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Comparative DQN-Improved Algorithms for

Stochastic Games-based Automated Edge

Intelligence-enabled IoT Malware

Spread-Suppression Strategies
Yizhou Shen, Carlton Shepherd, Chuadhry Mujeeb Ahmed, Shui Yu, Fellow, IEEE, Tingting Li

Abstract—Massive volumes of malware spread incidents con-
tinue to occur frequently across the Internet of Things (IoT).
Owing to its self-learning and adaptive capability, artificial intel-
ligence (AI) can provide assistance for automatically converging
to an optimal strategy. By merging AI into edge computing, we
consider an edge intelligence-enabled IoT (EIIoT) environment
and provide a stochastic learning strategy for suppressing the
spread of IoT malware. In particular, we introduce stochastic
game theory to symbolise the whole process of the confrontation
between IoT malware and edge nodes. Built upon the theoretical
framework to demonstrate the specific spread-suppression ar-
chitecture, we apply the improved Deep Q-Network algorithms
including DDQMS, D2QMS and D3QMS that can deduce the
optimal EIIoT malware spread-suppression strategy with better
performance. Through experiments, we investigate the influence
of related parameters on learning strategy selection, recommend-
ing the optimal parameters setting of automated EIIoT malware
spread-suppression. We also compare the performance of the
proposed three DQN-improved algorithms.

Index Terms—Malware spread-suppression, Edge computing,
Artificial intelligence, Internet of Things, Stochastic games, Deep
Q-Network

I. INTRODUCTION

VARIOUS suppression techniques have been adopted to

address the problem of malware propagation in Inter-

net of Things (IoT) networks. Nevertheless, traditional sup-

pression mechanisms with cumbersomely manual analysis or

sophisticated model construction have been unable to catch

up with the sharp evolution of IoT malware. Thus, aided

by Artificial Intelligence (AI) [1], we aim to automatically

suppress the spread of IoT malware, increasing response effi-

ciency and decreasing the false alarm rate, which will thereby

achieve autonomous monitoring, autonomous suppression and

autonomous counterattack.

Considering the resource-constrained IoT devices, we focus

on adopting the structure of edge intelligence that integrates

AI into edge computing. Edge intelligence [2], [3] enables
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the deployment of machine learning algorithms at the edge of

IoT networks in response to real-time tasks. In this manner,

self-adaptive learning for complex IoT user behavior can be

carried out to assist edge node agents in generating a balanced

strategy for suppressing the spread of IoT malware.

Compared to the current malware spread solutions includ-

ing whitelisting [4], patching framework [5] and adversarial

defense [6], applying game theory [7]–[9] assists to establish

mathematical models with interest conflict between IoT mal-

ware and edge nodes in the field of automated malware spread-

suppression under edge intelligence-enabled IoT (EIIoT) [10],

[11]. Generally, an actual EIIoT network system for malware

suppression is dynamic and complicated. For example, when

the infected IoT end devices attempt to spread malware, they

cannot accurately gain access to the current EIIoT system

states and the suppression strategy of edge nodes. Similarly,

the edge nodes cannot know the spread target, spread time, and

spread route of malware, rendering them unable to ensure the

effectiveness of their strategies. Stochastic games, which are a

type of multi-agent and multi-state dynamic incomplete games

with state transition probability, can better reveal the state

transition process between suppression and non-suppression

and the interactions between IoT end devices and edge nodes.

Thus, we recommend stochastic games to weigh the cost of

different strategies and optimize the decisions of a multi-state

multi-agent EIIoT malware spread-suppression system with

the consideration of limited resources, so as to improve the

efficiency of the IoT malware suppression rate.

The Deep Q-Network (DQN) algorithm [12], [13], novelly

combining deep learning and reinforcement learning, achieves

an end-to-end learning architecture from perception to the real

action. It applies neural networks to approximate Q-learning,

outperforming human players in Atari 2600 games [14]–

[17]. Considering independent and identically distributed data,

experience replay is introduced to the DQN algorithm, which

stores the data obtained from the exploration environment

and updates the deep neural network by random sampling.

This store-sample method also breaks the data correlation.

Besides, implementing a target network keeps the target Q-

value unchanged during specific time steps, improving the

algorithm stability. Nevertheless, due to the max operation

and bootstrapping in reinforcement learning, the problem of

overestimation of DQN algorithm cannot be ignored [18]–[20].

Given the above research, several significant questions come
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out as follows:

1) Can stochastic games properly express the whole process

of IoT malware spread confrontation under EIIoT?

2) Can the traditional DQN algorithm be successfully ex-

tended to more advanced algorithms that accelerate con-

vergence to the optimal strategy?

3) Which parameters will effect on EIIoT malware spread-

suppression strategy selection?

To address these questions, we propose a stochastic games-

based malware spread-suppression (SGMSS) model, for which

a stable Nash equilibrium exists, representing an optimal

EIIoT malware spread-suppression strategy, through constant

simulation and decision-making adaptation. Here, the edge

nodes are trained as an intelligent agent to automatically and

efficiently analyse IoT malware behaviour and generate learn-

ing strategies without manual intervention. In this case, the

end users can be protected from malware spread by preventing

the access to the core architecture in practice. Furthermore,

we extend the DQN algorithm to DDQMS (Double DQN

for Malware Spread), D2QMS (Dueling DQN for Malware

Spread), and D3QMS (Dueling Double DQN for Malware

Spread) algorithms to practically obtain Nash equilibrium,

which address the problem of state space explosion and obtain

approximate Q-values. Eventually, experimental simulations

aim to seek the optimal algorithm and the optimal parameter-

setting for EIIoT malware spread-suppression strategy selec-

tion.

