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Comparative DQN-Improved Algorithms for
Stochastic Games-based Automated Edge

Intelligence-enabled IoT Malware
Spread-Suppression Strategies

Yizhou Shen, Carlton Shepherd, Chuadhry Mujeeb Ahmed, Shui Yu, Fellow, IEEE, Tingting Li

Abstract—Massive volumes of malware spread incidents con-
tinue to occur frequently across the Internet of Things (IoT).
Owing to its self-learning and adaptive capability, artificial intel-
ligence (AI) can provide assistance for automatically converging
to an optimal strategy. By merging AI into edge computing, we
consider an edge intelligence-enabled IoT (EIIoT) environment
and provide a stochastic learning strategy for suppressing the
spread of IoT malware. In particular, we introduce stochastic
game theory to symbolise the whole process of the confrontation
between IoT malware and edge nodes. Built upon the theoretical
framework to demonstrate the specific spread-suppression ar-
chitecture, we apply the improved Deep Q-Network algorithms
including DDQMS, D2QMS and D3QMS that can deduce the
optimal EIIoT malware spread-suppression strategy with better
performance. Through experiments, we investigate the influence
of related parameters on learning strategy selection, recommend-
ing the optimal parameters setting of automated EIIoT malware
spread-suppression. We also compare the performance of the
proposed three DQN-improved algorithms.

Index Terms—Malware spread-suppression, Edge computing,
Artificial intelligence, Internet of Things, Stochastic games, Deep
Q-Network

I. INTRODUCTION

VARIOUS suppression techniques have been adopted to
address the problem of malware propagation in Inter-

net of Things (IoT) networks. Nevertheless, traditional sup-
pression mechanisms with cumbersomely manual analysis or
sophisticated model construction have been unable to catch
up with the sharp evolution of IoT malware. Thus, aided
by Artificial Intelligence (AI) [1], we aim to automatically
suppress the spread of IoT malware, increasing response effi-
ciency and decreasing the false alarm rate, which will thereby
achieve autonomous monitoring, autonomous suppression and
autonomous counterattack.

Considering the resource-constrained IoT devices, we focus
on adopting the structure of edge intelligence that integrates
AI into edge computing. Edge intelligence [2], [3] enables
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the deployment of machine learning algorithms at the edge of
IoT networks in response to real-time tasks. In this manner,
self-adaptive learning for complex IoT user behavior can be
carried out to assist edge node agents in generating a balanced
strategy for suppressing the spread of IoT malware.

Compared to the current malware spread solutions includ-
ing whitelisting [4], patching framework [5] and adversarial
defense [6], applying game theory [7]–[9] assists to establish
mathematical models with interest conflict between IoT mal-
ware and edge nodes in the field of automated malware spread-
suppression under edge intelligence-enabled IoT (EIIoT) [10],
[11]. Generally, an actual EIIoT network system for malware
suppression is dynamic and complicated. For example, when
the infected IoT end devices attempt to spread malware, they
cannot accurately gain access to the current EIIoT system
states and the suppression strategy of edge nodes. Similarly,
the edge nodes cannot know the spread target, spread time, and
spread route of malware, rendering them unable to ensure the
effectiveness of their strategies. Stochastic games, which are a
type of multi-agent and multi-state dynamic incomplete games
with state transition probability, can better reveal the state
transition process between suppression and non-suppression
and the interactions between IoT end devices and edge nodes.
Thus, we recommend stochastic games to weigh the cost of
different strategies and optimize the decisions of a multi-state
multi-agent EIIoT malware spread-suppression system with
the consideration of limited resources, so as to improve the
efficiency of the IoT malware suppression rate.

The Deep Q-Network (DQN) algorithm [12], [13], novelly
combining deep learning and reinforcement learning, achieves
an end-to-end learning architecture from perception to the real
action. It applies neural networks to approximate Q-learning,
outperforming human players in Atari 2600 games [14]–
[17]. Considering independent and identically distributed data,
experience replay is introduced to the DQN algorithm, which
stores the data obtained from the exploration environment
and updates the deep neural network by random sampling.
This store-sample method also breaks the data correlation.
Besides, implementing a target network keeps the target Q-
value unchanged during specific time steps, improving the
algorithm stability. Nevertheless, due to the max operation
and bootstrapping in reinforcement learning, the problem of
overestimation of DQN algorithm cannot be ignored [18]–[20].

Given the above research, several significant questions come
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out as follows:

1) Can stochastic games properly express the whole process
of IoT malware spread confrontation under EIIoT?

2) Can the traditional DQN algorithm be successfully ex-
tended to more advanced algorithms that accelerate con-
vergence to the optimal strategy?

3) Which parameters will effect on EIIoT malware spread-
suppression strategy selection?

To address these questions, we propose a stochastic games-
based malware spread-suppression (SGMSS) model, for which
a stable Nash equilibrium exists, representing an optimal
EIIoT malware spread-suppression strategy, through constant
simulation and decision-making adaptation. Here, the edge
nodes are trained as an intelligent agent to automatically and
efficiently analyse IoT malware behaviour and generate learn-
ing strategies without manual intervention. In this case, the
end users can be protected from malware spread by preventing
the access to the core architecture in practice. Furthermore,
we extend the DQN algorithm to DDQMS (Double DQN
for Malware Spread), D2QMS (Dueling DQN for Malware
Spread), and D3QMS (Dueling Double DQN for Malware
Spread) algorithms to practically obtain Nash equilibrium,
which address the problem of state space explosion and obtain
approximate Q-values. Eventually, experimental simulations
aim to seek the optimal algorithm and the optimal parameter-
setting for EIIoT malware spread-suppression strategy selec-
tion.

