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Abstract
Jointly using text and sketch for scene-level im-
age retrieval utilizes the complementary between
text and sketch to describe the fine-grained scene
content and retrieve the target image, which plays
a pivotal role in accurate image retrieval. Exist-
ing methods directly fuse the features of sketch
and text and thus suffer from the bottleneck of
limited utilization for crucial semantic and struc-
tural information, leading to inaccurate matching
with images. In this paper, we propose SceneD-
iff, a novel retrieval network that leverages a pre-
trained diffusion model to establish a shared gen-
erative latent space, enabling a joint latent repre-
sentation learning for both sketch and text features
and precise alignment with the corresponding im-
age. Specifically, we encode text, sketch and image
features, and project them into the diffusion-based
share space, conditioning the denoising process on
sketch and text features to generate latent fusion
features, while employing the pre-trained autoen-
coder for latent image features. Within this space,
we introduce the content-aware feature transforma-
tion module to reconcile encoded sketch and im-
age features with the diffusion latent space’s di-
mensional requirements and preserve their visual
content information. Then we augment the repre-
sentation capability of the generated latent fusion
features by integrating multiple samplings with par-
tition attention, and utilize contrastive learning to
align both direct fusion features and generated la-
tent fusion features with corresponding image rep-
resentations. Our method outperforms the state-of-
the-art works through extensive experiments, pro-
viding a novel insight into the related retrieval field.

⋆ indicates equal contributions. † indicates corresponding au-
thor.

Figure 1: Illustration of generative scene-level image retrieval with
text and sketch as queries. (a) Conventional methods directly fuse
the features of sketch and text and align it with the image for re-
trieval. Besides the direct feature fusion, our method also (b) gen-
erates the latent fusion feature via the diffusion model and aligns it
with the latent image feature in the generative share space, which
enables effective feature fusion between sketch and text and feature
matching for retrieval.

1 Introduction
Scene-level text and sketch-based image retrieval (Scene-
level TSBIR) aims to depict the image scene content with the
collaboration of text and hand-drawn sketches, which exploits
the strengths of both semantic and appearance description in
text (e.g., object categories, texture) and objects’ structural at-
tributes depicted in sketches (e.g., object layout, relative size,
and shape). By integrating features from text and sketch, it
establishes a robust match with target images, significantly
improving the accuracy of image retrieval.

Existing works [Sangkloy et al., 2022; Chowdhury et al.,
2023] often rely on direct feature fusion strategies for sketch
and text features, such as element-wise summation [Sangk-
loy et al., 2022] or cross-attention [Chowdhury et al., 2023],
and align the fused feature with image through contrastive
learning. However, these approaches can only maintain in-
sufficient crucial information coverage which overlooks spe-
cific details of sketches and text, and they can enable lim-
ited feature interaction which lacks full utilization of individ-
ual sketch and text features to learn a comprehensive joint



representation, and hinders accurate correspondence between
two modalities and image features. Therefore, we introduce
a generative model into the retrieval framework, which con-
structs the scene-level correlation between sketches and text
and strengthens the semantic and visual alignment between
generated fusion features and image features in the shared
generative feature space.

Recent years have witnessed a paradigm shift in gen-
erative modeling with the emergence of diffusion models.
These models have transcended their initial application in im-
age generation and are now demonstrating significant utility
across diverse domains, including image semantic segmenta-
tion [Amit et al., 2021; Baranchuk et al., 2021; Brempong
et al., 2022], object detection [Chen et al., 2023] and local-
ization [Zhao et al., 2023c], representation learning for text
and images [Zhao et al., 2023b], cross-modal video retrieval
based on text [Jin et al., 2023], and video localization [Li et
al., 2023; Zhao et al., 2023a]. Among these advancements,
Stable Diffusion [Rombach et al., 2022] stands out for its
ability to generate images conditioned on text and support
for incorporating additional structural information, such as
sketches, skeletons, or semantic segmentation maps, along-
side text as joint conditional inputs to the model [Zhang et
al., 2023a; Mou et al., 2023]. This enables the progressive
denoising process to reveal not only the relationship between
text and sketches but also their intricate mapping onto the
generated images. Inspired by the generative models, we de-
sign new method of sketch and text feature fusion and feature
alignment between fused text/sketch features and images.

