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Adaptive Mixed-Scale Feature Fusion Network for

Blind AI-Generated Image Quality Assessment
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Yuan-Gen Wang, Senior Member, IEEE, and Guanghui Yue, Member, IEEE

Abstract—With the increasing maturity of the text-to-image
and image-to-image generative models, AI-generated images
(AGIs) have shown great application potential in advertisement,
entertainment, education, social media, etc. Although remarkable
advancements have been achieved in generative models, very
few efforts have been paid to design relevant quality assessment
models. In this paper, we propose a novel blind image quality
assessment (IQA) network, named AMFF-Net, for AGIs. AMFF-
Net evaluates AGI quality from three dimensions, i.e., “visual
quality”, “authenticity”, and “consistency”. Specifically, inspired
by the characteristics of the human visual system and motivated
by the observation that “visual quality” and “authenticity” are
characterized by both local and global aspects, AMFF-Net scales
the image up and down and takes the scaled images and original-
sized image as the inputs to obtain multi-scale features. After that,
an Adaptive Feature Fusion (AFF) block is used to adaptively
fuse the multi-scale features with learnable weights. In addition,
considering the correlation between the image and prompt, AMFF-
Net compares the semantic features from text encoder and image
encoder to evaluate the text-to-image alignment. We carry out
extensive experiments on three AGI quality assessment databases,
and the experimental results show that our AMFF-Net obtains
better performance than nine state-of-the-art blind IQA methods.
The results of ablation experiments further demonstrate the
effectiveness of the proposed multi-scale input strategy and AFF
block.

Index Terms—AI-generated images, blind image quality assess-
ment, adaptive feature fusion, multi-scale feature.

I. INTRODUCTION

W ITH the advent of the Web3.0 era [1], artificial

intelligence-generated Content (AIGC) is quietly lead-

ing a profound change, reshaping and even subverting the
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production and consumption mode of digital content. As a

major branch of AIGC, AI-Generated Images (AGIs) have

shown great application potential in various aspects of human

life. The creation of AGIs involves inputting text prompts into

the text-to-image generative model or inputting an image into

the image-to-image generative model to facilitate the generation

process [2]. However, due to technical limitations, large

quality variance exists among different AGIs, requiring manual

selection before use, which greatly limits the development

of generative techniques. Therefore, to improve production

efficiency, it is of great significance to design an automatic

AGI image quality assessment (IQA) method [3], [4].

Recently, deep neural networks (DNNs), especially Con-

volutional Neural Networks (CNNs) and Transformers, have

been widely employed in IQA tasks due to their outstanding

capabilities in feature extraction and fitting [5]–[10]. Current

works mainly focus on natural scene images (NSIs) that

include synthesized distortions or authentic distortions. Most

existing DNN-based IQA methods started with automatically

mining quality-aware features through newly designed shallow

network architectures [11] or classical network architectures

used in image classification tasks [12]. To strengthen the

representative capabilities of DNN features, designers also

focused on the development of more comprehensive feature

extraction or fusion approaches [13]–[16]. Later, for more

accurate assessment results, some strategies are used in view

of the distortion knowledge during the network design, such as

setting auxiliary tasks for naturalness evaluation [17], combing

local and global features [18], generating pseudo reference

[19], integrating multi-level features [5], etc. In addition,

some works also considered the characteristics of the human

visual system (HVS) in the process of network design, e.g.,

establishing perception rule [20], including visual saliency

prediction as the auxiliary task [21], modeling the attention

and contrast sensitivity mechanisms [22]. Recently, some works

also proposed to utilize rank learning [23], semi-supervised

learning [24], and contrastive learning [25] for robust feature

representation, striving for more accurate assessment results.

However, unlike camera-captured NSIs, AGIs are directly

generated by AI generative models. Fig. 1 shows a simple

comparison between NSIs and AGIs. Generally, NSIs usually

suffer from distortions (e.g., compression, blurriness, noise,

etc.), and the perceptual quality is rated from what is the level

of visual experience. By contrast, the quality definition and

representation of AGIs are different and usually rated in a

multi-dimensional perspective, typically in the form of visual

quality, authenticity, and consistency [2]. For an AGI, visual
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quality is similar to the perceptual quality of NSIs that is rated

by analyzing the visual experience influenced by distortions,

such as compression and color artifacts. Authenticity measures

the realness degree to reality. Consistency is gauged by the

alignment between image content and textual labels. Generally,

the rated scores of these three dimensions are usually different.

For instance, in the last subfigure of Fig. 1, the generated

bald eagle is clear, without obvious distortions, and the image

content conforms to the text description. But the image doesn’t

give enough details about the bald eagle with stiff hair and

coarse structures, making it easy to identify as fake. Therefore,

the rating scores of visual quality and consistency of this

image are high, while the rating score of authenticity is low. In

practical applications, apart from the visual quality affected by

the distortion and authenticity affected by the artistic expression,

users also concern about how well the generated AGI matches

the task, i.e., content consistency. Since traditional NSI oriented

IQA methods can only evaluate the image quality in the

dimension of visual experience, they are not suitable for the

quality assessment task of AGIs. Therefore, it is necessary

to design a comprehensive quality evaluation method to form

more detailed understanding of AGIs.

bald eagle, flying over a forest 
with a city in the background

there is a crayfish that is sitting 
on a rock in the water

Visual quality: 
Authenticity:
Consistency:

Visual quality: 
Authenticity:
Consistency:

Fig. 1. Comparisons between NSIs (the first row, selected from KADID-10k
[26] and KonIQ-10k [27]) and AGIs (the second row, selected from PKU-
I2IQA [28]). The quality score of NSIs is mainly rated in the dimension of
visual experience affected by distortions, while the quality scores of AGIs are
rated in the dimensions of visual quality affected by distortions, authenticity
affected by realness degree to reality, and consistency affected by the alignment
between image content and textual labels.

As a new topic, the research on AGI quality assessment

is still in infancy, with very limited progress. A widely used

strategy for evaluating the quality of AGIs is calculating the

distance between the NSIs groups and the AGIs groups [29],

[30]. However, such a strategy must evaluate a group of

images, which is unsuitable for the case of only one image.

