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ABSTRACT The availability of log data recorded by computer-based systems such as operating system and
network logs, makes it possible for the stakeholder to look after the system for monitoring, evaluation, and
improvement purposes. If an incident happens to the system, the log is the first and most important artefact to
recover so that investigations may be performed to gather an understanding of why such incidents may have
occurred. Log-based anomaly detection is one of the common approaches to uncovering incident scenarios
and finding the root cause of such incidents. In the context of drone flight, incidents reported in logs include
errors during take-off, flight range issues, and cancellations of actions. Existing studies employ sequence
anomaly detection to check whether an event during a drone flight is anomalous. It needs several preceding
events and includes deciding if the following event is legitimate or malicious. However, one single log record
can have no relationship to other log events and be malicious at the same time. Thus, several studies explored
point anomaly detection, where one log record is the only feature needed. Dividing the anomalies into two
categories can be overwhelming as the number of logs generated by a system is large. At the same time, it can
be helpful to separate critical anomalies from the less severe ones. Therefore, this study proposes DroLoVe,
a severity-oriented multiclass anomaly detection approach for drone flight log data. In accordance with the
dataset characteristics, where the samples from different severity levels share common features, this paper
employs amultitask-based label vector representation to train deep neural networkmodels. After an extensive
experiment on several baselines, the proposed scenario outperforms other models from existing studies with
promising results. The proposed representation of the label improves the prediction confidence score on
various encoder types with 8.6% and 1.8% from focal and cross-entropy scenarios on average, respectively.

INDEX TERMS Anomaly detection, digital forensics, drone forensics, multitask learning, transformer
encoder, information security.

I. INTRODUCTION
The availability of digital data produced by computer systems
continues to increase exponentially. It is followed by the
advancement in many research areas to make use of the
data, such as natural language processing, which is used to
analyse textual data. This type of data can be found in several
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contexts stored in computer storage devices, such as runtime
logs that are constantly generated during the operational
period of the device. The information recorded in log data is
highly valuable for many purposes, including running system
monitoring, running process conformance checks, and overall
system evaluation [1].
The use of log data is critical when incident cases

occur, as the empirical events and incident scenarios can
be discovered by analysing the log artefacts. Assuming that
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the integrity of the log is guaranteed, log data is one of the
artefacts with the highest priority for investigating various
types of incidents, such as collision, crash landing, cyber-
attack, payload delivery issue, and weather-related incidents
[2]. It is exemplified by the research effort that has been made
by the community on log-based anomaly detection using
various approaches, including machine learning- [3], [4],
deep learning- [4], [5], [6], and graph-based methods [7], [8].
Different types of systems generate log records in different

formats and structures, which are strongly affected by the
log statements or templates normally used in each of the
systems. Certain systems use highly technical log statements,
which consist of domain-specific log elements. For instance,
operating system logs have common elements such as host
names, Internet Protocol (IP) addresses, protocols, ports, and
messages [9]. Thus, analysing a particular system log may
need different techniques from one type to another.

Generally, log-based anomaly detection can be performed
using either point, collective, or contextual approaches.
In the log-based anomaly detection literature, most of the
existing studies propose either a contextual or collective
approach, where the decision is taken by examining a
sequence of log events. However, detecting abnormalities in
log data can be performed using a point-based approach,
where one single log record is the only feature needed.
Therefore, several studies explored utilising a point-based
approach to detect anomalous events on logs data, such
as in operating systems [9], [10], drone devices [11], and
distribution systems [9], [10]. In the drone context, a log
message contains a description of occurring events which are
triggered by various components such as sensors, peripherals,
and firmware. Analysing the log message means analysing
events from all aspects of the drone, including sensors,
components and features [2].

Typically, existing log-based anomaly detection stud-
ies classify log events into two categories: normal and
anomaly [3]. This is helpful in an online setting, where the
number of detected abnormalities in a certain period of time
is considerably small. However, in a digital forensic setting,
where the detection is performed on all collected artefacts
which might be large in size, the number of the abnormalities
is likely to be large [12]. Thus, analysing the detection
result in a binary setting is impractical for the investigator.
Moreover, out of all detected peculiarities, there might be
several negligible ones with less severe impacts on the system
or less likely to be related to an incident. Extending binary to
multiclass anomaly detection can provide more detailed and
contextual detection results to assist in an investigation and
analysis [13], [14], [15]. Considering the severity levels of
an anomaly, an investigator can adjust the analysis objectives
targeting a certain level only, depending on the needs and
cases.

As shown in Fig. 1, the drone experiences several events
during a flight. When analysing the flight logs from a
forensic perspective, distinguishing the severity levels can
help the investigator pinpoint critical anomalies to less severe

FIGURE 1. An illustration of a flight scenario where several anomalous
events with different severity levels happen.

ones. The challenge is that even though the severity level
is different, the samples share a common word or even
phrase, as depicted in Fig. 2. It makes it challenging to
build a point anomaly detection model that depends only
on the semantics of the log message. Fig. 3 shows the
visualisation of the semantic feature vectors of the samples
in the drone flight log datasets obtained from the pre-trained
Bidirectional Encoder Representations from Transformers
(BERT) [16] after undergoing a dimensional reduction using
the t-SNE [17].

This paper is a further experiment of the previous initial
study in multiclass anomaly severity detection on drone flight
logs data [18]. It is strongly inspired by the work in [9] and
[10] where detecting anomalies on logs data is seen as a
sentiment analysis task. In this work, the distinctive feature
lies within the employment of a sequence classification
model with a multitask label to train a detection model for
better performance. An extensive experiment is conducted
on several different encoders commonly used in log-based
anomaly studies, including long short-termmemory (LSTM),
gated recurrent unit (GRU), transformer, and fine-tuned large
language model (LLM). To provide an objective performance
comparison of the proposed framework, several baselines are
constructed, including those that are proposed in published
works.

This paper proposes a transformer encoder-based log-
based anomaly detection optimised using multitask label
representation to help the model learn from the overlapped
features shared by the samples from different severity levels.
A domain-specific decoding procedure is also proposed to
infer the prediction result. In-depth analyses are performed
to evaluate the proposed framework thoroughly. The main
contributions of this paper are summarised as follows:

1) Propose Drone Log Severity (DroLoVe), a severity-
oriented multiclass anomaly detection approach on
drone flight log data.

2) Propose a data-driven vector representation of the
label and a severity-oriented decoding procedure of the
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FIGURE 2. A word cloud visualisation to see that the samples from different severity levels share common words and phrases.

FIGURE 3. A 2D visualisation of the dataset using BERT [16] and
t-SNE [17]. It shows that the samples are not linearly separated; samples
belong to different classes are close to one another.

label to perform multiclass anomaly severity detection
within drone flight log messages.

3) Provide in-depth discussions and analyses of the
performance evaluation supported by an extensive
experiment on a large number of hyperparameter
search spaces.

4) Open the experimental code and results publicly avail-
able on a GitHub repository1 to promote transparent,
verifiable, and reproducible research.

