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Abstract

Background

Low back pain (LBP) is a major global disability contributor with profound health and socio-

economic implications. The predominant form is non-specific LBP (NSLBP), lacking treat-

able pathology. Active physical interventions tailored to individual needs and capabilities are

crucial for its management. However, the intricate nature of NSLBP and complexity of clini-

cal classification systems necessitating extensive clinical training, hinder customised treat-

ment access. Recent advancements in machine learning and computer vision demonstrate

promise in characterising NSLBP altered movement patters through wearable sensors and

optical motion capture. This study aimed to develop and evaluate a machine learning model

(i.e., ’BACK-to-MOVE’) for NSLBP classification trained with expert clinical classification,

spinal motion data from a standard video alongside patient-reported outcome measures

(PROMs).

Methods

Synchronised video and three-dimensional (3D) motion data was collected during forward

spinal flexion from 83 NSLBP patients. Two physiotherapists independently classified them

as motor control impairment (MCI) or movement impairment (MI), with conflicts resolved by

a third expert. The Convolutional Neural Networks (CNNs) architecture, HigherHRNet, was

chosen for effective pose estimation from video data. The model was validated against 3D

motion data (subset of 62) and trained on the freely available MS-COCO dataset for feature

extraction. The Back-to-Move classifier underwent fine-tuning through feed-forward neural

networks using labelled examples from the training dataset. Evaluation utilised 5-fold cross-

validation to assess accuracy, specificity, sensitivity, and F1 measure.
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Results

Pose estimation’s Mean Square Error of 0.35 degrees against 3D motion data demonstrated

strong criterion validity. Back-to-Move proficiently differentiated MI and MCI classes, yield-

ing 93.98% accuracy, 96.49% sensitivity (MI detection), 88.46% specificity (MCI detection),

and an F1 measure of .957. Incorporating PROMs curtailed classifier performance (accu-

racy: 68.67%, sensitivity: 91.23%, specificity: 18.52%, F1: .800).

Conclusion

This study is the first to demonstrate automated clinical classification of NSLBP using com-

puter vision and machine learning with standard video data, achieving accuracy comparable

to expert consensus. Automated classification of NSLBP based on altered movement pat-

ters video-recorded during routine clinical examination could expedite personalised NSLBP

rehabilitation management, circumventing existing healthcare constraints. This advance-

ment holds significant promise for patients and healthcare services alike.

Introduction

Low back pain (LBP) stands as the most prevalent musculoskeletal ailment globally [1]. It leads

to impaired activity and absenteeism, incurring substantial economic consequences [2]. A

matter of concern is the escalating growth of disability related to LBP, with the number of

years lived with LBP-associated disability surging from 42.5 million in 1990 to 64.9 million in

2017, making LBP the leading global cause of disability [3]. Consequently, LBP has evolved

into a prominent global public health concern [4].

Approximately 80–90% of LBP falls under the category of ’non-specific’ (NSLBP), lacking

identifiable pathology [5]. Management focuses on reducing pain and disability through active

physical approaches involving education, self-management, and exercise tailored to individual

needs and capabilities [6]. However, tailoring NSLBP management becomes intricate due to

the recognised complexity and heterogenous nature of NSLBP including diverse posture and

movement alterations [7–10], and varying physical conditioning status and disability [11].

This presents a significant clinical hurdle.

Multiple clinical classification systems have emerged to tailor NSLBP management [12–14].

Among these, substantial evidence and clinical endorsement exist for multidimensional classi-

fication (MDC) framework [13]. The MDC is a multi-stage process, described in detail else-

where [13, 15], to primarily determine the relative dominance of physical, psychological,

behavioural and lifestyle factors and its role in perpetuating the NSLBP disorder to better tar-

get management. Individuals whose altered movement and posture patterns contribute to

their pain, are classified into either (i) movement impairment (MI), characterised by restricted

movement due to pain and avoidance behaviour, or (ii) motor control impairment (MCI), char-

acterised by unrestricted yet painful movement and pain-provoking behaviour [13]. NSLBP

patients with MI and MCI, directly amendable through exercise interventions, are believed to

represent 60% of all NSLBP cases with MI and MCIs manifesting at different spine levels and

movement directions (flexion, extension, side-flexion, rotation), and can also be multi-direc-

tional [13].

The distinct nature of the subgroup-specific spine movement and posture alterations was

extensively studied and was demonstrated across different NSLBP subgroups during sitting
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and standing [8, 16–19], spine flexion and extension [20, 21] and functional tasks [22]. Fur-

ther, MDC based targeted NSLBP management, called Cognitive Functional Therapy (CBT),

has growing body of high quality evidence of achieving significant and clinically important

improvements in patient outcomes compared to standard practice [23–26].

Clinical delivery of tailored NSLBP management directly depends on clinicians’ ability clas-

sify. Research shows that trained health professionals demonstrate substantial inter-examiner

agreement when classifying NSLBP using MDC [15, 27], however, the agreement appears to

depend on the level of training received with agreement dropping from Kappa of .90 in those

receiving > 100 hours of training to Kappa of .66 in those with< 100 hours of training [15].