Therefore, more advanced methods should be specifically

proposed. Following the general steps of IQA tasks, the quality

assessment databases were first reported based on subjective

experiments to promote the development of objective IQA

methods [3], [28], [31]. These reported databases contain text

prompts and multi-dimensional quality labels. Alongside these

databases, some mainstream NSI oriented IQA methods were

tested by respectively retraining them multiple times, each with

a specific dimension of quality labels as the ground truth. As a

result, most existing methods perform poorly, especially on the

task of evaluating content consistency, as they only take the

image as the input and cannot measure the mismatch degree

between the text prompt and generated image. Recently, some

works proposed to process the text prompt and image separately

with different encoders and concatenate the extracted features

from two encoders to generate the quality score [32]. However,

directly concatenating features cannot effectively measure the

semantic difference between the text prompt and image. For

detailed alignment measurement between the text prompt and

image, some researches tried to segment the text prompt into

multiple morphemes, cut the image into multiple patches, and

compute the alignment scores between morphemes and sub-

images one by one [3]. However, image cutting is highly

depended on the designer’s experience and how to build the

correspondence between morphemes and sub-images is unclear.

To sum up, current studies mainly stay at benchmarking these

databases with some mainstream IQA methods, lacking in-

depth research on designing AGI quality assessment methods.

To move this field forward, this paper proposes a novel

Adaptive Mixed-Scale Feature Fusion Network (AMFF-Net) for

blind AGI quality assessment. Specifically, AMFF-Net adopts

a multi-task framework and evaluates the quality of AGIs

from three dimensions: distortion, authenticity, and content

consistency. Considering that the subjective evaluation result of

an image varies when the distance of the image plane from the

observer changing, AMFF-Net scales the AGI up and down and

feeds the scaled images and the original-sized image into the

image encoder of the pre-trained Contrastive Language-Image

Pre-Training (CLIP) model [33]. After that, the extracted multi-

scale features are adaptively fused by an Adaptive Feature

Fusion (AFF) block. The fused features contain information

at different scales of the image, thereby being more effective

for characterizing the distortion and authenticity of AGIs. For

content consistency prediction, AMFF-Net uses the text encoder

in the pre-trained CLIP to encode the text prompt and computes

the similarity between the obtained textual features and the

fused multi-scale features. The main contributions of this paper

can be summarized as follows:

• A novel blind IQA method is proposed to comprehensively

evaluate the quality of AGIs. Different from existing works

that only measure the “visual quality” of an image, our

method evaluates an AGI from the perspectives of “visual

quality”, “authenticity”, and “consistency”.

• Given that both local and global information should be

considered during subjective rating of visual quality and

authenticity, we propose to utilize a multi-scale input

strategy to help the network capture image details at

different levels of granularity.

• An AFF block is proposed to fuse multi-scale features.

Different from current works that directly concatenate or
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add multi-scale features, the proposed block adaptively

calculates the weights for different features, reducing the

risk of information masking caused by concatenation and

addition.

• Extensive experiments on three AGI quality assessment

databases show that AMFF-Net achieves superior results

compared to nine state-of-the-art blind IQA methods.

Ablation experiments further demonstrate the effectiveness

of the multi-scale input strategy and the AFF block.

II. RELATED WORK

A. DNN-based Blind IQA Methods for NSIs

In the past decades, DNN-based blind IQA methods have

attracted increasing attention from scholars, obtaining superior

performance over traditional handcrafted feature-based methods

on multiple tasks [16], [34]. In earlier studies, shallow CNNs

were constructed to build the mapping between image patches

and quality scores [11]. For instance, Bosse et al. [13] proposed

a CNN-based blind IQA network, which consists of only

ten convolutional layers and five pooling layers for feature

extraction and two fully connected layers for quality regression.

Since the constructed shallow networks are usually with small

input size, they have limited ability to characterize global

distortions [35]. For more accurate predictions, latter works

mainly utilized the pre-trained CNNs, Transformers, or the

hybrid for the image classification tasks as the backbone of the

IQA network. These networks usually have a relatively large

input size, which is conducive to extract global information.

Su et al. [20] utilized the pre-trained ResNet [36] as the

backbone to extract local and global features and fused these

features with a hyper network. Golestaneh et al. [18] extracted

local information of the image via a pre-trained CNN and

modeled them as a sequential input to a Transformer block

for the non-local representation. Ke et al. [37] proposed a

Transformer-based blind IQA network, in which the native

resolution images with varying sizes are processed for a multi-

scale image representation.

Generally, the aforementioned methods are purely data-

driven and do not fully consider the characteristics of distortions

or HVS, leaving much room for performance improvement.

Recently, some researches proposed to build multi-task IQA

frameworks for better performance, in which the auxiliary

task is related to distortion understanding or HVS-inspired

predictions. For instance, given that different distortions have

diverse impacts on the perceptual quality, Wu et al. [38]

designed a multi-task IQA network that takes image distortion

type recognition as the auxiliary task. Yang et al. [21] set

the visual saliency prediction as the auxiliary task in view of

that different regions in an image receive non-uniform visual

attention as they exhibit different qualities. Considering that

synthesized distortions can be characterized and quantified

by natural scene statistics (NSS), Yan et al. [39] set the NSS

feature prediction as the auxiliary task to help the main task, i.e.,

quality prediction, learn a better mapping between the image

and its quality score. Song et al. [17] proposed a knowledge-

guided blind IQA framework by integrating domain knowledge

from NSS and HVS. However, simply utilizing multi-task

learning may have limited feature representations when dealing

with images with complex distortions. Sun et al. [40] proposed

a staircase structure to hierarchically fuse low-level and high-

level features for better feature representation.

B. DNN-based Blind IQA Methods for AGIs

Compared to NSIs, the quality research of AGIs is still in

its infancy, with only a few explorations. For a long time,

researchers mainly utilized the Inception Score proposed by

Salimans et al. [41] for AGI quality evaluation. Considering

the difference between NSIs and AGIs, the Frechet Inception

Distance [29] and Kernel Inception Distance [30] were later

designed to measure the quality of AGIs by calculating the

distance between the AGI groups and the NSI groups. Since

these metrics only evaluate the quality of AGIs in a single

dimension and are not suitable for evaluating a single AGI,

more advanced metrics are highly required. Zhang et al. [42]

made one of the pioneering discussions on evaluating AGI

quality in a multi-dimensional manner and suggested that the

quality of AGIs should be measured in the aspects of technical

issues, artificial intelligence, unnaturalness, degree of difference,

and aesthetics. Unfortunately, this work does not propose an

AGI quality evaluation algorithm, and the strategy of how to

incorporate AGI distortion representation into the evaluation

algorithm is not clear. More recently, some efforts have been

paid to propose specific IQA methods for AGIs by drawing

inspirations from NSI-oriented IQA methods. For instance,

Yuan et al. [43] took the AGI as the input of the IQA network

and compared the differences among various images for a

better feature representation using a contrastive regression

framework. Later, they [32] also introduced a text-image

encoder-based regression framework that respectively processes

the text prompts and generated images with a text encoder and

an image encoder, and concatenates the extracted features for

quality prediction. To evaluate the consistency between the text

prompt and generated image, some current works leverage the

strong reasoning abilities of large Language models (LLMs) for

evaluation [44]–[46]. For example, LLMScore [45] generates

quality scores with multi-granularity compositionality, which

transforms the image into image-level and object-level visual

descriptions, leveraging LLMs to evaluate text-to-image models.