1https://github.com/swardiantara/DroLoVe

The remainder of the paper is structured as follows:
Section II discusses relevant previous studies related to
log-based anomaly detection and how to deal with class
imbalance problems in log-based anomaly detection task, the
proposed framework is explained in detail in Section III,
Section IV provides the experimental setup, followed by
Section V where the experimental results along with compre-
hensive analyses and discussions are presented. Section VI
discloses the challenges, limitations, and threats to the
validity of the study. The conclusion and future works are
elaborated in Section VII.

II. RELATED WORK
This section discusses closely relevant prior studies on
log-based anomaly detection and different approaches to
handle class imbalance problems.

A. ANOMALY DETECTION ON LOGS DATA
Log data recorded by a system store valuable information
that can be utilised to perform analysis for investigative
purposes, such as anomaly detection, which is commonly
referred to as log-based anomaly detection. Recently, with the
advancements inMachine Learning (ML) and Deep Learning
(DL) models, many studies proposed ML-based [3], [4],
DL-based [4], [5], [6], and graph neural network (GNN)-
based [7] solutions for detecting abnormalities in log data.
Among the published studies, various modelling techniques
were used, including point, contextual, and collective. These
modelling methods refer to the input needed by the model
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TABLE 1. Summary of related works in log-based anomaly detection.

to perform anomaly detection [9]. In a point setting, the
detection is performed against individual log records. The
model depends solely on the features from a single log entry.
On the contrary, contextual and collective settings utilise a
group of log events to detect the presence of abnormalities.

Common problems encountered in log-based anomaly
detection include the unstructured nature of log messages,
each system having its own log characteristics, being less
human-readable, and containing many special or technical
terms [22], [23]. To deal with these problems, a typical
ML/DL-based log-based anomaly detection comprises sev-
eral stages, i.e., log cleansing, log parsing, feature extraction,
model training, model testing, and model evaluation. The role
of log parsing in log analysis and anomaly detection has been
critical to perform both online and offline detection [27].
Performing log parsing aims to extract the core features of
logs and reduce the noise. However, employing parsing can
remove valuable information within the log messages [25].
To prevent parsing errors from being propagated to the next
detection phase, utilising a contextual embedding, such as
BERT, to extract the semantic features of logs data without
performing parsing can be a solution [21]. Therefore, all the
features extracted from each log record are preserved as they
are. Nevertheless, similar but contradicting log events ended
up having features that are close to one another in the latent
space. Dealing with such an issue, Qi et al. [22] propose a
contrastive-based approachwhich consists of a representation
learning model to provide a decent input to a one-class
classifier to distinguish the normal from the abnormal log
samples. Instead of removing the parameter values in a log
message when performing log parsing, the information can
be used as an additional feature along with the metadata of
the logs to improve the performance of the models [19].

Log-based anomaly detection has been applied widely
to various systems, such as operating systems [9], [10],
parallel file systems [26], drones [11], [18], [20], internet
of things [28], and industrial control systems [29]. Among
these studies, a sequence-based approach is the common
modelling technique used, where the detection is observed on
a collection of log events. For that reason, a recurrent-based
network is employed to capture the sequential dependency

and relationship between the occurrences of the log events.
For instance, an LSTM [22] and GRU [9] model is used
to capture the contextual features of the log sequence. The
same approach can also be used in a point-based setting,
where the sequence of words or parameters in a log message
is the features [9]. Since part of the log record contains
a human-readable message, the transformer model can be
utilised to extract the semantic information between the
words and parameters within a log record to perform point
anomaly detection [10], [24]. In this case, given that drone log
data also includes natural language, a point-based anomaly
detection approach is adopted in this paper. Table 1 presents
the summary of the previous related works.

B. CLASS IMBALANCE PROBLEM (CIP) IN LOG-BASED
ANOMALY DETECTION
It is assured that in log-based anomaly detection, the number
of anomalous samples is significantly less than the normal
ones. Employing a supervised-based technique is prone to
bias, as the model tends to learn from the majority samples.
To overcome CIP, several studies proposed data-level and
algorithm-level solutions [30]. Moreover, in a certain case,
there are no anomalous samples available. In this particular
situation, a one-class approach can be used to construct a
normal baseline model. During the detection, an anomaly
score is used to decide if an input event is anomalous based
on a threshold value [20], [22].

A practical solution to overcome CIP is by controlling the
class distribution in the dataset, either by oversampling the
minority class, undersampling the majority class, or adding
more data to the existing dataset [31]. Overall, either
approach can improve the performance of the model,
depending on the dataset characteristics [28], [32]. For
instance, generating more samples of minority classes using
the Synthetic Minority Oversampling Technique (SMOTE)
can improve the detection performance of a deep Q network
(DQN)-based [33] and deep neural network (DNN)-based
[34] models. Instead of duplicating the minority class to
add more samples, as in random oversampling, SMOTE
uses the k-nearest neighbour as an anchor and creates a
new sample that is close to those k samples. It helps the
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FIGURE 4. The proposed approach overall architecture.

model to learn from minority classes better, instead of from
redundant samples produced by random oversampling [34].
However, in other cases, normal samples can be unnecessarily
abundant, where removing a certain amount of samples does
not reduce the informational value from the dataset. Random
undersampling (RUS) is a simple way to eliminate several
majority samples to balance the class distribution [35].
Instead of picking random samples to remove, Tomek Link
can be used to choose majority samples that are close to
minority samples to remove. It can increase the class separa-
bility of the dataset, which then helps the model to distinguish
between the normal and anomalous events and increases
the performance of the model [9]. Performing minority
oversampling and majority undersampling simultaneously
also makes it possible to balance the class proportion, which
then helps improve the performance of the model [36].
Overcoming CIP can also be achieved by using a method-

level solution, which revolves around selecting an appropriate
model or designing a training procedure. For instance,
Qi et al. [37] utilised a bidirectional generative adversarial
network to obtain the reconstruction loss and discrimination
loss as the features for an n-stacked ensemble classifier to
perform anomaly detection., which resulted in an increase
in recall. Ensemble models have been shown to perform
better than a single classifier, exemplified by [38], who
proposed an isolation forest (IF)-based method to perform
anomaly detection with various contamination ratios. Similar
to the ensemble, training two detection models for detecting
the normal and anomalous events separately can reduce
false positive cases [39]. A common challenge in using
ensemble-based models is how to perform final predic-
tions, considering each sub-model has its own predictions.
Therefore, employing self-supervised contrastive learning
can be a solution to pre-train a model that can produce
distinct features of normal to abnormal samples. Using
the decent features from the pre-trained model, a standard
clustering is performed to decide if a test event is anomalous
based on the Mahalanobis distance score with respect to
a threshold value [40]. Clustering can also be used to
estimate the unlabeled samples’ label probability, which is

then used to train a discriminative model. A semi-supervised
approach also shows a positive impact on the performance
evaluation [41].

Unlike the previously discussed studies, inspired by an
existing study from another domain [42], this paper employs
loss weighting to train a neural model using an imbalanced
dataset. Performing data augmentation at the message level
to overcome CIP is impractical in this study as the augmented
messages do not exist in the actual scenario. Therefore, this
paper explores the effect of using various class weighting
schemas and loss functions.

III. PROPOSED FRAMEWORK: DROLOVE
This section presents the proposed method towards a
severity-oriented multiclass anomaly detection approach for
drone flight log data. The overall flow of the proposed
framework is depicted in Fig 4. The following section
describes the approach in more detail.

