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Abstract: Staphylococcus argenteus is a recently described staphylococcal species that is related to
Staphylococcus aureus but lacks the staphyloxanthin operon. It is able to acquire both resistance
markers such as the SCCmec elements and mobile genetic elements carrying virulence-associated
genes from S. aureus. This includes those encoding the Panton–Valentine leukocidin (PVL), which
is associated mainly with severe and/or recurrent staphylococcal skin and soft tissue infections.
Here, we describe the genome sequences of two PVL-positive, mecA-negative S. argenteus sequence
type (ST) 2250 isolates from the United Arab Emirates in detail. The isolates were found in a dental
clinic in the United Arab Emirates (UAE). Both were sequenced using Oxford Nanopore Technology
(ONT). This demonstrated the presence of temperate bacteriophages in the staphylococcal genomes,
including a PVL prophage. It was essentially identical to the published sequence of phiSa2wa_st78
(GenBank NC_055048), a PVL phage from an Australian S. aureus clonal complex (CC) 88 isolate.
Besides the PVL prophage, one isolate carried another prophage and the second isolate carried two
additional prophages, whereby the region between these two prophages was inverted. This “flipped”
region comprised about 1,083,000 bp, or more than a third of the strain’s genome, and it included the
PVL prophage. Prophages were induced by Mitomycin C treatment and subjected to transmission
electron microscopy (TEM). This yielded, in accordance to the sequencing results, one or, respectively,
two distinct populations of icosahedral phages. It also showed prolate phages which presumptively
might be identified as the PVL phage. This observation highlights the significance bacteriophages
have as agents of horizontal gene transfer as well as the need for monitoring emerging staphylococcal
strains, especially in cosmopolitan settings such as the UAE.

Keywords: Staphylococcus argenteus; Staphylococcus aureus; Panton–Valentine leukocidin; prophages;
phage induction; microarray; nanopore sequencing; transmission electron microscopy

1. Introduction

In 2006, methicillin-resistant Staphylococcus aureus (MRSA) outbreaks among remote
Aboriginal communities of northern regions of Australia were described [1]. These strains,
usually carrying SCCmec IV elements, were assigned to the multilocus sequence type ST75,
and in West Australia (WA), they were dubbed “WA-MRSA-8”. An obviously similar
strain, also from remote Australian regions, was ST883 (“WA-MRSA-47”). It soon became
clear that these lineages differed from ordinary S. aureus lineages in having distinct alleles
of crucial genes [2,3]. As primers for multilocus sequence typing which were matched
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poorly, the MLST scheme and its primer sequences were modified [2,4,5], resulting in a re-
assignment, with ST75 eventually becoming ST1850 and ST883 becoming ST2198. As these
strains also lacked the “golden” carotenoid pigment staphyloxanthin (which is so typical
for S. aureus that it was even the reason for naming it “aureus” [6]), they were described
as a novel species that consequently was named S. argenteus, i.e., the “silver-coloured”
Staphylococcus [5].

In addition to the distribution in Australia, many reports of a presence of S. argenteus
from other countries were published. It was found in New Zealand [7] and on the Fiji
Islands [7,8]. S. argenteus is widely distributed in Asia, being observed in Singapore [9],
Cambodia [4], Laos [10], Myanmar [11], Thailand [12,13], China [14], Taiwan [14,15], and
Japan [16–18]. French patients with S. argenteus were shown to have epidemiological links to
the Indian Ocean island of Mayotte [19]. S. argenteus was also found in Gabon [20], Trinidad
and Tobago [21], French Guiana [22], and Brazil [23]. Sporadic observations, presumably
associated with travel and migration, originate from the United Arab Emirates [24], several
European countries, and Israel [19,25–31], as well as from the United States of America and
Canada [32].

S. argenteus has also been identified in animals such as rabbits [12], dairy cattle [13,23],
a dog [33], macaques (Macaca fascicularis [34]), and a gorilla (Gorilla gorilla [20]), but strains
from Nigerian bats should be assigned to another species [35,36].

