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Summary

Rainfall events play an essential role in ecosystems worldwide. While water in good qual-

ity and quantity is vital for all life on earth, rainfall can also be the cause of adverse

events such as floods, debris movements and droughts. The design of hydrological struc-

tures (dams/drainage), urban planning or climate change adaptation needs to take into

account such risks. However, as rainfall data are usually only available and measured

for a few places of interest, one often relies on simulations of rainfall events that can

accurately reproduce realistic rainfall patterns. In order to also capture risks imposed by

flash floods (short duration-high intensity events), it is crucial to have simulators with a

high-frequency output (e.g. sub-hourly).

It is the purpose of this thesis to build a novel stochastic parsimonious high-frequency

rainfall simulator from high-frequency data that can accurately represent key charac-

teristics of rainfall events in the data: duration (D), intensity (I), maximum intensity

(M), and volatility (V), collectively referred to as DIMV, as well as temporal patterns of

inter-event times.

Therefore, this thesis works with a unique dataset of high-resolution (6-minute) rain-

fall gauge data from Sunbury, Australia, spanning 36 years from the Australian Bureau of

Meteorology. We use a 1-hour minimum inter-event time to extract rainfall events from

these data.

First, we analyse the univariate marginal distributions of the above characteristics.

Our studies addressed the skewed nature of the DIMV data using log transformations,

leading to effective modelling. The skew t was identified as the best fit for duration and

volatility, while the generalised extreme value distribution was the best fit for intensity

and maximum intensity. We also developed a novel univariate hybrid model, F-Exp-

GPD, designed to model rainfall events. By generalising existing hybrid distributions,

the F-Exp-GPD showcased versatility, offering a harmonious representation of both bulk

and tail behaviour. The model was used to fit duration and intensity to affirm the efficacy

of this model, with the GEV-Exp-GPD variant standing out. This knowledge facilitated
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sophisticated compound distribution and copula modelling.

To capture the interdependence among the variables, we utilised the vine copula

methodology. Among the various vine copula structures, the D-vine copula proved to be

the most formidable in representing the dependencies of the DIMV characteristics. This

was validated by successful simulations that maintained intricate sample dependencies,

drawing a striking resemblance between the copula simulated and observed data.

Lastly, from the fitted models, we developed a flexible rainfall event simulator that

also incorporates accurate rainfall temporal intensity patterns using IET data informa-

tion. It effectively simulates rainfall across long time intervals, reproducing statistical

properties of DIMV patterns from the data. This model iterates through specified times,

integrates real-world statistical properties by utilising the rain event simulator, and gen-

erates detailed rain events, considering consistent and irregular intervals between them.

The developed model for simulating an array of rainfall events promises a high degree

of authenticity, making it a cornerstone for future hydrological studies, urban planning,

and climate change modelling.
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Chapter 1

Introduction

1.1 Introduction

Rainfall is crucial for global ecosystems, providing essential hydration for all life forms.

Plants, rivers, and animals heavily rely on it. However, its impacts can be dual-edged.

Excessive rain can cause floods and landslides, while insufficient rainfall can lead to

droughts, affecting both natural habitats and human communities [18]. The design of

hydrological structures (dams/drainage), urban planning, or climate change adaptation

must consider such risks. However, to do this, high-resolution rainfall event data is

needed. Unfortunately, these data are not available in most cases. Rainfall data are

usually only available and measured for a few places of interest. Given the limited avail-

ability of rainfall data for specific locations, many turn to rainfall simulation models.

These models can accurately replicate realistic rainfall patterns, enabling a more precise

quantification of rainfall-associated risks [19, 20].

The advent of stochastic rainfall models such as the Neyman-Scott Rectangular Pulse

(NSRP) and Bartlett-Lewis Rectangular Pulse (BLRP) model [21], which blend deter-

ministic processes with elements of randomness, heralded a paradigm shift in rainfall

simulations [22]. Unlike their deterministic counterparts, stochastic models can accom-

modate a broader range of rainfall events and effectively handle uncertainties tied to the

complex mechanisms underlying rainfall generation. Nonetheless, challenges persist in

selecting and calibrating suitable stochastic models due to the pronounced spatial and

temporal variability inherent in rainfall events [23].

A novel rainfall simulation approach incorporates copulas, which provide a flexible method-

ology for modelling the dependencies between rainfall characteristics such as intensity,
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Figure 1.1: Thesis Structure and interdependencies of chapters

duration, and inter-arrival time. Copulas allow for the formulation of joint probability

distributions, thereby facilitating the creation of more realistic synthetic rainfall data,

which is crucial for planning and managing water resources [24].

The overarching goal of this thesis aims to build parsimonious simulation models for

rainfall events that can be used to fit high-frequency rainfall (gauge) data and develop a

novel stochastic rainfall simulator that can simulate rainfall events reproducing realistic

rainfall patterns that reproduce key statistical features of the rainfall events from the data

relevant for being informed about risks and therefore relevant for planning purposes.

In order to do so, this thesis pursues the following research agenda:

1. Marginal modelling of duration, intensity, max intensity and volatility.

2. Extreme value analysis of duration and intensity

3. Compound Marginals with Explicit Tail Decay(Extremes)

4. Dependence modelling of duration, intensity, maximum intensity and volatility

5. Simulation of Irregular Pulse Model (intensity-duration-maximum-volatility

Accordingly, the next section elaborates on the structure and contributions of this thesis.

Figure 1.1 provides an overview of the interdependencies among chapters.
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1.2 Novel contributions of the thesis

This section provides a summary of the contributions made in each chapter.

In Chapter 3, we introduce a methodology for defining and extracting rainfall events from

a previously untapped 6-minute high-resolution dataset covering 36 years from Sunbury,

Australia. We utilized 1-hour minimum interevent time (IET) to differentiate between

distinct rainfall events. We discovered and addressed the skewed nature of the DIMV

data through log transformation and successfully matched rainfall characteristics to their

respective best-fit distributions using the AIC criterion, paving the way for advanced

joint modelling of the key characteristics (DIMV).

In Chapter 4, we conducted an explorative extreme value analysis on the univariate

variables duration and intensity from the rainfall data from Sunbury, offering insights

into potential patterns of extremes. First, a univariate Peaks Over Threshold (POT)

model has been fitted. The worst events in terms of flooding would be events where

both duration and intensity were extreme. However, the duration and intensity data

are e negatively correlated and do not point us to asymptotic dependence between these

two variables. We identified the negative bivariate logistic model as the most optimal

among tested bivariate models for representing joint extreme duration and intensity data.

However, as we can see from a comparison of simulations and original data, even the best

bivariate extreme value distribution constitutes a poor fit, and we do not pursue this

route any further.

In Chapter 5, we innovate by developing a novel F-Exp-GPD univariate hybrid model

for rainfall event duration and intensity. This model improves upon a hybrid distribution

model, G-Exp-GPD, by integrating an arbitrary distribution, ’F’, for enhanced tailor-

ing to specific datasets. Through the construction of three distinct hybrid distribution

models, the GEV-Exp-GPD model emerged as the superior candidate, demonstrating

exceptional capability in capturing both the bulk and tail behaviours of intensity and du-

ration data. This advancement addresses the limitations inherent in conventional hybrid
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models and significantly expands their scope of applicability, offering a versatile tool for

rainfall data analysis.

In Chapter 6, the research pioneers the application of the vine copula approach within

our specific context, employing it innovatively to model the complex interdependencies

among rainfall event characteristics, denoted as DIMV (Duration, Intensity, Maximum

intensity, and Volatility). This chapter introduces a novel methodological framework and

establishes the D-vine copula’s superiority over alternative vine structures for captur-

ing the nuanced interrelations within the data. The chosen copula model’s reliability

and effectiveness are rigorously validated through extensive simulations and assessment

techniques. This comprehensive validation process effectively bridges the theoretical and

empirical realms, offering a robust model that enhances our understanding of rainfall

events’ dynamics.

Chapter 7 significantly advances rainfall simulation by developing an innovative rainfall

event simulator. This tool is distinct in its capacity to simulate detailed rainfall events

that integrate both temporal intensity and DIMV patterns in a high-frequency context.

The simulation process is grounded in the joint distributional model fitted in Chapter 6,

utilizing vine copulas and marginal modelling to generate DIMV patterns for each event.

Unlike previous models that focus primarily on duration and intensity, this simulator

introduces a deterministic DIMV constraint, underpinning the generation of events with

stochastic variability. This approach ensures the simulation of rainfall events that exhibit

realistic patterns and faithfully reproduce the statistical characteristics of key attributes.

Furthermore, the hybrid methodology that merges temporal intensity with DIMV pat-

terns represents a methodological leap, enabling the simulation of a sequence of rainfall

events over a specified time range with unprecedented accuracy and detail. The simula-

tor is a testament to the novel integration of complex statistical modelling with practical

simulation techniques, addressing a gap left by prior research and offering a tool with

broad applicability and significant potential for advancing our understanding of rainfall

phenomena.
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Chapter 2

Review of Mathematical Models for Rainfall Events

This chapter delves into the literature review of mathematical rainfall simulation models,

exploring the advancements and insights gained in point rainfall modelling.

2.1 Rectangular Pulse Poisson Model (RPPM)

Rodriguez-Iturbe et al. [1] proposed the rectangular pulse Poisson model. This model is

constructed from rectangular pulses associated with a Poisson process. In the rectangular

pulse Poisson model, storm occurrences are generated through a Poisson process, where

each event is linked to a rainfall duration that is randomly determined and exhibits

a constant yet random intensity level. The overall rainfall intensity results from the

cumulative contributions of all these storm events. The RPPM can represent a natural

process at a fixed level of aggregation as long as such a level is not smaller than the

typical duration of a storm event. The model does not account for aggregation and

disaggregation of the results, and inferences made from its structure should be confined

to the time scale for which it was constructed. The RPPM only perform well at the scale

aggregation for which it was constructed. A schematic of the rectangular pulse Poisson

model is given in Figure 2.1
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Figure 2.1: The Schematic of rectangular pulse Poisson model. For each rainfall event at
occurrence time Tn, the corresponding pair Un = (t(n)

r , i
(n)
r ) is defined, where t(n)

r denotes
the event’s duration and i

(n)
r signifies its intensity [1]

Rodriguez-Iturbe et al. [25] employed two special cases of the RPPM where the pulse

durations follow the exponential and Pareto distributions to fit the Denver rainfall data

(the data comprises hourly precipitation records spanning through May 15 to September

11, 1949 - 1976). The model parameters were computed by fitting the mean, variance,

lag-one autocorrelation and the probability of zero rain at a fixed level of aggregation.

Results revealed that the rectangular pulse Poisson model based on the exponential du-

rations produced autocorrelation that decayed much too rapidly even at the period used

for the fitting and gave a poor fit at other levels of aggregation. Whereas the model

based on Pareto durations produced autocorrelation that decays much slower than that

of exponential cases, which implies that the Pareto model fits much better at the fixed

level of aggregation but also gave a poor fit at other levels of aggregation.

In summary, a significant drawback of the rectangular pulse Poisson models is the inability

to aggregate and disaggregate rainfall data.

2.2 Neyman-Scott rectangular pulse Poisson model (NSRPM)

Rodriguez-Iturbe et al. in [25] proposed the proposition of two cluster-based models,

which include the Neyman-Scott rectangular pulse Poisson model (NSRPM) and the

Bartlett-Lewis rectangular pulse Poisson model (BLRPM). In the Neyman-Scott rect-
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angular pulse Poisson model, a storm arises in a Poisson process with rate λ and each

storm is assigned a random number of cells C (C ≥ 1). The cell origin is not situated

at the storm origin, and the distances between cell origins are exponentially distributed

with parameter β. Each cell is a rectangular pulse with duration and depth independent

random variables and exponential distribution with parameter η.In the Neyman-Scott

process scenario, the cell positions are specified by a series of independent and identically

distributed random variables, representing the time intervals from the storm origin to

the birth of the respective cells. Rodriguez-Iturbe et al in [25] gave the second order

properties of the aggregated process Yi (τ), where Yi (τ) is the cumulative rainfall over an

interval of length τ :

E [Yi (τ)] = λη−1µcµxτ, (2.1)

V ar [Yi (τ)] = λη−3
(
ητ −1+ e−ητ

){
2µcE[X2]+E

[
C2−C

]
µ2

x
β2

β2−η2

}

−λ
(
βτ −1+ e−βτ

)E [C2−C
]
µ2

x

β (β2−η2) ,

(2.2)

Cov [Yi (τ) ,Yi+k (τ)] = λη−3
(
1+ e−ητ

)2
e−η(k−1)τ

µcE[X2]+ 1
2
E
[
C2−C

]
µ2

xβ
2

β2−η2


−λ

(
1− e−βτ

)2
e−β(k−1)τ

1
2
E
[
C2−C

]
µ2

x

β (β2−η2)

 , k ≥ 1,

(2.3)

where µc is the mean number E [C] of cells per storm and X is the random variable

characterizing the pulse depth or rain cell intensity. The Schematic of the Neyman-Scott

rectangular pulse Poisson model is given in Figure 2.2.
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Figure 2.2: Schematic of the Neyman-Scott rectangular pulse Poisson model [2]

Calenda and Napolitano in [26] explored how the scale of data aggregation impacts the pa-

rameter estimation in classical Neyman-Scott point processes. The authors observed that

selecting the data’s aggregation scale influences the estimates of the continuous process

parameters when determining the parameters through the method of moments. Thus,

the motivation to introduce an alternative estimation procedure based on the scale of

fluctuation of the observed process. The estimates obtained via the proposed procedure

were considerably better than the ones obtained via the procedure employing alterna-

tive scales, both in terms of replication of the second-order statistics and extreme values

for different aggregation scales, as evident through a Monte Carlo simulation. Conclu-

sively, the authors suggested using the proposed procedure as an adequate alternative to

estimating the parameters of the Neyman-Scott processes.
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2.3 Bartlett-Lewis rectangular pulse Poisson model (BLRPM)

In the Bartlett-Lewis rectangular pulse Poisson model, storm origins occur in a Poisson

process with rate λ and each origin is followed by a Poisson process of rate β of cell origins;

after a time, exponentially distributed with rate γ, the process of cell origins terminates.

As stated earlier, the positioning of the cells can be made in several different manners.

In the case of Bartlett-Lewis, the intervals between successive cells are independent and

identically distributed. Figure 2.3 gives an illustration of the model.

Figure 2.3: Diagram illustrating the Bartlett-Lewis rectangular pulse model, highlighting
that the framework accommodates the superposition of storms and cells [3]

The second order properties of the aggregated process Yi (τ) are given by

E [Yi (τ)] = τλη−1µcµx, (2.4)

V ar [Yi (τ)] = 2λη−1µc

{
E[X2]+ β

γ
µ2

x

}
τ

η
−2λη−1µc

{
µ2

x + βγ

γ2−η2µ
2
x

} (1− e−ητ
)

η2

+2λη−1µcµ
2
x

β

(γ2−η2)
(
1− e−γτ

) η
γ2

(2.5)

Cov [Yi (τ) ,Yi+k (τ)] = λη−1µc

{
E[X2]+ βγ

γ2−η2µ
2
x

}(
1− e−ητ

)2 e−η(k−1)τ

η2

−λη−1µc
β

(γ2−η2)µ
2
x

(
1− e−γτ

)2
e−γ(k−1)τ η

γ2 , k ≥ 1.
(2.6)
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Rodriguez-Iturbe et al. [25] applied the cluster-based rectangular pulse Poisson models

(NSRPM and BLRPM) to the Denver rainfall data. Results revealed that the cluster-

based rectangular pulse Poisson models match the historical data well at all aggregation

levels. The correlation decay is much slower than the rectangular pulse Poisson models

and equally follows the historical correlation structure. The authors remarked that the

cluster-based rectangular pulse Poisson models are capable of representing the cumulative

rainfall attributes across various time scales, ranging from 1 to 24 hours while maintaining

consistent model parameters. More so, the range of temporal scales through which cluster-

based rectangular pulse models can aggregate and disaggregate the rainfall process will

likely be 1 — 48 hours.

2.4 Modified Bartlett-Lewis Rectangular Pulses Model

Rodriguez-Iturbe et al.[25] noted that the classical cluster-based models could preserve

the statistical characteristics of rainfall data aggregated at various levels without altering

the model parameters. However, there was a clear observation that the probability of

zero rain (dry periods) when those periods were above several hours was highly overes-

timated by both models. The implications for infiltration studies and other hydrologic

considerations, such as rainfall runoff transformations, are critical since there can be a

significant difference in the runoff output when the period with no rainfall is varied. The

classical cluster-based models considered rectangular cells whose stochastic description

was invariant throughout the storm events. In other words, the duration of the cells,

intensity, and number of cells came from distribution functions whose parameters were

the same for all storms.