A. OVERVIEW
Performing point log-based anomaly detection that takes
human-readable log messages as input is similar to conduct-
ing sequence or text classification. As mentioned in Section I,
this task may be interpreted as a sentiment analysis task
that aims to detect negative sentiments within log messages.
Taking an n-length log message m = [w1,w2, . . . ,wn]
from the dataset D = {(mi, ci)}

|D|

i=1 as the input, where c
is the label class name, BERT is used to tokenise the input
into a fixed length sequence with m maximum length and
retrieve the contextual embeddings, resulting in an input
matrix X ∈ Rm×dBERT which is then paired with the encoded
label y. Thus, the numerical input becomes (X, y). This
study aims to train a neural network modelMθ to classify
the message m into one of the predefined classes c ∈

C = {high, medium, low, normal}, or can be written
asMθ : m → c.

Based on past literature discussed in Section II, processing
the sequence of words and performing classification based on
the sequence-level features is best performed using modern
deep learning models such as LSTM, GRU, and Transformer.
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In this study, these models are used in the experiment to
identify the best-performing one. The encoder takes the input
matrix X to learn the contextual dependencies among the
tokens in the input sequence, yielding the encoder hidden
states H ∈ Rm×768, as the BERT-base model produced a
768-dimensional vector. Note that the encoder can be stacked
in layers depending on the needs. In this study, the number of
layers varies between one and three to prevent the model from
being too complex.

Before passing the hidden states from the encoder to the
final linear classifier, a pooling is performed to aggregate the
features from each token within the sequence to get the final
sequence-level representation. To this end, various pooling
techniques are used: maximum, average, CLS (Classify
token), and last as depicted in Fig. 5. Max and average
pooling are performed element-wise, meaning that each
vector element of the token embedding in the corresponding
position is aggregated. CLS is a special token from the BERT
pre-training task used to represent the sequence features.
Pooling CLS means taking the vector representation of the
CLS token as the final feature. As for the last refers to the
representation of the last token in the sequence; this only
applies to LSTM and GRU models. This aligns with the
nature of the recurrent model, where the hidden state of the
last token is considered to be the sequence representation.
When the model employs bi-directionality, the hidden state
of the last token from the forward direction and the hidden
state of the first token from the backward direction are
concatenated to form the same size of the final hidden state
as the unidirectional one. The pooling layer takes the hidden
state H as the input and resulting the vector h̄ ∈ R768.
The next step after performing pooling is to feed the

vector h̄ to the linear layer, yielding the unnormalised logits
z ∈ R|C|, where |C| denotes the number of target class in
the dataset. During the training phase, these vectors are used
to compute the loss and update the parameter of the model
after passing through a normalisation function. For the typical
one-hot encoding representation of the label, the standard
cross-entropy is used to compute the loss, as defined in the
following equation:

LCE = −

|C|∑
i=1

yi · log(ŷi) (1)

ŷ = softmax(z) (2)

ŷi =
exp(zi)∑dim(z)

j exp(zj)
(3)

where y and ŷ are the true label vector and the prediction
probability distribution, respectively. The prediction proba-
bility ŷ is obtained from Eq 2, where each of the element in
ŷ is computed using Eq 3.

B. HANDLING CLASS IMBALANCED PROBLEM
One of the common problems when training a neural network
is when a dataset has an imbalanced proportion between

FIGURE 5. An illustration for the pooling mechanism used in the
experiment. Note that the last pooling is only applicable to the LSTM and
GRU encoder.

the classes, which happens to be the case in this study.
The distribution of the sample in the dataset is shown in
Table 2. As discussed in Section II-B, several techniques
can be used to deal with this situation, either by balancing
the sample distribution or incorporating class weights during
the training [30]. In this study, it is impractical to perform
oversampling on the dataset, especially in the form of natural
language, as is the case in other domains where techniques
such as synonym replacement or structure re-arrangement
are applied. This is due to the nature of the domain, where
oversampling the drone flight log messages does not reflect
the real-world case and situation. Therefore, incorporating a
weighting schema during the training is a feasible option.

Preventing a neural model from learning from the majority
of samples can be achieved by weighting the loss of each
class based on the frequency distribution. Therefore, the
importance of the minority class is considered equal [42]
to the majority class. Incorporating a class weight into the
cross-entropy loss as defined in Eq 1 where weighting the
per sample loss is written as the following Eq 4:

LCE
∗

= −

|C|∑
i=1

αi · yi · log(ŷi) (4)

where αi denotes the weight for the i-th class. Another
way of performing weighting to loss function is to penalise
the prediction with a low confidence score, called Focal
loss [42]. This is achieved by transforming the ratio of
the loss value between high-confidence and low-confidence
prediction probabilities. Focal loss is computed using the
following Eq 5:

LFocal = −

|C|∑
i=1

αi · (1 − ŷi)γ · log(ŷi) (5)

where γ is a hyperparameter to control the range of the
prediction probability value being penalised. Increasing γ >

0 weakens the relative loss from samples with high prediction
confidence scores. Therefore, the model is forced to focus
more on hard-to-classify samples [42].

Computing the class weight can be challenging, as the
importance of a particular class could be vague relative to
the other classes in the label set. A common practice is
using frequency-based weighting, where the class weight
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FIGURE 6. Proposed vector representation of the label based on the
dataset characteristics.

is computed based on the frequency distribution of the
class in the dataset. In this study, three class weights are
explored and used to train all encoder types: uniform, inverse,
and balanced. Uniform refers to equal weighting on all
classes, which means no weighting is used, while inverse
and balanced can be calculated using the Eq 6 and Eq 7,
respectively, as in the following:

αinv
c =

(
|Dc|

|D|

)−1

(6)

αbal
c =

|D|

|C| · |Dc|
(7)

where |D| denotes the total samples in the dataset and |Dc|

represents the number of the samples belong to class c with
Dc ⊂ D.

C. SEVERITY-ORIENTED LABEL REPRESENTATION
Training a neural network to perform a multiclass classifi-
cation task typically converts the class names into a one-hot
encoding vector, where each vector element represents a
particular class which relies on the assumption that the
samples from different classes are mutually exclusive [43].
As discussed in Section I, and shown in Fig. 2 and Fig. 3,
the samples from distinct classes in the dataset are instead
mutually inclusive. Therefore, this study proposes a vector
representation of the label inspired by the multitask learning
paradigm. Fig. 6 shows the proposed label along with the
standard one-hot encoding. The label relies on the assumption
that samples belonging to a higher severity level with one
class share common low-level features with samples in a
lower severity level. We call it a severity-oriented label as
the model is trained on two alternative labels instead of one
exclusive label only. Therefore, in case of misclassification,
the prediction is expected to fall one level under the true label.

Aligning to the nature of the label representation, the
loss function used in the training is log loss for multiclass
classification, which can be computed using Eq 8, as written
in the following:

LLog = −

|C|∑
i=1

αi · [yi log(ŷi) + (1 − yi) log(1 − ŷi)] (8)

where αi is the same term as in Eq 4. With this loss function,
the model is forced to learn from the shared features among
the two neighbouring classes. This assumption originated

FIGURE 7. Severity-oriented decoding process of the predicted label
vector into the class name, which is done in a backward direction.

from the multi-object detection task, where a single image
contains multiple objects to detect, and those different objects
share low-level features. Therefore, predicting a certain
object benefited from the features of other objects within the
same input sample [44]. The same assumption underlies the
design for the label representation in this study.

