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NeRF-Texture: Synthesizing Neural Radiance
Field Textures

Yi-Hua Huang, Yan-Pei Cao, Yu-Kun Lai, Ying Shan and Lin Gao∗

Abstract—Texture synthesis is a fundamental problem in computer graphics that would benefit various applications. Existing methods
are effective in handling 2D image textures. In contrast, many real-world textures contain meso-structure in the 3D geometry space,
such as grass, leaves, and fabrics, which cannot be effectively modeled using only 2D image textures. We propose a novel texture
synthesis method with Neural Radiance Fields (NeRF) to capture and synthesize textures from given multi-view images. In the
proposed NeRF texture representation, a scene with fine geometric details is disentangled into the meso-structure textures and the
underlying base shape. This allows textures with meso-structure to be effectively learned as latent features situated on the base shape,
which are fed into a NeRF decoder trained simultaneously to represent the rich view-dependent appearance. Using this implicit
representation, we can synthesize NeRF-based textures through patch matching of latent features. However, inconsistencies between
the metrics of the reconstructed content space and the latent feature space may compromise the synthesis quality. To enhance
matching performance, we further regularize the distribution of latent features by incorporating a clustering constraint. In addition to
generating NeRF textures over a planar domain, our method can also synthesize NeRF textures over curved surfaces, which are
practically useful. Experimental results and evaluations demonstrate the effectiveness of our approach.

Index Terms—Neural radiance fields, texture synthesis, meso-structure texture.

✦

1 INTRODUCTION

CAPTURING, modeling, synthesizing, and rendering
real-world textures are fundamental problems in com-

puter graphics and computer vision. In the real world,
textures with high-frequency geometry are ubiquitous, like
grass, leaves, fabrics, and cobblestones. Unfortunately, it
is intractable to directly model such meso-structure with
polygons, curves, or voxels [1], like flowers shown in Fig. 1.
While a conventional texture map can represent a range of
surface properties, such as color, reflection, transparency,
and displacement, it remains impractical to accurately por-
tray view-dependent appearance and meso-structure [2].

Thanks to recently proposed neural implicit rendering
approaches such as NeRF (Neural Radiance Fields) [3],
textures in complex real scenes could be reconstructed from
multi-view images. The vanilla NeRF mixes the representa-
tion of geometry and appearance, which limits the freedom
to manipulate the reconstructed textures. To support tex-
ture swapping and editing, NeuMesh [4] and NeuTex [5]
make an attempt to disentangle the texture and geometry.
NeuMesh [4] supports geometry and appearance editing but
is incapable of modeling and synthesizing meso-structure
textures; NeuTex [5] parameterizes the scene content in 3D
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Euclidean space over 2D UV space, which is suitable for
modeling smooth surfaces rather than high-frequency meso-
structure textures.

In computer graphics applications, once texture samples
are captured, texture synthesis is an essential step to pro-
duce similar (but not repetitive) larger textures to decorate
a target surface. Although there is extensive research on 2D
image texture synthesis, little attention has been paid to the
synthesis of NeRF-based textures.

In this paper, we propose a novel NeRF-based approach
for capturing, modeling, synthesizing, and applying tex-
tures with meso-structure and view-dependent appearance,
leveraging multi-view images obtained from real-world
scenes. Our method only requires a set of multi-view images
of the texture to acquire as input, which can be easily ob-
tained by shooting a short video using a mobile phone. Our
approach then learns the representations of the texture and
synthesizes it to the desired size over a UV parameter space,
typically in several minutes. Ultimately, the synthesized
NeRF texture can be applied to any given shape, enabling
real-time rendering.

More specifically, we propose the following key tech-
niques to facilitate the modeling and synthesis of the NeRF
textures with detailed geometry and view-dependent ef-
fects:

Firstly, to learn the meso-structure of textures, we disen-
tangle the scene with fine geometric details into the meso-
structure and the underlying base shape. We then learn the
meso-structure as a NeRF texture through a latent feature
field defined on the base shape. To achieve this goal, we
first extract the base shape and explicitly represent it as a
coarse mesh using Instant-NGP [6] and Co-ACD [7]. We
then propose to map each point in the 3D Euclidean space
to the Cartesian product of the signed distance and its foot
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Fig. 1. Given a set of multi-view images of the target texture with meso-structure, our model synthesizes Neural Radiance Field (NeRF) textures,
which can then be applied to novel shapes, such as the skirt and hat in the figure, with rich geometric and appearance details.

point when projected onto the base mesh. Latent features
are defined on the base shape and fetched by the foot
point. However, directly fetching latent codes from mesh
vertices, like in [4], requires high-resolution meshes, which
leads to a slowdown in latent code lookup and requires
distillation from a well-trained NeRF. Instead, we fetch the
latent representation for the texture with hash grids [6] to
support real-time rendering and training from scratch.

Secondly, to apply captured NeRF-based textures to new
shapes, it is crucial to synthesize textures at sufficient res-
olutions. We propose a novel NeRF-based texture synthesis
method based on the coarse-fine disentanglement represen-
tation. Initially, we extract implicit patches from the base
shape, on which latent features are defined, to create a
patch collection. Subsequently, we implement an implicit
patch matching algorithm to synthesize NeRF-based tex-
tures with collected patches. During this process, patches
of latent features are sampled, matched and quilted to
generate a texture space with the desired spatial resolution.
Furthermore, we introduce an unsupervised metric learning
approach to cluster the features of similar textures, thereby
enhancing the quality of the synthesized results. In this
paper, we significantly extended our previous conference
paper [8] by extending the method to synthesize NeRF
textures over curved surfaces as well as including more
extensive evaluation, including results on newly captured
datasets and more ablation study.

In summary, our main contributions are as follows:

• We propose a method to capture, model, synthesize
and render NeRF textures with meso-structure from
real-world multi-view images.

• We propose a coarse-fine disentanglement represen-
tation that learns the meso-structure and reflection
coefficients as NeRF textures, which are separated
from the underlying coarse surface.

• We adopt a patch matching algorithm in the latent
space to synthesize NeRF textures. A clustering con-
straint is introduced to regularize the latent distri-
bution for better matching. The method is further ex-
tended to NeRF texture synthesis on curved surfaces.
To the best of our knowledge, this is the first work
for NeRF texture synthesis.

2 RELATED WORK

As our work is related to neural rendering and texture
synthesis, we review papers related to these topics.