However, these LLMs based methods have a large number of

parameters and require abundant labeled AGIs databases for

training. This motivates to design simpler methods. Li et al.

[3] proposed a simply StairReward alignment model, which

segments the prompt into morphemes and divides the image

into stairs to predict the final score through their one-to-one

alignment.

Although these AGI quality assessment methods perform

relatively superior performance over traditional NSI-oriented

IQA methods, they are still not fully qualified for practical

applications due to the following limitations. First, most

methods only predict the visual experience of an image. In

practice, before use, users not only comprehensively check

the AGI from the visual experience and authenticity, but also

concern about how well the generated image matches the

task, i.e., content consistency. Second, most methods only
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take the AGI as the input, which is insufficient to measure

the text-to-image consistency. Although the measurement of

alignment degree between text morphemes and image stairs can

reflect the consistency to some extent, the prompt segmentation

and image cutting are highly dependent on the designer’s

experience, limiting the generalization ability of such methods.

Third, current methods ignore the correlation and interaction

between features from different modalities, usually resulting

in unsatisfactory performance.

C. CLIP-based IQA Methods

In 2021, Radford et al. [33] trained and released the CLIP

model based on 400 million picture-text pairs to enable zero-

shot prediction. Since then, many researchers have proposed

CLIP-based models for many visual tasks, including image

classification [47], object detection [48], and image retrieval

[49]. Thanks to the robust capabilities of semantic extraction,

CLIP has recently been applied to the IQA tasks. Wang et al.

[50] explored the rich prior knowledge and visual-perception

in CLIP, and evaluated the image quality through prompt

engineering. Pan et al. [51] introduced a two-stage IQA model,

in which a CLIP-based text encoder is used for quality-aware

feature extraction. Miyata [52] introduced a CLIP-based IQA

model that can identify both the perceived quality rating of the

image and the reason on which the rating is based. Zhang et al.

[53] utilized the CLIP model to measure semantic affinity in

the digital human quality assessment task. Although increasing

attempts made in designing CLIP-based IQA methods for NSIs,

very few works have been reported for AGIs.

III. PROPOSED METHOD

A. Motivation

In this paper, we propose a simple yet effective multi-task

blind IQA network, named AMFF-Net, for AGIs. The design

motivation behind our AMFF-Net are as follows: 1) Inspired

by the fact that the perceivability of image details is highly

related to the distance of the image plane from the observer,

AMFF-Net scales the AGI up and down, and encodes the

scaled images and original-size image to capture image details

at different levels of granularity, closer to the subtle and holistic

nature of human visual perception. 2) With the multi-scale

image representations, an adaptive feature fusion block is used

to adaptively incorporate image details at different resolutions,

contributing to accurate quality and authenticity predictions.

3) AMFF-Net evaluates the AGI from multi-dimensional

perspectives, i.e., the visual quality, authenticity, and content

consistency, targeting at helping the users understand the quality

of AGIs more comprehensively than current methods that

only provide one-dimensional prediction. Also, computing

the similarity between textual features and image features

requiring no designer’s experience is a good choice to evaluate

the consistency between the prompt and generated image.

B. Overall Architecture

Fig. 2 illustrates the overall architecture of the proposed

AMFF-Net. AMFF-Net takes the text prompt and multi-scale

AGIs as the inputs and outputs multi-attribute quality scores,

including content consistency SC , visual quality SV , and

authenticity SA:

(SC , SV , SA) = Fθ(T, I
1.5×, I1.0×, I0.5×), (1)

where Fθ(·, ·, ·, ·) denotes the mapping between inputs and

outputs, and T is the text prompt. I1.5×, I1.0×, and I0.5× are

the scaled AGIs with 1.5×, 1.0×, and 0.5× resolutions of the

original image.

Specifically, considering that both local and global details

affect the subjective ratings of visual quality and authenticity,

AMFF-Net inputs the scaled AGIs, i.e., I1.5×, I1.0×, and I0.5×,

into an image encoder of the pre-trained CLIP model [33] to

obtain multi-scale semantic representations, denoted as F 1.5s
I ∈

R
1×1024, F 1.0s

I ∈ R
1×1024, and F 0.5s

I ∈ R
1×1024. In this study,

we select ResNet50 [36] as the image encoder as it has been

widely validated to be effective for IQA tasks. In the default

settings of CLIP, the image encoder can only accept inputs

with the size of 224× 224 due to the presence of positional

embedding. In this study, we add some operations on the last

layer of ResNet50 to make it adaptive to inputs with different

sizes. Specifically, for the input with larger size than 224×224,

we down-sample the feature of the ResNet50’s last layer using

adaptive maximum pooling. For the input with smaller size

than 224×224, we up-sample the feature of the ResNet50’s last

layer using the bilinear interpolation. Both the down-sampling

and up-sampling operations aim to make the feature size of the

ResNet50’s last layer be (2048, 7, 7) to match the positional

embedding. The obtained semantic features of different scaled

images are then fused by an AFF block to form the merged

feature FI ∈ R
1×1024. Subsequently, FI is fed into two parallel

Multi-layer Perceptions (MLPs), which consists of two fully

connected layers, to separately predict the scores of visual

quality and authenticity:
{
SV = Mϑ1(FI),

SA = Mϑ2(FI),
(2)

where Mϑ1(·) and Mϑ2(·) are the MLP operations for visual

quality score prediction and authenticity score prediction,

respectively. The number of neural nodes in the MLP is

{1024, 256, 1}. For content consistency score prediction, we

first utilize the Transformer-based text encoder [54] of the pre-

trained CLIP model to encode the text prompt, and subsequently

compute the cosine similarity between the extracted textural

feature FT ∈ R
1×1024 with the merged image feature FI to

predict the content consistency score:

SC =
FI ⊙ (FT )

T

∥FI∥2 ∥FT ∥2
, (3)

where ⊙ denotes the matrix-multiplication, and (·)T stands for

the matrix transpose operation.