In this paper, we propose SceneDiff, a novel method to
leverage the diffusion-based generative model in the scene-
level TSBIR task. We first perform feature encoding on the
text, sketches and images. Then the diffusion-based generator
is introduced to utilize the sketch and text features as condi-
tions for the denoising process, which allows the sketch and
text features to be mapped into the image latent space, re-
sulting in generated latent fusion features. Simultaneously,
image features are also mapped to the generative space to
obtain latent image features. In order to deal with the issue
that the encoded sketch and image features are not consistent
with the original input of the diffusion model, we design a
content-aware feature transformation module, which projects
the sketch and image features into the generative space while
preserving their visual details. In order to enhance the rep-
resentation robustness of the generated latent fusion features,
we propose a generated feature enhancement module, which
adopts multiple sampling strategies and integrates these gen-
erated features via the partition attention mechanism. Finally,
we utilize two-level contrastive learning to perform feature
alignment, between the directly fused sketch and text fea-
tures with image features after feature encoding (shown in
Figure 1(a)), and between the generated latent fusion fea-
tures and the latent image features in the diffusion-based
share space (shown in Figure 1(b)). SceneDiff incorporates
a specific diffusion-based retrieval architecture to learn the
joint representation between sketch and text, facilitating ro-
bust interaction between the two modalities. This model fur-
ther enhances the feature representation capabilities of en-
coders by employing the generative model to train dedicated

encoders for each modality. Extensive experiments demon-
strate the proposed method significantly outperforms existing
approaches in terms of retrieval accuracy.

The main contributions of this work are listed as follows:
• We are the first to propose the generative retrieval

framework for scene-level image retrieval with text and
sketch, which leverages the diffusion model to optimize
feature fusion of text and sketch as well as its alignment
with the image in the diffusion-based share space.

• We introduce a content-aware feature transformation
module that provides a pathway for mapping sketch and
image features onto the generative space of the pre-
trained diffusion model, while preserving their inherent
visual information.

• We augment the generated latent fusion features through
a novel partition-based attention mechanism with multi-
ple samplings in latent space, which can generate more
representative and robust latent fusion representation for
feature matching with image.

• Experiments on multiple datasets for the scene-level TS-
BIR task demonstrate that our proposed generative re-
trieval method achieves state-of-the-art performance.

2 Related Work
2.1 Image Retrieval with Text and Sketch
The utilization of text and sketch as queries for image re-
trieval has been extensively studied in the literature. Pre-
vious works [Dey et al., 2018; Han and Schlangen, 2017;
Song et al., 2017] have explored the benefits of training mod-
els using both sketch and text inputs to improve the image
retrieval performance for each modality separately. These
works typically combine the retrieval results obtained from
text and sketch during test time, without considering the
feature-level correlation of both modalities.

Recent methods have been developed to integrate text
and image features to achieve comprehensive feature fu-
sion and alignment with the image [Sangkloy et al., 2022;
Radford et al., 2021]. Specifically, Task-former [Sangkloy
et al., 2022] extends CLIP [Radford et al., 2021] to support
an additional sketch input. It adopts a late fusion strategy to
combine the encoded sketch and text features and uses con-
trastive learning for the fused sketch-text features and image
features. A multi-label classification loss and a caption gen-
eration loss are added to enhance the model’s ability to recog-
nize the semantics of each modality. SceneTrilogy [Chowd-
hury et al., 2023] introduces a novel method to disentangle
three modalities into modality-specific and modality-agnostic
features. It extracts modality-agnostic features of sketches,
text and images for image retrieval and fuses sketch and text
features via a cross-attention mechanism. These two methods
directly fuse the features of sketches and text and enhance the
alignment with image features through contrastive learning.
However, they may result in the loss of crucial information
inherent in each modality, leading to suboptimal utilization
of their features and impairing the feature alignment with im-
ages. We adopt the retrieval framework by extending CLIP
as our baseline motivated by Task-former [Sangkloy et al.,



2022] and integrate a generative model into the framework to
address the challenges mentioned above.