The main contributions are summarised as follows:

1) We analyze the process of automated EIIoT malware

spread-suppression based on stochastic games. Based on

this, we construct a theoretical SGMSS model to express

the interaction between IoT malware and edge nodes

for understanding the internal characteristic of EIIoT

malware spread-suppression.

2) We implement DDQMS, D2QMS and D3QMS based on

the given EIIoT malware spread-suppression environment

for the proposed game model. The value estimation and

strategy selection of DDQMS utilise two independently

trained neural networks, mitigating the overestimation

of DQN in large action space tasks. For the D2QMS,

an advantage network is added to express the differ-

ence between taking different actions. Moreover, D3QMS

combines the D2QMS-based Q-network and DDQMS-

based reward function, integrating the advantages of the

above two DQN-improved algorithms and forming the

third DQN-improved algorithm. These three algorithms

can practically solve the optimal EIIoT malware spread-

suppression strategy.

3) We compare the influence of related parameters including

the learning rate and discount factor on EIIoT malware

spread-suppression strategy selection based on DDQMS,

D2QMS and D3QMS, as well as compare performances

including defender cumulative reward, average episode

lengths, defender average episode loss, and successful

spread rate. The comparative simulation eventually ob-

tained the optimal parameter setting and the optimal

DQN-improved algorithm, providing a practical basis for

the optimal strategy selection of EIIoT malware spread-

suppression.

The rest of the paper is organised as follows. In Section

II, we introduce EIIoT, recap suppression for the spread of

IoT malware, and discuss the integrated application of DQN

and stochastic games considering the spread of IoT malware.

In Section III, we construct an SGMSS model, analysing the

stable Nash equilibrium and theoretically providing a unique

and optimal EIIoT malware spread-suppression strategy. In

Section IV, we develop the DQN-improved algorithms to prac-

tically obtain the optimal EIIoT malware spread-suppression

strategy for the game. In Section V, we numerically compare

the influence of related parameters on the decision-making

assisted by DQN-improved algorithms, and the performance

among the DQN-improved algorithms, which is followed by

a conclusion and the potential future work in Section VI.

II. RELATED WORK

Here, we give an overview of EIIoT, automated suppression

for the spread of IoT malware, and DQN-aided and stochastic

games-oriented IoT security solutions.

Edge intelligence, deployed at edge nodes, allows rapid

access to large amounts of real-time data generated by IoT

end devices, which is commonly beneficial for AI model

training and reasoning. Nkenyereye et al. [21] suggested a

containerized edge intelligence framework for mobile wear-

able IoT devices to provide intelligent inference services of AI

models, in order to achieve dynamic instantiation. Considering

the resource limitation of Industrial IoT, Tang et al. [22]

designed a multi-exit-based federated edge learning approach,

deploying computational intelligence and cooperative training

under edge-enabled Industrial IoT, which improves not only

data privacy but also bandwidth allocation. Xu et al. [23]

presented a smart contract-based edge intelligence architecture

to handle the trust and security issues of personalized model

learning in IoT networks. They then proved that the established

architecture achieves better model accuracy. Xiao et al. [24]

explored a high-efficient AI-based task scheduling and offload-

ing scheme for edge-assisted dependent IoT applications under

dynamic IoT networks, realizing low latency and reducing

energy consumption. Ke et al. [25] merged edge computing

into an intelligent parking surveillance system utilizing an en-

hanced single shot multibox detector taking system flexibility

and reliability into account.

As the number of IoT end devices invaded by malware

increases, the researchers attempt to achieve automated de-

tection, suppression and control of malware spread utilizing

AI technologies including DQN algorithms. Reh et al. [26]

described a DDQN-based botnet detector to detect the whole

lifecycle of botnets, which can dynamically adapt to the

constantly changing IoT environments. It demonstrates that the

proposed detector has strong generalizability and resilience to

self-respond to malware attack. Shen et al. [27] put forward

a differential game-based malware spread-patch framework

based on a hybrid patches-distribution approach for Industrial

IoT to control IoT malware dissemination. Furthermore, they

developed a novel DDQN-based algorithm to seek the optimal
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malware control self-learning strategy, which demonstrates the

effectiveness and superiority of the proposed method. Zhang et

al. [28] recommended a novel hybrid representation learning

method to label and cluster android malware via retaining

heterogeneous information from various sources, which can

effectively recognize and classify security threats through

continuous learning.

Intelligent game countermeasure technology is indispens-

able in IoT systems, which applies DQN variants and game

theory to settle sequential decision problems. Benaddi et al.