Inferring the prediction result with the proposed label is
different from the typical one-hot encoded label. The index
of the element with the highest probability value that is
obtained from argmax is used as the final prediction. Then,
the integer index is decoded back to the class name using
the same function used to convert the class name into the
integer index in the label encoding process. Conversely, each
vector element in the proposed label represents a particular
class, as shown in Fig. 6. Therefore, to normalise the logits
from the model into probability, sigmoid is used on each of
the prediction vector elements and is written as Eq 9 in the
following:

ŷi =
1

1 + exp(−zi)
(9)

where ŷi is the prediction probability for the i-th class and ŷi ∈

[0, 1]. To get the vector of the prediction label, a prediction
threshold λ = 0.5 is applied, making the element with a
valuemore than or equal to the threshold equal to 1, otherwise
it is 0. Finally, severity-oriented decoding is used to get the
label class name back by checking the prediction vector from
the last element and moving backward to the first element,
as illustrated in Fig. 7. If the current element is marked as 1,
the class name in that position becomes the predicted class.

IV. EXPERIMENTAL SETUP
This section provides details about the dataset used in the
experiment presented herein, as well as describes the baseline
models used for performance comparison, the experiment
environment, and the hyperparameter settings used.

A. DATASET
In this study, one of the artefacts of drone devices, the flight
log message, is used as the source of the evidence to perform
multiclass anomaly severity detection. These human-readable
messages, such as ‘‘Aircraft Core Board Overheated’’ and
‘‘Compass error, calibration required’’, can be found in most
DJI-make flight logs in three columns: warning, tip, and
message. Originally, the flight log was in encrypted.CSV
files [45]. Thus, the drone phantom help2 is needed to
decrypt the flight log files and then extract the contents. The

2https://www.phantomhelp.com/logviewer/upload

64258 VOLUME 12, 2024



S. Silalahi et al.: Severity-Oriented Multiclass Drone Flight Logs Anomaly Detection

TABLE 2. Summary of the distribution of the class in the dataset.

dataset used in this study is also used in [18], where the log
messages are collected from two sources: VTO Labs [45]
and Drone Wiki [46]. Instead of taking the average over
5 folds, one of the folds (5th fold) is directly used since the
standard deviation signified the performance evaluation on
5 different folds is insignificant [18]. The filtered dataset
refers to the log messages after performing a unique filtering
process, while the unfiltered is the actual collection of drone
flight log messages gathered from the two sources mentioned
previously. The dataset is split into training and testing with
an 80:20 ratio. The summary of the per-class distribution in
the dataset is presented in Table 2.

B. BASELINES
In this study, an extensive experiment with various types
of encoders is conducted to construct strong baselines for
performance comparison. Ensuring the objectivity of the
comparison, the hyperparameters of these baselines are
fine-tuned using grid search on a finite search space, as shown
in Table 3. The details of the baseline construction are
described in the following subsections.

1) BASELINE FROM DIVERSE SUITABLE ENCODERS
The distinction between the baseline and the proposed
method is based on the pair of the label representation and
the loss function used during the training. Two baselines are
defined: one-hot encoding with cross-entropy loss and one-
hot encoding with focal loss. The proposed scenario employs
multitask encoding with log loss. Using these three scenarios,
a significant number of models using the following encoders
are trained:

1) None refers to fine-tuning BERT [16] on the dataset.
Different pooling mechanisms and class weighting
strategies are explored whilst using this baseline,
resulting in 54 scenarios.

2) Transformer implies the transformer encoder
sub-module in the transformer architecture, proposed
in [47]. From the search space in Table 3, bi-
directionality is the only irrelevant hyperparameter
during the grid search, generating 486 scenarios.

3) LSTM [48] and GRU [49] allude to recurrent neural
network families that are common in sequence clas-
sification tasks. In these two models, the number of
attention heads is the only irrelevant hyperparameter
during the grid search, yielding 324 scenarios each.

TABLE 3. The search space for the hyperparameter tuning.

Therefore, the overall scenarios are 1,188 in total. BERT
is chosen as the embedding model for all scenarios as it
is widely used in diverse domains and proven to be better
compared to other contextual embedding models [50].

2) BASELINE FROM PREVIOUS WORKS
Among the relevant published studies in the log-based
anomaly detection space, sequence-based is one of the most
commonly used approaches. Therefore, there are limited
relevant references as this study employs a point-based
approach. Below are the relevant baselines from previous
research:

1) Pylogsentiment [9] is the first study which employs
sentiment analysis-based anomaly detection on operat-
ing system logs using GRU and GloVe embedding.

2) SentiLog [26], similar to [9], use a two-layered
BiLSTM and GloVe embedding model to perform
anomaly detection on parallel file system logs.

3) TransSentLog [10] is a further development of [9]
and uses a two-layered transformer encoder which used
two attention heads and GloVe embedding along with
integrated gradients to add explainability to the trained
model.

4) NeuralLog [25] is a one-layered transformer encoder-
based model trained on various log anomaly bench-
marks using 12 attention heads and BERT as the
embedding. Contrary to the other three baselines, this
study performed the detection on the sequence of log
records instead of point-based.

BERT has been demonstrated to be a better embedding
compared to GloVe [50], as BERT produces a contextual
feature vector based on the relationship among the words
within a sentence. In this study, BERT is used as the
embedding model when reproducing the performance of
the baseline. Additionally, hyperparameter tuning is also
performed to make the performance comparison as objective
and fair as possible.

C. EXPERIMENT SETTINGS
The experiment is conducted on a personal computer
equipped with a 16GB VRAM GPU. The method is
implemented in Python version 3.10.13 with the help of
the Pytorch version 2.0.1 library. The model is trained
and tested only once by setting the random seed value to
guarantee reproducibility over multiple runs and on different
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TABLE 4. The best performing model for each encoder type and loss function based on accuracy and F1 score tested on the unfiltered dataset after
performing hyperparameter tuning.

devices. During the experiment, as each encoder type has
its hyperparameter, the search space is not the same as
one another. The details of the search space are presented
in Table 3. Other than the ones listed in the table, the
hyperparameter values are set as follows: learning rate is
η = 2e − 5, 15 epochs, γ = 2 [42] for the focal loss, and
8 batch size on train and test.

During the training, the best-performing checkpoint is
saved and used in the evaluation. The first criterion for
choosing the best checkpoint is by comparing both the
accuracy and F1 score of the current execution with the
previous best run. If the accuracy and F1 score of the current
execution is not higher than the previous score, then the
second criterion is to check if the F1 score is improved while
the accuracy is stagnant. If the second criterion does not hold,
it is observed if the accuracy is improved while the F1 score
is stagnant. Other than these criteria, the current execution is
ignored. The position of the best checkpoint is recorded as
the best epoch for performance evaluation.

