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Purpose: Changes in voice and speech are characteristic symptoms of 
Huntington’s disease (HD). Objective methods for quantifying speech impairment 
that can be used across languages could facilitate assessment of disease pro-
gression and intervention strategies. The aim of this study was to analyze acoustic 
features to identify language-independent features that could be used to quantify 
speech dysfunction in English-, Spanish-, and Polish-speaking participants with HD. 
Method: Ninety participants with HD and 83 control participants performed sus-
tained vowel, syllable repetition, and reading passage tasks recorded with previ-
ously validated methods using mobile devices. Language-independent features 
that differed between HD and controls were identified. Principal component anal-
ysis (PCA) and unsupervised clustering were applied to the language-independent 
features of the HD data set to identify subgroups within the HD data. 
Results: Forty-six language-independent acoustic features that were significantly 
different between control participants and participants with HD were identified. 
Following dimensionality reduction using PCA, four speech clusters were identified 
in the HD data set. Unified Huntington’s Disease Rating Scale (UHDRS) total motor 
score, total functional capacity, and composite UHDRS were significantly different 
for pairwise comparisons of subgroups. The percentage of HD participants with 
higher dysarthria score and disease stage also increased across clusters. 
Conclusion: The results support the application of acoustic features to objectively 
quantify speech impairment and disease severity in HD in multilanguage studies. 
Supplemental Material: https://doi.org/10.23641/asha.25447171 
Huntington’s disease (HD) is a rare, inherited neuro-
generative disorder characterized by motor, cognitive, and 
behavioral dysfunction. Changes in voice and speech are 
among the characteristic symptoms of HD associated with 
disease progression. Speech can be severely impaired in 
HD and is characterized as hyperkinetic dysarthria, which 
is associated with neurodegeneration within the basal gan-
glia (Duffy, 2005; Hamilton et al., 2012). Dysarthria in 
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HD can manifest as changes in pitch and prosody, and 
irregular speech patterns and speech timing, affected by 
deficits in respiration, phonation, and articulation second-
ary to disordered muscle activity and control (Rusz, Saft, 
et al., 2014; Skodda et al., 2014; Vogel et al., 2012). 

Speech assessment is currently performed by neurol-
ogists as part of the Unified Huntington’s Disease Rating 
Scale (UHDRS) using a dysarthria subcomponent as part 
of the motor assessment section (Huntington Study 
Group, 1996). Speech impairment is also evaluated by 
speech-language pathologists using perceptual measures to 
assess phonation, articulation, prosody, resonance, and
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control of respiratory function and orofacial movements 
(Behrman, 2021; Duffy, 2005; Hamilton et al., 2012), and 
using standardized assessments such as the Sentence Intellig-
ibility Test (SIT; Yorkston et al., 1996). While the UHDRS 
is the gold standard for overall disease monitoring in HD 
and perceptual measures are the gold standard for speech 
impairment and dysarthria evaluation in clinical diagnosis, 
monitoring, and disease management, they are subject to 
interrater variability, and scoring can be granular, often with 
low resolution (Clinch et al., 2018; Duffy, 2005). Objective, 
quantitative measures of speech function that can be per-
formed consistently within the clinic or home and translated 
into clinical metrics or person-centered outcomes offer the 
potential for monitoring disease progression and guiding 
therapeutic interventions. Ideally, such methods should be 
language-independent to enable comparison of patients 
across different clinical sites or languages. This is particularly 
important in rare diseases such as HD where multicenter 
investigations are necessary to reach the patient numbers 
required for clinical trials. Language has been shown to 
affect acoustic features and phoneme representations within 
the brain (Näätänen et al., 1997; Styler, 2017). Although 
multilanguage approaches have been investigated for speech 
in other conditions, such as Parkinson’s disease (Orozco-
Arroyave et al., 2016), at present, language-independent 
methods have not been investigated in HD populations. 
Furthermore, while objective and quantitative evaluation 
methods for speech have been developed for research pur-
poses (Boersma & Weenink, 2022; Boyce et al., 2012), 
their translatability to clinical applications remains a chal-
lenge. There remains a need for objective, efficient, clinically 
relevant methods to quantify speech impairment in HD that 
are suitable for both clinical and remote evaluation that are 
easily deployed and simply administered by nonspecialists 
(Vogel et al., 2012). The use of mobile technologies can sup-
port routine deployment of quantitative methods for record-
ing and analyzing acoustic features in the clinic or at home. 
Used appropriately, mobile devices can provide a reliable 
method of speech recording for analysis of acoustic and tem-
poral features, provided that the device type and position 
are appropriately controlled (Fahed et al., 2022). 

Acoustic and temporal features provide a means 
with which to quantitatively assess speech in HD. A num-
ber of quantitative speech studies in HD to date have been 
conducted in a premanifest HD cohort with the aim of 
developing speech biomarkers or predicting the onset of 
speech symptoms (Kaploun et al., 2011; Rusz, Saft, et al., 
2014; Vogel et al., 2012, 2016). Studies conducted in man-
ifest HD population analyzing both acoustic and temporal 
features have been limited by sample size, application to a 
single language, or only one type of speech task (Kouba 
et al., 2023; Rusz et al., 2013; Rusz, Klempíř, et  al.,  2014;
Skodda et al., 2014). Among patients with manifest HD, 
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an improved understanding of changes in acoustic and tem-
poral features may inform clinical decision making and 
provide the basis for objective markers of disease stage and 
progression. Clinical scoring systems provide easily inter-
preted measures of speech impairment at the cost of low 
resolution and high interrater variability. On the other 
hand, acoustic features yield a high-dimensional feature 
space that can be difficult to interpret clinically. Methods 
such as unsupervised cluster analysis can be used to identify 
subtypes within heterogeneous data and have been used in 
the analysis of sustained vowel recordings from individuals 
with Parkinson’s disease (Tsanas & Arora, 2021) and rater-
scored reading tasks in HD to reveal clusters within the 
data sets (Diehl et al., 2019; Kim et al., 2022). 