Therefore, despite the compelling evidence of its potential clinical benefits, the resource inten-

sive and time-consuming nature of the classification process and the amount of training

required makes delivery of tailored NSLBP management immensely challenging [28]. This

poses a challenge to widespread clinical adoption.

Machine learning (ML), a subset of artificial intelligence (AI), employs data and algorithms

to discern patterns akin to human intelligence. In the medical sphere, ML is increasingly

applied for prognosis, diagnosis, and personalised treatments [29]. It has also found utility in

diagnosing and prognosticating LBP, though its precision lags behind clinical classification

[30]. AI-based classifiers have emerged in studies classifying NSLBP using 3D-motion capture

data [18] and wearable sensor data [9, 31]. While their accuracy holds promise, the added

equipment costs, maintenance, and significant computational workload impede clinical inte-

gration within current healthcare systems.

Computer vision, a facet of AI, extracts profound insights from digital or video imagery.

Clinicians routinely use digital images and videos to categorise altered posture and movement

patterns associated with NSLBP [8, 15, 27]. Recent strides in computer vision, including con-

volutional neural networks (CNNs) and expansive training datasets like COCO [32], enabled

human pose estimation through video imagery during gait for example [33]. However to our

knowledge, no studies have pursued such techniques for NSLBP classification from digital

images or video.

In this study, our objective was twofold: Firstly, to construct and evaluate performance of

an ML model for NSLBP classification, we called BACK-to-MOVE, to differentiate between

the MI and MCI classes using standard video recordings of routine physical examination of

NSLBP patients who were clinically classified as either MI or MCI. Given NSLBP’s multiface-

ted nature, our secondary objective encompassed evaluating the model’s performance in tan-

dem with customary patient-reported outcome measures (PROMs) regularly employed to

target NSLBP management.

Methods

The overall protocol utilised in this study consisted of data collection and expert classification

of the dataset, pose estimation model design, feature extraction and selection, model training

and evaluation described in detail in sections below.

Participants

We used a patient dataset derived from a group of 83 individuals (n = 47 females; mean age

[SD] 44.7 [11.8] years; height 170 [9.9] centimetres; mass 81.3 [6.7] kilograms) experiencing

NSLBP for over three months. Recruitment was carried out from the physiotherapy waiting

lists at Cardiff and Vale Orthopaedic Centre. Eligibility screening was conducted via both tele-

phone and in-person assessments by an experienced physiotherapy clinician (LS), ensuring

adherence to inclusion and exclusion criteria (Table 1). Participants attended a single
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experimental session at the Research Centre for Clinical Kinaesiology, School of Healthcare

Sciences, Cardiff University.

Data used in this study were collected during a Postdoctoral Research Fellowship (LS)

between 1 February 2018 to 31 January 2019 with the archived samples accessed 1 June 2020 to

conduct this current study. Health and Care Research Wales Ethics Committee, Wales REC 3

(reference 10/MRE09/28, IRAS project number 51853, amendment number

ARUKBBC2017.02) approved the study. Participant anonymity was ensured by applying facial

blurring to each frame of the video files, executed by the postdoctoral researcher (TH) using a

custom Matlab script. All subsequent data processing and analysis was performed on a fully

anonymised dataset.

Clinical classification procedure

Each enrolled NSLBP participant underwent classification utilising the clinical MDC frame-

work [13]. This classification was independently executed by two expert physiotherapists, both

well-versed in MDC and trained in accordance with a documented classification protocol [15].

This process entails a subjective evaluation of pain behaviour, scrutiny of available radiological

imaging, assessment of pain-related beliefs, lifestyle habits, and physical examination of spinal

function. The latter includes gauging the range, speed of movement, and pain response during

fundamental movements such as spine flexion, extension and side flexion as well as evaluating

Table 1. Eligibility criteria for NSLBP.

Inclusion Criteria

• Age 18 years +

• Non-specific low back pain for longer than 3 months

• Clear mechanical basis for low back pain whereby symptoms are eased and provoked by specific postures or

movements based on previously published criteria [13].

• Movement impairment (MI)–impairment or a deficit is in the movement restriction of the symptomatic spinal
level. Pain is triggered by movement of the spine with the movement restricted.

• Motor control impairment (MCI)—impairment or deficit in the control of the symptomatic spinal level. Pain is

triggered by adopting sustained positions such as sitting, bending, standing, twisting, with movement not

restricted.

• Able to speak and understand English well enough to complete questionnaires independently

Exclusion Criteria

• Primary pain area different to lower back (from Thoracic vertebra T12 to buttock line) e.g., leg or neck pain

• Acute exacerbation of pain at the time of testing rendering the individual unable to undertake the testing

procedure

• Specific diagnosis for pain (nerve root compression, radicular pain/radiculopathy, disc herniation,

spondylolisthesis, spinal stenosis)

• Surgery (lower limb or abdominal surgery in last 6 months, any spinal surgery)

• Injection therapy for pain relief in the last 3 months

• Rheumatologic/inflammatory disease (e.g., psoriatic arthritis, rheumatoid arthritis, ankylosing spondylitis,

Scheuermann’s disease) Scoliosis (if a primary pain driver)

• Progressive neurological or neurodegenerative conditions (e.g. multiple sclerosis, Parkinson’s disease, motor

neuron disease)

• Red flags/serious pathology (malignancy, acute trauma such as fracture, systemic infection, spinal cord

compression, cauda equina syndrome.