Overall, AMFF-Net can extract multi-scale representations

and adaptively aggregate them, providing rich semantic infor-

mation for accurate visual quality and authenticity predictions.

In addition, AMFF-Net considers the interaction between the

prompt and image, which is conducive to accurate content

consistency prediction.
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portrait of beautiful 
armored girl, sci-fi style

I1.5x

I1.0x

I0.5x

Input

CLIP
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FI1.5s

FI1.0s

FI0.5s FI

ScText
Encoder

Image
Encoder

FI

Cosine 
similarity

AFF

Sv

SA

MLP

MLP

Fig. 2. Overview of the proposed AMFF-Net. It takes both the text prompt
and three scaled AGIs as the inputs and outputs the consistency score SC ,
visual quality score SV , and authenticity score SA. Here, the image and text
encoders are selected from the pre-trained CLIP model. AFF and MLP denote
the adaptive feature fusion block and multi-layer perception, respectively.

C. Adaptive Feature Fusion Block

By feeding three scaled AGIs into the image encoder, we

can obtain multi-scale semantic representations, i.e., F 1.5s
I ,

F 1.0s
I , and F 0.5s

I . How to fuse these features is our next

focus. In previous works, one widely used method is directly

concatenating or adding these features. However, such a method

is easy to cause information masking at different scales, which

is unsuitable for the IQA task. In this study, we propose a

novel feature fusion block, named AFF, to adaptively fuse

these features.

Fig. 3 presents the architecture of the proposed AFF block.

First, these multi-scale features are stacked together, resulting

in VI ∈ R
3×1024. Then, VI is processed by two linear layers

and a Softmax function. Between two linear layers, a ReLU

activation function is embedded. Next, the resultant feature

is processed by a chunk operation, resulting in three distinct

features, namely A1.5s
I ∈ R

1×1024, A1.0s
I ∈ R

1×1024, and A0.5s
I

∈ R
1×1024:

Vm = Ψ(U(F 0.5s
I , F 1.0s

I , F 1.5s
I )), (4)

where Ψ(·) indicates the weights generation process, including

the stack operation U , linear layers, and a Softmax function.

A1.5
I , A1.0

I , and A0.5
I represent the weights associated with

the three image scales. With multi-scale semantic features and

their scale-specific weights, we can obtain the fused feature

FI ∈ R
1×1024 through the element-multiplication and element-

addition operations:

FI = A1.5s
I · F 1.5s

I +A1.0s
I · F 1.0s

I +A0.5s
I · F 0.5s

I . (5)

This above process ensures an adaptive integration of multi-

scale semantic features, boosting the feature representation.

D. Loss Function

As shown in Fig. 1, our AMFF-Net evaluates the quality

in three dimensions. The overall loss function L for training

AMFF-Net is a linear combination of three components:

L = LC + LV + LA (6)

FI1.5s FI1.0sFI0.5s AI1.5s AI1.0sAI0.5s

FI

VI

Fig. 3. Architecture presentation of the proposed AFF block.

where LC , LV , and LA are the loss functions respectively

used for three tasks, i.e., content consistency score prediction,

visual quality score prediction, and authenticity score prediction,

during network training. For the task of consistency score

prediction, we utilize the fidelity loss function [55]:

LC =
1

N2

∑

i,j∈N

(
1−

√
Pi,jP̂i,j −

√
(1− Pi,j)(1− P̂i,j)

)
,

(7)

where N is the image number in a mini-batch, and Pi,j

is a binary function that compares the quality of the i-

the and j-th images. If Qi
V ≥ Q

j
V , Pi,j = 1; otherwise,

Pi,j = 0. Here, QV denotes the ground truth value of content

consistency. P̂i,j computes the probability of the j-th image

predicted better than the j-th image using the Thurstone’s

model [56]. The reason why we choose the fidelity loss is that

it can preserve information granularity of the cosine similarity

between image and text features, making it suitable for our

image-text consistency score prediction task. For the tasks

of visual quality and authenticity score prediction, the mean

square error is used as the loss function to train the network:

LV =
1

N

N∑

i=1

(Qn
V − Sn

V )
2, (8)

LA =
1

N

N∑

i=1

(Qn
A − Sn

A)
2. (9)

In Eq. (10) and Eq. (9), for a mini-batch with N images, Qn
V

and Qn
A are the ground truth values of the n-th image’s visual

quality and authenticity, respectively.

IV. EXPERIMENTS

A. Experiments Setup

1) Databases: In this study, we selected three public

AGI quality assessment databases, including AGIQA-3K [3],

AIGCIQA2023 [31], and PKU-I2IQA [28], for evaluating and

comparing different blind IQA methods. Brief descriptions of

these databases are given below.

• AGIQA-3K: It has 2,982 AGIs generated by 6 Text-to-

Image generative models, including GLIDE [57], Stable

Diffusion V1.5 [58], Stable Diffusion XL2.2 [58], At-

tnGAN [59], Midjourney [60], and DALLE2 [61]. It also

provides 300 text prompts of different scenes and styles,

and contains score labels of visual quality and consistency.
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(a) (b) (c)

Fig. 4. Images from three AGI quality assessment databases: (a) AGIQA-3K [3], (b) AIGCIQA2023 [31], and (c) PKU-I2IQA [28].

• AIGCIQA2023: It comprises 2,400 AGIs generated by

six cutting-edge Text-to-Image generative models with

100 text prompts, including GLIDE [57], Lafite [62],

Stable Diffusion [58], DALLE [61], Unidiffusion [63],

and Controlnet [64]. For each image, it provides score

labels of visual quality, authenticity, and consistency.

• PKU-I2IQA: It consists of 1,600 AGIs generated by

two Image-to-Image models (Midjourney [60] and Stable

Diffusion V1.5 [58]). It contains score labels of visual

quality, authenticity, and consistency, and also provides

200 text prompts of different scenes and styles.

Fig. 4 shows some examples from the three AGI quality

assessment databases. Following previous works, we randomly

divide the AGIQA-3K into training set and test set in a ratio

of 8:2. For AIGCIQA2023 and PKU-I2IQA, we conduct a

3:1 train-test split on the images generated by each generative

model. The resolution of images in three databases is 512×512,

and we resize each image into the size of 224 × 224 due to

the limited computational source.