While S. argenteus can be asymptomatically carried in the nares, it can essentially cause
the same infections as S. aureus [10,30,37–39], including skin and soft tissue infections [10,17],
osteomyelitis [25], or endoprosthesis infections [27,29] and sepsis [14,18]. In vitro, it ap-
pears to be as cytotoxic as S. aureus [40]. S. argenteus has also been described as a cause of
food poisoning [41].

Genetically, this species is closely related to S. aureus, but also to other species from the
“coagulase-positive S. aureus-like” complex (which, in addition to S. aureus and S. argenteus,
also includes S. schweitzeri [42] and S. roterodami/singaporensis [9,35,43]). All can be typed
and distinguished using S. aureus MLST primers, and all carry alleles of the same core
genome genes, arranged in the same order and orientation of their genomes. S. argenteus
can be divided into MLST-defined clonal complexes, which, as in S. aureus, also differ
in the presence of genomic islands [44]. Thus, ST1223, ST1850 (formerly ST75), ST2198
(formerly ST883), ST2250, ST2596/2793, ST2854, and ST4587 can be regarded as founder
STs of homonymous S. argenteus clonal complexes (CCarg). Some mobile genetic elements
previously known from S. aureus have also been identified in S. argenteus. This includes
SCCmec IV and V elements that carry the methicillin/beta-lactam resistance gene mecA;
the pathogenicity-island-borne toxic shock syndrome toxin tst1 [45]; enterotoxins such as
seb [46], sed+sej+ser [46], and seh (JABA32044V6S1; GenBank CCEE/SAMEA2007996); and
phages harbouring the Panton–Valentine leukocidin, PVL [19,24,45].

PVL consists of two proteins (LukF-PV and LukS-PV) encoded by two co-expressed
genes (lukF-PV and lukS-PV) localised on Siphoviridae prophages [47–51]. These lysogenic
phages/prophages play a crucial role in horizontal gene transfer, transferring antimicrobial
resistance and virulence determinants to other enabling bacteria to adapt to environmental
challenges posed by host defences. PVL components form polymeric pores in leukocyte
membranes, leading to cell death. PVL is usually associated with severe, chronic, or recur-
rent skin and soft tissue infections [52], but it also might cause life-threatening conditions
such as necrotising pneumonia. Because of its phage-borne nature, it can be found in many
different lineages of S. aureus. In general, PVL-positive S. aureus is common in Africa, the
Indian Subcontinent, the Middle East, Australia, the Caribbean, and the US, but is rather
rare in Northern and Western Europe. Apparently, there were pandemics of PVL-positive
S. aureus strains in the 1930s and 1960s, while during the last 25 years, a multitude of
methicillin-resistant S. aureus emerged that, in addition to mecA/SCCmec, also carried PVL
prophages [46,53]. These became a major public health problem in some parts of the world,
namely, the US, Australia, the Middle East, and the Indian Subcontinent.
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Here, we describe the genome sequences of two PVL-positive but methicillin-suscepti
ble S. argenteus isolates from the United Arab Emirates and characterise their prophages,
including the ones carrying the PVL genes.

2. Results
2.1. Identification as PVL-Positive CCarg2250 by Microarray and Nanopore Sequencing

Two isolates, Dubai-25 and Dubai-30, were found during a previously published study
on nasal colonization and environmental contamination in academic dental clinics in the
UAE [24]. Both isolates were obtained from the same academic dental centre. Dubai-25
was obtained from a nasal swab of a student of Middle Eastern descent, while Dubai-30
was obtained from an environmental surface in the dental clinic. Samples were obtained
on 20 November 2018. The swabs were processed in the laboratory by vortexing them
individually in brain heart infusion broth (BHI) containing 6.5% NaCl for 2 min, followed by
incubation of the broth at 35–37 ◦C for 24–48 h. Subculture was carried out from turbid BHI
tubes onto mannitol-salt agar (MSA). Directly upon isolation, S. aureus was identified using
conventional methods, i.e., VITEK2 (BioMerieux, Marcy L’Etoile, France) and MALDI-TOF
(Bruker Daltonics, Bremen, Germany). Later, isolates were identified as S. argenteus via
microarray analysis, which also allowed for the detection of PVL genes and an assignment
to CCarg2250 [24].