2.1 Neural Rendering

Various neural rendering approaches have been proposed
to synthesize novel views of a scene with a given set of pho-
tographs. NeRF [3] models the scene as a radiance field with
particles emitting and blocking lights. Inspired by NeRF,
follow-up works extend it to achieve faster inference [6],
[9], [10], handle large-scale scenes [11], [12], [13], [14] and
dynamic scenes [15], [16], [17], and attain reflection decom-
position [18], [19], [20], [21] and stylization [22], [23], [24].
Some other neural representations have been proposed to
model meso-scale textures. Kuznetsov et al. [2] utilize neural
bidirectional texture functions (BTFs) to model known tex-
ture with meso-structure. Wang et al. [25] propose to learn a
complex shape as a combination of a smooth low-frequency
signed distance function (SDF) and a continuous high-
frequency signed distance function. Concurrent work [26]
synthesizes DVGO (Direct Voxel Grid Optimization) [27]-
based 3D scenes with the guidance of shading maps.

NeuTex [5] explicitly represents the texture in a neural
representation through UV parameterization to support tex-
ture editing and mapping. However, such 2D parameteriza-
tion assumes the target object can be smoothly mapped to a
2D parameter space, which is not suitable for most textures
with meso-structure. NeuMesh [4] proposed a mesh-based
neural implicit representation to disentangle the shape and
appearance. With geometry and texture features defined on
vertices, it achieves the geometry and texture editing of
the neural implicit field. Nevertheless, NeuMesh utilizes
predicted SDF rather than densities in volume rendering,
which cannot be defined on non-watertight meso-structure.
Besides, the mesh storing encodings closely fits the target
surface, and as a result the meso-structure is not learned as
texture properties. NeRF-Tex [1] firstly investigated the pos-
sibility to model the texture with meso-structures through
NeRF. The model is trained on synthetic datasets with
rendering results of patches in a bounding box on a plane
under known lighting conditions. Textures are mapped to
the shapes by repeatedly placing the reconstructed bound-
ing box on surfaces. In contrast, our approach targets NeRF
texture synthesis, which simultaneously learns the Phong
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Fig. 2. Overview of our method. Given a set of multi-view images, we first estimate its base shape. Based on it, we model the scene with a
disentangled representation of the base shape and NeRF texture with meso-structure. The query point x is projected onto the base shape as
footpoint xc. Latent features f(x), f̂(x) representing textures are fetched by feeding xc to hash grids. Along with matrices of local tangent space
Tc(x), latent features f(x), f̂(x), and SDF value s(x) are fed into the rendering module (RM). The density σ(x), coefficients of Phong shading
model kd(x), ks(x), g(x), elevation and azimuth angles of the fine normal θ(x), ϕ(x) are predicted based on the input features and SDF. The color
c(x) of the query point x is calculated by Spherical Harmonic (SH) rendering based on the coarse and fine normals nc(x), nf (x), viewing direction
d, shading coefficients kd(x), ks(x), g(x) and lighting SHs. Based on the implicit texture representation (ITR), we extract implicit patches from the
base shape and synthesize texture by an implicit patch matching algorithm. By querying f(x), f̂(x) and Tc(x) from the synthesized implicit textures,
we are able to render the appearance of the synthesized texture.

reflection coefficients, meso-structure and lighting condi-
tions from real-world objects with textures.

2.2 Texture Synthesis

The goal of texture synthesis is to synthesize a new texture
that appears to be generated by the same underlying pro-
cess [28]. The pioneering work by [29] gradually grows the
synthesized region by assigning pixels one by one. The as-
signment is determined by neighborhood similarity. Follow-
ing this idea, a fixed neighborhood is used in [30] to avoid
non-uniform pattern distribution. Patch-based method [31]
proposes to blend the overlapped regions between patches.
The works [32], [33] cut through the overlapped regions via
dynamic programming and graph cut, respectively. Patch-
Net [34] searches an image library to locate ideal regions
adhering to the synthesis constraints. Kwatra et al. [35]
proposed an alternative approach by texture optimization.

In addition to traditional matching and optimization
methods, neural networks are also introduced in texture
synthesis. Gatys et al. [36] present a data-driven approach
to generating texture through optimizing the Gram matrix
of latent features extracted by VGG network [37]. Follow-
up works [38], [39] train feed-forward convolutional net-
works to replace the time-consuming optimization process.
Generative adversarial networks (GANs) are also widely
used for texture synthesis [40], [41]. Zhou et al. [42] train a
GAN to double the spatial extent of texture blocks, enabling
the model to synthesize non-stationary texture. Portenier et
al. [43] use the Gram matrix produced by the discriminator
in adversarial loss to improve the quality of synthesized tex-
ture. Hertz et al. [44] propose a Mesh-CNN [45] based GAN
architecture to synthesize geometric textures. PSGAN [46]
proves that periodic encoding can improve the quality of
GAN results. Inspired by it, Chen et al. [47] utilize periodic

embedding as input and replace the convolution layer with
a Multi-Layer Perceptron (MLP) to model implicit fields.

3 METHOD

We present a method to capture, model, synthesize and
apply NeRF textures with meso-structure from real-world
multi-view images. The overview of our pipeline is shown
in Fig. 2. Given segmented multi-view images of the scene,
our model learns to disentangle meso-structure textures and
the underlying base shape. By sampling the implicit patches
of latent features on the base shape and utilizing them to
synthesize a larger texture map, we are able to decorate an
arbitrary given mesh with the synthesized result. In the fol-
lowing, we will introduce texture representation in Sec. 3.1,
texture synthesis in Sec. 3.2, and model optimization in
Sec. 3.3.

3.1 Texture Representation
3.1.1 Base Shape Extraction
To model the base shape explicitly as a coarse mesh, we
firstly adopt Instant-NGP [6] to reconstruct the coarse mesh
by executing Marching Cubes [48] on the estimated density
field with camera parameters estimated by COLMAP [49],
[50]. To remove the meso-structure and make the coarse
mesh smoother, the coarse mesh is transferred into the
union of approximately decomposed convex hulls by Co-
ACD [7]. The shape is then re-meshed [51], [52] to a mesh
with vertices uniformly distributed on the surface. Fig. 3
illustrates the process of base shape extraction.