Automatic quantification of acoustic features present 
an opportunity for development of speech biomarkers that 
can be used for characterization and monitoring of speech 
impairment in HD to complement clinical scoring systems 
and to aid speech-language pathologists by providing 
detailed information on changes in speech production in 
HD. In addition to providing information on physiologi-
cal and pathogenic processes (FDA-NIH Biomarker 
Working Group, 2016), an important consideration in the 
development of such biomarkers is the robustness, speci-
ficity, generalizability, and clinical interpretability of the 
measures (Ramanarayanan et al., 2022). 

Toward this goal, this study examined acoustic and 
temporal features in English-, Spanish-, and Polish-speaking 
participants with manifest HD, with the aim of identifying-
language-independent biomarkers of speech impairment 
for disease monitoring in HD. Acoustic and temporal fea-
tures from HD participants and age-, biological sex–, and
language-matched control participants were first compared. 
A subset of features that differed between patient and 
control groups, but not across languages, was then iden-
tified. Principal component analysis (PCA) was applied to 
the language-independent features in the HD data to 
reduce the dimensionality of the data set, followed by 
unsupervised clustering to identify patient subgroups. 
Finally, the relationships between the identified clusters 
and clinical measures of speech impairment, disease stage, 
and motor symptoms were examined, revealing differences 
and a progressive increase in the level of clinical impair-
ment across clusters identified from the speech features. 
Materials and Method 

Participants 

Ninety participants with genetically confirmed HD 
disease (50.25 ± 12.72 years; 47 women, all manifest HD: 
17 Stage 2, 68 Stage 3, five disease stages not available)
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and 83 adults with no known history of neurodegenerative 
disease or speech disorder (47.18 ± 11.82 years; 45 
women) gave their written consent to participate in the 
study. Participants were recruited from three clinical sites 
in Wales, Poland, and Spain, (see Table 1). The study was 
approved by the NHS research ethics committee (Wales 
REC 3, United Kingdom, 19/WA/0329, January 13, 2020) 
Ethical Committee for Research With Medicines of the 
Burgos and Soria Health Area, Junta Castilla and León 
(CElm 2296, Burgos, Spain, 1788-19//19/WA/0329, June 5, 
2020), and Bioethics Committee at the Institute of Psychi-
atry and Neurology in Warsaw (Warsaw, Poland, 09-02-
957, September 9, 2020), as part of the consortium project 
Multi-Domain Lifestyle Targets for Improving Prognosis in 
Huntington’s Disease. Participants with HD were recruited 
from participants in the Enroll-HD study, and their clinical 
data were made available by the CHDI Foundation, Inc. 
Enroll-HD is a global clinical research platform designed to 
facilitate clinical research in HD. Core data sets are collected 
annually from all research participants as part of this multicen-
ter longitudinal observational study. Data are monitored for 
quality and accuracy using a risk-based monitoring approach. 

Acoustic data were recorded in the clinic during sus-
tained vowel phonation (SV), syllable repetition (SR), and 
reading passage (RP) tasks in the participant’s native  lan-
guage using a mobile device (Samsung Galaxy Tab A6 in 
Wales and Poland; Huawei Mate 10 lite and Samsung A51 
in Spain). Participants were seated in a comfortable posi-
tion in a quiet room, with the device placed in front of 
them on a desk at a distance of approximately 5 cm from 
the participant’s torso (see Supplemental Material S1). 

Participants completed the following three sequential 
and alternating motor rate tasks: SV ([a:]; Patel et al., 
2018; Rusz et al., 2021), RP in their native language 
(English: Rainbow Passage [Fairbanks, 1960; Patel et al., 
2018], Spanish: Brief passage about doctors [Orozco-
Arroyave et al., 2016], Polish: North Wind and the Sun 
• •

Table 1. Demographic distribution of control participants and participants

Language Group 
Number of 
participants 

Age ± SD 
(years) Disea

English Control 24 (10 females) 46.54 ± 10.54

English HD 29 (9 females) 50.41 ± 12.05 Sta
Stag

not av

Spanish Control 36 (18 females) 48.72 ± 12.05

Spanish HD 37 (20 females) 51.84 ± 12.41 Stag
Stag

not av

Polish Control 23 (17 females) 45.44 ± 12.42

Polish HD 24 (18 females) 47.63 ± 14.03 Stag
not av

Note. UHDRS = Unified Huntington’s Disease Rating Scale; CAG = Cyto
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[Pettorino et al., 2017]), and SR (Rusz et al., 2021; [pa] 
SR1, [ta] SR2, [ka] SR3, [pataka] SR4, and [pati] SR5). 
Participants were asked to sustain the vowel “ah” for as 
long as they could during one breath. They were 
instructed to read the passage at their own pace, as they 
would naturally read out loud. Finally, they were asked to 
repeat each syllable as fast and as clearly as they could 
for 5 s or until task failure. Each task was repeated 2 or 3 
times. Audio data were sampled at 44.1 or 48 kHz, 16-bit 
analogue-to-digital conversion, and saved in an uncom-
pressed .wav format using the Android application Easy 
Voice Recorder. This application was chosen since it pro-
vides a function to access the unprocessed data from the 
microphone, which was the setting selected. One participant 
from the Spanish group was excluded in the analysis as 
they did not perform all syllables in the SR test. 