With regard to microarray profiles, both isolates lacked the Staphyloxanthin operon
genes. They did not yield hybridisation signals for agrB/C/D I to IV probes, but sequencing
showed the presence of deviant alleles, as was previously observed for other S. argenteus
(see [3] and GenBank CP023076.1 with agrB, CJ017_09870; agrC, CJ017_09880; and agrD,
CJ017_09875), but they harboured gapA, nuc1, eno, and fnbA. Furthermore, they harboured
sasG, while the egc enterotoxin gene cluster and the collagen adhesin gene cna were absent.
This was consistent with an affiliation to CCarg2250, as represented by the strain XNO62,
GenBank CP023076.1. Once the genome sequences (Supplemental File S1) were obtained,
MLST typing was performed using the PubMLST database. Both isolates yielded the profile
arcC-151, aroE-325, glpF-215, gmk-34, pta-175, tpi-180, yqiL-169, that is, ST2250.

Both isolates were positive for the PVL genes. They lacked exfoliative toxin genes,
tst1, and the classical enterotoxin genes. Genome sequencing, however, revealed a presence
of two putative enterotoxin genes (“seli2=sel26” and “selu2=sel27”) known from CCarg2250:
CCEM01000001 (985,525. . .986,250) and (986,277. . .987,029); CP023076.1 (1,842,698. . .1,843,415)
and (1,843,450. . .1,844,202); as well as S. schweitzeri, LR134304 (1,887,932. . .1,888,657) and
(1,888,684. . .1,889,436).

Neither isolate harboured any antibiotic resistance genes, and they lacked SCCmec
elements. However, genome sequencing showed a presence of a CRISP/cas element at the
position normally inhabited by SCC elements, downstream of orfX, which confirmed the
array-based observation of cas1 (SAMSHR1132_00520) and which is in accordance with
previously published S. argenteus genomes (locus tags SAMSHR1132_00490 to 00610 in the
CCarg1850 sequence FR821777 and CJ017_00150 to 00205 in CCarg2250, CP023076).

2.2. Inversion of a Part of the Genome in One Isolate

In the isolate Dubai-25, the entire region between the sufB-integrating prophage (“A”)
and the A5IU43-integrating prophage (“B”, for details on the prophages, see below) was
inverted. This region included also the PVL prophage, hence the inverted order and
orientation of its genes, as presented in Table 1. This inverted or flipped region comprised
roughly 1,083,000 base pairs, or 38.2% of the strain’s genome (Figure 1A,B). Beyond the
issue of its orientation, the regions in question were identical in both strains, differing in
only nine single-nucleotide polymorphisms and in 23 positions where single nucleotides
were either inserted into one sequence or deleted from the other one.
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Figure 1. (A) Diagram of the genome of S. argenteus isolate Dubai-30. The integration site of SCC 
elements is shown in blue, the PVL prophage in red, and another prophage in purple. The 
localisations of some other virulence factors are shown in orange, and that of oriC in black. 
Approximately to scale, with one degree corresponding roughly to 8000 nt. This isolate presented 
with the normal order of core genome markers in S. aureus and S. argenteus. (B) Diagram of the 

Figure 1. (A) Diagram of the genome of S. argenteus isolate Dubai-30. The integration site of SCC
elements is shown in blue, the PVL prophage in red, and another prophage in purple. The localisations
of some other virulence factors are shown in orange, and that of oriC in black. Approximately to
scale, with one degree corresponding roughly to 8000 nt. This isolate presented with the normal
order of core genome markers in S. aureus and S. argenteus. (B) Diagram of the genome of S. argenteus
isolate Dubai-25. This isolate showed an inversion of the region between the prophages “A” and “B”
compared to (A).
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Table 1. Phages observed in the preparations from Dubai-25 and Dubai-30.

Isolated
From

Shape Particle
Count

Head, in nm 1 Tail, in nm 1 Baseplate, in nm 1

Length Diameter Length Diameter Length Diameter

Dubai-25

large
icosahedral 15 60 ± 3

(54–64)
58 ± 2
(55–63)

162 ± 14
(123–176)

9 ± 1
(7–10)

31 ± 7
(16–37)

25 ± 5
(20–38)

small
icosahedral 14 50 ± 3

(46–54)
49 ± 3
(45–53)

161, 162,
256 7, 8 30, 30, 31 21, 24, 25

prolate 2 98, 90 53, 54 n.d. n.d. n.d. n.d.