In an attempt to develop a more flexible model that allows for different structural char-

acteristics among the other storms, Rodriguez-Iturbe et al. [27] developed the modified

Bartlett-Lewis rectangular pulses model, which, in addition to accounting for different

structural characteristics among the different storms, also is capable of representing a

large variety of statistical characteristics of the rainfall process at varying levels of ag-
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Figure 2.4: Illustration showcasing the Modified Bartlett-Lewis Rectangular Pulse model,
where the blue region signifies the duration (represented as width) and the intensity
(represented as height) of individual rain cells. The dashed line illustrates the cumulative
intensities of all rain cells. [4]

gregation including the probability of dry periods. This was achieved by allowing the

parameter η, specifying the duration of cells, to vary randomly between storms. Hence,

the authors referred to the modified model as the random η model, in contrast to the

BLRPM, the fixed η model.

To illustrate the usefulness of this model, the authors fitted it to two distinct data sets,

namely, the Denver and Boston rainfall data, to assess how well the modified Bartlett-

Lewis rectangular pulses model improved on the classical model. The results obtained

from the data revealed that the model with random η gave a better fit than the model with

fixed η. Onof and Wheater [28] investigated the applicability of the modified Bartlett-

Lewis rectangular pulses model using hourly British data and also examined the ability

of the model to reproduce seasonality. Khaliq and Cunnane [29] further demonstrated

applying the modified Bartlett-Lewis rectangular pulses model to fit two hourly rainfall

data sets recorded at Valentia and Shannon Airport, Ireland.
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2.5 Modified Neyman-Scott Rectangular Pulses Model

Similarly, Entekhabi et al. [30] introduced the modified Neyman-Scott rectangular pulses

model using the same approach in [27]. The authors noted that one factor that controls

the duration of precipitation and wet and dry runs is the inverse mean cell duration η.

Rather than setting η as a constant parameter that dictates the distribution governing

the duration of all cells, η is now treated as a random variable that varies with each

storm. Thus, the duration of the cells from storm i are random quantities governed by

an exponential distribution with parameter ηi. All other assumptions remain the same

as in the classical Neyman-Scott rectangular pulses model, and thus η is independent of

the number of cells and the cell intensities x.

Following equation 2.1 - equation 2.3, the second-order properties of the aggregated

modified process Yi (τ) are obtained as follows:

E [Yi (τ)] = µxµcλτI (1,0) , (2.7)

V ar [Yi (τ)] = [µxµcλτI (1,0)]2 +
{
2C1τ +C2β

−3
(
βτ + e−βτ −1

)
+(µxµcλτ)2}I (2,0)

−2C1I (3,0)−C2τI (4,0)+C1I (5,0)+2C1I (3, τ)−C2I (5, τ) ,

(2.8)

Cov [Yi (τ) ,Yi+k (τ)] = C1I (3,kτ − τ)−2C1I (3,kτ)+C1I (3,kτ + τ)− C2
2 I (5,kτ − τ)

+C1I (5,kτ) − C2
2 I (5,kτ + τ)+ C2

2 β−3
(
1− e−βτ

)2
e−β(k−1)τI (2,0)

+(µxµcλτ)2 [I (2,0)− I2 (1,0)
]

(2.9)
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where
C1 = λµcE

[
X2

]
,

C2 = λE
[
C2−C

]
µ2

xβ
2

I (x,y) = E
[
η−xe−ηy

]
= Γ(α−x)

Γ(α) θα (θ+y)x−α , x > 0, y ≥ 0.

As previously highlighted, the classical Neyman-Scott rectangular pulses model tends

to significantly overestimate the ratio of dry intervals relative to the series length, par-

ticularly for aggregation periods spanning from several hours to a couple of days. By

adopting the same Denver rainfall data, Entekhabi et al. [30] applied both the classical

and the modified Neyman-Scott rectangular pulses model to fit the rainfall data and re-

marked that from the result obtained from the later, even up to 8-day aggregation periods

the agreement between the historical probabilities and the modified process probabilities

are good. In addition to preserving the mean, variance and lagged autocorrelation, the

modified Neyman-Scott rectangular pulses model preserves the dry-wet time structure of

point observations of rainfall.

Cowpertwait [31] argued that the empirical distribution, particularly the distribution tail,

is likely to be consistently well-fitted, with some high-order properties included in the

fitting procedure. This claim instigated the derivation of the third-order aggregated mo-

ments of the modified Neyman-Scott rectangular pulses model. New Zealand’s National

Institute of Water and Atmospheric Research (NIWA) hourly rainfall data was used in the

fitting process. The result from the analysis revealed a good fit for the observed extreme

values over a range of time scales. On the other hand, a poor fit was evident when the

third moment was expunged from the fitting procedure. Cowpertwait [31] finally stressed

that the derivation of the third moment function seems well justified, and This function

can be helpful in extended simulation studies and in planning hydraulic structures.
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2.6 A hybrid point rainfall model based on the Jitter pro-

cess and the Bartlett-Lewis point process

Gyasi-Agyei and Willgoose [32] developed a hybrid point rainfall model by amalgamating

the attributes of the jitter process with the well-established Bartlett-Lewis point process.

This innovative model, denoted as {H(t)}, emerges from the interaction between two

distinct random processes: {A(t)}, which serves as a "jitter" process introducing cor-

related adjustments to refine the model’s adherence to the second-order properties of

rainfall data, and {B(t)}, which is dedicated to encapsulating the primary rainfall event

characteristics and mean dry probabilities observed in historical data.

The essence of the jitter process {A(t)} is encapsulated through its formulation as a

lognormal random process, intricately linked with a stationary Gaussian process that

meticulously captures the variance, mean, and autocovariance function. These parame-

ters are meticulously derived from the historical data’s second-order properties, offering

a refined adjustment mechanism to the overall model. Concurrently, the non-randomized

Bartlett-Lewis rectangular pulse model adeptly models the rainfall event characteris-

tics—encompassing the average event duration and the probability distributions of dry

intervals. This component of the hybrid model stands out for its capacity to accurately

simulate the inherent dynamics of rainfall processes, including the distribution and oc-

currence of dry periods.

By implementing this hybrid modelling approach, the model {H(t)} demonstrates excep-

tional competence in reproducing the historical rainfall data’s intricate patterns, including

the mean number of events and their durations, with remarkable accuracy. Notably, this

model outperforms existing methodologies, such as the modified Bartlett-Lewis model

proposed by Rodriguez-Iturbe et al. [27], in capturing the empirical characteristics of

rainfall events. This model’s efficacy was empirically validated using 15-minute interval

rainfall data from Capella, central Queensland, Australia. This application demonstrated

that the hybrid model excels at providing thorough and detailed knowledge of rainfall
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patterns, backed by its ability to derive explicit event characteristics directly from the

model parameters. This innovative approach ensures a robust framework for accurately

simulating and analyzing rainfall processes, reflecting a significant advancement in the

field of hydrological modelling [32].

2.7 A generalized hybrid point rainfall model based on a

jitter process and a binary chain model

Gyasi-Agyei and Willgoose [33] generalized the hybrid model due to Gyasi-Agyei and

Willgoose [32] by substituting the traditional Bartlett-Lewis model with a binary chain

model, yet retaining the autoregressive model employed as a jitter to fix deficiencies in the

second order properties of the binary chain. The binary chain consists of a string of two

numbers, zero for a dry period and a constant value, w, for a wet period. A Markov chain

and the Bartlett-Lewis models were used as examples. Lall et al. [34] pointed out that

Markov chain models are attractive because of their largely non-parametric nature (i.e.

the parameters are derived directly from data), ease of application and interpretability

and well-developed literature. However, as the order increases, a recognized limitation of

the Markov chain models is their lack of simplicity or parsimony.

As stated earlier, a binary chain model generates a string of two numbers, Yi = 0 for a dry

period and a constant value Yi =w for a wet period, where Yi is the total amount of rain

over a specific time period i. The moments of a binary chain were derived analytically as

functions of the dry probabilities. For the historical data and a binary chain of the same

time scale to have the same mean, µYi
the cumulative rainfall depth over a wet period w

must be given by

w = µYi

1−P (i) (2.10)

where P (i) is the probability that an interval i is dry, also written as P (Yi = 0).
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Assuming second-order stationarity, the variance

σ2
Y = E

[
(Yi−µYi

)2]
= P (i)(0−µYi

)2 +[1−P (i)] (w−µYi
)2

= (µYi
)2
P (i)+ [1−P (i)]

(
w

µYi

−1
)2

= (µYi
)2 P (i)

[1−P (i)]

(2.11)

The hybrid model based on the classical Bartlett-Lewis and second-order autoregressive

models is denoted as BBLAR. Concurrently, the hybrid model of a Markov chain of

order 12 and the second-order autoregressive model is represented as MCAR12. For data

fitting purposes, the 15-minute point rainfall data reported in Gyasi-Agyei and Willgoose

[32] were adapted to compare and evaluate two hybrid models. The authors stressed that

while these two models reproduced the aggregated statistics very well, the BBLAR model

performed more favourably better than the MCAR12 model because it is parsimonious

regarding the number of model parameters.

2.8 Modified Random Pulse Bartlett-Lewis Stochastic Rain-

fall Model

Cameron et al. [35] noted that one of the attractions of pulse-based modelling is that,

through the direct simulation of rain cells, the procedure is (intuitively) physically reason-

able. Indeed, after a pulse-based model’s parameters have been optimised upon a rainfall

data series, that model can satisfactorily reproduce many of the properties of that data

series (including dry periods). Nevertheless, the efficiency of pulse-based models for ex-

treme rainfall simulation has often been less clear-cut, particularly for extreme rainfalls

of short duration (e.g., 1-hour maxima). Although a handful of revised models have been

introduced to handle this pitfall, a significant drawback in applying these revised models

lies in estimating the model parameters. For example, Cameron et al. [36] examined

three stochastic rainfall models (two profile-based models and a gamma version of the
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random pulse Bartlett-Lewis model (RPBLGM) using point rain gauge data from three

independent sites in the UK. In particular, the RPBLGM provided good simulations for

the seasonal extreme rainfall totals of 24 h duration and standard rainfall statistics at

each site; the model underestimated the observed seasonal maxima of 1-hour duration.

This situation instigated the motivation for Cameron et al. [35] to develop a new version

of the random-pulse Bartlett-Lewis model for extreme rainfall simulation. This new model

features a generalised Pareto distribution (GPD) to represent the depths of high-intensity

rain cells. The GPD is characterised by the distribution function defined as

F (x) = 1− (1+ [ξ (x−µ)/σ])−1/ξ , ξ ̸= 0,

F (x) = 1− exp [−(x−µ)/σ] , ξ = 0,

(2.12)

Where F (x) is a non-exceedance probability, ξ a shape parameter, µ (the intensity thresh-

old) a location parameter, x−µ an exceedance (where x> µ), and σ is a scale parameter.

The GPD was selected due to its flexibility and ability to model peaks over threshold

(POT) data in traditional extreme event frequency analysis.

The proposed model’s parameter estimation was conducted through a two-stage method,

utilising the generalised likelihood uncertainty estimation (GLUE) technique. The first

stage estimates the parameters of the random pulse Bartlett-Lewis model (RPBLM)

used by Onof and Wheater [28]. In contrast, the second stage holds the GPD threshold,

u, fixed. Then, it estimates the two GPD parameters using the generalised likelihood

uncertainty estimation (GLUE) technique reported in Beven and Binley [37]. In this

technique, it is assumed that, since the GPD parameters are only appropriate to the

simulation of extreme rainfalls, they should only have a minimal impact on the standard

statistics of the simulated continuous rainfall time series.

An extreme rainfall simulation for a UK site (44 summer half-year data at Elmdon,

Birmingham) was investigated to demonstrate the model’s efficacy. The result showed

that the proposed model is better than older versions of the Bartlett-Lewis model at
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reproducing the observed series 1-hour seasonal maxima (SEAMA ) for the summer

season at Elmdon. Also, the model was reliable when showing that the 24-hour SEAMAX

totals were reliably consistent with the gamma version of the random pulse Bartlett-Lewis

model (RPBLGM).

2.9 Neyman–Scott Rectangular Pulse Model with Gum-

bel’s Type-II Bivariate Exponential Distribution

Kim and Kavvas [38] argued that except for a few models, several rainfall models assume

an independent relation between rain cell intensity and duration to easily derive the tem-

poral covariance structure of the rainfall time series. Even though a few models could

consider such dependence, they only applied the Poisson process to rainfall occurrence

without considering any clustering feature of rainfall. In particular, Singh and Singh [39],

and Bacchi et al. [40] applied Gumbel’s Type-I bivariate exponential distribution. Con-

sidering that the Gumbel Type-I bivariate exponential distribution always has a negative

correlation between the variables of interest, they considered the negative correlation

between rainfall intensity and duration. Gumbel in [41] introduced three types of bivari-

ate exponential distribution. The first type is known as the Gumbel Type I bivariate

exponential distribution with the joint density function defined as

f(x,y) = e−(x+y+θxy) [(1+ θx)(1+ θy)− θ] , 0≤ θ ≤ 1, x,y > 0. (2.13)

The second type is the Gumbel Type II bivariate exponential distribution, an F-G-M

model with exponential marginals. The joint density function is given by

f(x,y) = e−(x+y)
[
1+α(2e−x−1)(2e−y−1)

]
, |α|< 1. (2.14)

Similarly, Cordova and Rodriguez-Iturbe [42], and Goel et al. [43] applied Downton’s

bivariate exponential distribution to consider the positive correlation between rainfall

intensity and duration. Downton’s bivariate exponential distribution is specified by the
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joint density function [44].

f(x,y) = 1
1−ρexp[−(x+y)/(1−ρ)]I0

(
2√xyρ
1−ρ

)
, x,y ≥ 0, (2.15)

Where I0 is the modified Bessel function of the first kind of order zero.

Kim and Kavvas [38] developed a new stochastic point rainfall model to simultaneously

consider both the negative and positive correlation between rain cell intensity and du-

ration. To achieve this, the Gumbel Type-II bivariate distribution was adapted. Addi-

tionally, the Neyman–Scott cluster point process was employed to address the clustering

characteristic inherent in rainfall processes. The proposed model, thus, accommodates a

positive or negative correlation parameter that the historical rainfall time series should

determine.

The implementation of the proposed model was demonstrated with data from the rainfall

station in Jeonju, utilising 36 years of observational data from July 1961 to 1996. From

the application results, the authors concluded that the proposed model could reproduce

the historical rainfall time series well when the appropriate correlation between raincell

intensity and duration is taken. In addition, they pointed out that the model-generated

data with a positive correlation between rain cell intensity and duration is more robust for

different parameter sets in the July rainfall time series at the Jeonju rain gauge. They

stressed that the proposed model could improve rainfall modelling results and obtain

more realistic synthetic rainfall time series.

In an attempt to widen the applicability of this proposed model, Han et al. [45] utilised

the model to explore the potential for temporal downscale from hourly rainfall time se-

ries to minute rainfall time series. The authors noted that while hourly rainfall data

has been observed and considered good quality data in long-term observation data, rain-

fall data with very short intervals, i.e. data interval of 10 min. or less, is needed to

analyse flood events for a small urban drainage catchment. Hence, a method to down-

scale such well-qualified and quantified hourly rainfall time series into shorter time scales,
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such as 10 minutes or less, is required in practical urban drainage system design. For

application purposes, the model was simulated with data from July for 35 years, from

1961 to 1995, at the Seoul site of the Korean Meteorological Administration (KMA).

The long-term simulation result regenerates the observed data well in terms of statistics.

However, problems still existed, such as underestimating maximum rainfall depths and

overestimating no-rain probability.

2.10 Bartlett-Lewis Pulse (BLP) Model

As mentioned earlier, in the classical Neyman–Scott (NS) and Bartlett–Lewis (BL) pro-

cesses, rainfall intensity is considered a random variable that stays constant for a rain

cell’s lifetime, so rain cells are modelled using rectangular profiles. While rectangular pro-

files are unrealistic in continuous time, they provide a suitable approximation to discrete

rainfall series aggregated over time intervals of one hour or more. Cowpertwait et al. [5]

developed a stochastic model of rainfall which extends the Bartlett-Lewis (BL) model by

adding a level of structure within the rain cells to extend the range of time scales over

which it can be applied. More specifically, they replace the constant cell intensity and

assume that each rain cell origin initiates a sequence of rainfall pulses that occur in a

Poisson process. A schematic of the BLP model is shown in Figure 2.5.

