demonstrate a significantly larger BE effect (i.e., more negative
score) than patients (De Luca et al., 2018).

In the context of normal ageing, there is a limited number of studies investigating
whether there are age-related changes in boundary extension. The HC is vulnerable to
age-related reductions in structural and functional integrity, and this is associated with
cognitive decline in normal ageing (for a review, see Bettio et al., 2017). Yet, healthy
older adults demonstrate a significantly larger BE effect (i.e., more BE error) than
patients with damage to regions involved in SC (De Luca et al., 2018; Mullally et al.,
2012). Furthermore, Seamon et al. (2002) found that all age groups demonstrate a BE
effect on a drawing paradigm, but older adults demonstrate an observably larger BE
effect than young adults. In this study, however, it is important to note that performance
between age groups was not compared statistically. Multhaup et al. (2018) and Ménétrier
et al. (2019) statistically compared age groups in their studies and, in contrast to Seamon
et al. (2002), their results indicated that both young and older adults demonstrated BE,
but there was no age-related increase in BE in older adults. Boundary extension has also
been demonstrated by older adults in work by Kim et al. (2015) and middle-to-older
aged healthy controls in Mullally et al. (2012) and De Luca et al. (2018), but performance
has not been compared with young adults in these studies. The gaps and inconsistencies
in this literature leaves the question of whether age influences the BE effect still

unanswered.

BE is argued to be a universal phenomenon, demonstrated across ages,
developmental stages, and even certain disorders (Intraub & Richardson, 1989; Quinn &
Intraub, 2007; Seamon et al., 2002; Spano et al., 2017). However, it is yet to be
established whether this effect generalises across cultural contexts. Till date, a study by
Chang et al. (2021) with participants in Taiwan is the only investigation of the boundary
extension phenomenon beyond the West. In an adaptation of the Intraub and Richardson

(1989) BE task, they found that both healthy young and older participants demonstrated
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the boundary extension effect, but the effect was more pronounced in healthy older
compared to young adults. This age trend, crucially, is similar to what has been observed
by Seamon et al. (2002) with American young and older adults. While these results
suggest that age effects on BE may be cross-culturally invariant, further research in a

different cultural context is needed to strengthen this proposal.

In the present study, I will test the boundary extension effect in healthy young
and older adults across two cultures - UK and India - using the Rapid Serial Visual
Presentation task (Mullally et al., 2012) administered on the MiND app (introduced in
Chapter 1). I use the same RSVP task stimuli as Mullally et al. (2012) and De Luca et
al. (2018) to facilitate direct comparisons of performance with healthy controls in these
studies. First, I aim to determine whether the BE error is made by both young and older
adults - I hypothesise that all groups will demonstrate BE, consistent with previous
literature (H. Te Chang et al., 2021; Intraub & Richardson, 1989; Ménétrier et al., 2019;
Multhaup et al., 2018; Seamon et al., 2002). Second, I aim to understand how age
influences performance on this task. Although some studies have suggested that the BE
error increases with age (H. Te Chang et al., 2021; Seamon et al., 2002), other studies
have found no age-related differences (Ménétrier et al., 2019; Multhaup et al., 2018), so
I do not make a prediction here as previous research has produced conflicting results.
Third, I aim to understand whether the BE effect and an increase in BE with age is
replicated in an Indian sample - I do not test an a priori hypothesis here as no study has

previously investigated the BE phenomenon in this cultural context.

3.2. Methods
3.2.1. Participants

Described in Chapter 2.2.1.
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3.2.2. Procedure

Described in Chapter 2.2.2.

3.2.3. Materials
MiND Rapid Serial Visual Presentation Task

This task is an adaptation of the Rapid Serial Visual Presentation (RSVP) task
used by Mullally et al. (2012) to test whether a boundary extension (BE) effect is
displayed when participants are rapidly presented with exactly the same scene twice,
with a brief distraction in between, and asked to judge the distance of the second
presentation compared to the first. A boundary extension effect is an error in judgment,
where in participants inaccurately recall the first presentation of a scene to include an
extended boundary/ environment surrounding it and, compared to their memory of the

first image, the second presentation of the identical scene appears closer to them.

The MiND RSVP task uses identical stimuli as Mullally et al. (2012), with minor
adjustments to the task design for presentation on a tablet device. All images of scenes
are composed of a close-up of a single, centrally-located every-day object, such as a bowl
of oranges or a cat. Only close-up images of scenes were used as previous research has
shown that identical close-ups elicit a significantly greater BE effect than pairs of wide-
angle pictures which reveal little or no BE effect (Intraub & Dickinson, 2008). The task
design involved the initial presentation of a stimulus for 250 ms on the screen, followed
by a visual noise mask/ scrambled screen with a fixation cross for 250 ms, and then the
same stimulus presented again for 1000 ms. Following this, two consecutive questions
appeared, and participants had to respond to these by touching the relevant option on
the screen. The first question asked participants to judge whether the second
presentation of the stimulus was “much closer”, “a little closer”, “the same”, “a little
further away”, or “much further away” than the original presentation. Importantly, on
all trials, the second presentation of the scene was exactly “the same” (i.e., correct
response) as the first presentation, but participants were not aware of this. In the second
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question, participants were asked to estimate whether their level of confidence in their
first response was “not sure”, “fairly sure”, “very sure”, or “can’t remember”. If
participants did not provide a response to either of the questions within 30 seconds, the
screen was set to time-out and move to the next question or trial. There was an inter-
trial interval of 1000 ms, during which a “Get Ready” fixation message was displayed
before every trial. See Figure 16 for an example of a trial. A total of 24 trials were
presented to participants, and the order of stimuli was randomised for all participants.
There was no practice trial for this task. It was hypothesized that healthy adults would
commit the boundary extension “error” on this task by providing “much closer” or “a
little closer” responses more frequently than other response choices. In terms of
confidence in their responses, a higher level of confidence would be expected with the

“much closer” or “a little closer” responses based on findings from Mullally et al. (2012).

Figure 16: MiND Rapid Serial Visual Presentation Task Schematic

“Get Ready” Fixation

Study Picture

Scrambled Screen
Test Picture
Test Picture + Q1

Test Picture + Q2

1000 ms

Timeout at 30 s
Timeout at 30 s

Note. An example of the trial order: the task begins with a “Get Ready” text fixation on the screen for

1000 ms, followed by the first presentation of the “study” image (a close-up image) presented for 250 ms,

then a scrambled/ visual noise screen with a fixation cross for 250 ms, and a second presentation of the

“test” image for 1000 ms. The “study” and “test” images are always exactly the same on every trial. The

“test” image remains on the screen while the first question is presented: “Compared to the original, this

picture seems:”. There are five response choices for this question: “much closer”, “a little closer”, “the
» o«

same”, “a little further away”, and “much further away”. Once the participant responds to this question,

or the screen is timed-out if no response is provided in 30 seconds, the second question appears while the
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“test” image continues to remain on the screen: “How confident do you feel about this?”. Four response
choices are provided here: “Not sure”, “Fairly sure”, “Very sure”, “Can’t remember”. All 24 trials follow a
similar order.

Demographics and Digital Ezperience Survey

Described in Chapter 2.2.5.

3.2.4. Analysis
MiND Rapid Serial Visual Presentation Task

Details about the software and software packages used for data cleaning, analyses,
and visualisations are reported in Chapter 2.2.4. All steps described here were

independently implemented with the datasets for Study A: UK and Study B: India.

The RSVP task consisted of 24 trials - on each of these, the first image of the
trial was presented on the screen for 250 ms, followed by a visual noise screen for 250
ms, and then the same image for 1000 ms before the test questions. However, due to an
error in the MiND algorithm which was only discovered at the end of the study, the
visual noise screen was not presented for the required duration for some participants on
the first trial, and it was not possible to retrospectively check which participants were
not shown this screen. Furthermore, due to the rapid presentation of images, some
participants were not prepared for the speed on the first trial and reported missing the
first presentation of the scene on Trial 1 (despite the “Get ready” reminder at the start
of the trial). While an additional practice trial at the start of the task could have been
used to prepare participants (see De Luca et al., 2018), this was not included on MiND
to prevent deviations from the original task design (Mullally et al., 2012). Consequently,
due to the presentation error and participant self-reports of being unprepared for the
rapid presentation of images on Trial 1, this trial was excluded entirely from the analysis

for all participants - only 23 trials were analysed here.

Due to the rapid presentation of stimuli on this task, it was important for

participants to be attentive, and any trials where participants missed a picture due to

90



Chapter 3 Boundary Extension

being unprepared or distracted would have resulted in a random response on the test
questions - on both questions, an option was not provided for “missed image” or “did
not see image”. To avoid incorrectly including such trials in the overall calculation of
boundary extension scores, rigorous data cleaning criteria were applied. Trials in which
participants failed to provide a response on either or both of the test questions (distance
and confidence judgments), resulting in a time-out after 30 seconds, were excluded
entirely from the analysis for that particular participant. There were 4 trials in Study A:
UK, and 23 trials in Study B: India which were excluded after applying this criterion.
For the same reason, any trials where participants responded “Can’t Remember” to the
confidence judgment question were also excluded - see De Luca et al. (2018) for a similar
data cleaning approach. This resulted in the exclusion of 37 trials in Study A: UK and
74 trials in Study B: India. Confidence judgments provided by participants in Study B:
India were generally more conservative (i.e., lower confidence). Due to the ambiguity of
the response choices, it is possible that participants in this sample interpreted the

responses differently, thereby differing in decision criterion (see Kim et al., 2015).

After applying the strict cleaning criteria outlined here, checks were run to see
whether more than 50% of trials were excluded for any single participant or stimulus.
One participant from Study A: UK was identified for whom more than half of the trials
had been excluded - this participant had answered “can’t remember” on 16/24 recorded
trials. As it was possible that the participant may have misunderstood the task and/ or
performed it incorrectly, and only 8 trials were eligible for analysis, this participant was
excluded from the analysis for this task. Reassuringly, no stimuli were identified for which
more than half trials had to be excluded, also suggesting that no single stimulus was
substantially more difficult than the others. The response selection position was also
examined to check whether any participants clicked in the same location repeatedly,
hence providing the same response (all test choices were always presented in the same

location/ order). There were 5 participants in the Study A: UK sample, and 1 participant
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from the Study B: India sample who clicked “The Same” response on the distance
judgment question 100% times. As this was the correct response on all trials (i.e., both
pictures were always exactly the same), these participants were not excluded to avoid
inaccurately inflating boundary extension scores - however, the possibility that these
participants repeatedly selected the same response at random cannot be ruled out.
Finally, the RT distribution of participants was investigated - plots revealed a typical
Ex-Gaussian RT distribution with a long right tail. As trials automatically timed-out
after 30 seconds if a response was not given, no further upper threshold was applied for
RT. For the lower bound, an absolute minimum response limit of 200 ms was applied,
but no trials were identified that fell below this threshold. After applying all cleaning
measures described here, there were 3173 trials available in the UK sample (187 omitted

- 5.56%), and 3306 trials in the Indian sample (246 omitted - 6.93%) for further analysis.

Similar to the analysis conducted by Mullally et al. (2012), the 5-choice distance
judgments were converted to a 3-choice scale as follows to maximise power: “Much closer
up” and “A little closer-up” responses were combined under the “Closer-up” category;
“Much farther away” and “A little farther away” were combined as “Farther away”, and
“The same” option was maintained. A larger number of incorrect “closer-up” responses
reflects boundary extension (Mullally et al., 2012). The three response types were used
to group participant performance across different measures: i) Response Type
Distribution, ii) Response Time by Response Type, and iii) Confidence by Response
Type. Additionally, De Luca et al. (2018) calculate a boundary extension (BE) score
which indicates which response type a participant is biased towards. iv) The BE score
was computed on a scale of -2 to 2 by assigning numeric values to each level of the
distance judgment: “Much closer-up” = - 2; “A little closer-up” = 1; “The same” = 0;
“A little farther-away” = 1; “Much farther-away” = 2. While a mean score of 0 is thought
to reflect no boundary extension effect (as responses are biased towards “the same”), a

negative score would indicate that a participant is exhibiting boundary extension (De
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Luca et al., 2018).

Statistical Tests and Modelling

T-tests were used to compare performance on each of the outcome measures
between age groups, and a one-tailed t-test was used to determine whether mean BE
scores were significantly lesser than 0 (i.e., BE effect). Mean BE scores were also
calculated and compared as a function of stimulus/ image type in each age group, as
studies have argued that the boundary extension effect may vary as a function of image
characteristics (Bainbridge & Baker, 2020; Gandolfo et al., 2023). For modelling, the BE
effect was converted to a binomial scale, such that a score < 0 signified a boundary
extension effect and > 0 indicated no BE effect. To analyse whether age was a significant
predictor of BE, a generalised linear mixed effects model (GLMM) of the logistic type
was employed. A GLMM is appropriate with this task dataset as it is capable of handling
non-Gaussian distributions, such as the binomial distribution (in this context, a
boundary extension effect or no effect) which underlies a logistic regression. Furthermore,
this analysis was run with BE trial-level data, and the dataset involved a hierarchical
structure, such that lower-level variables such as image type were nested within higher-
level variables such as age. A mixed effects approach is better here at accounting for
heterogeneity/ variability within and between groups, provides increased flexibility with
modeling population level trends (e.g., fixed effects) and deviations from these trends
(e.g., random effects), and provides improved estimates for fixed effects accounting for
random variance. Using the lme4 package (Bates et al., 2015) in R (R Core Team, 2022),
a generalised linear mixed effects model was built via Maximum Likelihood method, with
the binomial distribution specified with the logit link (i.e., logarithm of odds). The
ANOVA function in the car package (Fox & Weisberg, 2019) was applied with the model
to check the significance of predictors. Variable selection and model building followed a
similar approach as the h"TUNL task analysis in Chapter 2. In Study A: UK, the GLMM

model used the following equation: Boundary extension effect = Age + FEducation +
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Digital experience score + (1 | Participant ID) + (1 | Image). In Study B: India, the
education variable was not included in the model due to the lack of variation in this
variable; the following equation was used in this study: Boundary extension effect = Age

+ Digital experience score + (1 | Participant ID) + (1 | Image).

Age was entered as a continuous variable in the model (see Gusten et al., 2021)
to capture the variability of its influence over the lifespan. Two random effects were
added to the model: a participant term and an image term (Judd et al., 2012). The
former accounts for variance introduced by individual differences in this study, while the
latter accounts for stimulus/ image influences on the age effect on BE. It should be noted
that image type was not investigated as a fixed effect as this study did not manipulate
the stimulus set or design parameters of each image, but the variation that the stimuli
introduce in terms of age effects can be accounted for as a random effect term in a
GLMM. The Akaike Information Criterion (AIC) was used to compare the fit of this
model with an exploratory model built without the image random effect, to determine
whether the addition of this parameter significantly changed model fit - a smaller AIC
indicates a better model fit for the observed data. Diagnostic tests were run to check

that the models met the required assumptions.

3.3. Results
3.3.1. Study A: UK

Sample Characteristics

Described in Chapter 2.3.1.

Rapid Serial Visual Presentation (RSVP) Task Performance
See Table 5 for a summary of the descriptive statistics for all outcome measures
presented in this section, including Response Distribution, Response Time, Confidence

Rating, and Boundary Extension (BE) Score between age groups.
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Table 5: Group Descriptive Statistics for RSVP Task Performance in Study A: UK

Young Adults Older Adults
Response Distribution % %
Closer** 22.03 31.53
The Same 58.97 59.54
Further Away** 19.00 8.93
Response Time (ms) M SD M SD
Closer** 2082.36 (1559.65) 2780.09 (2157.81)
The Same** 1773.89 (1811.22) 2155.30 (1886.96)
Further Away 1933.65 (1743.04) 2725.04 (2785.13)
Confidence Rating (0 to 3) ® M SD M SD
Closer 2.02 (0.66) 1.98 (0.60)
The Same 2.22 (0.70) 2.18 (0.57)
Further Away 2.02 (0.63) 1.85 (0.64)
Boundary Extension Score (-2 to 2) " M SD M SD
Scaled Responses™®** -0.04 (0.70) -0.25 (0.64)

Note. M and SD are used to represent Mean and Standard Deviation, respectively. For each of these
outcome measures, trial-level responses for each participant have been averaged at the group level by
response type, where appropriate.

* Indicates the level of significance of age differences at p < .05, ** p < .01, *** p < .001.

2 Confidence responses converted to a numeric scale as follows: “Can’t Remember” = 0, “Not Sure” = 1,
“Fairly Sure” = 2, “Very Sure” = 3. A higher confidence rating indicates greater confidence.

b Distance responses converted to a numeric scale as follows: “Much Closer” = -2, “A Little Closer” = -
1, “The Same” = 0, “A Little Further Away” = 1, “Much Further Away” = 2. A more negative score

indicates a greater boundary extension effect.

Response Distribution

A boundary extension (BE) effect is demonstrated by a disproportionately larger
number of incorrect ‘‘closer-up’ responses to the test image in the present task (Mullally
et al., 2012). Both age groups provided “the same” responses most frequently, followed

by “closer-up”, and then “further away” responses. Figure 17 visually presents the
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distribution of response types by age group. Comparing the distribution of response
types in the young group, there was no significant difference between the proportion of
incorrect “closer-up” and incorrect “further away” responses (#(109.97) = 0.12, p = .908,
Cohen’s d = 0.02), but differences were significant between incorrect “closer-up” and
correct “the same” responses (#(126.19) = -10.72, p < .001, Cohen’s d = -1.83) and “the
same” and “further away” responses (#(124.87) = -9.96, p < .001, Cohen’s d = -1.76)
with large effect sizes. In the older group, response proportions were significantly
different between all response types: “closer-up” and “further away” (#(101.54) = 5.92,
p < .001, Cohen’s d = 1.13), “closer-up” and “the same” (#(127.27) = -6.12, p < .001,
Cohen’s d = -1.07), and “the same” and “further away” (#(106.03) = -12.22, p < .001,
Cohen’s d = -2.23). Between age groups, older adults gave significantly more “closer-up”
responses than the young group (#(110.68) = 3.11, p = .002, Cohen’s d = 0.55) and
significantly fewer “further away” responses (#(95.97) = -3.03, p = .003, Cohen’s d = -
0.61), but differences were not significant on “the same” category (#(132.02) = 0.23, p =

.819, Cohen’s d = 0.04).
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Figure 17: Bar Plot displaying Percentage of Responses by Response Type compared

between Age groups in Study A: UK
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Note. Bars represent the mean percentage of responses for a specific response type within its corresponding
age category. Mean response percentage is calculated by dividing the total number of responses in each

category by the sum of all responses and multiplying it by 100.