[29] modelled stochastic games to improve the decision-

making by MDP and analysing IDS behaviour. They then

developed a DQN-based IDS algorithm to obtain the Nash

equilibrium and advance the detection rate and accuracy,

guaranteeing IoT system security against cyber-attacks. Li

et al. [30] advised a non-cooperative game framework to

drive the transmission strategy with the consideration of an

intelligent reflecting surface (IRS). They next established a

DQN-based power allocation algorithm to train the base station

to predict attack behaviour and suppress intelligent attackers,

so as to enhance the system security. Liu et al. [31] proposed

a distributed reflection denial of service (DRDoS) attack-

defense framework based on POMDP-aided stochastic games

and a recurrent-based DQN algorithm, dynamically converging

to the optimal suppression strategy in the context of partial

rationality and incomplete information. Due to the charac-

teristic of data storage, the novel DRQN (Deep Recurrent

Q-Network) applied in RNN (Recurrent Neural Network) is

more suitable for such scenario, attaining the optimal POMDP-

assisted attack-suppression strategy. Dunstatter et al. [32] sug-

gested a DNQN (Deep Nash Q-Network) method to derive the

optimal attack-suppression strategy based on Markov Games

considering the large scale of action and state space. It can

monitor and record abnormal behaviour under intrusion pre-

vention and detection systems, effectively fulfilling attack alert

and suppression. Zhang et al. [33] constructed an advanced

persistent threat rivalry evolutionary game, in which the use-

ful information tends to be left during defenders’ strategy-

selection and always be exploited by intelligent and rational

attackers, causing the information leakage. They further sought

out the Nash equilibrium based on two DQN-based learning

mechanisms to guarantee that the optimal suppression strategy

adjustment timing can be specified by defenders and the least

information can be learned by attackers.

As shown in Table I, we provide a comparative table to

explain the difference between our work and others in terms

of network scenario, game theory, solution, advantage, and

limitation to critically analyze the existing state-of-the-art

solutions. From the analyses above, it is a novel and feasible

idea for exploring the decision-making problem of automated

EIIoT malware spread-suppression with the combination of

game theory and DQN, which can be a crucial and promising

research direction. Compared to the related work above, we

concentrate on stochastic games-based and DQN algorithm-

aided automated EIIoT malware spread-suppression. Note that

the agents in the given environment cannot directly observe the

current state, while the state distribution can be derived from

the global and partial observations of the model. Besides, there
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Fig. 1. Framework of edge intelligence-enabled IoT.

are several parameters such as the learning rate and discount

factor that can affect the final learning strategy selection.

Nevertheless, the existing works do not fully cogitate on these

two decision parameters while training the optimal malware

spread-suppression strategy. To remedy these deficiencies,

we implement DDQMS, D2QMS and D3QMS to solve the

optimal strategy of the proposed stochastic games, laying a

solid foundation for the practical application of automated EI-

IoT malware spread-suppression decisions based on stochastic

games.

III. THEORETICAL STOCHASTIC GAMES-BASED EIIOT

MALWARE SPREAD-SUPPRESSION MODEL

Here, we consider an IoT framework utilizing edge intelli-

gence as shown in Fig. 1 that provides multi-level resource

support and performance optimization of IoT end devices

based on its operating mechanism and network structure. Edge

intelligence relies on the distributed features of edge comput-

ing, decentralizing the self-adaptive learning and intelligent

decision-making process of AI. It effectively addresses the

problem that merely deploying AI in the cloud center probably

causes time and resource over-consuming.

We further build a theoretical stochastic games-based mal-

ware spread-suppression model in EIIoT, in which the IoT

malware follows a random spread policy and the correspond-

ing edge nodes are trained to select an optimal suppression

strategy via DQN-improved algorithms including DDQMS,

D2QMS and D3QMS. Note that the EIIoT states consistently

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3381281

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Cardiff University. Downloaded on May 08,2024 at 11:19:21 UTC from IEEE Xplore.  Restrictions apply. 



4

TABLE I
COMPARATIVE TABLE EXPLAINING THE DIFFERENCE BETWEEN OUR WORK AND OTHERS

Paper Network Scenario Game Theory Solution Advantage Limitation

Reh et al. [26] Malware botnet detection None DDQN-based malware botnet detector Enhance the IDS generalizability Lack of researching on the infected system
itself

Shen et al. [27] IIoT malware spread-patch Differential game DDQN Introduce novel spread control parameters
to probe the optimal spread-patch strategies
under optimization theory

Delay of patches distribution by the central
computer

Zhang et al. [28] Android malware clustering None Hybrid representation learning Maintain heterogeneous information for ef-
fective Android malware clustering

Lack of researching on false alarms caused
by the incomplete whitelist

Benaddi et al. [29] Intrusion detection Stochastic game DQN-based IDS Classify attacks to optimize the solution for
maximum IDS reward

Lack of extending the model to deal with
large-scale cyber attacks

Li et al. [30] IRS-assised wireless communication Non-cooperative game DQN-based power allocation Research the secrecy rate in IRS-assisted
wireless communication networks under ac-
tive eavesdroppers

Lack of extending the model to deal with
large-scale fading channels with path loss

Liu et al. [31] DRDoS attack-defense Stochastic game DRQN Analyze attack-defense behaviors and ad-
dress game equilibria under conditions of
partial rationality and incomplete informa-
tion

Lack of diversity in attack and defense

Dunstatter et al. [32] Cyber alert allocation Markov Game DNQN Extend to a much larger state space and per-
form loss-less compression of prohibitively
large state and action spaces

Approximately obtain the equilibrium point

Zhang et al. [33] Advanced persistent threats Evolutionary game DQN-based learning mechanism Find out the best timing of strategy adjust-
ment and appropriately allocate the resource

Lack of researching on cooperation among
attackers or defenders

Our paper EIIoT malware spread-suppression Stochastic game DDQMS, D2QMS, D3QMS Propose and compare three DQN-improved
algorithms as well as explore crucial
parameter-setting

Lack of researching on DRL agents against
non-DRL agents on strategy selection

change according to the EIIoT malware spread-suppression

strategies.