2) Evaluation Metrics: This study selects three widely used

evaluation metrics in the IQA field to present quantitative

results, including Spearman rank-order correlation coefficient

(SRCC), Pearson linear correlation coefficient (PLCC), and

Kendall rank correlation coefficient (KRCC). In general, higher

values (the maximum value is 1) of these metrics indicates

better prediction performance. As suggested by VQEG [65],

a four-parameter logistic function is used before computing

PLCC:

s̃ =
κ1 − κ2

1 + exp(κ4(s− κ3))
+ κ2, (10)

where s̃ is the mapped value of a predicted score s. In Eq.

(10), κi (i ∈ {1, 2, 3, 4}) can be obtained by comparing the

predicted scores and their ground truths using the least square

method.

3) Implementation Details: Our proposed AMFF-Net was

implemented under the open source Pytorch repository. The

server used in the experiments was powered by one NVIDIA

Geforce GTX3090 GPU and two Intel XEON 6226R CPUs.

During network training, the AdamW optimizer was used, and

the batch size was set to 32. The model was trained end-to-

end for 120 epochs in a two-stage manner. In the first stage,

we froze the parameters of the text and image encoders in

the CLIP and trained the remaining part of AMFF-Net in the

first 20 epochs. The learning rates for AIGCIQA2023 and the

other two databases were set to 1 × 10−3 and 5 × 10−4. In

the second stage, we unfroze the text and image encoders and

fine-tuned the whole network with a learning rate of 5× 10−6.

At the 80-th epoch, the learning rate was adjusted to 5× 10−7.

In addition, we set an early stop strategy, and the training

process was stopped if the performance did not improve after

20 epochs.

B. Performance Comparison

1) Prediction Ability Comparison: In this study, we compare

our proposed AMFF-Net with nine state-of-the-art blind IQA

methods, including ResNet50 [36], ViT-B/32 [66], MUSIQ

[37], DB-CNN [67], HyperIQA [20], TReS [18], Re-IQA [68],

StairIQA [40], and PSCR [43]. Among these methods, the first

eight methods are designed for NSIs, while the last one is

a method specifically designed for AGIs. All these methods,

except PSCR, are re-trained on the three AGI quality assessment

databases using their default settings. Since PSCR does not

release the source code, we directly extract results from its

original paper, in which only partial results on AGIQA-3K

and AIGCIQA2023 are reported. Table I, Table II, and Table

III tabulate the quantitative results of our proposed AMFF-

Net and other methods on three databases. The results are the

median values of 10 trials, in which a random train-test split

is conducted according to the settings in Section IV-A1. For

the convenience of comparison, the best results are marked in

bold.

From the tables, we have the following observations. First,

AMFF-Net outperforms these competing methods on AGIQA-

3K and PKU-I2IQA databases. For example, AMFF-Net is

ahead of the second best method (i.e., TReS) by approximately

2.367% and 18.018% in terms of SRCC when evaluating the

visual quality and consistency on AGIQA-3K, respectively. It

also achieves a performance gain by approximately 3.154%,

7.694%, and 3.639% than the second best method (i.e.,

HyperIQA) in terms of SRCC when evaluating visual quality,

consistency, and authenticity on PKU-I2IQA. Second, our

AMFF-Net ranks the second when evaluating visual quality

and authenticity on AIGCIQA2023 and is slightly inferior to

the best method (i.e., HyperIQA) by approximately 0.872%

and 0.628%. A possible reason for this is that, the images

(e.g., generated by the Lafite model [69]) in the AIGCIQA2023
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TABLE I
QUANTITATIVE RESULTS COMPARISON BETWEEN DIFFERENT BLIND IQA METHODS ON AGIQA-3K. FOR CONVENIENT VIEWING, WE ALSO PRESENT THE

AVERAGE VALUE OF EACH EVALUATION METRIC ON TWO TASKS IN THE EIGHTH TO TENTH COLUMNS OF THE TABLE.

Method
AGIQA-3K [3]

FLOPs #ParamsQuality Consistency Avg.
SRCC PLCC KRCC SRCC PLCC KRCC SRCC PLCC KRCC

ResNet50 [36] 0.8252 0.8863 0.6396 0.6396 0.7878 0.4645 0.7324 0.8370 0.5521 8.27G 24.56M
ViT-B/32 [66] 0.8063 0.8687 0.6195 0.6171 0.7652 0.4438 0.7117 0.8170 0.5316 8.73G 87.61M
MUSIQ [37] 0.8349 0.8862 0.6496 0.6292 0.7839 0.4557 0.7321 0.8350 0.5526 124.77G 78.55M

DB-CNN [67] 0.8154 0.8747 0.6278 0.6329 0.7823 0.4567 0.7242 0.8285 0.5423 33.00G 15.31M

HyperIQA [20] 0.8400 0.8958 0.6565 0.6276 0.8087 0.4543 0.7338 0.8522 0.5554 8.67G 27.38M
TReS [18] 0.8367 0.8973 0.6531 0.6366 0.8134 0.4620 0.7366 0.8553 0.5575 16.77G 34.46M

Re-IQA [68] 0.8187 0.8799 0.6312 0.6373 0.7880 0.4606 0.7280 0.8339 0.5459 33.09G 40.29M
StairIQA [40] 0.8235 0.8864 0.6381 0.6348 0.8006 0.4600 0.7291 0.8435 0.5490 10.22G 33.01M

PSCR [43] 0.8498 0.9059 - - - - - - - - -

AMFF-Net(ours) 0.8565 0.9050 0.6759 0.7513 0.8476 0.5663 0.8039 0.8763 0.6211 41.48G 50.30M

TABLE II
QUANTITATIVE RESULTS COMPARISON BETWEEN DIFFERENT BLIND IQA METHODS ON AIGCIQA2023. FOR CONVENIENT VIEWING, WE ALSO PRESENT

THE AVERAGE VALUE OF EACH EVALUATION METRIC ON THREE TASKS IN THE LAST THREE COLUMNS OF THE TABLE.