Response Time

Turning towards mean RTs for each of the three response types, the slowest
responses were provided when choosing the “closer-up” option and the quickest responses

were given on “the same” option in both age groups (see Table 5). In the young group,
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RT on “closer-up” responses was not significantly different from “further-away” responses
(#(106.36) = 0.16, p = .869, Cohen’s d = 0.03), but the “closer-up” responses had a
significantly slower RT than “the same” responses with a small effect size (#(121.51) =
2.43, p = .049, Cohen’s d = 0.42). In the older group, after adjusting for multiple
comparisons, there were no significant differences between RT for “closer-up” and
“further away” responses (#(72.34) = 0.02, p = .982, Cohen’s d = 0.005), or “closer-up”
and “the same” responses (#(124.12) = 2.09, p = .116, Cohen’s d = 0.37). Comparing
between age groups, mean RTs in the older group were significantly slower (with small
effect sizes) than the young group for “closer-up” (#(112.37) = 2.72, p = .008, Cohen’s d
= 0.48) and “the same” responses (#(114.78) = 2.71, p = .008, Cohen’s d = 0.46), but

)

slowing for “further away” responses failed to reach statistical significance (#(69.24) =

1.90, p = .062, Cohen’s d = 0.40).

Confidence Rating

Consistent with the pattern observed for RT, Table 5 shows that there was a
lower confidence rating associated with “closer-up” responses, and a higher confidence
rating associated with “the same” responses - these differences were significant (after
adjusting for multiple comparisons) with a small effect size in the young group (#(131.62)
= -2.48, p = .043, Cohen’s d = -0.43), but not the older group (#(127.96) = -1.59, p =
342, Cohen’s d =-0.28). On the other hand, differences between “closer-up” and “further
away” responses were not significant in the young (#(112.89) = -0.04, p = .968, Cohen’s
d =) or older group (#81.04) = -0.03, p = .979, Cohen’s d = =-.005). Between ages,
there were no significant differences between confidence ratings associated with each
response type: “closer-up” (#(123.17) = -0.16, p = .871, Cohen’s d = -0.03), “the same”
(#(136.81) = -1.13, p = .259, Cohen’s d = -0.19), “further away” (£91.71) = -0.14, p =

.888, Cohen’s d = -0.03).
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Figure 18: Box and whisker plots displaying (A) Mean Response Time, and (B) Mean

Confidence Rating compared across Response Type and Age groups in Study A: UK
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Note. In plot (A), boxes represent the Interquartile Range (i.e., the middle 50% of values), with a horizontal
line drawn within each box to mark the Median value. The whiskers, or the lines extending from either
side of the box, display the dispersion of data, with the error bars representing the 95% confidence interval.

Raw data points have been added to the plots, with a small amount of jitter. The black dot on each box
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shows the Mean value. In plot (B), dots represent the mean confidence rating for each response type, the
error bars represent the 95% confidence interval, and a line has been drawn through these points for each

age group.

Boundary Extension Score

The boundary extension (BE) score combines the response types on a single
numeric scale - a more negative score on this scale indicates more “closer-up” responses
i.e., a boundary extension effect (Mullally et al., 2012). As 0 on this scale corresponds
with “the same” response, a score equal to 0 is not thought to reflect a BE response,
while a score greater than 0 is argued to reflect boundary contraction instead (Bainbridge
& Baker, 2020). Both age groups in this study showed a mean BE score below 0 (see
Table 5), but to understand whether these scores were significantly different from 0, one-
tailed T-tests were run. In the young group, mean BE score was not significantly different
from 0 (#(70) =-1.12, p = .134, Cohen’s d = -0.13), while the older group demonstrated
a statistically significant boundary extension effect with a large effect size (#(67) = -6.90,
p < .001, Cohen’s d =-0.84). This BE error performed by the older group was also
significantly larger than the young group with a moderate effect size (#(136.69) = -4.16,

p < .001, Cohen’s d = -0.71).

The BE error also varied as a function of the stimulus/ image on which distance
was judged (See Appendiz B for the stimulus set used in the RSVP task by Mullally et
al. (2012) applied in the present study). As shown in Figure 19, the mean BE score by
image was not below 0 (i.e., no boundary extension effect) for 11/24 (45.83%) of images
in the young group and 2/24 (8.33%) images in the older group. BE scores by image
ranged between 0.19 (SD = 0.58) for ‘Blender’ to -0.39 (SD = 0.82) for ‘Thread’ in the
young group; and 0.05 (SD = 0.54) for ‘Blender’ to -0.54 (SD = 0.66) for ‘Traffic cone’
in the older group. Although some images, such as ‘Blender’ and ‘Racquet’ had mean
BE scores above 0 (i.e., no BE effect) in both age groups, they were not excluded from

the analysis as the variation between participants, indexed by SD, was high. To account
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for this variation in the effect of Age on the probability of BE, the stimulus type as well

as a subject-level term were modelled as random effects in the model presented below.

In the generalised linear mixed model fitted to predict the probability of a BE
effect (i.e., score below 0), a significant main effect was found for Age (X*(1) = 7.99, p
= .005). The effect of Education did not reach statistical significance (X*(1) = 3.08, p =
.079), but it is relevant to report that this was driven by the Education below University-
level, for which a negative but non-significant effect on BE probability was observed (g
= -0.61, SE = 0.35, 2(3172) = -1.75, p = .079). In other words, probability of BE was
lower in the low education group, but this did not reach significance in the current
sample. Finally, there was no significant effect of Digital experience on BE (X* (1) =
0.71, p = .400). In terms of the variance explained by the image variable, including this
parameter in the model as a random effect significantly improved the fit as compared to
a model without image entered as a random effect (AICxomage = 3353.2, AICmage = 3262.7;
X*(1) =92.49, p < .001). See Figure 20 for a visualisation of the age trend for BE effect
with fixed and random effects. As depicted, the image random term partly accounts for
the variance in the model. Nonetheless, the age trend is observably similar across all

images - there is an increase in BE error probability with age.
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Figure 19: (A) Box and whisker plot displaying Mean Boundary Extension Score, and

(B) Mean Boundary Extension Score by Image Type compared between Age groups in

Study A: UK
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Note. A y-axis intercept has been added to both plots at 0 - a score below 0 reflects boundary extension
(Mullally et al., 2012), while a score above 0 is argued to reflect boundary contraction (Bainbridge &
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Baker, 2020). In box plot (A), boxes represent the IQR, horizontal line within boxes = Median, Error bars
= 95% confidence interval, coloured dots = jittered raw data points, black dots = Mean. In (B), the
position of image names on the y-axis (arrows added so that text does not overlap) corresponds with mean
BE scores for each image. Text in blue indicates images for which mean BE score was above the intercept
of 0 (i.e., no BE effect), and red words indicate images with a BE score below 0 (i.e., BE effect). The black

dot represents the mean BE score for each age group.
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Figure 20: Line plots visualising Marginal effects on the Probability of Boundary
Extension over (A) Levels of the fixed effect Age including variance by Random effects,

and (B) Levels of the Random effect Image by the fixed effect Age in Study A: UK
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Note. The y-axis represents the probability (0 - 1) of a boundary extension error being demonstrated (i.e.,

a BE score below 0). The line plots display the mixed effects model predictions of the marginal means in
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(A) averaged over different levels of the fixed factor Age, adjusted for Education and Digital experience,
and accounting for the variance of random effect terms Subject and Image, hence depicting large prediction
intervals for marginal effects. In plot (B), marginal effects are conditioned on each level of the random
effect ‘Tmage’ i.e., 24 images used in the RSVP task (taken from Mullally et al., 2012). See Appendiz B

for the stimulus set. These calculations were done using the ‘ggpredict’ function in the R ‘ggeffects’ package

with ‘type’ specified as “random”.

3.3.2. Study B: India

Sample Characteristics
This has been described in Chapter 2.3.2.

Rapid Serial Visual Presentation (RSVP) Task Performance

Table 6 provides a summary of the means and standard deviations for all outcome

measures analysed here i.e., Response Distribution, Response Time, Confidence Rating,

and Boundary Extension Score between age groups.

Boundary Extension

Table 6: Group Descriptive Statistics for RSVP Task Performance in Study B: India

Young Adults

Older Adults

Response Distribution % %

Closer** 31.84 40.42

The Same 43.06 44.20

Further Away 25.10 15.38
Response Time (ms) M SD M SD
Closer* 4386.88 (3989.20) 5555.21 (4501.39)
The Same 3065.73 (3604.77) 3578.59 (3702.20)
Further Away** 4637.42 (4280.06) 6058.62 (5123.93)
Confidence Rating (0 to 3) ® M SD M SD
Closer 2.41 (0.63) 2.43 (0.59)
The Same 2.60 (0.56) 2.53 (0.59)
Further Away 2.48 (0.61) 2.21 (0.58)
Boundary Extension Score (-2 to 2) " M SD M SD
Scaled Responses™*** -0.10 (0.97) -0.36 (0.97)
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Note. M and SD are used to represent Mean and Standard Deviation, respectively. For each of these
outcome measures, trial-level responses for each participant have been averaged at the group level by
response type, where appropriate.

* Indicates the level of significance of age differences at p < .05, ** p < .01, ¥*** p < .001.

® Confidence responses converted to a numeric scale as follows: “Can’t Remember” = 0, “Not Sure” = 1,
“Fairly Sure” = 2, “Very Sure” = 3. A higher confidence rating indicates greater confidence.

b Distance responses converted to a numeric scale as follows: “Much Closer” = -2, “A Little Closer” = -1,
“The Same” = 0, “A Little Further Away” = 1, “Much Further Away” = 2. A more negative score indicates

a greater boundary extension effect.

Response Distribution

On this task, a larger number of incorrect “closer-up” responses to the second
presentation of the image is thought to reflect the boundary extension error (Mullally et
al., 2012). In both age groups, “the same” responses were provided most frequently on
this task, followed by “closer up”; “further away” responses were least frequent. In the
young group, there were significant differences between “closer-up” and “the same”
responses (#(135.37) = -3.71, p < .001, Cohen’s d = -0.61), and “the same” and “further
away” responses (#(132.10) = -5.26, p < .001, Cohen’s d = -0.88), but not between
“closer-up” and “further away” responses (#(143.99) = 1.76, p = .080, Cohen’s d = 0.29).
On the other hand, in the older group, differences were significant between all categories:
“closer-up” and “further away” (#(119.79) = 5.31, p < .001, Cohen’s d = 0.95), “closer-
up” and “the same” (#(126.16) = -2.06, p = .042, Cohen’s d = -0.36), and “the same”
and “further away” (#(110.51) =-7.03, p < .001, Cohen’s d = -1.30). Between age groups,
older adults gave significantly more “closer-up” responses than young adults (#(131.37)
= 2.65, p = .009, Cohen’s d = 0.44). The percentage of responses was slightly higher for
older adults on “the same” category but not significantly different from young adults
(#(126.45) = 1.23, p = .219, Cohen’s d = 0.21); group differences were also not significant

for “further away” (#(108.38) = -1.64, p = .105, Cohen’s d = -0.30). See Figure 21 for a

graphical presentation of the response distribution for both age groups.
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Figure 21: Bar Plot displaying Percentage of Responses by Response Type compared

between Age groups in Study B: India
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Note. Bars represent the mean percentage of responses for a specific response type within its corresponding
age category. Mean response percentage is calculated by dividing the total number of responses in each

category by the sum of all responses and multiplying it by 100.

Response Time

In this study, “closer-up” responses were associated with higher RTs than “the
same” responses - these differences had a small effect size but did not reach statistical

significance after adjusting for multiple comparisons in the young (#(144.86) = 1.99, p =
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125, Cohen’s d = 0.33) or older age groups (#(119.37) = 2.21, p = .058, Cohen’s d =
0.39). The “same” responses were the quickest in both age groups. On the other hand,
“further away” responses were associated with the highest mean RT in both groups but
did not differ significantly from “closer-up” responses in the young (#(143.54) = -0.09, p
= .927, Cohen’s d = -0.15) or older (#96.57) = -0.86, p = .393, Cohen’s d = -0.16)
groups. Compared to the young group, RTs were significantly higher in the older group
for “closer-up” (#(137.04) = 2.58, p = .011, Cohen’s d = 0.43) and “further away”
(#(87.05) = 2.86, p = .005, Cohen’s d = 0.53) responses, but not for “the same” responses

(#(108.69) = 1.36, p = .175, Cohen’s d = 0.24).

Confidence Rating

In both age groups, the mean confidence rating was highest for “the same”
responses, but this was not significantly different from confidence for “closer-up”
responses in the young (#(144.59) = -2.19, p = .090, Cohen’s d = -0.36) or older groups
(#(125.65) = -1.05, p = .494, Cohen’s d = -0.18). In the young adults sample, the
confidence rating was lower for “closer-up” responses compared to “further away”, but
this was not significantly different (#(137.39) = -0.55, p = .581, Cohen’s d = -0.09).
Conversely, in the older group, “further away” responses were associated with the lowest
level of confidence, but this was not significantly different from confidence for “closer-
up” (#(100.14) = 1.16, p = .494, Cohen’s d = 0.21) after corrections for multiple
comparisons. Between ages, the young adults had a higher confidence rating for “the
same” responses, but this was not significantly different from the older group (#(124.23)
=-1.27, p = .206, Cohen’s d = -0.22). No significant differences were found between ages
for confidence ratings on “closer-up” (#(141.18) = -0.46, p = .647, Cohen’s d = -0.08) or

“further away” (#(108.25) = -1.93, p = .056, Cohen’s d = -0.35) responses.

108



Chapter 3 Boundary Extension

Figure 22: Box and whisker plots displaying (A) Mean Response Time, and (B) Mean

Confidence Rating compared across Response Type and Age groups in Study B: India
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Note. In plot (A), boxes represent the Interquartile Range (i.e., the middle 50% of values), with a horizontal
line drawn within each box to mark the Median value. The whiskers, or the lines extending from either
side of the box, display the dispersion of data, with the error bars representing the 95% confidence interval.

Raw data points have been added to the plots, with a small amount of jitter. The black dot on each box
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shows the Mean value. In plot (B), dots represent the mean confidence rating for each response type, the
error bars represent the 95% confidence interval, and a line has been drawn through these points for each

age group.

Boundary Extension Score

Both age groups demonstrated a boundary extension (BE) effect - mean BE scores
were negative for both groups (See Table 6 and Figure 23), and these scores were
significantly different from 0 (i.e. correct “the same” response) for the young adults with
a small effect size (#(75) = -2.10, p = .019, Cohen’s d = -0.24) and older adults with a
moderate effect size (#(71) = -5.88, p < .001, Cohen’s d = -0.69). A more negative score
indicates a greater boundary extension error (Mullally et al., 2012) - in this study, BE
scores were significantly lower (i.e., greater BE error) in the older group compared to
the young group (#(133.68) = -3.43, p < .001, Cohen’s d = -0.57) with a moderate effect

size.

Turning to stimulus/ image effects, Figure 23 depicts the mean BE score
calculated by image and age group in this study (see Appendiz B for the full set of images
used in this task). Mean BE scores by image were lower than 0 for 8 of 24 stimuli
(33.33%) in the young group and 1/24 (4.17%) images in the older group. In the young
group, BE scores by image ranged between 0.35 (SD = 0.99) for ‘Car’ to -0.48 (SD =
0.99) for ‘Crayons’; in the older group, the range was between 0.06 (SD = 0.98) for ‘Car’
t0 -0.67 (SD = 0.87) for ‘Oranges’. To capture the variance introduced by stimulus effects
in the model predicting effects of Age on BE probability, the image type and participant

ID were entered as random effects in the model below.