Where Figure 2.5 illustrates several key processes: (a) the initiation of storm events, (b)

the lifecycle, encompassing the birth and death, of cells within storm i, (c) the pulse

sequences within cell j of storm i, particularly for cells concluding prior to the storm’s

end, and (d) the sequence of precipitation pulses within cell n of storm i, specifically

for cells that concluded after the storm’s termination. In the BLP model, storm origins

occur in a Poisson process, and every storm possesses a stochastic lifetime wherein the

origins of rain cells follow a secondary Poisson process. Moreover, each cell experiences

a stochastic lifetime throughout which instantaneous rain depths (or ’pulses’) manifest

in an additional Poisson process. One motivation for developing the BLP model was to

achieve an excellent fit to a series of rainfall depths over a range of time scales, from
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Figure 2.5: A schematic of the BLP model [5]

fine resolutions, e.g. 5 minutes, to higher aggregation levels, such as daily. In order

to assess the fit of the BLP model at fine resolutions, the authors employed a 60-year

record (1945–2004) of rainfall data recorded at a site in Kelburn (near Wellington, New

Zealand). The data were based on a digitized pluviograph from a Dine’s tilting siphon

rain gauge and were aggregated over 5-minute intervals. The fitted properties of the BLP

model generally agree well with observed values, indicating that the BLP model could

model data for durations starting from 5 minutes and extending longer. This suggests

that the BLP model has potential application in many areas, such as the urban drainage

catchment studies, which usually require 5 minutes of rainfall series.

2.11 The Bartlett-Lewis Instantaneous Pulse Rainfall (BLIP)

Model

Cowpertwait et al. [46] studied an extension of the classical Bartlett-Lewis rectangular

pulses model, with the rectangular profiles replaced with a Poisson process of instanta-
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Figure 2.6: BLIP Model [6].

neous pulse depths to ensure more realistic rainfall profiles for fine-scale series. The BLIP

model initially developed by Cowpertwait et al. [5] is based on three Poisson processes.

The first is a Poisson process of storm origins, where each storm has a random (expo-

nential) lifetime. The second is a Poisson process of cell origins that occurs during the

storm’s lifetime, terminating when the storm finishes. Each cell has a random lifetime

that follows an exponential distribution (or terminates when the storm closes, whichever

occurs first). During cell lifetimes, a third Poisson process of instantaneous pulses occurs.

Figure 2.6 illustrates an individual storm event; the origin and conclusion of storms and

cells are marked by unfilled and filled circles, respectively. In this scenario, every cell is

characterized by a sequence of instantaneous pulse events. The BLIP model makes no

assumptions about a cell origin at the storm origin or a pulse at a cell origin. Conse-

quently, it’s possible for both storms and cells to exhibit periods without any rainfall.

Typically, recorded rainfall data are presented in a cumulative format, necessitating the

aggregation of the BLIP process into a discrete-time series Y (d)
i , expressed as:

Y
(d)

i =
∫ id

(i−1)d
X(t)dN(t), (2.16)

In the expression, X(t) represents the depth of a pulse occurring at time t, while N(t)

denotes the counting process for the occurrences of pulses. Referencing Equation 2.16,
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the primary and secondary properties are delineated as follows:

µ(d) = E[Y (d)
i ] = λµpµXd (2.17)

var[Y (d)
i ] = λµpE(X2

ijk)d+2Aµ2
Xϕ(γ)+2[B1E(XijkXijl)−B2µ

2
X ]ϕ(γ+η) (2.18)

cov[Y (d)
i ,Y

(d)
i+k] = 2Aµ2

Xψ(γ)+2[B1E(XijkXijl)−B2µ
2
X ]ψ(γ+η) (2.19)

Where λ signifies the frequency of storm initiations, β indicates the occurrence rate of cell

formations, and ξ represents the rate at which pulses arrive. Moreover, γ−1 corresponds

to the average storm lifetime, η−1 refers to the average lifespan of cells, and θ1 denotes

the mean depth of pulses.

The model specification due to Cowpertwait et al. [46], alongside the one reported

by Cowpertwait et al. [5], was used to fit data consisting of a 60-year rainfall record

(1945–2004) of 5-min series taken from a site in Kelburn (near Wellington, New Zealand).

The simulation results provided solid evidence confirming that the BLIP model specifica-

tion by Cowpertwait et al. [46] is more advantageous than the specification proposed by

Cowpertwait et al. [5]. Subsequently, the authors emphasize the importance of leverag-

ing this adaptability during model fitting, particularly for practical hydrological studies

where understanding the characteristics of the 5-minute series is crucial.

2.12 A copula-based bivariate frequency analysis: A study

on Bartlett-Lewis model

Vandenberghe et al. [47] stressed that the shortage of long-term rainfall records had

given rise to relying on simulated rainfall time series through stochastic point process

rainfall models (Bertlett-Lewis and Neyman-Scott models). Evaluating the effectiveness

of stochastic point process rainfall models involves examining how well these models

replicate extreme rainfall events achieved by conducting an extreme value or frequency

analysis. An underestimation of the extremes by these models has been observed in the
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literature [See [48, 49, 19]].

Vandenberghe et al. [47] suggested that instead of these univariate methods, multivari-

ate methods for analysing extremes could provide a more powerful tool for assessing the

performance of rainfall models. This led to the proposition of a copula-based frequency

analysis of storms as a technique used to analyse the variations in the return periods

of several different types of actual and simulated storms. In doing this, they examined

several storm characteristics; the result showed issues with the model’s representation of

rainfall’s time structure. Subsequently, the bivariate frequency analysis of storms, char-

acterised by their duration and time, was used to highlight the models’ miscalculations

in the return intervals of the simulated storms. This discrepancy is partly due to signif-

icant variations in the marginal distribution functions for storm length and volume, the

variation in the relationship between storm length and volume, and a distinct average

interval between storms.

In conclusion, incorporating copulas into stochastic rainfall models proved advantageous

for capturing the temporal dependence within the rainfall process, encompassing the

structure internal to storms.

2.13 Hybrid Exponential GPD Model

Li et al. [50] critically examine the existing distributions and their prevalent issues,

notably the underestimation of extreme values by nonparametric generators and the nu-

merical and computational challenges of parametric ones. In response, the authors intro-

duce a novel hybrid distribution that combines the strengths of exponential distribution

for modelling low to moderate precipitation and the generalized Pareto distribution for

extreme events. This merger ensures continuity at the junction, facilitating implicit, un-

supervised learning of the threshold for the generalized Pareto component, addressing a

significant challenge associated with traditional parametric generators.
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f(x) = 1
Z

[fe(x,ν)I(x≤ θ)+fgp(x;κ,ρ,θ)I(x > 0)] , x≥ 0, ν,κ,ρ,θ > 0 (2.20)

Equation 2.20 denotes the PDF of the hybrid model, integrating to 1 over its domain

due to the normalization constant Z. It combines an exponential component fe(x,ν),

parameterized by ν, with a Generalized Pareto (GP) component fgp(x;κ,ρ,θ), described

by scale κ, shape ρ, and threshold θ parameters. The PDF is defined for x ≥ 0, where

ν,κ,ρ,θ are all positive, and utilizes an indicator function I(·) to differentiate between the

exponential and GP parts of the model. The authors further substantiate the efficacy of

the hybrid model through Monte Carlo simulations and empirical testing using 49 daily

precipitation records from Texas. The model’s functional simplicity, allowing for easy

random number simulations, is a significant advantage for practitioners. While the study

provides a strong foundation and promising tool for daily precipitation modelling, the

authors rightly acknowledge the need for broader evaluations beyond Texas and emphasize

the potential for regional adaptations.

2.14 Doubly Stochastic Point Process Model

Ramesh et al. [7] considered a unique way of representing the clustering of rainfall

within storms by using doubly stochastic (Cox) models. A doubly stochastic Poisson

process (DSPP) originates from a Poisson process when a non-negative stochastic process

determines the arrival rate of the process. The authors’ first attempt was to describe a

class of univariate models, based on a class of doubly stochastic Poisson processes, to

analyse the tip times measured by a tipping bucket rain-gauge and then to illustrate the

development of the bivariate models to analyse rainfall bursts at two rain gauges. The

parameters of the univariate and bivariate models were derived using the MLE approach.

Figure 2.7 presents the schematic of the three-state processes where the arrival rate is

highest in the State. The line in Figure 2.7 represents a realisation of the underlying

Markov chain, and the occurrence times of a realisation of the DSPP are shown as a
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Figure 2.7: A schematic of the 3-state process with intense rainfall events in State 1 [7]

comb at the foot. The univariate model was fitted to nearly 13 years (1988 September

to 2001 July) of 0.2 mm rainfall bucket tip times data for Heathrow West of London,

UK station. In contrast, the bivariate model was fitted to 5 years (1994–1998) of rainfall

bucket tip times data for the two stations Mead (Meadow Buildings) and Kite (Kite Lane)

from the HYREX rain-gauge network in Somerset, South West England, UK. From the

analysis results, the univariate models reproduced many of the rainfall characteristics

well at most sub-hourly time scales. On the other hand, the analysis revealed that the

simulated data from the fitted bivariate model not only reproduces the properties of

rainfall aggregations reasonably well at different time scales for both gauges but also

captures the cross-correlations of the rainfall intensities.
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2.15 Enhanced Modeling Through the Random Parameter

Bartlett-Lewis Instantaneous Pulse (BLIPR) Model

Achieving precise modelling for rainfall events over diverse timescales, particularly at the

granular level of 5-minute intervals extending up to daily durations, presents a significant

challenge. The innovation by Cowpertwait et al. [5] through the introduction of the

Bartlett-Lewis Instantaneous Pulse (BLIP) model marked a pivotal shift from the tradi-

tional rectangular pulse framework of the classical Bartlett-Lewis model. By employing a

Poisson process for instantaneous pulses, the BLIP model advanced the realism of rainfall

time series representation at finer scales, allowing for dependent pulse depths within the

same cell and independent depths across different cells.

Expanding upon this foundation, Kaczmarska et al. [6] presented the Random Parameter

Bartlett-Lewis Instantaneous Pulse (BLIPR) model, an evolution of the Random Parame-

ter Bartlett-Lewis Rectangular Pulse (BLRP) model conceptualized by Rodrigues-Iturbe

et al. [27]. This model variation introduces a dynamic rainfall intensity parameter, η,

which adapts according to the cell duration parameter, enabling a more nuanced sim-

ulation of rainfall events. The BLIPR model’s framework was tested against 69 years

of 5-minute resolution rainfall data from Bochum, Germany, demonstrating its superior

ability to model rainfall moments, wet/dry spell characteristics, and extreme rainfall

events compared to its predecessors, BLRP and BLIP.

The BLIPR model innovates by randomizing the parameter η, maintaining a constant

ratio ω = ξ/η between the pulse arrival rate and the cell duration parameter, thereby

enriching the model’s flexibility. The computation of the model’s moments involves con-

sidering it as a composite of independent processes, each characterized by a unique cell

duration parameter, η, and a storm origin rate, λf(η), where f(η) denotes the density

function of η. This approach necessitates integrating across the spectrum of η values to

deduce the mean, variance, and third central moment of the aggregated rainfall. Such

integration hinges on expectations of functions involving η, specifically:
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E

[
1
ηk
e−ηx

]
= ναΓ(α)−1

∫ ∞

0
ηα−1−ke−(ν+x)ηdη = ναΓ(α)−1Γ(α−k)(ν+x)α−k (2.21)

Where the condition α > k ensures the integrals’ convergence, a critical adjustment from

the original Bartlett-Lewis model to avert divergence at zero and accommodate the vari-

ance and skewness calculations without inducing unrealistically prolonged rainfall events.

The empirical adaptation of the BLIPR model preserves the allowance for dependent

pulse depths within a single cell, a modification poised to correct the underestimation

of short-duration extreme rainfall values observed in prior models. This nuanced mod-

elling capability underscores the BLIPR model’s advancement in simulating high-intensity

rainfall events more accurately, providing a robust framework for understanding and pre-

dicting extreme weather patterns. Empirical validation of the BLIPR model utilizing

extensive rainfall data underscored its enhanced performance across several metrics. By

rigorously comparing the fitted moments, the propensity for wet and dry conditions, and

the accuracy in capturing extreme rainfall values, the BLIPR model consistently out-

matched its predecessors, offering a more refined tool for detailed rainfall simulation and

analysis [5, 6, 27].

2.16 Doubly Stochastic Point Process Exponential Pulse

Model

Inspired by the favourable outcomes achieved through the utilisation of doubly stochas-

tic Poisson point processes in contrast to Poisson cluster processes as the underlying

point process, Ramesh et al. [8] recognised the necessity of associating an exponentially

decaying pulse with each point of such a process, particularly when the objective is to

replicate the characteristics of fine-scale rainfall. Thus, the authors developed a class

of doubly stochastic Poisson process (DSPP) models featuring exponentially decaying
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pulses to characterise the probabilistic nature of rainfall measurements obtained from a

single rain gauge. The second-order moment characteristics of the rainfall intensity and

aggregated rainfall processes were derived. Figure 2.8 provides a schematic description

of the pulse process.

Figure 2.8: Schematic description of the DSPP exponential pulse model [8]

Figure 2.8 (a) represents the arrival process of rainfall bursts, depicted through a two-

state DSPP, whereas (b) illustrates the pulse process initiated by each burst, persisting

for a predetermined duration of d. To compare how well the proposed exponentially

decaying pulse model works with existing point process models of rainfall, the authors

looked at a doubly stochastic rectangular pulse model by Ramesh [51] since the struc-

ture of the cell arrivals in both models is the same. An investigation was conducted on

a dataset consisting of sub-hourly rainfall data from England spanning 15 years. The

proposed model was compared to a double-stochastic rectangular pulse model with the

same structure for cell arrivals to see how well it could reproduce the statistical proper-

ties of the total rainfall. Both models performed equally well in reproducing the mean

rainfall. Nevertheless, the proposed exponential pulse model did better at sub-hourly
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aggregations for most other properties considered and even higher aggregations for some.

The rectangular pulse model exhibited superior performance solely in the context of lag

one autocorrelation at higher levels of aggregation.

2.17 A Simple, Flexible and Parsimonious Stochastic Rain-

fall Model (STORM)

Singer and Michaelides [52] emphasised the need for a simple rainstorm generator that

investigates rainfall’s spatial and temporal variability in stationary or nonstationary cli-

mates (climate change). They noted that most existing rainstorm generators are too

complex for simple investigative simulations of convective rainfall under climate change

in small basins. In particular, a significant drawback of most of these generators is the

reliance on the general circular model (GCM) to characterise climate change. Attempting

to develop a simple rainstorm generator, the authors introduced the STOchastic Rainfall

Model (STORM) for convective storm simulation. The model uses an empirical-stochastic

approach, which involves assembling probability distributions of crucial rainstorm charac-

teristics, followed by Monte Carlo sampling to simulate rainstorms’ spatial and temporal

variability across a spatial grid. One of the notable aspects of the model is its inherent

capacity to forecast the reaction of a watershed to future climate variations. This is

achieved by selectively modifying or adjusting pertinent input distributions to account

for the anticipated impacts of probable climatic changes.

The researchers utilised the STORM method to evaluate historical climate change im-

pacts on rainfall patterns within a dryland basin located in the Lower Colorado River

basin. Furthermore, they explored its imprint on ephemeral channel flow contributions to

larger regional rivers, where there are observations of multi-decadal declines in streamflow.

Simulation results revealed that STORM produced a corresponding output consistent in

magnitude with the historical record of precipitation and runoff for the multi-decadal pe-

riod of interest. The STORM can provide insights into the probable watershed responses

to multi-decadal precipitation changes for research or management applications.
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2.18 A Simple, Flexible and Parsimonious Stochastic Rain-

fall Model (STORM-REVISITED)

Singer et al. [9] revisited the STORM (initially reported in previous work) to simulate

drainage basin rainfall. Various modifications of the STORM introduced by the authors

include;

i) incorporating a randomly sampled probability density function (PDF) of inter-

storm periods after each storm event. The incorporation of inter-storm intervals

resulted in a modification of the STORM output, transforming it into a time series

that accurately represents the real-time conditions occurring at the Earth’s surface;

ii) compiling a PDF containing potential evapotranspiration data derived from temper-

ature and relative humidity observations, which are conveniently obtainable across

several temporal and spatial scales;

iii) incorporating seasonality in rainfall patterns to facilitate simulations across a spe-

cific season, a year, or two seasons with discernible variations in ten precipitation

attributes. These attributes encompass unique probability density functions (PDFs)

of rainfall during summer in contrast to winter.