Demographic and clinical e-information were also 
recorded. Clinical data consisted of the total motor score 
and dysarthria score from the UHDRS, total functional 
capacity, the disease burden score (Penney et al., 1997), and 
the composite UHDRS (cUHDRS; Schobel et al., 2017). A 
voluntary movement score was also calculated from the sum 
of the finger-tapping, tongue protrusion, pronation, and 
supination of the forearm, luria, and bradykinesia UHDRS 
components. Similarly, an involuntary movement score was 
calculated as the sum of the rigidity, chorea, and dystonia 
from the UHDRS. Saccade and gait were not included in 
the voluntary and involuntary movement scores. 
Signal Analysis 

Preprocessing and Voiced/Unvoiced 
Signal Detection 

The audio-recorded signals were filtered with a zero-
phase eighth-order Butterworth bandpass filter between 
10 Hz and 5 kHz. All signals were then down-sampled to 
44.1 kHz, the mean was removed, and 0.5 s of data at the
•

 with Huntington’s disease (HD). 

se stage CAG repeats 
Composite 
UHDRS 

Disease burden 
score 

— — — —  

ge 2: 6; 
e 3: 22; 
ailable: 1 

43.54 ± 3.76 10.08 ± 4.37 376.14 ± 127.05 

— — — —  

e 2: 11; 
e 3: 23; 
ailable: 3 

43 ± 2.63 10.93 ± 5.19 368.6 ± 101.81 

— — — —  

e 3: 23; 
ailable: 1 

45.58 ± 12.8 8.8 ± 3.73 422.31 ± 88.45 

sine, Adenine, Guanine; — = does not apply. 
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start and end of each signal was discarded, which repre-
sented silent periods before and after the speech test started. 
Finally, the signal was padded with zeros for 2 s at the 
start and end, and each signal was normalized with respect 
to its maximum amplitude. A voiced/unvoiced detector 
based on the Teager–Kaiser energy operator (Kaiser, 1990) 
was used to detect the voiced part of each signal using the 
methodology described by Fahed et al. (2022). 

Feature Estimation 
Acoustic and temporal features were estimated as 

previously described (Fahed et al., 2022) and summarized 
in Table 2. For the SV, a 0.5-s moving window with 50% 
overlap was used. Features were estimated for each window 
and averaged across windows. The entire signal between 
each detected onset/offset was used for feature estimation. 
The acoustic features were grouped into frequency-based, 
amplitude-based, and cepstral-based features (see Table 2) 
and estimated for each speech task (SV, RP, SR). 

Temporal features were also estimated for each task 
(see Table 2). For SV, maximum phonation time, first 
occurrence of a voice break, degree of vocal arrests, and 
number of voice breaks were estimated. For RP and SR, 
total speech time, pause ratio, net speech rate, and interval 
duration from one vocalization to another (intDur) were 
estimated. The maximum syllable repetition capacity 
(maxSylRep) was also estimated for the SR test. 

All features were estimated using custom Python scripts, 
with the exception of shimmer and its variants for which the 
amplitude series, composed of the glottal cycles, was extracted 
using the DYPSA-VOICEBOX library in MATLAB (Brookes, 
1997). The control data and Python code for estimating 
acoustic features can be made available upon request. 

Statistical Analysis 
Linear mixed models (Winter, 2013) were imple-

mented in R (Bates et al., 2014) to investigate differences in 
the features across each cohort (controls and participants 
with HD) for each speech task separately. For all features, 
age, biological sex, and language were included as fixed 
effects, and the intercept for participants was included as a 
random effect. For the SR task, all five syllables were 
included in the same model, and syllable was added a random 
slope. p values were obtained by comparing the model with a 
null model without the effect of condition using analysis of 
variance (ANOVA). The Benjamini–Hochberg false discovery 
rate (FDR) was used as a post hoc test to account for multi-
ple comparisons within each speech task (SV, RP, and SR). 
Values less of .05 for the corrected p value were considered 
significant. The effect of language on features in the partici-
pants with HD was examined using linear mixed models to 
identify features on which language had a significant effect. 
Multiple comparisons were corrected using the FDR. 
Downloaded from: https://pubs.asha.org Cardiff University on 05/13/2024
Feature Transformation and Clustering 
Following statistical analysis to examine the differ-

ences between participants with HD and control partici-
pants, the acoustic and temporal features, which were sig-
nificantly different between HD and control groups but 
which did not differ across languages, were identified. 
PCA (Hotelling, 1933) was then applied to these features 
to reduce the dimensions of the feature set for further 
analysis in the HD population. To account for effects of 
biological sex, all features were standardized separately 
for the “female” and “male” categories. The principal 
components (PCs) that accounted for over 70% of the var-
iance of the selected features were selected. These PCs were 
then used to identify groups or clusters within the partici-
pants with HD using a k-means clustering algorithm. 

The Python scikit-learn library (Pedregosa et al., 
2011) was chosen with its standard configuration for k-
means, which defines the cluster centroids based on empir-
ical probability distribution. Four clusters were selected 
using both elbow method (Satopää et al., 2011) and by 
plotting the Silhouette scores for two to six clusters. 
The clustering process was evaluated using Silhouette 
(Rousseeuw, 1987), Caliński (Caliński & Harabasz, 1974), 
and Davies (Davies & Bouldin, 1979) scores, (see Figure 1). 

Analysis of Clinical Data and Motor Impairment 
Correlation analysis was performed between each 

feature and PC, with significant strong correlations (ρ > 
0.65, p < .05) considered to indicate a significant contribu-
tion of a given feature toward a given PC. If the threshold 
(ρ > 0.65,  p < .05) was not reached for any feature, the fea-
ture with the highest significant correlation coefficient was 
considered to have the greatest contribution to that PC. 

