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Abstract: The malfunctioning of the brain synucleins is associated with pathogenesis of Parkinson’s
disease. Synucleins’ ability to modulate various pre-synaptic processes suggests their modifying
effects on the electroencephalogram (EEG) recorded from different brain structures. Disturbances in
interrelations between them are critical for the onset and evolution of neurodegenerative diseases.
Recently, we have shown that, in mice lacking several synucleins, differences between the frequency
spectra of EEG from different brain structures are correlated with specificity of synucleins’ combina-
tions. Given that EEG spectra are indirect characteristics of inter-structural relations, in this study,
we analyzed a coherence of instantaneous values for EEGs recorded from different structures as a
direct measure of “functional connectivity” between them. Methods: EEG data from seven groups
of knock-out (KO) mice with combined deletions of alpha, beta, and gamma synucleins versus a
group of wild-type (WT) mice were compared. EEG coherence was estimated between the cortex
(MC), putamen (Pt), ventral tegmental area (VTA), and substantia nigra (SN) in all combinations.
Results: EEG coherence suppression, predominantly in the beta frequency band, was observed in KO
mice versus WT littermates. The suppression was minimal in MC-Pt and VTA-SN interrelations in
all KO groups and in all inter-structural relations in mice lacking either all synucleins or only beta
synuclein. In other combinations of deleted synucleins, significant EEG coherence suppression in KO
mice was dominant in relations with VTA and SN. Conclusion: Deletions of the synucleins produced
significant attenuation of intra-cerebral EEG coherence depending on the imbalance of different types
of synucleins.

Keywords: EEG; functional connectivity; forebrain; midbrain; knock-out; mouse

1. Introduction

Parkinson’s disease (PD) is considered a type of “alpha-synucleinopaties” [1] and
associated with the deposition of aggregated alpha synuclein (alpha-syn) [2]. Alpha-syn
is a major member of vertebrate-specific proteins family also including beta- and gamma-
syns [3]. Overlapping expression of different types of synucleins and their location in
presynaptic terminals [4] suggest a redundancy of synaptic functions of the synucleins
that in turn highlights a compensatory potential of this composition of synucleins. Indeed,
increased expression of the remaining family member (beta-syn) has been shown to initiate
compensatory/protective processes in alpha/gamma-synuclein double-knock-out (KO)
mice [5,6]. However, little is known about either the brain function mechanisms affected by
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the knocking out or the compensatory abilities of different types of synucleins involved in
the recovery processes.

Endogenous alpha-syn expression has been shown to be involved in selective regional
brain vulnerability [7], which in turn is associated with variations in PD brain connectiv-
ity [8,9], thus affecting the intrinsic nets [10]. This can accompanied by disturbed phase
relations between rhythmic activities generated in the neuronal circuits with tremendous
consequences for the functioning of the brain [11]. Under normal conditions, alpha-syn
has been shown to be located predominantly in the presynaptic terminals and on synaptic
vesicles membranes [12]. Together, this is supposed to be a basis for the use of the elec-
troencephalogram (EEG) as an effective approach for the monitoring of PD progression
and its pharmacological therapy [13]. Thus, EEG recordings from different brain struc-
tures allow for the analysis of alpha-syn-associated changes in selective regional brain
vulnerability, synaptic integrity, and coordinated network activity affected by neurodegen-
erative processes [14]. Indeed, in a murine model of amyotrophic lateral sclerosis, we have
shown that by measuring the coherence of instantaneous EEG values in different brain
structures, we are able to reveal additional details describing “functional connectivity” in
the brains of KO mice compared to that in the brains of normal mice (c.f., [15,16]). Recently,
EEG frequency analysis in knock-out (KO) mice with various compositions of deleted
alpha-, beta-, and gamma-syns has demonstrated an important role of their misbalance
in interrelations between EEGs from different brain areas [17]. Generally, this result is
expected, given (i) the co-localizations of alpha- and beta-syns in presynaptic terminals
in various brain areas [18]; (ii) the gamma-syn-produced modification of interaction of
beta-syn with membrane [19]; and (iii) changes in alpha-syn binding to synaptic vesicles
under the influence of gamma- and beta-syns [20]. Furthermore, gamma-syn transcription
in VTA and SN has been shown to be linked to the release and re-uptake of dopamine (DA)
in the nigrostriatal and mesocortical pathways [21]. The necessity of detailed analysis of
the mutual influences of the synucleins has been clearly demonstrated in the elimination
of MPTP intoxication detrimentally affecting DA system function [6]. This supposedly
is associated with the revealed beneficial influence of unfolded (monomeric) clusters of
alpha-syns on the mitochondrial function [22]. Thus, a deeper insight into both the intimic
functional interrelations between the brain areas, characterized by different levels of coher-
ent activities in various neuronal nets, and coherence modifications in syn-KO mice would
be effective in the understanding of the role of synucleins in pathological processes affecting
the PD brain. In this study, coherent analysis of the EEG data from our previous work [17]
was used to characterize associations between inter-structural “functional connectivity”
and different synuclein-dependent types of KO mice. The main aim of this study was
to separate the “safe” compositions of deleted syns from “unsafe” ones, i.e., from those
producing significant changes in the brains “functional connectivity”. The results obtained
from such approach might be a basis for the understanding of mechanisms of syn subtype
interactions and their role in the development of PD pathology or/and in its extinction.