STORM is a hybrid empirical-stochastic rainfall simulator tailored for the heuristic gen-

eration of high-resolution rainfall across drainage basins, adaptable to specified climate

scenarios or varying climate change classes. The deployment of STORM, depicted in

Figure 2.9, encompasses initialization and operational phases.
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Figure 2.9: Schematic flow diagram illustrating key steps in STORM initialization and
operation [9]

In Figure 2.9, the initialization phase encompasses the collection of data, formulation of

input Probability Density Functions (PDFs), derivation of input parameters, structuring

of an input/output (I/O) directory, and the choice of a climate change scenario, in addi-

tion to determining the count and duration of simulations. The operational phase involves

setting a threshold for seasonal or annual precipitation totals, subsequently generating

rainstorms until this threshold is reached, triggering a transition to the next season or

year. Subsequently, the outputs are organized into written matrices and files. STORM

accommodates one or multiple hydrological seasons, each distinguished by unique rainfall

properties.

The authors observed that the enhancements made to STORM have now rendered it an

appropriate climate driver for additional watershed response models designed to simu-

late the hydrological processes occurring between slopes and channels, including surface

runoff, infiltration, and streamflow. ( see [53];[54];[55]), groundwater recharge during and

after rainfall events (see [56]), and interactions between streamflow and alluvial aquifers

(see [57]). The enhancement further allows STORM to be beneficial in water balance mod-

els (for instance, Land Surface Models) for evaluating plant water availability through

dynamic ecohydrological simulations that model the interactions between plant systems

and climate and water utilization (see [58]; [59]; [60]).
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2.19 A Censored Approach to Bartlett-Lewis Model

Modifications to enhance the precision of fine-scale extreme rainfall predictions at individ-

ual sites using mechanistic models have primarily focused on model structure alterations.

An initial critique of the standard mechanistic models (BLRP and NSRP) introduced by

Rodriguez-Iturbe et al. [25] highlighted the inadequacy of using an exponential distri-

bution for rainfall intensities due to its light-tailed nature. Cross et al. [61] proposed

a refined, censored methodology for mechanistic rainfall modelling to improve the esti-

mation of fine-scale extremes by concentrating on the heavier segments of the rainfall

series. Their research examined the capability of mechanistic models to act as simulators

for detailed design storm events, intending to minimize the influence of smaller magni-

tude observations on extreme value estimation. This approach involves adjusting the

rainfall data such that readings below a specified low threshold are reset to zero while

values above this threshold are reduced accordingly. This technique creates a modified

time series that emphasizes significant rainfall events, augmenting the proportion of dry

intervals and diminishing the magnitude of recorded rainfall amounts.

They emphasized that this method of censored rainfall synthesis is suitable for predicting

near-hourly extremes. The exclusion of data below the censoring threshold during model

calibration means that the resulting model parameters are scale-specific. These param-

eters are thus tailored to simulate storm patterns above the threshold, corresponding to

the scale of the data used for calibration. The method’s efficacy lies in its ability to

replicate the more substantial sections of storm patterns, which is crucial for estimating

extreme rainfall events. The implementation strategy described by the authors involves

four main steps:

1. Choose an appropriate threshold (in mm) for the desired temporal resolution and

apply it to the observed rainfall series by setting measurements below the threshold

to zero and adjusting values above the threshold by the threshold amount.

2. Adapt the mechanistic rainfall model to the altered data by aggregating the adjusted
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series over various time scales and computing the necessary summary statistics for

model fitting.

3. Generate synthetic rainfall sequences at the exact resolution as the training data,

then extract and record the annual maxima.

4. Reintegrate the threshold adjustment into the simulated annual maxima for com-

parison with the observed maxima.

This approach was tested on Atherstone in the UK and Bochum in Germany. The tra-

ditional Bartlett-Lewis model along with two modified Bartlett–Lewis rectangular pulse

models (BLRPR) by Onof and Wheater [62] and (BLIPR) by Kaczmarska et al. [6] were

evaluated. All three model variants demonstrated reliable accuracy in estimating sub-

hourly rainfall extremes. Nevertheless, the BLIPR model displayed superior performance

at both sites for five and 15-minute intervals, especially in accurately forecasting the most

extreme observed rainfall events.

2.20 A Hybrid Rainfall Model based on the MBLRP and

SARIMA Models

Park et al. [4] created a hybrid rainfall model that can recreate different statistical

features of observed rainfall on timescales from 1 hour to 1 year. First, The hybrid

model employs a seasonal autoregressive integrated moving average (SARIMA) model

to produce the monthly rainfall time series. Afterwards, it downscales the generated

monthly rainfall time series to the hourly aggregation level using the modified Bartlett-

Lewis rectangular pulse (MBLRP) model developed by Rodrigues-Iturbe et al. [27].

The authors emphasised the novelty of the proposed hybrid model in that; (i) The

monthly rainfall values are utilised to generate monthly statistics, which are then em-

ployed to calibrate the MBLRP model. (ii) The individual monthly rainfall values gen-

erated are downscaled using month-specific MBLRP model parameter sets. These pa-
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rameter sets capture the intricate correlation structure of different rainfall statistics,

including mean, variance, covariance, and proportion of dry periods. This approach is

based on Poisson cluster rainfall models, unlike existing composite approaches (see [63]

and Paschalis et al. [64]) which showed problems with reproduction, especially at smaller

than daily scales. The MBLRP model is cautiously calibrated in this methodology to

accurately replicate the sub-daily statistical characteristics of observed rainfall.

The unique methodology employed in the hybrid model allows for precise replication of

first- to third-order statistics, the proportion of dry periods across various times ranging

from one hour to one year, and the statistical characteristics of monthly maximum values

and extreme rainfall events observed in the data. The authors employed hourly rainfall

data observed at 34 gauges in the Midwest to the east coast of the continental United

States between 1981 and 2010. The fitting results suggested that the hybrid model accu-

rately reproduced the first- to third-order statistics, and the study successfully replicated

the intermittent characteristics across several timescales, ranging from hourly to annual.

It accurately reproduced the data’s statistical patterns of monthly maximum rainfall and

extreme values.

2.21 Copula-based Stochastic Sub-hourly Rainfall Genera-

tion Model

Brigandi and Aronica [20] categorized rainfall stochastic generation models into two pri-

mary types: profile-based and pulse-based. The profile-based model concentrates on

individual rainfall events, identifying the time between events and utilizing their joint

or distinct probability distributions to detail a storm’s essential characteristics. On the

other hand, the pulse-based model views storm events as isolated incidents occurring ran-

domly over time, with their formation modelled by a Poisson process. Each rainfall event

generates a series of rain cells, envisioned as pulses with varying duration and intensity

but generally maintaining a consistent intensity during the cell’s lifespan.

Pulse-based models are known for their precise depiction of continuous rainfall sequences,
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making them valuable for various hydrological applications. However, they require es-

timating numerous parameters and an extensive record of continuous historical rainfall

data. Prior studies, such as those by Cameron et al. [35], highlighted that while pulse-

based models effectively replicate the observed timings between rainfall events across

different scales, they might not accurately simulate the extreme short-term statistics.

Consequently, many researchers ([65]; [66]; [67]) have favored profile-based models for

their studies.

Brigandi and Aronica [20] embraced the profile-based approach and developed a method

to generate stochastic sub-hourly rainfall at specific locations. Their model’s key benefit is

its minimal data requirement, needing only a few years of high-resolution rainfall data for

calibration, albeit not necessarily continuous. The model stochastically generates rainfall

events, modelling their duration and average intensity through a bivariate copula-based

framework, while dimensionless mass curves are used to define the event’s shape.

10-minute interval rainfall records from two Sicilian sites were used to calibrate this

model. The data spanned from 2003 to 2009 at the Monreale station and from 2002

to 2007 at the Palazzolo Acreide station. The model’s outcomes validated the effective

use of Frank’s copula for modelling the interdependence between storm duration and

intensity, maintaining the inherent correlation of the variables. Furthermore, the good

agreement between the historical data and the model-generated values robustly supports

the model’s ability to accurately produce extreme rainfall events, affirming its potential

to create long sequences of synthetic sub-hourly rainfall that reflect the vital hydrological

features of the location.

2.22 A Cox Process with State-Dependent Exponential Pulses

Ramesh et al. [10] delved into the application of doubly stochastic Poisson process models

(initiated by Ramesh et al. [7]) for simulating actual rainfall observations. The distinc-

tive aspect of their modelling strategy lies in its detailed representation of an unseen
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state of the rainfall system, which corresponds to the atmospheric conditions driving the

generation of rainfall. The team formulated a series of Cox process models characterized

by exponentially diminishing pulses, with the initial pulse depth’s distribution relying on

the state of the background Markov chain. This innovative model articulates the prob-

abilistic framework of rainfall at individual rain gauges. The researchers evaluated two

iterations of the proposed model; the first assumes a fixed duration d for the life of the

rain pulses, whereas the second iteration considers the pulse duration d as a stochastic

variable.

Figure 2.10: Illustration of the state-dependent initial depth exponential pulse model
with a set pulse duration d.[10]

The model captures the arrival dynamics of rain cells at a specific site through a sta-

tionary Cox process influenced by a two-state continuous-time Markov chain. This chain

distinguishes between low and high-intensity rainfall states, with transition rates and rain

cell arrival rates that change accordingly. Each rain cell starts with an initial depth that

undergoes exponential decay over time, influenced by the Markov chain’s state at the

inception of the cell. The average initial depths are distinct between the states. The

rain pulses last for a set period, maintaining independence from each other and the cell

arrival process. A variable is designated to quantify the rainfall depth at any moment,

and the rainfall intensity at any time point is the aggregated result of all active rain

pulses. Figure 2.10 displays the model description.
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Empirical validation was conducted using two sub-hourly rainfall datasets: a 15-year

record from Bracknell, England, sourced from the U.K. Meteorological Office, and a

69-year record from Bochum, Germany. The simulations demonstrated that both mod-

els are adept at replicating the second-moment characteristics of rainfall. Notably, the

model with variable pulse duration exhibited enhanced congruence between the observed

data and the model’s outputs. Moreover, the efficacy of this novel model in reflecting

the second-moment features of rainfall was compared against two other stochastic mod-

els—one with exponential pulses and the other with rectangular pulses. The introduced

model proficiently captured the empirical rainfall characteristics and surpassed the com-

parative performance of the two other models considered in this analysis.

2.23 Stochastic Rainfall Models involving Markov Chain

Model

By simple definition, a Markov chain is a discrete-time stochastic model defined on a

space of states equipped with transition probabilities from one state to another at the

next time stage. Here, we revisit some stochastic rainfall models (SRMs) based on the

Markov chain model.

Gao et al. [11] developed a stochastic rainfall model termed SDRM-MCREM, integrating

a Markov chain model with the stochastic rainfall event model previously investigated in

[68]. This model is engineered to produce rainfall time series that maintain the intrinsic

characteristics of rainfall events. The SDRM-MCREM initially employs the Markov

chain model to create a series of rainfall occurrences, delineating both wet and dry spells.

Subsequently, it utilizes the rainfall event model to stochastically generate a sequence of

rainfall events aligned with the wet spells identified from the created rainfall occurrence

series. A notable aspect of SDRM-MCREM is its dual focus, capturing the statistical

nuances of rainfall time series and addressing the distinct features of rainfall events.

This includes accounting for the relationship between rainfall depth and duration, the

distribution of different classes of rainfall events, and the diversity of temporal rainfall
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patterns along with their frequency distribution across various event categories. The

innovative stochastic rainfall model SDRM-MCREM schematic representation is depicted

in Figure 2.11 and encapsulates three primary modules.

Figure 2.11: A flowchart of SDRM-MCREM [11]

From Figure 2.11, the initial module produces the time series of rainfall occurrences.

The subsequent module identifies and isolates rainfall events according to a predefined

criterion, further determining the duration of each identified rainfall event. The third

module is tasked with replicating the attributes of these rainfall events, encompassing

both the rainfall depth and the temporal pattern of the rainfall, contingent on the event’s

duration, modelled in alignment with the statistical patterns observed in actual rainfall

data.

The SDRM-MCREM model was implemented in the Qu River basin in East China,

and its efficacy was assessed at the catchment scale. The outcomes demonstrated that

SDRM-MCREM proficiently replicated a majority of the statistics related to the rainfall

time series (such as rainfall percentiles, mean monthly and annual rainfall, variability of

rainfall between months, and extreme rainfall occurrences) along with the characteristics

associated with rainfall events (involving the distribution trends of wet and dry intervals,
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the incidence rate of distinct categories of rainfall events, and the sequential rainfall

schemes together with their commonality within different rainfall event categories).

An immediate advancement from the single-site stochastic rainfall model SDRM-MCREM

was made by Gao et al. [12], who introduced a multi-site stochastic daily rainfall model,

MSDRM-MCREM, which integrates a univariate Markov chain with a multi-site rainfall

event model. In MSDRM-MCREM, the univariate Markov chain model is utilized to

produce spatially correlated rainfall occurrence series for multiple sites and to identify

simulated rainfall events at each station, delineated by consecutive wet periods. Subse-

quently, the multi-site rainfall event model is employed, employing Vine copulas to cre-

ate a simulation framework for spatially correlated characteristics of the rainfall events

that transpire concurrently at several stations. This includes modelling these concurrent

events’ rainfall durations, depths, and temporal patterns. The detailed framework of the

developed multi-site stochastic daily rainfall model coupling a univariate Markov chain

model for multi-site rainfall occurrences (0 or 1 values) and a multi-site rainfall event

model using Vine copulas (called MSDRM-MCREM) is shown in Figure 2.12.

In Figure 2.12, the initial phase involves applying a univariate Markov chain model (Breinl

et al.[69]) to produce cross-correlated rainfall occurrence sequences across multiple loca-

tions. The subsequent phase entails isolating rainfall events by identifying successive

wet periods at each station, determining their durations, and categorizing these events

into various groups that represent concurrent occurrences at multiple stations (Callau

et al.[70]). The third phase employs Vine copulas to flexibly model the dependency

structures of multiple variables within each group, specifically combinations of rainfall

duration and depth at various sites, and to create multi-site rainfall depths for given

durations utilizing conditional Vine copulas. The fourth phase involves generating multi-

site rainfall types and temporal patterns based on their frequency probabilities within

each group. The final phase, which is the fifth, consists of synthesizing complete rainfall

events by amalgamating rainfall depth, duration, and temporal patterns, subsequently

reassigning the categorized rainfall events to the respective stations. This is followed by

integrating the sequenced rainfall events of each station into its rainfall occurrence series,
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Figure 2.12: A framework of MSDRM-MCREM considering two stations as an example
[12]
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culminating in a comprehensive spatially correlated rainfall series.

The MSDRM-MCREM was deployed in the Changshangang River basin in Zhejiang

Province, East China, to assess its capability to mimic rainfall features and spatial cor-

relations. The evaluation covered simulations at two, three, and four-station setups.

Analysis outcomes indicated that aside from a tendency to overestimate minor rainfall

events, the MSDRM-MCREM proficiently maintains essential statistics of rainfall time

series (such as various rainfall percentiles, average monthly rainfall, standard deviations,

probabilities, and average counts of wet days), extreme rainfall events (like the exceedance

probabilities for annual maximum 1-day, 3-day, and 5-day rainfall totals) as well as char-

acteristics of rainfall events (including cumulative probabilities for wet spells, dry spells,

and rainfall depths, along with temporal patterns and likelihoods of distinct rainfall types

categorized by event depth) at the individual stations.

Nop et al. [71] proposed a methodology to develop a Markov chain model tailored for

rainfall time series in temperate regions, incorporating it into the stochastic dynamic

programming framework for optimizing rainwater harvesting (RWH) systems operations.

Dynamic programming is notably prevalent in deriving optimal policies for reservoir

management. In their model, the Markov chain states represented intervals of rainfall

depths over 10-minute periods, with the month-specific transition probabilities defining

the Markov chain’s behaviour. Frequent dry periods allowed for empirical estimation of

transition probabilities from a dry state. Additionally, when a wet state was noted, the

subsequent 10-minute rainfall depth was modelled to follow a gamma distribution charac-

terized by two parameters. A distinctive aspect of their approach is the ability to create

a multi-state Markov chain model from scarce data sets. They illustrated the Markov

chain model’s effectiveness in optimizing water resource management and storm-water

retention using hypothetical rainwater harvesting system operations scenarios showcased

within the stochastic dynamic programming framework.

In a recent exploration, Chauhan et al. [72] employed the extreme value distribu-
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tion of frequency analysis along with the Markov Chain model to scrutinize the hydro-

meteorological data at the Dakpathar barrage, situated in the Yamuna River Basin,

Uttarakhand, India. Their technique scrutinizes persistence and allows for the computa-

tion of joint probabilities such as initial and transition probabilities. The investigators

underscored the merits of the Markov Chain strategy for rainfall prediction in the study

locale. Primarily, it yields a trustworthy forecast of upcoming rainfall trends derived

from historical records. Secondly, its construction is straightforward and requires mini-

mal computational capacity, rendering it ideal for environments with limited resources.