Dubai-30
large

icosahedral 20 59 ± 3
(54–63)

58 ± 4
(54–66)

163 ± 5
(152–167)

10 ± 1
(7–12)

28 ± 4
(21–34)

25 ± 3
(20–31)

prolate 1 98 63 303 10 n.d. n.d.
1 Mean ± standard deviation, followed by range (in brackets); individual measurements are given if particle
numbers were less than 5; n.d., not detected.

2.3. PVL Prophages

The PVL prophages of the two Dubai isolates were integrated at the same site as
PVL prophages in essentially all PVL-positive S. aureus strains, which meant dividing the
gene A5IT17 (as, for instance, in MW2, BA000033.2, where the two fragments up- and
downstream of the prophage carry the locus tags MW1377 and MW1443).

The PVL prophages of the two isolates were found to be essentially identical to each
other and to the sequence of phiSa2wa_st78 (GenBank NC_055048; [51]), a PVL (pro-)
phage from an Australian CC88/ST78 S. aureus isolate, over its entire length of 45,904 base
pairs (Supplemental File S2). Differences included a short insertion of 25 bp in both Dubai
isolates (into a hypothetical gene with locus tag KMD47_gp04) and a total of 11 SNPs
(which were identically present in both Dubai isolates). In addition, there was a missed
“A” (in Dubai-30) and an inserted “T” (in both isolates), with these discrepancies affecting
poly-A/poly-T-regions, respectively, and this might be attributed to sequencing technology.

The genes from the PVL prophages are listed in Figure 2 and in Supplemental File S3,
which also display the corresponding locus tags of phiSa2wa_st78 (GenBank NC_055048).
It is visible that the two prophage sequences differed in their orientation. This was due to
an inversion of a large part of the chromosome of the isolate Dubai-25, as described above.

2.4. Other Prophages

The isolate Dubai-25 had, in addition to the PVL prophage, two other prophages. One
was integrated into the gene sufB (iron–sulphur cluster assembly protein B, cgMLST ID
SAUR0895 (SAR_RS04475)), and the other into A5IU43=yfkAB (SAUR2054 (SAR_RS10270)).
In Dubai-30, only the former position, sufB, was occupied. The sequences of these prophages
are shown in Supplemental File S2 and their gene content is summarised in Supplemental
File S4.

The sufB-associated prophages of both isolates were very similar to each other, and they
were also related (but not identical) to the prophage that was integrated at the same position
in the previously published CCarg2250 sequence of XNO62, CP023076.1. The A5IU43-
associated prophage in Dubai-25 was not identical to either sequence, but showed partial
homology. However, it also differed in its orientation. Compared to the sufB-associated
prophages, it harboured a similar, but not identical, integrase gene. Notably, all these
prophages harboured the excisionase gene xis, which was not noted in the PVL prophage.
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The prophages, despite some similarities (Supplemental Files S2 and S4), differed in
their integrase genes. The sufB-integrating phages had a 1050 nt integrase gene related
to FR821779.1 (873,339. . .874,388) or CP001781.1 (853,680. . .854,729), while the A5IU43-
integrating phage of Dubai-25 carried a 1047 nt integrase gene related to CP001996.1
(2,017,417. . .2,018,463) or CP000253.1 (1,965,883. . .1,966,929).

Both isolates lacked haemolysin-beta-converting phages, and consequently the genes
sak (staphylokinase), chp (chemotaxis-inhibiting protein), scn (staphylococcal complement
inhibitor), and sea or sep (enterotoxins A and/or P), which are usually associated with these
phages being absent.

2.5. Transmission Electron Microscopy of Phages

All phages in the suspensions resulting from Mitomycin C induction experiments on
the isolates Dubai-25 and-30 were of the morphotype Siphoviridae, characterised by thin,
non-contractile tails with a stacked disc appearance and distinct base plates.