The coherence between EEGs recorded from MC, Pt, and DA-producing brain regions
(VTA, and SN) was analyzed in adult KO mice with combined deletion of alpha-, beta-,
and gamma-syns. KO mice with deleted syns in various combinations were characterized
by significant attenuation of intracerebral EEG coherence depending on both the imbalance
between different types of syns and inter-structural relations, especially with the dopamine-
containing areas, VTA, and SN. Moreover, the lesser vulnerability of VTA versus SN to
selective deletion of different types of syns was shown in our study.

2. Materials and Methods
2.1. Experimental Animals

Details of the section have been considered in our previous paper [17]. Briefly, 84 male
mice (3 months old) sorted in KO group by various combinations of deleted alpha (A)-,
beta (B)-, and gamma (G)-Syns and wild-type (WT, A+B+G+) littermates were included in
this study. Overall, KO mice from seven groups were compared with WT mice (n = 10):
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A-B+G+, A-B-G, A-B+G-, A-B-G+, A+B-G-, A+B-G+, and A+B+G- (n = 12, 8, 10, 13, 13, 11,
and 7, respectively).

Mice were housed with a 12-h/12-h light/dark cycle, 22–25 ◦C RT, 50–55% relative
humidity, with food and water ad libitum. The procedures were based on the “Guidelines
for accommodation and care of animals and the principles of the Directive 2010/63/EU on
the protection of animals used for scientific purposes. They were approved by the local
Institute Ethics Review Committee (protocol № 48, 15 January 2021) with recommended
efforts to minimize the number of the animals and their suffering.

2.2. Electrode Implantation and Recording of EEG

After one month’s adaptation, the mice were anesthetized subcutaneously with tile-
tamine/zolazepam (Zoletil®, Virbac, Carros, France, 25 mg/kg) with xylazine solution
(Rometar®, Bioveta, Ivanovice na Hané, Czech Republic, 2.5 mg/kg). The electrodes for
EEG recordings were implanted in MC and Pt (AP: +1.1 mm; ML: ±1.5 mm; DV: −0.75
and −2.75 mm, respectively), in VTA (AP: −3.1, ML: −0.4, DV: −4.5), and in SN (AP:
−3.2, ML: +1.3, DV: −4.3) [23]. The electrodes (two insulated 100-µm nichrom wires) were
glued together with 100 µm space free from insulation tips. The reference and ground
electrodes (0.4 mm stainless steel wire) were placed symmetrically behind the cerebrum.
All electrodes were positioned by a computerized 3D stereotaxic StereoDrive (Neurostar,
Tübingen, Germany), fixed to the skull, and soldered to a micro-connector. After surgery,
mice were contained individually for recovery, followed by the experimental sessions. On
day 8, a baseline EEG was recorded at 30 min, starting 20 min after a mouse was placed in
the box (see details in [17]).

