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Abstract: We show that the nucleic acid bases adenine, cytosine, guanine, thymine, and uracil, as
well as 2,6-diaminopurine, and the “core” nucleic acid bases purine and pyrimidine, are stable for
more than one year in concentrated sulfuric acid at room temperature and at acid concentrations
relevant for Venus clouds (81% w/w to 98% w/w acid, the rest water). This work builds on our initial
stability studies and is the first ever to test the reactivity and structural integrity of organic molecules
subjected to extended incubation in concentrated sulfuric acid. The one-year-long stability of nucleic
acid bases supports the notion that the Venus cloud environment—composed of concentrated sulfuric
acid—may be able to support complex organic chemicals for extended periods of time.

Keywords: Venus; NMR; nucleic acid bases; sulfuric acid

1. Introduction

Venus has a surface that is too hot for any plausible solvent and the most complex
organic chemistry; hence, it is unsuitable for supporting life. Nevertheless, scientists have
speculated that the perpetual cloud cover at 48 to 60 km above Venus’ surface, and with
temperatures matching those found at Earth’s surface, might host life (see, e.g., [1–9]).
Venus clouds, however, are composed of concentrated sulfuric acid—an aggressive solvent
that destroys most of Earth life’s biochemicals and is thought to be sterile to complex
organic chemistry or life of any kind. Here, we build on early, decades-old reports on the
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reactivity of a few purines and pyrimidines in concentrated sulfuric acid (e.g., [10–13]), as
well as on our previously published work [14], to explore the long-term stability of the
key molecules needed for life. We study the year-long stability of nucleic acid bases at
room temperature at acid concentrations relevant for Venus clouds (81% w/w to 98% w/w
sulfuric acid, the rest water).

2. Materials and Methods

The materials, methods, and procedures are the same as those in our initial study [14],
so we provide only a brief summary here. To acquire NMR data, we used a Bruker Avance
III-HD 400 MHz spectrometer equipped with a Prodigy liquid nitrogen cryoprobe (BBO) at
25 ◦C. We incubated 30–40 mg of each nucleic acid base in 81–98% w/w D2SO4 with the
rest D2O for one year. After one year of incubation (Tables 1–8; measurements done in
November 2023), we measured 1D 13C and 1D 1H NMR spectra at each of the tested acid
concentrations and compared them to the original NMR spectra collected after ~30–48 h
(Tables 1–8; measurements done in October 2022). The NMR tubes with solutions of nucleic
acid bases dissolved in different concentrations (by weight) of sulfuric acid in water (98%
D2SO4/2% D2O; 94% D2SO4/6% D2O; 88% D2SO4/12% D2O; 81% D2SO4/19% D2O) were
stored at room temperature without any protection from light for over a year before the 1H
and 13C NMR measurements were taken.

We used MNova software (Mestrelab Research) to process and analyze the NMR
data [15]. The original data for all NMR experiments are available for download from
Zenodo at https://zenodo.org/records/10793625 (accessed on 7 March 2024).

https://zenodo.org/records/10793625
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Table 1. Comparison of 13C NMR chemical shifts in guanine incubated in concentrated sulfuric acid for two different time periods. All NMR data were obtained at
room temperature.

Guanine
13C

Solvent
C2 (ppm) C4 (ppm) C5 (ppm) C6 (ppm) C8 (ppm)

11 October 2022 6 November 2023 11 October 2022 6 November 2023 11 October 2022 6 November 2023 11 October 2022 6 November 2023 11 October 2022 6 November 2023
81% D2SO4/19%

D2O 150.36 150.37 136.33 136.34 108.22 108.22 150.55 150.56 137.11 137.10

88% D2SO4/12%
D2O 150.28 150.28 136.26 136.27 108.13 108.14 150.42 150.44 137.22 137.21

94% D2SO4/6%
D2O 150.23 150.23 136.22 136.22 108.01 108.01 150.26 150.28 137.38 137.36

98% D2SO4/2%
D2O 150.13 150.12 136.17 136.18 107.90 107.90 150.19 150.22 137.53 137.53

Table 2. Comparison of 13C NMR chemical shifts in cytosine incubated in concentrated sulfuric acid for two different time periods. All NMR data were obtained at
room temperature.