The accuracy, weighted average precision, recall, and F1
scores are reported as the performance evaluation metrics.
Additionally, the mean prediction probability is recorded to
measure how confident the model is in predicting the test
data on average. To verify the importance of each component
in the model, an ablation study is performed on several
aspects. To provide an in-depth analysis from a domain-
specific perspective, error analyses are also conducted by
investigating the the misclassification cases. Finally, the
learned representation of the dataset is examined to check if
the model successfully learns a decent representation during
the training.

V. PERFORMANCE EVALUATION AND DISCUSSION
Following the procedure and details in the previous section,
this section reports the experimental results along with
in-depth discussions and analyses.

A. BEST PERFORMING SCENARIO
1) EVALUATION METRIC
After experimenting with all the designed scenarios, the
models’ performance is evaluated on the test dataset. The

best-performing model from each pair of encoder type and
loss function is reported in Table 4 and Table 5 for unfiltered
and filtered datasets. Based on the evaluation metrics shown
in both tables, the proposed scenario outperforms all baseline
scenarios on all encoder types tested on the unfiltered dataset,
with an accuracy of 96.875 and an F1 score of 96.851.
As for the filtered dataset, the transformer encoder trained
on the baseline scenario outperforms the other scenarios on
all encoder types with an accuracy of 83.761 and an F1 score
of 82.967. The proposed scenario only performs better on the
GRU and LSTM encoders than the baseline scenarios.

2) PREDICTION CONFIDENCE
Evaluating the performance of a neural model strongly
depends on the task and domain problem. In a particular task,
accuracy can be the only important metric. However, in some
other domains, having a high accuracy does not suffice. For
example, in this study, the model needs to be sure when
predicting if a log is not an anomaly. To check if a model
is certain of the prediction, we can investigate the prediction
probability. Therefore, we record the prediction probability
of each scenario during the testing, taking the mean (µ) and
the standard deviation (σ ) to analyse the confidence score
of the prediction of the model. The distribution of the mean
prediction confidence is presented in Fig. 8 based on the
loss function. From the figure, it can be observed that the
confidence score of log loss is significantly higher and more
stable than the other two losses, indicating that the proposed
label increases the prediction confidence on all encoder types
on average.

3) CONVERGENCE SPEED
The best epoch in the Table 4 and Table 5 indicate the iteration
position when the model reaches the best performance
from a total of 15 epochs. It can be used to evaluate
the training behaviour in different scenarios. From the
unfiltered evaluation, the proposed scenario reached the best
performance at the 7th iteration, relatively faster than the
other two best-performing scenarios, which need 11 and
10 iterations for cross-entropy and focal, respectively. On the
contrary, the result of the filtered dataset shows an opposite
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TABLE 5. The best performing model for each encoder type and loss function based on accuracy and F1 score tested on the filtered dataset after
performing hyperparameter tuning.

FIGURE 8. The distribution of the mean (µ) prediction confidence score
from each loss function. Log loss is significantly higher and more stable
than CE and focal on both datasets.

tendency. The higher-performing scenarios tend to take
more iterations than the lower-performing ones. However,
the proposed scenario outperforms the other two baseline
scenarios on the GRU encoder with the same number of
iterations. When using a transformer encoder, the proposed
scenario underperforms the other two baselines significantly
while taking an almost similar number of iterations. Fig. 9
shows the distribution of the best epoch on each loss function,
where log loss tends to take more epochs to reach the best
checkpoint.

B. HYPERPARAMETER ANALYSIS ON EACH ENCODER
Considering the total number of experimented scenarios, it is
not possible to discuss all the details in this paper. Therefore,
we perform a chi-square test to determine which hyperparam-
eter is significant towards the accuracy of the models. Note
that this test measures the difference in the mean of accuracy
among different groups based on the categorical value in each
hyperparameter. Thus, the significant hyperparameter can be
different from one encoder to another. Fig. 10 shows the test
result, where the heat map colour indicates the statistical
test score. The exact test score is shown for each pair
where the p-value is less than 0.05, which is the significant

value. Chi-square can be computed using χ2
=

∑ (Oij−Eij)2

Eij
where Oij and Eij are the observed and expected frequencies

FIGURE 9. The distribution of the best epoch from each loss function. Log
loss tends to need more epochs compared to cross-entropy and focal loss.

in cell (i, j) in a contingency table constructed from each
hyperparameter paired with the accuracy. Since the accuracy
is a continuous variable, the value is converted into several
groups by binning the value into several ranges. Having the
chi-square test result presented in Fig 10, it can be seen
that the significant hyperparameters differ from one encoder
to another. Note that this test does not reflect the direction
of the dependency. Instead, it shows which hyperparameter
the accuracy depends on. The dependency can be either
increasing or decreasing the accuracy. Nevertheless, it can
help choose which hyperparameter to modify in the next
experiments.

C. COMPARISON WITH STATE-OF-THE-ART MODELS
In this study, several baselines from previous studies are
reproduced on the dataset to perform performance compar-
isons. The reproduced performance from an experimental
procedure explained in subsection IV-B2 is presented in
Table 6. On both datasets, the proposed scenario outper-
forms all the baselines with an improvement of 0.423 and
0.665 in the F1 score on the filtered and unfiltered
datasets, respectively. Considering that Pylogsentiment used
a GRU-based encoder and SentiLog used an LSTM-based
encoder, the proposed scenarios on these two encoders
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FIGURE 10. A significance test using the chi-square test of independence
to check which hyperparameter is significant towards the accuracy. Only
those with p-values less than 0.05 are shown.

consistently outperform the performance of the baselines
tested on the filtered dataset. Note that we also perform
hyperparameter tuning on these baselines to ensure the
validity of the performance comparison. As for transformer-
based baselines, which are NeuralLog and TransSentLog,
the proposed scenario achieves lower performance when
tested on the filtered dataset. However, the transformer-based
proposed scenario achieves the highest performance on the
unfiltered dataset. Based on these findings, it is verified that
the proposed scenario can improve the detection performance
of the model.

D. ABLATION STUDY
Following the rapid advancement in neural network research,
more complex and sophisticated architectures are emerging.
A model can consist of layers of components that have
a specific role in the learning process. After conducting
an experiment on a certain dataset and task, verifying and
checking which component in the model contributes posi-
tively to the performance is crucial. Therefore, we perform
an ablation study to explain which part of the proposed
approach has a significant impact on the performance. Note
that only the best-performing scenario on each dataset is
explored. First, we investigate the significance of the CLS
token from the BERT embedding. Secondly, we analyse the
impact of freezing the BERT’s parameter during training.
Thirdly, we vary the batch size during the training. Finally,

FIGURE 11. Analysis of the effect of different batch sizes on the
evaluation scores of the best-performing models.

we examine the effect of increasing the prediction threshold
used in our proposed approach on the accuracy and F1 scores.

As shown in Table 6, excluding the CLS token embedding
before feeding the input matrix to the encoder significantly
decreases performance. Also, freezing the BERT’s parameter
during the training caused a striking drop in the performance
scores.