The relationships between each identified cluster and 
clinical measures—UHDRS total motor score, total func-
tional capacity, dysarthria, voluntary and involuntary 
movement scores, disease burden score, and cUHDRS— 

were then examined and compared between clusters using 
one-way ANOVA, followed by the Fisher’s least signifi-
cance differences for post hoc comparisons. The distribu-
tion of dysarthria scores, disease stage, and language 
across clusters was also examined. Finally, the distribution 
of language within each disease stage was examined to 
check for potential imbalances across groups. 
Results 

Differences in Acoustic and Temporal 
Features Between Participants With HD 
and Control Participants 

Linear mixed models revealed significant differences 
in all features between control and HD groups during the 
SV task, with the exception of fundamental frequency,
Fahed et al.: Acoustic Biomarkers in Huntington’s Disease 1393
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(table continues)

•
•

•

Table 2. Acoustic and temporal features, their description, mathematical notation, and physiological meaning. 

Group Symbols Features Description Equationa 
Physiological 
equivalenceb 

Frequency-based 
acoustic features 

F0 (Hz) Fundamental frequency Peak of the autocorrelation function F0 Frequency of vocal fold 
vibration 

SD F0 (Hz) Standard deviation of F0 Variation of the fundamental 
frequency σ = −

--------------√ -
2 Σ xi(  μ)  

N 
Irregular vibration of vocal 

cords 

HNR (dB) Harmonics-to-noise ratio Ratio between the tonal 
components and noise in the 
voice 

HNR = 10× log h 
2 1−h ,
（ ）

h = height autocorrelation function 
Quantity of noise due to 

incomplete vocal fold 
closure 

Jitter (%) Jitter Variability of the glottal periods 
relative to two neighboring 
sample points 

N 

Jitter = Σi=2 Ti−Ti−1 ∕ N−1| |  ( )  
ΣN 
i=1Ti∕N 

Perturbation of the F0, 
variation of the voice range 

RAP (%) Relative average 
perturbation of jitter 

Average absolute difference 
between a sample and its 
difference between two 
neighboring samples, normalized 
to the mean glottal period 

RAP = ΣN−1 
i=2 Ti− Ti−1+Ti+Ti+1( )∕3| |∕ N−2( )  

ΣN 
i=1Ti∕N 

Analogous to jitter, can be a 
measure of voice quality 
and stability of the vocal 
fold vibrations 

PPQ5 (%) 5-point period 
perturbation quotient 

Analogous to RAP, but considering 
four closest neighbors 

N 

PPQ5 = Σ −2 
i=3 Ti− Ti +T−2+Ti−1 i 

N 
+Ti+1+Ti+2( ∕| 5 ∕ N−4( ))  |  

Σi 1Ti∕N= 

DDP (%) Difference of differences 
of period 

Average absolute second-order 
difference of a sample 
normalized to the mean glottal 
period 

N 

DDP = Σ −1 
i T=2 Ti+1−Ti i 

N
−T( ) i−− 1| ∕ N−( ) 2( )  

Σi 1Ti∕N= 

|  

Amplitude-based 
acoustic features 

Shimmer (dB) Shimmer Variability of amplitude relative to 
two neighboring sample points 

Shimmer = ΣN 
i=2 Ai−Ai−1| |∕ N−1( )  

ΣN 
i=1Ai∕N 

Perturbation of voice amplitude, 
variation of expiratory flow 

APQ3 (%) 3-point amplitude 
perturbation quotient 

Average absolute difference 
between a sample and its 
difference between two 
neighboring samples, normalized 
to the mean amplitude 

APQ3 = ΣN−1 
i=2 Ai− Ai−1+Ai+Ai+1( )∕3| |∕ N−2( )  

ΣN 
i=1Ai∕N 

Analogous to shimmer, can be 
a measure of voice quality 
and stability of the 
expiratory flow 

APQ5 (%) 5-point amplitude 
perturbation quotient 

Analogous to APQ3, but considering 
four closest neighbors 

AP ΣN 2 

Q5
−= i=3 Ai− Ai A−2+Ai−1 i 

N 
+ +Ai+1+Ai+2( ∕5| ∕ N−4( ))  |  

Σi=1Ai∕N 

APQ11 (%) 11-point amplitude 
perturbation quotient 

Analogous to APQ3, but considering 
five closest neighbors 

APQ11 = ΣN 
i=12 Σ

i 
j=i−pAj−1 

NΣ
N 
i=1Ai| |∕ N−10( )  

ΣN 
i=1Ai∕N 

DDA (%) Difference of differences 
of amplitude 

Average absolute second order 
difference of a sample 
normalized to the mean 
amplitude 

DDA = ΣN−1 
i=2 Ai+1−Ai( )− Ai−A( )| |∕ N−2( )  

ΣN 
i=1Ai∕N 

GNE (−) Glottal-to-noise 
excitation ratio 

Correlation of different frequency 
bands, that can reveal 
uncorrelated excitation 

GNE Presence of turbulent noise in 
the vibrations of the vocal 
tract
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Table 2. (Continued).