A generalised linear mixed model showed that there was a significant main effect
of Age (X*(1) = 4.98, p = .026), but not of Digital Experience (X*(1) = 0.20, p = .655)
on the probability of a boundary extension error being demonstrated. Including image
type as a random effect in this model along with a participant term significantly

improved the fit for the data, compared to a model with only a participant term as a
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random effect (AICxomage = 3959.90 > AlCmme = 3928.90; X*(1) = 32.95, p < .001).
Figure 24 portrays the age trend for BE effect estimated over levels of the fixed and
random effects. The probability of boundary extension varies between images,
introducing variance in the model predictions for Age effects, but the pattern of

increasing BE with age is consistently observed across the stimulus set.
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Figure 23: (A) Box and whisker plot displaying Mean Boundary Extension Score, and

(B) Mean Boundary Extension Score by Image Type compared between Age groups in

Study B: India

A

2-

Mean BE Score
o

L
L
-1 -
-2 1
India Young India Older
a2 Boundary Extension No Boundary Extension
Car
0.25 1 _
Birdhouse, Cift bag
Racquet Backpack Car
® 000 Lawn cha|r-.\‘~M§M.5rBeach chair
s Blender~Dog Dustpan |
Q - Birdhouse
(77] Knife @ Hairdryér—Man Beach chair
% Book Panda Knife l{Bac«'psmk
g -0.251 Tmf\ﬂ}, Cat Blender——, Racquet
g Toy Dinosaur Parrot Toy Dinosaur Lawn chair
fhread Hairdryer —Gift-bag@@ Man—Panda
Bup Oranges Traffic cor‘e”‘ﬁﬂ' Dustpan
- _/‘_‘\“\
-0.50 Crayons Bulb=cat wJpread - D09
Parrot ™ Crayons
Oranges M&M's
India Young India Older

Note. A y-axis intercept has been added to both plots at 0 - a score below 0 reflects boundary extension

(Mullally et al., 2012), while a score above 0 is argued to reflect boundary contraction (Bainbridge &
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Baker, 2020). In box plot (A), boxes represent the IQR, horizontal line within boxes = Median, Error bars
= 95% confidence interval, coloured dots = jittered raw data points, black dots = Mean. In (B), the
position of image names on the y-axis (arrows added so that text does not overlap) corresponds with mean
BE scores for each image. Text in blue indicates images for which mean BE score was above the intercept
of 0 (i.e., no BE effect), and red words indicate images with a BE score below 0 (i.e., BE effect). The black

dot represents the mean BE score for each age group.
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Figure 24: Line plots visualising Marginal effects on the Probability of Boundary
Extension over (A) Levels of the fixed effect Age including variance by Random effects,

and (B) Levels of the Random effect Image by the fixed effect Age in Study B: India
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Note. The y-axis represents the probability (0 - 1) of a boundary extension error being demonstrated (i.e.,

a BE score below 0). The line plots display the mixed effects model predictions of the marginal means in
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(A) averaged over different levels of the fixed factor Age, adjusted for Education and Digital experience,
and accounting for the variance of random effect terms Subject and Image, hence depicting large prediction
intervals for marginal effects. In plot (B), marginal effects are conditioned on each level of the random
effect ‘Tmage’ i.e., 24 images used in the RSVP task (taken from Mullally et al., 2012). See Appendiz B
for the stimulus set. These calculations were done using the ‘ggpredict’ function in the R ‘ggeffects’ package

with ‘type’ specified as “random”.
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3.4. Discussion

This experiment aimed to understand the effects of cognitive ageing on the
boundary extension effect (Intraub & Richardson, 1989) and whether this phenomenon
is similar across cultures. Consistent with evidence which suggests that the BE
phenomenon is universal (Intraub & Richardson, 1989; Seamon et al., 2002; Spano et al.,
2017), my results have shown that participants across age and cultural groups
demonstrate a BE effect. With increasing age, the probability of BE error also increases
- notably, this pattern is consistent across cultures. However, my results fail to replicate
BE performance patterns differentiating healthy controls from patients with damage to
brain regions involved in scene construction (De Luca et al., 2018; Mullally et al., 2012).
Specifically, I have found that the BE error demonstrated on the RSVP task by healthy
adults is less frequent than what has been previously reported (De Luca et al., 2018;
Mullally et al., 2012). In this section, I provide plausible explanations for this pattern of
results, and discuss broader implications for our understanding of the BE effect and

cognitive tasks designed to measure BE.

My results are consistent with findings of an age-related increase in BE in work
by Seamon et al. (2002) and, more recently, Chang et al. (2021) in a non-Western culture.
The multi-source model (Intraub, 2010, 2012) suggests that scene construction involves
the integration of multiple sources, including visuo-sensory input and contextual
information. In ageing, it has been argued that there is a bias towards greater
semanticization i.e., a greater reliance on general or semantic memory, rather than
specific details (Levine et al., 2002; Spreng et al., 2018). The increased probability of the
BE error with age, therefore, can be explained as a greater dependence on less detailed
information in pre-existing schemas which results in extrapolation or “filling in” of the
boundaries of a scene based on expectations and general knowledge. On the other hand,
boundary extension reductions observed in patients with damage to HC and regions

involved in the wider scene network (De Luca et al., 2018; Mullally et al., 2012) can be
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interpreted as a loss in their core ability to integrate visual, spatial, and contextual
information (i.e., scene construction), which is fundamental to boundary extension. This
contrasts with age-related changes in scene construction, as healthy older adults may
maintain their scene construction ability (revealed by the BE effect), but an age-related
loss of integrity may create an imbalance in the sources of information used to

extrapolate scenes, resulting in greater BE.

The age-related increase in BE is also compatible with the source monitoring
error (Johnson et al., 1993), as older adults are less likely to distinguish between
externally received and internally generated information, leading to an increase in false
memory errors (Hashtroudi et al., 1989; McDaniel et al., 2008; Mitchell et al., 2003).
This evidence is consistent with findings of an age-related increase in false memory errors
in the broader cognitive ageing literature (for reviews, see Devitt & Schacter, 2016;
Jacoby & Rhodes, 2006) - for example, in mnemonic discrimination tasks (Reagh et al.,
2014; C. E. L. Stark et al., 2010; S. M. Stark et al., 2013; Yassa, Mattfeld, et al., 2011).
Moreover, age-related changes in the MTL and prefrontal cortex are proposed to play
an important role in false memories (Devitt & Schacter, 2016). It is relevant to point out
that digital experience was not a significant predictor of boundary extension probability
in the present research, suggesting that a greater BE effect in older groups was unlikely
to be related to differences in experience with digital technologies compared to young

groups.

Between cultures, my results reveal a similar pattern of age-related changes in
BE amongst both British and Indian samples - an age-related increase in BE has also
been found by Chang et al. (2021) in Taiwanese participants. Beyond the boundary
extension error, a study on cross-cultural differences in categorical memory errors has
also found similar age-related changes (Gutchess & Boduroglu, 2019) i.e., older adults
across cultures were more prone to committing memory errors on a categorical recall
task, of both semantically related and unrelated information. In my results, it should be
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noted that differences can be observed in terms of the magnitude of BE error between
Study A: UK and Study B: India. A larger mean boundary extension effect is seen in the
Indian samples compared to UK in both age groups. While it was beyond the scope of
the present research to investigate factors which may underlie cross-cultural differences,
Gutchess et al., (2006) have suggested that memory strategy may differ across cultures
e.g., the reliance on categories for recall. It is important for future cross-cultural studies
to compare memory errors such as BE in well-matched cross-cultural samples to gain an
understanding of the mechanisms underlying differences. Nonetheless, my results provide
support for the idea that the susceptibility to memory errors observed in normal ageing
(Balota et al., 1999; Schacter et al., 1997) is cross-culturally invariant, possibly driven

by universal neurobiological processes in ageing.

Previous applications of the Rapid Serial Visual Presentation task (Mullally et
al., 2012) used here have detected a boundary extension effect across healthy older adults
and patients with damage to the HC and vmPFC regions. Crucially, while all participants
demonstrate BE, the degree of boundary extension error varies between healthy adults
and patient populations (De Luca et al., 2018; Mullally et al., 2012). In my work, I have
shown that all groups demonstrated BE, but both healthy young and healthy older
adults perform BE less frequently than what is reported in previous studies. Across age
groups and cultures, my results show that healthy adults provided “the same” responses
most frequently on the RSVP task, followed by “closer up”, and then “further away”
responses. Results for RT and confidence ratings by response type mirrored this
distribution in both age and cultural groups, with the quickest and most confident ratings
being provided on “the same” category, rather than “closer-up”. Most strikingly, this
response pattern is comparable with vimPFC (De Luca et al., 2018) and HC patient
groups (Mullally et al., 2012), rather than controls in previous studies. An important
question is raised here regarding the frequency of boundary extension observed in earlier

studies with healthy adults which is not replicated in my sample. Interestingly, Kim et
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al. (2015) also found that healthy older adults preferred to respond “the same”, similar
to patient performance in Mullally et al. (2012). When Kim et al. (2015) manipulated
the task design by telling participants that both images were different, they found a shift
in the decision criterion: performance of both patients and healthy older controls was
now biased towards the “closer” option, similar to performance of controls in Mullally et
al. (2012), implying that the BE error (as measured on the RSVP task) may be sensitive
to decision criteria. Cross-cultural research has also shown that response patterns on

rating scales may vary between cultures (J. W. Lee et al., 2002).

Another contribution to the variability in reports of the BE error could be
stimulus-level effects. In the present study, I used the same task design and stimuli from
Mullally et al. (2012). My results showed that the magnitude of the BE error varied
between stimuli and, interestingly, certain stimuli were more likely to elicit a boundary
contraction effect instead (i.e., mean scores above 0). In the healthy young groups, a
boundary contraction effect instead of BE was demonstrated on 45.83% of stimuli in
Study A: UK and 33.33% stimuli on Study B: India. Certain images caused a boundary
contraction effect in both age groups e.g., “blender” and “racquet” in Study A: UK, and
“car” in Study B: India. Cross-culturally, a larger mean BE effect is seen across most
stimuli in the Indian samples. As stimuli used in this study were not adapted for the
Indian population, this difference could be attributed to culture-specific semantic
associations with stimuli. However, if semantic associations drastically varied between
cultural groups, one would not expect to see any cultural invariance in stimulus-specific
effects. This was not the case as 25% of stimuli showed a boundary contraction effect
across both cultures when comparing between young groups (namely, “car”, “beach
chair”, “lawn chair”, “racquet”, “backpack”, “birdhouse”). Recent findings from
Bainbridge & Baker (2020) and Gandolfo (2023) on the effect of image properties on the
BE effect provide plausible explanations for these findings. In a large-scale online MTurk

study, Bainbridge & Baker (2020) used the RSVP paradigm to test the BE phenomenon
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on a new, diverse set of 1000 images with 2000 participants. The set was composed of
500 images of naturalistic scenes from the Scene Understanding Database, and 500
naturalistic objects downloaded from Google Open Images; each image was randomly
sampled from different categories within each database, and edits were made to ensure
that the positioning and sizing of all images were similar. Remarkably, they found that
object-oriented images primarily elicit a boundary extension effect, while the scene

images show an equal tendency to cause a boundary extension or contraction effect.

A key difference between scene and object processing is that the former takes into
account spatial and contextual relationships surrounding a single or multiple objects. In
the stimulus set tested in the Mullally et al. (2012) RSVP task (applied in my study),
all stimuli were designed to be images of single objects, but the amount of background
content provided varied between images. In their supplemental information, Mullally et
al. (2012) state that, in the 24 stimuli they used, the proportion of background contained
within each image was manipulated to prevent learning effects. However, they do not
report how the BE effects they observed varied as a function of the background
proportion, and do not provide information on how they calculated background
proportions in order for this variable to be included in the present analysis. Nonetheless,
in my results, it can be qualitatively observed that images for which a mean boundary
contraction effect was observed across cultural groups provided greater scene background
(or, could be categorised as scene images) e.g., a beach chair on a gravel beach and the
ocean in the background, or a car on the road and trees in the background. In contrast,
images which showed a high BE effect in both cultures provided no or little contextual
details (or, could be categorised as object images) e.g., a traffic cone, oranges, or crayons.
Bainbridge & Baker (2020) also found that these scene and object dissociations in BE
applied to memory as well as perceptual paradigms. Furthermore, Patel et al. (2023)
reported that BE is greater for object images as compared to face images. These

stimulus-level dissociations in BE effects may highlight the need to conceptualise the
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boundary extension phenomenon through broader representational accounts of MTL
function, which propose that brain regions and networks involved in scene and object
processing tasks are dissociable within the MTL (Graham et al., 2010; Murray et al.,
2017; Saksida & Bussey, 2010). This idea may explain why different types of stimulus
representations (i.e., scenes or objects) could be differentially vulnerable to memory
errors such as boundary extension. Furthermore, the heterogeneity in BE stimuli used

across studies could also contribute to inconsistencies observed in age effects.

In an additional task where Bainbridge & Baker (2020) collected subjective
distance ratings for how far the main object appeared to viewers, they found that images
which were composed of a main object which was subjectively closer were associated
with greater BE on the RSVP task, while objects which appeared more distant were
more likely to cause boundary contraction. This finding is consistent with the literature
as a key characteristic of the boundary extension effect reported by earlier studies is that
it is most pronounced for images of close-up scenes, and this effect reduces as more
space/ context around the scene is made visible (Intraub et al., 1992; Intraub &
Richardson, 1989). On the other hand, no boundary extension effect is observed on wide-
angle compositions (Intraub et al., 1992). Bainbridge & Baker (2020) add to this
understanding by highlighting that boundary contraction is, in fact, as common as
boundary extension for naturalistic scene images. An alternative interpretation provided
by Gandolfo et al. (2023) is that the BE effect depends upon depth of field (DOF) of an
image as determined by camera aperture settings i.e., a large aperture reduces depth of
field, causing the object to be more in focus and the background to be more out-of-focus
(e.g., portrait view on a camera), while a small aperture increases depth of field and
brings the background more into focus. A larger DOF is less characteristic of natural
human vision and, therefore, less naturalistic. Gandolfo et al. (2023) rated the 1000-
image set used by Bainbridge & Baker (2020) by DOF, and found that photographs with

DOF within the normal human range of vision largely led to boundary extension, while
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boundary contraction was observed on images with an unnaturally deep DOF (i.e.,
background details clearly in focus). Results from this study suggest that, while BE effect
may depend upon image properties as tested in a large sample of stimuli which are more
representative of our visual experiences (Bainbridge & Baker, 2020), BE effect is still
commonly observed when the composition of these images is more similar to how we
perceive our environment (Gandolfo et al., 2023). While an in-depth analysis of specific
image properties was beyond the scope of the present study, my results add to an
emerging understanding of how task-specific characteristics constrain the boundary

extension phenomenon, even across age and cultural differences.

Another reason for differences observed between my findings and earlier studies
with healthy adults using the RSVP task by Mullally et al. (2012) may be the sample
size. As previous studies recruited a small number of participants in each group, it is
possible that the boundary extension error has been overestimated in healthy controls
and underestimated in patients due to sample size limitations. It is well recognised that
the field of psychology suffers from a replication crisis (Open Science Collaboration,
2015) - statistically significant results found in low powered studies often fail to replicate
as they are characterised by greater variability in effects, leading to high cases of Type
[ and Type II errors i.e., false positives and false negatives respectively (Christley, 2010;
Oakes, 2017). To address these concerns, my study recruited a comparatively larger
sample than earlier studies in this area, statistically accounted for variance introduced
by individual differences and stimulus effects, and reported effect sizes where relevant.
Importantly, in terms of the main effect of interest in my study - ageing - I have shown
that, despite variance introduced by sample and image characteristics on the BE effect,
the age trend of BE is observably similar across stimuli. With increasing age, the
probability of boundary extension increases across cultures, at the task-level and the

stimulus-level.

A notable limitation of the present study is that a standardised memory test was
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not used in the present study to screen for MCI in the older group. While it is not
possible to rule out effects of pathological changes on cognitive performance, it is unlikely
that my results are confounded by memory impairments, as the performance of older
adults with MCI would be expected to be more similar to amnesic populations who show
an attenuated BE effect (Mullally et al., 2012) - this was not observed. In terms of cross-
cultural comparisons, it should be noted that the RSVP task stimuli (Mullally et al.,
2012) were not adapted for the Indian population. In order to understand whether the
BE effect generalised in a new cultural context, it was important to keep test stimuli
constant. However, it is possible that familiarity and/or semantic associations with
stimuli varied across cultures, and this could partly explain the higher BE magnitude
demonstrated in both Indian age groups, compared to UK. Future studies should validate
a wider set of task stimuli across large-scale cross-cultural samples - this is best achieved
using online testing methods as employed in Bainbridge & Baker (2020). Given
significant stimulus-level variation observed in the present study, it would be important
for further investigations to consider effects of specific image characteristics on RSVP
task performance. While this was beyond the scope of the present study, one way to
achieve this is the objective identification and quantification of low- and high-level visual
image properties (e.g., Rouw et al., 1997) and the inclusion of these parameters in models
predicting BE. This can be calculated using R packages such as ‘imagefluency’ (Mayer,
2021), as well as more advanced machine learning methods. It would be interesting for
future research to explore how BE performance correlates with broader functions of the
MTL, such as in memory and perception (Graham et al., 2010; Saksida & Bussey, 2010)
- if boundary extension and contraction phenomena vary for object and scene stimuli (as
implied by Bainbridge & Baker, 2020), this may provide justification to view these
phenomena from a representational-hierarchical lens. Age effects may have differential

influences upon boundary extension for different stimulus types.
The present study is the first to find support for the boundary extension

123



Chapter 3 Boundary Extension

phenomenon in the Indian cultural context, adding to the body of literature which shows
that this adaptive memory error is universally demonstrated (Intraub & Richardson,
1989; Seamon et al., 2002; Spano et al., 2017). In the context of ageing, I have found
strong evidence for a cross-culturally consistent age-related increase in the BE error,
consistent with the broader cognitive ageing literature which finds an increase in memory
errors in older adults e.g., on mnemonic discrimination tasks (Reagh et al., 2014; C. E.
L. Stark et al., 2010; S. M. Stark et al., 2013; Yassa, Mattfeld, et al., 2011). However,
my results have also highlighted the fragility of the BE effect. I have shown that the
boundary extension effect is less frequent than previously reported with healthy adults
(De Luca et al., 2018; Mullally et al., 2012). The variation observed in the BE effect can
partly be attributed to stimulus-level effects on tasks such as the Mullally et al. (2012)
RSVP paradigm, suggesting that the BE effect is constrained by stimulus characteristics,
in line with recent work by Bainbridge & Baker (2020) and Gandolfo et al. (2023). In
this case, it is difficult to tease apart the cognitive phenomenon (i.e., BE) from
constraints of the tool used to measure it (i.e., RSVP task and stimuli). It is important
for future research to consider how different BE paradigms and task stimuli may mediate

the finding of an age effect on boundary extension.
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Chapter 4: Influence of Age on Complex Perception

across Cultures

4.1. Introduction

Representational models of Medial Temporal Lobe function (Graham et al., 2010;
Saksida & Bussey, 2010) propose that sub-regions, such as the hippocampus (HC) and
perirhinal cortex (PRC), are functionally heterogeneous and dissociable — they play a
role in both mnemonic and perceptual functions, and are specialised for the processing
of different types of stimulus representations i.e., scenes in HC and objects in PRC. In
the ventral visual-perirhinal-hippocampal pathway of information processing, brain
regions are organised in a hierarchical continuum of representations: earlier/ lower levels
represent basic features and later/ higher levels represent more complex feature
conjunctions (Cowell et al., 2010). The MTL is responsible for the formation of these
complex visual representations, which facilitate the differentiation of stimuli with high
degrees of feature overlap (in complex perception) and the resolution of perceptual
interference (in memory). Within the MTL, the level of operation in the representational
hierarchy determines the involvement of structures with different representational
content: object representation and resolution occur in the PRC, while the combination
of object conjunctions with spatio-temporal context takes place in the HC (consistent
with the key role it plays in episodic memory). Normal age-related structural and
functional changes in MTL regions (Berron et al., 2018; Fjell et al., 2014; Leal & Yassa,
2015; Lockhart & DeCarli, 2014; Ryan et al., 2012) have been associated with deficits in
cognitive functions which rely on the quality of these representations, such as in memory
(Gusten et al., 2021; Reagh et al., 2016). However, it is presently unclear whether ageing
can also lead to impairments in complex perception, and research is yet to examine age-

related changes in this cognitive function across cultures (Leal et al., 2017).