2.2 Diffusion Models in Cross-domain Retrieval
Generative models play a significant role in cross-modal re-
trieval tasks, as they can enhance the diversity of samples
and establish sample correspondences in the generative space.
Among generative models, diffusion models stand out for
their success in retrieval tasks like text-to-image [Zhao et al.,
2023b] and text-to-video [Jin et al., 2023; Li et al., 2023;
Zhao et al., 2023a], demonstrably enhancing retrieval accu-
racy. RLEG [Zhao et al., 2023b] leverages a pre-trained dif-
fusion model to sample semantically similar data, enhancing
text and image feature representations for more robust fea-
ture alignment and effective generalization to unseen data. Its
multi-sampling strategy leads to significant improvements in
feature alignment by comparing multiple generated represen-
tations. The well-trained feature encoder can then be effec-
tively leveraged for downstream text-to-image retrieval tasks,
demonstrating strong performance in various retrieval bench-
marks. DiffusionRet [Jin et al., 2023] utilizes the diffusion
model to model the joint distribution of text and video data.
By incorporating the progressive denoising process, it effec-
tively uncovers the semantic relationships between text and
video modalities. It exhibits remarkable generalization ca-
pabilities, effectively handling out-of-domain samples. Mo-
tivated by these works, we leverage diffusion models to en-
hance the feature fusion of sketch and text and align them
with image features, realizing the improvement of retrieval
accuracy and the optimization of encoders for comprehensive
modality representation learning.

3 Method
As illustrated in Figure 2, the proposed retrieval network
SceneDiff consists of two major components. It first extends
the network architecture of CLIP [Radford et al., 2021] as
the basic framework, which incorporates dedicated encoders
to extract pertinent features from sketch, text, and image,
and then learns the correspondence between directly fused
sketch-text features with image features through contrastive
learning. Subsequently, it leverages a pre-trained diffusion
model to project sketch and text features as conditions, pre-
cisely guiding the denoising process of the noisy image’s la-
tent feature. It obtains the generated latent fusion features by
mapping the sketch and text features into the latent space of
the image domain and then incorporates an additional con-
trastive loss to learn the correspondence between the gener-
ated latent fusion features and native latent image features.
Within the diffusion-based share space, we introduce a new
content-aware feature transformation module (CAFT), which
transforms sketch and image features to align with the input
dimension of the pre-trained diffusion model and preserves
their inherent visual information simultaneously. To further
augment the representation capacity of the generated latent
fusion features, we incorporate a generated feature enhance-
ment module (GFEM), which employs a partition attention
mechanism to integrate the most representative features from
multiple generated samples.

3.1 Preliminary: Model Construction
Given the robust feature representation capabilities of CLIP
through pre-training on large-scale datasets, we leverage
an extended CLIP architecture as the foundational retrieval
framework similar to [Sangkloy et al., 2022]. We adopt two
CLIP image encoders for sketch features FS and image fea-
tures FI , respectively, and a CLIP text encoder for text fea-
tures FT . Then we introduce the diffusion model-based re-
trieval framework to map features of sketch, text, and im-
age to a generative space and achieve efficient feature fu-
sion and alignment. Specifically, we employ Stable Diffu-
sion (SD) [Rombach et al., 2022] as the generative frame-
work due to its capacity for text-driven image synthesis and
refer T2I-Adapter [Mou et al., 2023] to simultaneously incor-
porate sketch for the denoising process guidance.

SD model [Rombach et al., 2022] operates within a two-
stage framework for image generation. In the first stage,
it adopts a pre-trained autoencoder to encode image x into
the latent feature z0 and gradually adds noise to obtain zt
that follows a random Gaussian distribution. In the denois-
ing phase, the latent feature zt is fed into a UNet network
to denoise into z0 with t steps. The denoising process is
guided by the text condition c, which is encoded through a
frozen CLIP text encoder. The noise-free latent embedding
z0 is decoded by the autoencoder to generate the final im-
age. T2I-Adapter [Mou et al., 2023] supports adding addi-
tional structural condition cs into the pre-trained SD model,
where sketch passes through an Adapter module to extract
features and downsample to produce multi-scale condition
features Fcs = {F i

cs}(i = 1, ..., 4). They have the same di-
mensions with intermediate features Fe = {F i

e}(i = 1, ..., 4)
of the denoising UNet encoder and incorporate into UNet via
a layer-wise additive mechanism:

F i
e = F i

e + F i
cs , i = 1, ..., 4 (1)

Within the SceneDiff framework, we leverage the text fea-
ture FT as the text condition c and construct multi-scale
sketch features {F i

S}(i = 1, ..., 4) as the structural condi-
tion cs, feeding both into the pre-trained SD model similar
to that of Mou et al. [Mou et al., 2023]. Through the de-
noising process, the sketch and text features are mapped into
the image domain and obtain the generated latent fusion fea-
ture zI

′. The image feature FI is simultaneously projected
into the generative space through the pre-trained autoencoder
and obtains the latent image feature zI . Subsequently, a two-
level contrastive loss is employed to model the correspon-
dence between these representations, fostering an abundant
shared space that bridges the visual and textual modalities.

3.2 Content-aware Feature Transformation
Given that the SceneDiff model leverages a CLIP text encoder
to extract text feature FT , compatible with the text condi-
tion encoding methodology employed in the SD model, we
directly utilize FT as text condition c to guide the denois-
ing process. However, it is incongruous between sketch and
image features because the pre-trained SD model and T2I-
Adapter operate on pixel-level features for both image and



Figure 2: (a) Framework of SceneDiff to realize scene-level TSBIR with the diffusion model. We project encoded sketch-text features and
image features into the diffusion-based generative latent space, and employ two-level contrastive learning for matching, i.e. matching between
directly fused sketch-text features (element-wise sum) with image features, and matching between generated latent fusion features with latent
image features. In order to enhance the diffusion model’s fitness for the retrieval task, we introduce two modules (i.e. (b) and (c)). (b)
Content-aware Feature Transformation module transforms the sketch and image features to match the input dimension requirement of the
diffusion model without sacrificing visual fidelity; (c) Generated Feature Enhancement module utilizes a partition attention mechanism to
integrate multiple generated samples to enhance the representation capacity of generated features.

sketch, while SceneDiff provides the token-level representa-
tions FS and FI , which necessitates a new feature transfor-
mation module to bridge the gap and achieve compatibility.
Therefore, we propose a content-aware feature transforma-
tion module (CAFT), which transforms significant features
of images and sketches into diverse sizes, ensuring their pre-
cise alignment with the pre-trained SD model’s dimensional
constraints and preserving their specific content.

Image Feature Transformation To effectively distill
global and local features when modulating the dimension of
image feature FI , we employ a sequential architecture com-
prising a two-layer fully connected (FC) module followed by
the depthwise separable convolution (DWConv). The archi-
tecture is shown in “Image Feature Transformation” part of
Figure 2 (b). The initial 2 FC layers integrate the global infor-
mation of FI . Subsequently, DWConv extracts local features
with a computationally efficient combination of depthwise
and pointwise convolutions while reducing model complex-
ity. They re-extract the comprehensive representation from
the encoded image feature and reshape the feature dimension
to facilitate the subsequent process.

Sketch Feature Transformation To ensure dimensional
congruity between sketch features and intermediate features
Fe = {F i

e}(i = 1, ..., 4) within the denoising UNet en-
coder, we transform the sketch feature FS into multi-scale
FS = {F i

S}(i = 1, ..., 4) through the transformation mod-
ule in “Sketch Feature Transformation” part of Figure 2 (b).
Beyond the combination of 2 FC layers and 7 DWConv lay-
ers for multi-scale sketch feature extraction, we leverage the
dilated convolution (DC) behind the 5th DWConv layer to
integrate multi-scale features from the sketch to further cap-
ture global context without additional computational costs.

To mitigate the spatial information attrition during deep fea-
ture extraction, we integrate transposed convolution (TC) be-
hind the 7th DWConv layer to help recover the sketch’s fine-
grained visual details. Finally, we obtain FS = {F i

S}(i =
1, ..., 4) from the 2nd and 4th DWConv layers, the DC layer
and TC layer (see more details in Supplementary), and add to
the UNet encoder intermediate features Fe indicated in Eq. 1.