Group Symbols Features Description Equationa
Physiological
equivalenceb

Cepstral-based 
acoustic features 

SD MFCC (−) Standard deviation of the 
Mel frequency cepstral 
coefficients 

Variation of the individual MFCCs, 
which represent partition in the 
frequency domain 

σMFCC = 
------------------------------
Σ MFCCi−μMFCC( )2 

NMFCC 

√
Reflect instability of vocal tract 

elements responsible for 
subtle motion of articulators 

SD Delta (−) Standard deviation of the 
MFCC delta 

Variation of the derivative of MFCCs 
σΔ = 

------------------
Σ Δi−μΔ( )2 

NΔ 

√
Analogous to SD MFCC, can 

reflect instability of vocal 
tractSD Delta 2 (−) Standard deviation of the 

second order MFCC 
delta 

Variation of second order derivative 
of MFCCs σΔΔ = 

---------------------
Σ ΔΔi−μΔΔ( )2 

NΔΔ 

√ 

Temporal features MPT (s) Maximum phonation time Duration of the longest sustained 
vowel if voice breaks were 
present 

MPT = onsetn − offsetn 
n→pair with largest phonation 

Lung capacity and airflow 
insufficiency 

FOVB (s) First occurrence of voice 
break 

Time stamp of the first voice break 
during vowel phonation 

FOVB = offset0 

DVA (%) Degree of vocal arrest Total pause time over total 
phonation time 

DVA = ΣN 
i=0 length pausei( )  

ΣN 
i=0 length phonationi( )  

Aperiodicity 

NVB (−) Number of voice break Number of voice breaks followed by 
restart 

NVB = onsets 

TST (s) Total speech time Time from the onset the offset of 
the last syllable 

TST = onset0 − offsetn Slowness of speech 

PR (%) Pause rate Total pause time over total speech 
time 

PR = Σ
N 
i=0 length pausei( )  

ΣN 
i=0 length speechi( )  

Pace stability 

NSR (s) Net speech rate Total speech time minus total pause 
time 

NSR = ΣN 
i=0 length speechi( ) −

ΣN 
i=0 length pausei( )  

intDur (s) Interval duration Time (s) from the onset of one 
vocalization to the following 

N 

intDur = Σ −1 
i=0 onseti+1−onseti 

N 

maxSylRep 
(Hz) 

Maximum syllable 
repetitions 

Syllable repetition rate estimated 
over 5 s 

maxSylRep = onsets 
onset0−offsetn 

Rhythm of repeated 
vocalization 

a Information from Skodda et al., 2010, 2014. b Information from Boersma & Weenink, 2022; Rusz, Saft, et al., 2014; Skodda et al., 2010, 2014; Tsanas et al., 2011; Boersma, 1993.

Fahed
et

al.:
A
coustic

B
iom

arkers
in

H
untington’s

D
isease

1395

Downloaded from: https://pubs.asha.org Cardiff University on 05/13/2024, Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



Figure 1. Flowchart illustrating the data analysis process. HD = Huntington’s disease. 

 

glottal-to-noise excitation ratio (GNE), and Mel frequency 
cepstral coefficient (MFCC) delta (see Figures 2 and 3). 
During the RP task, significant differences between groups 
were also observed for the harmonics-to-noise ratio (HNR), 
5-point amplitude perturbation quotient (APQ5), 11-point 
amplitude perturbation quotient (APQ11), standard devia-
tion of the MFCC (SD MFCC), standard deviation of the 
MFCC delta (SD Delta), standard deviation of the second 
order MFCC delta (SD Delta 2; see Figure 2), and all tem-
poral feature (see Figure 3). Similarly, during SR, signifi-
cant differences were observed for the HNR, jitter, relative 
average perturbation of jitter (RAP), APQ5, APQ11, GNE, 
SD MFCC, SD Delta, SD Delta 2 (see Figure 2), and pause 
ratio, net speech rate, intDur, and maxSylRep (see Figure 3).

In addition to the effect of condition, a significant 
effect of language in the control population was observed 
on GNE and cepstral features in the SV task, all features 
from the RP task except SD fundamental frequency (F0), 
and a range of features during SR task. All features apart 
from F0, GNE, and cepstral features were selected from 
the SV task; no feature was selected from the RP task. 
From SR1 (/pa/) task, jitter, RAP, 5-point period pertur-
bation quotient (PPQ5), difference of differences of period 
(DDP), SD MFCC, SD Delta 2, pause ratio, net speech 
rate, intDur, and maxSylRep were selected. From SR2 
(/ta/), SD Delta 2, net speech rate, intDur, and maxSyl-
Rep were selected. From SR3 (/ka/), jitter, RAP, PPQ5, 
DDP, SD MFCC, SD Delta, SD Delta 2, net speech rate, 
intDur, and maxSylRep were selected. From SR4 
• •1396 American Journal of Speech-Language Pathology Vol. 33 13
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(/pataka/), pause ratio, net speech rate, and intDur were 
selected. No feature was selected from SR5. 

PCA Feature Transformation and Clustering 
From the 46 identified language-independent features, 

the first five PCs, which accounted for more than 70% of 
the variance in the HD data, were selected. Each PC was 
correlated with the acoustic features estimated and used to 
build the feature space. The features exhibiting the highest 
correlation with each PC are  presented in Table  3.  The
descriptive statistics for the PCs within each cluster of partic-
ipants (see Table 4) reveal that Cluster I has  the lowest over-
all mean for PC1, whereas Cluster II has the lowest mean for 
PC3 and PC4 and Cluster III has the lowest mean for PC2 
and Cluster IV for PC5. Cluster II has the highest mean for 
PC5, whereas Cluster III has the highest mean for PC3 and 
Cluster IV has the highest mean for PC1, PC2, and PC4. 
Relationship Between Speech Clusters and 
Clinical Scores 