Definition 1. The theoretical stochastic games-based malware

spread-suppression (SGMSS) model for EIIoT is denoted by

a six-tuple SGMSS = ⟨X,S, T, ξ(Sm |Sn), γ, ρ⟩. Here,

• X = {XA, XD} represents the participant set, where

XA represents the attacker IoT malware and XD repre-

sents the defender edge nodes;

• S = {S1, S2, ..., SN} represents the state space set;

• T = {TA × TD} represents the strategy space set, where

TA =
{

T 1

A, T 2

A, ..., TK
A

}

represents the spread strategy

set of IoT malware based on the random attack policy, and

TD =
{

T 1

D, T 2

D, ..., TL
D

}

represents the suppression

strategy set of edge nodes, trained via DQN-improved

algorithms;

• ξ(Sm|Sn) 7→ [0, 1] represents the state transition proba-

bility from state Sn to state Sm;

• γ 7→ [0, 1] represents the discount factor;

• ρ represents the max value for an spread-suppression

attribute, which can be regarded as a constraint.

In the proposed SGMSS, we receive the corresponding

spread strategy T k
A, k ∈ 1, 2, ..., K of the IoT malware,

and suppression strategy T l
D, l ∈ 1, 2, ..., L of the edge

nodes, as well as maximize their expect reward functions

RA = E
[

r | T k
A, Sn, Sm

]

(1)

and

RD = E
[

r | T l
D, Sn, Sm

]

, (2)

respectively. Herein, we have state transition probability

ξ(Sm|Sn) = P
[

Sm | Sn, (T k
A, T l

D)
]

(3)

moving from the state Sn, n ∈ 1, 2, ..., N to state

Sm, m ∈ 1, 2, ..., M with the EIIoT malware spread-

suppression strategy (T k
A, T l

D). This EIIoT malware spread-

suppression process will continue to evolve until converging

to a stable Nash equilibrium.

Theorem 1: The game SGMSS has the optimal EIIoT malware

spread-suppression strategy.

Proof: According to [34], the cost criteria C(t, s) with any

EIIoT malware spread-suppression strategy t ∈ T and initial

state distribution s ∈ S can be denoted as

C(t, s) = (1− γ)Es
t

∞
∑

z=1

γz−1C(X, T k
A, T l

D), (4)

in which k ∈ {1, 2, ..., K}, l ∈ {1, 2, ..., L}, γ ∈
[0, 1] expresses the reward discount factor, Es

t expresses

the expectation under the EIIoT malware spread-suppression

strategy (T k
A, T l

D), C(·) expresses the cost function under

the EIIoT malware spread-suppression strategy (T k
A, T

l
D) with

participants IoT malware XA and edge nodes XD. Then, we

obtain

C(t, s) ≤ ρ. (5)

An EIIoT malware spread-suppression strategy t ∈ T is a

Nash equilibrium if any spread strategy tA of IoT malware

satisfies

Cmin(t, s) ≤ Cmin((tA, t
∗

D), s), (6)

in which Cmin(·) expresses the minimal cost function, and t∗D
is the optimal suppression strategy of edge nodes against the

spread strategy tA of IoT malware. Obviously, there is

C((tA, t
∗

D), s) < ρ, ∀s. (7)

Thus, the Strong Slater condition [34] is satisfied and there

exists a Nash equilibrium meaning the optimal EIIoT malware

spread-suppression strategy. This completes the proof. ■

Theorem 2: The optimal EIIoT malware spread-suppression

strategy for the game SGMSS is unique.

Proof: According to value iteration [35], a Bellman optimality

backup operator B [36] is introduced. We obtain

BV(s):=max
a∈A

∑

s̃∈S

ξ(s̃|s, a)[r(s, a, s̃) + γV(s̃)], ∀s ∈ S, (8)

where V(s) expresses the state value function with the current

state s, next state s̃, and action a. For ∀s, we have

|BV1(s)− BV2(s)| = ∥BV1(s)− BV2(s)∥∞, (9)

where V1(s) and V2(s) expresses two different state value

functions, and ∥·∥
∞

expresses the infinity-norm. Based on the

Chebyshev distance [37], we have

∥BV1(s)− BV2(s)∥∞ = max
s
|BV1(s)− BV2(s)| . (10)
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According to Eq. (8), we have

|BV1(s)| = max
a1∈A

∑

s̃∈S

ξ(s̃|s, a1)[r(s, a1, s̃) + γV1(s̃)], (11)

and

|BV2(s)| = max
a2∈A

∑

s̃∈S

ξ(s̃|s, a2)[r(s, a2, s̃) + γV2(s̃)], (12)

respectively. Then,

max
s
|BV1(s)− BV2(s)|

≤ γmax
s

{

max
a∈A

∣

∣

∣

∣

∣

∑

s̃∈S

ξ(s̃|s, a) [V1(s̃)− V2(s̃)]

∣

∣

∣

∣

∣

}

≤ γmax
s

{

max
a∈A

[

∑

s̃∈S

ξ(s̃|s, a) [V1(s̃)− V2(s̃)]

]}

≤ γmax
s

{

max
s̃,a∈A

|V1(s̃)− V2(s̃)|

}

≤ γ ∥V1(s)− V2(s)∥∞ .

(13)

According to Eqs. (10) and (13), we have

∥BV1(s)− BV2(s)∥∞ ≤ γ ∥V1(s)− V2(s)∥∞ . (14)

Hereto, we have proved that B belongs to a contraction

mapping. We then prove the uniqueness by contradiction.

Assume B has two optimal EIIoT malware spread-suppression

strategies t1 ∈ T and t2 ∈ T such that t1 ̸= t2. Then there

must be

∥t1 − t2∥∞ > 0, (15)

and

∥Bt1 − Bt2∥∞ = ∥t1 − t2∥∞ . (16)

Here, the optimal strategies t1 and t2 can be derived from the

above two state value functions V1(s) and V2(s). Thus, Eq.