The main contributions are summarised as follows:

1) We analyze the process of automated EIIoT malware
spread-suppression based on stochastic games. Based on
this, we construct a theoretical SGMSS model to express
the interaction between IoT malware and edge nodes
for understanding the internal characteristic of EIIoT
malware spread-suppression.

2) We implement DDQMS, D2QMS and D3QMS based on
the given EIIoT malware spread-suppression environment
for the proposed game model. The value estimation and
strategy selection of DDQMS utilise two independently
trained neural networks, mitigating the overestimation
of DQN in large action space tasks. For the D2QMS,
an advantage network is added to express the differ-
ence between taking different actions. Moreover, D3QMS
combines the D2QMS-based Q-network and DDQMS-
based reward function, integrating the advantages of the
above two DQN-improved algorithms and forming the
third DQN-improved algorithm. These three algorithms
can practically solve the optimal EIIoT malware spread-
suppression strategy.

3) We compare the influence of related parameters including
the learning rate and discount factor on EIIoT malware
spread-suppression strategy selection based on DDQMS,
D2QMS and D3QMS, as well as compare performances
including defender cumulative reward, average episode
lengths, defender average episode loss, and successful
spread rate. The comparative simulation eventually ob-
tained the optimal parameter setting and the optimal
DQN-improved algorithm, providing a practical basis for

the optimal strategy selection of EIIoT malware spread-
suppression.

The rest of the paper is organised as follows. In Section
II, we introduce EIIoT, recap suppression for the spread of
IoT malware, and discuss the integrated application of DQN
and stochastic games considering the spread of IoT malware.
In Section III, we construct an SGMSS model, analysing the
stable Nash equilibrium and theoretically providing a unique
and optimal EIIoT malware spread-suppression strategy. In
Section IV, we develop the DQN-improved algorithms to prac-
tically obtain the optimal EIIoT malware spread-suppression
strategy for the game. In Section V, we numerically compare
the influence of related parameters on the decision-making
assisted by DQN-improved algorithms, and the performance
among the DQN-improved algorithms, which is followed by
a conclusion and the potential future work in Section VI.

II. RELATED WORK

Here, we give an overview of EIIoT, automated suppression
for the spread of IoT malware, and DQN-aided and stochastic
games-oriented IoT security solutions.

Edge intelligence, deployed at edge nodes, allows rapid
access to large amounts of real-time data generated by IoT
end devices, which is commonly beneficial for AI model
training and reasoning. Nkenyereye et al. [21] suggested a
containerized edge intelligence framework for mobile wear-
able IoT devices to provide intelligent inference services of AI
models, in order to achieve dynamic instantiation. Considering
the resource limitation of Industrial IoT, Tang et al. [22]
designed a multi-exit-based federated edge learning approach,
deploying computational intelligence and cooperative training
under edge-enabled Industrial IoT, which improves not only
data privacy but also bandwidth allocation. Xu et al. [23]
presented a smart contract-based edge intelligence architecture
to handle the trust and security issues of personalized model
learning in IoT networks. They then proved that the established
architecture achieves better model accuracy. Xiao et al. [24]
explored a high-efficient AI-based task scheduling and offload-
ing scheme for edge-assisted dependent IoT applications under
dynamic IoT networks, realizing low latency and reducing
energy consumption. Ke et al. [25] merged edge computing
into an intelligent parking surveillance system utilizing an en-
hanced single shot multibox detector taking system flexibility
and reliability into account.

As the number of IoT end devices invaded by malware
increases, the researchers attempt to achieve automated de-
tection, suppression and control of malware spread utilizing
AI technologies including DQN algorithms. Reh et al. [26]
described a DDQN-based botnet detector to detect the whole
lifecycle of botnets, which can dynamically adapt to the
constantly changing IoT environments. It demonstrates that the
proposed detector has strong generalizability and resilience to
self-respond to malware attack. Shen et al. [27] put forward
a differential game-based malware spread-patch framework
based on a hybrid patches-distribution approach for Industrial
IoT to control IoT malware dissemination. Furthermore, they
developed a novel DDQN-based algorithm to seek the optimal
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malware control self-learning strategy, which demonstrates the
effectiveness and superiority of the proposed method. Zhang et
al. [28] recommended a novel hybrid representation learning
method to label and cluster android malware via retaining
heterogeneous information from various sources, which can
effectively recognize and classify security threats through
continuous learning.

Intelligent game countermeasure technology is indispens-
able in IoT systems, which applies DQN variants and game
theory to settle sequential decision problems. Benaddi et al.
[29] modelled stochastic games to improve the decision-
making by MDP and analysing IDS behaviour. They then
developed a DQN-based IDS algorithm to obtain the Nash
equilibrium and advance the detection rate and accuracy,
guaranteeing IoT system security against cyber-attacks. Li
et al. [30] advised a non-cooperative game framework to
drive the transmission strategy with the consideration of an
intelligent reflecting surface (IRS). They next established a
DQN-based power allocation algorithm to train the base station
to predict attack behaviour and suppress intelligent attackers,
so as to enhance the system security. Liu et al. [31] proposed
a distributed reflection denial of service (DRDoS) attack-
defense framework based on POMDP-aided stochastic games
and a recurrent-based DQN algorithm, dynamically converging
to the optimal suppression strategy in the context of partial
rationality and incomplete information. Due to the charac-
teristic of data storage, the novel DRQN (Deep Recurrent
Q-Network) applied in RNN (Recurrent Neural Network) is
more suitable for such scenario, attaining the optimal POMDP-
assisted attack-suppression strategy. Dunstatter et al. [32] sug-
gested a DNQN (Deep Nash Q-Network) method to derive the
optimal attack-suppression strategy based on Markov Games
considering the large scale of action and state space. It can
monitor and record abnormal behaviour under intrusion pre-
vention and detection systems, effectively fulfilling attack alert
and suppression. Zhang et al. [33] constructed an advanced
persistent threat rivalry evolutionary game, in which the use-
ful information tends to be left during defenders’ strategy-
selection and always be exploited by intelligent and rational
attackers, causing the information leakage. They further sought
out the Nash equilibrium based on two DQN-based learning
mechanisms to guarantee that the optimal suppression strategy
adjustment timing can be specified by defenders and the least
information can be learned by attackers.