Assessments of age-related changes in MTL-based representations have largely
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focused on mnemonic discrimination tasks, which test the ability to differentiate between
events/ representations in memory which share similar features. Such tasks have found
age-related impairments in complex conjunctive representations of scene/ spatial
(Gusten et al., 2021; Reagh et al., 2016; Reagh & Yassa, 2014; S. M. Stark & Stark,
2017), object (Gusten et al., 2021; Holden et al., 2013; S. M. Stark et al., 2015; S. M.
Stark & Stark, 2017; Toner et al., 2009), and emotion (Leal et al., 2017; Leal & Yassa,
2014) content, thereby indicating that the formation of high-fidelity mmnemonic
representations of visual stimuli is sensitive to ageing across representational content and
task demands. However, the specificity of mnemonic discrimination measures may be
limited e.g., the Mnemonic Similarity Task (Kirwan & Stark, 2007; S. M. Stark et al.,
2013) is found to require involvement of cognitive control in addition to memory
(Pishdadian et al., 2020). On the other hand, perceptual discrimination tasks, which
assess the ability to differentiate between stimuli with high degrees of feature similarities,
have received little attention in this context. They are known to tax similar MTL
representations while also being specific to MTL processes (Graham et al., 2010). A
perceptual task which relies on the complex representational functions of the MTL is the

Oddity Perceptual Discrimination task (A. C. H. Lee, Buckley, et al., 2005).

The Oddity paradigm involves the simultaneous presentation of an array of visual
stimuli from which one stimulus is slightly different from the others; participants are
simply asked to identify the “odd-one-out” from these stimuli (A. C. H. Lee, Buckley, et
al., 2005). Stimuli presented simultaneously depict the same representational content
(e.g., an array of scenes or objects) and are trial-unique. This design allows for the
manipulation of perceptual demands (i.e., degrees of feature overlap between similar
stimuli), while reducing memory retrieval needs. In line with the representational view
of the MTL, the task tests the assumption that discriminations of stimuli involving
complex conjunctions of features (such as scenes, objects, faces, different viewpoints)

place greater demands upon MTL representations, while discriminations which can be
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solved based on single features (e.g., size, shape, or colour) are unimpaired by MTL

lesions or loss of integrity (Graham et al., 2010).

Over the past two decades, several studies have demonstrated the sensitivity of
the Oddity perceptual task to MTL function and dysfunction in investigations of animal
lesions, dementia patients, genetic risk for AD, healthy adults, and neuroimaging
(Barense et al., 2007; Buckley et al., 2001; Erez et al., 2013; Hodgetts et al., 2015, 2017,
2019; A. C. H. Lee, Buckley, et al., 2005; A. C. H. Lee et al., 2006; Shine et al., 2015; for
a review, see Graham et al., 2010). Furthermore, the task stimuli can be varied to test
different categories of representational content which correspond with different M'TL sub-
regions and associated networks - Oddity scene stimuli/ representations are specialised
within the HC, while object and face stimuli are processed with the perirhinal cortex
(Barense et al., 2009; Hodgetts et al., 2015; A. C. H. Lee, Buckley, et al., 2005; A. C. H.
Lee, Bussey, et al., 2005; A. C. H. Lee et al., 2006, 2008). Recently, the Oddity task has
also been adapted to test emotion stimulus representations (Coad et al., 2020). This
study found some evidence for tract dissociations between face and emotion
representations - it should be noted that both stimuli involve faces, but the former tests
discriminations of face identity while the latter focuses on emotions conveyed through
facial expressions. Integrating these findings with a representational view (Cowell et al.,
2010) suggests that there are further segregations along the ventral visual-perirhinal-
hippocampal pathway, for which the Oddity task may be a useful assessment tool.
Despite this large body of evidence linking the Oddity perceptual discrimination task
with specialisations of the MTL, its application in the study of cognitive ageing of MTL-

based representations has received limited attention so far.

A key finding from the implementation of the Oddity task is that a high degree
of perceptual interference (i.e., high feature overlap/ perceptual similarity) between
stimuli is associated with poorer task performance when there is a loss of MTL integrity,
arising from lesions as well as normal age-related changes (Gellersen et al., 2021;

127



Chapter 4 Complex Perception

Newsome et al., 2012; Ryan et al., 2012). Ryan et al. (2012) compared the performance
of young and older adults on an Object perceptual discrimination task consisting of
complex blob-like objects and simpler squares. Results showed that older adults
performed worse on the more complex blob-like objects, and this was linked to lesser
activation in PRC regions in older adults compared to young adults. More recently,
Gellersen et al. (2021) applied the Oddity task with a sample of young adults and
cognitively unimpaired older adults matched in terms of education. Their Oddity task
consisted of computer-generated scenes and novel objects (i.e., greebles) — the use of
novel stimuli ensured that familiarity was matched across participants, and there were
no pre-existing semantic associations. Moreover, previous studies have shown that
performance deficits may be larger when the task involves novel stimuli such as greebles
(Barense et al., 2007; Mason et al., 2017). Gellersen et al. (2021) used Oddity stimuli
which were presented in two conditions of difficulty: a high ambiguity condition
characterised by higher feature overlap which required processing of conjunctions of
features and different viewpoints, and a low ambiguity condition where stimuli could be
differentiated based on simple perceptual features. A decline in performance was
observed as feature ambiguity increased — importantly, older adults demonstrated a
significantly larger performance deficit on the high ambiguity condition compared to
young adults. Taken together, these studies suggest that perceptual discrimination
involving stimuli with high degrees of feature overlap such as complex scenes and objects
viewed from different viewpoints, is sensitive to age-related changes in MTL regions;
while perceptual processing of simpler features such as shape or size discriminations does
not show age-related differences. Till date, cognitive ageing studies of perceptual
discrimination have investigated two MTL-based representational categories i.e., -
complex scenes and objects. It is yet to be determined whether similar age effects are
observed in the perceptual discrimination of other complex conjunctions, such as faces

(e.g., Lee et al., 2008) and emotions (Coad et al., 2020).
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A further question to ask is whether the magnitude of age-related discrimination
deficits differs between representational categories, which would reveal specific
vulnerabilities of MTL networks in ageing. Although no studies on perceptual
discrimination have compared category-specific vulnerabilities so far, recent research
using mnemonic discrimination paradigms provide some support for greater object
discrimination deficits than spatial impairments in healthy ageing (Gusten et al., 2021;
Reagh et al., 2016, 2018). For example, Reagh et al. (2016) applied a mnemonic
discrimination task involving images of common objects, which either differed by identity
on the object task or by screen location in the spatial task. They tested young and older
adults — the older adults were split into aged-impaired and aged-unimpaired groups based
on performance on a standardised word-learning task thought to be sensitive to
dysfunction in episodic memory regions in the MTL. They found that the aged-impaired
group showed a lower performance in both categories, relative to the young adults group.
However, the aged-unimpaired group only showed a lower performance on the object
identity mnemonic discrimination task compared to the young adults’ group, indicating
that there is a greater age-related impact on object discrimination, even in healthy

ageing.

In a further study, Reagh et al. (2018) applied an fMRI approach to investigate
the neural mechanisms underlying object and scene performance using an adapted
version of the mnemonic discrimination task used in Reagh et al. (2016). Behavioural
results showed that older adults performed more poorly than young adults in both scene
and object categories, but the difference in performance was greater on the object
mnemonic discrimination task. This correlated with a lower level of activation of the
anterolateral ERC in the older group during object discrimination — the PRC has
connections with this region. In another functional neuroimaging study, Berron and
colleagues (2018) designed an object-scene mnemonic discrimination task which

comprised of computer-generated everyday indoor objects or empty indoor scenes. They
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found that lower performance on the object task in older adults was associated with
significantly lower category-specific activity in the PRC relative to young adults.
Interestingly, the behavioural results revealed that while older adults showed reduced
ability to discriminate perceptually similar stimuli, this impairment was not specific to
scenes or objects. Evidence from another mnemonic discrimination study with a different
task design and stimuli also found that older adults, compared to young adults, showed
an overall performance deficit on scene and object tasks (S. M. Stark & Stark, 2017).
Berron et al. (2018) discuss that tasks that are used to investigate category-specific
effects are generally not matched in terms of difficulty of stimuli tested across categories,
making it difficult to determine whether any performance differences are due to category-
specific effects or simply stimulus/ task effects. Another limitation identified by Gusten
et al. (2021) is that the age groups recruited across studies is not consistent, and the

inclusion of pre-clinical individuals can influence category-specific age effects.

Gusten et al. (2021) address these criticisms by testing a large-scale sample on a
wide set of different stimuli. While they note that a larger stimulus set does not guarantee
that difficulty is matched between scene and object tasks, the diversity of stimuli reduces
the risk of obtaining stimulus- or task-specific effects unrelated to the category. They
tested a large online sample of participants across the adult lifespan (18-77 years, N =
1554) and across a demographically diverse group (Amazon MTurk population) to
compare the age trajectory of scene and object mnemonic discrimination. The tasks
involved a 2-back design, in which participants were shown a sequence of four stimuli
(either scenes or objects) and asked to respond to each stimulus with old/ new
judgments. The stimuli were computer-generated images of rooms or familiar indoor
objects. In their analysis, notably, they modelled age as a continuous variable rather
than categorical (i.e., young and older) to capture the variance in age which may be
underestimated with a categorical modelling approach and, consequently, to address

issues of generalisability seen in previous studies of category-specific effects. While results
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showed an age-related decline in performance on both stimulus categories, a stronger
negative age trend was observed on the object task as compared to scenes. These results
corroborate the view that object performance shows a greater age-related cognitive
decline than scenes. To date, there are no studies which have employed perceptual
discrimination tasks, such as the Oddity task, to directly compare performance in scene
and object categories across the lifespan, but evidence from mnemonic discrimination
tasks discussed here suggests that the object processing network is more vulnerable to

ageing compared to scene processing.

Most cognitive ageing research discussed so far has focused on populations from
Western or Higher-Income countries. One recent cross-cultural study tested mnemonic
discrimination of stimuli involving higher-level conjunctions (i.e., objects from the
Mnemonic Similarity Task (MST); Kirwan & Stark, 2007; Stark et al., 2015) and lower-
level features (i.e., shape, colour, and stripes) in American and East Asian young adults
(Leger et al., 2023). Results showed that the performance of American participants was
higher than East Asians across levels of representation and task demands, but it should
be noted that the MST task stimuli uses concrete/ everyday object stimuli which may
carry different semantic associations between cultures. This research is yet to be
expanded to older adults cross-culturally and, till date, no study has applied a perceptual
discrimination paradigm with a non-HIC population. In the context of ageing, it is yet
to be understood whether perceptual discrimination of MTL-dependent complex
processing would be more sensitive to age than lower-level perceptual processing across
cultures. Evidence from neuroimaging and neuropathological literature suggests that age-
related changes in cognitive functions which depend upon the MTL may generalise cross-
culturally. Healthy older adults often demonstrate age-related reductions in brain volume
of MTL regions, such as the hippocampus (Fjell et al., 2009, 2014) - this finding has
been replicated in studies with culturally, ethnically, and educationally diverse

populations in North America (Fletcher et al., 2018) and East Asia (Chee et al., 2011).
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Furthermore, Goh et al. (2007) have found that ageing results in decreased activation of
the hippocampus across cultures - cognitive functions associated with hippocampal
integrity, such as complex scene processing, may show similar trajectories of decline as a
result. In the present chapter, I use a digital version of the Oddity perceptual
discrimination task (A. C. H. Lee, Buckley, et al., 2005) on the MiND app (introduced
in Chapter 1) to assess the influence of age on MTL-dependent complex perceptual
representations across two cultures: UK and India. The MiND Oddity task - which uses
a simple, non-verbal paradigm, and culture-neutral stimuli - provides an opportunity to

address gaps identified here in the cognitive ageing literature.

First, I ask whether perceptual representations across representational categories
are sensitive to age. Robust evidence for age-related deficits has been found using
mnemonic discrimination tasks across complex representational categories (Gusten et
al., 2021; Leal & Yassa, 2014; Reagh et al., 2016; S. M. Stark & Stark, 2017). Perceptual
discrimination, which relies on similar MTL representations (Graham et al., 2010), may
also show impairments in healthy ageing (Gellersen et al., 2021; Ryan et al., 2012).
Compared to previous studies, I will be exploring age effects on a wider range of
perceptual stimulus categories i.e., scene, face, novel object, emotion, square size
(control) variations. Similar to Gusten et al. (2021), T will be modeling age as a
continuous variable to capture the variability in age-related performance, particularly in
healthy middle to older-aged adults (50-70 years). I predict that an age-related decline
will be observed on stimulus categories for which discriminations involve complex
conjunctive representations which depend upon MTL integrity e.g., high-ambiguity
scenes, objects, faces and emotions. As the size Oddity requires simpler single feature
comparisons to find the “odd-one-out”, I predict that this performance would not be

sensitive to age-related changes (hence, a control task).

Second, I test whether vulnerabilities to age-related perceptual impairments vary
by representational category. Recent research on differential content vulnerabilities using
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mnemonic discrimination tasks has found that object discrimination shows greater age-
related impairments than scenes (Berron et al., 2018; Gusten et al., 2021; Reagh et al.,
2016, 2018; S. M. Stark & Stark, 2017). In this study, I will be extending this hypothesis
to perceptual discrimination of scenes and objects (i.e., greebles) - I focus here on these
two categories as previous evidence has found clear dissociations between the MTL
regions and networks associated with the processing of scenes and objects (A. C. H. Lee
et al., 2006; Murray et al., 2017; Ranganath & Ritchey, 2012). I expect to see a steeper

performance decline with age on object perceptual discrimination compared to scenes.

Third, I examine whether the pattern of age effects observed for MTL-dependent
complex perception generalises to other cultures. Studies on age-related structural
changes in MTL regions (such as reductions in brain volume) find similar trajectories
across cultures (Chee et al., 2011; Fletcher et al., 2018), suggesting convergence with
age. I focus here on two countries which, compared to the commonly used East-West
divide, are closer on the cultural distance scale (Muthukrishna et al., 2020) i.e., UK
(HIC) and India (LMIC). As no existing study compares British and Indian participants
on the MTL-dependent function studied here, it is not possible to provide a prediction.
These research questions will provide greater insight into how cognitive tasks can be
applied cross-culturally to understand age-related decline of MTL functions, particularly
in LMICs where there is a growing need for the development of culturally appropriate

cognitive assessments.

4.2. Methods
4.2.1. Participants

Described in Chapter 2.2.1.

4.2.2. Procedure

Described in Chapter 2.2.2.
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4.2.3. Materials
MiND Oddity Perceptual Discrimination Task

A 3-choice Oddity perceptual discrimination task (A. C. H. Lee, Buckley, et al.,
2005) was used, which tested five representational categories: (i) Scene, (ii) Face, (iii)
Novel Object, (iv) Emotion, and (v) Square Size (control category). On each trial, three
images were presented on the screen simultaneously, arranged in a triad (top centre,
bottom left, bottom right). Two of these images showed the same stimulus, while the
third image was a different stimulus. Participants were asked to respond by touching the

unique or odd-one-out image on every trial.

The task was separated into 5 blocks of 36 trials each, with each block consisting
of a different representational category. At the start of every block, an instruction screen
was shown to tell participants which stimulus category they were going to be tested on.
This was followed by a practice phase of 3 trials for that stimulus category, and
participants were given feedback on whether their responses were correct (smiley face)
or incorrect (sad face). At the end of this, participants could choose to repeat the practice
or to proceed to the test phase for that stimulus category. If they proceeded to the test
phase, they were presented with 36 trials, and no feedback was given here. The time
limit for each trial was set to 30 seconds — previous piloting with the task showed that
this was sufficiently long to encourage participants to respond on every trial. Participants
were also instructed to respond as quickly and accurately as possible. The task would
proceed to the next trial as soon as the participant provided a response or the trial
timed-out. The inter-trial interval was 1000 ms, where a blank screen was shown to
prevent participants from using the location of previous stimuli to guide their choice. At
the end of every block, participants were shown a progress bar with the percentage of
total blocks they had completed, and they were given the opportunity to take a short
break before continuing with the next block. The order of the 5 blocks was randomised

for all participants, with the restriction that the Face Identity and Face Emotion Oddity
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blocks would not immediately follow each other. Furthermore, the presentation of trials

within each block was also randomised.