3.1.2 Base Shape Projection
We treat all attributes other than the base shape as texture
attributes to learn, including meso-structure, normal and
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Fig. 3. Base Shape Extraction. We show the intermediate outputs
during the base shape extraction, including NGP [6], Co-ACD [7], and
re-meshing [51], [52].

appearance. To disentangle these attributes and the base
shape, we utilize the coarse mesh mentioned above to re-
parameterize 3D Euclidean space and learn the attributes
into the latent features defined on the coarse mesh. In our
approach, the coordinates of query point x are mapped to
the coarse mesh to get the projected coordinates xc and the
signed distance s(x), as depicted in Fig. 4. For each query
point x, we look up its K(= 8) nearest neighbor points {vk}
among the coarse mesh vertices. We interpolate the vertex
normal nv of neighbors together with the normalized vector
from nearest neighbor v1 to x using weighted KNN [53] to
get the coarse mesh normal nc of x:

ñc(x) =
K∑

k=1

1

W

(
nv(vk)

||x− vk||2
+

x− v1
w||x− v1||2

)
,

nc =
ñc

||ñc||2
, W =

K∑
k=1

1

||x− vk||2
+

1

w
,

(1)

where w is a constant set to 0.01. Next, we cast the ray from
x along the opposite coarse normal direction −nc(x) to hit
the coarse mesh on a projected point xc. The first term in
Eq. 1 is the weighted average of normals from the K nearest
neighbors to improve robustness. When x is far from the
coarse mesh, normals of K neighbors may be less reliable so
the second term becomes dominant to ensure the ray-mesh
collision. At this step, the signed distance of x projected onto
the coarse mesh is also obtained and denoted as s(x).

x

xc

Meso-structure

Base Shape

Coarse Normal 𝑛𝑐 𝑥

Signed Distance 𝑠 𝑥

Fig. 4. Illustration of Base Shape Projection in 2D. Point x in Eu-
clidean space is parameterized as the signed distance s(x) and the
projected footpoint xc.

3.1.3 Differentiable Projection Layer
The step of ray casting makes the projected coordinates
xc non-differentiable with respect to the input coordinates
x. However, the gradient is essential to approximate the
normal [18], [19] or supervise the normal estimation [20],
[54] for physically based rendering. In addition, back-
propagating gradients to the camera parameters via coor-
dinates x is crucial for camera pose modification [20], [55],
[56] to improve the reconstruction quality. For these reasons,
we construct a differentiable projection layer by specifying
the following derivation rule:

dxc

dx
= (I − nc(x)

Tnc(x)),
ds(x)

dx
= nc(x) (2)

where I is the identity matrix. The rule transfers the com-
ponent of the gradient of xc on the plane, which is per-
pendicular to nc(x), to x. It also passes the gradient of
s(x) to x after projection onto nc(x). The rule is consistent
with parameterizing 3D coordinates as the footpoint and
projected signed distance on a base shape.

3.1.4 Attributes Prediction

Directly querying latent codes from mesh vertices, like
in [4], is difficult to train from scratch and demands high-
resolution meshes, which results in high query overhead
and difficulty in real-time rendering. Hence, we fetch the
latent texture representation f(x) in O(1) time complex-
ity by feeding the projected coordinates xc to hash grids
storing latent features [6]. Through the tiny-cuda-nn frame-
work [57], we map the concatenated texture feature f(x)
and Fourier embedded [58] SDF value s(x) to the density
σ(x) and reflection coefficients. The estimation of the fine
normal nf (x) on x is done in two parts: estimating elevation
angle θ(x) and azimuth angle ϕ(x), respectively. Both angles
are represented in the local tangent frame of xc, denoted as
Tc(xc) = (t(xc), b(xc), n(xc)), meaning tangent, bitangent,
and normal at xc. Notice that Tc(xc) is determined by the
tangent, bitangent, and normal of xc’s locating triangle face,
which is pre-computed and fixed. Since θ(x) is the angle
between the coarse mesh normal nc(x) and the fine (meso-
structure) normal nf (x), it is an attribute independent of
the definition of the local tangent frame. Instead, ϕ(x)
depends on the direction of t(xc), which can be flexibly
pre-chosen. Hence we predict θ with s(x) and f(x), which
is further used for patch matching, to encourage similar
texture contents to have latent features f close to each other
regardless of different local tangent definitions. We then
learn a different feature f̂(x) stored in another hash grid
table for predicting ϕ(x).

3.1.5 Shading Model

Unlike vanilla NeRF, which mixes the representation of
materials and lighting, we decompose these elements to
enable the rendering of textures mapped to novel locations.
To ensure real-time rendering speed and stable convergence,
we utilize Spherical Harmonics (SHs) [59] to represent
illumination and materials in our rendering pipeline. We
adopt Phong shading [60] to model the material reflection
with three parameters: diffuse coefficient kd, specular coeffi-
cient ks, and glossiness g. Following the approach outlined
in [59], we employ the convolution of SHs to compute the
texture color c(x). The decomposition is illustrated in Fig. 5.

Fig. 5. Shading Decomposition. Our model predicts the fine normal nf

and decomposes the radiance into diffuse and specular components.
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3.2 Texture Synthesis

3.2.1 Texture Patch Extraction
Since we have leveraged latent features on the base shape
for representing texture attributes, the next step is to extract
the implicit patches from the base shape for subsequent
texture synthesis, as depicted in Fig. 6. In our approach, we
firstly sample centers of patches on the entire base shape or
user-specified regions via Poisson disk sampling [61] to get
evenly distributed points. Next, we place square scan arrays
of 128 × 128 resolution on each tangent plane of the coarse
mesh to obtain the intersections of the scanning rays with
the mesh. We discard patches with too long distance of ray
casting to filter out those with excessive curvature. We then
query the hash grids with these intersections to fetch latent
features and obtain implicit patches. The obtained patches
are denoted as {Fi ∈ R128×128×C}, where C is the latent
dimension. We also denote the rotation of the sampling local
frame to the world coordinate system as Ts ∈ R3×3. We
similarly define the rotation of the coarse mesh local frame
to the world system as Tc ∈ R3×3. For subsequent texture
mapping, we also record Tc and Ts of each patch. The
sampled patches are augmented by horizontal and vertical
flipping for better synthesis. The transformation matrices of
the sampling tangent space of augmenting patches are also
flipped accordingly.

Fig. 6. Texture Patch Extraction. We extract implicit texture patches by
sampling them on the base shape, where latent features are defined.

3.2.2 Patch-based Synthesis
We synthesize textures of arbitrary sizes based on the sam-
pled exemplars using patch matching and quilting [32].
The output is initialized by copying a seed patch, and the
synthesized region is gradually grown from the initial state
by iteratively copying the picked patch onto it. The patch is
randomly selected from 4 candidates with the most similar
overlapping regions. The matching process is accelerated
by pre-building a kd-tree of patches’ overlapping regions.
With a picked patch, the next step is to quilt it with the
synthesized texture in the overlapping regions. Denoting
the overlapping region of synthesized output and candidate
patches as F ov

1 ∈ RH×W×C and F ov
2 ∈ RH×W×C , where H

and W are the height and width of overlapping regions. The
error map is defined as ei,j = ||F ov

1 (i, j)−F ov
2 (i, j)||22, where

i, j are indices in the error map. In each iteration, the choice
of the patch is determined by the conditional distribution
that measures the similarity of the overlapping region of the
synthesized output and the candidate patch. With a picked
patch, the minimum cost path along the overlapping region
gives the boundary, and the patch is pasted onto the output

𝐹1
𝑜𝑣 𝐹2

𝑜𝑣 𝑒 𝐹1
𝑜𝑣 + 𝐹2

𝑜𝑣

Fig. 7. Patch Quilting. The overlapping regions F ov
1 and F ov

2 are
stitched together as F ov

1 + F ov
2 based on the minimum cost path along

the error map e. The cutting path is marked in white.

texture. To determine the optimal vertical cut from bottom
to top, we leverage dynamic programming to compute the
minimum cumulative error E associated with each possible
cut position:

Ei,j = ei,j +min (Ei−1,j−1, Ei−1,j , Ei−1,j+1) (3)

We then utilize the values of E to backtrack and identify
the position of the optimal cut, as illustrated in Fig. 7. The
process of implicit patch matching for NeRF-based texture
synthesis is demonstrated in Alg. 1.