As shown in Table I, we provide a comparative table to
explain the difference between our work and others in terms
of network scenario, game theory, solution, advantage, and
limitation to critically analyze the existing state-of-the-art
solutions. From the analyses above, it is a novel and feasible
idea for exploring the decision-making problem of automated
EIIoT malware spread-suppression with the combination of
game theory and DQN, which can be a crucial and promising
research direction. Compared to the related work above, we
concentrate on stochastic games-based and DQN algorithm-
aided automated EIIoT malware spread-suppression. Note that
the agents in the given environment cannot directly observe the
current state, while the state distribution can be derived from
the global and partial observations of the model. Besides, there
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Fig. 1. Framework of edge intelligence-enabled IoT.

are several parameters such as the learning rate and discount
factor that can affect the final learning strategy selection.
Nevertheless, the existing works do not fully cogitate on these
two decision parameters while training the optimal malware
spread-suppression strategy. To remedy these deficiencies,
we implement DDQMS, D2QMS and D3QMS to solve the
optimal strategy of the proposed stochastic games, laying a
solid foundation for the practical application of automated EI-
IoT malware spread-suppression decisions based on stochastic
games.

III. THEORETICAL STOCHASTIC GAMES-BASED EIIOT
MALWARE SPREAD-SUPPRESSION MODEL

Here, we consider an IoT framework utilizing edge intelli-
gence as shown in Fig. 1 that provides multi-level resource
support and performance optimization of IoT end devices
based on its operating mechanism and network structure. Edge
intelligence relies on the distributed features of edge comput-
ing, decentralizing the self-adaptive learning and intelligent
decision-making process of AI. It effectively addresses the
problem that merely deploying AI in the cloud center probably
causes time and resource over-consuming.

We further build a theoretical stochastic games-based mal-
ware spread-suppression model in EIIoT, in which the IoT
malware follows a random spread policy and the correspond-
ing edge nodes are trained to select an optimal suppression
strategy via DQN-improved algorithms including DDQMS,
D2QMS and D3QMS. Note that the EIIoT states consistently
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TABLE I
COMPARATIVE TABLE EXPLAINING THE DIFFERENCE BETWEEN OUR WORK AND OTHERS

Paper Network Scenario Game Theory Solution Advantage Limitation
Reh et al. [26] Malware botnet detection None DDQN-based malware botnet detector Enhance the IDS generalizability Lack of researching on the infected system

itself
Shen et al. [27] IIoT malware spread-patch Differential game DDQN Introduce novel spread control parameters

to probe the optimal spread-patch strategies
under optimization theory

Delay of patches distribution by the central
computer

Zhang et al. [28] Android malware clustering None Hybrid representation learning Maintain heterogeneous information for ef-
fective Android malware clustering

Lack of researching on false alarms caused
by the incomplete whitelist

Benaddi et al. [29] Intrusion detection Stochastic game DQN-based IDS Classify attacks to optimize the solution for
maximum IDS reward

Lack of extending the model to deal with
large-scale cyber attacks

Li et al. [30] IRS-assised wireless communication Non-cooperative game DQN-based power allocation Research the secrecy rate in IRS-assisted
wireless communication networks under ac-
tive eavesdroppers

Lack of extending the model to deal with
large-scale fading channels with path loss

Liu et al. [31] DRDoS attack-defense Stochastic game DRQN Analyze attack-defense behaviors and ad-
dress game equilibria under conditions of
partial rationality and incomplete informa-
tion

Lack of diversity in attack and defense

Dunstatter et al. [32] Cyber alert allocation Markov Game DNQN Extend to a much larger state space and per-
form loss-less compression of prohibitively
large state and action spaces

Approximately obtain the equilibrium point

Zhang et al. [33] Advanced persistent threats Evolutionary game DQN-based learning mechanism Find out the best timing of strategy adjust-
ment and appropriately allocate the resource

Lack of researching on cooperation among
attackers or defenders

Our paper EIIoT malware spread-suppression Stochastic game DDQMS, D2QMS, D3QMS Propose and compare three DQN-improved
algorithms as well as explore crucial
parameter-setting

Lack of researching on DRL agents against
non-DRL agents on strategy selection

change according to the EIIoT malware spread-suppression
strategies.
Definition 1. The theoretical stochastic games-based malware
spread-suppression (SGMSS) model for EIIoT is denoted by
a six-tuple SGMSS = ⟨X,S, T, ξ(Sm |Sn), γ, ρ⟩. Here,

• X = {XA, XD} represents the participant set, where
XA represents the attacker IoT malware and XD repre-
sents the defender edge nodes;