(14) can be rewritten as

∥Bt1 − Bt2∥∞ ≤ γ ∥t1 − t2∥∞ . (17)

Due to the contraction mapping of B and according to Eq.

(17), we have

∥Bt1 − Bt2∥∞ ≤ γ ∥t1 − t2∥∞ < ∥t1 − t2∥∞ . (18)

Thus, the hypothesis is not valid. The state value function

satisfying the Bellman optimal equation is unique and the state

value function derived through value iteration must be optimal.

As a corollary, the unique optimal EIIoT malware spread-

suppression strategy for the game SGMSS can be obtained.

This completes the proof. ■

Heretofore, Theorem 1 demonstrates that the Nash equilib-

rium can be reached in the proposed game SGMSS, meaning

that there exists an optimal EIIoT malware spread-suppression

strategy. In Theorem 2, a Bellman optimality backup operator

is introduced to perform value iteration for verifying the

uniqueness of the optimal EIIoT malware spread-suppression

strategy by contradiction. Specifically, once the Nash equi-

librium is achieved, both IoT end devices and edge nodes

hold their own optimal EIIoT malware spread-suppression

strategies, which form a fixed strategy set. In this strategy set,

none of IoT end devices and edge nodes is willing to change

their strategies, otherwise they cannot remain their maximal

rewards. Overall, Theorems 1 and 2 indicate that the strategies

of the IoT end devices and edge nodes strike a balance.

IV. DQN-IMPROVED ALGORITHMS FOR PRACTICAL

OPTIMAL EIIOT MALWARE SPREAD-SUPPRESSION

STRATEGIES

Here, we propose the DQN-improved algorithms consisting

of DDQMS, D2QMS and D3QMS. DDQMS aims to decrease

the overestimation of Q-value by decomposing action selection

and value estimation. D2QMS adds an advantage network,

separating the last layer of the neural network into two parts,

which is an improvement to the DQN network structure. The

novel D3QMS algorithm, combining DDQMS and D2QMS,

absorbs the advantages of both algorithms. In this manner,

we solve the problem of the difficulty in achieving game

parameters and the Nash equilibrium of the given SGMSS

in practice.

A traditional DQN algorithm always results in overestima-

tion of Q-values. The optimization goal of the traditional DQN

algorithm is

y = r + γQ(s̃, argmax
ã

Q(s̃, ã;ω);ω), (19)

where the selection of actions depends on the target network

ω. The optimal action

a∗ = argmax
ã

Q(s̃, ã;ω) (20)

is first selected under the state s̃, and then the corresponding

value

Q = Q(s̃, a∗;ω) (21)

is calculated. In this case, the maximum value of all actions

estimated by the neural network is obtained each time while

calculating via the same Q-network. Considering that the value

estimated by the neural network probably produces positive

or negative errors at certain times, the positive errors will

accumulate under the updating mode of traditional DQN. To

be specific, assume Q-values of all actions under the state s̃

equal to 0, i.e.

Q(s̃, ai) = 0, ∀i, (22)

the target value should be

y = r + 0 = r. (23)

Nevertheless, there exists a positive error in the estimation of

an action á due to the error of neural network, i.e.

Q(s̃, á) > 0. (24)

Thus, the current target value becomes

y = r + γmaxQ > r, (25)

leading to the overestimation. As a corollary, we improve the

traditional DQN to DDQMS, D2QMS and D3QMS algorithms

as well as compare the performance as follows.
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Fig. 2. DDQMS structure.

A. DDQMS

DDQMS integrating double Q-learning and DQN is pro-

posed to investigate EIIoT malware spread-suppression based

on the Double DQN algorithm developed by Van Hasselt et

al. [38]. The training process of DDQMS is similar to that

of triditional DQN algorithm. Specifically, in the proposed

DDQMS, the Q-network ω is utilised to select an action with

the maximal value and the target network ω− is applied to cal-

culate the value of the selected action. Thus, the optimization

goal of the DDQMS algorithm is

y = r + γQ(s̃, argmax
ã

Q(s̃, ã;ω);ω−). (26)

By virtue of DDQMS, an optimal EIIoT malware spread-

suppression strategy can be attained through continuous learn-

ing, which separates action selection from strategy evaluation,

addressing the problem of overestimating the action value

function in the traditional DQN training process. The specific

structure of DDQMS for automatically suppressing the spread

of IoT malware is shown in Fig. 2. We then practically

develop the DDQMS algorithm to obtain the optimal EIIoT

malware spread-suppression strategy for the game SGMSS as

in Algorithm 1.

B. D2QMS

D2QMS is an advanced to investigate EIIoT malware

spread-suppression strategy based on the Dueling DQN algo-

rithm developed by Wang et al. [39], which slightly modifies

the network structure to separate values from actions. Specif-

ically, the state value can be predicted separately and is no

longer completely dependent on the action value. In this case,

our model can attain not only a certain state value but also

different action values under that state. Thus, it can learn the

state and action independently but closely and process more

flexibly in the EIIoT malware spread-suppression environment.