Clinical measures of motor impairment, disease burden, 
and cUHDRS increased from Cluster I to Cluster IV (see 
Figure 4). ANOVA, following post hoc analysis, confirmed 
significant differences between Clusters I and II (cUHDRS: 
0.002), Clusters I and III (UHDRS total motor score: p = 
.007; total functional capacity: p = .005; voluntary movement 
score: p = .007; involuntary movement score: p = .17; disease  
burden score: p = .005; cUHDRS: p < .001), Clusters I and 
IV (UHDRS total motor score: p = .007; total functional
•90–1405 May 2024
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Figure 2. Acoustic features estimated for controls and participants with Huntington’s disease (HD) during sustained vowel (a–i), syllable rep-
etition (j–r), and reading passage (s–aa). *p < .05 corrected for multiple comparisons. SD F0 = standard deviation of fundamental frequency; 
HNR = harmonics-to-noise ratio; GNE = glottal-to-noise excitation ratio; SD MFCC = standard deviation of the Mel frequency cepstral coeffi-
cients; SD Delta = standard deviation of the MFCC delta; SD Delta 2 = standard deviation of the second-order MFCC delta.
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Figure 3. Temporal features estimated for controls and participants with Huntington’s disease (HD) during sustained vowel (a–d), syllable repe-
tition (e–i), and syllable repetition (j–m) tasks. *p < .05 corrected for multiple comparisons. MPT = maximum phonation time; FOVB = first 
occurrence of voice break; DVA = degree of vocal arrest; NVB = number of voice break; TST = total speech time; PR = pause rate; NSR = net 
speech rate; maxSylRep = maximum syllable repetition capacity; intDur = interval duration. 
capacity: p = .012; voluntary movement score: p = .017; invol-
untary movement score: p = .024; cUHDRS: p = .002), and 
Clusters II and III (disease burden score: p = .032).

A high percentage of participants with dysarthria 
scores of 0, reflecting little or no impairment, fell into 
Clusters I and II (see Figure 5). Between 20% and 30% of 
patients within Clusters I and II had dysarthria scores of 
1, and less than 5% of those in Cluster I had a score of 2, 
the highest dysarthria score within this cohort. Clusters III 
and IV exhibited a more mixed distribution, with approxi-
mately 40% of patients with scores of 0 or 1 and less than 
20% with dysarthria scores of 2. Similar to the dysarthria 
• •1398 American Journal of Speech-Language Pathology Vol. 33 13
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scores, when evaluating disease stage, there is a clear trend 
between clusters (see Figure 5). Clusters I, II, and III con-
tained patients in both disease Stages 2 and 3, whereas 
Cluster IV contained patients in disease Stage 3 only. 
Discussion 

Quantitative analysis of speech impairment using 
mobile technology has the potential to enable fully auto-
mated assessment of speech in the clinic and at home to 
provide objective biomarkers of disease monitoring and 
for assessing therapeutic interventions in HD. As many of
•90–1405 May 2024
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Table 3. Correlation between acoustic voice features and principal 
components extracted from principal component analysis (p < 
.001 for all). 

Principal 
components Speech test Features ρ 

PC1 SV HNR −0.71 
Jitter 0.69 

RAP 0.72 

PPQ5 0.70 

DDP 0.72 

Shimmer 0.74 

APQ3 0.70 

APQ5 0.72 

APQ11 0.75 

DDA 0.70 

SR1 intDur 0.77 

maxSylRep −0.78 
SR2 intDur 0.72 

maxSylRep −0.73 
SR3 intDur 0.74 

maxSylRep −0.74 
PC2 SR1 Jitter 0.72 

PPQ5 0.71 

SR2 Jitter 0.73 

RAP 0.75 

PPQ5 0.71 

DDP 0.74 

PC3 SR1 NSR −0.85 
SR2 NSR −0.82 
SR3 NSR −0.83 

PC4 SR1 SD MFCC −0.55 
PC5 SR3 DDP 0.57 

Note. PC = principal component; SV = sustained vowel phonation; 
HNR = harmonics-to-noise ratio; RAP = relative average perturba-
tion of jitter; PPQ5 = 5-point period perturbation quotient; DDP = 
difference of differences of period; APQ3 = 3-point amplitude per-
turbation quotient; APQ5 = 5-point amplitude perturbation quo-
tient; APQ11 = 11-point amplitude perturbation quotient; DDA = 
difference of differences of amplitude; SR = syllable repetition; 
intDur = interval duration; maxSylRep = maximum syllable repeti-
tion capacity; NSR = net speech rate; SD MFCC = standard devia-
tion of the Mel frequency cepstral coefficients. 

 

 

these features vary across languages, to facilitate large-
scale clinical trials, identification of speech features that 
are altered in HD and which can be assessed across lan-
guages is required. Here, we estimated acoustic and tem-
poral features from speech recordings made with mobile 
devices from control participants and participants with 
manifest HD among native English, Spanish, and Polish 
speakers. Language independent features that differed 
between the control and HD groups were identified and 
examined using cluster analysis, which revealed subgroups 
with varying levels of speech impairment within the HD 
data set. The study represents the first multilingual study 
of acoustic speech features for disease monitoring in HD. 
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Significant differences were observed between HD 
and control participants across a range of acoustic and 
temporal features (see Figures 2 and 3). For the SV test, 
maximum phonation time, HNR, and SD MFCC were 
significantly lower in HD participants when compared 
with controls. Number of voice breaks, SD F0, jitter, and 
shimmer were found to be higher in HD. Mobile assessment 
findings are consistent with previous laboratory findings that 
reported lower maximum phonation time (Rusz et al., 2013; 
Skodda et al., 2014); lower HNR (Rusz et al., 2013); and 
higher number of voice breaks, SD F0, jitter, and shimmer 
(Rusz et al., 2013) in participants with HD during SV along 
with higher SD MFCC (Rusz et al., 2013). 