Algorithm 1 Implicit Patch Matching
Input: {Fi}: implicit exemplars
Output: F̂ : synthesized implicit texture
Procedure:

1: Randomly paste a seed patch from {Fi} to the top left of F̂
2: repeat
3: Determine synthesizing and overlapping regions

F̂1, F
ov
1

4: Pick K′ patches {F ′
k} with lowest average error e

5: Calculate the probability {p′k} of patches based on e
6: Sample a patch from the distribution {p′k}
7: Compute the cutting edge with minimum cost
8: Paste the patch to the output texture
9: until Finish

10: Return F̂

3.2.3 Synthesis on Curved Surface
By parameterizing local regions on a mesh surface as small
rectangles [62], [63], the synthesis algorithm of our NeRF-
based texture representation can also be extended to arbi-
trary curved surface just like in image texture [64], [65].

However, our NeRF-based texture synthesis on arbitrary
surfaces poses several challenges. Firstly, unlike 2D textures,
NeRF-based textures exhibit higher-frequency appearance
and geometry, necessitating a higher synthesis resolution.
To address this issue, we take measures at both the source
and target ends of texture synthesis. Specifically, we perform
more (8000) patch samplings from the source scene, each
at a higher resolution (128×128) than those used in 2D
texture synthesis. This ensures patch matching accuracy and
enhances texture representation quality. On the target end,
we increase the resolution of the target domain for synthesis.
Previous works [62], [63] synthesized 2D textures on mesh
vertices; however, to preserve the details of NeRF-based
textures, these methods would require a mesh of very high
resolution to preserve the details of NeRF-based textures,
making the real-time rendering of NeRF-based texture in-
tractable. To address this, instead of synthesizing texture on
mesh vertices, we first parameterize the mesh as an atlas
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Fig. 8. Synthesis on Arbitrary Surfaces. The patch-matching synthesis algorithm of our NeRF-based texture can also be extended to arbitrary
surfaces. Synthesized implicit texture is passed to the Rendering Module (RM) to produce final images of textured surface.

on a high resolution UV map (2048×2048) using existing
approaches [66], [67]. Next, we back-map the grid points of
the UV map to 3D space and synthesize textures on them,
obtaining a UV feature map. During the rendering process,
query points are projected to the base mesh to obtain their
footprints. The UV coordinates of these footprints are calcu-
lated through barycentric weighting of underlying triangles
and the latent feature is fetched via bilinear interpolation of
the UV feature map.

Secondly, texture synthesis on arbitrary surfaces cannot
rely on a pre-built kd-tree as done in synthesis in UV
space to accelerate the patch matching process, since the
overlapping regions are not fixed. Furthermore, the high
resolution and large number of patches further slow down
the matching process. To overcome this challenge, we pro-
pose to build a multi-resolution pyramid for each patch and
perform the matching process in a coarse-to-fine manner.
Specifically, given a patch region with synthesized parts,
we first build a pyramid for it and then identify the most
similar patches at the coarsest level while filtering out the
remaining patches. The picked patches are then matched
at a finer level and re-filtered. At the finest level, the full
resolution is used to select the optimal patch for quilting
and pasting. This strategy allows us to avoid performing
patch matching for the full resolution for the entire patch
collection, significantly reducing the time consumption of
each patch matching from approximately 10 seconds to less
than 0.05 seconds.

To cope with anisotropic textures, given a target surface
represented by a triangular mesh, we determine the vector
field on it by interpolating some user-defined vectors on
several control vertices, as proposed in previous works [62],
[63]. Notice that the vector field can also be derived from
other state-of-the-art methods [68], [69]. As shown in Fig. 8,
our synthesis algorithm follows the spirit of patch matching
and fills the texture space by iterating the following actions
until all vertices are grown with textures:

1) Region Picking. Randomly pick an unsynthesized
vertex with an appropriate distance from the syn-
thesized region to grow texture.

2) Feature Fetching. With the picked vertex and its
orientation vector, place a patch template on it and
fetch synthesized features and mask. The fetching
process is illustrated in Fig. 9.

3) Feature Matching and Quilting. Select a patch that
has minimum overlapping error with synthesized
regions from candidate patches. Quilt the selected

patch and synthesized regions with Alpha blend-
ing [64] or minimum cut quilting [32].

4) Patch Pasting. With the textured patch template,
features of the UV grid are calculated via barycentric
interpolation. Features on the UV grid are then
filled in the UV feature map. The pasting process
is demonstrated in Fig. 10.

synthesized

template

mesh vertex

query

mesh face UV feature map blank

Fig. 9. Feature Fetching. The synthesized features and mask are ob-
tained by querying the synthesizing UV feature map with UV coordinates
of the template patch.

templateUV grids

interpolate fill in

UV feature mapfeatures

Fig. 10. Patch Pasting. The features of the UV grid are calculated via
barycentric weighting on the template patch and the synthesized results
are filled in the UV feature map.