• Pregnancy/breast feeding

https://doi.org/10.1371/journal.pone.0302899.t001
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slouched and upright sitting postures, and basic functional tasks like sit-to-stand and squat. A

clinical judgment is then rendered regarding whether observed movement irregularities are

the dominant pain drivers. Subsequently, individuals were broadly categorised into either MI

(n = 42) or MCI (n = 41) phenotypes, based on the criteria outlined in Table 1. and indepen-

dently confirmed by two expert physiotherapists.

Data acquisition

The patient dataset incorporated movement data from a battery of physical assessment of the

spinal function informed by expert clinical consensus as integral to NSLBP classification [34].

These assessments encompassed spine flexion, extension, side flexion, along with functional

tasks like sit-to-stand, squat and both upright and slouched sitting postures. From this assess-

ment battery, the clinical importance of spine flexion demonstrated the highest expert consen-

sus at 98% [34]. Consequently, spine flexion was chosen as the initial movement test for

predicting NSLBP MI and MCI classes in this study. Each participant performed 8–10 repeti-

tions of spine flexion, preceded by two practice repetitions for warm-up. Participants were

instructed to begin from a relaxed standing position and bend forward as much as possible,

with no further guidance on the method or speed of the movement.

Both an optoelectronic motion capture system (Vicon, Oxford, UK) and a digital video

camera (Hero 5, GoPro Inc., CA, USA) captured movement data simultaneously (Fig 1). For

motion capture system data, retroreflective markers were positioned on the seventh cervical

vertebra (C7), lumbar vertebra (L4), and pelvis (anterior and posterior iliac spines—ASIS,

PSIS). Inertial measurement units (not discussed here) attached to the spine necessitated posi-

tioning the L4 marker parallel to the fourth lumbar vertebra. Retroreflective marker positions

were recorded at 120 Hz using Vicon MX cameras and Vicon Nexus software.

All videos were pre-processed by undergoing rescaling to ensure the shortest side was 768

pixels in length and were resampled for 30 frames per second playback using open-source

Python and OpenCV software packages.

Patient-reported outcome measures

Prior to engaging in any physical movement tests, participants were requested to complete

PROMs validated and routinely used in LBP to profile pain intensity, levels of disability, fear of

Fig 1. Experimental set up for obtaining spine flexion.

https://doi.org/10.1371/journal.pone.0302899.g001
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movement, pain related catastrophising, self-efficacy, coping strategies, and level of risk of

developing persistent LBP disability (Table 2).

Human pose estimation

Convolutional Neural Networks (CNNs) [42]—a subset of artificial neural networks—were

harnessed to deduce human body posture from visual data, enabling the phenotyping of

NSLBP. Multiple CNN architectures tailored for human pose estimation were considered:

CrowdPose [43], DensePose [44], PoseNet [45], UniPose [46] and HigherHRNet [47]. After

initial exploration, the HigherHRNet model was chosen due to its exceptional performance,

effectively accommodating the varied forward bending movement characteristics inherent in

the patient dataset. A detailed comparison of HigherHRNet with alternative CNN architec-

tures was presented in the original article clearly demonstrating its superiority in accurate esti-

mation of the human pose in the videos [47], which was the main influence of the choice.

HigherHRNet, operating as a bottom-up pose estimation model, directly infers human

body posture by identifying key body points (keypoints) throughout the entire image [47]. In

the initial phase, all 17 keypoints within the HigherHRNet model were identified across the

video data of each participant. However, for classifying this NSLBP patient dataset, only spe-

cific keypoints—the ankle, hip, and neck, as illustrated in Fig 2, were deemed essential to cap-

ture clinically pertinent features essential for classification. The x, y coordinates of each

identified keypoint were recorded in pixel space.

By identifying keypoints across all frames within each video, a movement pattern of the

participants was established. This concept is exemplified in Fig 3, depicting the x, y coordi-

nates, representing anteroposterior and vertical directions, respectively, of the keypoint repre-

senting the neck for a single participant executing multiple repetitions of spine flexion.

The initial pre-trained human pose estimation model, HigherHRNet, was trained on the

MS-COCO dataset containing 250,000 person instances distributed across 200,000 images

[32]. Fine-tuning the pre-trained model wasn’t pursued, as it already exhibited strong perfor-

mance. This decision aimed to prevent excessive overfitting to the training data, which might

compromise the model’s capacity to encapsulate the diverse movement nuances present in the

dataset [48].

Table 2. Patient-reported outcome measures (PROMs).

Measure Domain Description

Visual Analog Scale (VAS) [35] Pain Intensity Level of pain marked on a 100-mm scale anchored with "No pain" and "Worst imaginable pain"

at the respective ends.

Oswestry Disability Index

(ODI) [36]

Disability Participants asked to tick statements that best applying to them in 8 activity of daily living

domains (e.g., lifting, personal care and walking). This index’s score spans from zero to 100,

with higher scores signifying more pronounced disability.

Tampa Scale of Kinesiophobia

[37]

Fear of movement Measure of movement-related apprehension in LBP individuals. The scale’s score range is 17 to

68, with elevated scores reflecting greater kinesiophobia.