Notably, in scenarios where data is scant, the stochastic Markov Chain methodology

surpasses sophisticated artificial intelligence models like LSTM.

An added benefit of the Markov Chain method is its capacity to produce precise fore-

casts with scant training data. Additionally, the Markov Chain approach is more in-

terpretable, aiding researchers in better comprehending the systems influencing rainfall

patterns. Summarily, the data analysis outcomes indicated that the Markov Chain model

had a success rate of 79.17%, suggesting that extended return periods should alert to po-

tential drought and flood risks in the Himalayan region.

2.24 Rainfall Event Models involving Spatial Weather Sys-

tems

The escalating concerns about intensified heavy rainfall events under the evolving cli-

mate scenario highlight a pressing need for societal awareness. As Kundzewicz et al.

[73] articulated, extreme precipitation events are precursors to floods and landslides, sig-

nificantly influencing agriculture, ecosystems, and human settlements. Enhancing our

adaptive capabilities and resilience against these natural phenomena necessitates a com-

prehensive understanding of the alterations in extreme rainfall patterns. The prediction

of rainfall events is marred with uncertainties due to the unpredictable nature of weather

systems and the intricate interactions between atmospheric dynamics and geographical

landscapes. According to the insights from Clark et al. [74], simulating rainfall events aim
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to accurately forecast rainfall intensity variations as weather systems navigate diverse ge-

ographical terrains. This task is achieved through advanced computational models that

leverage real-time atmospheric observations, historical climatological data, and digital

terrain models to predict the trajectories and transformations of meteorological systems.

In this context, Chen et al. [75] embarked on an investigation to project the forthcoming

variations in intense summer rainfall, employing an advanced, high-resolution climate

model tailored for the UK (convention-permitting model). Their analysis focused on an-

ticipated alterations in the intensity, spatial distribution, and duration of rainfall events,

alongside their collective impact on hourly extreme rainfall across various spatial di-

mensions. Their comparative study of past and projected future conditions across three

distinct UK regions unveiled a potential increase in the intensity and spatial expanse of

heavy rainfall episodes, with projections showing up to a 49.3% expansion in the north-

west region.

Peleg et al. [13] highlighted the importance of adapting design storms, which are crucial

for evaluating flood risks, to reflect changes in the frequency and intensity patterns of

extreme rainfall due to climate change. They developed a spatial quantile mapping

(SQM) approach to enhance the use of high-resolution data from convection-permitting

models (CPM) in hydrological impact studies of floods. Their approach utilized detailed

rainfall simulations from a CPM for various urban regions in Switzerland, simulating

extreme weather scenarios consistent with current climate trends using a 2D stochastic

model. The research involved adjusting existing design storms to align with future climate

projections through SQM, along with two other methods: uniform quantile mapping and

an adjustment correlating rainfall with temperature. The methodology comprised steps

like extracting spatiotemporal data from radars, generating representative storm patterns,

and adjusting these patterns to reflect future climate scenarios, subsequently applying

them in flood modelling. A schematic representation of the steps is shown in Figure 2.13.
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Figure 2.13: A schematic representation of the steps taken in the study [13]

Their findings showed distinct variations in flood risks when applying different rainfall

adjustment techniques. The SQM method notably impacted flood severity more than

the other methods, underscoring the significance of considering spatial rainfall patterns

in future hydrological assessments.

2.25 A Multi-site Stochastic Weather Generator: The Gen-

erative Adversarial Network (GAN)

Ji et al. [14] highlighted the reliance of conventional multi-site stochastic weather gen-

erators (SWGs) on intricate parameterizations, which capture the inherent spatial and

temporal sporadicity of meteorological variables and their quantities. This complexity

might result in inadequate sampling, failing to accurately represent extreme weather

phenomena, such as rainstorms or droughts, and their spatial interconnections. Like-
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Figure 2.14: The workflow of GAN taking into account extreme rainfall events [14]

wise, the authors pointed out that non-parametric methods relying on resampling, like

the K-nearest neighbour (KNN) approach, fall short because they cannot generate values

beyond the historical data’s scope. The authors recommended using advanced deep learn-

ing methods like generative adversarial networks (GANs) to avoid setting these complex

parameters and ensure that data from different locations are consistent and interact well.

These models learn from the data and are more adaptable at creating believable weather

patterns than standard statistical approaches.

In their study, the authors specifically examined how well synthetic rainfall data matched

actual observations across multiple sites and on an hourly basis, which they described

as a two-dimensional approach. They incorporated these data into an hourly calibrated

Soil and Water Assessment Tool (SWAT) model, enabling them to simulate continuous

hourly flow patterns. This was then used for flood frequency analysis, considering the

natural uncertainties in the rainfall input data. Figure 2.14 displays the workflow of a

Generative Adversarial Network (GAN) taking into account extreme rainfall events.

The data analysis segment gathered hourly precipitation measurements from 14 stations

within the Kelantan River Basin from January 1, 1990, to December 31, 2019, over

30 years, setting 0.1 mm as the minimum threshold for hourly rainfall. They also com-

piled additional variables like the maximum and minimum temperatures and the observed

hourly streamflow data for the SWAT model’s calibration, sourcing this information from
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the Malaysian Meteorological Department (MMD) and the Department of Irrigation and

Drainage (DID) Malaysia. Their findings demonstrated that the effectively trained Gen-

erative Adversarial Network (GAN) enhanced the quality of rainfall data, capturing the

spatial and temporal patterns of the original data more effectively than merely duplicating

its statistical properties.
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Chapter 3

Marginal Modelling of Rainfall Events Characteristics

3.1 Introduction

Rainfall events are summarised by duration, intensity, maximum intensity and volatility.

Finding the appropriate marginal distribution for each rain event characteristic is one

of the most critical processes in the process of fitting copulas to rainfall characteristics

[76]. This chapter aims to analyze the characteristics of rainfall events in Jackson Creek,

Sunbury, Victoria, Australia, using gauge rainfall data. The study seeks to fit appropriate

marginal distributions to the data.

3.2 Data Pre-processing

Definition 3.2 (Rainfall Event): Given continuous rainfall at a point with intensity over

time, a rainfall event is defined as the period of rain where no rainless gaps exceed the

duration of the inter-event time [77]. The inter-event time (IET) is the minimum specified

rainless period that must precede the beginning of a new rainfall event [78].
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Figure 3.1: Rain Data (6-minutes time resolution)

The dataset for this research was obtained from the Meteorological Department of Aus-

tralia. The rain data is recorded by a tipping bucket rain gauge that has a tip resolution

of 6 minutes for the period of 36 years (1976-2011) at Jackson’s Creek, Sunbury in Victo-

ria, Australia. To use this data, we carried out data cleaning. First, the data for the last

month was not used as they were inconsistent with the previous data and zero readings

with odd time stamps were deleted. Victoria, Australia, experiences daylight saving time

(DST). To deal with this, the data time was converted to POXISct format using the

Lubridate Package in R programming software [79]. Time was also rounded up to the

nearest minute and the missing zeros were also filled (that is for the six minutes duration

where there was no rainfall, 0mm was recorded). The R code is given in Listing 3.1.

1 # Data Cleaning and Rainfall Extraction

2 library ( lubridate )

3

4 rainfall _ data <- read . csv ("C:/ Users / Administrator / Documents /R/
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SITE _ 230202 _MR_ 510. csv ", header = TRUE , stringsAsFactors =

FALSE )

5 all . times <- rainfall _ data $ measure _ date

6 all . times . POSIX <- dmy _ hms ( all . times , tz = " Australia /

Melbourne ")

7 diff . all . times . POSIX <- diff ( all . times . POSIX )

8 diff . all . times . POSIX == 360 # checking if the data had 6 mins

gap

9 length ( diff . all . times . POSIX ) # length will be equal to original

length minus 1

10 identical ( round _ date ( all . times . POSIX , unit =" seconds "), all .

times . POSIX )

11

12 # View ( rainfall _ data )

13 rainfall _ data <- rainfall _ data [ -(111621:111906) , ] # deleting

the last month

14 rainfall _ data <- rainfall _ data [-c (107417 , 107418 , 107445 ,

107446) , ] # deleting zero readings with odd time stamps

15 time . POSIX <- dmy _ hms ( rainfall _ data [ ,3] , tz = " Australia /

Melbourne ") # converting to POSIXct format

16

17 # Creating 6 mins time stamps Method 1

18 minute . POSIX <- minute ( time . POSIX )

19 w <- which ( minute . POSIX %% 6 != 0)

20 time . POSIX [w]

21 time . POSIX <- round _ date ( time . POSIX , unit =" minute ")

22 time . POSIX [w]

23 which ( minute ( time . POSIX ) %% 6 != 0)

24 all (as. numeric ( diff ( time . POSIX )) %% 360 == 0)

25 time .6 minutes <- cumsum (c(0 , diff ( time . POSIX )) / 360) + 1 #

how many 6 minute intervals have passed since the first ever

measurement

26 depth <- rainfall _ data [ ,4]

27 time <- time .6 minutes

28

29 # fill in zeros

30 maxt <- max ( time )

31 newd <- rep (0 , maxt )

32 ti <- 1 # time counter
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33 idx <- 1 # position in depth vector

34 newd [1] <- depth [1]

35 while (ti < maxt ) {

36 ti <- ti + 1

37 if (ti == time [ idx +1]) {

38 idx <- idx + 1

39 newd [ti] <- depth [ idx ]

40 }

41 }

42

43 New _ Rainfall _ Data <- data . frame ( Datetime = time . POSIX [1] + 360 *

(0:( maxt -1) ), Time =1: maxt , Depth = newd )

44

45 save ( New _ Rainfall _Data , file = " Clean _ Rainfall _ Data . RData ") #

data name : New _ Rainfall _ Data

Listing 3.1: Data Cleaning and Rainfall Extraction Code

To choose a reasonable inter-event time (IET), we plotted the rainfall distribution for

intensity and duration setting different IETs, 30 minutes, 60 minutes, 120 minutes and

360 minutes using the following rainfall depth thresholds: depth ≥ 0mm, ≥ 0.4mm,

≥ 0.6mm and ≥ 1mm. Due to the discrete nature of the data, we needed to remove

the spike (rainfall depth of = 0mm), which were a period without rain, and we were

also not interested in small rainfall, thereby deleting small events. The results from the

different intensity and duration distributions plots indicated that the best IET to define

a rain event using our data is 60 minutes with a rain depth threshold of 1mm as it gave

us a smooth distribution for intensity and duration. This is consistent with the study

by [80]. Figure 3.2 gives an illustration of rainfall events. Here, rainfall event intensity

(I) is defined as the average amount of rain that falls per unit of the time during the

duration of the rain event(mm/mins). The maximum intensity (M), often called the peak

intensity, is the highest rate of rainfall (depth per unit of time) recorded during a specific

time period of a rain event. Volatility (V) captures the variability or fluctuation in these

intensities throughout the rainfall event. In this context, the volatility provides insight

into the stability or predictability of the rainfall intensity. Specifically, the volatility is
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Figure 3.2: Illustration of Rainfall Events

defined as:

Volatility(x) = 1
n

n∑
i=2

(xi−xi−1)2

Where xi denotes the intensity at a specific time point, xi−1 is the intensity at the

preceding time point, and n is the total number of time points or intensities in the rain

event. A higher volatility value indicates larger variations or jumps in intensity, suggesting

a more erratic rainfall pattern. Conversely, a lower volatility value implies a steadier and

more consistent rainfall intensity over the event’s duration (D). The summary statistics

of the rainfall event duration, intensity, maximum intensity and volatility are given in

Table 3.1. See Appendix A.1 for the detailed R code used in data cleaning and rain event

extraction.
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Figure 3.3: Rainfall Events Intensity

Figure 3.1 provides a continuous, high-resolution visualization of rainfall intensity over

time, detailing how the rainfall depth fluctuates at each recorded time point. This plot is

instrumental in revealing the temporal patterns of rainfall, showcasing the duration and

intensity fluctuations within and across rainfall events, and allowing observers to discern

specific periods of high or low rainfall. Conversely, Figure 3.3, which plots the average

depth of each event, abstracts the rainfall data into a summarized form, where each

point represents the mean intensity of an individual rainfall event. This comparative plot
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simplifies the data, emphasizing the overarching trends and differences in average inten-

sity across events. While Figure 3.1 excels in depicting rainfall’s dynamic, time-sensitive

nature, offering a granular view of its temporal distribution, Figure 3.3 provides a synthe-

sized, event-centric perspective, focusing on the intensity characteristics of rainfall events

and facilitating a straightforward comparison of their average intensities. Figure 3.4

presents the time series for the rainfall event with the largest intensity and adjacent rain-

fall events. It illustrates the temporal distribution and intensity of the focal event and

its neighbouring events. Figure 3.5 depicts the time series of rainfall events surrounding

the event characterized by the highest total rainfall, where total rainfall is the product of

each event’s duration (D) and its average intensity (I). This figure aims to highlight the

comparative scale and impact of the event with the maximal aggregate rainfall alongside

its immediate temporal neighbours. See Appendix B.1 for the details about event 9556.

Figure 3.4: Rainfall event with largest intensity event (event 923)
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Figure 3.5: Rainfall event with the most total rainfall (event 9556)

Table 3.1: Summary statistics for rain event duration (D), intensity (I), maximum in-
tensity (M), and volatility (V )

Rainfall event Mean SD Min Median Max Skewness Kurtosis
D 24.34 27.29278 1.00 17.00 322.00 3.744245 24.71962
I 0.28008 0.569851 0.03125 0.16293 17.40000 16.70841 414.9539
M 0.9184 1.301368 0.2 0.6 17.40 5.964268 51.66765
V 0.24350 1.307148 0 0.4 28.42182 12.40554 192.1812
log(D) 2.754 0.9682511 0.000 2.833 5.775 -0.2823895 3.312447
log(I) -1.714 0.8122467 -3.466 -1.814 2.856 0.8648032 4.305471
log(M) -0.4659 0.7696502 -1.6094 -0.5108 2.8565 0.8632411 4.296694
log(V) -2.970 1.284787 -9.213 -3.219 3.347 1.161323 6.731177
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Figure 3.6: Histogram of DIMV
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3.3 Marginal Modelling using Parametric Distributions

Table 3.1 shows that the datasets for D,I,M,V exhibit significant skewness. To achieve

a more normalised distribution and potentially enhance the effectiveness of subsequent

modelling, we propose the application of a logarithmic transformation. The logarithmic

transformation pulled in the tails of DIMV, thereby reducing the positive skewness. This

makes the DIMV distribution more symmetric and closer to a normal distribution, as

evident in Figure 3.6. Given the nature and characteristics of the data, the candidate

distribution functions selected for this study are the Normal, Skew Normal, Skew T, and

the Generalized Extreme Value (GEV) distribution. The rationale behind this choice

is rooted in their capability to model diverse and skewed datasets, as reflected in their

probability density functions provided below.

3.3.1 Normal Distribution

The Normal distribution (the Gaussian distribution) is a continuous probability distri-

bution used extensively in statistics and probability theory. The normal distribution’s

probability density function (PDF) is given by

fnm(x;µ,σ2) = 1
σ
√

2π
e−1/2( x−µ

σ )2
. (3.1)

Where µ is the mean (location parameter) and σ is the standard deviation (scale param-

eter).

3.3.2 Skewed Normal Distribution

Given a random variable X which has Skew Normal Distribution X ∼ SN(µ,σ,λ). The

pdf is given as

fsn(x;µ,σ,α) = 2
σ
ϕ(x−µ

σ
)Φ(αx−µ

σ
), x ∈ IR. (3.2)

Where µ ∈ IR is the location parameter, σ ∈ IR+ is the scale parameter and α ∈ IR is

the skewness parameter. The variables ϕ(.) and Φ(.) are the density and cumulative
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distribution functions (CDF) of the standard normal distribution, respectively. When

α > 0 the distribution is right-skewed; when α < 0 the distribution is left-skewed; when

α = 0, the distribution reduces to the standard normal distribution. Compared to the

classical normal, the skew-normal offers a more versatile formulation due to introducing

a parameter that controls its skewness. [81]

3.3.3 Skew t Distribution

The Skew-t distribution, which offers a more flexible formation of the student’s t distri-

bution by adding a skewness parameter, whose pdf is given as:

fst(x;µ,σ,α,v) = 2
σ
t(x−µ

σ
;v)T (αx−µ

σ

√
v+1
v+Qx

;v+1), x ∈ IR. (3.3)

The Skew-t distribution is characterized by a location parameter µ, a scale parameter σ,

a shape parameter v > 0, and a distinct skewness parameter represented by α. Within

this framework, t(·;v) and T (·;v+ 1) denote the density function of the student’s t dis-

tribution having a degree of freedom v > 0 and the cumulative distribution function of

the conventional student’s t distribution with v+1 degrees of freedom, respectively. The

expression Qx = σ−2(x−µ)2 provides a squared deviation measure. It’s noteworthy that

when α assumes a value of zero, the density in equation (equation 3.3) converges to the

standard student’s t distribution. As v approaches infinity, this density aligns with the

skew-normal distribution [81].