During the preparation of Dubai-25, fifteen icosahedral phages with larger heads and
14 icosahedral phages with smaller heads were detected (Table 1, Figure 3A,B). Many of
the small icosahedral phages had lost their tails. In addition, there were two prolate phage
particles without tails (Figure 3C).
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Figure 3. Transmission electron micrograph of representative examples of the large (A) and small
(B) icosahedral phages and of a head of the prolate phages (C) from the Dubai-25 preparation, as
well as of the icosahedral phages (D) and the prolate phage (E) from the Dubai-30 preparation.
All phages were of the morphotype Siphoviridae. Please note that the large icosahedral phages of
Dubai-25 (A) and Dubai-30 (D) have comparable of head and tail measurements and morphology,
but distinct shapes of the baseplates. Negative contrast preparation with uranyl acetate (A–D) and
phosphotungstic acid (E). Size bars = 50 nm.

In the Dubai-30 preparation, 20 icosahedral phage particles were measured (Table 1).
The size and shape of their heads were comparable with the large icosahedral phages in
the preparations from Dubai-25, but less variability was observed in the length of the tails
(Table 1, Figure 3D). Baseplates were often obscured by adherent material. While their
sizes were comparable, shapes differed between the large icosahedral phages from the
Dubai-25 and Dubai-30 preparations (Figure 3A,D). In addition, one prolate phage with a
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tail which was longer than those of the icosahedral phages was detected in the preparation
of Dubai-30 (Figure 3E). Its morphology resembled prolate-headed Triavirus specimens
(i.e., the genus to which phiSa2wa_st78 was previously assigned [51,54]), allowing the
assumption to be made that this was the PVL phage.

2.6. Nanopore Sequencing of Phage DNA from Phage Preparations

In addition to TEM studies, it was attempted to sequence phage preparations (Sup-
plemental File S5). It was possible to recover complete sequences of the PVL phages for
both strains, although they presented with a number of SNPs and deletions which might
have been accidental, i.e., sequencing errors (for an alignment to the prophage sequences,
see Supplemental File S5). However, the induced PVL phages from both isolates presented
with a ca. 1200 nt deletion encompassing parts of the DNA helicase gene [KMD47_gp38],
rinA, a gene for a “hypothetical protein” [KMD47_gp40], and an HNH endonuclease gene
[KMD47_gp41] (Supplemental File S5).

Nanopore sequencing of a phage preparation from Dubai-25 showed a complete
sequence of the A5IU43-integrating phage at a high coverage of 886. The sequence of the
sufB-integrating phage was not found, which was unexpected given the presence of two
distinct populations of icosahedral phages in the TEM studies. Sequencing yielded the
sequence of the PVL phage at a low coverage of 11, possibly corresponding to the lower
prolate particle count in TEM.

ONT sequencing of a phage preparation from Dubai-30 demonstrated the PVL phage
at a coverage of 270. The sequence of the sufB phage was also identified, although at a low
quality and a coverage of 11, but was followed by a roughly 460,000 nt long fragment of
genomic DNA. Its gene content was the same as in the region downstream of the phage in
the genome sequence. This might be an assembly error caused by the presence of remnants
of chromosomal DNA in the sample.

3. Discussion

Temperate phages contribute to the virulence properties of their bacterial hosts, and
here, we describe a case in which PVL phages even crossed a species barrier, transmitting
PVL genes from S. aureus into a S. argenteus lineage.

From a purely practical point of view, this observation highlights the need for a correct
identification of S. argenteus under routine conditions. It also highlights the need for a
cheap and rapid, i.e., nonmolecular, test for the detection of the PVL proteins.

PVL-positive S. argenteus have previously been observed in Overseas France, Thailand,
Myanmar, and the US. Those that have been typed ([45,55] from Myanmar, [19] from
Overseas France, and [32] from MO, USA) or that could be typed in retrospect based on
published sequences (SAMEA3449074, -3449078, -3449080, -3449083, -3449085, -3449087,
-3449096, -3449098, and -3449123 from Thailand) all belonged, like our isolates, to CCarg2250,
while, to the best of our knowledge, no S. argenteus from other CCs has been described as
positive for PVL. It can be expected that any emerging pathogen, including PVL-positive
S. argenteus, will sooner or later also be identified in such a cosmopolitan setting as the
UAE or in other Arabian Gulf countries, as this region is a global hub for travel, tourism,
migration, commerce, and pilgrimage. Furthermore, due to the availability of resources,
it is more probable that an emerging pathogen will first be identified in the Arabian Gulf
region rather than in the region where it originally emerged. As an extreme example, the
MERS virus was first identified in the Arabian Gulf region and not in the Horn of Africa.
Similarly, PVL-positive S. argenteus might be prevalent in other parts of the world (such as
in southeast Asia) but be more readily identified in the region. It might well be expected
that strains from other parts of the world might be introduced from elsewhere into this
region, but also that returning expatriates or tourists might bring pathogens back into
their home countries. The recently observed expansion of a PVL- and tst1-positive clone
of CC22-MRSA-IVa from the Gulf [56,57] to Nepal [58] and even to China [59] might be
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such an example. This means that pathogen detection and typing in the Gulf region is even
more important than elsewhere.