Pain Catastrophising Scale

(PCS) [38]

Pain catastrophising 13 statements describing thoughts associated with pain, scored using a 5-point scale anchored

with ‘not at all’ and ‘All the time’ at the respective ends.

Pain Self-efficacy

Questionnaire (PSEQ) [39]

Pain Self-efficacy 10 statements describing activities of daily life scored on a 6-point scale anchored with ‘Not at all

confident’ to ‘Completely confident’ at the respective ends.

Coping Strategies

Questionnaire (CSQ) [40]

Coping A questionnaire asking participants to score 14 items describing different ways of coping with

pain using a 6-point scale anchored with ‘Never do that’ to ‘Always do that’ at the respective

ends.

STarTBacK tool (SBT) [41] Risk of developing persistent LBP-

related disability

9-item screening questionnaire to stratify LBP patients based on their risk (low, medium, high)

for persistent LBP-related disability.

https://doi.org/10.1371/journal.pone.0302899.t002
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Feature extraction

In this study, the selected features were deliberately aligned with what holds significance for

classifying NSLBP in a clinical context. This approach aimed to avoid overfitting, a well-recog-

nised challenge associated with constructing classifiers that incorporate numerous high-

dimensional features [49]. Among the most prevalent NSLBP characteristics are impairments

in spatial and temporal parameters of range of movement [7] a focal point of attention during

NSLBP assessments undertaken by physiotherapists.

Range of movement was quantified in the form of a spinal angle, computed as the Euclidean

distances (in pixels) between three points derived from the pose estimation process. These dis-

tances encompass those between the hip and neck keypoints (hn), ankle and hip keypoints

(ah), and ankle and neck keypoints (an), as visualised in Fig 4. Armed with these distances, the

angle of the spine flexion (θ) was determined using the following formula:

y ¼ arccos hn2 þ ah2 � an2ð Þ= 2 � hn � ahð Þð Þ

Subsequently, a moving average with a 30-frame window (equivalent to 1 second of video

data) was employed to smoothen the spine flexion angle waveform. This process aimed to mit-

igate any unforeseen data fluctuations (Fig 5).

A collection of both established and new statistical features, commonly applied in clinical

movement and NSLBP classification analyses [8, 20, 50], were then computed for the angle sig-

nal. These features were employed to assess their predictive value for distinguishing MI and

MCI classes within NSLBP. Among the standard features routinely used in clinical movement

Fig 2. Human pose estimation model utilised to estimate spine flexion performance.

https://doi.org/10.1371/journal.pone.0302899.g002
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analysis were the mean, range, minimum, maximum values, variance, and standard deviation

for the spine flexion angle θ (Fig 4).

The new features introduced here aimed to evaluate the temporal and spatial consistency of

the spinal flexion movement. To achieve this, the angle waveform was scrutinised (Fig 5), with

particular emphasis on its minima points, which hold clinical significance as they correspond

to the points when participants reach the lowest flexion (Figs 4 and 5). The spine flexion repeti-

tion time (tri) was deduced from the frame count between these minima points on the angle

graph. Detecting these minima points was accomplished through signal inversion coupled

with a peak detection algorithm, in this instance, the approach by Du et al. (2006) [51], imple-

mented through the SciPy python library’s find_peaks_cwt function.

Novel features derived from these minima points encompassed the mean and variance of

repetition time (tri) and the variance of the spine flexion angle depth (depthi) in Fig 5, further

Fig 3. Sagittal 2D position of the base of the neck keypoint. Y = base of the neck vertical coordinate (pixels), X = base of the neck

antero-posterior coordinate (pixels).

https://doi.org/10.1371/journal.pone.0302899.g003
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elaborated below. The variance in depth (depthi) provided insight into the consistency of par-

ticipants attainment of a specific flexion depth and the extent to which the flexion depth fluctu-

ated across repetitions. Lastly, movement stability, the final feature extracted from the angle

graphs, was obtained by dividing the angle waveform (Fig 5) into two halves and determining

the angle range for each half, then subtracting one from the other. This feature offered insight

into whether a patient increased their maximum bend angle across several repetitions [51].

Considering the multifaceted character of NSLBP, the collected PROMs were incorporated

as other important clinical features. This culminated in a set of 16 features for distinguishing

between NSLBP MI and MCI subsets (Table 3).

Predictive model design

Category prediction was executed using feedforward neural network, with parameter values

drawn from a training dataset comprising labelled instances [52]. The predictive model

adopted here (Fig 6) encompassed multiple layers, each featuring a distinct type of input–

angle and PROMs (Table 3). These inputs were processed through individual streams, which

first underwent batch normalisation [53] before progressing to a feedforward layer. This

Fig 4. Visual representation of the calculation to obtain the range of movement of spine flexion. Euclidean

distance (in pixels) between hip to neck (hn), ankle to hip (ah), and ankle to neck (an).

https://doi.org/10.1371/journal.pone.0302899.g004

PLOS ONE BACK-to-MOVE: Automated classification of non-specific low back pain for personalised management

PLOS ONE | https://doi.org/10.1371/journal.pone.0302899 May 10, 2024 9 / 21

https://doi.org/10.1371/journal.pone.0302899.g004
https://doi.org/10.1371/journal.pone.0302899


feedforward layer entailed no hidden nodes; input and output nodes equated the number of

features. A Rectified Linear Unit (ReLU) activation function followed the linear layer [54]. The

streams were then concatenated and fed into a concluding feedforward layer equipped with a

threshold, yielding a binary output (0 or 1) signifying the prediction of either MI or MCI.