Cytosine
13C

Solvent
C2 (ppm) C4 (ppm) C5 (ppm) C6 (ppm)

14 October 2022 6 November 2023 14 October 2022 6 November 2023 14 October 2022 6 November 2023 14 October 2022 6 November 2023
81% D2SO4/19% D2O 141.98 142.05 152.32 152.38 88.11 88.16 139.06 139.07
88% D2SO4/12% D2O 149.10 149.08 158.95 158.93 95.50 95.45 145.79 145.71
94% D2SO4/6% D2O 149.40 149.17 158.79 158.94 96.06 95.58 145.67 145.70
98% D2SO4/2% D2O 150.23 150.09 158.34 158.37 97.48 97.25 145.28 145.26
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Table 3. Comparison of 13C NMR chemical shifts in diaminopurine incubated in concentrated sulfuric acid for two different time periods. All NMR data were
obtained at room temperature.

Diaminopurine
13C

Solvent
C2 (ppm) C4 (ppm) C5 (ppm) C6 (ppm) C8 (ppm)

14 October 2022 7 November 2023 14 October 2022 7 November 2023 14 October 2022 7 November 2023 14 October 2022 7 November 2023 14 October 2022 7 November 2023
81% D2SO4/19%

D2O 141.90 — 1 131.59 — 1 96.10 — 1 140.39 — 1 133.84 — 1

88% D2SO4/12%
D2O 148.51 148.43 137.97 137.84 102.93 102.89 147.13 147.07 140.74 140.75

94% D2SO4/6%
D2O 148.28 148.30 137.62 137.65 102.83 102.84 146.96 146.98 140.79 140.79

98% D2SO4/2%
D2O 148.08 148.11 137.38 137.41 102.74 102.75 146.80 146.82 140.87 140.86

1 The spectra could not be collected due to poor solubility of diaminopurine in 81% w/w sulfuric acid.

Table 4. Comparison of 13C NMR chemical shifts in thymine incubated in concentrated sulfuric acid for two different time periods. All NMR data were obtained at
room temperature.

Thymine
13C

Solvent
C2 (ppm) C4 (ppm) C5 (ppm) C6 (ppm) CH3 (ppm)

13 October 2022 7 November 2023 13 October 2022 7 November 2023 13 October 2022 7 November 2023 13 October 2022 7 November 2023 13 October 2022 7 November 2023
81% D2SO4/19%

D2O 146.93 146.73 167.79 167.77 107.89 107.95 149.61 149.68 10.41 10.42

88% D2SO4/12%
D2O 148.27 148.17 167.88 167.87 107.68 107.68 149.18 149.21 10.26 10.26

94% D2SO4/6%
D2O 148.97 148.98 167.92 167.92 107.83 107.81 149.08 149.02 10.12 10.12

98% D2SO4/2%
D2O 148.95 148.95 167.98 167.97 108.09 108.07 149.59 149.51 9.99 10.00
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Table 5. Comparison of 13C NMR chemical shifts in adenine incubated in concentrated sulfuric acid for two different time periods. All NMR data were obtained at
room temperature.

Adenine
13C

Solvent
C2 (ppm) C4 (ppm) C5 (ppm) C6 (ppm) C8 (ppm)

13 October 2022 6 November 2023 13 October 2022 6 November 2023 13 October 2022 6 November 2023 13 October 2022 6 November 2023 13 October 2022 6 November 2023
81% D2SO4/19%

D2O 147.92 147.90 141.78 141.76 108.61 108.60 146.67 146.67 146.11 146.15

88% D2SO4/12%
D2O 148.18 148.13 142.01 141.96 108.74 108.71 146.59 146.61 145.00 145.22

94% D2SO4/6%
D2O 148.08 148.03 141.97 141.94 108.71 108.68 146.65 146.66 145.50 145.70

98% D2SO4/2%
D2O 149.55 149.47 137.37 137.78 110.22 110.14 146.43 146.45 143.42 143.35

Table 6. Comparison of 13C NMR chemical shifts in uracil incubated in concentrated sulfuric acid for two different time periods. All NMR data were obtained at
room temperature.