Combining the idea of advantage learning, D2QMS splits the

abstract characteristics into two branches, symbolized as value

function V (s) and advantage function A(s, a). Here, V (s)
represents the evaluation of the state s, and A(s, a) represents

the advantage of an action a in comparison with the average

Algorithm 1: DDQMS algorithm to obtain the optimal

EIIoT malware spread-suppression strategy for the

game SGMSS

1 Initialize the input experience replay buffer Σ,

Q-network ω, target network ω− copying of ω, total

episode number τ , and episode number e = 0;

2 while e ≤ τ do

3 Take an action a and select a state s in the EIIoT

malware spread-suppression environment, and

obtain Q(s, a;ω);
4 Add transition tuple (s, a, r, s̃) to Σ;

5 Sample a random batch from Unif(Σ);
6 Construct target values;

7 amax(s̃;ω)← argmaxã Q(s̃, ã;ω);
8 if s̃ is a terminal then

9 y ← r

10 end

11 y ← r + γQ(s̃, argmaxã Q(s̃, ã;ω);ω−);

12 L← ∥y −Q(s, a;ω)∥
2
;

13 Move to the next state s̃ and next action ã;

14 e← e+ 1;

15 Decay learning rate per episode;

16 end

17 RETURN trained results;

Value 
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),( asA
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from Malware 
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enabled IoT 

Environment

Fig. 3. D2QMS structure.

value of all actions under state s, which can be utilised to

evaluate each action in the current state. In the end, two

branches are combined via aggregation to obtain the Q-value

Q(s, a), represented by

Q(s, a) = V (s) +A(s, a). (27)

The specific structure of D2QMS for automatically suppress-

ing the spread of IoT malware is shown in Fig. 3. We

then practically develop the D2QMS algorithm to obtain the

optimal EIIoT malware spread-suppression strategy for the

game SGMSS as in Algorithm 2.
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Algorithm 2: D2QMS algorithm to obtain the optimal

EIIoT malware spread-suppression strategy for the

game SGMSS

1 Initialize the input experience replay buffer Σ,

Q-network ω, total episode number τ , episode

number e = 0, value function V (s), and advantage

function A(s, a);
2 Q(s, a;ω)← V (s) +A(s, a);
3 while e ≤ τ do

4 Take an action a and select a state s in the EIIoT

malware spread-suppression environment;

5 Add transition tuple (s, a, r, s̃) to Σ;

6 Sample a random batch from Unif(Σ);
7 Construct target values;

8 amax(s̃;ω)← argmaxã Q(s̃, ã;ω);
9 if s̃ is a terminal then

10 y ← r

11 end

12 y ← r + γQ(s̃, argmaxã Q(s̃, ã;ω);ω);

13 L← ∥y −Q(s, a;ω)∥
2
;

14 Move to the next state s̃ and next action ã;

15 e← e+ 1;

16 Decay learning rate per episode;

17 end

18 RETURN trained results;

C. D3QMS

From the above analysis, we understand that DDQMS and

D2QMS both have better performance in searching for the op-

timal EIIoT malware spread-suppression strategy, respectively.

Herein, we present a novel D3QMS algorithm integrating the

strengths of both DDQMS and D2QMS. In D3QMS, the Q-

network and target network are both implemented to obtain the

Q-values, eliminating the overestimation of Q-values. Besides,

an advantage function is introduced, which can learn the

difference between different actions, especially in an environ-

ment with a large action space. The structure of D3QMS for

automatically suppressing the spread of IoT malware is shown

in Fig. 4. We then practically develop the D3QMS algorithm to

obtain the optimal EIIoT malware spread-suppression strategy

for the game SGMSS as in Algorithm 3.

V. EXPERIMENTAL RESULTS AND EVALUATION

Here, we utilize Python to conduct experimental simulations

based on idsgame (https://github.com/Limmen/gym-idsgame)

[40]. With the consideration of indirect observation of at-

tackers’ behaviour, idsgame models stochastic games with

POMDP between attackers and defenders from the defenders’

perspective, which evolves itself into an optimal strategy with-

out human intervention [41]–[43]. We implement an EIIoT

malware spread-suppression environment, in which the edge

nodes are trained via DQN-improved algorithms, and the

IoT malware follows a random spread policy. In the given

idsgame environment, we add the proposed DQN-improved

algorithms including DDQMS, D2QMS and D3QMS to derive

Algorithm 3: D3QMS algorithm to obtain the optimal

EIIoT malware spread-suppression strategy for the

game SGMSS

1 Initialize the input experience replay buffer Σ,

Q-network ω, total episode number τ , episode

number e = 0, value function V (s), and advantage

function A(s, a);
2 Q(s, a;ω)← V (s) +A(s, a);
3 while e ≤ τ do

4 Take an action a and select a state s in the EIIoT

malware spread-suppression environment;

5 Add transition tuple (s, a, r, s̃) to Σ;

6 Sample a random batch from Unif(Σ);
7 Construct target values;

8 amax(s̃;ω)← argmaxã Q(s̃, ã;ω);
9 if s̃ is a terminal then

10 y ← r

11 end

12 y ← r + γQ(s̃, argmaxã Q(s̃, ã;ω);ω−);

13 L← ∥y −Q(s, a;ω)∥
2
;

14 Move to the next state s̃ and next action ã;

15 e← e+ 1;

16 Decay learning rate per episode;

17 end

18 RETURN trained results;

the optimal EIIoT malware spread-suppression strategy, as

well as explore the influence of the related parameters on

decision-making process and compare the performance among

these three algorithms.

For this experiment, we set replay memory size and batch

size as 10,000 and 32, respectively. The FNN (Fuzzy Neural

Network) model consists of one input layer, two hidden layers,

and one output layer. We apply ReLU (Rectified Linear Unit)

as the hidden activation type, Huber() as the loss function

calculator, and Adam as the loss function optimiser. We

perform simulations using 16,000 episodes and plot every 400

episodes.