Throughout this process, model was trained using binary cross-entropy loss and stochastic

gradient descent, following a supervised methodology [55].

Table 3. Movement and clinical features used for distinguishing between MI and MCI.

Feature Domain Input features

Spine Flexion Angle Standard 1. Variance

2. Standard Deviation

3. Minimal (full spine flexion angle)

4. Range

5. Maximal (spine standing angle)

Novel 6. Repetition Time Mean

7. Repetition Time Variance

8. Depth Variance

9. Movement Stability

Patient Reported Outcome Measures (PROMs) 10. Visual Analog Scale (VAS)

11. Oswestry Disability index (ODI)

12. Tampa Scale of Kinesiophobia (TSK)

13. Pain Catastrophising Scale (PCS)

14. Patient Self-efficacy Questionnaire (PSEQ)

15. Coping Strategies Questionnaire (CSQ)

16. STarTBacK tool (SBT)

(MI = movement impairment, MCI = motor control impairment)

https://doi.org/10.1371/journal.pone.0302899.t003

Fig 5. Spine flexion angle waveform of a single participant repeating the movement with the signal pre-smoothing (blue) and post-

smoothing (orange). The spine flexion repetition time (tri), and angle depth (depthi) are highlighted in the graph to give insight into the

consistency of participants attainment of a specific flexion depth and the extent to which the flexion depth fluctuated across repetitions.

https://doi.org/10.1371/journal.pone.0302899.g005
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Evaluation

Pose estimation validation. Criterion validity of the pose estimation model was assessed

by comparing the spine flexion angle acquired through pose estimation with the synchronised

’ground truth’ 3-dimensional (3-D) motion capture (Mocap) data, utilising 75% of the NSLBP

dataset (n = 62). In the case of the 3-D Mocap spine flexion angle, the pose estimation key-

points (neck and hip) were replaced with the corresponding Mocap positions of C7 and a mid-

point between the pelvic markers (PSIS and ASIS). Approximating the ankle’s position

involved setting the y position of the L4 marker to zero, generating a virtual ankle marker (vA)

consistently positioned directly beneath the L4 marker at a vertical position of zero. The spine

flexion angle calculation was then executed as detailed in section on ‘Feature extraction’ above.

Subsequently, the pose’s mean square error score was computed to quantify the disparity

between the spine flexion angle extrapolated from the Mocap data and that deduced from the

pose estimation keypoints.

Predictive model evaluation. The evaluation of the predictive model involved two

aspects: i) selecting the most pertinent features and ii) assessing the final model’s performance.

To appraise the predictive model’s performance, classification accuracy, along with sensitivity,

specificity, and the F1 measure, were chosen as evaluation metrics. Accuracy signifies the frac-

tion of predictions the model correctly attributed. Sensitivity and specificity offer insights into

the nature of misclassifications.

In the context of a binary predictive model, as in this study, sensitivity denotes the model’s

ability to accurately identify all instances of the positive class (MI), while specificity gauges the

model’s capacity to correctly recognise all instances of the negative class (MCI). These metrics

were computed employing true positive detections (TP), true negative detections (TN), false

positive detections (FP), and false negative detections (FN), using the subsequent formulae:

Accuracy ¼
TP þ TN

TP þ FP þ TN þ FN

Sensitivity ¼
TP

TP þ FN

Specificity ¼
TN

TN þ FP

To gauge the overall classification performance of the predictive model, the F1 measure was

computed. The F1 measure represents a balanced combination of precision (sensitivity) and

recall (ability to detect class samples), ranging from 0 to 1, where 0 signifies the lowest and 1

indicates the highest overall classification performance [56].

The model assessment occurred in three progressive stages, with outcomes from each stage

guiding the subsequent one. The initial stage involved exploring the significance of various

Fig 6. Predictive model. Batch Norm = batch normalisation layer, ReLU = Rectified Linear Unit layer.

https://doi.org/10.1371/journal.pone.0302899.g006

PLOS ONE BACK-to-MOVE: Automated classification of non-specific low back pain for personalised management

PLOS ONE | https://doi.org/10.1371/journal.pone.0302899 May 10, 2024 11 / 21

https://doi.org/10.1371/journal.pone.0302899.g006
https://doi.org/10.1371/journal.pone.0302899


feature types in accurate predictions. To achieve this, the model underwent training using all

available features, followed by training with a single type of feature. The resulting metric values

served as baseline for comparison with subsequent experiment results. In the second stage, the

model’s performance was assessed for all permutations of each feature type. Angle features

presented 512 permutations [29], while PROM features featured 128 permutations [27]. The

final stage encompassed constructing an optimal feature set, in the sense of producing the

highest F1-measure among all possible permutations of features in the corresponding model

assessment, finalising model training, and executing an ablation experiment to analyse each

feature’s impact on the final model’s accuracy. All assessment measures were calculated based

on 5-fold cross-validation.