Training a neural model using a batched sample is a
common practice to shorten the training time and enforce
the model to learn from representative samples. The size
of a batch can have an impact on the performance of a
model. As shown in Fig 11, varying the batch size has a
notable impact on the filtered dataset but insignificant on
the unfiltered dataset. From the figure, it can be seen that
the 8 is the best option to use. During the inference, when
using multitask encoding and severity-oriented decoding, the
threshold plays a crucial role in the prediction evaluation.
Fig 12 shows the effect of increasing the threshold on the
accuracy and F1 scores of the best-performing model tested
on both datasets. An interesting case is shown in Fig 12a
when λ = 0.65, the accuracy reaches 97%, exceeding the
best model’s accuracy when λ = 0.5. This happens when
the prediction confidence score surpasses the threshold while
the true label’s severity is lower than the prediction label’s.
Thus, following the decoding procedure in section III-C, the
predicted label is incorrect. This phenomenon also happens
on the filtered dataset when λ > 0.94. Overall, the decrement
in the accuracy and F1 scores is insignificant until λ =

0.9 and λ = 0.8 on the unfiltered and filtered datasets,
respectively. Thus, it confirms the prediction confidence
distribution that is depicted in Fig 8.
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TABLE 6. Performance comparison with several baselines from previous works.

FIGURE 12. Analysis of the effect of increasing the prediction threshold
on the evaluation scores of the best-performing models.

TABLE 7. Custom confusion matrix for error analysis.

E. ERROR ANALYSIS
In the previous section, the performance evaluation has been
discussed thoroughly from a quantitative perspective. Here,
we investigate the samples from the test set that are predicted
incorrectly by the best-performing model from each scenario.

FIGURE 13. The number of misclassified samples from the
best-performing model on each loss function tested on the filtered
dataset.

FIGURE 14. The number of misclassified samples from the
best-performing model on each loss function tested on the unfiltered
dataset.

In a binary setting, let the Normal class be positive and
the Anomaly is negative. Then, False Positive (FP) refers to
samples with a true label negative but predicted as positive.
At the same time, a False Negative (FN) is a case when a
sample belongs to a positive class but is predicted as negative.
However, in this study, we define the misclassification cases
differently:

• False Positive refers to a case when the true class is
higher than the predicted class.

• False Negative is a misclassification case where the true
class is lower than the predicted class.

Table 7 shows the position of FP and FN based on the above
definition in a multiclass confusion matrix.
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FIGURE 15. A 2D visualisation of the filtered dataset representation obtained from the best model from each loss function tested on the filtered dataset.
t-SNE [17] is used to reduce the dimension of the embeddings.

In an anomaly detection setting, FP is more important
than FN since detecting anomalous events as normal is a
critical error. Having a high number of FPs can endanger
the system with a serious impact, especially for FP(3) cases,
which means the true label is High and the predicted label is
Normal. At the same time, having a high number of FNs can
cause many false alarms, but they are not as critical as FPs.
Following the definition in the previous paragraph, we plot
the frequency of each misclassification type in Fig 13 and
Fig 14. From the figures, it can be seen that the proposed
approach performs better on the unfiltered dataset despite
having a high number of FN(1) and FN(3). However, on the
filtered dataset, the proposed approach has more FP(2) than
the other two scenarios, even though it has a smaller number
of FP(1), FN(1), and FN(2).

Other than analysing the misclassified samples, we also
analyse the learned representation of the dataset by each of
the best-performing models. The filtered dataset is used to
investigate the learned representation plotted into 2D graphs,
as shown in Fig 3. From the visualisation, it can be seen that
the samples that belong to High class are still close to the
Normal class in Fig 15a and Fig 15b. In Fig 15c, the High
class is far from the Normal class but even further from the
Medium class. Even though all scenarios result in a well-
separated representation, none of the scenarios reflects the
ordinal nature of the label. Onewould expect the High class to
be far from the Low class, representing the distance between
the severity of the anomalies.

VI. CHALLENGES, LIMITATIONS, AND THREATS TO
VALIDITY
In the previous sections, the performance of the proposed
framework has been discussed and analysed. In this section,
challenges encountered during the study are disclosed, along
with limitations and threats to validity. As drone forensics
is an emerging topic, there are very limited public datasets
available. The log messages used in this study are mainly
acquired from DJI-made devices. There is yet to come
a publicly available dataset of log messages from other
drone manufacturers. Several publicly available datasets are

mainly about sensor data and multimedia artefacts [51].
While in this study, we solely depend on the human-readable
messages generated by the drone during a flight. Given the
condition where a small number of unique messages and
most of them are acquired from DJI drones, the generality
of the proposed model remains untested. Considering the
performance evaluation score, where the highest accuracy
is under 85%, the model needs further improvement so that
the detection validity can be enhanced and that the detection
results of the model can be convincing and accountable
enough to the investigator to be included in the investigation
report.

VII. CONCLUSION AND FUTURE WORK
In this paper, we demonstrate how to train a log-based
anomaly detection model that can prioritise the prediction
of higher severity anomalies on drone flight logs while
increasing the prediction confidence score at the same
time. Considering the nature of the dataset, where samples
that belong to different severity levels share common
features, a multitask vector label representation along with
severity-oriented decoding is proposed.

An extensive experiment proved that the proposed
approach is better than the previous work baselines while
being inferior to our baseline scenario based on the accuracy
and F1 scores. From the anomaly detection perspective,
the proposed method achieves higher prediction confidence
and can prioritise higher severity levels during the infer-
ence on the test dataset. Despite the promising results,
the proposed model is tested only on messages acquired
from DJI-made devices, leading to untested generality.
Moreover, the testing set does not reflect an incident
scenario, making the resulting model untested in a real-case
environment.

Further future studiesmay include exploring the possibility
of doing high-level oversampling to introduce the models
with more log message patterns, producing a dataset with
incident scenarios to perform case studies to verify the
performance of the proposed method, and making it publicly
available.
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DATA AVAILABILITY
The dataset used in the experiment is available on a
reasonable request. The code for the experiment, the resulting
performance evaluation, the scripts for data analysis, and the
figures in this paper are made publicly available on GitHub
(https://github.com/swardiantara/DroLoVe) to promote trans-
parent, reproducible, and verifiable research.

REFERENCES
[1] W. Van Der Aalst, A. Adriansyah, A. K. A. De Medeiros, F. Arcieri,

T. Baier, T. Blickle, J. C. Bose, P. van den Brand, R. Brandtjen, and J. Buijs,
‘‘Process mining manifesto,’’ in Proc. Bus. Process Manage. Workshops,
in Lecture Notes in Bus. Information Processing, 2011, pp. 169–194.

[2] E. Mantas and C. Patsakis, ‘‘Who watches the new watchmen? The
challenges for drone digital forensics investigations,’’ Array, vol. 14,
Jul. 2022, Art. no. 100135.

[3] A. B. Nassif, M. A. Talib, Q. Nasir, and F. M. Dakalbab, ‘‘Machine
learning for anomaly detection: A systematic review,’’ IEEE Access, vol. 9,
pp. 78658–78700, 2021.

[4] X. Zhao, Z. Jiang, and J. Ma, ‘‘A survey of deep anomaly detection for
system logs,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2022,
pp. 1–8.

[5] M. Landauer, S. Onder, F. Skopik, and M. Wurzenberger, ‘‘Deep learning
for anomaly detection in log data: A survey,’’Mach. Learn. Appl., vol. 12,
Jun. 2023, Art. no. 100470.