3.2.4 Latent Feature Clustering
Ideally, the metric of latent space should be consistent with
that of the reconstructed content space to ensure the plausi-
bility of patch matching. Thanks to the continuity of neural
networks, latent features close to each other reconstruct
similar textures. However, it does not guarantee that similar
latent features represent similar texture contents. To this
end, we ensure the consistency of metrics in two aspects.
First, latent features corresponding to similar texture con-
tents have similar optimization targets (e.g. kd, ks, g and
θ) during the training, which means that they have close
optima when the training converges. Second, to avoid the
latent features corresponding to similar textures falling into
different optima during training, we introduce a clustering
loss [70] for latent features into the optimization objective.
Student’s τ -distribution is used as the kernel to measure
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Fig. 11. Texture Synthesis and Applications. We show the synthesized textures of durian, tree bark, woven basket, leaves, and flowers. The
textures are also applied to different shapes. The last example is constrained synthesis guided by the text image.
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Tomato Flower Coral Stone Circuit

Fig. 12. Texture Synthesis on Curved Surfaces. Our synthesis algorithm can be extended to arbitrary curved surfaces, considering the continuity
on the surface instead of UV space.
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Fig. 13. Synthesis of View-Dependent and Meso-Structure Textures. Our NeRF-based approach synthesizes textures that capture both the
view-dependent appearance (in the first two rows) and meso-structure details (in the last two rows) with accuracy and fidelity. Our method preserves
these attributes of textures and achieves high-quality rendering results.

the similarity [71] between latent features fi and trainable
cluster centers µj . The distribution Q and its hardened
auxiliary distribution P are defined as:

qij =
(1 + ||fi − µj ||22/κ)−

κ+1
2∑

j′
(1 + ||fi − µj′ ||22/κ)−

κ+1
2

, pij =

q2ij/
∑
i
qij∑

j′
(q2ij′/

∑
i
qij′)

(4)
where κ is the degree of freedom of the Student’s τ -
distribution. P is stricter than Q and closer to 0 or 1. The
clustering loss is given by the KL divergence [72] between
them: Lclu = KL(P ||Q). For hash grids at each resolution
level, we cluster the embedding features with the clustering
loss.

3.2.5 Texture Mapping

Given a new 3D shape with known UV coordinates, query
point x is projected onto the surface, with the foot point
denoted as x̃c, as described in Sec. 3.1. The latent features
f̃(x) of the x is obtained by bilinear interpolation on the
synthesized texture with UV coordinates of x̃c. The residual
transformation from the original coarse mesh local frame
to the sampling local frame T−1

s (x)Tc(x) is also obtained
by nearest-neighbor interpolation on synthesized Ts and Tc

maps. Based on the feature and SDF value, the network
predicts the appearance and geometry of the query point.
With the transformation of the new tangent space on the
target surface, denoted as T̃c(x), the predicted normal on
the new shape is calculated as:

ñf (x) = T̃c(x)T
−1
s (x)Tc(x)R(θ(x), ϕ(x)),

R(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ)T
(5)

The density and reflection coefficients are also calculated by
f̃(x) and SDF value s̃(x) relative to the new shape.

3.3 Optimization
Our model is trained with the Adam optimizer [73]. The
optimization target of our method consists of four terms:
L = Lrec + λ1Lclu + λ2Ldis + λ3Lnor. Lrec is the L1 RGB
reconstruction loss. Ldis is the distortion loss [12] removing
floating artifacts. Lnor supervises the prediction of (θ, ϕ)
based on the negative gradients of density σ(x) relative to
x. Owing to the noise of density gradients, we employ the
relaxed cosine distance to supervise the estimated normal:

Lnor = − cos{min(⟨< −dσ(x)

dx
, nf (x)⟩ >,

π

8
)} (6)

In our experiments, λ1, λ2, and λ3 are set to 10−5, 10−2, and
1.

4 RESULTS

In this section, we perform several experiments to demon-
strate the utility of our method. We will firstly show the
results on texture synthesis and applications in Sec. 4.1.
Then we quantitatively and qualitatively compare the novel
view synthesis quality to show the rendering quality of
our method in Sec. 4.2. We also compare the 2D texture
and our representation in Sec. 4.3, which the advantage of
our method in texture modeling. Finally, we compare with
NeRF-Tex in Sec. 4.4 and perform an ablation study on the
impact of latent feature constraint in Sec. 4.5.

4.1 Texture Synthesis and Applications
We demonstrate the utility of our method by acquiring and
synthesizing textures from the real world captured by a mo-
bile phone as shown in Fig. 11. The target texture includes
durian, bark, fabric, leaves, and flowers. The synthesized
results and depth visualization are shown in the 2nd and
3rd columns. We also applied captured textures to grow on
the desired shape or pattern shown in 4th-6th columns. We
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TABLE 1
Quantitative comparison of view synthesis. We show the average PSNR/SSIM/LPIPS for novel view synthesis on DTU.

Methods Scan 55 Scan 83 Scan 105 Scan 122

PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓) PSNR(↑) SSIM(↑) LPIPS(↓)

NeRF 28.244 0.940 0.212 37.816 0.990 0.092 34.152 0.947 0.208 36.464 0.979 0.135
NGP 34.108 0.991 0.086 42.602 0.996 0.049 38.247 0.991 0.085 41.976 0.996 0.057
Ours 32.378 0.988 0.104 43.842 0.998 0.027 36.809 0.990 0.067 42.704 0.998 0.031

synthesize the durian’s texture with thorns and transfer it
to a banana. The tree bark is usually covered with stripes
of ravines. We synthesize and apply such texture to a barrel
shape and obtain a wooden barrel. We capture fabric texture
on a woven basket and construct a woven horse. Leaves and
grass are also typical textures in nature; we synthesize ocean
of leaves and grass and apply it to a vase. We also synthesize
colorful flowers guided by the shown text image, by consid-
ering the rendered color of patches during texture synthesis
(see supplementary for details). The zoomed-in view in 6th
column shows the effect of the material on oblique views
and object edges, where 2D textures appear unrealistic due
to the lack of meso-structure modeling, demonstrating the
advantages of our method over 2D textures.

We also show the results of our NeRF-based texture
synthesis on curved surfaces using various captured tex-
tures in Fig. 12. We capture scenes of tomatoes on the desk,
flowers on the ground, a coral, a stone, and circuits of an
old computer. These textures are synthesized on surfaces of
a ring, a mountain-valley shape, a shark, a wall, and a tower
respectively. The synthesis only considers the neighboring
relationship in the 3D space rather than the UV space.

To better highlight the advantages of our NeRF-based
method in modeling view-dependent appearance and meso-
structure geometry, we present additional results in Fig. 13.
The first two rows showcase the texture synthesis of mirror
balls and a metal bed, which are made up of reflective
mirror faces and metal specular materials, respectively. To
improve the modeling of such specular materials and ac-
curately reflect high-frequency environment lights, we use
the lighting representation of Ref-NeRF [74] by introducing
an extra MLP to predict the reflected color of a reflective
direction during the shading step. We also synthesize tex-
tures on Utah Teapot [75] and Spot [76], resulting in high-
fidelity view-dependent appearance of the textured meshes.
In addition, we synthesize textures of various leaves, barks,
pinecones, moss, and tiny flowers, as shown in the last
two rows. We also evaluate our method on the Standord
Bunny [77] and Nefertiti, demonstrating that the NeRF-
based representation preserves the high fidelity of captured
textures in both view-dependent appearance and meso-scale
geometry.