3.3 Generated Feature Enhancement
The inherent stochasticity of the pre-trained diffusion model
presents challenges for negative exemplar and unrepresenta-
tive feature generation when relying on a single sample. To
address this challenge, we introduce the generated feature en-
hancement module (GFEM) which conducts multiple incom-
pletely denoised samplings and employs a partition attention
mechanism to integrate them. This module exhibits greater
reliability and comprehensiveness of the generated features,
thereby enhancing the model’s robustness and generalizabil-
ity to improve performance in downstream retrieval tasks.
Multiple Samplings with Incomplete Denoising We gen-
erate n samples from the pre-trained SD model to augment
the generated latent features. Existing research [Zhao et al.,
2023b; Jin et al., 2023] suggests that incorporating the DDIM
sampling strategy [Song et al., 2020] in retrieval tasks yields
efficient feature representations with reduced sampling steps,
which facilitates accelerated sampling and improves the over-
all efficiency of the retrieval process. Therefore, we take
the result in the k-th denoising step as representation for
each sampling, resulting in a set of generated latent features
{zk,j}(j = 1, ..., n).
Partition Attention with Multiple Samplings To address
the potential for noise contamination within global features



arising from the direct fusion of incomplete denoising latent
features, we propose a partition attention mechanism based
on cross-attention [Vaswani et al., 2017], which partitions the
feature space into localized regions, enabling a more refined
and noise-resilient fusion process.

As illustrated in Figure 2 (c), the generated n latent fea-
tures are divided into n/3 groups, each of which contains 3
samples {zk,j , zk,j+1, zk,j+2} ∈ RC×H×W . Then, the fea-
tures within each group undergo a channel-wise partition pro-
cess, yielding an ensemble of b distinct blocks, and a cross-
attention mechanism is applied to each block bi as follows:

Ai =
zik,jz

i
k,j+1

T

√
d

∈ RC/b×H×W , (i = 1, .., b) (2)

Oi = softmax(Ai)zik,j+2 (3)

where d is the dimension of zik,j and zik,j+1, and C/b, H ,
and W are the channel, height, and width of the attention
matrix Ai, respectively. Oi is the feature produced by the
i-th partitioned block. Then we concatenate the partitioned
block features {Oi} to get the feature Oc:

Oc = concat([O1, ..Ob]) (4)

Then we apply a global attention map to update the feature
Oc ensuring the global feature distribution consistency:

O = A×Oc =
zk,jzk,j+1

T

√
d

×Oc, A ∈ RC×H×W (5)

The partition attention mechanism is applied to each group of
n features, and we get the generated latent fusion feature zI

′

by the sum of the feature set O = {O1, ...On/3}.

3.4 Loss Function
The learning objective of SceneDiff consists of two main
components: contrastive learning between the direct fusion
features and image features, and contrastive learning between
the generated latent fusion features and latent image features.
This two-level contrastive learning approach further strength-
ens the model’s ability to establish adequate correspondences
across modalities, ultimately enhancing the overall effective-
ness of the retrieval process.
Contrastive Learning with Direct Fusion Feature Given
a set of text-sketch-image pairs {F i

T , F
i
S , F

i
I}Ni=1, we first

sum the sketch features FS with text features FT to ob-
tain the fused features Ff , and then apply the InfoNCE
Loss [Oord et al., 2018] to a batch of fusion-image feature
pairs {F i

f , F
i
I}Bi=1, aligning the direct fusion feature F i

f with
the image feature F i

I through fuse-to-image and image-to-
fuse contrastive losses:

Lf2i = − 1

B

B∑
i=1

log
exp

(
F i
f · F i+

I /τ
)

∑N
j=1 exp

(
F i
f · F j−

I /τ
) (6)

Li2f = − 1

B

B∑
i=1

log
exp

(
F i
I · F i+

f /τ
)

∑N
j=1 exp

(
F i
I · F

j−

f /τ
) (7)

where F i+

I , F j−

I is the respective positive and negative image

sample to the fusion feature F i
f , and F i+

f , F j−

f is the positive
and negative fusion sample to the image feature F i

I , τ is the
temperature parameter to control the scale of pairwise cosine
similarities.