• S = {S1, S2, ..., SN} represents the state space set;
• T = {TA × TD} represents the strategy space set, where

TA =
{
T 1
A, T 2

A, ..., TK
A

}
represents the spread strategy

set of IoT malware based on the random attack policy, and
TD =

{
T 1
D, T 2

D, ..., TL
D

}
represents the suppression

strategy set of edge nodes, trained via DQN-improved
algorithms;

• ξ(Sm|Sn) 7→ [0, 1] represents the state transition proba-
bility from state Sn to state Sm;

• γ 7→ [0, 1] represents the discount factor;
• ρ represents the max value for an spread-suppression

attribute, which can be regarded as a constraint.
In the proposed SGMSS, we receive the corresponding

spread strategy T k
A, k ∈ 1, 2, ..., K of the IoT malware,

and suppression strategy T l
D, l ∈ 1, 2, ..., L of the edge

nodes, as well as maximize their expect reward functions

RA = E
[
r | T k

A, Sn, Sm

]
(1)

and
RD = E

[
r | T l

D, Sn, Sm

]
, (2)

respectively. Herein, we have state transition probability

ξ(Sm|Sn) = P
[
Sm | Sn, (T k

A, T l
D)

]
(3)

moving from the state Sn, n ∈ 1, 2, ..., N to state
Sm, m ∈ 1, 2, ..., M with the EIIoT malware spread-
suppression strategy (T k

A, T l
D). This EIIoT malware spread-

suppression process will continue to evolve until converging
to a stable Nash equilibrium.
Theorem 1: The game SGMSS has the optimal EIIoT malware
spread-suppression strategy.
Proof: According to [34], the cost criteria C(t, s) with any

EIIoT malware spread-suppression strategy t ∈ T and initial
state distribution s ∈ S can be denoted as

C(t, s) = (1− γ)Es
t

∞∑
z=1

γz−1C(X, T k
A, T l

D), (4)

in which k ∈ {1, 2, ..., K}, l ∈ {1, 2, ..., L}, γ ∈
[0, 1] expresses the reward discount factor, Es

t expresses
the expectation under the EIIoT malware spread-suppression
strategy (T k

A, T l
D), C(·) expresses the cost function under

the EIIoT malware spread-suppression strategy (T k
A, T

l
D) with

participants IoT malware XA and edge nodes XD. Then, we
obtain

C(t, s) ≤ ρ. (5)

An EIIoT malware spread-suppression strategy t ∈ T is a
Nash equilibrium if any spread strategy tA of IoT malware
satisfies

Cmin(t, s) ≤ Cmin((tA, t
∗
D), s), (6)

in which Cmin(·) expresses the minimal cost function, and t∗D
is the optimal suppression strategy of edge nodes against the
spread strategy tA of IoT malware. Obviously, there is

C((tA, t∗D), s) < ρ, ∀s. (7)

Thus, the Strong Slater condition [34] is satisfied and there
exists a Nash equilibrium meaning the optimal EIIoT malware
spread-suppression strategy. This completes the proof. ■
Theorem 2: The optimal EIIoT malware spread-suppression
strategy for the game SGMSS is unique.
Proof: According to value iteration [35], a Bellman optimality
backup operator B [36] is introduced. We obtain

BV(s):=max
a∈A

∑
s̃∈S

ξ(s̃|s, a)[r(s, a, s̃) + γV(s̃)],∀s ∈ S, (8)

where V(s) expresses the state value function with the current
state s, next state s̃, and action a. For ∀s, we have

|BV1(s)− BV2(s)| = ∥BV1(s)− BV2(s)∥∞, (9)

where V1(s) and V2(s) expresses two different state value
functions, and ∥·∥∞ expresses the infinity-norm. Based on the
Chebyshev distance [37], we have

∥BV1(s)− BV2(s)∥∞ = max
s
|BV1(s)− BV2(s)| . (10)
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According to Eq. (8), we have

|BV1(s)| = max
a1∈A

∑
s̃∈S

ξ(s̃|s, a1)[r(s, a1, s̃) + γV1(s̃)], (11)

and

|BV2(s)| = max
a2∈A

∑
s̃∈S

ξ(s̃|s, a2)[r(s, a2, s̃) + γV2(s̃)], (12)

respectively. Then,

max
s
|BV1(s)− BV2(s)|

≤ γmax
s

{
max
a∈A

∣∣∣∣∣∑
s̃∈S

ξ(s̃|s, a) [V1(s̃)− V2(s̃)]

∣∣∣∣∣
}

≤ γmax
s

{
max
a∈A

[∑
s̃∈S

ξ(s̃|s, a) [V1(s̃)− V2(s̃)]

]}

≤ γmax
s

{
max
s̃,a∈A

|V1(s̃)− V2(s̃)|
}

≤ γ ∥V1(s)− V2(s)∥∞ .