2.3. EEG Spectral Coherence Computation

EEG signals measured between the active and reference electrodes were amplified,
filtered (0.1–35 Hz), and sampled (1 kHz) on-line. EEG fragments containing artifacts
and epileptic spikes were automatically and manually rejected by the custom-developed
software (see [16]). Spectral coherence was estimated by averaging 12-sec epochs of base-
line EEGs in the range of 1–30 Hz, with the averaging of data in “classical” EEG bands
(in Hz): delta 1 (1–2), delta 2 (2–4), theta (4.0–8.0), alpha (8–12 Hz), beta 1 (12–20), and
beta 2 (20–30.0). The values of coherence in each frequency band were averaged at ev-
ery successive 10-min interval (for further statistical analysis) and totally after 30 min
(for illustrations).

2.4. Statistics

Differences in the EEG coherency between KO and WT mice were analyzed by
two-way ANOVA for repeated measures with Bonferroni’s post hoc test for multiple
comparisons (STATISTICA 10; StatSoft, Inc., Tulsa, OK, USA). All sets of data were
preliminarily tested on Gaussian distribution and EEG stationarity by use of KPSS test
to determine optimal time duration (12 s) of EEG epochs for further coherent analysis.
For preliminary evaluation of power and effect size, G*Power version 3.1.9.4 was used
(http://www.psycho.uniduesseldorf.de/abteilungen/aap/gpower3, assessed on 6 Febru-
ary 2019). All data are shown as mean ±SEM and considered statistically significant
at p < 0.05.

3. Results

In the baseline period, KO and WT mice behaved similarly, displaying intensive
exploration and rare sleep-like bouts. Baseline EEGs in WT (A+B+G+) and KO (A-B+G-)
mice (Figure 1) contained patterns of relatively slow EEG in the theta–alpha frequency
range, while in the KO mice, the EEG activity in the beta band was more powerfully
expressed. Statistical characteristics of baseline EEGs and their frequency compositions in
all groups of mice have been described in detail in our previous paper [17].

http://www.psycho.uniduesseldorf.de/abteilungen/aap/gpower3
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Figure 1. Typical 12-sec patterns of baseline EEG in WT (A+B+G+) mouse (A) and in alpha-syn KO
(A-B+G+) littermates (B) recorded in different brain areas: MC, Pt, VTA, and SN. Time and amplitude
calibrations are 1 sec and 100 µV, respectively.

In mice from the KO and WT groups, the differences between their baseline EEG
coherence levels in 10-min intervals (see an example in Figure 2) were relatively stable over
a 30 min period (see Figure A1) and characterized by lower levels of EEG coherence in KO
mice versus in WT littermates (Figures 3–5).
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relatively low but significant levels of EEG coherence were observed between both MC 
and Pt or MC and VTA (Figure 3A,B, respectively; two-way ANOVA: F1,120 = 8.1 and 10.2, 
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Figure 2. Averaged EEG coherences between different brain areas (MC. Pt, VTA, and SN) in 10-min
baseline intervals in active 3-month-old wild-type mice (WT, grey lines) and alpha-syn KO littermates
(A-B+G+, black lines). Inter-structural EEG coherences are specified on the plates of (A–F). Ordinate
is the EEG coherence value in each of the 1 Hz bins analyzed in 0–30-Hz frequencies denoted on
abscissa. Five vertical lines separate six “classical” EEG frequency bands, denoted on the plates.



Biomedicines 2024, 12, 881 6 of 17Biomedicines 2024, 12, x FOR PEER REVIEW 6 of 17 
 

 
Figure 3. EEG coherences between MC, Pt, VTA, and SN averaged at 30-min baseline intervals 
(upward-directed ordinate) in WT mice (A+B+G+, blue bars) and in alpha-syn KO littermates 
(A-B+G+, gray bars). Red bars are relative differences between the above groups (downward 
directed ordinate) calculated as [(A-B+G+) − WT] / WT. Both ordinates are in arbitrary units. 
Different inter-structural relations specified on the plates of (A–F). Stars are significant two-way 
ANOVA differences between alpha-synuclein KO mice and their WT littermates (*, **, and *** are p 
< 0.05, <0.01, and 0.001, respectively) (see Figure A2 for details). 