From a theoretical point of view, it is remarkable that a phage from S. aureus might
incorporate into an S. argenteus genome. The sequence observed was virtually identical to
that of phiSa2wa_st78 (GenBank NC_055048), sequenced years earlier from an Australian
community-associated MRSA [51]. The differences (13 SNPs and an insertion of 25 nt, on a
total of roughly 46,000 nt) are so minuscule that they can be regarded as accidental, possibly
even as artefacts. The core genomes of S. aureus and S. argenteus differ in 11–12% of all
nucleotide positions [35], which fully justifies the split into separate species. However,
mobile genetic elements, such as SCCmec elements [1,2], as well as phages, can cross from
one species to the other. This should prompt investigations into more virulence factors that
might have spilt over from S. aureus into S. argenteus, but also for genes that S. argenteus
might have contributed to the gene pool of S. aureus. Virulence factors on phages and
other mobile genetic elements that might be observed in both species include not only
PVL. There are genes associated with haemolysin-beta-integrating phages sak, chp, and scn
encoding staphylokinase; chemotaxis-inhibiting protein; and staphylococcal complement
inhibitors. These are crucial virulence factors in S. aureus isolates from humans due to
their functional roles in pathogenicity and interactions with the human immune system.
Although absent from the isolates described herein, at least the latter three have been
observed in S. argenteus in various constellations (FR821777.2: sak, scn; NZ_CP015758.1: sak,
scn, chp, SAMEA3449136: scn only). Another gene from haemolysin-beta-integrating phages
is sea encoding enterotoxin A. It has, to the best of our knowledge, not yet been observed in
S. argenteus, as is also the case for phage-borne exfoliative toxins and the various animal-
associated phage-borne leukocidins. The pathogenicity island-associated enterotoxin B
gene seb occurs occasionally in S. argenteus, but appears to be restricted to CCarg1223.
The poorly known enterotoxin-like genes seli2=sel26 and selu2=sel27 are also known from
other CCarg2250 and from S. schweitzeri (see above), but they also have been found in S.
aureus CC772, CP010526.1 (1,968,336. . .1,969,061) and (1,969,088. . .1,969,840) as well as in
CC1956, CP084892 (1,939,378. . .1,940,121), and (1,940,148. . .1,940,900). In the two isolates
sequenced herein, they were accompanied by phage- or genomic island-associated genes
encoding DUF0955 and DUF1433 and by transposase genes, so a cross-species transmission
by mobile genetic elements appears to be possible. Again, the improving availability of
next-generation sequencing technologies might provide clearer evidence in future.

An interesting question with regard to the incorporation of alien mobile genetic
elements is the presence of an orfX-associated CRISP/cas element in some S. argenteus, or
more precisely, in essentially all sequences of CCarg1850 and CCarg2250 [44]. It is absent
from other S. argenteus CCs, such as CCarg1223 [44]. Whether this is related to differences in
the ability of different lineages of S. argenteus to cope with foreign mobile genetic elements,
including PVL phages, still needs to be clarified [44].

In addition to the issue of the PVL prophage, we observed a one-megabase genomic
inversion. This is remarkable, as the order of core genomic genes is, first, identical in
both S. aureus and S. argenteus and, second, highly conserved within literally thousands
of published genomes. Such a large-scale inversion, to the best of our knowledge, been
described only once, in a Russian CC8 MRSA strain [60], where it was linked to a presence
of IS256 sequences rather than to prophages. A similar phenomenon was observed during
in vitro serial transfer of a Staphylococcus haemolyticus strain [61]. In our case, this inversion
was not accompanied by a loss of genes or by truncations.