(13)

According to Eqs. (10) and (13), we have

∥BV1(s)− BV2(s)∥∞ ≤ γ ∥V1(s)− V2(s)∥∞ . (14)

Hereto, we have proved that B belongs to a contraction
mapping. We then prove the uniqueness by contradiction.
Assume B has two optimal EIIoT malware spread-suppression
strategies t1 ∈ T and t2 ∈ T such that t1 ̸= t2. Then there
must be

∥t1 − t2∥∞ > 0, (15)

and
∥Bt1 − Bt2∥∞ = ∥t1 − t2∥∞ . (16)

Here, the optimal strategies t1 and t2 can be derived from the
above two state value functions V1(s) and V2(s). Thus, Eq.
(14) can be rewritten as

∥Bt1 − Bt2∥∞ ≤ γ ∥t1 − t2∥∞ . (17)

Due to the contraction mapping of B and according to Eq.
(17), we have

∥Bt1 − Bt2∥∞ ≤ γ ∥t1 − t2∥∞ < ∥t1 − t2∥∞ . (18)

Thus, the hypothesis is not valid. The state value function
satisfying the Bellman optimal equation is unique and the state
value function derived through value iteration must be optimal.
As a corollary, the unique optimal EIIoT malware spread-
suppression strategy for the game SGMSS can be obtained.
This completes the proof. ■

Heretofore, Theorem 1 demonstrates that the Nash equilib-
rium can be reached in the proposed game SGMSS, meaning
that there exists an optimal EIIoT malware spread-suppression
strategy. In Theorem 2, a Bellman optimality backup operator
is introduced to perform value iteration for verifying the
uniqueness of the optimal EIIoT malware spread-suppression
strategy by contradiction. Specifically, once the Nash equi-
librium is achieved, both IoT end devices and edge nodes
hold their own optimal EIIoT malware spread-suppression
strategies, which form a fixed strategy set. In this strategy set,

none of IoT end devices and edge nodes is willing to change
their strategies, otherwise they cannot remain their maximal
rewards. Overall, Theorems 1 and 2 indicate that the strategies
of the IoT end devices and edge nodes strike a balance.

IV. DQN-IMPROVED ALGORITHMS FOR PRACTICAL
OPTIMAL EIIOT MALWARE SPREAD-SUPPRESSION

STRATEGIES

Here, we propose the DQN-improved algorithms consisting
of DDQMS, D2QMS and D3QMS. DDQMS aims to decrease
the overestimation of Q-value by decomposing action selection
and value estimation. D2QMS adds an advantage network,
separating the last layer of the neural network into two parts,
which is an improvement to the DQN network structure. The
novel D3QMS algorithm, combining DDQMS and D2QMS,
absorbs the advantages of both algorithms. In this manner,
we solve the problem of the difficulty in achieving game
parameters and the Nash equilibrium of the given SGMSS
in practice.

A traditional DQN algorithm always results in overestima-
tion of Q-values. The optimization goal of the traditional DQN
algorithm is

y = r + γQ(s̃, argmax
ã

Q(s̃, ã;ω);ω), (19)

where the selection of actions depends on the target network
ω. The optimal action

a∗ = argmax
ã

Q(s̃, ã;ω) (20)

is first selected under the state s̃, and then the corresponding
value

Q = Q(s̃, a∗;ω) (21)

is calculated. In this case, the maximum value of all actions
estimated by the neural network is obtained each time while
calculating via the same Q-network. Considering that the value
estimated by the neural network probably produces positive
or negative errors at certain times, the positive errors will
accumulate under the updating mode of traditional DQN. To
be specific, assume Q-values of all actions under the state s̃
equal to 0, i.e.

Q(s̃, ai) = 0, ∀i, (22)

the target value should be

y = r + 0 = r. (23)

Nevertheless, there exists a positive error in the estimation of
an action á due to the error of neural network, i.e.

Q(s̃, á) > 0. (24)

Thus, the current target value becomes

y = r + γmaxQ > r, (25)

leading to the overestimation. As a corollary, we improve the
traditional DQN to DDQMS, D2QMS and D3QMS algorithms
as well as compare the performance as follows.
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Fig. 2. DDQMS structure.

A. DDQMS

DDQMS integrating double Q-learning and DQN is pro-
posed to investigate EIIoT malware spread-suppression based
on the Double DQN algorithm developed by Van Hasselt et
al. [38]. The training process of DDQMS is similar to that
of triditional DQN algorithm. Specifically, in the proposed
DDQMS, the Q-network ω is utilised to select an action with
the maximal value and the target network ω− is applied to cal-
culate the value of the selected action. Thus, the optimization
goal of the DDQMS algorithm is

y = r + γQ(s̃, argmax
ã

Q(s̃, ã;ω);ω−). (26)

By virtue of DDQMS, an optimal EIIoT malware spread-
suppression strategy can be attained through continuous learn-
ing, which separates action selection from strategy evaluation,
addressing the problem of overestimating the action value
function in the traditional DQN training process. The specific
structure of DDQMS for automatically suppressing the spread
of IoT malware is shown in Fig. 2. We then practically
develop the DDQMS algorithm to obtain the optimal EIIoT
malware spread-suppression strategy for the game SGMSS as
in Algorithm 1.

B. D2QMS

D2QMS is an advanced to investigate EIIoT malware
spread-suppression strategy based on the Dueling DQN algo-
rithm developed by Wang et al. [39], which slightly modifies
the network structure to separate values from actions. Specif-
ically, the state value can be predicted separately and is no
longer completely dependent on the action value. In this case,
our model can attain not only a certain state value but also
different action values under that state. Thus, it can learn the
state and action independently but closely and process more
flexibly in the EIIoT malware spread-suppression environment.
Combining the idea of advantage learning, D2QMS splits the
abstract characteristics into two branches, symbolized as value
function V (s) and advantage function A(s, a). Here, V (s)
represents the evaluation of the state s, and A(s, a) represents
the advantage of an action a in comparison with the average

Algorithm 1: DDQMS algorithm to obtain the optimal
EIIoT malware spread-suppression strategy for the
game SGMSS

1 Initialize the input experience replay buffer Σ,
Q-network ω, target network ω− copying of ω, total
episode number τ , and episode number e = 0;