Channel Attention-based Contrastive Learning with Gen-
erated Latent Fusion Feature Beyond employing con-
trastive learning between the directly fused sketch-text fea-
tures and image features, we additionally leverage contrastive
learning between the generated latent fusion feature zI

′ and
the latent image feature zI . To strengthen the alignment be-
tween zI

′ and zI , we incorporate the channel-attention mech-
anism to allocate attention to the most pertinent channels, en-
suring accuracy and consistency within the latent represen-
tations. The generated latent fusion feature zI

′ is processed
through the channel attention mechanism as follows:

zI
′ = zI

′ ⊙ σ (W2 ·ReLU (W1 ·AvgPool(zI
′))) (8)

where AvgPool stands for global average pooling, W1 and
W2 denote the weight matrices of the fully connected lay-
ers, ReLU and σ are the activation functions, and ⊙ signifies
element-wise multiplication. The latent image feature zI is
updated by applying the same operation in Eq. 8 by replacing
z′I with zI .

After updating the generated latent fusion feature zI
′ and

latent image feature zI with the channel-attention mecha-
nism, we proceed to apply the InfoNCE loss as follows:

LzI2zI ′ = − 1

B

B∑
i=1

log
exp

(
ziI · (zI ′)

i+
/τ

)
∑N

j=1 exp
(
ziI · (zI ′)

j−
/τ

) (9)

LzI ′2zI = − 1

B

B∑
i=1

log
exp

(
(zI

′)
i · zi+I /τ

)
∑N

j=1 exp
(
(zI ′)

i · zj−I /τ
) (10)

The total loss function is:

Ltotal = λ1 (Lf2i + Li2f ) + λ2 (LzI2zI ′ + LzI ′2zI ) (11)

where λ1 and λ2 are loss weight parameters to determine the
loss distribution.

4 Experiments
4.1 Implementation Details
We initialize the encoders for sketches, text, and images in
the SceneDiff model with the publicly available CLIP model
(ViT-B/16). Then we construct the diffusion-based retrieval
framework by utilizing the pre-trained SD model with ver-
sion 1.4, along with its associated pre-trained autoencoder.
The parameters are set as follows: the number of samplings
n is 3, the number of sampling steps k is 2, λ1 and λ2 is 1
and 0.1 respectively. All experiments are conducted on one
NVIDIA A100 80G GPU with learning rate 1e-6 and batch
size 4. More details are listed in the supplementary.



Table 1: Comparision of the retrieval performance between SceneDiff and SOTA image retrieval methods on SketchyCOCO, FS-COCO,
SFSD datasets.

Query Input Method
SFSD FS-COCO SketchyCOCO

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Text
CLIP 16.1 33.57 43.03 9.63 22.52 30.53 25.24 54.29 65.71

Fine-tuned CLIP 19.32 41.55 56.49 13.42 28.05 36.72 29.66 60.15 71.82
SceneDiff (w Text) 21.08 44.97 58.82 14.02 28.56 37.16 31.42 59.26 77.34

Sketch
SketchyScene 60.01 72.83 80.12 22.85 40.9 51.19 27.51 54.23 74.1
SceneSketcher 69.58 82.29 86.4 / / / 31.9 66.71 86.2

SceneDiff (w Sketch) 71.8 82.41 88.76 25.17 45.93 55.93 34.29 69.05 81.43

Text&Sketch
TASK-former 78.52 93.13 95.63 40.27 62.65 75.86 38.04 58.18 69.24
SceneTrilogy / / / 25.7 / 55.2 39.5 / 88.7