3.3.4 Generalised Extreme Value (GEV) Distribution

The foundational theory concerning extreme values in data samples, articulated by Fisher

and Tippet [82], paved the way for formulating the extreme value distribution. The GEV

class of distributions is regulated by the tail shape parameter, ξ. Consequently, the

tail index is defined as κ = ξ−1, which determines the configuration and magnitude of

these tails, encompassing three distinct distribution families. Both Jenkinson [83] and

von Mises [84] showed that these three distribution forms could be represented using a
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unified set of parameters, thus coining the term "generalized extreme value distribution"

with the density expressed as:

fgev(x;µ,σ,ξ) =


1
σ (1+ ξ(x−µ

σ ))1−1/ξ exp(−1(1+ ξ(x−µ
σ ))−1/ξ), if ξ ̸= 0

1
σe

−(x−µ)/σ exp(e−(x−µ)/σ), if ξ = 0
(3.4)

In this representation, µ, σ, and ξ symbolize the location, scale, and shape parameters,

respectively. Depending on the value of ξ, being less than 0, 0, or greater than 0, the

GEV distribution belongs to the Weibull, Gumbel, and Fréchet class respectively [85]."

3.4 Fitting Methodology

The candidate distribution functions’ density functions were fitted using the maximum

likelihood (MLE) technique, which seeks to optimize the log-likelihood function. To

identify the most suitable fit for the rain event’s duration, intensity, maximum intensity,

and volatility, we employed the Akaike information criterion (AIC).

3.4.1 Akaike information criterion (AIC)

The AIC serves as a tool for model selection based on the log-likelihood of a given

distribution. Typically, the one with the smallest AIC value is considered to provide the

best representation of the dataset among competing models. The formula to compute

AIC is given as [86]:

AIC =−2L+2k (3.5)

In this equation, L represents the log-likelihood of the model, while k indicates the total

number of model parameters.

3.4.2 Fitting Results

The theoretical distributions discussed in (3.3.1)–(3.3.4) were used to fit the rainfall event

duration, intensity, maximum intensity and volatility data. The Nelder-Mead method was
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used to obtain the maximum likelihood estimate for the data; the implementation was

done with the optim function in R programming software.

Table 3.2: MLE fit for log(duration) using the candidates distributions

Distributions Normal Skew Normal Skew t GEV
Parameter
estimates

µ̂= 2.7537070
σ̂ = 0.9681107

µ̂= 2.74537363
σ̂ = 0.96809641
α̂= 0.01046884

µ̂= 3.464857
σ̂ = 1.135427
α̂ =−1.145593
v̂ = 18.412566

µ̂= 2.411833
σ̂ = 1.001275
ξ̂ =−0.290627

Log-Likelihood -4783.528 -4783.528 -4755.523 -4809.622
AIC 9571.055 9573.056 9519.046 9625.244

Table 3.3: MLE fit for log(intensity) using the candidates distributions

Distributions Normal Skew Normal Skew t GEV
Parameter
estimates

µ̂=−1.714289
σ̂ = 0.812129

µ̂=−2.692515
σ̂ = 1.271552
α̂ = 3.660099

µ̂=−2.672764
σ̂ = 1.226678
α̂ = 3.437406
v̂ = 44.237506

µ̂=−2.073450
σ̂ = 0.670271
ξ̂ =−0.044155

Log-Likelihood -4177.406 -3982.499 -3981.098 -3974.327
AIC 8358.813 7970.997 7970.195 7954.655

The goal here is to identify which of the candidate distributions is the best fit to model

duration, intensity, maximum intensity and volatility. For log(duration), the skew t

distribution provided the best-fit probability distribution based on the AIC criterion (see

Table 3.2), and this is further supported by the density plot in Figure 3.7 and the Q-Q

plot in Figure 1. Table 3.3 shows that the GEV distribution has the least AIC value,

which indicates that the GEV distribution demonstrates superiority over the normal,

skew normal and skew t distribution for log(intensity) (see Figure 2).
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Figure 3.7: Density plot for DIMV with fitted distributions

The presence of zero values in the volatility data poses a challenge since the logarithm of

zero is undefined. To address this issue, we adopted a specific approach. We identified the

smallest non-zero value in the volatility data, denoted as d. This value acts as an upper

threshold. Subsequently, all zero values in the dataset were located. Each zero entry
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Table 3.4: MLE fit for log(maximum intensity) using the candidates distributions

Distributions Normal Skew Normal Skew t GEV
Parameter
estimates

µ̂=−0.46593
σ̂ = 0.769539

µ̂=−1.318797
σ̂ = 1.148741
α̂ = 2.728022

µ̂=−1.251167
σ̂ = 1.031159
α̂ = 2.243361
v̂ = 17.856896

µ̂=−0.800753
σ̂ = 0.645630
ξ̂ =−0.060814

Log-Likelihood -3991.562 -3826.192 -3820.963 -3805.216
AIC 7987.124 7658.383 7649.926 7616.432

Table 3.5: MLE fit for log(volatility) using the candidates distributions

Distributions Normal Skew Normal Skew t GEV
Parameter
estimates

µ̂=−2.970285
σ̂ = 1.284601

µ̂=−4.245994
σ̂ = 1.810555
α̂ = 2.219323

µ̂=−3.940185
σ̂ = 1.015555
α̂ = 1.807691
v̂ = 2.694200

µ̂=−3.47557
σ̂ = 1.18224
ξ̂ =−0.12601

Log-Likelihood -5759.384 -5562.009 -5212.376 -5657.278
AIC 11522.77 11130.02 10432.75 11320.56

is then replaced with a uniformly distributed random number that lies between 0 and

the previously determined d. This process ensures that the zero values are substituted

with extremely small random numbers, making them suitable for a log transformation.

This method makes the transformation feasible and retains the relative scale of the data,

minimising any artificial biases that might distort the analysis. Table 3.4 and table 3.5

indicate that log(maximum) and log(volatility) are best fitted by the GEV and skew t

distribution, respectively. Identifying these distributions for DIMV sets the foundation

for univariate and joint modelling of DIMV needed to model the rainfall characteristics

accurately.
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Chapter 4

Modelling of Extreme Rainfall Events

4.1 Introduction

Investigating extreme rainfall is globally crucial, as its severe impacts span from causing

ecological havoc, and demolishing infrastructure, to claiming human lives. Thus, numer-

ous facets of human undertakings - from life insurance and civil protection to town plan-

ning, regional planning, and civil infrastructure design - derive substantial benefits from

this research [87] and extreme value theory (EVT) gives the mathematical background

for the modelling of tails of distributions that can be used in extrapolating extreme events

beyond the observed data [88], and this technique has been applied to many problems in

hydrology [89], in insurance [90], in finance [91], in environment and telecommunications

[92], in climate change [93] and in public health [94]. In practice, EVT is a mathemat-

ically motivated approach used to predict the likelihood of extreme events that are yet

to be observed and characterize their risks to build infrastructures to withstand their

impacts, such as extreme events from wind and rainfall. Statistical modelling of extreme

rainfall events is crucial to designing and managing hydrological structures such as dams,

drainages, and reservoirs [95].

The primary methods are block maxima and peak over threshold (POT). The peak-over-

threshold approach utilizes all extreme events that surpass a high threshold, whereas the

block maxima method focuses only on the highest value in a block of ordinary observa-

tions. Modelling excesses over a specific threshold will be more efficient when dealing with

large high-frequency data such as hourly or daily observations [96, 97]. POT modelling

has been used in rainfall analysis for studying the distribution of annual and seasonal

daily rainfall extremes [95], for modelling extreme flood [98], and for evaluating landslide
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episodes [99]. The aim of this chapter is to study extreme rainfall in Sunbury, Victoria,

Australia, using the POT methodology with GPD.

4.2 Peak Over Threshold (POT) Method

Consider a sequence X1,X2, ... where each element represents an independent random

variable with the same distribution function, denoted by F and let

Mn = max(X1, ...,Xn)

Let X be an arbitrary term in the sequence Xi. Suppose that for large n, Mn satisfies

the relation [96]:

Pr(Mn ≤ x)≈G(x)

where

G(x) = exp
{
−
[
1+γ

(
x−µ
β

)]−1/γ
}

(4.1)

for some µ,β > 0 and γ. Then, for a sufficiently large u, the conditional probability

distribution of (X−u), given that X exceeds u, can be approximated as follows [100]:

Gu,β,γ(x) =


1−

(
1+γ

(
x−u
βu

))−1/γ

, if 1+γ x−u
βu

> 0, and γ ̸= 0,

1− exp
(
−x−u

βu

)
, if x−u > 0, and γ = 0.

(4.2)

The distribution given by equation 4.2 is called generalized Pareto distribution (GPD),

where u is the selected threshold, βu = β+γ(u−µ)> 0 is the scale parameter, and γ ∈R

is the shape parameter.

• When γ < 0, the maximum value for the distribution of excesses is determined by

the expression u−βu/γ.

• when γ > 0, the distribution does not have an upper limit.

• when γ = 0, the distribution has no upper limits and matches an exponential dis-

tribution with an average value of βu.

64



4.3 Threshold Selection

The process of selecting a threshold is a crucial aspect in the modelling of extreme oc-

currences. In the POT method, a very high threshold will generate a few extreme values,

while a very low threshold will invalidate the model’s assumptions. Two primary guiding

tools for threshold selection are (i) Mean residual life plot and (ii) parameter stability

estimates.

4.3.1 Mean Residual Life Plot

This is a graphical approach performed prior to the parameter estimation. Consider the

sequence X1, ...,Xn i.d.d with the same distribution as X where the excesses above a

threshold u0 are following a GPD, then

E(X−u0|X > u0) = βu0

1−γ . (4.3)

If the GPD is appropriate for excesses above u0, then it should also be a valid model for

excesses above u > u0, and

E(X−u|X > u) = βu

1−γ = βu0 +γ(u−u0)
1−γ . (4.4)

That is, for u > u0, the mean excess E(x−u|x > u) is a linear function of u. In practice,

to select an appropriate threshold, the threshold u is plotted against the empirical mean

excesses
1
nu

nu∑
i=1

(x(i)−u); u < xmax (4.5)

where x(1), ...,x(nu) are the ordered nu observations exceeding u. This plot is known as

the mean residual plot or mean excess plot. The threshold u0 above which the plot starts

to be approximately linear in u indicates an appropriate threshold at which the GPD

gives a valid approximation for the distribution of the excesses [96].
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4.3.2 Parameter Stability Plot

This method examines the stability of the model’s parameter estimates at a range of

thresholds. Suppose the GPD gives a valid model for excesses over a threshold u0, for a

threshold of u> u0, the excesses should also follow a GPD with the same shape parameter

but with shifted scale parameter

βu = βu0 +γ(u−u0) (4.6)

Hence the transformed scale parameter β∗ = βu− γu remains constant with changes in

u > u0. Therefore, β∗ and γ should remain almost constant above u0, if u0 gives an

appropriate threshold for excesses to follow the GPD [101]

4.4 Parameter Estimation

Given a threshold u, the GPD parameters can be estimated using the maximum like-

lihood (MLE) method. If y1, ...,yk are the k threshold exceedances, then, taking the

log-likelihood of equation 4.2, we have

for γ ̸= 0

ℓ(θ;β,γ) =−k log(β)− (1+1/γ)
k∑

i=1
log(1+γyi/β) (4.7)

given (1+γyi/β)> 0 for i= 1, ...,k; otherwise ℓ(β,γ) =−∞.

For γ = 0

ℓ(θ;β) =−k logβ−1/β
k∑

i=1
yi. (4.8)

For the numerical maximization of equation 4.7 and equation 4.8, we can use, for example,

the Broyden-Fletcher-Goldfarb-Shannon (BFGS)
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4.5 Return Levels

The return level plot helps to answer the question of how likely an extreme event will

reoccur in the next 20, 40 or 100 years. If a GPD is a valid model for excesses above a

threshold u by a variable Y . Then, for y > u

P{Y > y|Y > u}=
[
1+γ

y−u
β

]−1/γ

. (4.9)

Therefore,

P{Y > y}= λu

[
1+γ

y−u
β

]−1/γ

. (4.10)

where λu = P (Y > u). Then, the level yt exceeded once for every t observation on average

is the answer to

λu

[
1+γ

yt−u
β

]−1/γ

= 1
t
. (4.11)

To obtain

yt =


u+ β

γ [(tλu)γ−1], for γ ̸= 0

u+β log(mλu), for γ = 0
(4.12)

As long as t is large enough to guarantee that yt exceeds u. yt is the t observation return

level. When there are nx instances noted every year, we can calculate the return level for

the t-th observation using t = M ×nx. Following this, the return level for a duration of

M years is defined as follows [96]:

zM = u+ β

γ

[
(Mnxλu)γ−1

]
, for γ ̸= 0. (4.13)

zM = u+β log(Mnxλu), for γ = 0. (4.14)

4.6 Results of Univariate Analysis

This section applies the POT method described above to the rain event duration and

intensity data. Figure 4.1 shows the rainfall event for the duration, intensity and total
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rainfall with the selected threshold method described in Section 4.3. Figure 4.3 displays

the plots of the scale and shape parameters over 80 equally separated thresholds from

50 to 180 for the duration data. Additionally, Figure 4.2 gives the mean residual life

plot for the event duration data. We used the extRemes library in R for the univariate

implementation.

Figure 4.1: Rain event duration, intensity and total rainfall with 86, 0.6, 16.5 as selected
thresholds for duration, intensity and total intensity respectively
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Figure 4.2: Rainfall duration mean residual life plot
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Figure 4.3: Parameter estimates against the threshold for rainfall duration
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Table 4.1: Return Levels with 95% Confidence Intervals of Duration

Return Level 95% Lower CI Estimate 95% Upper CI
2-year 153.3702 171.5120 189.6537
20-year 217.7998 295.1206 372.4415
30-year 221.3957 319.0663 416.7370
50-year 222.2242 350.2363 478.2485
70-year 220.4085 371.3962 522.3840
100-year 216.3361 394.3877 572.4393

Table 4.2: Parameter estimates for rain event duration data

Parameters Scale Shape Log-likelihood value Threshold
Estimates 43.30305229 0.07127485 -551.7045 86
SE 6.9633174 0.1308881

Figure 4.4: Diagnostic plots for rainfall events duration

Table 4.2 presents the maximum likelihood parameter estimates for rain event duration

data using the POT approach with the GPD. The threshold value used in the analysis is

86. Since we are interested in the annual event return level and the rainfall event data
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for duration and intensity is event-based (and not at regular time intervals), we needed

to take into account the rainfall event data points per year, and a good solution is to

estimate the average number of events per year. The data shows 3450 rainfall events for

36 years, averaging 96 yearly events. Figure 4.4 gives some diagnostic plots for the POT

model fitted to the rain event duration data. The density plot is shown in the second

column. The Q-Q plot for the fit of GPD to the duration data shows that the GPD model

adequately fits the rain event duration data, and the fit is good even at the upper tail.

The second-row first column shows the return level plot. From Table 4.1, which shows

the return levels with 95% confidence intervals for rainfall event durations ranging from

2 years to 100 years, we see that for a 100-year return period, the estimated return level

is 394.3877, with a lower confidence interval of 216.3361 and an upper confidence interval

of 572.4393.

Figure 4.5: Rainfall intensity mean residual life plot
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Figure 4.6: Parameter estimates against the threshold for rainfall intensity

Table 4.3: Return Levels with 95% Confidence Intervals for Intensity

Return Level 95% Lower CI Estimate 95% Upper CI
2-year 2.420946 2.890559 3.360171
20-year 4.794556 7.610885 10.427214
30-year 5.207918 8.902540 12.597162
50-year 5.685060 10.808672 15.932284
70-year 5.956408 12.260239 18.564070
100-year 6.189639 13.994018 21.798398
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Figure 4.7: Diagnostic plots for rainfall events intensity

Table 4.4: Parameter estimates for rain event intensity data

Parameters Scale Shape Log-likelihood value Threshold
Estimates 0.5555366 0.3441744 -176.9867 0.6
SE 0.05487924 0.07740442

Analysing rain event intensity data through the Peaks Over Threshold (POT) model

provides critical insights and challenging standard modelling approaches. The estimated

shape parameter, represented as γ, exhibits a positive value indicative of a heavy-tailed

distribution. This suggests a likelihood of extreme rainfall events within the dataset, as

shown in Table 4.4. Although the density plot initially indicated a good fit, closer exam-

ination of the quantile plot, as shown in Figure 4.7, revealed significant limitations. The

model struggles to account for three distinct extreme outliers accurately, highlighting a

notable gap in its predictive capability. This issue is particularly evident in the return
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level plot, an essential tool for assessing the extremity and frequency of significant rain-

fall events. The extreme empirical observations are expected to be encapsulated within

the model’s confidence intervals, yet these outliers are conspicuously positioned outside,

revealing a pronounced misfit.