2 while e ≤ τ do
3 Take an action a and select a state s in the EIIoT

malware spread-suppression environment, and
obtain Q(s, a;ω);

4 Add transition tuple (s, a, r, s̃) to Σ;
5 Sample a random batch from Unif(Σ);
6 Construct target values;
7 amax(s̃;ω)← argmaxã Q(s̃, ã;ω);
8 if s̃ is a terminal then
9 y ← r

10 end
11 y ← r + γQ(s̃, argmaxã Q(s̃, ã;ω);ω−);
12 L← ∥y −Q(s, a;ω)∥2;
13 Move to the next state s̃ and next action ã;
14 e← e+ 1;
15 Decay learning rate per episode;
16 end
17 RETURN trained results;
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Fig. 3. D2QMS structure.

value of all actions under state s, which can be utilised to
evaluate each action in the current state. In the end, two
branches are combined via aggregation to obtain the Q-value
Q(s, a), represented by

Q(s, a) = V (s) +A(s, a). (27)

The specific structure of D2QMS for automatically suppress-
ing the spread of IoT malware is shown in Fig. 3. We
then practically develop the D2QMS algorithm to obtain the
optimal EIIoT malware spread-suppression strategy for the
game SGMSS as in Algorithm 2.
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Algorithm 2: D2QMS algorithm to obtain the optimal
EIIoT malware spread-suppression strategy for the
game SGMSS

1 Initialize the input experience replay buffer Σ,
Q-network ω, total episode number τ , episode
number e = 0, value function V (s), and advantage
function A(s, a);

2 Q(s, a;ω)← V (s) +A(s, a);
3 while e ≤ τ do
4 Take an action a and select a state s in the EIIoT

malware spread-suppression environment;
5 Add transition tuple (s, a, r, s̃) to Σ;
6 Sample a random batch from Unif(Σ);
7 Construct target values;
8 amax(s̃;ω)← argmaxã Q(s̃, ã;ω);
9 if s̃ is a terminal then

10 y ← r
11 end
12 y ← r + γQ(s̃, argmaxã Q(s̃, ã;ω);ω);
13 L← ∥y −Q(s, a;ω)∥2;
14 Move to the next state s̃ and next action ã;
15 e← e+ 1;
16 Decay learning rate per episode;
17 end
18 RETURN trained results;

C. D3QMS

From the above analysis, we understand that DDQMS and
D2QMS both have better performance in searching for the op-
timal EIIoT malware spread-suppression strategy, respectively.
Herein, we present a novel D3QMS algorithm integrating the
strengths of both DDQMS and D2QMS. In D3QMS, the Q-
network and target network are both implemented to obtain the
Q-values, eliminating the overestimation of Q-values. Besides,
an advantage function is introduced, which can learn the
difference between different actions, especially in an environ-
ment with a large action space. The structure of D3QMS for
automatically suppressing the spread of IoT malware is shown
in Fig. 4. We then practically develop the D3QMS algorithm to
obtain the optimal EIIoT malware spread-suppression strategy
for the game SGMSS as in Algorithm 3.

V. EXPERIMENTAL RESULTS AND EVALUATION

Here, we utilize Python to conduct experimental simulations
based on idsgame (https://github.com/Limmen/gym-idsgame)
[40]. With the consideration of indirect observation of at-
tackers’ behaviour, idsgame models stochastic games with
POMDP between attackers and defenders from the defenders’
perspective, which evolves itself into an optimal strategy with-
out human intervention [41]–[43]. We implement an EIIoT
malware spread-suppression environment, in which the edge
nodes are trained via DQN-improved algorithms, and the
IoT malware follows a random spread policy. In the given
idsgame environment, we add the proposed DQN-improved
algorithms including DDQMS, D2QMS and D3QMS to derive

Algorithm 3: D3QMS algorithm to obtain the optimal
EIIoT malware spread-suppression strategy for the
game SGMSS

1 Initialize the input experience replay buffer Σ,
Q-network ω, total episode number τ , episode
number e = 0, value function V (s), and advantage
function A(s, a);

2 Q(s, a;ω)← V (s) +A(s, a);
3 while e ≤ τ do
4 Take an action a and select a state s in the EIIoT

malware spread-suppression environment;
5 Add transition tuple (s, a, r, s̃) to Σ;
6 Sample a random batch from Unif(Σ);
7 Construct target values;
8 amax(s̃;ω)← argmaxã Q(s̃, ã;ω);
9 if s̃ is a terminal then

10 y ← r
11 end
12 y ← r + γQ(s̃, argmaxã Q(s̃, ã;ω);ω−);
13 L← ∥y −Q(s, a;ω)∥2;
14 Move to the next state s̃ and next action ã;
15 e← e+ 1;
16 Decay learning rate per episode;
17 end
18 RETURN trained results;

the optimal EIIoT malware spread-suppression strategy, as
well as explore the influence of the related parameters on
decision-making process and compare the performance among
these three algorithms.

For this experiment, we set replay memory size and batch
size as 10,000 and 32, respectively. The FNN (Fuzzy Neural
Network) model consists of one input layer, two hidden layers,
and one output layer. We apply ReLU (Rectified Linear Unit)
as the hidden activation type, Huber() as the loss function
calculator, and Adam as the loss function optimiser. We
perform simulations using 16,000 episodes and plot every 400
episodes.