SceneDiff 85.1 96.43 98.85 46.37 67.71 78.52 61.02 83.33 92.76

4.2 Datasets and Evaluation Metrics
We utilize three scene-level sketch-image datasets with
textual descriptions for our retrieval task: (1) Sketchy-
COCO [Gao et al., 2020] contains 14,081 synthetic sketch-
image pairs, where images are selected from the MS-COCO
dataset [Lin et al., 2014] with associated text. Given that
most sketches include less than one foreground instance, we
adopt the filtering approach of Scene Sketcher [Liu et al.,
2020] to select 1,015 pairs for training and 210 for testing.
(2) FS-COCO [Chowdhury et al., 2022] is a hand-drawn
sketch-image dataset with textual descriptions of sketches,
which includes 7,000/3,000 train/test pairs. (3) SFSD [Zhang
et al., 2023b] is another hand-drawn sketch-image dataset
containing 12,115 pairs. The text in this dataset corre-
sponds to the associated image, which is also selected from
MS-COCO [Lin et al., 2014]. We divide the dataset into
8,480/3,635 train/test pairs. Given scene-level TSBIR, we use
R@K where K is set to 1, 5, and 10 for evaluation, represent-
ing the percentage of queries for which the target images are
present within the top K retrieval results.

4.3 Comparison with State-of-the-art
We compare SceneDiff with the following state-of-the-art re-
trieval methods. For text-based image retrieval (TBIR) meth-
ods, CLIP [Radford et al., 2021] is pre-trained on large-scale
datasets and well-suited for text-driven image retrieval. Fine-
tuned CLIP fine-tunes the parameters of CLIP on different
sketch-image datasets. For scene-level sketch-based image
retrieval (scene-level SBIR) methods, SketchyScene [Zou et
al., 2018] combines InceptionV3 [Szegedy et al., 2016] and
the triplet ranking network [Yu et al., 2016] together to re-
trieve the target image. SceneSketcher [Liu et al., 2020]
introduces a novel graph-based approach for fine-grained
scene-level SBIR, which constructs the graph with object in-
stances serving as nodes and updates graph features via the
Graph Convolutional Networks (GCN) [Kipf and Welling,
2016]. For text and sketch-based image retrieval (TSBIR)
methods, TASK-former [Sangkloy et al., 2022] extends the
CLIP architecture to incorporate sketches, text, and images,
and employs multiple losses to align the sum of sketch and
text features with image features. SceneTrilogy [Chowd-
hury et al., 2023] adopts feature disentanglement to extract

modality-agnostic features of text, sketch, and image. It com-
bines sketch and text features via cross-attention for TSBIR.

Table 1 presents the comparison results on datasets of
SketchyCOCO, FS-COCO, and SFSD. Due to the original
codes for SceneTrilogy [Chowdhury et al., 2023] have not
been released, we directly cite its retrieval results on Sketchy-
COCO and FS-COCO. Furthermore, the lack of instance-
level annotation in FS-COCO prevents SceneSketcher from
performing retrieval on this dataset. It is obvious that
SceneDiff consistently outperforms existing TSBIR methods
across diverse datasets, demonstrating its broad applicabil-
ity and potential for real-world TSBIR deployment. The
model’s specific retrieval results are shown in Figure 3. Even
when using a single sketch or text as queries, it surpasses
both TBIR and scene-level SBIR methods, showcasing the
remarkable versatility of diffusion models in enhancing per-
formance across various cross-domain retrieval tasks.

4.4 Ablation Study
To evaluate the impact of each component on the SceneDiff
model, we conduct an ablation study on the SFSD dataset: (1)
Baseline: our baseline encodes the sketch and image features
with the CLIP image encoder and text features with the CLIP
text encoder, then fuses text and sketch features through sum-
mation and aligns with image features through contrastive
learning. (2) Baseline + Diff.: we incorporate a pre-trained
SD model into the retrieval framework, leveraging its latent
space for cross-modal fusion and alignment. Then we trans-
form sketch and image features to the input specification of
the SD model via FC layers and upsampling. Subsequently,
sketch features undergo the pre-trained Adapter module [Mou
et al., 2023] to obtain multi-scale structural condition features
Fcs and collaborate with text features to guide the denoising
process for generated latent fusion features. In parallel, image
features traverse the pre-trained autoencoder to attain latent
representations. Two-level contrastive learning is employed
for direct fusion features and image features, as well as gen-
erated latent fusion features and latent image features. (3)
Baseline+Diff.+CAFT: the content-aware feature transfor-
mation module (CAFT) is proposed as a replacement for the
original transformation method and the pre-trained Adapter
module. (4) Baseline+Diff.+GFEM: the generated feature