Interestingly, the identified outliers correspond to brief events, encapsulating single-time-

point (short-duration event) occurrences rather than sustained periods of heavy rainfall.

For instance, the most extreme intensity observed—around 17.4mm within just six min-

utes—though notably high represents an isolated incident rather than a prolonged heavy

downpour. See Appendix B.2 for the details of these events. This specificity challenges

the model’s relevance for predicting flood-inducing events, as the sheer intensity doesn’t

translate to substantial accumulated rainfall. This scenario accentuates the necessity

of pivoting our analytical focus towards total rainfall, which integrates both duration

and intensity. Such a shift is pivotal for a more comprehensive understanding and fore-

casting of extreme rainfall events, advocating for a nuanced approach that transcends

mere intensity modelling. For a holistic extreme value analysis, the combined metric

of total rainfall (duration multiplied by intensity) might offer a more reliable predictor,

potentially sidelining the anomalies presented by short-duration extremes.

The current results highlight the necessity for refining our modelling approach or adopting

more sophisticated models capable of effectively representing the extreme upper tail of the

rainfall intensity distribution. Such improvements are crucial to increase the model’s pre-

dictive precision and ensure it effectively captures the essential characteristics of extreme

rainfall events.
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Figure 4.8: Total rainfall mean residual life plot
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Figure 4.9: Parameter estimates against the threshold for total rainfall
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Table 4.5: Parameter estimates for rain event total rainfall data

Parameters Scale Shape Log-likelihood value Threshold
Estimates 8.4486 0.4220 -576.0708 16.5
SE 1.1966 0.1224

Table 4.6: Return Levels with 95% Confidence Intervals for Total Rainfall

Return Level 95% Lower CI Estimate 95% Upper CI
2-year 39.62265 47.11816 54.61366
20-year 66.34175 130.28748 194.23321
30-year 67.26749 155.25832 243.24915
50-year 64.45847 193.45527 322.45208
70-year 59.23890 223.50723 387.77555
100-year 49.77344 260.38449 470.99553
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Figure 4.10: Diagnostic plots for rainfall events total intensity

The exploration of total rainfall data through applying the POT approach, in conjunc-

tion with the Generalized Pareto Distribution (GPD) model, demonstrates compelling

outcomes. The efficacy of this modelling strategy is substantiated by the diagnostic

evaluations presented in Figure 4.10, highlighting the model’s proficiency in accurately

capturing the data’s extreme value characteristics. The GPD model’s adaptation to the

total rainfall data is notably successful, accurately encapsulating the data distribution’s

intricacies, especially the extreme values that are crucial in extreme value analysis. The
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shape parameter, γ, is crucial for understanding the tail behaviour of the distribution.

The estimated value 0.4220, as shown in the parameter estimates table (Table 4.5), indi-

cates a heavy-tailed distribution. This positive shape parameter suggests that the distri-

bution has a significant propensity for extreme total rainfall events, a vital consideration

for hydrological risk assessment and infrastructure planning.

The quantile plot, an integral part of the diagnostic figures, visually represents the fit

between the empirical data and the theoretical model. The excellent alignment observed

in the quantile plot, particularly the inclusion of the most extreme rainfall event, confirms

the GPD model’s capability to model the tail of the total rainfall distribution accurately.

This alignment is a statistical success and a practical affirmation of the model’s reliability

in predicting extreme events. The return level plot further reinforces the model’s ade-

quacy. The estimated return levels from the GPD model are found to be well-aligned with

the empirical data, all lying within the model-derived confidence intervals. This unity

is essential as it underlines the model’s effectiveness in providing reliable estimates for

extreme total rainfall levels, which are crucial for designing resilient water management

and flood prevention strategies.

As substantiated by the diagnostic plots, the positive shape parameter and the good fit

of the model collectively suggest that the POT method with the GPD model is well-

suited for modelling the extremes of total rainfall data. The model’s ability to capture

the highest rainfall total events and align the return level estimates with the empirical

data within the confidence intervals enhances our confidence in its predictive power and

utility in extreme value analysis. The compelling evidence of the GPD model’s good fit,

especially its success in encapsulating the extremes, underscores its potential as a reliable

tool in extreme rainfall analysis. This leads to a nuanced understanding of the rainfall

patterns, enabling accurate risk assessments and informed decision-making for managing

the potential impacts of extreme rainfall events. Therefore, the current findings solidify

the methodological framework for total rainfall analysis, advocating its continued use and

further exploration in hydrological modelling and extreme event prediction.
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4.7 Multivariate Threshold Model using GPD

Let’s consider two sequences of vectors, {Xi} and {Yi}, that are independently and

uniformly distributed (iid), following the distribution function denoted as F (x,y). We

then define the vector of their componentwise maxima asMn = (Mx,n,My,n) whereMx,n =

max
i=1,...,n

{Xi} and My,n = max
i=1,...,n

{Yi}. As n approaches infinity, the limiting behaviour of

this vector is represented by G∗(x,y). Where G∗ is a distribution function that is not

degenerate, G∗ takes the form [102]:

G∗(x,y) = exp[−V (x,y)]; x > 0, y > 0 (4.15)

where

V (x,y) = 2
∫ 1

0
max

(
ω

x
,
1−ω
y

)
dH(ω) (4.16)

and H represents a distribution function that lies within the [0,1] range and fulfils the

requirement of the mean constraint

∫ 1

0
ωdH(ω) = 1

2 (4.17)

The six bivariate extreme value models (Table 4.7) in the POT R package was applied

in this study. The logistic (log), asymmetric logistic (alog), negative logistic (blog),

asymmetric negative logistic (anlog), mixed (mix), and asymmetric mixed (amix). The

model of bivariate threshold excess is designed to estimate the joint distribution F (x,y)

in areas where x > ux and y > uy, given sufficiently large ux and uy. When appropriate

thresholds are in place, each of the marginal distributions of F can be approximated using

a univariate GPD [103]. The marginals x and y are transformed as [102]:

x∗ =−

log
(

1− ζux

[
1+γx

(
x−ux

βu

)])−1/γx
 (4.18)

and

y∗ =−

log
(

1− ζuy

[
1+γy

(
x−uy

βu

)])−1/γy
 (4.19)
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(x∗,y∗) are Fréchet transformed variables for X > ux, and Y > uy while ζu gives the

exceedance rate.

F (x,y)≈G∗(x,y) = exp[−V (x∗,y∗)]; x > ux, y > uy (4.20)

Table 4.7: Bivariate Extreme Value Models

Model V (y1,y2) [104] Independence Dependence

log
(
y

−1/α
1 +y

−1/α
2

)α

, 0< α≤ 1 α = 1 α→ 0

alog 1−t1
y1

+ 1−t2
y2

+
[(

y1
t1

)− 1
α

+
(

y2
t2

)− 1
α

]α

, α = 1 α→ 0

0< α≤ 1,0≤ t1, t2 ≤ 1 t1 = 0 or t2 = 0

nlog 1
y1

+ 1
y2
−
(
yα

1 +yα
2

)− 1
α

, α > 0 α→ 0 α→+∞

anlog 1
y1

+ 1
y2
−
[(

y1
t1

)α

+
(

y2
t2

)α
]− 1

α

, α > 0 α→ 0 α→+∞

0< t1, t2 ≤ 1

mix 1
y1

+ 1
y2
− α

y1+y2
, 0< α≤ 1 α = 0

amix 1
y1

+ 1
y2
− (α+t)y1+(α+2t)y2

(y1+y2)2 α = t= 0

α≥ 0, α+2t≤ 1, α+3t≥ 0

The measure of dependence χ for bivariate variables is employed to quantify extreme

dependence. Assuming W1 and W2 are random variables and suppose F1(W1) and F2(W2)

are transforms of W1 and W2 using F , χ is defined as [105]:

χ= lim
u→1

Pr(F2(W2)> u|F1(W1)> u) (4.21)

for 0< u < 1,

χ(u) = 2− logPr(F1(W1)< u,F2(W2)< u)
logPr(F1(W1)< u) (4.22)

= 2− logPr(F1(W1)< u,F2(W2)< u)
log(u) (4.23)
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then

χ= lim
u→1

χ(u).

For asymptotically independent variables, χ(u) = 0 for all u in (0,1), and for totally

dependent variables, χ(u) = 1 for all u in (0,1).

4.8 Results and Discussion of the Bivariate Analysis

The bivariate GPD models described above were applied to the rain event duration and

intensity data. The thresholds used during the univariate extreme value analysis for rain

event duration and intensity were adopted. The parameter estimates were obtained by

numerical optimization of the loglikelihood function using the POT Package in R [104].

Table 4.8: Bivariate Model Comparison: Parameter Estimates, Deviance, and AIC

Parameters log alog nlog anlog mix amix
βx 39.332 39.373 43.306 39.3756 39.36 39.27280
γx 0.040 0.125 0.071 0.1167 0.0915 0.14775
βy 0.439 0.454 0.556 0.5144 0.541 0.50007
γy 0.316 0.300 0.344 0.3399 0.374 0.30261
t -0.0369
t1 0.796 0.5095
t2 0.858 0.7487
α 0.999 0.999 0.02844 0.2009 0.0005 0.1111

Deviance 4182.183 4179.283 4170.093 4178.074 4170.915 4183.251
AIC 4192.183 4193.283 4180.093 4192.074 4180.915 4195.251
χ 0.001 0.001 0 0.02 0 0.028
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Figure 4.11: Estimates of χ(u) Figure 4.12: Estimates of χ̄(u)

From the bivariate result in Table 4.8, the negative logistic provides the best fit for

the joint extremes of rainfall event duration and intensity by possessing the least AIC

(4180.093) and deviance value (4170.093), and the bivariate extreme value model using

the negative logistic distribution gave a χ= 0 which indicates extremal independence be-

tween rainfall event duration and intensity. Using the negative logistic bivariate GPD for

the duration and intensity of the rain event, we generated 1000 sample points, as shown

in Figure 4.13. Figure 4.14 gives bivariate return level plot for rainfall event duration and

intensity. The bivariate negative logistic (nlog) model is proficient at examining positive

dependencies between extreme values in two variables. It effectively captures scenarios

where such extremes are positively correlated. Despite its strengths, the model lacks a

detailed parametric structure for inter-marginal dependencies. It restricts its ability to

predict scenarios where an extreme event in one variable would correspond to a non-

extreme event in the other [103]. Consequently, its effectiveness is reduced in situations

requiring the analysis of negative or inverse correlations between extreme events, espe-

cially when these extreme values are not concurrently occurring. The dependence param-

eter (α) within the model is tailored to highlight positive extremal dependencies, lacking

the functionality to address negative dependencies. This limitation confines the model’s

use in applications necessitating forecasting negative extremal dependencies. Here, we
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identified the negative bivariate logistic model as the most optimal among tested bivariate

models for representing joint extreme duration and intensity data. However, as we can

see from comparing simulations and original data in Figure 4.13, even the best bivariate

extreme value distribution constitutes a poor fit, and we do not pursue this route any

further.
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Figure 4.13: Simulated bivariate plot vs actual data

Figure 4.14: Bivariate return level plot for rainfall
event duration and intensity
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Chapter 5

Marginal Modelling with Explicit Tail Decay

5.1 Introduction

Modelling real-life processes involving extreme events, like rainfall, may pose challenges

because of their unforeseeable characteristics. However, we can fit a GPD to the tail of

the data using a suitable threshold. This approach allows us to model extreme events

accurately. However, how do we simultaneously model the rest of the distribution? This

question is crucial since most of the data is in the non-extreme region. Finding a straight-

forward closed-form probability distribution suitable for fitting such events might not al-

ways be feasible. Given this challenge, several statistical techniques have been proposed

for modelling this data type, like the kernel density estimation approach [106] and the

non-parametric Bayesian framework [107, 108] and mixture models.

To model this data type, we are modelling a 1-dimensional distribution using differ-

ent parametric forms for different domain segments. The parametric modelling process

typically necessitates employing a parametric hybrid model. In this structure, each hy-

brid component is uniquely tailored to manage a distinct data segment, enhancing the

model’s effectiveness and precision. Examples of such hybrid models defined and studied

in the literature include the composite lognormal-Pareto model [109], the hybrid Pareto

model [110], the hybrid exponential distribution [50], Normex - mixed normal [111], the

lognormal-Burr model [112], the gaussian-exponential-GPD [113], right-truncated com-

posite lognormal-Pareto distribution [114] and the three-Part composite Pareto [115].

If the data exhibits a heavy-tailed nature, the tail component can be accurately modelled

using the GPD [116]. Simultaneously, an alternative distribution may handle the bulk
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of the data. In the case of right-tailed asymmetric data sets, a distribution that aligns

with the bulk of the data is selected and combined with the GPD, with an intermediate

distribution serving as a bridge between the two. The three-component hybrid model

extends the foundational two-part composite Pareto framework initially presented by

Cooray and Ananda [109]. The choice of a three-component model over a simpler two-

component model is motivated by the requirement for a more detailed representation of

the data. This additional component offers a refined modelling capacity, particularly for

datasets exhibiting intermediate behaviours or transitional states, which two-component

models do not adequately capture. Such a detailed approach is essential for applications

where overlooking these intermediate behaviours could result in significant modelling

biases or inaccuracies, where the mid-range dynamics are as crucial as the tails [117].

This chosen distribution for the main innovation is expected to represent the data’s

mean characteristics. The three distributions that comprise the three-component hybrid

system are each given a separate scaling. As a result, the three-component hybrid model

would contain two junction points. If unnecessary elements are added, the space between

two consecutive junction points naturally approaches zero [113].

This chapter presents the development of a hybrid model designed for fitting rainfall

event data (heavy-tailed) by extending and generalising G-Exp-GPD, the work of Deb-

babi et al. [113]. Here, the exponential distribution’s incorporation as the intermediate

component to connect the mean and asymptotic behaviours of the data is pivotal. The

exponential distribution offers a mathematically tractable option that ensures continuity

and differentiability in the model. It bridges the gap between the central data bulk and

the extreme tails, providing a smooth transition that is essential for the overall cohesive-

ness and effectiveness of the model. The choice of this distribution is strategic, leveraging

its simplicity and analytical tractability to model the moderately extreme events or the

tail of the central data distribution, thereby enriching the model’s capacity to accu-

rately represent the entire data spectrum. We introduce an F-Exp-GPD model where

’F’ is optimally fitted to the considered data. This approach enhances the model’s fit

and deepens our understanding of the fundamental processes that generate the observed
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data, contributing significantly to the field rainfall event simulation.

5.2 The New Hybrid Distribution

Suppose we have non-negative data with a heavy right tail. The objective is to employ

a piecewise model to fit the data. Let f(x;θ) denote a valid density function with pa-

rameter vector θ. It’s assumed that f(x;θ) is continuous, and its first derivative exists.

Furthermore, consider e(x;λ) as the density function of the exponential distribution with

the rate parameter λ defined as:

e(x;λ) = λe−λx; λ > 0, x > 0 (5.1)

The cdf corresponding to the density in Equation 5.1 can be represented as:

E(x;λ) = 1− e−λx; λ > 0, x > 0 (5.2)

The cdf in Equation 5.2 has a corresponding inverse (quantile function) given by:

Q1(u) =−1
λ

log(1−u); λ > 0, 0< u < 1 (5.3)

Let g(x;γ,β) be the density function of the generalized Pareto distribution (GPD), with

γ and β as the shape and scale parameters respectively (β > 0), and it can be expressed

as:

g(x;γ,β) =


1
β

(
1+ γ

βx
)−1− 1

γ if γ ̸= 0
1
β e

− x
β , if γ = 0

(5.4)

For all x ∈D(γ,β). Let D(γ,β) represent the domain of g, then:

D(γ,β) =


[0,∞) if γ ≥ 0[
0,−β

γ

]
if γ < 0

The cdf corresponding to the density in Equation 5.4 can be articulated as:
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G(x;γ,β) =


1−

(
1+ γ

βx
)− 1

γ if γ ̸= 0

1− e− x
β if γ = 0

(5.5)

The inverse of the cdf in Equation 5.5 can be formulated as:

Q2(u) =


β
γ [(1−u)−γ−1] if γ ̸= 0

−β log(1−u) if γ = 0
(5.6)

where 0< u < 1.