4.2 View synthesis quality
We evaluate the view synthesis quality of our method on
the published dataset DTU [78], in which the scenes are
of objects suitable for our method to represent as they
contain texture-like structure. We test on 4 scenes with
masks provided by [79]. In each scene, 5 images are ran-
domly picked as the test set. Qualitative comparison with
NeRF [3], Instant-NGP (NGP) [6] and ours is shown in

GT OursNeRF NGPScenes

Fig. 14. Qualitative Comparison of View Synthesis Results. Note
that our method supports texture capture, synthesis and application
while visually close to the state of the arts.

Fig. 14. We report the PSNR, SSIM, and LPIPS in Tab. 1. Due
to the specific design for disentangling meso-structure and
materials, our approach is slightly worse than NGP in some
quantitative comparisons. Despite this, our rendered results
are still realistic in high-frequency details and perceptually
close to NGP’s results.

4.3 Comparison with 2D texture

To verify the advantages of our texture representation over
2D image textures, we conduct quantitative and qualitative
experiments to demonstrate it. To obtain 2D texture patches,
we simultaneously render the RGB patches when sampling
patches as described in Sec. 3.2. Based on the RGB patches,
we use the patch matching algorithm to synthesize a texture
image the same size as our generated neural texture. We
render both 2D and neural textures in different angles of
elevation from 0◦ to 80◦ as samples for comparison.

Fig. 15. Qualitative Comparison with 2D Textures. We show the
rendering results of our synthesized textures and 2D textures. Our rep-
resentation of maintains realism even at high-elevation viewing angles.
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Single Image Fréchet Inception Distance (SIFID) SIFID
introduced in [80] is a commonly used metric to assess the
realism of generated images. We crop the regions, where
the corresponding 3D shape approximate planes, from the
captured images as ground truths. We then calculate the
SIFIDs between rendered textures with ground truths of the
closest viewing directions relative to planes. Average SIFIDs
reported in Tab. 2 indicate that our texture representation is
more realistic than 2D textures.

TABLE 2
Quantitative Comparison with 2D Texture. Our texture has lower

SIFIDs in all elevation angles.

Degree 0◦ 20◦ 40◦ 60◦ 80◦ Average

2D 0.73 0.75 0.82 1.21 1.75 1.05
Ours 0.52 0.51 0.56 0.58 0.82 0.60

Qualitative comparison We also show the qualitative com-
parison of 2D image texture with our representation in
Fig. 15 in different viewing directions. The synthesized 2D
texture of meso-structure will be unrealistic at high eleva-
tion angles while our representation can well represent the
geometry occlusion of meso-structure.

4.4 Comparison with NeRF-Tex
We present a visual comparison between NeRF-Tex [1]
and our proposed method, as demonstrated in Fig. 16.
In contrast to our approach, NeRF-Tex does not perform
texture synthesis; instead, it repeatedly places planar texture
patches on anchor points of the mesh in an unstructured
manner, leading to a loss of regularity for typical structural
textures. Besides, it is crucial to note that NeRF-Tex trains a
NeRF using synthetic data with known tightly bound planar
geometry, which cannot be directly applied to real-world
data. Thus, we utilize our coarse-fine disentanglement rep-
resentation to generate multi-view images of real-world
meso-structure textures within a bounding box, serving as
training data for NeRF-Tex.

Fig. 16. Comparison with NeRF-Tex [1] Our method demonstrates
superior preservation of texture continuity and structure thanks to the
synthesis algorithm of NeRF texture.

4.5 Ablation on Clustering Constraint
The complexity and randomness of textures can easily lead
to the disordered distribution of features, even if these
features share the same reconstruction target. The clustering
constraint regularizes the latent distribution by encouraging
similar textures represented by close features. We visualize

the synthesized feature with and without the constraint by
Principal Component Analysis dimensionality reduction to
3D, which is further visualized as RGB channels in Fig. 17
(left). We found that the constraint makes the latent dis-
tribution more compact and reduces the variance. Results
without the constraint tend to have more artifacts (Fig. 17
(right)).

Fig. 17. Impact of Clustering Constraint. With the clustering loss
(w/ CL), latent features are constrained to cluster, which reduces the
distance of latent features corresponding to similar textures and further
reduces artifacts in synthesized results.

4.6 Ablation on Patch Resolution
The resolution of patches is a pre-defined hyperparameter;
therefore, we perform ablation experiments to analyze its
impact. According to the work [32], patch size needs to
be large enough to capture the structure of the texture,
yet small enough that the algorithm can stitch them freely.
With a determined patch size, we found that a patch with
a 128×128 resolution consistently yields satisfactory texture
reconstructions. Compared with 128×128, using the resolu-
tion of 256×256 does not significantly improve results but
increases the storage cost. Therefore, in our experiments, we
use a resolution of 128×128 to acquire texture patches.

Patch 32×32 64×64 128×128 256×256

Fig. 18. Ablation on Patch Resolution. A resolution of 128×128 is
sufficient to represent a patch area of the required size.

4.7 Ablation on the Number of Training Views
NeRF is built on the principle that when light rays intersect
a surface at the same position and from the same view
direction, they have the same color. During training, NeRF
casts rays from training views and optimizes rendering loss
for each pixel. Therefore, increasing the number of training
images can reduce the ambiguity of ray intersection and
improve the synthesis of new perspectives. Our method
focuses on textured scenes with high-frequency features,
where ambiguity is less pronounced compared to scenes
that lack color and geometry richness.



ACCEPTED BY IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

We conducted an ablation study on a scene with a
ground covered in rocks. The rendering results of our
model, trained on different numbers of views, are shown
in Fig. 19. With only a few views (e.g., 4 views shown
in the first column), the rendering results exhibit blue tint
and artifacts, as the training views are unable to capture
every detail of the texture. With 16 training views (second
column), most parts of the scene become much clearer, but
a few floating pieces remain. When using 64 training views,
the visual quality is very close to that of using 256 views.
This experiment demonstrates that texture reconstruction
with a small number of training views remains a challenge
for our method. In our experiments, we typically capture
the scene with 150 to 300 training views from a short video
to ensure the quality of the rendered textures.

256 Views64 Views16 Views4 Views
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Fig. 19. Ablation Study on the Number of Training Views. Using
fewer training views results in ambiguity in geometry and appearance.
Increasing the number of training views improves the quality of rendered
textures.