Statistical significance of the results can be evaluated when comparing various competing

classification models; however, there is no prior work against which our proposed model

could be benchmarked. Nonetheless, the statistical significance of the accuracy obtained in this

study was assessed following the method outlined in Combrisson et al., 2015 [57] suitable for

comparisons of comparable sample size. For c classes and an infinite number of equally dis-

tributed samples, the percent theoretical chance level of classification is 100/c. In our case, the

number of classes c = 2, and the chance level of classification is 50%. However, for a limited

number of samples, the chance level will depend on it. As Combrisson et al, we assume that

the classification errors obey a binomial cumulative distribution, where the probability to pre-

dict the correct class at least z times by chance is given by:

P zð Þ¼
Xn

i¼z

n
i

� �
�

1

c

!i

�
c � 1

c

!n� 1  

Following this, we used the MATLAB (Mathworks Inc., MA, USA) code provided by Com-

brisson et al (2015) to compute the statistically significant threshold St(α) = binoinv(1-α, n, 1/
c) × 100/n, where n is the sample size, c is the number of classes, α = z/n is the significance

level and binoinv() is a MATLAB function [57].

Results

Pose estimation model validity

An illustration of an angle waveform obtained from the pose estimation model and a wave-

form derived from motion capture data for a single participant performing spine flexion is pre-

sented in Fig 7. The mean square error score, calculated to quantify the divergence between

the two data sets, was 0.35 degrees. This result showcases robust criterion validity and an ade-

quate level of accuracy between the pose estimation model and the motion capture data.

Predictive model evaluation

The classification outcomes from the initial stage of experiments involving all angle and all

PROMs input features are presented in Table 4. The higher level of accuracy, sensitivity, and

specificity was attained by employing ’all angle features’. The PROMs demonstrated relatively

weak capability to precisely identify MCI, resulting in a reduced overall accuracy and implying

limited contribution to accurately differentiate between the two NSLBP subsets (Table 4).

Table 5 presents a set of eight optimal input features (marked by X) that was curated from

the relevant 16 features on basis of yielding the highest F1 measure value in correctly discrimi-

nating between MI and MCI. Interestingly, standard features employed in clinical movement

analysis (angle minimum and variance) did not exhibit utility in distinguishing between the
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subgroups and STarTBacK Tool, a measure of risk in developing disabling LBP, was the only

PROM feature selected (Table 5).

Lastly, the classification performance using solely the optimal input features, both individu-

ally and in combination, is depicted in Table 6. The highest overall classification performance

of 93.98% was achieved when exclusively utilising optimal angle features. The addition of opti-

mal PROMs feature to the optimal angle features did not yield improvement in the classifica-

tion performance.

The above results were subjected to statistical testing described earlier in the article, achiev-

ing statistical significance (p< 0.001) for accuracies of 87.5% and above. Therefore, our results

are confirmed to be statistically significant.

Discussion

This is a novel study that examines the feasibility of BACK-to-MOVE; a machine learning and

computer vision model for automating clinical classification of NSLBP on basis of altered

spine movement captured on standard video camera. A recent systematic review revealed that

computer vision’s primary use in LBP predominantly revolves around extracting features from

radiological imaging including MRI, CT, X-ray, or ultrasound to identify and/or categorise

vertebral structures and intervertebral discs’ pathology levels [30]. While these models may

demonstrate clinical applications for specific LBP with a clear patho-anatomical cause, it’s

important to note that over 80% of LBP cases are non-specific with clinical guidance actively

discouraging the use of imaging to guide its management. [58]. This study stands as the first to

Fig 7. An example of an angle waveform from a single participant performing 10 repetitions of spine flexion

derived from the pose estimation model and the motion capture data (Mocap). Blue = pose estimation model;

Orange = Mocap.

https://doi.org/10.1371/journal.pone.0302899.g007

Table 4. Classification performance when all spine flexion angle and patient reported outcome measures (PROMs) features were inputted.

Features Accuracy Sensitivity* Specificity** F1 Score

Spine Flexion Angle (all) 87.95% 92.98% 76.92% .914

PROMs (all) 68.67% 91.23% 18.52% .800

*Sensitivity denotes accuracy of correctly assigning Movement Impairment.

**Specificity denotes accuracy of correctly assigning Motor Control Impairment.

F1 = overall classification performance, 0 = lowest, 1 = highest.

https://doi.org/10.1371/journal.pone.0302899.t004
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employ AI in classifying non-specific LBP utilising video imagery with the intent to aid tailored

management of NSLBP as endorsed by clinical guidelines [6]. This approach therefore holds a

significant potential to enhance the clinical viability and usefulness of such methods.

This study BACK-to-MOVE classifier achieved percentage accuracy of 93.98% in predicting

MI and MCI with F1 score of 0.957, signifying exceptional performance. This level of accuracy

favourably compares to inter-examiner agreement of highly experienced physiotherapists

undergoing 100+ hours of training to achieve a Kappa coefficient of .82 and percentage agree-

ment of 86%, and surpasses inter-examiner agreement of less experienced clinicians (undergo-

ing less than 100 hours training) achieving Kappa of 0.66 [15]. Our classifier also out-

performed clinicians classifying NSLBP from videos of physical examination to reach a Kappa

between .55 and .71, and percentage agreement between 65 and 78% [27].