Further studies are needed to explore the intricate interplay between lysogenic phages,
virulence genes, and bacterial adaptation in staphylococci populations for better therapeu-
tic strategies.
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4. Materials and Methods
4.1. Characterisation by DNA Microarray Analysis

The microarray-based assays and the related protocols and methods, as well as probe
and primer sequences, have been described previously [46,62,63]. In short, enzymatically
prepared DNA from overnight cultures was used as template in a site specific linear multi-
plex primer elongation reaction that incorporated biotin dUTP into the amplicons. These
single-stranded, biotin-labelled DNA molecules were stringently hybridised to DNA arrays
on which probes for resistance and virulence-associated genes of S. aureus, as well as typing
markers, were spotted in a pre-defined coordinate grid. Successful hybridisations were
visualised by the addition of streptavidin–horseradish–peroxidase, which, in a subsequent
step, triggered a localised dye precipitation, resulting in the formation of visible spots at
the positions of those probes that bound labelled amplicons. Arrays were photographed
and analysed for the presence or absence of specific genes as well as for similarity to known
reference profiles using specific threshold values, which facilitated the identification of
species, clonal complexes, and strains.

4.2. Nanopore Sequencing

The genomes of the two S. argenteus isolates (Dubai-25, Dubai-30) were sequenced
using the Oxford Nanopore MinION platform to investigate the presence of PVL prophages,
whose presence was initially detected using microarray technology.

Bacterial strains were grown on Columbia blood agar (Becton Dickinson, Heidelberg,
Germany) overnight at 37 ◦C. For DNA extraction, the Nucleospin Microbial DNA Kit by
Macherey Nagel (MN, Düren, Germany) was utilized.

Each strain was processed by washing one full inoculation loop with 500 µL of 1× PBS
(pH 7.4), followed by centrifugation and resuspension in 100 µL of buffer BE. Subsequent
procedures adhered to the manufacturer’s protocol with slight adjustments: samples were
lysed using a BeatBeater (Biozym, Hessisch Oldendorf, Germany) for 12 min at maximum
speed. Proteinase K was deactivated by heating the samples at 70 ◦C for 5 min. After
cooling, 4 µL of RNAse (100 mg/mL; Sigma Aldrich, Steinheim, Germany) was added, and
samples were incubated at 37 ◦C for 5 min before DNA binding onto Nucleospin microbial
DNA columns. Finally, DNA was eluted with 70 µL of nuclease-free water (CarlRoth,
Karlsruhe, Germany).

For library preparation, the 1D genomic DNA ligation kit (SQK-LSK109, Oxford
Nanopore Technologies, Oxford, UK) was employed, following the manufacturer’s in-
structions for FLO-MIN106 flow cells (FAL13739; Dubai-30) or flongle flow cells (AET365;
Dubai-25). Prior to library preparation, size selection was performed using AMPure-beads
(Beckman Coulter, Krefeld, Germany) at a 1:1 (v/v) ratio with the isolated DNA sample.
The flow cell for Dubai-30 was loaded with a total of approximately 500 ng DNA (according
to Qubit4 Fluorometer; Thermo Fisher Scientific, Waltham, MA, USA). The flongle flow
cell for Dubai-25 was loaded with 800 ng total DNA. The sequencing process ran for 72 h
using MinKNOW software version 22.12.5 and 22.12.7, starting with a total of around
1200 active pores.