A. Learning Rate Influence on the EIIoT Malware Spread-

Suppression Strategy Selection

Here, we explore the influence of the learning rate on the EI-

IoT malware spread-suppression strategy selection. Generally,

when the learning rate is relatively small, the training conver-

gence becomes slower and it requires much more episodes to

reach the locally optimal result. Conversely, when the learning

rate is relatively high, the training probably merely reaches

the locally suboptimal result. Thus, according to [44], [45]

and our model, we change the learning rate as α = 4e − 4,

α = 4e − 3, and α = 4e − 2, as well as set the initial

discount factor γ = 0.99 and exploration rate ε = 0.1. We

then compare this parameter on the EIIoT malware spread-

suppression strategy selection in terms of the successful spread

rate based on DDQMS, D2QMS and D3QMS.

We describe the successful spread rate obtained by the

edge nodes applying DDQMS, D2QMS and D3QMS with
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Fig. 5. Influence of learning rate α on the successful spread rate based on
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Fig. 6. Influence of learning rate α on the successful spread rate based on
D2QMS.

learning rates α = 4e − 4, α = 4e − 3, and α = 4e − 2,

respectively. As can be seen from Figs. 5–7, although there are

irregular deviations, the probability of successful suppression

is all lower than 0.2 in these three cases, elucidating that

all the DDQMS-, D2QMS-, and D3QMS-trained edge nodes

possess the splendid capability to suppress the spread of IoT

malware. It is notable that the successful spread rate received

by the D2QMS-trained edge nodes with α = 4e− 3 presents
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P
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Fig. 7. Influence of learning rate α on the successful spread rate based on
D3QMS.

a catabatic trend as shown in Fig. 6, fluctuating between 0.10

and 0.25 for the first 6,000 episodes and stabilising around

0.10 for the last 10,000 episodes. Moreover, the D2QMS-

trained edge nodes with α = 4e − 4 overwhelm the edge

nodes with α = 4e − 3 and α = 4e − 2 with a probability

of 63%, which is 25 out of 40 times. In addition, as shown

in Figs. 5 and 7, the edge nodes trained by DDQMS and

D3QMS with α = 4e − 4 transcend the other two cases in

70% of cases, which is both 28 out of 40 times. Consequently,

the edge nodes based on DDQMS, D2QMS and D3QMS with

α = 4e−4 outperform on the successful spread rate than those

of α = 4e − 3 and α = 4e − 2. As a corollary, α = 4e − 4
can be identified as the optimal learning rate for the DDQMS,

D2QMS and D3QMS algorithms.

B. Discount Factor Influence on the EIIoT Malware Spread-

Suppression Strategy Selection

Here, we explore the influence of the discount factor on the

EIIoT malware spread-suppression strategy selection. In order

to perform well in a long term, we are required to consider
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Fig. 8. Influence of discount factor γ on the successful spread rate based on
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Fig. 10. Influence of discount factor γ on the successful spread rate based
on D3QMS.

not only the immediate rewards but also the future rewards.

We therefore introduce a discount factor. Nevertheless, when

the discount factor is relatively small, the obtained strategies

become too short-sighted, which are based entirely on the

immediate rewards. To balance the present and future results,

the discount factor is usually set close to γ = 1 [46]–[49],

meaning that the future rewards are taken into account while

calculating the values generated by current actions. Thus,

according to the expert experience and our model, we change

the discount factor as γ = 0.99, γ = 0.93, and γ = 0.85,

as well as set the initial learning rate as α = 4e − 4 and

exploration rate ε = 0.1. We then compare this parameter

on the EIIoT malware spread-suppression strategy selection in

terms of the successful spread rate based on DDQMS, D2QMS

and D3QMS.

We describe the successful spread rate obtained by the edge

nodes applying DDQMS, D2QMS and D3QMS with discount

factors γ = 0.99, γ = 0.93, and γ = 0.85, respectively. As

can be seen from Figs. 8–10, despite the existence of variable

oscillation, the successful spread rate is almost lower than 0.15

in all these three cases. Noticeably, in Figs. 8 and 10, the

DDQMS-, and D3QMS-trained edge nodes with γ = 0.85
show a tendency to drop in spite of the persistent volatility.
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Fig. 11. Comparison of defender cumulative reward among DDQMS, D2QMS
and D3QMS.

To be specific, in Fig. 8, the successful spread rate of the edge

nodes utilizing the DDQMS algorithm with γ = 0.85 ranges

from 0.05 to 0.15 in the first 4,000 episodes, which follows

concentrating between 0.00 and 0.05 to the end and wins 21

out of 40 times. Similarly, the D2QMS-, and D3QMS-trained

edge nodes with γ = 0.85 respectively precede the edge nodes

with γ = 0.99 and γ = 0.93 in 55% and 53% of cases. These

illustrate that the edge nodes trained via DDQMS, D2QMS

and D3QMS can learn a better qualified suppression strategy

via unceasing learning. Consequently, the edge nodes based

on DDQMS, D2QMS and D3QMS with γ = 0.85 outperform

on the successful spread rate than those of γ = 0.99 and

γ = 0.93. As a corollary, γ = 0.85 can be identified as the

optimal discount factor for the DDQMS, D2QMS and D3QMS

algorithms.

C. Comparison of the proposed DQN-Improved Algorithms

Here, we compare the performance among DQN-improved

algorithms including DDQMS, D2QMS and D3QMS in terms

of the defender cumulative reward, average episode lengths,

average episode loss, and successful spread rate, respectively.