Figure 3. EEG coherences between MC, Pt, VTA, and SN averaged at 30-min baseline intervals
(upward-directed ordinate) in WT mice (A+B+G+, blue bars) and in alpha-syn KO littermates
(A-B+G+, gray bars). Red bars are relative differences between the above groups (downward directed
ordinate) calculated as [(A-B+G+) − WT]/WT. Both ordinates are in arbitrary units. Different inter-
structural relations specified on the plates of (A–F). Stars are significant two-way ANOVA differences
between alpha-synuclein KO mice and their WT littermates (*, **, and *** are p < 0.05, <0.01, and
0.001, respectively) (see Figure A2 for details).
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Figure 4. Relative differences between inter-structural coherences of baseline EEG recorded at 30-min
intervals in synuclein knock-out mice (Syn-KO) with different combinations of deleted synucleins
(alpha, beta, and gamma (A); alpha and gamma (B); alpha and beta (C)) and in WT littermates,
calculated as [(Syn-KO] − WT)/WT, in arbitrary units. Different KO groups vs. WT littermates
are specified on the plates of (A–C), while different inter-structural relations specified on the plates
of (a–f). Stars are significant two-way ANOVA differences between Syn-KO mice and their WT
littermates (*, **, and *** are p < 0.05, <0.01, and 0.001, respectively) (see Figure A2 for details).



Biomedicines 2024, 12, 881 8 of 17

Biomedicines 2024, 12, x FOR PEER REVIEW 8 of 17 
 

In mice from the group lacking a full set of the synucleins (A-B-G-), the coherence 
suppression phenomenon disappeared in MC-Pt (Figure 4A; two-way ANOVA: F1,96 = 0.4, 
p > 0.6) and was expressed to a lesser extent in A-B+G- group (Figure 4B; two-way 
ANOVA: F1,108 < 6.7, p < 0.05 for MC-Pt, MC-VTA, and VTA-SN; F1,108 < 8.8, p < 0.01 for 
MC-SN and Pt-SN; see Figure A3 for details). 

 
Figure 5. Relative differences between inter-structural coherences of baseline EEG recorded at 
30-min intervals in synuclein knock-out mice (Syn-KO) with different combinations of deleted 
synucleins (beta and gamma (A); beta (B); gamma (C)) and in WT littermates, calculated as 
[(Syn-KO) − WT] / WT, in arbitrary units. Different KO groups vs. WT littermates are specified on 
the plates of (A–C), while different inter-structural relations specified on the plates of (a–f). Stars 
are significant two-way ANOVA differences between Syn-KO mice and their WT littermates (*, **, 
and *** are p < 0.05, <0.01, and 0.001, respectively) (see Figure A2 for details). 

Figure 5. Relative differences between inter-structural coherences of baseline EEG recorded at 30-min
intervals in synuclein knock-out mice (Syn-KO) with different combinations of deleted synucleins
(beta and gamma (A); beta (B); gamma (C)) and in WT littermates, calculated as [(Syn-KO) − WT]/WT,
in arbitrary units. Different KO groups vs. WT littermates are specified on the plates of (A–C), while
different inter-structural relations specified on the plates of (a–f). Stars are significant two-way
ANOVA differences between Syn-KO mice and their WT littermates (*, **, and *** are p < 0.05, <0.01,
and 0.001, respectively) (see Figure A2 for details).
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Indeed, in A-B+G+ mice with deleted alpha-syn, EEG coherence suppression was
expressed to different extents in all inter-structural compositions (Figure 3). On average,
relatively low but significant levels of EEG coherence were observed between both MC
and Pt or MC and VTA (Figure 3A,B, respectively; two-way ANOVA: F1,120 = 8.1 and 10.2,
p < 0.01 for both), while for the relations between the other brain areas of MC-SN, Pt-VTA,
Pt-SN, and VTA-SN (Figure 3C–F, respectively), more evident deviations were characteristic
(two-way ANOVA: F1,120 > 29.5, p < 0.001 for all; see Figure A3 for details).