Figure 3: Top-5 retrieval results of SceneDiff on the SketchyCOCO,
FS-COCO, and SFSD datasets. The true matches are highlighted
with green rectangles.

enhancement module (GFEM) is added to improve the ro-
bustness and representativeness of the generated latent fusion
features. (5) Baseline+Diff.+Channel-Att.: the channel-
attention (Channel-Att.) is used to augment the representa-
tion consistency of generated latent fusion features and latent
image features before contrastive learning. (6) Full Model:
we assemble the complete retrieval model by integrating all
modules, collectively improving the model’s retrieval perfor-
mance. As presented in Table 2, each component contributes
to the retrieval accuracy improvement. Direct integration of
the pre-trained SD model proves suboptimal for the retrieval
framework. CAFT, GFEM, and Channel-Att. are introduced
to enhance its performance, with CAFT demonstrating the
most significant impact. The best retrieval performance is
achieved through the combination of these components.

4.5 Retrieval with Incomplete Query Input
Considering the frequent incompleteness of input text or
sketches in practical applications, we conduct the ablation
study to evaluate the SceneDiff model’s robustness for in-
complete query inputs. We randomly mask 0%-50% words
of text and 0%-50% content of the sketch. The model trained
on complete query inputs is evaluated under two conditions:
(1) complete sketches with incomplete text, and (2) incom-
plete sketches with complete text. As illustrated in Table 3,
the model retains satisfactory retrieval accuracy with missing
text, demonstrating its applicability in situations where tex-

Table 2: The ablation study on components of the SceneDiff model
using the SFSD dataset. “Diff.”: the diffusion-based retrieval net-
work, “CAFT”: the content-aware feature transformation module,
“GFEM”: the generated feature enhancement module, “Channel-
Att.”: the channel attention mechanism.

Baseline Diff. CAFT GFEM Channel-Att. R@1
✓ 78.06
✓ ✓ 79.63
✓ ✓ ✓ 83.56
✓ ✓ ✓ 80.41
✓ ✓ ✓ 81.97
✓ ✓ ✓ ✓ ✓ 85.1

tual inputs might be incomplete. Compared to text, sketches
exert a greater influence on the overall retrieval performance.
Therefore, prioritizing sketch integrity in practical applica-
tions is crucial for optimal model effectiveness.

Table 3: The retrieval results on the SFSD dataset with incomplete
text or sketch inputs, including (1) complete sketch and incomplete
text with 0%-50% content missing as query input, (2) complete text
and incomplete sketch with 0%-50% content missing as query input.

Type Incompleteness R@1 R@5 R@10

Text

0% 85.1 96.43 98.85
10% 83.7 96.2 98.57
20% 81.67 95.07 97.37
30% 79.43 93.67 96.93
40% 76.77 92.43 96.17
50% 74.96 90.83 94.47

Sketch

0% 85.1 96.43 98.85
10% 67.97 89.03 94.23
20% 50.3 75.27 83.73
30% 45.03 59.73 70.97
40% 33.03 45.7 57.13
50% 24.7 36.0 46.4

5 Conclusion
In this paper, we propose a novel scene-level TSBIR retrieval
framework that incorporates a pre-trained SD model to en-
hance the fusion of sketch and text and alignment with im-
age. The model commences with separate encoding of sketch,
text, and image features. Subsequently, a content-aware fea-
ture transformation module projects sketch and image fea-
tures into the diffusion-based share space. Conditioned on
sketch-text features, the latent fusion features are generated
through a denoising process and bolstered for robust rep-
resentation via the generated feature enhancement module.
Lastly, contrastive learning establishes correspondences be-
tween directly fused sketch-text features and image features,
as well as generated latent fusion features and latent image
features. The proposed method achieves state-of-the-art per-
formance for scene-level TSBIR, offers a fresh direction for
research on this important task, and holds the potential for
generalization to related retrieval tasks in future studies.
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