4.8 Rendering Speed Analysis

Our approach utilizes hash grids to efficiently retrieve latent
features and employs tiny MLPs [57] for quick color and
opacity querying. However, our method consumes addi-
tional time for the K-Nearest Neighbor (KNN) search dur-
ing coarse normal calculation and ray tracing for footprint
projection. To address this, we applied specific engineering
strategies to enhance the speed of these two processes in our
implementation: 1) To expedite the KNN search, we evenly
divide the space into bins [81] and insert each vertex of the
base mesh into them. During the KNN search, we only need
to search mesh vertices within neighboring bins of the query
point within a specified radius. 2) Additionally, we con-
struct a Bounding Volume Hierarchy (BVH) [82] with nodes
formatted in Axis-Aligned Bounding Boxes (AABBs) [83]
to organize the triangles of the base mesh. The pre-built
BVH avoids the unnecessary ray collision detection of those
triangles within AABBs that do not intersect, thereby ac-
celerating the ray-tracing process [84]. All these operations
are implemented using CUDA and executed by hundreds
of threads in parallel on the GPU, enabling fast calculations.

We evaluated the rendering speed of our method and
compared it to Vanilla-NeRF [3] and Instant-NGP [6] as
benchmarks. The rendering speed, measured in frames per
second (FPS), is presented in Tab. 3. Although our method is
slower than Instant-NGP due to the additional calculations,

it still achieves real-time rendering speed and is much faster
than Vanilla-NeRF.

TABLE 3
Rendering speed comparison. We compared the rendering speed of

NeRF, Instant-NGP and our method, at a resolution of 512× 512.

Method NeRF [3] Instant-NGP [6] Ours
Speed (FPS) ↑ 0.02 307.05 84.45

5 CHALLENGE ANALYSIS

As we have demonstrated, our method can easily capture,
reconstruct, and synthesize common real-world textures
on various objects. To better understand and explore the
boundaries of the method’s capabilities, we conducted sev-
eral experiments and analyses on more challenging scenes in
this section. We summarize the challenges into two aspects:
texture capture and texture synthesis, and discuss them
respectively in the following.

5.1 Challenging Texture Capture

Our approach faces certain challenges when it comes to cap-
turing textures from objects with 1) limited coarse extents or
2) complex topology.
Limited Coarse Extents For scenes where the coarse shape
has limited spatial extents, the size of sampled patches is
also limited. In extreme cases, the patch size will be too
small to capture texture patterns, resulting in synthesized
textures containing numerous artifacts. As shown in the
second row of Fig. 21, the truss’s underlying base shape
is too narrow to sample sufficiently large and diverse
patches, resulting in poor synthesis results with artifacts
and irregular patterns. Conversely, when multiple trusses
are placed together to construct a larger roof (first row),
the underlying base shape becomes large enough to capture
patches that maintain the structural patterns, resulting in
more satisfactory synthesized textures. Additionally, the
perforated structure on the Lego loader shown in Fig. 20
is too narrow to sample any patches, posing a significant
challenge for subsequent synthesis. On the other hand, our
method is capable of easily extracting and synthesizing the
bump texture on the Lego base.

Fig. 21. Challenges in Limited Coarse Extents. The repeated struc-
tures of the truss pattern are distributed on a long but narrow coarse
surface, which makes sampled patches too small to synthesize high-
quality textures. The roof composed of trusses, on the contrary, has
enough coarse extents to capture and synthesize satisfactory results.
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Reconstruction

Base Shape
GTZoom in Synthesis

Fig. 20. Challenges on Texture Capture. Our approach fails to reconstruct and capture textures on shapes with complex coarse geometry due to
the difficulty in base shape estimation and patch sampling on regions with limited spatial extents of the base surface. On the contrary, the bump
texture on the Lego base can be easily acquired and synthesized.

Fig. 22. Challenges on Texture Synthesis. Our synthesis approach based on patch matching struggles to exactly preserve the continuity of highly
structured textures (first row) requiring strict matching with a few captured exemplars. Our method is also agnostic to the semantic contents of
textures like the keycap texture of a keyboard (second row).

Complex Topology For scenes with complex topology, such
as the Lego example shown in Fig. 20, accurately represent-
ing the detailed surface with a coarse mesh becomes chal-
lenging. Consequently, capturing the desired bump texture
on the inner surface of the Lego cockpit becomes difficult.
Additionally, the rendering quality of NeRF-Texture may
degrade in such scenarios, leading to artifacts as seen in
the zoomed-in section of Fig. 20. This degradation is due to
the coarse shape approximation, which fails to provide an
optimal parameterization for NeRF.

5.2 Challenging Texture Synthesis
The challenges in texture synthesis arise when textures 1)
require strict matching or 2) have semantic contents.
Strict Matching Our patch-matching approach selects
patches from the best-matched candidates based on the
matching errors between patches and synthesized regions.
However, this approach is a local optimal and not neces-
sarily a global one since the selected candidate may cause
significant matching errors in subsequent iterations. There-
fore, it is a greedy strategy and may cause the breaking of
structures for textures requiring strict matching, especially
when only limited patch exemplars are available. As shown
in the first row of Fig. 22, although the overall structure of
the synthesized railing texture is preserved, there are still
some breaking parts in the connection of rails.

Semantic Content Our synthesis algorithm is semantically
agnostic, which can distort semantic content such as keycap
shapes and incorrect synthesis of characters, as shown in
the second row of Fig. 22. The letter P and bracket symbol
are printed on the same keycap in the zoom-in window. The
space key is extended to an unreasonable length. To address
this limitation, our approach could potentially incorporate
recent generative techniques, such as Diffusion Models [85].

6 CONCLUSION

We present NeRF-Texture, a novel approach that captures,
models, synthesizes, and renders real-world textures with
rich geometric and appearance details. A coarse-fine de-
composition representation is introduced to disentangle the
meso-structure texture and base shape. Based on the rep-
resentation, we adopt a latent patch-matching algorithm to
synthesize acquired textures on the UV plane or arbitrary
surfaces. A clustering constraint regularizes the distribution
of latent features for better synthesis.

7 ACKNOWLEDGEMENT

This work was supported by Beijing Municipal Natural
Science Foundation for Distinguished Young Scholars (No.
JQ21013), National Natural Science Foundation of China
(No. 62322210) and Beijing Municipal Science and Technol-
ogy Commission (No. Z231100005923031).



ACCEPTED BY IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

REFERENCES

[1] H. Baatz, J. Granskog, M. Papas, F. Rousselle, and J. Novák,
“NeRF-Tex: Neural reflectance field textures,” in Comput. Graph.
Forum, no. 6, 2022, pp. 287–301.

[2] A. Kuznetsov, X. Wang, K. Mullia, F. Luan, Z. Xu, M. Hasan,
and R. Ramamoorthi, “Rendering neural materials on curved
surfaces,” in ACM SIGGRAPH 2022 Conference Proceedings, 2022,
pp. 1–9.