Stimuli were computer-generated, greyscale, high ambiguity (i.e., different
viewpoints), and presented on a white background. None of the stimuli were repeated
across trials. See Figure 25 for example images of each stimulus category; Appendiz C
shows the instructions provided to participants on each category. The design and

presentation of stimuli for each of the blocks are described below:

(1) Scene Oddity: Participants were presented with three scenes — two images showed
the same rooms from different viewpoints, and the third image showed a
perceptually similar but different room also from a different viewpoint. Different
viewing angles were used within each trial so that trials would not be easily solved
by single feature matching but, instead, participants would be required to form
representations of the images and process multiple features (Barense et al., 2010).
The scene stimuli used in this experiment were images of three-dimensional,
virtual reality, indoor rooms - these were created by Barense et al. (2010) using
a video game editor. Each of the rooms differed with respect to the size, location,
or orientation of one or more features e.g., windows, staircase, beams, walls.
Viewpoint and position of the odd-one-out images were counterbalanced across
trials.

(i1) Face Oddity: On this category, participants were shown two faces of the same
person, but from different viewing angles, and one face of a different person also
from a different viewpoint. The FaceGen Modeller 3.5 (Singular Inversions, 2022)
software was used to randomly generate face stimuli for this category. As one of
the aims of this experiment was to understand whether these tasks found similar
effects when applied across populations, the race, gender, emotion, and age
settings on the software were manipulated to avoid population-specific biases in
stimulus design. These parameters were set to the same level for the triad of faces
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(iii)

(iv)

on every trial. This resulted in statistically culture-neutral, gender-neutral, and
emotion-neutral faces, that were age-matched (ranging between 20 - 50 years)
within trials. The genetic setting was used to reduce the similarity level of a single
face on every trial i.e., the odd-one-out image. Consistent with viewing angles
used in the Face Oddity task in Barense et al. (2010), a combination of 3 of 4
viewpoints were applied to all faces on each trial: Straight on, 45° to the left, 45°
to the right and up, and straight up.

Object Oddity: The objects used in this experiment were “greebles” i.e., a set of

novel computer-generated three-dimensional objects (Gauthier & Tarr, 1997).
This was chosen as greebles are unfamiliar stimuli for which participants would
not hold pre-existing semantic knowledge, unlike other real-world objects that
could be familiar or meaningful and, thereby, confound task performance.
Furthermore, as these were computer-generated, it was possible to manipulate the
degree of feature ambiguity. Participants were shown two identical greebles
presented from different viewing angles, and a third similar looking but different
greeble. The stimuli were similar to those used by Barense et al. (2010). In the
original images, the greebles were purple in colour, but this was changed to
greyscale in this experiment to keep it constant with other stimulus categories.
On each trial, greebles were selected to be from the same family, same gender,
and same symmetry (symmetrical vs. asymmetrical). The odd-one-out greeble on
every trial was selected so that it displayed the maximum amount of feature
overlap that was possible with the other two identical greebles. As determined by
previous piloting by Barense et al. (2010), the difficulty level of this category was
matched with the Scene Oddity stimuli also taken from the same experiment.

Emotion Oddity: For this category, three different faces were shown on every trial,

with two displaying the same emotion and a third displaying a different emotion.

The task design was adapted from the facial emotion expression discrimination
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v)

tasks used in Coad et al. (2020) and Palermo et al. (2013). The stimuli were
independently created for this experiment, using the FaceGen Modeller 3.5
software (Singular Inversions, 2022). To avoid cultural and gender biases in
emotion recognition (e.g., “other race” effect in discrimination of similar face
stimuli described by Chang et al. (2015), the race and gender settings were kept
neutral for all faces. Furthermore, the viewpoint and age of faces was kept
constant within trials. The emotion setting was used to generate faces with the
six basic emotions of happiness, surprise, fear, sadness, disgust, and anger
(Ekman, 1992). The emotion hexagon (Young et al., 2002) - which organises the
basic emotions in a hexagon with neighbouring emotions being more perceptually
confusable (i.e., happiness—surprise; surprise—fear; fear—sadness; sadness—disgust;
disgust—anger; anger—happiness) - was used to assign a different but similar-
looking ‘neighbouring” emotion to the odd-one-out image on every trial.
Viewpoint, emotion, emotion neighbours, and position of the odd-one-out images
were counterbalanced across trials.

Size Oddity (Control): For this category, participants were required to

discriminate between the sizes of black squares. Two squares were of the same
size, and one square was either bigger or smaller in size. The stimuli were designed
by Barense et al. (2010). The difference in square sizes used in this experiment
was between 9 and 15 pixels. The alignment of square positions was manipulated
so that they did not line up either horizontally or vertically. This was particularly
relevant for the bottom left and right images so that the vertical alignment would

not be used as a reference for size discrimination.
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Demographics and Digital Experience Survey

Described in Chapter 2.2.5.

Figure 25: MiND Oddity Perceptual Discrimination Task Stimulus Categories

Scene Oddity Face Oddity Object Oddity

- 0

Emotion Oddity Size (Control) Oddity

—
-

Note. Examples of stimuli on the MiND Oddity task. Only three images from the same category are

displayed on the screen at the same time. The goal is to find the “odd-one-out” Orange boxes show the
correct response on every triad.
4.2.4. Analysis

Details about the software and software packages used for data cleaning, analyses,
and visualisations in this chapter are reported in Chapter 2.2.4. All steps described here

were independently executed with the datasets for Study A: UK and Study B: India.

Due to the length of the Oddity task, it is possible that some participants got
distracted or fatigued and responded randomly - this necessitates the implementation of
rigorous data cleaning methods. To check for random clicks in the same location, the
total number of clicks (not necessarily consecutive) in each selection position (Left/
Right/ Top) was calculated for each participant for each category. The presentation of

targets in each location on every block was equal i.e., 12/36 trials; therefore, if
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participants clicked in the same position in any single block/ category more than 2/3
times i.e., more than 24/36 trials, the entire category was excluded for the subject.
Applying this criterion resulted in the identification of 1 participant from the UK young
group who clicked in the same selection position (right) 29 times — this particular
category was excluded for this participant alone. Reassuringly, no other participant
clicked in the same position more than 22 times on any category. Accuracy by trial
stimuli in each stimulus category was also examined to check whether there were any
trials where the average performance of all participants was below chance. Group average
proportion correct was calculated for all stimuli triads used in each category (unique
across trials). If, for any stimulus, the average accuracy was below chance i.e., below
0.33, that particular stimulus was excluded for all subjects in the study. This resulted in
the exclusion of 1 stimulus on the Face category, and 1 stimulus on the Emotion category
in Study A: UK. In Study B: India, three stimuli were excluded, one each from the

Emotion, Face, and Object categories.

For response time, a minimum threshold of 200 ms was implemented across
categories as the minimum amount of time for providing a physiological response (Ashby
& Townsend, 1980; see Gusten et al., 2021 for a similar implementation of RT cut-off;
Whelan, 2008). This resulted in the exclusion of 3 trials (1 from the Object Oddity and
2 from Size Oddity) in Study A: UK, and 1 trial (from the Object Oddity) in Study B:
India. As the Oddity task on MiND had a time-out set at 30,000 ms (or, 30 secs) for
each trial, beyond which the task would proceed to the next trial if a response was not
given, no further upper threshold was applied so as not to exclude large amounts of data
(e.g., other methods using SD/ median/ MAD, boxplot method would exclude 1 - 2% of
data). Furthermore, time-outs were treated as ‘False’ accuracy and not exclusions (so
that average accuracy was not inflated). In Study A: UK, 0.003% of the trials across
categories were time-outs; and in Study B: India, 0.009% were time-outs. Checks were

also conducted with the data to identify any potential effects arising from block order
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and target presentation position. The presentation order of the five Oddity blocks was
randomised, rather than counterbalanced. Due to the sample size per group, the
randomisation resulted in an uneven distribution of Oddity categories for each
presentation order across groups. To account for any order effects, the block order of
each Oddity category was included as a variable in the modelling approach discussed
further. The presentation of target stimulus (correct Oddity choice in each trial) in either
the left, right, or top location of the screen was equally distributed across trials i.e.,
12/36 trials per location in each block. Mean accuracy and RT for targets presented in
the top position were lower than targets presented in the left or right positions across
categories and groups. For accuracy (True/ False) and RT, mixed effect models were run
at the trial-level to check the effect of target position. Though it was found to be
significant for both outcome measures, this effect was consistent across categories and
did not change the model outcomes presented further, so it was not included in the final
individual-level models which use accuracy and RT aggregated across categories for each
individual. These outcome measures (described below) had to be calculated at the

individual-level rather than the trial-level.

Three outcome measures were calculated for each individual on each of the
stimulus categories on the Oddity task: i) Mean Accuracy (as proportion correct), ii)
Mean Response Time (RT), and iii) Inverse Efficiency Scores (IES). i) Mean Accuracy
was measured as proportion of correct responses on a scale of 0 - 1. This was done by
calculating the sum of all correct responses divided by the sum of all correct and incorrect
responses. Based on the values calculated for accuracy, further outlier exclusions were
carried out at this stage. The probability of responding at chance or randomly on any 3-
choice trial was taken to be below 0.33 or 33%. Participants who had average accuracy
scores below chance on any of the stimulus categories were excluded for that stimulus
category only. In Study A: UK, 4 participants were excluded for the Object Oddity (n =

1 young, n = 3 older), and 1 young participant for the Size Oddity. In Study B: India, 2
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participants were excluded for the Face Oddity (n = 1 young, n = 1 older), 31 for Object
Oddity (n = 14 young, n = 17 older), 1 older participant for Scene Oddity, and 1 young
participant for Size Oddity. After making these exclusions, further outcome measures
were calculated. ii) The mean RT was calculated by averaging RT only for correct
responses across all trials for each condition. iii) Finally, a combined speed and accuracy
measure - IES (Townsend & Ashby, 1978) - was calculated by dividing Mean RT by
Mean Accuracy (as proportion correct). On this task, IES would be a useful measure as
performance strategies (e.g., speed over accuracy) may vary between Oddity categories
and/ or age groups. Correlations were also calculated between speed and accuracy by

Oddity category and age group.

Statistical Tests and Modelling

Performance means on each of the three outcome measures were statistically
compared between young and older age groups using Welch independent sample t-tests.
This test does not make the assumption of equal variances (i.e., standard deviations)
between samples. To understand which variables significantly predicted performance on
each of the outcome measures, linear mixed effects (LME) models were built using the
Ime4 package (Bates et al., 2015) and the ImerTest package (Kuznetsova et al., 2017) on
R (R Core Team, 2022). The models included fixed main effects and a participant-level
random effect; they were fitted using the Restricted Maximum Likelihood method. In
Study A: UK, the equation for the model, with effects entered in this exact order, is
given here: Qutcome measure = Oddity Category*Age + Education + Digital experience
score + Block number + (1 | Participant ID). In Study B: India, the Education variable
was not included as only one participant had an education level below University. The
modeling equation used in Study B: India is as follows: Outcome measure = Oddity
Category*Age + Digital experience score + Block number + (1 | Participant ID).
Contrast coding (using the deviation method) was applied with the Oddity category

variable, as recommended for factors with multiple levels in an LME model. All
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predictors were entered as non-standardised variables in the model to make the

interpretation of results more meaningful.

The main effects analysed were Oddity category and Age - both these were
analysed as independent main effects and in interaction. Age was modelled as a
continuous variable, similar to Gusten et al. (2021) - they argue that ageing is a gradual,
continuous process and should be modelled accordingly. However, unlike Gusten et al.
(2021), the present study did not include participants across the lifespan as it was beyond
the scope of this research, but treating age as a continuous variable was useful to account
for the greater age distribution (i.e., 50 - 70 years) in the older sample in both studies.
As Digital experience differed significantly between young and older age groups in both
studies, this was added as a fixed effect term. On the other hand, as Gender and the
Number of Spoken languages did not differ significantly between Age groups and did not
improve model fit, these were not included in the analyses. As explained earlier, the
block order was also entered as a fixed effect term to account for any influence on
performance of the order of presentation across categories. To account for individual
variability in performance, a random effect term for each participant was added to the
models (for a similar analysis, see Gellersen et al., 2021). Model diagnostic tests showed
that all models met the required assumptions. To compare the model estimates for age
trends/ slopes between the scene and object categories, post-hoc comparisons were run
using the emmeans package (Lenth, 2022) on R (R Core Team, 2022). Corrections for
multiple comparisons were applied using the Tukey method where appropriate. I also
explored differences between age trajectories on other Oddity categories but did not have
specific hypotheses for these. Additionally, a separate LME model was built in each study
which only included data from the Scene and Object categories to directly compare age

effects on both these categories.
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4.3. Results
4.3.1. Study A: UK

Sample Characteristics

Described in Chapter 2.5.1.

Oddity Perceptual Discrimination Task Performance

For all outcome measures discussed in this Results section (i.e., Proportion
Correct, Response Time, and Inverse Efficiency Scores), a summary of the mean values
and standard deviations for each Oddity category and age group is presented in Table 7.

All model estimates for each of the outcome measures are plotted in Figure 28.

Table 7: Group Descriptive Statistics for Oddity Task Performance in Study A: UK

Young Adults Older Adults
Proportion Correct (0 — 1) M SD M SD
Scene Oddity 0.87 0.11 0.89 0.07
Face Oddity 0.79 0.12 0.76 0.11
Object Oddity 0.77 0.16 0.79 0.16
Emotion Oddity 0.82 0.11 0.80 0.10
Size (Control) Oddity*** 0.76 0.14 0.85 0.12
Response Time (ms) M SD M SD
Scene Oddity*** 5601.35 1815.31 9529.97 2156.34
Face Oddity*** 3926.04 1393.88 7119.44 2118.59
Object Oddity*** 4868.73 1626.02 8958.56 2147.01
Emotion Oddity*** 3900.16 1107.67 6711.22 1858.67
Size (Control) Oddity*** 2761.30 807.97 3828.87 1092.44
Inverse Efficiency Score (ms) M SD M SD
Scene Oddity*** 6448.16 1963.46 10736.32 2529.11
Face Oddity*** 5088.79 2032.61 9538.63 3072.00
Object Oddity*** 6489.75 2599.74 11915.37 4082.48
Emotion Oddity*** 4764.13 1207.78 8536.65 2465.69
Size (Control) Oddity*** 3672.52 924.91 4570.56 1401.14
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Note. M and SD are used to represent Mean and Standard Deviation, respectively.

* Indicates the level of significance of age differences at p < .05, ** p < .01, ¥*** p < .001.

Proportion Correct

The mean accuracy of participants on the Oddity task, measured as the
proportion correct on a scale of 0 - 1, was significantly above chance (0.33) for the healthy
young participants on all stimulus categories (Scene: #(70) = 40.09, p < .001, Cohen’s d
= 4.76; Face: #(69) = 33.01, p < .001, Cohen’s d = 3.95; Object: t(69) = 23.54, p < .001,
Cohen’s d = 2.81; Emotion: #(70) = 36.04, p < .001, Cohen’s d = 4.28; and Size: #(69)
= 25.03, p < .001, Cohen’s d = 2.99). The older participants also showed above chance
performance on all categories (Scene: #(68) = 67.24, p < .001, Cohen’s d = 8.10; Face:
t(68) = 32.42, p < .001, Cohen’s d = 3.90; Object: #(65) = 23.64, p < .001, Cohen’s d
= 2.91; Emotion: #(68) = 37.16, p < .001, Cohen’s d = 4.47; and Size: #(68) = 36.72, p
< .001, Cohen’s d = 4.42). Comparing between categories, the mean accuracy on the
Scene Oddity was the highest in both age groups, with older participants scoring higher
than young participants. The group differences, however, were not found to be
statistically significant (#(116.75) = 1.51, p = .132, Cohen’s d = 0.25). On the other
hand, the young age group had the lowest mean accuracy on the Size (control) category,
while the Older group demonstrated the second highest scores on this category, and
performed significantly more accurately than the young group (#(132.59) = 4.07, p <
.001, Cohen’s d = 0.69). These results should be interpreted with caution as results for
mean response time showed that the RTs of both age groups were highest on the Scene
category and lowest on the Size category, with young participants performing faster than
older participants on both categories. This indicates a possible speed-accuracy trade-off
in performance on these categories and is analysed further in subsequent sections. Moving
to the Face and Emotion categories, the mean accuracy of young participants was higher
than their older counterparts, but these differences were not statistically significant

(Face: #(136.87) = -1.31, p = .193, Cohen’s d = -0.22; Emotion: #(137.39) = -1.31, p =
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194, Cohen’s d = -0.22). Similarly, group differences were not significant on the Object
category (#(133.54) = 0.56, p = .579, Cohen’s d = 0.10), although older participants
scored higher than young participants on average. Figure 26 uses box plots to display

mean accuracy (i.e., Proportion Correct) across categories and age groups.

In the linear mixed effects model predicting Proportion Correct, there was a
significant main effect of Category (F(4, 541.62) = 10.28, p < .001), and of the interaction
between Category and Age (F(4, 541.62) = 10.09, p < .001). However, the main effect
of Age was not found to be significant (F(1, 131.43) = 0.83, p = .363). Post-hoc
comparisons with estimated marginal means showed that the age trend for the Size
category was characterised by a steeper slope than other categories, with the older adults
performing higher than young adults. The gradient of this slope was significantly
different from all other categories (Size and Scene contrast: #(545) = -3.19, p = .013;
Face: t(545) = -5.59, p < .001; Object: #(547) = -4.20, p < .001; and Emotion: #(545) =
-5.24, p < .001). Upon further investigation, it was found that the interaction effects
observed here were partly driven by the Size category®. Although the Scene category was
also characterised by a slightly positive slope (i.e., an increase in Proportion Correct over
age), there was no significant difference between this age trend and what was observed
for the Face (#(545) = -2.41, p = .114) and Object (#(546) = -1.04, p = .837) categories.
Beyond this, there were no significant differences between the age trends of the Face
category and Emotion (#(545) = 0.36, p = .996) and Object categories (#(547) = -1.35,
p = .658). Finally, the demographic variables Education (F(1, 132.49) = 0.14, p = .706)
and Digital Experience (F(1, 131.56) = 0.648, p = .422) did not have a significant effect

on Proportion Correct.