During the RP task, total speech time, intDur, and 
SD F0 were all higher in the HD group. Pause ratio was 
lower, and no difference in F0 across groups was 
observed. This is also in agreement with previous findings 
that have observed higher total speech time (Skodda et al., 
2014) and intDur during RP task for patients with HD 
(Hartelius et al., 2003; Skodda et al., 2014). It is in partial 
agreement with a study during a reading task and mono-
logue that reported higher F0 in HD in males during the 
monologue and decreased F0 in females, though SD F0 
was not significantly different in either task (Rusz, Klempíř, 
et al., 2014). The differences between these results and 
those reported here may be due to differences in tasks and 
the larger cohort in the present study, which may reveal dif-
ferences not detected in a smaller population. In Hartelius 
et al. (2003), it was reported that F0 was  increased  in HD
and SD F0 was significantly smaller, in contrast with our 
findings. SD F0 indicates the variation of the pitch during 
speech and can indicate irregular vocal fold vibrations, 
which can be affected in HD due to dysarthria. 

In the SR task, significant differences were similarly 
observed between the patient and control groups in the 
majority of acoustic and temporal features examined. The 
observation of lower rate of SR (maxSylRep) for partici-
pants with HD contrasts with a previous study in 21 
patients, which reported that maxSylRep did not differ 
between HD and control groups (Skodda et al., 2014), 
though was correlated with motor performance. 

Analysis of the effect of language revealed differ-
ences for several of the features examined. An effect of 
language was observed on all of the HD-sensitive features 
from the RP task; the majority of the features in the SR 
tasks; and F0, GNE, and SD Delta in the SV task. An 
effect of language on acoustic features is well established 
in control groups and patients with Parkinson’s disease
(Kováč et al., 2022; Orozco-Arroyave et al., 2016). When 
comparing the phonology of English, Spanish, and Polish, 
all three languages are nontonal with a trochaic rhythm 
type; however, some Spanish dialects do not exhibit
Fahed et al.: Acoustic Biomarkers in Huntington’s Disease 1399
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Table 4. Mean and standard deviation (M ± SD) values of principal components in each cluster. 

Clusters PC1 PC2 PC3 PC4 PC5 

I −3.44 ± 1.85 1.91 ± 1.98 −0.33 ± 1.94 −0.56 ± 1.71 0.15 ± 1.89 

II 3.02 ± 2.35 −0.88 ± 1.65 −1.60 ± 2.52 −0.75 ± 1.96 0.88 ± 1.20 

III −0.44 ± 1.62 −2.11 ± 1.26 1.13 ± 2.38 0.65 ± 1.61 −0.44 ± 0.90 
IV 4.86 ± 3.90 8.38 ± 4.00 0.67 ± 1.43 1.22 ± 3.17 −1.31 ± 2.53 

Note. PC = principal component. 
rhythmic stress (Goedemans & van der Hulst, 2013; 
Maddieson, 2013b). English and Polish have a complex syl-
lable structure, whereas Spanish has a moderately complex 
one (Maddieson, 2013a). The phonological differences in 
rhythm and syllable structure may partially account for the 
differences observed in the acoustic features of SR and RP 
• •

Figure 4. (a) Unified Huntington’s Disease Rating Scale (UHDRS) total m
movement score (VMS), (d) involuntary movement score (IMS), (e) disease
of the identified HD clusters. Cluster I corresponds to the lowest levels o
highest. *p < .05 corrected for multiple comparisons. HD = Huntington’s d
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across languages, while the fact that all three languages are 
nontonal may contribute to the similarity across languages 
observed for the SV task. Following the removal of those 
features that were found to be sensitive to language, 49 of 
the initial features were retained for feature reduction and 
clustering in the HD group. 
•

otor score (TMS), (b) total functional capacity (TFC), (c) voluntary 
 burden score (DBS), and (f) composite UHDRS (cUHDRS) for each 
f motor and speech impairment, and Cluster IV corresponds to the 
isease.

90–1405 May 2024

, Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



Figure 5. Percentage distribution of (a) Unified Huntington’s Disease Rating Scale (UHDRS) dysarthria scores, (b) disease stage, (c) native 
language within each cluster, and (d) disease stage by language. HD = Huntington’s disease. 
In addition to capturing specific differences between 
patient and control groups, while accounting for demo-
graphic differences such as age, biological sex, and lan-
guage, speech biomarkers for neurodegenerative diseases 
should be generalizable and clinically interpretable. Toward 
this, the correlation between PCs and acoustic and tempo-
ral speech features were investigated. PC1 was associated 
with harmonicity and noise introduced by incomplete vocal 
fold closure (HNR), greater variability in the glottal 
periods (jitter), and expiratory flows (shimmer) and instabil-
ity of pace (intDur: SR1, SR2, SR3) and rhythm in vocali-
zations (maxSylRep: SR1, SR2, and SR3; see Table 2). 
PC2 and PC5 were also related to greater variability in the 
glottal periods (jitter: SR1, SR2; RAP: SR2; DDP:SR2, 
SR3), and PC3 was inversely related to speech timing (net 
speech rate: SR1, SR2, SR3, SR4). PC4 was related with 
instability of the vocal tract (SD MFCC: SR1). 

Thus, the participants with HD who compose Clus-
ter I are marked with some variability and instability of 
the vocal tract (lowest PC1 and mid-to-low range of PC5). 
Cluster II had similar characteristics but with a greater 
Downloaded from: https://pubs.asha.org Cardiff University on 05/13/2024
variability in the vocal tract when compared to Cluster I 
(higher PC1), lower impairment of speech timing (lower 
PC3), and the least instability of the vocal tract (lowest 
PC4). Interestingly, Cluster III comprised the population 
with lower values for PC2, which corresponds to less 
instability of the vocal tract, but with moderate pace 
instability during SR and a higher level of voice aperiodic-
ity, marked by higher number of voice breaks during SV. 
Finally, Cluster IV has the highest overall indications of 
loss of harmonicity, greater variability, and instability of 
the vocal tract as well as greater aperiodicity in the voice. 