In mice from the group lacking a full set of the synucleins (A-B-G-), the coherence
suppression phenomenon disappeared in MC-Pt (Figure 4A; two-way ANOVA: F1,96 = 0.4,
p > 0.6) and was expressed to a lesser extent in A-B+G- group (Figure 4B; two-way ANOVA:
F1,108 < 6.7, p < 0.05 for MC-Pt, MC-VTA, and VTA-SN; F1,108 < 8.8, p < 0.01 for MC-SN and
Pt-SN; see Figure A3 for details).

However, in mice without alpha- and beta-synucleins (Figure 4C), the disruption
of the EEG coherence between the brain areas returned with maximal expression in the
relations between MC or Pt and the dopaminergic areas, VTA, and SN (two-way ANOVA:
F1,126 > 14.3, p < 0.001 for all, see Figure A3 for details).

The same was observed in both combinations with deleted beta-synuclein in mice
from groups of A+B-G- (Figure 5A; two-way ANOVA: F1,126 > 11.4, p < 0.001 for all,
with exception of VTA-SN relations: F1,126 = 6.0, p < 0.05) and A+B-G+ (Figure 5B; two-
way ANOVA: F1,114 > 11.9, p < 0.001 for all, with exception of MC-Pt relations: F1,114
= 3.0, p > 0.0 f, see Figure A3 for details), and in the gamma-synuclein knock-out mice
(Figure 5C; two-way ANOVA: F1,90 > 12.7, p < 0.001, for all, with exception of VTA-SN
relations: F1,90 = 8.2, p < 0.01). All mentioned above conclusions are collected in Figures 6
and A3, where the results of two-way ANOVA evaluation of differences between the
full spectral profiles of the EEG coherence in KO mice and WT littermates are presented.
Indeed, the F values for inter-structural coherences were distributed accordingly, such that
the lowest F values were characteristic of both (i) MC-Pt (Figures 4a and 5a) and VTA-
SN (Figures 4f and 5f) practically in all groups of KO mice (Figure 6, grey and blue bars,
respectively), and (ii) at all inter-structural combinations in A-B+G- mice (Figure 4B). In
contrast, the F values were evidently higher and dominated in the inter-structural relations
with VTA or SN areas in KO mice from the other groups (Figure 3C–E, Figure 4C(b–e)
and Figure 5(b–e)). Another specificity of these inter-structural relations was expressed in
the domination of the coherence suppression effect in EEG at higher frequencies, in the
alpha and beta bands (Figure 4C(b–e) and Figure 5(b–e), see Figure A2 for details). Finally,
evidently enhanced suppression of coherent relations between MC and SN rather one
between MC and VTA (Figure A4) directly reflects the lower susceptibility of VTA (versus
SN) to disturbances in the synucleins’ family with exception of mice from A-B+G- group.
This phenomenon was more selective in relations of Pt with VTA and SN and observed
only in mice from A-B-G-, A-B-G+, and A+B-G- groups (Figure A5).
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Figure 6. Distributions of the F values for the two-way ANOVA analysis of inter-structural coherence
differences in full spectra of 30-min baseline EEG recordings from the brain areas of the 3-month-old
KO mice with different combinations of deleted alpha-, beta-, and gamma-synucleins versus those in
WT littermates. Horizontal red dashed line is a minimal significance (p < 0.05) threshold in this study
(see Figure A3 for details).

4. Discussion

In the knock-out mice, we have shown that the loss of alpha-, beta-, and gamma-
synucleins in all possible combinations was accompanied by disturbances in the brain
“functional connectivity” that was expressed in significant attenuation of the coherence
in EEGs of the cortex, putamen/striatum, and dopamine-containing regions: ventral
tegmental area (VTA) and substantia nigra (SN). At the highest extent, this phenomenon
was observed in the interconnections with VTA and SN and predominantly at the higher
EEG frequencies, in the alpha and beta bands.