A. Learning Rate Influence on the EIIoT Malware Spread-
Suppression Strategy Selection

Here, we explore the influence of the learning rate on the EI-
IoT malware spread-suppression strategy selection. Generally,
when the learning rate is relatively small, the training conver-
gence becomes slower and it requires much more episodes to
reach the locally optimal result. Conversely, when the learning
rate is relatively high, the training probably merely reaches
the locally suboptimal result. Thus, according to [44], [45]
and our model, we change the learning rate as α = 4e − 4,
α = 4e − 3, and α = 4e − 2, as well as set the initial
discount factor γ = 0.99 and exploration rate ε = 0.1. We
then compare this parameter on the EIIoT malware spread-
suppression strategy selection in terms of the successful spread
rate based on DDQMS, D2QMS and D3QMS.

We describe the successful spread rate obtained by the
edge nodes applying DDQMS, D2QMS and D3QMS with
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Fig. 5. Influence of learning rate α on the successful spread rate based on
DDQMS.
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Fig. 6. Influence of learning rate α on the successful spread rate based on
D2QMS.

learning rates α = 4e − 4, α = 4e − 3, and α = 4e − 2,
respectively. As can be seen from Figs. 5–7, although there are
irregular deviations, the probability of successful suppression
is all lower than 0.2 in these three cases, elucidating that
all the DDQMS-, D2QMS-, and D3QMS-trained edge nodes
possess the splendid capability to suppress the spread of IoT
malware. It is notable that the successful spread rate received
by the D2QMS-trained edge nodes with α = 4e− 3 presents
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Fig. 7. Influence of learning rate α on the successful spread rate based on
D3QMS.

a catabatic trend as shown in Fig. 6, fluctuating between 0.10
and 0.25 for the first 6,000 episodes and stabilising around
0.10 for the last 10,000 episodes. Moreover, the D2QMS-
trained edge nodes with α = 4e − 4 overwhelm the edge
nodes with α = 4e − 3 and α = 4e − 2 with a probability
of 63%, which is 25 out of 40 times. In addition, as shown
in Figs. 5 and 7, the edge nodes trained by DDQMS and
D3QMS with α = 4e − 4 transcend the other two cases in
70% of cases, which is both 28 out of 40 times. Consequently,
the edge nodes based on DDQMS, D2QMS and D3QMS with
α = 4e−4 outperform on the successful spread rate than those
of α = 4e − 3 and α = 4e − 2. As a corollary, α = 4e − 4
can be identified as the optimal learning rate for the DDQMS,
D2QMS and D3QMS algorithms.

B. Discount Factor Influence on the EIIoT Malware Spread-
Suppression Strategy Selection

Here, we explore the influence of the discount factor on the
EIIoT malware spread-suppression strategy selection. In order
to perform well in a long term, we are required to consider
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Fig. 8. Influence of discount factor γ on the successful spread rate based on
DDQMS.
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Fig. 9. Influence of discount factor γ on the successful spread rate based on
D2QMS.
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Fig. 10. Influence of discount factor γ on the successful spread rate based
on D3QMS.

not only the immediate rewards but also the future rewards.
We therefore introduce a discount factor. Nevertheless, when
the discount factor is relatively small, the obtained strategies
become too short-sighted, which are based entirely on the
immediate rewards. To balance the present and future results,
the discount factor is usually set close to γ = 1 [46]–[49],
meaning that the future rewards are taken into account while
calculating the values generated by current actions. Thus,
according to the expert experience and our model, we change
the discount factor as γ = 0.99, γ = 0.93, and γ = 0.85,
as well as set the initial learning rate as α = 4e − 4 and
exploration rate ε = 0.1. We then compare this parameter
on the EIIoT malware spread-suppression strategy selection in
terms of the successful spread rate based on DDQMS, D2QMS
and D3QMS.

We describe the successful spread rate obtained by the edge
nodes applying DDQMS, D2QMS and D3QMS with discount
factors γ = 0.99, γ = 0.93, and γ = 0.85, respectively. As
can be seen from Figs. 8–10, despite the existence of variable
oscillation, the successful spread rate is almost lower than 0.15
in all these three cases. Noticeably, in Figs. 8 and 10, the
DDQMS-, and D3QMS-trained edge nodes with γ = 0.85
show a tendency to drop in spite of the persistent volatility.
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Fig. 11. Comparison of defender cumulative reward among DDQMS, D2QMS
and D3QMS.

To be specific, in Fig. 8, the successful spread rate of the edge
nodes utilizing the DDQMS algorithm with γ = 0.85 ranges
from 0.05 to 0.15 in the first 4,000 episodes, which follows
concentrating between 0.00 and 0.05 to the end and wins 21
out of 40 times. Similarly, the D2QMS-, and D3QMS-trained
edge nodes with γ = 0.85 respectively precede the edge nodes
with γ = 0.99 and γ = 0.93 in 55% and 53% of cases. These
illustrate that the edge nodes trained via DDQMS, D2QMS
and D3QMS can learn a better qualified suppression strategy
via unceasing learning. Consequently, the edge nodes based
on DDQMS, D2QMS and D3QMS with γ = 0.85 outperform
on the successful spread rate than those of γ = 0.99 and
γ = 0.93. As a corollary, γ = 0.85 can be identified as the
optimal discount factor for the DDQMS, D2QMS and D3QMS
algorithms.

C. Comparison of the proposed DQN-Improved Algorithms

Here, we compare the performance among DQN-improved
algorithms including DDQMS, D2QMS and D3QMS in terms
of the defender cumulative reward, average episode lengths,
average episode loss, and successful spread rate, respectively.
To guarantee consistent performance, we set the initial param-
eters: learning rate α = 4e− 4, discount factor γ = 0.99, and
exploration rate ε = 0.1.