Method
AIGCIQA2023 [31]

Quality Consistency Authenticity Avg.
SRCC PLCC KRCC SRCC PLCC KRCC SRCC PLCC KRCC SRCC PLCC KRCC

ResNet50 [36] 0.8208 0.8408 0.6083 0.6997 0.6962 0.5038 0.7087 0.6964 0.5073 0.7431 0.7445 0.5398
ViT-B/32 [66] 0.7881 0.8140 0.5737 0.6404 0.6413 0.4557 0.6975 0.6920 0.4991 0.7087 0.7158 0.5095
MUSIQ [37] 0.8423 0.8596 0.6327 0.7620 0.7527 0.5591 0.7615 0.7509 0.5585 0.7886 0.7878 0.5835

DB-CNN [67] 0.8339 0.8577 0.6240 0.6837 0.6787 0.4915 0.7485 0.7436 0.5449 0.7554 0.7600 0.5535
HyperIQA [20] 0.8483 0.8689 0.6389 0.7541 0.7439 0.5517 0.7798 0.7718 0.5766 0.7940 0.7949 0.5890

TReS [18] 0.8436 0.8666 0.6357 0.7292 0.7266 0.5331 0.7661 0.7602 0.5655 0.7796 0.7845 0.5781
Re-IQA [68] 0.8144 0.8317 0.5980 0.6430 0.6355 0.4564 0.7224 0.7110 0.5214 0.7266 0.7261 0.5253
StairIQA [40] 0.8186 0.8450 0.6063 0.6641 0.6625 0.4748 0.7155 0.7131 0.5151 0.7328 0.7402 0.5321

PSCR [43] 0.8371 0.8588 - 0.7465 0.7379 - 0.7828 0.7750 - 0.7888 0.7906 -

AMFF-Net(ours) 0.8409 0.8537 0.6310 0.7782 0.7638 0.5747 0.7749 0.7643 0.5684 0.7980 0.7939 0.5914

TABLE III
QUANTITATIVE RESULTS COMPARISON BETWEEN DIFFERENT BLIND IQA METHODS ON PKU-I2IQA. FOR CONVENIENT VIEWING, WE ALSO PRESENT THE

AVERAGE VALUE OF EACH EVALUATION METRIC ON THREE TASKS IN THE LAST THREE COLUMNS OF THE TABLE.

Method
PKUI2IQA [28]

Quality Consistency Authenticity Avg.
SRCC PLCC KRCC SRCC PLCC KRCC SRCC PLCC KRCC SRCC PLCC KRCC

ResNet50 [36] 0.6219 0.6328 0.4440 0.6601 0.6511 0.4792 0.4932 0.5211 0.3437 0.5917 0.6017 0.4223
ViT-B/32 [66] 0.5151 0.5197 0.3598 0.5507 0.5389 0.3862 0.4226 0.4485 0.2937 0.4962 0.5024 0.3465
MUSIQ [37] 0.6408 0.6410 0.4596 0.6379 0.6531 0.4599 0.6354 0.6505 0.4571 0.6380 0.6482 0.4589

DB-CNN [67] 0.5975 0.5970 0.4247 0.6083 0.5925 0.4345 0.5667 0.5820 0.4024 0.5908 0.5905 0.4205
HyperIQA [20] 0.6849 0.6955 0.4988 0.7239 0.7062 0.5378 0.6596 0.6902 0.4794 0.6894 0.6973 0.5053

TReS [18] 0.6374 0.6427 0.4572 0.6480 0.6456 0.4690 0.6003 0.6393 0.4311 0.6286 0.6425 0.4524
Re-IQA [68] 0.5996 0.6106 0.4248 0.5705 0.5690 0.4029 0.5509 0.5787 0.3884 0.5737 0.5861 0.4054
StairIQA [40] 0.5855 0.6038 0.4151 0.5739 0.5720 0.4048 0.5535 0.5879 0.3927 0.5709 0.5879 0.4042

AMFF-Net(ours) 0.7065 0.7174 0.5169 0.7796 0.7708 0.5921 0.6836 0.7206 0.5002 0.7232 0.7363 0.5364

possess too similar characteristics, while our method has limited

capability to discriminate fine-grained differences between

images. Despite this, it still exhibits superior performance

than other methods in evaluating consistency and achieves the

best average result of three dimensions, with 3.196% SRCC

advantages over HyperIQA. Third, among all selected NSI

oriented methods, HyperIQA performance best. A possible

reason for this is that, HyperIQA evaluates the image quality

in a content-aware manner using a hyper network, contributing

to understand the semantic distortions, which get more attention

during subjective rating of AGIs. Fourth, the specifically

designed method (PSCR) for AGIs generally performs better

than most traditional NSI-oriented IQA methods. This may be

attributed to the fact that it compares two AGIs generated by

the same text prompts during the network design. Nevertheless,

it is inferior to our proposed AMFF-Net in most cases. To

compare these methods more intuitively, Fig. 5 presents the

scatter plots of different IQA methods on AGIQA-3K database.

As seen, our AMFF-Net produces more consistent predictions

with subjective ratings than competing methods.

We also compare our AMFF-Net with competing methods

in terms of the floating-point operations (FLOPs) and the

number of parameters (#Params). As shown in the last two

columns of Table I, AMFF-Net has 41.48G of FLOPs and

50.30M of #Params, ranking eighth and seventh among ten

competing methods, respectively. This indicates that, compared

to its competitors, our AMFF-Net does not exhibit competitive

advantage in these two aspects. One possible reason for this

could be that AMFF-Net requires multi-scale images as input

and needs to process features from three different scales in
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Fig. 5. Scatter plots of different IQA methods tested on the AGIQA-3K database. Due to the space limitation, we only show the predictions of visual quality.

TABLE IV
CROSS-VALIDATION RESULTS OF DIFFERENT BLIND IQA METHODS.

Method
AIGCIQA2023(Train) → AGIQA-3K(Test) AGIQA-3K(Train) → AIGCIQA2023(Test)

Quality Consistency Quality Consistency
SRCC PLCC KRCC SRCC PLCC KRCC SRCC PLCC KRCC SRCC PLCC KRCC

RestNet50 [36] 0.576 0.612 0.397 0.473 0.523 0.326 0.599 0.609 0.413 0.432 0.435 0.305
ViT-B/32 [66] 0.509 0.571 0.350 0.434 0.496 0.302 0.517 0.529 0.357 0.381 0.390 0.259
MUSIQ [37] 0.635 0.673 0.445 0.394 0.437 0.265 0.650 0.643 0.444 0.525 0.515 0.359

DB-CNN [67] 0.627 0.688 0.442 0.390 0.435 0.263 0.654 0.664 0.455 0.470 0.460 0.317
HyperIQA [20] 0.657 0.692 0.443 0.418 0.465 0.280 0.669 0.672 0.472 0.464 0.431 0.314

TReS [18] 0.646 0.702 0.451 0.445 0.488 0.303 0.650 0.654 0.440 0.505 0.483 0.346
Re-IQA [68] 0.473 0.352 0.325 0.243 0.154 0.165 0.654 0.654 0.441 0.479 0.484 0.323

AMFF-Net(ours) 0.654 0.695 0.459 0.554 0.624 0.385 0.678 0.669 0.474 0.546 0.549 0.381

TABLE V
RESULTS OF ABLATION EXPERIMENTS ON THREE DATABASES. DUE TO THE SPACE LIMITATION, ONLY THE SRCC VALUES ARE PRESENTED HERE.