[3] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ra-
mamoorthi, and R. Ng, “NeRF: Representing scenes as neural
radiance fields for view synthesis,” Communications of the ACM,
vol. 65, no. 1, pp. 99–106, 2021.

[4] Bao and Yang, Z. Junyi, B. Hujun, Z. Yinda, C. Zhaopeng, and
Z. Guofeng, “NeuMesh: Learning disentangled neural mesh-based
implicit field for geometry and texture editing,” in ECCV, 2022, pp.
597–614.

[5] F. Xiang, Z. Xu, M. Hasan, Y. Hold-Geoffroy, K. Sunkavalli, and
H. Su, “NeuTex: Neural texture mapping for volumetric neural
rendering,” in CVPR, 2021, pp. 7119–7128.

[6] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural
graphics primitives with a multiresolution hash encoding,” ACM
Trans. Graph., vol. 41, no. 4, pp. 1–15, 2022.

[7] X. Wei, M. Liu, Z. Ling, and H. Su, “Approximate convex decom-
position for 3D meshes with collision-aware concavity and tree
search,” ACM Trans. Graph., vol. 41, no. 4, pp. 1–18, 2022.

[8] Y.-H. Huang, Y.-P. Cao, Y.-K. Lai, Y. Shan, and L. Gao, “NeRF-
Texture: Texture synthesis with neural radiance fields,” in ACM
SIGGRAPH 2023 Conference Proceedings, 2023, pp. 1–10.

[9] S. Fridovich-Keil, A. Yu, M. Tancik, Q. Chen, B. Recht, and
A. Kanazawa, “Plenoxels: Radiance fields without neural net-
works,” in CVPR, 2022, pp. 5501–5510.

[10] A. Karnewar, T. Ritschel, O. Wang, and N. Mitra, “Relu fields: The
little non-linearity that could,” in ACM SIGGRAPH 2022 Conference
Proceedings, 2022, pp. 1–9.

[11] K. Zhang, G. Riegler, N. Snavely, and V. Koltun, “NeRF++:
Analyzing and improving neural radiance fields,” arXiv preprint
arXiv:2010.07492, 2020.

[12] J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan, and P. Hed-
man, “Mip-NeRF 360: Unbounded anti-aliased neural radiance
fields,” in CVPR, 2022, pp. 5470–5479.

[13] M. Tancik, V. Casser, X. Yan, S. Pradhan, B. Mildenhall, P. P. Srini-
vasan, J. T. Barron, and H. Kretzschmar, “Block-NeRF: Scalable
large scene neural view synthesis,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
8248–8258.

[14] Y. Gao, Y.-P. Cao, and Y. Shan, “SurfelNeRF: Neural surfel radiance
fields for online photorealistic reconstruction of indoor scenes,”
arXiv preprint arXiv:2304.08971, 2023.

[15] J.-W. Liu, Y.-P. Cao, W. Mao, W. Zhang, D. J. Zhang, J. Keppo,
Y. Shan, X. Qie, and M. Z. Shou, “DeVRF: Fast deformable voxel
radiance fields for dynamic scenes,” in NeurIPS, 2022, pp. 36 762–
36 775.

[16] Y.-L. Qiao, A. Gao, and M. Lin, “NeuPhysics: Editable neural
geometry and physics from monocular videos,” in NeurIPS, 2022,
pp. 12 841–12 854.

[17] L. Song, A. Chen, Z. Li, Z. Chen, L. Chen, J. Yuan, Y. Xu, and
A. Geiger, “NeRFPlayer: A streamable dynamic scene representa-
tion with decomposed neural radiance fields,” IEEE TVCG, vol. 29,
no. 5, pp. 2732–2742, 2023.

[18] M. Boss, R. Braun, V. Jampani, J. T. Barron, C. Liu, and H. Lensch,
“NeRD: Neural reflectance decomposition from image collec-
tions,” in ICCV, 2021, pp. 12 684–12 694.

[19] P. P. Srinivasan, B. Deng, X. Zhang, M. Tancik, B. Mildenhall, and
J. T. Barron, “NeRV: Neural reflectance and visibility fields for
relighting and view synthesis,” in CVPR, 2021, pp. 7495–7504.

[20] Z. Kuang, K. Olszewski, M. Chai, Z. Huang, P. Achlioptas, and
S. Tulyakov, “NeROIC: Neural rendering of objects from online
image collections,” ACM Trans. Graph., vol. 41, no. 4, pp. 1–12,
2022.

[21] J. Munkberg, J. Hasselgren, T. Shen, J. Gao, W. Chen, A. Evans,
T. Müller, and S. Fidler, “Extracting triangular 3D models, materi-
als, and lighting from images,” in CVPR, 2022, pp. 8280–8290.

[22] K. Zhang, N. Kolkin, S. Bi, F. Luan, Z. Xu, E. Shechtman, and
N. Snavely, “ARF: Artistic radiance fields,” in ECCV, 2022, pp.
717–733.

[23] Y.-H. Huang, Y. He, Y.-J. Yuan, Y.-K. Lai, and L. Gao, “Stylized-
NeRF: consistent 3D scene stylization as stylized NeRF via 2D-3D
mutual learning,” in CVPR, 2022, pp. 18 342–18 352.

[24] Z. Fan, Y. Jiang, P. Wang, X. Gong, D. Xu, and Z. Wang, “Unified
implicit neural stylization,” in ECCV, 2022, pp. 636–654.

[25] Y. Wang, L. Rahmann, and O. Sorkine-hornung, “Geometry-
consistent neural shape representation with implicit displacement
fields,” in ICLR, 2021.

[26] C. Li, Y. Xin, G. Liu, X. Zeng, and L. Liu, “NeRF synthesis with
shading guidance,” arXiv preprint arXiv:2306.11556, 2023.

[27] C. Sun, M. Sun, and H.-T. Chen, “Direct voxel grid optimiza-
tion: Super-fast convergence for radiance fields reconstruction,”
in CVPR, 2022, pp. 5459–5469.

[28] L. Wei, S. Lefebvre, V. Kwatra, and G. Turk, “State of the art in
example-based texture synthesis,” in Eurographics, 2009, pp. 93–
117.

[29] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric
sampling,” in ICCV, 1999, pp. 1033–1038.

[30] L.-Y. Wei and M. Levoy, “Fast texture synthesis using tree-
structured vector quantization,” in Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH, 2000, p. 479–488.

[31] L. Liang, C. Liu, Y.-Q. Xu, B. Guo, and H.-Y. Shum, “Real-time
texture synthesis by patch-based sampling,” ACM Trans. Graph.,
vol. 20, no. 3, p. 127–150, 2001.

[32] A. A. Efros and W. T. Freeman, “Image quilting for texture syn-
thesis and transfer,” in Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH, 2001, p.
341–346.
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