3 When the Size category was excluded from the dataset in an exploratory model, the interaction between

Category and Age was not significant for Proportion Correct (F(3, 405.92) = 2.56, p = .062).
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Response Time

On all Oddity categories, the mean response time (calculated for accurately
answered trials only) was significantly lower for young participants than older
participants i.e., young participants made faster responses (Scene: #(132.75) = 11.65, p
< .001, Cohen’s d = 1.97; Face: #(117.35) = 10.48, p < .001, Cohen’s d = 1.78; Object:
£(120.98) = 12.47, p < .001, Cohen’s d = 2.15; Emotion: #(110.28) = 10.83, p < .001,
Cohen’s d = 1.84; and Size: #(125.22) = 6.54, p < .001, Cohen’s d = 1.11). These RTs
were longest for the Scene Oddity and shortest for the Size Oddity (control category) in
both age groups. The response time (correct trials only) across categories and age groups

is displayed using box plots in Figure 26.

Results from the linear mixed effects model built for Response Time (fitted by
Restricted Maximum Likelihood) showed a significant main effect of Age (F(1, 135.14)
= 157.56, p < .001), thereby corroborating the group differences reported above -
increasing age was associated with increasing RTs across all Oddity categories. Moreover,
a significant main effect was found for Category (F(4, 544.94) = 8.26, p < .001), and the
interaction between Category and Age (F(4, 544.92) = 38.14, p < .001). Post-hoc
comparisons were conducted (corrected for multiple comparisons with the Tukey method
where appropriate) to examine the slope of the relationship between Response Time and
Age between categories. It was observed that the age trend of the Scene category differed
significantly from Face (#(545) = -3.05, p = .020) and Emotion categories (#(545) = -
4.14, p < .001), with the Scene category characterised by a slightly steeper slope i.e., a
greater increase in RT over age. However, there was no significant difference between the
age trend for the Scene and Object categories (#(546) = 0.50, p = .987). For the Face
category, the pattern was significantly different from the Object category (#(546) = -
3.53, p = .004) which had a steeper slope, while the difference in the age trend was not
significant between the Face and Emotion categories (#(545) = -1.07, p = .824). The

Response Time age trend for the Size (control) category was comparatively flatter than
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other categories - a smaller increase in RT over age was observed despite there being a
significant difference between the performance of both age groups as reported earlier.
This trend was significantly different from all other categories (Size and Scene contrast:
t(545) = 10.43, p < .001; Face: #(545) = 7.36, p < .001; Object: #(546) = 10.83, p < .001;
and Emotion: #(545) = 6.30, p < .001). Turning to the demographic variables added to
the model, a significant effect was not observed for Education (F(1, 135.80) = 0.10, p =

.755) or Digital Experience (F(1, 135.23) = 0.17, p = .681).
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Figure 26: Box and whisker plots displaying (A) Mean Proportion Correct, and (B)

Mean Response Time compared across Stimulus categories and Age groups in Study A:
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Note. Boxes represent the Interquartile Range (i.e., the middle 50% of values), with a horizontal line drawn
within each box to mark the Median value. The whiskers, or the lines extending from either side of the
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box, display the dispersion of data, with the error bars representing the 95% confidence interval. Raw data
points have been added to the plots, with a small amount of jitter. The black dot on each box shows the
Mean value. An intercept has been added to plot (A) to display performance at chance (0.33 or 33%

accuracy).

Inverse Efficiency Scores

As observed from the results obtained for Response Time and Proportion Correct,
young adults demonstrated highest accuracy and slowest RT on the Scene category
compared to other categories, and lowest accuracy and fastest RT on the Size category.
In other words, decisions that were made more slowly tended to have higher accuracy
and responses which were faster were associated with lower accuracy. The speed-accuracy
trade-off suggested here was analysed further using correlation tests between proportion
correct and response time on each of the categories (See Figure 27 for correlation plots).
It was found that, in the young group, there was a positive medium correlation between
both outcome measures on the Scene category (r = 0.40, p < .001), and a large
correlation on the Size category (r = .52, p < .001). Additionally, a medium correlation
was also found on the Emotion category (r = 0.44, p < .001), and a small correlation on
the Object (r = 0.28, p = .018) category. Interestingly, a significant relationship was not
found between speed and accuracy for the Face category (r = 0.11, p = .373), implying
that young participants did not prioritise either speed or accuracy at the expense of the
other outcome on this category. On the other hand, a different pattern of results emerged
with the older adults, suggesting that they may have employed a different performance
strategy. There were no significant correlations between Response Time and Proportion
Correct on the Scene (r = 0.07, p = .550), Face (r = 0.07, p = .594), Object (r = 0.06,
p = .639), and Emotion (r = 0.10, p = .397) categories. On the Size category, a small
correlation was observed, but this was not statistically significant either (r = 0.20, p =
.092). To recall, older adults had low response times on the Size category, and yet
maintained high accuracy and significantly outperformed young adults. Given evidence

for a speed accuracy trade-off in the young sample, results from an integrated outcome
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measure, Inverse Efficiency Scores, are described here. However, it is best to take into

consideration all outcome measures described so far when interpreting the results.

Similar to the pattern obtained with Response Time, the mean IES (which can
be understood as mean Response Time for correct trials adjusted for the mean
Proportion of Error) for young adults was significantly lower than for older adults on all
categories (Scene: #(128.25) = 11.18, p < .001, Cohen’s d = 1.89; Face: #(117.74) = 10.06,
p < .001, Cohen’s d = 1.71; Object: #(109.17) = 9.18, p < .001, Cohen’s d = 1.59;
Emotion: #(98.22) = 11.44, p < .001, Cohen’s d = 1.94; and Size: #(117.58) = 4.45, p <
.001, Cohen’s d = 0.76). Between categories, IES was highest (i.e., least efficient
performance) on the Object category, closely followed by the Scene category, and lowest
on the Size category in both age groups. These results are visualised in Figure 27 using

box plots.

In a linear mixed effects model predicting IES, a significant main effect was found
for Category (F(4, 545.60) = 3.06, p = .016), Age (F(1, 135.14) = 175.49, p < .001), and
the interaction between Category and Age (F(4, 545.61) = 31.64, p < .001). As
mentioned above, IES increased with age (characterised by a positive slope), but the
gradient of the slope varied between categories. The trend for the Size (control) category
was significantly flatter than the Scene (#(546) = 6.50, p < .001), Face (#(545) = 7.97, p
< .001), Object (#(547) = 10.67, p < .001), and Emotion (#(546) = 6.50, p < .001)
categories. Interestingly, the Object category had the steepest slope (higher increase in
IES with an increase in age), and this was significantly different from the Scene (#(547)
= 3.08, p = .019) and Face (#(547) = -2.76, p = .047) categories. However, no significant
differences were found between the age contrasts of the Scene and Face (#(545) = 0.32,
p = .998), and the Face and Emotion categories (#(545) = -1.48, p = .576). Returning
to the main effects, it should be reported that there was no significant effect of Education
(F(1, 136.39) = 0.80, p = .372), and Digital Experience (F(1, 135.29) = 0.17, p = .679)
on IES. Focusing on just the scene and object contrasts, a model which only included
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data for these two Oddity categories revealed, once again, that performance on the object
category showed a significantly greater decline with age than the scene category: #(136)
= 2.65, p = .009. The comparison of IES age trends for scene and object categories is

visualised in Figure 29.
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Figure 27: (A) Scatter plot visualising the relationship between Mean Response Time
and Mean Proportion Correct, and (B) Box and whisker plot displaying Mean Inverse

Efficiency Scores compared across Stimulus categories and Age groups in Study A: UK
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Note. The scatter plot in (A) displays the raw data points with regression lines (formula = y ~ x) drawn
through them, and the bands represent the 95% confidence interval. In the box plot in (B), boxes represent
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the IQR, horizontal line within boxes = Median, Error bars = 95% confidence interval, coloured dots =

jittered raw data points, black dots = Mean.

Figure 28: Line plots visualising the effect of Age on (A) Mean Proportion Correct, (B)
Mean Response Time, and (C) Mean Inverse Efficiency Scores compared across Stimulus

categories in Study A: UK
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Note. The line plots display the mixed effects model predictions of the marginal means (i.e., averaged over

different levels of the fixed effects Age and Oddity category, and adjusted for Education and Digital
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experience) for each of the outcome measures in (A), (B), and (C). The bands represent the 95% confidence
intervals for the predicted values. These calculations were done using the ‘ggemmeans’ function in the R
‘ggeffects’ package. The raw data points have been added to each of the plots. As seen from the dispersion
of the data points, the age range of the participants tested in the older group was wider than the young
group; no jitter has been added to these points. Outliers displayed here were not removed as they did not

change the model effects.

Figure 29: Focus Analysis for Scene and Object Oddity categories visualising the effect

of Age on Mean Inverse Efficiency Scores in Study A: UK
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Note. The model effects visualised here focused on data for the Scene and Object Oddity categories. The

line plots display the mixed effects model predictions of the marginal means (i.e., averaged over different
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levels of the fixed effects Age and Oddity category, and adjusted for Education and Digital experience).
The bands represent the 95% confidence intervals for the predicted values. These calculations were done
using the ‘ggemmeans’ function in the R ‘ggeffects’ package. The raw data points have been added to each

of the plots. No jitter has been added to these points. Outliers displayed here were not removed as they

did not change the model effects.

4.3.2. Study B: India
Sample Characteristics

Described in Chapter 2.5.2.

Oddity Perceptual Discrimination Task Performance

A summary of the means and standard deviations for all performance measures

across categories and age groups is provided in Table 8. See Figure 32 for a visualisation

of model predictions across categories.

Complex Perception

Table 8: Group Descriptive Statistics for Oddity Task Performance in Study B: India

Young Adults

Older Adults

Proportion Correct (0 — 1) M SD M SD
Scene Oddity™* 0.83 0.11 0.79 0.09
Face Oddity* 0.73 0.14 0.68 0.14
Object Oddity* 0.73 0.16 0.66 0.17
Emotion Oddity™** 0.80 0.11 0.68 0.14
Size (Control) Oddity** 0.78 0.12 0.84 0.12
Response Time (ms) M SD M SD
Scene Oddity*** 8304.07 2467.37 10916.05 2603.46
Face Oddity*** 6119.97 2318.01 7735.38 2335.43
Object Oddity*** 7418.06 2344.42 10098.85 2882.51
Emotion Oddity*** 5787.41 1546.02 8296.72 2655.31
Size (Control) Oddity 4686.60 1419.55 4618.71 1344.21
Inverse Efficiency Score (ms) M SD M SD
Scene Oddity*** 9969.10 2606.50 13828.73 3467.44
Face Oddity*** 8552.11 3107.18 11865.08 4575.92
Object Oddity*** 10616.02 3958.56 16177.39 6808.90
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Emotion Oddity*** 7320.79 1942.93 13027.13 6451.06

Size (Control) Oddity 6105.98 1863.14 5566.59 1697.77

Note. M and SD are used to represent Mean and Standard Deviation, respectively.

* Indicates the level of significance of age differences at p < .05, ** p < .01, ¥*** p < .001.

Proportion Correct

The mean Proportion Correct (or accuracy) of the healthy young participants
was significantly above chance on all Oddity categories (Scene: #(75) = 39.78, p < .001,
Cohen’s d = 4.56; Face: t(74) = 23.82, p < .001, Cohen’s d = 2.75; Object: #(61) = 19.61,
p < .001, Cohen’s d = 2.49; Emotion: #75) = 36.65, p < .001, Cohen’s d = 4.20; and
Size: t(74) = 32.18, p < .001, Cohen’s d = 3.72). The mean accuracy of older participants
was also significantly above chance across categories in the Indian sample (Scene: #(70)
= 43.54, p < .001, Cohen’s d = 5.17; Face: #(70) = 21.46, p < .001, Cohen’s d = 2.55;
Object: #(54) = 14.36, p < .001, Cohen’s d = 1.94; Emotion: #71) = 22.04, p < .001,
Cohen’s d = 2.60; and Size: #(71) = 36.11, p < .001, Cohen’s d = 4.26). Between
categories, the young participants demonstrated the highest performance on the Scene
Oddity, and this was significantly higher than the accuracy of older participants
(#(142.65) = -2.17, p = .034, Cohen’s d = -0.36). Conversely, on the Size Oddity, the
older participants had higher accuracy than all other categories, and this was
significantly higher than young participants (#(144.85) = 3.05, p = .003, Cohen’s d =
0.50). Interestingly, performance on the Object Oddity was lowest in both groups, even
after the outlier exclusion criteria applied at the cleaning stage (n = 14 participants
excluded from young group, and n = 17 from the older group on this category). However,
young participants still scored significantly higher than older adults on the Object
Oddity (#(111.26) = -2.23, p = .028, Cohen’s d = -0.41). Similarly, young participants
also showed a significantly higher performance on the Face (#(144.00) = -2.11, p = .037,
Cohen’s d = -0.35) and Emotion (#(137.86) = -5.77, p < .001, Cohen’s d = -0.95)

categories. See Figure 30 for box plots comparing Proportion Correct across categories
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and age groups.

The linear mixed effects model built to predict Proportion Correct provided
further insight into the performance reported above. The main effect of Category (F(4,
548.71) = 7.83, p < .001), Age group (F(1, 141.93) = 5.19, p = .024), and the Interaction
between Category and Age (F(4, 549.15) = 12.78, p < .001) were found to be significant
for this outcome measure. Further analysis with post-hoc tests showed that, while mean
accuracy was the highest in the Scene category across age groups, there was no significant
difference between the age trends of the Scene and Object (#(560) = -0.96, p = .873),
Scene and Face categories (#(549) = -0.38, p = .996), and Scene and Emotion categories
(#(548) = -3.15, p = .014) — the age trend of all these categories was characterised by a
negative slope (i.e., decrease in Proportion Correct over age). Similarly, the slope of the
Face category was not significantly different from the Object (#(559) = 0.61, p = .973),
and Emotion categories (#(549) = -2.77, p = .046). Only on the Size category, there was
a positive slope for the age trend (i.e., increase in Proportion Correct over age), and this
was significantly different from the Scene (#(549) = -3.83, p = .001), Face (#(549) = -
4.19, p < .001), Object (#(559) = -4.50, p < .001), and Emotion (#549) = -6.99, p <
.001) categories. Turning to the main effect of Digital Experience, this was also found to

be a significant predictor of Accuracy (F(1, 140.25) = 5.68, p = .018).

Response Time

Young adults made significantly faster responses (measured for correct trials only)
than older adults on the Scene (#(142.87) = 6.23, p < .001, Cohen’s d = 1.03), Face
(#(143.44) = 4.19, p < .001, Cohen’s d = 0.69), Object (#(104.20) = 5.47, p < .001,
Cohen’s d = 1.02), and Emotion (#112.90) = 6.98, p < .001, Cohen’s d = 1.15)
categories. However, the difference between age groups was not significant on the Size
Oddity (#(144.97) =-0.30, p = .766, Cohen’s d = -0.05), with the older group responding
slightly quicker than the young group on average. Both groups displayed slowest average

RTs on the Scene category, closely followed by the Object category, and fastest RTs on
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the Size category. The RT values are presented using box plots in Figure 30.

In the mixed effects model, Category (F(4, 550.62) = 9.64, p < .001), Age (F(1,
145.01) = 56.25, p < .001), and the interaction between Category and Age (F(4, 550.91)
= 19.84, p < .001) were found to have a significant effect on Response Time. Results
from post-hoc tests on the age trend showed that the increase in RT with age was not
significantly different between Scene and Object (#(556) = 1.47, p = .582), Scene and
Face (#(549) = -2.56, p = .079), and Scene and Emotion categories (#(548) = 0.21, p =
.9996). However, the age trend observed for the Face Oddity was significantly different
from the Object (#(556) = -3.83, p = .001) and Emotion categories (#(548) = 2.77, p =
.046), as the Face category was characterised by a comparatively flatter slope. Finally,
the Size (control) category showed the flattest age slope, and this was significantly
different from all other categories (Size and Scene contrast: #(549) = 6.63, p < .001; Face:
{(549) = 4.05, p < .001; Object: #(556) = 7.60, p < .001; and Emotion: #(548) = 6.85, p
< .001). The effect of Digital Experience on RT also reached statistical significance (F(1,

143.77) = 3.91, p = .0498).
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Figure 30: Box and whisker plots displaying (A) Mean Proportion Correct, and (B)

Mean Response Time compared across Stimulus categories and Age groups in Study B:
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Note. Boxes represent the Interquartile Range (i.e., the middle 50% of values), with a horizontal line drawn

within each box to mark the Median value. The whiskers, or the lines extending from either side of the
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box, display the dispersion of data, with the error bars representing the 95% confidence interval. Raw data
points have been added to the plots, with a small amount of jitter. The black dot on each box shows the
Mean value. An intercept has been added to plot (A) to display performance at chance (0.33 or 33%

accuracy).

Inverse Efficiency Scores

Correlation tests were conducted to study the relationship between Proportion
Correct and Response Time to determine whether there was a speed-accuracy trade-off
which would influence the interpretation of results (correlation plots can be found in
Figure 31). It was found that the young group displayed significant medium correlations
on the Scene (r = 0.49, p < .001), Face (r = 0.38, p < .001), and Emotion (r = 0.33, p
= .004) categories, with RT and Proportion Correct increasing in the same direction i.e.,
higher response times were associated with higher accuracy. On the Size category, a small
non-significant correlation was observed between both measures (r = 0.21, p = .072).
There was also no evidence for a significant speed-accuracy trade-off on the Object
category (r = 0.18, p = .170), where performance of the young adults (as well as older
adults) was amongst the lowest. In the older group, there were no significant correlations
between RT and accuracy on the Scene (r = 0.18, p = .126), Face (r = 0.12, p = .332),
Object (r=10.18, p = .181), or Size (r = 0.20, p = .088) categories. The emotion category
was characterised by a small but significant negative correlation between both outcome
measures (r = -0.28, p = .019), indicating that taking more time to respond was not
associated with higher accuracy on this category — this is not suggestive of a speed-
accuracy trade-off and could be attributed to other reasons such as fatigue or distraction.
On the other hand, the results described for the young group point towards a speed-
accuracy trade-off on most categories and, therefore, a combined outcome measure (i.e.,
IES scores) has been calculated and analysed further for both groups to account for

varying response strategies when comparing group performance.