Uracil
13C

Solvent
C2 (ppm) C4 (ppm) C5 (ppm) C6 (ppm)

13 October 2022 7 November 2023 13 October 2022 7 November 2023 13 October 2022 7 November 2023 13 October 2022 7 November 2023
81% D2SO4/19%

D2O 141.52 141.62 162.69 162.72 88.50 88.59 145.19 145.11

88% D2SO4/12%
D2O 148.40 148.43 169.68 169.63 95.51 95.50 152.56 152.43

94% D2SO4/6%
D2O 148.42 148.42 169.60 169.57 95.74 95.71 152.82 152.70

98% D2SO4/2%
D2O 148.41 148.43 169.48 169.49 95.93 95.93 153.07 152.96
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Table 7. Comparison of 13C NMR chemical shifts in purine incubated in concentrated sulfuric acid for two different time periods. All NMR data were obtained at
room temperature.

Purine
13C

Solvent
C2 (ppm) C4 (ppm) C5 (ppm) C6 (ppm) C8 (ppm)

11 October 2022 7 November 2023 11 October 2022 7 November 2023 11 October 2022 7 November 2023 11 October 2022 7 November 2023 11 October 2022 7 November 2023
81% D2SO4/19%

D2O 1 149.28 149.27 151.44 151.44 121.09 121.09 140.49 140.48 150.14 150.14

88% D2SO4/12%
D2O 149.36 149.34 151.30 151.30 120.92 120.93 140.57 140.55 150.12 150.11

94% D2SO4/6%
D2O 149.39 149.39 151.16 151.18 120.78 120.79 140.61 140.61 150.06 150.07

98% D2SO4, 2%
D2O 149.39 149.39 151.04 151.04 120.66 120.68 140.66 140.65 150.00 150.01

1 After the one-year-long incubation of purine in 81% w/w sulfuric acid, one new peak emerges at 167.66 ppm. The new peak likely corresponds to an unknown reactive contaminant in
the reaction mixture and does not indicate the instability of a purine ring, as all chemical shifts of the purine ring remain unchanged. See also https://zenodo.org/records/10793625
(accessed on 7 March 2024).

Table 8. Comparison of 13C NMR chemical shifts in pyrimidine incubated in concentrated sulfuric acid for two different time periods. All NMR data were obtained
at room temperature.

Pyrimidine
13C

Solvent
C2 (ppm) C4,6 (ppm) C5 (ppm)

13 October 2022 7 November 2023 13 October 2022 7 November 2023 13 October 2022 7 November 2023
81% D2SO4/19% D2O 143.79 143.89 150.80 150.81 117.91 117.91
88% D2SO4/12% D2O 150.55 150.57 157.64 157.55 124.92 124.82
94% D2SO4/6% D2O 150.04 150.05 158.01 157.99 127.06 126.97
98% D2SO4, 2% D2O 149.85 149.86 158.18 158.17 127.77 127.73

https://zenodo.org/records/10793625
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3. Results: Nucleic Acid Bases Are Stable in Concentrated Sulfuric Acid for at Least a Year

We demonstrate the one-year-long stability of nucleic acid bases in concentrated
sulfuric acid by comparing the 13C NMR and 1H NMR spectra collected after ~30–48 h
of incubation from our previous study [14] to the 13C NMR and 1H NMR spectra col-
lected for the same samples after a one-year long incubation in concentrated sulfuric acid
(Figures 1 and 2). The spectra of the one-year-old sample and the ~30–48 h old sample over-
lap perfectly and look virtually identical for all tested nucleic acid bases in all tested sulfuric
acid concentrations, with no signs of reactivity. The compounds in our study are the nucleic
acid bases adenine, cytosine, guanine, thymine, and uracil, as well as 2,6-diaminopurine,
and the “core” nucleic acid bases purine and pyrimidine under conditions of concentrated
sulfuric acid at room temperature and at acid concentrations relevant for Venus clouds
(81% w/w to 98% w/w acid, the rest water).
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Figure 1. Comparison of 1D 13C NMR spectra of nucleic acid bases and related molecules incubated
in concentrated sulfuric acid for two different time periods. The intensity (y-axis) is shown as a
function of spectral shift in parts per million (ppm) (x-axis). Each compound’s NMR spectrum is
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shown in an individual subfigure. Within each subfigure, we compare the NMR spectrum of the
year-long incubation (colored lines) to the NMR spectrum collected after ~30–48 h (dashed grey line
spectra from [14]). For clarity, the ~30–48 h spectra are displayed with a slight vertical offset. From
top to bottom within each subpanel, we show the NMR spectra of compounds dissolved in different
concentrations (by weight) of sulfuric acid in water: 98% D2SO4/2% D2O; 94% D2SO4/6% D2O; 88%
D2SO4/12% D2O; 81% D2SO4/19% D2O with DMSO-d6 as a reference and at room temperature.
All peaks are consistent, with the molecules being stable and the structure not being affected by the
concentrated sulfuric acid solvent. The one-year spectra and the ~30–48 h spectra look virtually
identical for all tested concentrations, demonstrating the year-long stability of the compounds in the
concentrated sulfuric acid solvent.
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Figure 2. Comparison of 1D 1H NMR spectra of nucleic acid bases and related molecules in
concentrated sulfuric acid for two different time periods. The intensity (y-axis) is shown as a function
of the spectral shift in parts per million (ppm) (x-axis). Each compound’s NMR spectrum is shown
in an individual subfigure. Within each subfigure, we compare the NMR spectrum of the year-
long-incubation (blue foreground spectra) to the NMR spectrum collected after ~30–48 h (orange
background spectra from [14]). For clarity, the ~30–48 h spectra are displayed with a slight vertical
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offset. From top to bottom within each subpanel, we show the NMR spectra of compounds dissolved
in 98% D2SO4/2% D2O (by weight) with DMSO-d6 as a reference and at room temperature. Within
each subfigure, each spectrum is plotted twice: once using “normal” scaling and once multiplied
vertically by a factor of 50 to reveal low-intensity features (light-colored zoomed-in spectra). The
large peak around 11 ppm corresponds to the D2SO4 solvent. All peaks are consistent, with the
molecules being stable and the structure not being affected by the concentrated sulfuric acid solvent.
The one-year spectra and the ~30–48 h spectra look virtually identical, demonstrating the year-long
stability of the compounds in a concentrated sulfuric acid solvent.