We describe the cumulative reward obtained by the edge
nodes applying DDQMS, D2QMS and D3QMS algorithms. It
shows an upward trend as shown in Fig. 11, meaning that
the edge nodes in these three cases are incessantly learn-
ing to achieve an optimal EIIoT malware spread-suppression
strategy, maximising their rewards. It is noticeable that the
cumulative reward of the edge nodes trained by D3QMS
acquires more cumulative reward than those of DDQMS
and D2QMS after 4,000 episodes. Generally, the aim is to
maximize the cumulative reward. The more cumulative reward
the edge nodes obtain, the faster they reach the optimal EIIoT
malware spread-suppression strategy. Thus, despite the tiny
advantage, the edge nodes with D3QMS not only spend less
time to attain the optimal EIIoT malware spread-suppression
strategy, but they also address the overestimation as expected.
Consequently, D3QMS outperforms on the defender cumula-
tive reward than those of DDQMS and D2QMS.

We describe the average episode lengths obtained by the
edge nodes applying DDQMS, D2QMS and D3QMS algo-
rithms. As can be seen from Fig. 12, there is little effect
on average episode lengths based on different algorithms.
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Fig. 12. Comparison of average episode lengths among DDQMS, D2QMS
and D3QMS.
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Fig. 14. Comparison of the successful spread rate among DDQMS, D2QMS
and D3QMS.

All these three lines are almost rising and falling between
approximately 4 steps and 5 steps. Note that the D3QMS-
trained edge nodes remain less average episode lengths in
more than one-third cases. Consequently, D3QMS has little
advantage in average episode lengths than those of DDQMS
and D2QMS.

We describe the defender average episode loss caused by
the edge nodes applying DDQMS, D2QMS and D3QMS
algorithms. It shows a downward trend as shown in Fig.
13. The first 400 episodes witness a plummet in all three
algorithms, with the number shrinking from 0.0045 to 0.0020,
0.0039 to 0.0012, and 0.0042 to 0.0018, respectively. From
then until the 16,000th episode, there is a smooth fall for
the D3QMS-trained edge nodes to 0.0008 in 12,000 episodes,
which remains stable at 0.0008 in the last 4,000 episodes.
It is apparent that the D3QMS-trained edge nodes catch up
with the DDQMS- and D2QMS-trained edge nodes in 1,600
episodes with a lower defender average episode loss of 0.0012.
Consequently, D3QMS outperforms on the defender average
episode loss than those of DDQMS and D2QMS.

We describe the successful spread rate obtained by the
edge nodes applying DDQMS, D2QMS and D3QMS algo-
rithms. As can be seen from Fig. 14, although there exists

oscillation erratically, all these three algorithms effectively
suppress the spread of IoT malware with a successful spread
rate of lower than 0.15. Particularly, the successful spread rate
of the D3QMS-trained edge nodes surpasses the DDQMS-
and D2QMS-trained ones nearly approaching a half, which
fluctuates between around 0.03 and 0.10. Nevertheless, the
successful spread rates of DDQMS- and D2QMS-trained edge
nodes undulate almost from 0.05 to 0.15, even exceeding 0.20
in several cases. Consequently, D3QMS outperforms on the
successful spread rate than those of DDQMS and D2QMS.

In general, although there is little advantage on average
episode lengths, the D3QMS-trained edge nodes hold better
performance with regard to the defender cumulative reward,
average episode loss, and successful spread rate. As a corol-
lary, the D3QMS algorithm gains mastery over DDQMS and
D2QMS algorithms. This is because D3QMS integrates the
strengths of DDQMS and D2QMS. The former focuses on
settling over-estimation of Q-values and the latter has an
advantage network, which are beneficial for the edge nodes
to evaluate the potential value of the chosen EIIoT malware
spread-suppression strategy.

VI. CONCLUSION

In this paper, we have theoretically and practically proposed
a stochastic games-oriented model and DQN-improved algo-
rithms to attain the optimal learning strategy for automati-
cally suppressing the spread of IoT malware under EIIoT,
respectively. In our scheme, a spread-suppression constraint
ρ is introduced to theoretically demonstrate the existence of
stable Nash equilibrium. Further, a Bellman optimality backup
operator B is brought to theoretically attest the optimal and
unique EIIoT malware spread-suppression strategy for the
presented game model. Moreover, we have implemented the
DQN-improved algorithms including DDQMS, D2QMS and
D3QMS to practically capture the optimal EIIoT malware
spread-suppression strategy. In addition, we have explored the
effect of related parameters on the EIIoT malware spread-
suppression learning strategy selection, as well as assessed
the difference among three DQN-improved algorithms. The
relevant experimental simulations certify that the edge nodes
using DQN-improved algorithms with learning rate α = 4e−4
and discount factor γ = 0.85 are superior in automatically
suppressing the spread of IoT malware. Additionally, D3QMS-
trained edge nodes display a better performance than DDQMS-
and D2QMS-trained ones in terms of the defender cumulative
reward, average episode lengths, average episode loss, and
successful spread rate.

For future work, we will focus on other parameter adjust-
ments, such as buffer size, batch size, and the network itself,
to thoroughly investigate EIIoT malware spread-suppression
strategy selection. Moreover, probing the performance of deep
reinforcement learning (DRL) agents against non-DRL agents
on EIIoT malware spread-suppression strategy selection is
another direction with great promise.
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