Method
AGIQA-3K [3] AIGCIQA2023 [31] PKU-I2IQA [28]

Quality Consistency Quality Consistency Authenticity Quality Consistency Authenticity

w/o MSI 0.855 0.748 0.827 0.774 0.766 0.670 0.781 0.648
w/o AFF 0.852 0.739 0.835 0.768 0.774 0.694 0.781 0.680

AMFF-Net 0.856 0.751 0.841 0.778 0.775 0.706 0.780 0.684

the inference stage. Despite this, our proposed AMFF-Net is

more competent for the quality assessment tasks in terms of

prediction accuracy.

2) Generalization Ability Comparison: Apart from predic-

tion ability, generalization ability is another crucial factor for

a blind IQA method. In this section, we further compare

these selected methods in terms of generalization ability by

conducting cross-validation experiments. Since the images in

AGIQA-3K and AIGCIQA2023 are generated by Text-to-Image

generative models, while those in PKU-I2IQA are generated by

Image-to-Image generative models, we select AGIQA-3K and

AIGCIQA2023 for the experiments. Specifically, each method

is trained on one database and tested on the other database

when evaluating a specific quality of AGIs, i.e., visual quality

and content consistency. Table IV presents the experimental

results in the form of three evaluation metrics. Here, we do not

consider StairIQA as it utilizes mixed databases for training,

which is unfair for the cross-validation comparison. From the

table, we can observe that our proposed AMFF-Net outperforms

the competing blind IQA methods by a large margin, with

higher SRCC, PLCC, and SRCC values in most cases. This

indicates its higher generalization ability.

C. Ablation Experiments

1) Effectiveness of Each Component: In this study, the

proposed AMFF-Net utilizes the multi-scale input strategy

(MSI) and adaptive feature fusion (AFF) block for accurate

quality prediction. Here, we conduct some ablation studies to

investigate the effectiveness of the MSI strategy and the AFF

block. The experimental settings are the same as the main

experiment, and the median results of 10 trials are reported.
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Due to the space limitation, only the SRCC scores are given,

as shown in Table V. The “w/o MSI” denotes the learned IQA

model when using three original-sized images as the inputs.

The “w/o AFF” is the learned IQA model when directly adding

the multi-scale representations, instead of using the AFF block

for adaptive fusion. From the table, it is clear that the absence

of either the MSI strategy or the AFF block will degrade the

prediction performance. For example, the removal of the MSI

strategy and the AFF block leads to a SRCC drop of 0.713%

and 1.665% respectively when evaluating visual quality on

AIGCIQA2023. Similarly, AMFF-Net has a SRCC drop of

0.585% and 5.263% if we do not use the MSI strategy and

the AFF block separately when evaluating the authenticity on

PKU-I2IQA. These results show that both the MSI strategy

and the AFF block play a positive role in evaluating AGIs,

contributing to achieving accurate predictions for AMFF-Net.
2) Effectiveness of the Similarity Metric: In Eq. (3), we

choose cosine function to measure the similarity between text

and image features. Here, we investigate its effectiveness on

the AGI quality task by comparing it with two other similarity

metrics: Euclidean distance and Manhattan distance. Fig. 6

shows the the SRCC results on three databases. It can be

observed that cosine function achieves better results than

Euclidean distance and Manhattan distance.

0.751

0.778 0.780

0.744
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Fig. 6. SRCC results of three similarity metrics for consistency prediction
on three databases.

D. Limitations and Future Works

Although our proposed AMFF-Net has demonstrated superi-

ority over competing methods in quality assessment of AGIs, it

still faces certain limitations. On the one hand, the prediction

accuracy of AMFF-Net can be further improved. On the other

hand, the computational complexity of AMFF-Net needs to

be reduced. To update the proposed AMFF-Net, future works

can be carried out from the following directions. Firstly, to

improve the prediction accuracy, we will further strengthen the

interaction between text features and image features, so that the

model can get more discriminative features. Secondly, to reduce

the computational complexity and accelerate inference speed,

we will optimize the model structure by lightweight modules

and design parallel computation schemes to simultaneously

process different scaled inputs.

V. CONCLUSION

AGI quality assessment has recently emerged as a new

and important topic, requiring comprehensive evaluation from

multiple dimensions. In this paper, we propose a simple yet

effective blind IQA network, termed AMFF-Net, for AGIs.

Different from existing methods that only evaluate the images

from the perspective of “visual quality”, AMFF-Net utilizes a

multi-task framework and aims to evaluate AGI quality from

three dimensions, i.e., “visual quality”, “authenticity”, and

“consistency”. Specifically, considering that “visual quality” and

“authenticity” are characterized by both local and global aspects,

AMFF-Net utilizes a multi-scale input (MSI) strategy to capture

image details at different levels of granularity. After that, an

adaptive feature fusion (AFF) block is used to adaptively

multi-scale features. To evaluate the content consistency, the

similarity between semantic features of text prompts and AGI

is computed. Through the cooperation of the MSI strategy and

the AFF block, our AMFF-Net performs better than nine state-

of-the-art blind IQA methods on three publicly available AGI

quality assessment databases. In addition, ablations experiments

demonstrate the effectiveness of the underlying concepts of

the MSI strategy and the AFF block.
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[4] S. Göring, R. R. R. Rao, R. Merten, and A. Raake, “Appeal and
quality assessment for ai-generated images,” in 2023 15th International

Conference on Quality of Multimedia Experience (QoMEX). IEEE,
2023, pp. 115–118.

[5] X. Lan, M. Zhou, X. Xu, X. Wei, X. Liao, H. Pu, J. Luo, T. Xiang,
B. Fang, and Z. Shang, “Multilevel feature fusion for end-to-end blind
image quality assessment,” IEEE Transactions on Broadcasting, vol. 69,
no. 3, pp. 801–811, 2023.