The BACK-to-MOVE classifier showed better prediction of MI class (96.49% sensitivity)

than MCI class (88.46% specificity). This difference could stem from the fact that MI, charac-

terised by spine movement restriction, is perhaps more easily discernible from video compared

to the potentially subtler deviations in motor control associated with MCI class [10, 13].

Table 5. Set of optimal input features yielding the highest classification performance.

Feature domain Input features Optimal features marked by X

Spine Flexion Angle Standard 1. Variance -

2. Standard Deviation X

3. Minimal (full spine flexion angle) -

4. Range X

5. Maximal (spine standing angle) X

Novel 6. Repetition Time Mean X

7. Repetition Time Variance X

8. Depth Variance X

9. Movement Stability X

Patient Reported Outcome Measures (PROMs) 10. Visual Analog Scale (VAS) -

11. Oswestry Disability index (ODI) -

12. Tampa Scale of Kinesiophobia (TSK) -

13. Pain Catastrophising Scale (PCS) -

14. Patient Self-efficacy Questionnaire (PSEQ) -

15. Coping Strategies Questionnaire (CSQ) -

16. STarTBacK tool (SBT) X

X = features achieving highest F1 measure value among all possible permutations of features

https://doi.org/10.1371/journal.pone.0302899.t005

Table 6. Classification performance when the optimal features were inputted separately and combined.

Features Accuracy Sensitivity* Specificity** F1 Score

Optimal Spine Flexion Angle 93.98% 96.49% 88.46% .957

Optimal PROMs 73.49% 91.23% 34.62% .825

Optimal Spine Flexion Angle + PROMs 92.77% 94.74% 88.46% .947

*Sensitivity denotes accuracy of correctly assigning Movement Impairment.

**Specificity denotes accuracy of correctly assigning Motor Control Impairment.

F1 = overall classification performance, 0 = lowest, 1 = highest

https://doi.org/10.1371/journal.pone.0302899.t006
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Interestingly, Fersum et al. (2009) demonstrated higher clinical agreement classifying MCI

(99% agreement) than MI (75% agreement) [15]. This incongruity might be attributed to the

uneven distribution of cases in the Fersum et al (2009) study with 24 cases of MCI and one

case of MI, along with the clinicians’ suggested unfamiliarity with the less frequently encoun-

tered MI [13, 15]. In our study, an almost equal numbers of cases were included across MI

(n = 41) and MCI (n = 42).

The highest accuracy (93.98%) was achieved by using seven optimal movement features

that characterise the spatial and temporal parameters of spine flexion, extracted from the video

imagery. This is in line with recent systematic review and meta-analysis demonstrating that

people with LBP have impairments in movement range, speed and spine flexion variability

[59]. The advantage of these movement features likely arises from their objective nature

encompassing statistical properties of the spine flexion angle’s behaviour across the movement

repetitions. Among the 9 movement features, 2 (variance and minimum angle value) were not

chosen by the model. This could be because they were already represented by the remaining

features, specifically, standard deviation, range, and maximum.

To address the multifactorial nature of NSLBP, we examined the inclusion of seven patient-

reported outcome measures (PROMs) typically considered during LBP classification including

levels of pain, disability, fear of movement, catastrophising, coping, self-efficacy and risk of

chronicity. Using all these PROMs as input features alone achieved low accuracy of 68.67%,

rising marginally to 73.39% when only the optimal PROMs were used (STarTBacK). Combin-

ing optimal PROMs with the optimal movement features enhanced the classification accuracy

to 92.77%, however, this was still lower than inputting the optimal movement features alone

(93.98%). The limited discriminative capability of PROMs in our study was likely due to the

specific recruitment criteria, which focused on participants with LBP persisting for more than

three months, while excluding those experiencing acute and severe LBP. This targeted selec-

tion criteria likely contributed to the uniformity of PROMs scores, with variations minimised

through excluding the acute and severe cases. In summary, while PROMs undoubtedly provide

more holistic picture of the patient’s pain experience, they appear non-discriminatory when it

comes to classifying NSLBP of similar intensity and duration based on physical characteristics

thus may not be useful features for ML classifiers helping to discern between altered move-

ment patterns.

The BACK-to-MOVE classifier developed in this study utilised a dataset of 83 NSLBP

patients, a sample size comparable and exceeding many other studies [60]. To maintain the

dataset’s full complexity and minimise selection bias, we included video data from all partici-

pants, regardless of challenges like lighting variations. This approach reduces the risk of over-

estimating predictions by avoiding oversimplification of classification scenarios, an aspect

highlighted in previous research [61]. However, some selection bias was unavoidable as we

excluded two participant sets with videos too brief for clinicians to classify from. It’s also

important to note that participants in our dataset were wearing sports clothing, which could

have positively affected pose estimation accuracy. Further exploration is warranted to assess

the extent of this influence. Lastly, while participants in our dataset had Vicon markers

attached to their spine and pelvis, the model used in this study was trained on the standard

COCO dataset, which does not contain any markers. This disparity is therefore unlikely to

have significantly impacted pose estimation accuracy.