For each compound, the number of carbon peaks and their chemical shift position
in the 13C NMR spectrum and the number of carbon atoms of the original compound are
preserved over the span of a one-year-long incubation in 81% w/w to 98% w/w sulfuric
acid. This result confirms that the aromatic ring structure of the nucleic acid bases remains
intact after one year (Figure 1; Tables 1–8).

We note that, over time, the 13C NMR signal corresponding to the C5 carbon in pyrim-
idine, cytosine, and uracil splits and broadens (Figure 1). The splitting and broadening of
the C5 peak indicates an efficient exchange of the C5 proton of the pyrimidine ring with the
solvent’s deuterium (i.e., H/D exchange) and is not a sign of an instability of the pyrimidine
ring. Such an H/D exchange is known to happen readily in acidic solutions [16].

4. Discussion

From a chemical point of view, the stability of nucleic acid bases in concentrated
sulfuric acid is not surprising. Nucleic acid bases have a basic character and form sulfate
salts upon dissolution in sulfuric acid. Indeed, early studies from decades ago on the
reactivity of a few purines and pyrimidines in concentrated sulfuric acid had shown that
dissolved sulfate salts of nucleic acid bases are very stable to solvolysis in concentrated
H2SO4 (e.g., [10–13]). Such chemical knowledge, however, rarely crosses disciplines and is
not widely recognized in the field of planetary science. Meanwhile, the assessment of the
stability and reactivity of life’s chemical building blocks in concentrated sulfuric acid is
critical for the true understanding of the habitability of Venus and Venus-like exoplanets.

Our study is the first to test the reactivity and structural integrity of organic molecules
subjected to extended incubation in concentrated sulfuric acid. The few past stability
studies of organic molecules in concentrated sulfuric acid involved the incubation of the
tested substance for hours, days, and weeks, with only a few compounds incubated for a
few months (reviewed in [17,18]). We are not aware of any year-long (or other long-term)
stability studies of organic molecules in concentrated sulfuric acid. Such long-term stability
studies of molecules are valuable not only for organic chemistry but also for the proper
assessment of the possibility of the long-term persistence of organics in the clouds of Venus.
Several nucleic acid bases (including adenine, guanine, cytosine, thymine, and uracil)
have been identified in meteoritic material [19], which suggests a continuous supply of
these compounds to Venus’ atmosphere. Therefore, a small but steady supply of nucleic
acid bases could be delivered via meteoritic infall to Venus clouds, where they can persist
dissolved in cloud particles for many months if not years [8]. Finally, we note that the
meteoritic material could also deliver minerals with a catalytic activity that, combined
with Venusian cloud chemistry, could promote chemical reactions of organic molecules
dissolved in cloud particles (e.g., [20,21]).
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