Young adults were found to have significantly lower IES (i.e., better performance)
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than older adults on the Scene (#(129.68) = 7.59, p < .001, Cohen’s d = 1.26), Face
(#(122.39) = 5.09, p < .001, Cohen’s d = 0.85), Object (#(84.51) = 5.31, p < .001, Cohen’s
d = 1.00), and Emotion (#(83.15) = 7.20, p < .001, Cohen’s d = 1.20) categories. On the
contrary, on the Size category, the young group had a higher performance than the older
group, but this difference did not reach statistical significance (#(144.61) = -1.84, p =
.068, Cohen’s d = -0.30). Furthermore, mean IES scores on the Size category were the
lowest (i.e., most efficient performance) amongst all categories in both age groups, while
the Object category had the highest TES scores (i.e., least efficient performance) in both
groups. It was previously seen that the Object category was characterised by the lowest
accuracy and relatively high RTs. See Figure 31 for a box plot of the Inverse Efficiency

Scores across categories and age groups in this study.

A significant main effect was found for Category (F(4, 552.69) = 4.78, p < .001),
Age (F(1, 144.76) = 81.51, p < .001), and the interaction between Category and Age
(F(4, 553.26) = 20.75, p < .001) in the mixed effects model predicting Inverse Efficiency
Scores. Post-hoc comparisons which were used to explore the interactions between
Category and Age showed that there was no significant difference between the age trend
of the Scene and Face categories (#(549) = -0.71, p = .954). A contrast between the Scene
and Object category was also non-significant (#(563) = 2.66, p = .062), even though the
Object category was characterised by the steepest slope between categories (i.e., highest
increase in IES with increasing age). The age trend for the Face category was relatively
flatter and significantly different from the Object (#(562) = -3.31, p = .009) and Emotion
categories (#(549) = 3.27, p = .010). The slope of the Size category was observed to be
slightly negative and relatively flat - this age trend was significantly different from the
Scene (#(549) = 5.34, p < .001), Face (#(549) = 4.61 p < .001), Object (#(562) = 7.61, p
< .001), and Emotion (#(549) = 7.92, p < .001) categories. Finally, there was no
significant main effect of Digital Experience (F(1, 142.63) = 0.47, p = .492) in this model.

In a model which only included data for the scene and object categories, to facilitate a
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direct comparison, a significant difference was revealed between both categories (#(132)
= 240, p = .018). Similar to results found in Study A: UK, the object category was
characterised by a steeper slope which reflected poorer performance with increasing age.
See Figure 33 for a visualisation of the comparison of IES age trends for scene and object

categories.
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Figure 31: (A) Scatter plot visualising the relationship between Mean Response Time

and Mean Proportion Correct, and (B) Box and whisker plot displaying Mean Inverse

Efficiency Scores compared across Stimulus categories and Age groups in Study B: India
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Note. The scatter plot in (A) displays the raw data points with regression lines (formula = y ~ x) drawn
through them, and the bands represent the 95% confidence interval. In the box plot in (B), boxes represent
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the IQR, horizontal line within boxes = Median, Error bars = 95% confidence interval, coloured dots =

jittered raw data points, black dots = Mean.

Figure 32: Line plots visualising the effect of Age on (A) Mean Proportion Correct, (B)
Mean Response Time, and (C) Mean Inverse Efficiency Scores compared across Stimulus

categories in Study B: India
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Note. The line plots display the mixed effects model predictions of the marginal means (i.e., averaged over

different levels of the fixed effects Age and Oddity category, and adjusted for Digital experience) for each
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of the outcome measures in (A), (B), and (C). The bands represent the 95% confidence intervals for the
predicted values. These calculations were done using the ‘ggemmeans’ function in the R ‘ggeffects’ package.
The raw data points have been added to each of the plots. As seen from the dispersion of the data points,
the age range of the participants tested in the older group was wider than the young group; no jitter has
been added to these points. Outliers displayed here were not removed as they did not change the model

effects.

Figure 33: Focus Analysis for Scene and Object Oddity categories visualising the effect

of Age on Mean Inverse Efficiency Scores in Study B: India
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Note. The model effects visualised here focused on data for the Scene and Object Oddity categories. The

line plots display the mixed effects model predictions of the marginal means (i.e., averaged over different
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levels of the fixed effects Age and Oddity category, and adjusted for Digital experience). The bands
represent the 95% confidence intervals for the predicted values. These calculations were done using the
‘ggemmeans’ function in the R ‘ggeffects’ package. The raw data points have been added to each of the
plots. No jitter has been added to these points. Outliers displayed here were not removed as they did not

change the model effects.
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4.4. Discussion

I applied the Oddity perceptual discrimination task (A. C. H. Lee, Buckley, et
al., 2005) in this chapter to understand how cognitive ageing influences MTL-dependent
complex perception across cultures. Task performance was measured in terms of
accuracy, RT, and a combined speed-accuracy measure i.e., Inverse Efficiency Scores
(IES). As speed-accuracy performance strategies (e.g., prioritising speed at the expense
of accuracy or vice versa) varied between categories and age groups, for comparability, I
focus on the combined speed-accuracy measure (IES) in the interpretation of results. In
line with my hypotheses, my results have shown that cognitive performance significantly
declines with age on Oddity perceptual discrimination categories requiring complex
conjunctive processing (i.e., scenes, objects, faces, and emotions) compared to simple
feature matching (i.e., size control task), and the Oddity task is sensitive to these changes
even as early as midlife. These age effects were significant even after accounting for
differences in education, digital experience, and participant-level individual variation
between age groups. Notably, performance on object perceptual discrimination shows
greater vulnerability to age-related decline than scene discrimination. Finally, I have
found that the pattern of age effects observed with the British sample (Study A: UK)
generalises to the Indian sample (Study B: India). 1 will reconcile these findings with
previous research and theories of MTL function, discuss implications of category-specific
vulnerabilities, and address considerations for cross-cultural application of this cognitive

assessment.

These results add to a growing body of cross-species literature indicating that
ageing has a detrimental impact on the perceptual discrimination of complex/ high-
ambiguity stimuli (Burke et al., 2012; Gellersen et al., 2021; Ryan et al., 2012). This is
in line with representational-hierarchical accounts of MTL function (Graham et al., 2010;
Saksida & Bussey, 2010) which distinguish between the representational levels of visual

information, with lower-levels such as size and shape features represented in early visual
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areas and higher-levels such as complex object or scene conjunctions represented in MTL
sub-regions such as the PRC and HC respectively. In normal ageing, structural and
functional changes associated with MTL sub-regions (Berron et al., 2018; Fjell et al.,
2014; Leal & Yassa, 2015) are thought to impact the processing of high-ambiguity
representations (Gellersen et al., 2021; Ryan et al., 2012) while leaving lower-level
representations intact (Cowell et al., 2006). Evidence from mnemonic discrimination
tasks have found that ageing impairs the formation of complex mnemonic representations
across higher-level representational categories (Gusten et al., 2021; Holden et al., 2013;
Leal et al., 2017; Reagh et al., 2016; Reagh & Yassa, 2014; Toner et al., 2009). In
perceptual discrimination, ageing literature has largely focused on the vulnerability of
the PRC and corresponding object representations (Burke et al., 2012; Newsome et al.,
2012; Ryan et al., 2012), with a recent study also finding age-related impairments in
scene representations (Gellersen et al., 2021). My work replicates the observation of age-
related deficits in object and scene perception, and extends these findings to

representations of high-ambiguity face and emotion perception.

Such age-related perceptual impairments across representational categories may
underlie age impairments observed in mnemonic discrimination in earlier studies (Gusten
et al., 2021; Holden et al., 2013; Reagh et al., 2016). Gellersen et al. (2021) propose that
perceptual representations - understood as a measure of representational quality - which
are poorer may result in mnemonic representations which are more susceptible to
interference. These differences in representational quality could explain individual
differences in mnemonic discrimination in healthy older adults (Gellersen et al., 2021)
and early impairment observed in mnemonic discrimination in older adults at risk for
MCI (Gellersen et al., 2023). On the other hand, Newsome et al. (2012) have shown that
by reducing the degree of perceptual interference, it is possible to improve memory
performance in older adults. Perceptual discrimination tasks, therefore, could serve as

an effective means of evaluating the integrity of MTL functions.
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Oddity task performance also differentiates between category-specific influences
of age on MTL-based complex representations. Across cultures, the age-related
performance decline was steepest on the object category, and this was observed to be
greater for perceptual discrimination of objects compared to scenes. Comparable
evidence has been found in a small number of mnemonic discrimination studies where
category and age interactions are specifically tested (Gusten et al., 2021; Reagh et al.,
2016). Using a similar analytic approach as Gusten et al. (2021), I replicate age
trajectories which show a steeper decline for object perceptual processing compared to
scenes. This greater vulnerability of object processing may be linked to tau accumulation
patterns - the transentorhinal cortex, which consists of regions such as the anterior-
lateral ERC and PRC and is involved in object processing, is known to be one of the
earliest sites of tau accumulation (Braak & Braak, 1991). In normal ageing, Maass et al.
(2019) found that a greater tau burden in these regions is associated with impairments
in mnemonic discrimination of objects. My findings show that MTL-based complex
object representations are more sensitive to ageing than scene representations even in
perceptual discrimination, and this could be linked to differential vulnerabilities of wider
object and scene processing networks (Maass et al., 2019; Ranganath & Ritchey, 2012).
It is important to emphasize that these findings should not be interpreted as a lack of
age effects on scene representations. On the contrary, several studies have shown that
scene or spatial processing is vulnerable to age-related decline in humans (Newman &
Kaszniak, 2000; Robin & Moscovitch, 2017; Rosenbaum et al., 2012) and rats (Gallagher
et al., 1993; Gallagher & Rapp, 1997). Given the pattern of network-specific brain
changes in normal ageing, it is possible that object processing simply shows earlier rather
than greater sensitivity to age than scene processing. As the older adults tested in both
Study A: UK and Study B: India were between 50-70 years - spanning middle to older
age - task performance may have been more sensitive to early age-related brain changes

discussed here.
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One could argue that the differences observed here could be related to greater
difficulty of the object stimuli compared to scenes. If this was the case, one would expect
to see poorer performance on the object category across age groups. The MiND Scene
Oddity and Object Oddity stimuli taken from Barense et al. (2010) were matched in
terms of difficulty in the original study with young adults. In my results, IES scores
reveal that performance on scene and object categories was closely matched for young
adults in both Study A: UK and Study B: India, but a wide performance deficit was
observed in the older group, suggesting that ageing rather than task difficulty
contributed to the differences between both categories. Interestingly, in both studies,
significant differences were not found between the age trajectories for scene and face
perception, but object perception showed a significantly steeper decline compared to
performance on the face Oddity task. Although both face and object perceptual
discrimination are thought to rely on a similar level of representational processing in the
PRC and associated regions (Hodgetts et al., 2015; A. C. H. Lee et al., 2008), there is
limited understanding of how ageing impacts this perceptual category. Further research
examining neural correlates of perceptual discrimination in ageing would be helpful to
examine category-specific influences of age on perceptual discrimination of faces and

emotions which have not yet been studied in this context.

Importantly, this is the first study to show that age-related impairments in
perceptual discrimination of different representational categories generalise across
cultures studied here. This finding supports the idea that neurobiological changes in
ageing, such as loss of integrity in MTL regions or early pathological changes, may be
similar across cultures, resulting in comparable trajectories of age-related decline (D. C.
Park & Gutchess, 2006). Age-related changes in MTL regions such as the hippocampus
are found to be similar across diverse groups (Chee et al., 2011; Fletcher et al., 2018).
Furthermore, results from cross-cultural autopsy studies have revealed that

neuropathological changes such as the age of onset, quantity, and qualitative
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characteristics of NF'Ts (i.e., abnormal accumulations of tau protein) in non-clinical cases
generalise between cultures (Dani et al., 1997; S. K. Mohanty et al., 2004; Ogeng’o et
al., 1996; Purohit et al., 2011; Yasha et al., 1997). This may explain why object

processing is more vulnerable to age even in the Indian sample.

While the trajectories of ageing are similar between the UK and Indian samples,
it should be acknowledged that the performance of Indian young and older adults is
observably lower than their British counterparts on all outcome measures. Across
representational categories, Indian young and older adults consistently show lower
accuracy, longer RTs, and less efficient performance than the UK groups. These
differences could be attributed to two sources of bias common in cross-cultural studies:
method bias such as the test administration on a tablet device; and item bias such as
the Oddity task stimuli (van de Vijver & Tanzer, 2004). Both Indian young and older
adults self-reported lower digital experience than their UK counterparts, and digital
experience was found to significantly influence accuracy and RT in the Indian sample
but not for UK adults. Older adults, particularly, report lower technological self-efficacy
(Vaportzis et al., 2017), and this may contribute to anxiety on digital assessments as
well as chances of lower performance. A limitation of this study is that task stimuli were
not validated in the Indian population to match for difficulty or semantic associations
between representational categories and between cultures. On the object condition which
used novel “greeble” stimuli (Gauthier & Tarr, 1997), for instance, Indian adults
demonstrated lowest performance across categories and compared to the UK groups,
even after excluding data from a large number of young and older participants due to
at/ below chance level accuracy on this category. The possibility that the device and
stimulus level effects discussed here inflated age effects on the object Oddity task in the
Indian sample cannot be ruled out. Future cross-cultural studies should aim to recruit
well-matched and well-characterised cross-cultural samples as well as address issues in

assessment bias to draw direct comparisons of cognitive performance.
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Another limitation of this study is that participants were not administered a
memory screening test to rule out the possibility of MCI or other memory deficits,
particularly in the older samples. Petersen’s (2018) updated guidelines for MCI diagnosis
estimates prevalence for adults between 60 - 64 years to be at 6.7%, and 65 - 69 years at
8.4%. In this study, the older adults included in the British sample had a mean age of
60.74 years, and in the Indian sample it was 55.57 years. However, the participation
criteria included older adults between ages 50 - 70 years and excluded individuals who
self-reported any known memory or cognitive impairments. Furthermore, performance
outlier methods were implemented to exclude any suspected cases where performance
fell below chance. Future studies could use cognitive impairment risk measures such as
MMSE or ACE-III for which cross-culturally validated versions exist (for India, see
Ganguli et al., 1995; Paplikar et al., 2020), family history of AD (Huang et al., 2004), or
a well-established genetic risk allele for AD i.e., APOE-e4 (Yu et al., 2014) as exclusion

criteria.

Nonetheless, this study is amongst the first to show that perceptual
discrimination is sensitive to age-related cognitive decline across representational
categories and across cultures. Results support the idea that object processing is more
susceptible to ageing (potentially reflecting tau pathology) than scene processing (Berron
et al., 2020). These findings contribute towards a broader understanding of cognitive
ageing of MTL functions cross-culturally and demonstrate the utility of the Oddity task
for the assessment of MTL functions and vulnerabilities in healthy ageing. Future
directions could include applying this tool with large-scale cross-cultural cohorts to
investigate how individual differences (such as genetic risk) and demographic factors
interact with cognitive ageing across the lifespan; and clinically validating this tool for

the differential diagnosis of dementia sub-types such as AD, SD, and bvFTD.
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Chapter 5: General Discussion

5.1. Summary of Key Findings

In this thesis, I aimed to identify markers of age-related cognitive decline in
Medial Temporal Lobe (MTL) functions and to assess how age-related vulnerabilities
generalise cross-culturally. To achieve this, 1 have applied a novel digital
neuropsychological tool - the Memory in Neurological Disorders (MiND) tablet-based
application (introduced in Chapter 1) - with healthy young and older adults in two
cultural populations ie., UK (Study A) and India (Study B). Specifically, I have
investigated how MTL-dependent pattern separation (Chapter 2), scene construction
(Chapter 3), and complex perception (Chapter 4) vary across ages and cultures. Here, I

summarise and integrate key findings from each of the chapters.

It has long been understood that the hippocampal sub-region of the MTL is
critical for episodic memory (Eichenbaum & Cohen, 2004; Squire & Zola-Morgan, 1991;
Tulving & Markowitsch, 1998). This function is thought to rely on the underlying
operation of pattern separation (PS) within the hippocampus (Yassa & Stark, 2011). In
Chapter 2, I applied the human Trial Unique Non-match to Location (WTUNL) task: a
novel translational assessment of spatial PS based on paradigms implemented in rodent
literature (see Oomen et al., 2015; Talpos et al., 2010). The task is designed to
manipulate spatial separation distance between stimuli at retrieval across three
categories (small, medium, and large), with the small separation distance hypothesized
to place greatest demand upon hippocampal fine pattern separation (Oomen et al.,
2015). In both Study A: UK and Study B: India, 1 found that task performance was
sensitive to increases in demand placed on spatial PS, but the effect of age varied between
cultures: ageing impaired PS performance in the Indian sample but not in the UK. I
found that education could be a protective factor for PS in the UK; and I discuss other

health and lifestyle risk factors which could influence PS in the Indian population.
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Beyond memory, the hippocampus is acknowledged to play an important role in
the construction of mental representations of scenes, which support diverse functions
such as episodic memory, spatial navigation, and future thinking (Hassabis & Maguire,
2007; Maguire & Mullally, 2013). One way to assess scene construction is by testing the
boundary extension (BE) phenomenon: BE is a cognitive phenomenon where in
individuals tend to mentally represent and recall scenes beyond the boundary of what is
viewed (Intraub & Richardson, 1989). Although conceptualised as a memory error, BE
relies on healthy scene construction ability in the hippocampus (Mullally et al., 2012). I
utilise the Rapid Serial Visual Presentation (RSVP) task (Mullally et al., 2012) to
measure BE in Chapter 3. My results showed that the BE error is demonstrated across
age and cultural groups - lending support to the proposal that BE is a universal
phenomenon (Seamon et al., 2002; Spano et al., 2017). In the context of ageing, results
from both Study A: UK and Study B: India show that the BE error increases with age.
However, my results reveal that the BE effect is less frequent in healthy adults than
indicated by previous literature (De Luca et al., 2018; Mullally et al., 2012), and it varies
as a function of stimulus characteristics (also see Bainbridge & Baker, 2020; Gandolfo et
al., 2023). I discuss broader implications of these findings for our understanding of the

BE phenomenon and cognitive tasks used to measure it.