In addition to a progressive increase in speech 
impairment from Cluster I to Cluster IV, clinical scores 
UHDRS total motor score, voluntary movement score, 
involuntary movement score, and disease burden score also 
increased progressively from Cluster I to Cluster IV. Con-
sistent with this, total functional capacity and cUHDRS 
exhibited the reverse trend (see Figure 4). 

Approximately, 80% of individuals in Cluster I had 
a UHDRS dysarthria score of 0. This percentage 
decreased moving progressively through the clusters as the
Fahed et al.: Acoustic Biomarkers in Huntington’s Disease 1401
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proportion of participants with a score of 1 increased. 
Participants with a score of 2 were present in Clusters I 
and III, with a higher percentage on Cluster III, though 
they represent a smaller percentage of the overall cohort 
(see Figure 5a). When observing disease stage, participants 
in Stage 2 were more prevalent in Cluster I and decrease 
through the clusters as the proportion of participants in 
Stage 3 increased (see Figure 5b). Four distinct clusters 
were also identified in a previous study of speech features 
in HD, which used rating scores from expert listeners to 
characterize the speech patterns (Diehl et al., 2019), in con-
trast to the automated analysis applied here. The clusters 
identified in the present study exhibited similar features to 
those in the study of Diehl et al. (2019), characterized by var-
ied levels of severity, speech rate, and dysarthria, though a 
group with abnormally fast speech rate was not observed in 
the present study, which is in line with previous findings in 
HD (Hartelius et al., 2003; Rusz, Klempíř, et al., 2014;
Skodda et al., 2014; Vogel et al., 2012). Together, the results 
illustrate the ability of the proposed protocol and analysis 
methods to objectively identify and quantify pathological 
changes in speech in HD across multiple languages. Four 
distinct clusters were identified based on the measured 
speech features, corresponding to different levels of speech 
impairment and associated with different levels of motor 
impairment, disease stage, and clinical dysarthria score. 

A number of study limitations should be considered 
when interpreting the results. Speech was recorded using a 
different device for Spanish speakers than for the English 
and Polish speakers. Due to device being highly correlated 
with clinical sites and languages, it could not be included as 
a covariate in the statistical model, thus not accounting for 
devices specifically. The position of device on the desk in front 
of participants could also add a source of error to measure-
ments, in particular to amplitude-based features, including 
shimmer, as head-mounted microphones are recommended 
for use with participants with involuntary movements (Patel 
et al., 2018; Svec & Granqvist, 2010). The recording protocol 
was chosen to enable the use of mobile devices, typically pres-
ent within the clinic, and device position was kept consistent 
across sites to minimize the errors. The inclusion of only the 
SV and SR tasks in the clustering analysis, with the RP 
deemed unsuitable for multilanguage approaches, meant that 
important features of longer stretches of speech and unstruc-
tured speech were not captured. Longer stretches of speech, 
including RP and monologue, can provide a better evaluation 
of functional capacity, whereas the presented protocol focused 
on motor function. Future work should include acoustic fea-
tures that are more robust to multilanguage approaches. The 
identification of new features that can capture disease-related 
variations in HD but are robust to differences in languages 
for longer stretches of speech are needed to reliably include 
RP and monologue in the analysis. While the features 
• •1402 American Journal of Speech-Language Pathology Vol. 33 13
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identified have been shown to be insensitive to language dur-
ing SV and SR tasks for English, Spanish, and Polish 
speakers, representing Germanic, Romance, and Slavic lan-
guages, further extension of the approach is required to estab-
lish whether these features are similarly robust across other 
Indo-European languages and other language families. 

Further development of this work can support the 
application of digital biomarkers as measures of clinical out-
comes for patients. Such biomarkers could help characterize 
dysarthria in HD and enable neurologists and speech and 
language therapists to conduct automated speech assessments 
in clinic and longitudinal monitoring of speech in the home. 
When embedded in a mobile device application, the auto-
mated speech assessments could be readily deployed and 
reproduced with a mobile device to complement standard 
clinical assessments. Such methods may allow automated 
quantification of within-patient changes over time or com-
parison across patients, though the reliability and robustness 
of the features should be first established. To facilitate the 
reproducibility of the methods presented, the authors recom-
mend using mobile devices with Android 12 or later, a sam-
pling rate of at least 44.1 kHz, and storage of the recorded 
speech data in an uncompressed .wav format. 
Conclusions 

This study demonstrates the potential of acoustic fea-
tures to automatically characterize speech in HD across differ-
ent languages, when recorded using mobile devices. Differ-
ences were observed between participants with HD and con-
trol participants independent of language for a range of acous-
tic and temporal features during SV and SR tasks. While dif-
ferences were observed between groups for features from pas-
sage reading tasks, these were also influenced by language. 
Identification of the language-independent features enabled 
clustering of PCs of the features from the patients with HD 
into subgroups with different levels of speech and motor 
impairment. The methods presented can be used with devices 
already present in the clinic to record speech, automatically 
estimate acoustic speech features, and categorize patient speech 
into one of the subgroups defined. The use of acoustic fea-
tures that have been shown to differ between patients and 
control participants enables subtle changes in articulation or 
voice instability to be captured and quantified using auto-
mated methods. Each subgroup identified is associated with 
particular acoustic characteristics and can provide informa-
tion about the type of speech impairment for that partici-
pant. As each subgroup can be related to severity of disease 
and impairment, the approach could potentially be used to 
track disease progression or the response to treatment. The 
proposed method for automatic quantification of speech 
using mobile devices may also enable remote monitoring of
•90–1405 May 2024
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speech impairment, allowing the speech-language pathologist 
and clinician to track changes between clinical visits. Used in 
combination with monitoring of motor symptoms, the 
approach may provide a powerful biomarker for clinical tri-
als aiming to treat and improve prognosis of HD. 
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