The delta and beta activities are well known to be associated in DA-accumulating
brain areas characterized by “tonic” and “bursting” discharges, respectively, [24,25]. Thus,
delta attenuation and beta enhancement in EEG recorded from VTA and SN expectedly
correlate with tonic firing suppression and bursting pattern elevation in these brain areas.
The coherent EEG relations in different brain structures, reflecting their “functional con-
nectivity”, could be affected by modified compositions of the synucleins because of their
associations with the changes in vulnerability and connectivity, thus shaping a propagation
of the neurodegenerative disease [8]. The peculiarities in significant EEG coherence devi-
ations in KO versus WT mice seem to be linked with specificities of both morphological
inter-connections between analyzed brain structures and the EEG patterns generating by
them. Indeed, well-known interconnections between SN and VTA [26] and similar compo-
sitions of “tonic” and “bursting” EEG patterns in these brain areas provide an explanation
for relatively small differences in the coherent relations of their EEGs in mice from each
of the groups (see Figures 3F, 4f and 5f). The same explanation seems to be adequate for
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minimal differences observed in the coherence between EEGs recorded from MC and Pt
(see Figures 3A, 4a and 5a). Tremendous suppression in the beta bands of EEG coherence
in inter-structural relations with DA-containing areas, VTA and SN, (Figure 4(b–e) and
Figure 5(b–e), respectively) is seemingly associated with both a variety of distributions of
the “fast” oscillations in these brain structures in KO mice from different groups (see [17])
and with a diversity in wiring architectures between the mesencephalic and forebrain
regions [27]. Furthermore, some peculiarities in EEG coherence relations is expected to
be associated with the lesser vulnerability of VTA versus SN that was demonstrated in
experiments with Parkinson’s-inducing toxins [8] and confirmed in our study with selective
deletion of different types of synucleins (see Figures A4 and A5).

Surprisingly, across studied groups of KO mice, minimal changes in the EEG coherence
between different brain structures versus WT littermates were mentioned in the group
with combined absence of alpha- and gamma-syns (Figure 4B). This allow a preliminary
conclusion that beta-syn on its own is able to support a native-like EEG coherence between
the brain structures because of compensating increase of striatal dopamine [28,29], thus pro-
viding normal functioning of the brain. This is consistent the ability of beta-syn potentiate
neurotransmitter uptake by synaptic vesicles in the absence of other synucleins [18]. Indeed,
beta-syn mice from other groups with deleted either alpha-syn (Figure 3) or gamma-syn
(Figure 4B) were characterized by evident suppression of the EEG coherence. Interestingly,
this phenomenon was observed in beta-syn KO mice with concomitant deletion either
alpha-syn (Figure 4C) or gamma-syn (Figure 5A). Thus, regardless of beta-syn is present or
not, the suppression of EEG coherence is predominantly determined by the presence or the
lack of one of the other synucleins. The specific role of the “flanking” (alpha and gamma)
synucleins in their influences on the beta-syn depleted mice is readily visible in comparison
of single- (A+B-G+) and triple-(A-B-G-) KO mice (c.f., Figures 3 and 4A). Indeed, in the
three Syn-KO mice, evidently diminished coherence suppression versus that in A+B-G+
mice was observed. This is an additional argument for that it is not the absence of any
particular syn but an imbalance of syns causes tremendous changes in EEG coherence
between the brain structures.