The specialisation of the hippocampus for scene representations is also observed
in visual perception (Graham et al., 2010; A. C. H. Lee et al., 2012). Taking a broader
perspective of the MTL, emerging representational models posit that sub-regions of this
brain area are involved in both memory and perception, and they are specialised for
different levels of representation - namely, scenes in the hippocampus and objects in the
perirhinal cortex - which contribute to diverse cognitive functions (Cowell et al., 2010;
Graham et al., 2010; Saksida & Bussey, 2010). Chapter 4 presents a task which is
sensitive to the role of the MTL in complex perception i.e., the Oddity perceptual

discrimination task (A. C. H. Lee, Buckley, et al., 2005) - I adapt this task to assess how
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age influences complex/ higher-level representations of scene, face, novel object, and
emotion content categories, and lower-level size representations. Strikingly, in both Study
A: UK and Study B: India, I find that complex perceptual processing is sensitive to
ageing across representational categories, while lower-level perceptual processing remains
intact. Interestingly, my results reveal that object processing is more vulnerable to age
than scene processing across cultures - I discuss how this impairment in normal ageing
may be linked to early tau pathology in the ERC (Maass et al., 2018). However, it must
be noted that participants in Study B: India were observably more impaired on object
processing than in Study A: UK. This could be related to the abstract computer-
generated “greebles” (Gauthier & Tarr, 1997) used on this task as lesser digital
experience was linked with lower accuracy and RT in Study B: India. 1 discuss these
findings in the context of general and specific influences of age on MTL function, as well

as wider application of perceptual discrimination paradigms.

Taken together, my thesis makes theoretical contributions towards our
understanding of the role of the MTL and its susceptibility to ageing. I have found
evidence for both general and specific effects of age on MTL specialisations, as well as
universality and variability of cognitive ageing. These findings hold implications for the
early detection of MTL cognitive decline, the development of cross-culturally
generalisable cognitive paradigms, and the application of digital assessments such as the
MiND app in cognitive ageing research. In the present chapter, I will expand upon these
theoretical and practical implications, and propose ways in which future research can

build upon this work.

5.2. Theoretical Contributions
My findings add to a growing body of literature in favour of representational

views of MTL function (Graham et al., 2010; Kent et al., 2016; Saksida & Bussey, 2010).
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Notably, I have found evidence for category specificity within the MTL for age-related
cognitive decline. In Chapter 4, I have shown that object perceptual discrimination,
which is localised to the object processing network in the MTL, is significantly more
susceptible to age-related cognitive decline than scene perception, which is localised to
the scene processing network (Graham et al., 2010; Hodgetts et al., 2015; Murray et al.,
2017). Furthermore, this category specificity of age effects may explain why I did not
find an effect of age on spatial pattern separation in Chapter 2 - a previous study using
an object PS paradigm has shown sensitivity to ageing (S. M. Stark et al., 2013). My
results in Chapter 3 can also be interpreted through this perspective as I have found that
the boundary extension effect varies across stimuli. Work by Bainbridge & Baker (2020)
has shown that object-oriented images consistently elicit a BE effect, while scene-oriented
images are equally likely to cause a boundary extension or contraction effect. This
pattern of results suggests that MTL dissociations observed for scene and object
perceptual processing tasks in earlier studies (Barense et al., 2009; Hodgetts et al., 2015;
A. C. H. Lee, Bussey, et al., 2005; A. C. H. Lee et al., 2006) also extend to vulnerabilities
in age-related cognitive decline. In the next section, I will discuss practical and clinical

implications of these results.

5.3. Practical Implications

I have found that the Oddity object perceptual discrimination is particularly
sensitive to effects of age, compared to scene perception. This finding is supported by
results from studies using mnemonic discrimination paradigms (Gusten et al., 2021;
Reagh et al., 2016), and holds important implications for the early detection of age-
related cognitive decline and age-related neurodegenerative diseases. As I have discussed
in this thesis, the vulnerability of object representations to age may be linked to the
accumulation of tau in object processing brain regions (Maass et al., 2019). Regions such
as the anterior-lateral ERC and PRC, implicated in the representation of objects, are
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the earliest sites of tau accumulation in the brain (Braak & Braak, 1991). The Oddity
perceptual discrimination task may be sensitive to these early brain changes. However,
whether these early vulnerabilities mark a transition from normal to pathological ageing
is still an unanswered question. Separating “normal” and “pathological” ageing is
extremely difficult - even in the absence of clinical deficits, various forms of
neuropathology are found in the ageing brain (Jagust, 2018). Recently, Primary age-
related Tauopathy (PART) - which refers to neurofibrillary tangles in the brain without
evidence of amyloid — has been reported to be a common observation in the ageing brain
and is associated with normal ageing and mild cognitive impairment (Crary et al., 2014).
Cross-cultural autopsy studies have also confirmed the near universal presence of this
pathology in older non-demented individuals (S. K. Mohanty et al., 2004; Ogeng’o et al.,
1996; Purohit et al., 2011). A clearer understanding of the implications of this pathology
for age-related cognitive decline is yet to emerge, and cognitive tasks which are sensitive

to these pathologies in the ageing brain may aid in providing a better picture.

When developing and applying such assessments across diverse populations, it is
important to consider culture-specific factors which may directly or indirectly influence
cognitive task performance. The processing of scene and object representations, for
example, may be shaped by the visual environment of participants. Miyamoto et al.
(2006) proposed that differences in physical environments modulate attentional patterns
when viewing scenes. Their research showed that participants who are continuously
exposed to Japanese scenes - which are judged to be more visually complex than
American scenes due to greater object overlap and more ambiguous object borders -
performed better at recognising changes in contextual or more “holistic” information.
One explanation of these culture-specific styles of attention is that eye movement
patterns, such as the distribution of fixations, adapt to the physical environment (Ueda
& Komiya, 2012). This process is dynamic as, irrespective of cultural background,

participants can be primed to perceive information in a specific pattern in accordance
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with the physical environment they are exposed to (Miyamoto et al., 2006; Ueda &
Komiya, 2012). Furthermore, biological structures may also be shaped by environmental
factors. The landmark study by Maguire et al. (2000) highlighted the neuroplasticity of
MTL structures in response to spatial learning demands. Their findings revealed
structural changes in the hippocampi of London taxi drivers with prolonged navigation
experience i.e., hippocampal volume correlated with duration of driving experience. In
the context of the present thesis, it is important to consider that the physical
environments of populations sampled may have influenced perceptual performance. In
contrast to the typical urban layout in UK cities, which features organised road networks,
less-densely packed and spacious streets, Indian cities are characterised by more intricate
road networks, tightly clustered structures, and crowded spaces. Accordingly, it could be
hypothesised that individuals exposed to the (arguably) more complex visual
environment in India are conferred with an advantage at discriminating between
perceptually similar representations under conditions of high ambiguity. If this were true,
one would expect Indian participants to demonstrate a generally higher performance
than UK participants across Oddity representational categories, particularly for scenes.
On the other hand, it is also possible that a greater tendency to attend to more “holistic”
information in visually complex environments (Ueda & Komiya, 2012) may make
perceptual discrimination of individual objects on Oddity tasks more difficult. While this
thesis does not make direct statistical comparisons between cultural groups, it can be
observed that the level of performance of Indian participants is generally lower across
Oddity categories, providing support for the second hypothesis. However, further
research is needed to uncover the mechanisms driving cultural differences. Other cultural

or contextual influences may also contribute to variability in performance.

Several studies have shown that education, a proxy measure of cognitive reserve,
acts as a protective factor against the clinical manifestation of Alzheimer’s disease (Farfel

et al., 2013; Roe et al., 2007; Sharp & Gatz, 2011; Stern, 1994; Stern et al., 1992). In the
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Indian context, however, the picture is less clear: Iyer et al. (2014) found that variables
such as bilingualism, rural dwelling, and occupational complexity modify the relationship
between education and dementia. In their study, illiterate participants who engaged in
skilled occupations such as crafts had a later age of dementia onset than illiterate
participants who engaged in unskilled labour. As craft skills are often acquired early in
life and practiced daily, similar to the acquisition and application of literacy skills
obtained through schooling, they may facilitate the development of cognitive reserve
even in the absence of formal education. On the other hand, rural dwelling is also shown
to play a different role in the East and West. A study with the UK Biobank cohort
highlighted higher residential density and urbanicity as factors linked with higher risk of
dementia and AD (Lai et al., 2023), while Cadar et al. (2023) found that rural dwelling
was associated with better memory in an English population but worse performance in
a Chinese population (potentially moderated by SES). In the present thesis, it was not
possible to directly examine the interplay between such factors as the samples were
biased in favour of higher education and urbanicity, but it is important for cross-cultural
research to consider that such factors may play different roles across populations. Given
the difficulty in identifying and accounting for such variables, I argue that a cross-cultural
generalisation approach (as applied in this thesis) rather than a comparative approach
is more appropriate. “Culture” is a multidimensional and dynamic construct which can
be difficult to operationalise and measure (A. B. Cohen, 2009). Moving forward, there is
a need for the field of cross-cultural research to develop a more theoretically guided
framework for quantifying and analysing culture. In line with this, Majid (2023) proposes
a “culturally informed, theoretically motivated sampling” approach, which involves
systematically sampling groups based on characteristics relevant to the topic of study
(e.g., differences in spatial environments which may relate to scene perception abilities)

as well as considering other modifying variables in the populations studied.
In this thesis, the investigation of MTL-based vulnerabilities in ageing across
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diverse contexts is a notable contribution. The 10/66 Dementia Research Group
highlighted the fact that less than 10% of population-based dementia research was
carried out in developing countries even though nearly two-thirds of affected individuals
were estimated to live in these regions (Prince et al., 2004). While there has been a
subsequent rise in research from these regions over the past two decades (Prina et al.,
2019), there persists a systematic under-representation of LMIC populations in clinical
trials and brain ageing research (Llibre-Guerra et al., 2023; Wig et al., 2024). The lack
of cross-culturally generalisable cognitive assessments remains a significant barrier to
LMIC inclusion in such efforts. This thesis tackles these challenges by effectively
implementing novel translational cognitive tasks with British (HIC) and Indian (LMIC)

populations, demonstrating potential for future integration into global clinical trials.

Finally, an important implication of these findings is the promising prospect of
applying digital neuropsychological tools in cognitive ageing research. In this thesis, I
demonstrated the feasibility of applying the MiND tablet-based application across age
and cultural groups. Interestingly, despite significant differences in self-reported digital
experience between age groups (i.e., older adults had lower digital experience), this
variable was only found to influence performance on the Oddity task in Study B: India,
which I argue could be attributed to stimulus appropriateness. The Oddity task uses
computer-generated images of stimuli such as 3D scenes and abstract objects which,
although designed to be culture-free, may be less familiar to participants in certain
cultures and could carry different cultural associations. Research has found that novelty
influences response selection and inhibition (Zinchenko et al., 2016), which may vary
cross-culturally. Reassuringly, on all other tasks, there was no impact of digital
experience on performance across age and cultural groups. This is confirmed by other
studies which have also found support for the usability and validity of computerised
cognitive testing in elderly populations (Scanlon et al., 2016; for a review, see Tsoy et

al., 2021). Furthermore, translational paradigms which have gained cross-species validity
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- such as the Oddity Perceptual Discrimination task (A. C. H. Lee, Buckley, et al., 2005)
and the hTUNL task (Oomen et al., 2015; Talpos et al., 2010) applied in this thesis -
show promise for application in co-clinical trials (Palmer et al., 2021). Combining these
digital measures with plasma biomarkers could potentially increase sensitivity and

specificity for detecting early cognitive decline in age-related neurodegenerative diseases

(see Hampel et al., 2018; Tsoy et al., 2021).

5.4. Limitations and Future Directions

A notable limitation of this thesis is the absence of biomarker data. As the older
groups I tested encompassed individuals between 50 and 70 years of age, it is not possible
to rule out early pathological changes which may be linked with neurodegenerative
diseases such as AD (Keller et al., 2016; Vickers et al., 2016). Additionally, I did not
include a standardised memory assessment in my protocol - previous studies without
biomarker data have administered such tests to identify at-risk individuals or categorize
performance into age-impaired and age-unimpaired groups (e.g., Gallagher et al., 2006;
Holden et al., 2012; Reagh et al., 2016; Stark et al., 2013). Although older adults in the
present sample were largely recruited from a working population and demonstrated
performance well above chance across tasks, it is important to consider this limitation

when interpreting age-related changes.

The cross-sectional design applied in both studies is another limitation to discuss.
Cross-sectional designs applied in ageing research are unable to capture individual
trajectories of change over time, since they assess different age groups at a single time-
point, making it difficult to infer actual age-related changes. Work by Tucker-Drob (2011)
has shown that individual differences in variables which contribute to developmental
processes account for 39% of variance, on average. Furthermore, in the context of cross-

cultural psychology, Chu (2019) points out that the field of cross-cultural psychology is
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dominated by cross-sectional studies, which could conflate the effects of culture, age, and
generation. Nonetheless, Salthouse (2012) contends that despite the proliferation of
cross-sectional designs in cognitive ageing literature, the evidence for age-related

cognitive decline is robust, showing similar rates of decline over generations.

It should also be acknowledged that the samples tested in both studies had high
education and digital literacy levels - this is a common limitation of psychology studies
which draw from University populations (for a discussion, see Hanel & Vione, 2016).
Although this may reduce the generalisability of these results to wider contexts, the
present study takes a crucial first step towards implementing a novel digital cognitive
assessment across age and cultural groups, and further applications should validate the

tool with nationally representative samples.

Nonetheless, in this thesis, I have identified cognitive tasks which are sensitive to
detecting early age-related decline in MTL functions. An important future direction
would be to investigate what point in the lifespan these changes begin to appear and
how other factors, such as education or genetic risk, contribute to individual differences
in cognitive ageing trajectories. One way to achieve this would be to apply the MiND
app with large-scale longitudinal cohorts, such as the Avon Longitudinal Study of Parents
and Children (ALSPAC; Fraser et al., 2013) in the UK or the Longitudinal Ageing Study
in India (LASI; Perianayagam et al., 2022), to gain further insight into the dynamics of

cognitive ageing across cultures.
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5.5. Conclusions of Thesis

This thesis has adopted a fine-grained approach by examining the operational
and representational components proposed to underlie broader cognitive functions such
as memory and perception in the human medial temporal lobe (Cowell et al., 2019;
Graham et al., 2010). In doing so, my findings have shown that vulnerability to age-
related cognitive decline differs depending on task demands and representational content,
and is influenced by factors such as education. The hippocampal operation of pattern
separation may be sensitive to age later in life; conversely, MTL-based representations
supporting scene construction and complex perception across content categories are
sensitive to age-related changes as early as midlife. Object perceptual discrimination, in
particular, shows greater sensitivity to age than scene perception, suggesting that this
may be a useful candidate for assessing MTL integrity in ageing. The trajectories of age-
related cognitive decline are strikingly similar across two cultures previously not
compared in this context i.e., UK and India. This lends support to the idea that the
cognitive ageing process is largely culture-invariant, possibly driven by age-related
neurobiological changes which outweigh the influence of culture (D. C. Park et al., 1999).
My work contributes towards the advancement of translational digital neuropsychological

tools - such as the MiND app - in the assessment of cognitive ageing across cultures.
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Appendices
Appendices

Appendix A: MiND (v1) Tablet-based App Home Screen with Task Menu

Participant ID Project Language

If you're new to MiND, read the Help information available from the menu in
the upper-left corner.

Getting Started

You will practice using the tablet here. Please complete this before you begin the
other tasks.

START TASK

Judge the Distance

You will see pictures of objects and be asked to judge how close or far away the
objects are.

START TASK

Spot the New Dot

You will be asked to keep track of new dot locations on the screen.

START TASK

0dd-One-Out

You will see groups of pictures and you will be asked to select the odd-one-out.

START TASK
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Appendix B: MiND Rapid Serial Visual Presentation Task (RSVP) Stimuli

(taken from Mullally et al., 2012)

Birdhouse

Blender

Book

Beach chair

Traffic cone

Dinosaur
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Dustpan

Gift bag Parrot

Knife Lawn chair
M&M's Man
Oranges Panda
Racquet Thread
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Appendix C: MiND Oddity Task Instructions and Examples for each

Stimulus Category (*correct responses in orange)

Stimulus Condition

Block Instructions

Example Trial*

(i) Scene Oddity

“Two pictures will be the same room
from different viewpoints, and one
picture will be a different, but similar

looking, room.

Your task is to identify and then touch

the different room.”

(ii) Face Oddity

“Two pictures will be the same person
from different viewpoints, and one
picture will be a different, but similar

looking, person.

Your task is to identify and then touch

the different person.”

(iii)Object Oddity

“Two pictures will be the same object
from different viewpoints, and one
picture will be a different, but similar

looking, object.

Your task is to identify and then touch
the different object.”

$
R

(iv)Emotion Oddity

“Two pictures will be different people
displaying the same emotion, and one
picture will be a different person

displaying a different emotion.

Your task is to identify and then touch

the different emotion.”

(v) Size Oddity (Control)

“Two pictures will be the same sized
square, and one picture will be a square

of a slightly different size.

Your task is to identify and then touch

the different sized square.”
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