Strengths and limitations

This study’s primary strength lies in highly innovative use of the state-of-the-art human pose

estimation model, HigherHRNet, to classify NSLBP according to a clinical classification model,
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achieving an accuracy exceeding 93%, which is comparable to clinical expert agreement.

Although various pose estimation algorithms and models exist, none have proven reliable for

estimating the entire spine’s pose. Therefore, we focused on measuring a single spine flexion

angle, which proved effective. However, this single-angle focus might be a limitation considering

the complexity of NSLBP demonstrating movement and motor control alterations [7, 8, 10].

Another strength is our use of data from a standard video camera alone. Most clinical

research relies on specialised motion capture hardware, not easily accessible in standard clini-

cal settings. Our approach offers an alternative path for potential clinical adoption without

high costs or space requirements. Nonetheless, this method’s accuracy depends on video qual-

ity and can be influenced by lighting and background conditions.

We utilised movement features already considered important by clinicians trained in

NSLBP classification [34]. This will enable easy interpretation by clinicians and immediate

opportunities for existing interventions to be tailored to patient needs and capabilities in

accordance current clinical guidelines [62]. We also confirmed that these clinician-considered

movement features achieve highly accurate automatic NSLBP classification.

A limitation is evaluating a single task (spine flexion) when considering NSLBP heterogene-

ity in movement and motor control alteration across different tasks [8, 10, 22]. However,

recent data indicate that NSLBP individuals exhibit consistent spinal movement patterns

across various tasks, known as a spinal movement signature [7]. While this supports focused

data collection, discriminating between directional impairment patterns would likely require

data from other movements. This study’s feasibility in detecting MI and MCI subsets from a

single movement test suggests future research can enhance the automated classifier’s sensitiv-

ity across other clinical assessment tests, enabling more tailored rehabilitation approaches

when and where this is level of specificity is deemed clinically important (e.g. guide specific

exercise protocols for NSLBP individuals in higher risk occupations or sports involving spine

loading in specific directions).

Clinical implications

Before considering potential clinical implications, it is important to recognise that classifica-

tion of a complex and multifactorial such as NSLBP goes beyond physical examination. Other

key information including patient history, injury details, radiology (if available), pain behav-

iour, coping and lifestyle factors are important to identify the dominant pain drivers and target

management [24]. Although this study BACK-to-MOVE classifies NSLBP on basis of patient

physical function, the primary focus of NSLBP management revolves around restoring physi-

cal function [5]. Hence, automating classification of physical aspects is of clinical importance

not only to target management but assist its delivery and offer means of objective progression

monitoring, thus creating a potential for substantial clinical value to many.

Secondly, NSLBP movement and motor control impairments are described to exhibit direc-

tional biases (e.g., extension, flexion, side-flexion, or multi-directional) [13]. In this study, we

focused on the initial classification step, determining whether NSLBP primarily involves

impaired movement (MI) or impaired motor control (MCI). This distinction enables tailoring

the exercise regimen to restore either movement or motor control impairment, as needed.

Self-management tailored to individual needs and capabilities, as endorsed by clinical

guidelines, is a cornerstone of managing long-term musculoskeletal pain conditions like

NSLBP [6]. Presently, self-management interventions heavily rely on substantial clinical

involvement, in-person assessments, and follow-up consultations, with limited avenues for

ongoing physical assessment, evaluation, or progress tracking. The BACK-to-MOVE classifier

developed in this study offers a significant breakthrough and potential to revolutionise the
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delivery of tailored self-management interventions. This encompasses automating clinical

movement assessment from videos and presents opportunities like remote condition monitor-

ing and providing prompt progress feedback to patients.

Moreover, BACK-to-MOVE holds the potential to address the challenge of offering timely

access to personalised, top-quality rehabilitation for all, aligning with the World Health Orga-

nization’s call for such advancements [63].

Future research

Future research directions should focus on overcoming the limitations linked to the simplified

model of the human spine employed in this study. With advancements in computer vision

models, upcoming investigations will delve into movement patterns spanning the entire spinal

curvature, capitalising on the clinically significant movement features examined in this study.

This holds the potential to yield fresh insights into the development, progression, and subse-

quent treatment options for movement disorders in the spine. Another avenue for future

research involves leveraging our existing data to explore the directional nature of MI and MCI

impairments and their correlation with NSLBP-related disability, thus refining rehabilitation

strategies. Lastly, expanding the dataset to include both spinal kinematics and muscle electro-

myography (EMG) will be helping the model detect non-physiological muscle activation fur-

ther contributing to crafting more precise and clinically meaningful classification models.

Conclusion

This study presents the first automated clinical classification model designed for non-specific

low back pain, capable of discerning between clinically recognised movement and motor con-

trol impairments in the spine from 2D videos, using computer vision and machine learning.

Utilising video data alone, BACK-to-MOVE achieved classification accuracy exceeding 93%,

aligning to expert clinician consensus, showcasing its potential for practical clinical applica-

tion. The automation of NSLBP classification through video-recorded altered movement pat-

terns from routine clinical examinations has the potential to enhance the efficiency of

personalised NSLBP rehabilitation management, addressing current healthcare limitations.

This advancement holds substantial promise for both patients and healthcare services.
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