Neuronal bursting in the VTA/SN has been shown to produce significantly enhanced
DA release in numerous targets in cortical and sub-cortical areas compared to an equiva-
lent tonic activity [30]. Studies in both PD patients and animal models suggest that beta
oscillations in the EEG can be affected by DA depletion [31], the typical characteristic
of this neurodegenerative pathology. On the other hand, some adaptive modifications
in dopaminergic synaptic mechanisms seem to be able to compensate a developmental
ablation of dopaminergic neurons, thus protecting brain function [32]. One of the compen-
satory/adaptive mechanisms might be associated with DA receptor supersensitization [33].
Indeed, from our previous study of apomorphine (APO) effects in KO mice [17], signif-
icant differences in DA receptor sensitivity were indirectly demonstrated in mice with
some peculiar combinations of the deleted synucleins. In particular, the most prominent
differences versus WT mice were observed in double-syn KO (A-B+G-) and single-syn
KO (A+B+G-) mice in all of studied cerebral structures and predominantly in alpha and
beta 2 bands of the EEG frequency spectra (see “P” columns). Together, these and other
APO-produced differences in KO and WT mice pointed to an enhanced sensitivity of DA
receptors in KO mice. A peculiar role of each of the synucleins or their combinations in the
revealed super-sensitivity of the DA receptors seems to be determined by their involvement
in various stages of DA metabolism and its release, reuptake, and recycling [21,34,35]. Beta-
syn has been shown to potentiate synaptic vesicle DA uptake, but in the absence of other
synucleins [6], this seems to explain an extremely low level of EEG coherence suppression
in A-B+G- mice (Figure 4B) in contrast to intensive expression of this phenomenon in
other KO mice. Intensive coherence suppression was observed in double KO mice lacking
alpha- and beta-syns (Figure 5C) with partial (by 20%) lowering of DA level [5] and in
single-KO mice with deleted beta- or gamma-syns (Figure 3 or Figure 5B, respectively),
with exception of the aforementioned A-B+G- mice (Figure 4B). Interestingly, that EEG
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coherence suppression was similarly expressed in single-KO mice with lacking either alpha-
or gamma-syns (Figures 4C and 5B, respectively) that is in line with evidence about similar
involvement of these syns from VTA and SN in regulation of release and re-uptake in
dopaminergic system [21]. The role of beta-syn as a stabilizing factor is readily visible
in relatively enhanced EEG coherence suppression in the triple KO mice versus that in
A-B+G- group (c.f. Figure 4A,B, respectively). Together, the results obtained in our study
are in line with an idea that various phenomena revealed in mice losing the synucleins
need to be analyzed in details for the understanding of complex effects of their mutual
influences [36–38].

The main limitations in this study might be associated with a lack of evidence about
both homogeneity of EEG sleep characteristics for the analyzed 30-min periods in mice
from different groups and possible gender differences in the results obtained. We have
proven stabilities of both EEG coherence between different cerebral structures in 30-min
intervals (see “Section 3 Results”) and EEG values in all analyzed frequency bands and
cerebral structures 60 min after saline injection (see in [17] figures 5–8, grey lines). Never-
theless, the computing of sleep patterns distribution in EEG by use of a “segmentation”
approach allowing for their separation seems to be useful in further EEG experiments with
KO mice, especially given evidence regarding sleep disturbances in mice with altered levels
of synucleins (see e.g., [38]). Furthermore, gender-associated differences in DA neurons in
VTA have been shown at the molecular, cellular, and behavioral levels [39] and in synucle-
inopathy models in mice [40]. This is in line with rising interest to the gender- associated
diversity in the development of neurodegenerative pathologies. Finally, the results of
our previous study about possible involvement of age-related adaptive mechanisms in
intracerebral disturbances in mouse models of Alzheimer’s disease and amyotrophic lateral
sclerosis [16] stimulate further analysis of this aspect in the synuclein knockout models.

5. Conclusions

We found that in KO mice versus WT littermates, the coherence (“functional connectiv-
ity”) between EEGs recorded from different brain structures was suppressed in practically
all mice with various compositions of deleted syns: alpha, beta, and gamma. The coherence
suppression was minimal in the inter-structural relations of MC-Pt and VTA-SN in all KO
mice and in those lacking either all syns or only beta-syn. In other combinations of deleted
syns, significant EEG coherence suppression in KO mice was dominant in relations with
the dopamine containing areas, VTA and SN. Thus, deletions of syns were accompanied
by significant attenuation of intra-cerebral EEG coherence depending on the imbalance of
their different types. Further studies should unveil molecular and cellular mechanisms
linking syns misbalance and changes in the EEG coherence in the brain, as well as if and
how this approach can be applied for early differential diagnostics of synucleinopaties.
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