To convert MinION raw reads (FAST5) into quality tagged sequence reads (4000 reads
per FASTQ-file), the guppy basecaller (version 6.4.6 + ae70e8f, Oxford Nanopore Technolo-
gies) was utilized, with the barcode trimming option enabled (model version: dna_r9.4.1_450
bps_sup.cfg and dna_r10.4.1_e8.2_400bps_sup). Flye (version 2.9.1-b1780) was used to
assemble the quality tagged sequence reads of each strain into a complete, circular contig.
The assemblies underwent two rounds of polishing. First, racon (v1.5.0) was iteratively
applied four times with the following parameters: match 8, mismatch 6, gap 8, and window
lengths 500. Then, medaka (version 1.7.3) was used on the last racon-polished assembly
using the models r941_min_sup_g507 and r10.4.1_e82_400bps_sup_g615. In a final step,
Illumina short reads were used for polishing by pilon (version 1.23). The resulting corrected
assemblies were used for further analysis.
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4.3. Phage Induction and Phage DNA Preparation

Phage induction was performed as previously described [64–67]. Briefly, bacterial
cultures were inoculated overnight in 2 × TY medium and cultured at 37 ◦C until the middle
of the exponential growth phase (t = 2 h, OD = 0.68/0.77 for Dubai-25/-30). Mitomycin C
(Roche, Basel, Switzerland) was added at a final concentration of 0.5 µg/mL, and cultivation
continued at 30 ◦C until the optical density (OD at 600 nm) began to decrease compared
with the previous measurement point (t = 5 h, delta OD = 0.15/1.20 for Dubai-25/-30). The
lysate was centrifuged at 4 ◦C and 3000× g, and the supernatant was neutralised with
0.1 N NaOH and filtered using a 0.20 µm cellulose acetate (CA) membrane filter (Sartorius,
Göttingen, Germany). To isolate phage DNA (p-DNA), the phage filtrate was centrifuged
again for 30 min at 4 ◦C and 3000× g. The resulting supernatant was first treated with
10 µg/mL DNAse I (Sigma Aldrich, Steinheim, Germany) and 10 µg/mL RNAse (QIAGEN,
Hilden, Germany) for 1 h at 37 ◦C. Then, 20 mM EDTA, 50 µg/mL proteinase K, and
0.5% SDS were added sequentially and incubated for another hour at 65 ◦C and 300 rpm.
Phenol–chloroform extraction was then performed as previously described [68]. Phase-lock
gel light tubes (Quantabio, Beverly, NJ, USA) were used in each step for better separation of
the phases. Finally, the isolated DNA was concentrated in a SpeedVac vacuum concentrator
(Eppendorf, Hamburg, Germany) at 1400 rpm and room temperature (20 ◦C) for 25 min. The
final concentration was measured using the Qubit 4 fluorometer (ThermoFisher Scientific,
Waltham, MA, USA) according to the manufacturer’s instructions.

4.4. Phage Detection by Transmission Electron Microscopy (TEM)

Negative staining was carried out on the phage preparations as previously described [64–66].
Briefly, copper grids filmed with formvar, coated with carbon, and hydrophilized by glow
discharge were placed on drops of phage preparations for 30 min. After washing with
distilled water, one grid of each preparation was contrasted with 1% phosphotungstic acid
and one with 1% uranyl acetate for 1 min. Grids were examined using a transmission
electron microscope (Tecnai 12, FEI Deutschland GmbH, Dreieich, Germany), and represen-
tative micrographs were taken with a digital camera (TEMCAM FX416, TVIPS, Gauting,
Germany). Particle size was measured using the EM-Measure software (Version 4.09.53,
TVIPS GmbH, Gauting, Germany).

5. Conclusions

Temperate bacteriophages contribute to the virulence properties of their bacterial
hosts, and here, we describe a case in which a PVL phage even crossed a species barrier,
transmitting PVL genes from CC88 S. aureus into an S. argenteus lineage, CC2250. This
observation highlights the need for monitoring emerging staphylococcal strains, especially
in cosmopolitan settings such as the UAE; for the correct identification of S. argenteus under
routine conditions; as well as for a rapid PVL test.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antibiotics13050401/s1; Supplemental File S1: Genome Sequences
of the study strains (fasta); Supplemental File S2: Phages from Dubai 25, Dubai_30, and phiSa2wa_st78,
NC_055048 (fasta); Supplemental File S3: Gene content of PVL prophages in isolates Dubai-25 and
Dubai-30 (pdf); Supplemental File S4: Gene content of the other prophages in isolates Dubai-25 and
Dubai-30 and comparison to a sufB-integrating prophage from another CCarg2250 strain, XNO62
CP023076.1 (pdf); Supplemental File S5: ONT phage sequences obtained directly from Mitomycin
C-induced phage preparations (fasta).
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