[6] G. Pang, C. Shen, L. Cao, andA. V. D. Hengel, ‘‘Deep learning for anomaly
detection: A review,’’ ACM Comput. Surv., vol. 54, no. 2, pp. 1–38, 2021.

[7] X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q. Z. Sheng, H. Xiong,
and L. Akoglu, ‘‘A comprehensive survey on graph anomaly detection
with deep learning,’’ IEEE Trans. Knowl. Data Eng., vol. 35, no. 12,
pp. 12012–12038, Jun. 2023.

[8] J. Li, H. He, S. Chen, and D. Jin, ‘‘LogGraph: Log event graph learning
aided robust fine-grained anomaly diagnosis,’’ IEEE Trans. Dependable
Secure Comput., pp. 1–15, Jul. 2023, doi: 10.1109/TDSC.2023.3293111.

[9] H. Studiawan, F. Sohel, and C. Payne, ‘‘Anomaly detection in operating
system logs with deep learning-based sentiment analysis,’’ IEEE Trans.
Dependable Secure Comput., vol. 18, no. 5, pp. 2136–2148, Sep. 2021.

[10] T.-A. Pham and J.-H. Lee, ‘‘TransSentLog: Interpretable anomaly
detection using transformer and sentiment analysis on individual log
event,’’ IEEE Access, vol. 11, pp. 96272–96282, 2023.

[11] S. Silalahi, T. Ahmad, and H. Studiawan, ‘‘Transformer-based sentiment
analysis for anomaly detection on drone forensic timeline,’’ in Proc. 11th
Int. Symp. Digit. Forensics Secur. (ISDFS), May 2023, pp. 1–6.

[12] Z. Zhao, C. Xu, and B. Li, ‘‘A LSTM-based anomaly detection model
for log analysis,’’ J. Signal Process. Syst., vol. 93, no. 7, pp. 745–751,
Jul. 2021.

[13] M. Memarzadeh, B. Matthews, and T. Templin, ‘‘Multiclass anomaly
detection in flight data using semi-supervised explainable deep learning
model,’’ J. Aerosp. Inf. Syst., vol. 19, no. 2, pp. 83–97, Feb. 2022.

[14] F. Shahzad, A. Mannan, A. R. Javed, A. S. Almadhor, T. Baker,
and D. Al-Jumeily, ‘‘Cloud-based multiclass anomaly detection and
categorization using ensemble learning,’’ J. Cloud Comput., vol. 11, no. 1,
p. 74, Nov. 2022.

[15] G. O. Anyanwu, C. I. Nwakanma, J. M. Lee, and D.-S. Kim, ‘‘Novel
hyper-tuned ensemble random forest algorithm for the detection of false
basic safety messages in Internet of Vehicles,’’ ICT Exp., vol. 9, no. 1,
pp. 122–129, Feb. 2023.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ in Proc.
NAACL-HLT, 2019, pp. 4171–4186.

[17] L. van der Maaten and G. Hinton, ‘‘Visualizing data using t-SNE,’’
J. Mach. Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

[18] S. Silalahi, T. Ahmad, and H. Studiawan, ‘‘Drone flight log anomaly
severity classification via sentence embedding,’’ in Proc. Int. Conf. Artif.
Intell., Blockchain, Cloud Comput., Data Anal. (ICoABCD), Nov. 2023,
pp. 100–105.

[19] J. Zhou, Y. Qian, Q. Zou, P. Liu, and J. Xiang, ‘‘DeepSyslog: Deep anomaly
detection on syslog using sentence embedding andmetadata,’’ IEEE Trans.
Inf. Forensics Security, vol. 17, pp. 3051–3061, 2022.

[20] L. K. Shar, W. Minn, N. B. D. Ta, J. Fan, L. Jiang, and D. L. W. Kiat,
‘‘DronLomaly: Runtime detection of anomalous drone behaviors via log
analysis and deep learning,’’ in Proc. 29th Asia–Pacific Softw. Eng. Conf.
(APSEC), Dec. 2022, pp. 119–128.

[21] C. Zhang, X. Wang, H. Zhang, J. Zhang, H. Zhang, C. Liu, and
P. Han, ‘‘LayerLog: Log sequence anomaly detection based on hierarchical
semantics,’’ Appl. Soft Comput., vol. 132, Jan. 2023, Art. no. 109860.

[22] J. Qi, Z. Luan, S. Huang, C. Fung, H. Yang, H. Li, D. Zhu, and
D. Qian, ‘‘LogEncoder: Log-based contrastive representation learning for
anomaly detection,’’ IEEE Trans. Netw. Service Manage., vol. 20, no. 2,
pp. 1378–1391, Jul. 2023.

[23] X. Li, P. Chen, L. Jing, Z. He, and G. Yu, ‘‘SwissLog: Robust anomaly
detection and localization for interleaved unstructured logs,’’ IEEE Trans.
Dependable Secure Comput., vol. 20, no. 4, pp. 2762–2780, Oct. 2023.

[24] T. Xiao, Z. Quan, Z.-J. Wang, Y. Le, Y. Du, X. Liao, K. Li, and K. Li,
‘‘Loader: A log anomaly detector based on transformer,’’ IEEE Trans.
Services Comput., vol. 16, no. 5, pp. 3479–3492, Sep. 2023.

[25] V.-H. Le and H. Zhang, ‘‘Log-based anomaly detection without log
parsing,’’ inProc. 36th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE),
Nov. 2021, pp. 492–504.

[26] D. Zhang, D. Dai, R. Han, and M. Zheng, ‘‘SentiLog: Anomaly detecting
on parallel file systems via log-based sentiment analysis,’’ in Proc. 13th
ACM Workshop Hot Topics Storage File Syst., Jul. 2021, pp. 86–93.

[27] S. Lupton, H. Washizaki, N. Yoshioka, and Y. Fukazawa, ‘‘Literature
review on log anomaly detection approaches utilizing online parsing
methodology,’’ in Proc. 28th Asia–Pacific Softw. Eng. Conf. (APSEC),
Dec. 2021, pp. 559–563.

[28] J. Singh and S. Gupta, ‘‘Evaluating the impact of local data imbalance on
federated learning performance for IoT anomaly detection,’’ in Proc. 14th
Int. Conf. Comput. Commun. Netw. Technol. (ICCCNT), Jul. 2023, pp. 1–7.

[29] F. Kong, J. Li, B. Jiang, H. Wang, and H. Song, ‘‘Integrated generative
model for industrial anomaly detection via bidirectional LSTM and
attention mechanism,’’ IEEE Trans. Ind. Informat., vol. 19, no. 1,
pp. 541–550, Jan. 2023.

[30] S. Das, S. S. Mullick, and I. Zelinka, ‘‘On supervised class-imbalanced
learning: An updated perspective and some key challenges,’’ IEEE Trans.
Artif. Intell., vol. 3, no. 6, pp. 973–993, Dec. 2022.

[31] N. T. Anh, L. H. Hoang, V. D. Minh, and T. H. Hai, ‘‘BKIDset—A
new intrusion detection dataset to mitigate the class imbalance problem,’’
in Proc. 15th Int. Conf. Adv. Comput. Appl. (ACOMP), Nov. 2021,
pp. 106–111.