To guarantee consistent performance, we set the initial param-

eters: learning rate α = 4e− 4, discount factor γ = 0.99, and

exploration rate ε = 0.1.

We describe the cumulative reward obtained by the edge

nodes applying DDQMS, D2QMS and D3QMS algorithms. It

shows an upward trend as shown in Fig. 11, meaning that

the edge nodes in these three cases are incessantly learn-

ing to achieve an optimal EIIoT malware spread-suppression

strategy, maximising their rewards. It is noticeable that the

cumulative reward of the edge nodes trained by D3QMS

acquires more cumulative reward than those of DDQMS

and D2QMS after 4,000 episodes. Generally, the aim is to

maximize the cumulative reward. The more cumulative reward

the edge nodes obtain, the faster they reach the optimal EIIoT

malware spread-suppression strategy. Thus, despite the tiny

advantage, the edge nodes with D3QMS not only spend less

time to attain the optimal EIIoT malware spread-suppression

strategy, but they also address the overestimation as expected.

Consequently, D3QMS outperforms on the defender cumula-

tive reward than those of DDQMS and D2QMS.

We describe the average episode lengths obtained by the

edge nodes applying DDQMS, D2QMS and D3QMS algo-

rithms. As can be seen from Fig. 12, there is little effect

on average episode lengths based on different algorithms.
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Fig. 14. Comparison of the successful spread rate among DDQMS, D2QMS
and D3QMS.

All these three lines are almost rising and falling between

approximately 4 steps and 5 steps. Note that the D3QMS-

trained edge nodes remain less average episode lengths in

more than one-third cases. Consequently, D3QMS has little

advantage in average episode lengths than those of DDQMS

and D2QMS.

We describe the defender average episode loss caused by

the edge nodes applying DDQMS, D2QMS and D3QMS

algorithms. It shows a downward trend as shown in Fig.

13. The first 400 episodes witness a plummet in all three

algorithms, with the number shrinking from 0.0045 to 0.0020,

0.0039 to 0.0012, and 0.0042 to 0.0018, respectively. From

then until the 16,000th episode, there is a smooth fall for

the D3QMS-trained edge nodes to 0.0008 in 12,000 episodes,

which remains stable at 0.0008 in the last 4,000 episodes.

It is apparent that the D3QMS-trained edge nodes catch up

with the DDQMS- and D2QMS-trained edge nodes in 1,600

episodes with a lower defender average episode loss of 0.0012.

Consequently, D3QMS outperforms on the defender average

episode loss than those of DDQMS and D2QMS.

We describe the successful spread rate obtained by the

edge nodes applying DDQMS, D2QMS and D3QMS algo-

rithms. As can be seen from Fig. 14, although there exists

oscillation erratically, all these three algorithms effectively

suppress the spread of IoT malware with a successful spread

rate of lower than 0.15. Particularly, the successful spread rate

of the D3QMS-trained edge nodes surpasses the DDQMS-

and D2QMS-trained ones nearly approaching a half, which

fluctuates between around 0.03 and 0.10. Nevertheless, the

successful spread rates of DDQMS- and D2QMS-trained edge

nodes undulate almost from 0.05 to 0.15, even exceeding 0.20

in several cases. Consequently, D3QMS outperforms on the

successful spread rate than those of DDQMS and D2QMS.

In general, although there is little advantage on average

episode lengths, the D3QMS-trained edge nodes hold better

performance with regard to the defender cumulative reward,

average episode loss, and successful spread rate. As a corol-

lary, the D3QMS algorithm gains mastery over DDQMS and

D2QMS algorithms. This is because D3QMS integrates the

strengths of DDQMS and D2QMS. The former focuses on

settling over-estimation of Q-values and the latter has an

advantage network, which are beneficial for the edge nodes

to evaluate the potential value of the chosen EIIoT malware

spread-suppression strategy.

VI. CONCLUSION

In this paper, we have theoretically and practically proposed

a stochastic games-oriented model and DQN-improved algo-

rithms to attain the optimal learning strategy for automati-

cally suppressing the spread of IoT malware under EIIoT,

respectively. In our scheme, a spread-suppression constraint

ρ is introduced to theoretically demonstrate the existence of

stable Nash equilibrium. Further, a Bellman optimality backup

operator B is brought to theoretically attest the optimal and

unique EIIoT malware spread-suppression strategy for the

presented game model. Moreover, we have implemented the

DQN-improved algorithms including DDQMS, D2QMS and

D3QMS to practically capture the optimal EIIoT malware

spread-suppression strategy. In addition, we have explored the

effect of related parameters on the EIIoT malware spread-

suppression learning strategy selection, as well as assessed

the difference among three DQN-improved algorithms. The

relevant experimental simulations certify that the edge nodes

using DQN-improved algorithms with learning rate α = 4e−4
and discount factor γ = 0.85 are superior in automatically

suppressing the spread of IoT malware. Additionally, D3QMS-

trained edge nodes display a better performance than DDQMS-

and D2QMS-trained ones in terms of the defender cumulative

reward, average episode lengths, average episode loss, and

successful spread rate.

For future work, we will focus on other parameter adjust-

ments, such as buffer size, batch size, and the network itself,

to thoroughly investigate EIIoT malware spread-suppression

strategy selection. Moreover, probing the performance of deep

reinforcement learning (DRL) agents against non-DRL agents

on EIIoT malware spread-suppression strategy selection is

another direction with great promise.
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