[6] G. Yue, H. Wu, W. Yan, T. Zhou, H. Liu, and W. Zhou, “Subjective
and objective quality assessment of multi-attribute retouched face
images,” IEEE Transactions on Broadcasting, accepted, in press, DOI:
10.1109/TBC.2024.3374043, 2024.

[7] B. Hu, T. Zhao, J. Zheng, Y. Zhang, L. Li, W. Li, and X. Gao, “Blind
image quality assessment with coarse-grained perception construction and
fine-grained interaction learning,” IEEE Transactions on Broadcasting,
accepted, in press, DOI:10.1109/TBC.2023.3342696, 2023.

[8] G. Yue, D. Cheng, H. Wu, Q. Jiang, and T. Wang, “Improving iqa
performance based on deep mutual learning,” in 2022 IEEE International

Conference on Image Processing (ICIP). IEEE, 2022, pp. 2182–2186.
[9] S. Lang, X. Liu, M. Zhou, J. Luo, H. Pu, X. Zhuang, J. Wang, X. Wei,

T. Zhang, Y. Feng et al., “A full-reference image quality assessment
method via deep meta-learning and conformer,” IEEE Transactions

on Broadcasting, accepted, in press, DOI: 10.1109/TBC.2023.3308349,
2023.

[10] G. Yue, H. Wu, Q. Jiang, T. Zhou, W. Yan, and T. Wang, “Perceptual
quality assessment of retouched face images,” IEEE Transactions on

Multimedia, accepted, in press, DOI: 10.1109/TMM.2023.3338412, 2023.
[11] J. Kim, H. Zeng, D. Ghadiyaram, S. Lee, L. Zhang, and A. C.

Bovik, “Deep convolutional neural models for picture-quality prediction:
Challenges and solutions to data-driven image quality assessment,” IEEE

Signal Processing Magazine, vol. 34, no. 6, pp. 130–141, 2017.
[12] B. Hu, G. Zhu, L. Li, J. Gan, W. Li, and X. Gao, “Blind image

quality index with cross-domain interaction and cross-scale integra-
tion,” IEEE Transactions on Multimedia, accepted, in press, DOI:
10.1109/TMM.2023.3303725, 2023.

[13] S. Bosse, D. Maniry, K.-R. Müller, T. Wiegand, and W. Samek,
“Deep neural networks for no-reference and full-reference image quality
assessment,” IEEE Transactions on Image Processing, vol. 27, no. 1, pp.
206–219, 2017.



IEEE TRANSACTIONS ON BROADCASTING 10

[14] L. Zheng, Y. Luo, Z. Zhou, J. Ling, and G. Yue, “Cdinet: Con-
tent distortion interaction network for blind image quality assess-
ment,” IEEE Transactions on Multimedia, accepted, in press, DOI:
10.1109/TMM.2024.3360697, 2024.

[15] K. Ma, W. Liu, K. Zhang, Z. Duanmu, Z. Wang, and W. Zuo, “End-to-
end blind image quality assessment using deep neural networks,” IEEE

Transactions on Image Processing, vol. 27, no. 3, pp. 1202–1213, 2017.

[16] T. Zhou, S. Tan, B. Zhao, and G. Yue, “Multitask deep neural network
with knowledge-guided attention for blind image quality assessment,”
IEEE Transactions on Circuits and Systems for Video Technology,
accepted, in press, DOI: 10.1109/TCSVT.2024.3375344, 2024.

[17] T. Song, L. Li, J. Wu, Y. Yang, Y. Li, Y. Guo, and G. Shi, “Knowledge-
guided blind image quality assessment with few training samples,” IEEE

Transactions on Multimedia, vol. 25, pp. 8145–8156, 2023.

[18] S. A. Golestaneh, S. Dadsetan, and K. M. Kitani, “No-reference image
quality assessment via transformers, relative ranking, and self-consistency,”
in Proceedings of the IEEE/CVF Winter Conference on Applications of

Computer Vision, 2022, pp. 1220–1230.

[19] Z. Pan, F. Yuan, J. Lei, Y. Fang, X. Shao, and S. Kwong, “Vcrnet:
Visual compensation restoration network for no-reference image quality
assessment,” IEEE Transactions on Image Processing, vol. 31, pp. 1613–
1627, 2022.

[20] S. Su, Q. Yan, Y. Zhu, C. Zhang, X. Ge, J. Sun, and Y. Zhang, “Blindly
assess image quality in the wild guided by a self-adaptive hyper network,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2020, pp. 3667–3676.

[21] S. Yang, Q. Jiang, W. Lin, and Y. Wang, “Sgdnet: An end-to-end saliency-
guided deep neural network for no-reference image quality assessment,”
in Proceedings of the 27th ACM International Conference on Multimedia,
2019, pp. 1383–1391.

[22] J. You and J. Korhonen, “Attention integrated hierarchical networks for
no-reference image quality assessment,” Journal of Visual Communication

and Image Representation, vol. 82, p. 103399, 2022.

[23] F.-Z. Ou, Y.-G. Wang, J. Li, G. Zhu, and S. Kwong, “A novel rank
learning based no-reference image quality assessment method,” IEEE

Transactions on Multimedia, vol. 24, pp. 4197–4211, 2022.

[24] G. Yue, D. Cheng, L. Li, T. Zhou, H. Liu, and T. Wang, “Semi-supervised
authentically distorted image quality assessment with consistency-
preserving dual-branch convolutional neural network,” IEEE Transactions

on Multimedia, vol. 25, pp. 6499–6511, 2023.

[25] Z. Yang, L. Li, Y. Yang, Y. Li, and W. Lin, “Multi-level transitional
contrast learning for personalized image aesthetics assessment,” IEEE

Transactions on Multimedia, vol. 26, pp. 1944–1956, 2024.

[26] H. Lin, V. Hosu, and D. Saupe, “Kadid-10k: A large-scale artificially
distorted iqa database,” in 2019 Eleventh International Conference on

Quality of Multimedia Experience (QoMEX). IEEE, 2019, pp. 1–3.

[27] ——, “Koniq-10k: Towards an ecologically valid and large-scale iqa
database,” arXiv preprint arXiv:1803.08489, 2018.

[28] J. Yuan, X. Cao, C. Li, F. Yang, J. Lin, and X. Cao, “Pku-i2iqa: An
image-to-image quality assessment database for ai generated images,”
arXiv preprint arXiv:2311.15556, 2023.

[29] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local nash
equilibrium,” Advances in Neural Information Processing Systems, vol. 30,
2017.
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