[32] H. Studiawan and F. Sohel, ‘‘Performance evaluation of anomaly detection
in imbalanced system log data,’’ in Proc. 4th World Conf. Smart Trends
Syst., Secur. Sustainability, Jul. 2020, pp. 239–246.

[33] X. Ma and W. Shi, ‘‘AESMOTE: Adversarial reinforcement learning with
SMOTE for anomaly detection,’’ IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2,
pp. 943–956, Apr. 2021.

[34] M. M. Rashid, F. Sabrina, B. Ray, A. Morshed, S. Gordon, and S. Wibowo,
‘‘Anomaly detection in IoT applications using deep learning with class
balancing,’’ in Proc. IEEE Asia–Pacific Conf. Comput. Sci. Data Eng.
(CSDE), Dec. 2022, pp. 1–6.

[35] T. Sutthipanyo, T. Lamsan, W. Thawornsusin, and W. Susutti, ‘‘Log-based
anomaly detection using CNN model with parameter entity labeling for
improving log preprocessing approach,’’ in Proc. IEEE Region 10 Conf.
(TENCON), Oct. 2023, pp. 914–919.

[36] O. Elghalhoud, K. Naik, and M. Zaman, ‘‘Data balancing and CNN based
network intrusion detection system,’’ in Proc. IEEE Wireless Commun.
Netw. Conf. (WCNC), Mar. 2023, pp. 1–6.

[37] J. Qi, Z. Luan, S. Huang, Y. Wang, C. Fung, H. Yang, and D. Qian,
‘‘Adanomaly: Adaptive anomaly detection for system logs with adversarial
learning,’’ in Proc. IEEE/IFIP Netw. Oper. Manage. Symp., Apr. 2022,
pp. 1–5.

[38] T. Al-Shehari, M. Al-Razgan, T. Alfakih, R. A. Alsowail, and S. Pandiaraj,
‘‘Insider threat detection model using anomaly-based isolation forest
algorithm,’’ IEEE Access, vol. 11, pp. 118170–118185, 2023.

[39] P. Chand, M. Moh, and T.-S. Moh, ‘‘An approach to improving anomaly
detection using multiple detectors,’’ in Proc. 16th Int. Conf. Ubiquitous Inf.
Manage. Commun. (IMCOM), Jan. 2022, pp. 1–8.

[40] S. Yan, S. Wang, Z. Chen, X. Jiang, and X. Cao, ‘‘CSLog: Anomaly
detection for syslog based on contrastive self-supervised represen-
tation learning,’’ in Proc. 24th Asia–Pacific Netw. Oper. Manage.
Symp. (APNOMS), 2023, pp. 165–170.

VOLUME 12, 2024 64265

http://dx.doi.org/10.1109/TDSC.2023.3293111


S. Silalahi et al.: Severity-Oriented Multiclass Drone Flight Logs Anomaly Detection

[41] X. Ma, J. Keung, P. He, Y. Xiao, X. Yu, and Y. Li, ‘‘A semisupervised
approach for industrial anomaly detection via self-adaptive clustering,’’
IEEE Trans. Ind. Informat., vol. 20, no. 2, pp. 1687–1697, Feb. 2024.

[42] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, ‘‘Focal loss for dense
object detection,’’ inProc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 2999–3007.

[43] P. Cerda, G. Varoquaux, and B. Kégl, ‘‘Similarity encoding for learning
with dirty categorical variables,’’ Mach. Learn., vol. 107, nos. 8–10,
pp. 1477–1494, Sep. 2018.

[44] X. Zhou, Y. Gao, C. Li, and Z. Huang, ‘‘A multiple gradient descent
design for multi-task learning on edge computing: Multi-objective
machine learning approach,’’ IEEE Trans. Netw. Sci. Eng., vol. 9, no. 1,
pp. 121–133, Jan. 2022.

[45] S. Silalahi, T. Ahmad, and H. Studiawan, ‘‘DroNER: Dataset for drone
named entity recognition,’’Data Brief, vol. 48, Jun. 2023, Art. no. 109179.

[46] (2023). Drone Error and Warning Codes—World’s Most Comprehensive
List. [Online]. Available: https://app.airdata.com/wiki/Notifications/

[47] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017, pp. 6000–6010.

[48] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[49] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using
RNN encoder–decoder for statistical machine translation,’’ in Proc.
Conf. Empirical Methods Natural Lang. Process. (EMNLP), 2014,
pp. 1724–1734.

[50] C. Wang, P. Nulty, and D. Lillis, ‘‘A comparative study on word
embeddings in deep learning for text classification,’’ in Proc. 4th Int. Conf.
Natural Lang. Process. Inf. Retr., Dec. 2020, pp. 37–46.

[51] H. Studiawan, G. Grispos, and K.-K.-R. Choo, ‘‘Unmanned aerial vehicle
(UAV) forensics: The good, the bad, and the unaddressed,’’Comput. Secur.,
vol. 132, Sep. 2023, Art. no. 103340.

SWARDIANTARA SILALAHI (Graduate Student
Member, IEEE) received the bachelor’s degree in
informatics education, in 2021, and the master’s
degree in informatics, in 2023. He is currently
pursuing the Ph.D. degree in computer science
with the Institut Teknologi Sepuluh Nopember
(ITS), Indonesia. His research interests include
digital forensics, log mining, natural language
processing, and deep learning.

TOHARI AHMAD (Member, IEEE) received
the bachelor’s degree in computer science from
Institut Teknologi Sepuluh Nopember (ITS),
Indonesia, the master’s degree in information
technology from Monash University, Australia,
and the Ph.D. degree in computer science from
RMIT University, Australia, in 2012.

From 2001 to 2003, he was a Consultant with
some international companies. In 2003, he moved
to ITS, where he is currently a Professor. His

research interests include network security, information security, data hiding,
and computer networks.

Prof. Ahmad is a member of ACM. His awards and honors include the
Hitachi Research Fellowship and the JICA Research Program to conduct
research in Japan. He is a reviewer of a number of journals.

HUDAN STUDIAWAN (Member, IEEE) received
the bachelor’s and master’s degrees from the Insti-
tut Teknologi Sepuluh Nopember, Indonesia, in
2009 and 2011, respectively, and the Ph.D. degree
fromMurdochUniversity, Australia, in 2021. He is
currently a Lecturer with the Institut Teknologi
Sepuluh Nopember. His current research interests
include digital forensics and natural language
processing.

EIRINI ANTHI is currently a Lecturer in cyber-
security with the School of Computer Science
and Informatics, Cardiff University. She teaches
operating systems security and cybersecurity
operations. As a part of the Ph.D. degree, she
developed state-of-the-art tools to detect and
defend against network-based cyber-attacks in
such infrastructures. In addition, her research
interests include the security of the Internet of
Things (IoT) and industrial control systems (ICS).

More particularly, her research examines the security issues that come along
with these devices/systems and focuses on developing intelligent and more
robust cyber-attack detection mechanisms for such networks using machine
learning and adversarial machine learning techniques.

LOWRI WILLIAMS is currently a Lecturer with
the School of Computer Science and Informatics,
Cardiff University. Her work focuses on the devel-
opment of novel approaches toward automated
cyber defense. In particular, her interest is in
how to apply text mining and machine learning
techniques in defense methodologies and different
cybersecurity contexts.

64266 VOLUME 12, 2024