Figure 5.1: Hybrid F-Exp-GPD

Let f(x;θ) be the density used to model the bulk, with CDF F (x;θ). We define a three-

component hybrid F-Exponential-GPD model by the pdf of the form
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h(x;θ,λ,γ,β, t1, t2, r1, r2, r3) =


r1f(x;θ) if −∞< x≤ t1

r2e(x;λ) if t1 < x≤ t2

r3g(x− t2;γ,β) if t2 < x <∞

(5.7)

where r1, r2, and r3 denote the weight corresponding to each density part, h. An example

of the new hybrid density is illustrated using Figure 5.1

Firstly, the model presumes that h is non-negative and functions as a valid density. Thus

integrating h(x;θ) over all x yields one. This translates to r1F (t1;θ)+r2(E(t2)−E(t1))+

r3 = 1. Secondly, the model assumes that h is continuous and differentiable at the two

junction points or thresholds t1 and t2. The cdf corresponding to the hybrid density, h

can be expressed as

H(x;Θ) =


r1F (x;θ) if −∞< x < t1

r1F (t1;θ)+ r2(e−λt1− e−λx) if t1 < x≤ t2

1− r3(1+ γ
β (x− t2))−1/γ if t2 < x <∞

(5.8)

The quantile function is derived in Appendix C.1 and given by

H−1(u;Θ) =



F−1( u
r1

;θ) if u≤ u1 = r1F (t1;θ)
1
λ log

[
r2

u1−u+r2e−λt1

]
if u1 ≤ u≤ u2 = 1− r3

β
γ

[
(1− u−u2

r3
)γ−1

]
+ t2 if u≥ u2


(5.9)

Matching the cdf and pdf and matching their derivatives we have


r1F (t1;θ) = r2e(t1;λ); r1F

′(t1;θ) = r2e
′(t1;λ)

r2e(t2;λ) = r3g(x− t2;γ,β); r2e
′(t2;λ) = r3g

′(x− t2;γ,β)
(5.10)
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Using the model assumptions and resolving Equation 5.10 we have



λ=−f ′(t1;θ)
f(t1;θ) ; r1 = r2

e(t1;λ)
f(t1;θ)

β = γ+1
λ ; r2 =

[
(λβ−1)e−λt2 +(1+λ

F (t1;θ)
f(t1;θ) )e−λt1

]
r3 = βr2e(t2;λ)

(5.11)

Thus Θ = (θ, t1, t2,γ) is the number of free parameters to be estimated.

5.3 Specific Cases of the Hybrid Model

5.3.1 St-Exp-GPD

Suppose f(x;θ) is the density function of the Skew t distribution with θ= (µ,σ,α,v) where

µ,σ,α and v are location, scale, shape and degrees of freedom parameters respectively.

The pdf of the Skew t can be written as

f(x;µ,σ,α,v) = 2
ω
t(z;v)T (αz

√
v+1
v+ z2 ;v+1) x ∈R (5.12)

where z = x−µ
σ . t(·;v) and T (·;v+1) are the pdf and cdf of the student t distributions re-

spectively. Also F (x;µ,σ,α,v) and F−1(P ;µ,σ,α,v) are the cdf and the quantile function

of the Skew-t distribution respectively. Now, we have that

f ′(u1;µ,σ,α,v) = dz

dx

df

dz
(5.13)

where dz
dx = 1

ω and df
dz = 2

ω

[
v du

dz +udv
dz

]
Therefore

df

dz
= 2
ω

[
(−z(v+1)

v
)
(

1+ z2

v

)−1
t(z,v)T (p;v+1)+ t(z,v)t(p;v+1)α(v+1)

1
2

v

(v+ z2) 3
2

]
(5.14)
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Then

df

dx
= 2
ω2 t(z,v)

[(−z(v+1)
v

)(
1+ z2

v

)−1
T (p;v+1)+ t(p;v+1)α(v+1)

1
2

v

(v+ z2) 3
2

]
(5.15)

Appendix C.2 gives the r functions for St-Exp-GPD.

5.3.2 Sn-Exp-GPD

Suppose f(x;θ) is the density function of the Skew-Normal distribution with θ= (µ,σ,α),

where µ,σ and α are location, scale and shape parameters respectively, we have that

f(x;µ,σ,α) = 2
σ
ϕ(x−µ

σ
)Φ[α(x−µ

σ
)] α ∈R; x ∈R, σ > 0, x≥ µ (5.16)

Where ϕ(·) and Φ(·) are the normal distribution’s pdf and cdf, respectively. Also,

F (x;µ,σ,α) and F−1(u;µ,σ,α) are the cdf and quantile function of the Skew-Normal

distribution respectively.

We realise that

f ′(t1;µ,σ,α) = 2
σ

{
ϕ′
(
t1−µ
σ

)
Φ
[
α
(
t1−µ
σ

)]
+ϕ

(
t1−µ
σ

)
Φ′
[
α
(
t1−µ
σ

)]}

= 2
σ

{
α

σ
ϕ
[
α
(
t1−µ
σ

)]
ϕ
(
t1−µ
σ

)
−
(
t1−µ
σ2

)
ϕ
(
t1−µ
σ

)
Φ
[
α
(
t1−µ
σ

)]}

=
2ϕ
(

t1−µ
σ

)
σ2

{
αϕ
[
α
(
t1−µ
σ

)]
−
(
t1−µ
σ2

)
Φ
[
α
(
t1−µ
σ

)]}
(5.17)

Appendix C.3 provides the r functions for Sn-Exp-GPD.

5.3.3 GEV-Exp-GPD

Let f(x;θ) be the density function of the GEV distribution with θ = (µ,σ,k) where

µ,σ and k are location, scale and shape parameters respectively. The pdf of the GEV

distribution can be written as

f(x;µ,σ,k) = 1
σ

[v(x)]k+1e−v(x); µ ∈R, σ > 0, k ∈R, x ∈D(µ,σ,k) (5.18)
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where

v(x) =
[
1+k

(
x−µ
σ

)]−1/k

(5.19)

and

D(µ,σ,k) =


[µ− σ

k ,∞) when k > 0

(−∞,∞) when k = 0

[−∞,µ− σ
k ] when k < 0

(5.20)

Also, let F (x;µ,σ,k) and F−1(P ;µ,σ,k) be the cdf and quantile function of the GEV

distribution respectively.

Then

f ′(x;µ,σ,k) = 1
σ

{
−v′(x)

[
v(x)

]k+1
e−v(x) +(k+1)v′(x)

[
v(x)

]k

e−v(x)
}

= 1
σ

{
(k+1)v′(x)

[
v(x)

]k+1[
v(x)

]−1
e−v(x)−v′(x)

[
v(x)

]k+1
e−v(x)

}

= v′(x) 1
σ

[
v(x)

]k+1
e−v(x)

{
(k+1)[v(x)]−1−1

}

= v′(x)f(x;µ,σ,k)
{

(k+1)[v(x)]−1−1
}

(5.21)

where

v′(x) =− 1
σ

[
1+k(x−µ

σ
)
]−1/k−1

(5.22)

Appendix C.4 gives the r functions for GEV-Exp-GPD.

Table 5.1: Three Hybrid Models and their Parameters

Parameters ST-Exp-GPD SN-Exp-GPD GEV-Exp-GPD
f µ,σ,α,v µ,σ,α µ,σ,k,
Exp λ λ λ
GPD γ,β γ,β γ,β
Threshold t1, t2 t1, t2 t1, t2
Weights r1, r2, r3 r1, r2, r3 r1, r2, r3
Total number of
parameters

12 11 11

Number of free
parameters

7 6 6

The ST-Exp-GPD, SN-Exp-GPD, and GEV-Exp-GPD models possess 7, 6, and 6 degrees
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of freedom respectively. The corresponding sets of free parameters for each model are

θ = [µ,σ,α,v, t1, t2,γ] for ST-Exp-GPD, θ = [µ,σ,α,t1, t2,γ] for SN-Exp-GPD, and θ =

[µ,σ,k, t1, t2,γ] for GEV-Exp-GPD.

5.4 Maximum Likelihood Estimation of the Parameters of

the Hybrid Model

The parameter estimation process for a parametric family of distributions, through the

maximum likelihood method, encompasses maximising the loglikelihood function. This

maximization pertains to the distribution parameters, contingent on a random indepen-

dent sample of size n derived from the distribution above. The maximum likelihood

estimator (MLE) converges to the true parameter as the sample size increases, and the

MLE is asymptotically efficient. Considering a density function, denoted as h(x;Θ), that

contains an unknown parameter vector Θ, along with rainfall event data, expressed as

x1,x2, . . . ,xn and the loglikelihood function can thus be defined as:

L=
n∑

i=1
ln(h(xi;Θ)). (5.23)

Suppose Θ is the unknown parameter vector; the associated score function is given by

U(Θ) = ∂L

∂Θi
,

The partial differentiation of the loglikelihood function with respect to the ith parameter

in the vector is represented by the expression ∂L
∂Θi

. Solving the system of equations U(Θ) =

0 gives us the maximum likelihood estimate of Θ. When these systems of equations do

not have a straightforward analytical solution, numerical methods can be employed to

find the solutions. For this purpose, the maxLik library in R was utilized to implement

the numerical solution process.
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5.5 Simulation Study

In this section, we conduct a simulation study to evaluate the effectiveness and precision

of the hybrid distribution’s Maximum Likelihood Estimates (MLEs). We generate 100

samples, each with sizes of n = 1000, 10000, and 20000, across various parameter values,

utilizing the quantile function of the Hybrid distribution. For each generated sample, we

derive the MLEs, which are then employed to calculate values for the specified metrics

using R (Here Θ = (µ,σ,k, t1, t2,γ)).

(i) Mean (ME) = 1
N

N∑
i=1

Θ̂

(ii) Average Bias (AB) = 1
N

N∑
i=1

(
Θ̂−Θ

)

(iii) Root Mean Square Error (RMSE) =

√√√√ 1
N

N∑
i=1

(
Θ̂−Θ

)2

(iv) The average width (AW) of 95% confidence intervals for the parameters, Θ.
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Table 5.2: Results of Monte-Carlo simulations for µ= 2.5, σ = 1, k = 0.5, t1 = 4.5, t2 = 5,
and γ = 0.2

Parameters 103 104 2×104

µ= 2.5

MEµ̂ 2.5221 2.5039 2.5029
ABµ̂ 0.0221 0.0039 0.0029

RSMEµ̂ 0.0614 0.0217 0.0146
AWµ̂ 0.2392 0.0808 0.0608

σ = 1

MEσ̂ 1.0404 1.0083 1.0042
ABσ̂ 0.0403 0.0083 0.0042

RSMEσ̂ 0.0971 0.0368 0.0226
AWσ̂ 0.4079 0.1359 0.1022

k = 0.5

MEk̂ 0.5305 0.5074 0.5031
ABk̂ 0.0305 0.0074 0.0031

RSMEk̂ 0.0826 0.0323 0.0197
AWk̂ 0.3681 0.1228 0.0914

t1 = 4.5

MEt̂1
4.2629 4.4720 4.5210

ABt̂1
-0.2371 -0.0280 0.0210

RSMEt̂1
0.7947 0.6542 0.5925

AWt̂1
4.3107 2.8296 2.4143

t2 = 5

MEt̂2
5.6904 5.2867 5.0365

ABt̂2
0.6904 0.2867 0.0364

RSMEt̂2
1.5287 1.0783 0.6306

AWt̂2
5.6960 3.5688 1.9631

γ = 0.2

MEγ̂ 0.2303 0.2092 0.2072
ABγ̂ 0.0303 0.0092 0.0072

RSMEγ̂ 0.1081 0.0327 0.0221
AWγ̂ 0.4246 0.1196 0.0879

Table 5.2 presents the values of four metrics: mean (ME), average bias (AB), root mean

squared error (RMSE), and average width (AW) for the parameters across varying sample

sizes of n = 103, 104, and 2× 104. Our observations from the results reveal that the

average bias and RMSE tend to decrease with the increment in sample size. Furthermore,

as the sample size increases, the average width of these confidence intervals shows a

decreasing trend. Consequently, the MLEs and their asymptotic properties can effectively

be employed for parameter estimation and confidence interval construction, particularly

for reasonable sample sizes.
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5.6 Application to Rain Events Data and Discussion

To show the usefulness of the newly proposed hybrid models, we employed the three con-

structed distributions: St-Exp-Gpd, Sn-Exp-Gpd, and Gev-Exp-Gpd. For comparative

analysis, the G-Exp-GPD model by Debbabi et al. [113] was also incorporated to fit the

duration and intensity of rainfall events. The Maximum Likelihood Estimation (MLE)

technique estimated these distributions’ parameters. The computational execution was

conducted in the R environment. Herein, the loglikelihood function was optimised by

applying the Nelder-Mead method. The parameter estimates, loglikelihood, and AIC

values of all the fitted hybrid distribution models are given in Table 5.3 and Table 5.4

for log(duration) and log(intensity). Figure 5.2 and Figure 5.4 provides a graph of all

the hybrid model densities alongside the histogram of log(duration) and log(intensity).

Figure 5.3 and Figure 5.5 give the QQ plots for the fitted hybrid models for log(duration)

and log(intensity) data, respectively.

Table 5.3: MLE fit for log(duration) using the hybrid models

Distributions ST-Exp-GPD SN-Exp-GPD GEV-Exp-
GPD

G-Exp-GPD

Parameter
estimates

µ= 3.3223
σ = 1.0062
α =−0.8496
v = 9.3070
t1 = 4.4579
t2 = 5.5032
γ =−0.6029

µ= 3.6434621
σ = 1.3199
α =−1.8017
t1 = 4.3066
t2 = 5.5735
γ =−0.6551

µ= 2.3854
σ = 0.8999
k =−0.5771
t1 = 3.5858
t2 = 4.7943
γ =−0.3316

µ= 2.7547
σ = 0.9400
t2 = 5.3753
γ = 0.0508

LogLikelihood -4754.263 -4760.153 -4750.769 -4784.212
AIC 9522.526 9532.306 9513.538 9576.424

98



Figure 5.2: Density plot for log(duration) using the hybrid models

Figure 5.3: Q-Q plot for log(duration) with the hybrid Models
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The results indicate that the GEV-Exp-GPD model is the most suitable among the hy-

brid models for describing the duration and intensity of rainfall events. The observed

lowest AIC and highest loglikelihood values (see Table 5.3 and Table 5.4) are also better

than the AIC values for the skew t distribution for log(duration) (see Table 3.2) and GEV

distribution for log(intensity) (see Table 3.3) in Chapter 3. This validates the GEV-Exp-

GPD’s efficacy in capturing the data’s underlying distribution. The model’s versatility in

accommodating different distributional characteristics highlights its potential for other

hydrological applications where the bulk and tail behaviour must be accurately repre-

sented. The presence of zero or near-zero values in log-transformed rain event durations

results from including very short events, such as those lasting only 1.00 (6 mins). Despite

their brevity, these values are critical for a detailed analysis of rainfall patterns, rep-

resenting the lower end of event durations. By including these short events, our model

comprehensively captures the full range of rainfall dynamics, emphasizing the significance

of even the briefest rain events.

Table 5.4: MLE fit for log(intensity) using the hybrid models

Distributions ST-Exp-GPD SN-Exp-GPD GEV-Exp-
GPD

G-Exp-GPD

Parameter
estimates

µ=−2.6181
σ = 1.1143
α = 2.8803
v = 11.7954
t1 = 0.1753
t2 = 1.3350
γ =−0.1439

µ=−2.6667
σ = 1.2231
α = 3.3404
t1 = 0.015
t2 = 1.5235
γ =−0.0443

µ=−2.0738
σ = 0.6697
k =−0.0444
t1 = 1.5445
t2 = 1.8309
γ =−0.0176

µ=−1.731
σ = 0.7804
t2 = 0.6712
γ = 0.3773

LogLikelihood -3989.025 -3978.132 -3970.288 -4123.839
AIC 7992.05 7966.447 7952.576 8255.678
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Figure 5.4: Density plot for log(intensity) with the hybrid models

Figure 5.5: Q-Q plot for log(intensity) with hybrid Models
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Furthermore, the Skew t-Exp-GPD model is also a good fit for the rainfall event duration,

as evident from the density and QQ plots. From Figure 5.3 and Figure 5.5, the QQ plots

reveal that our hybrid models adequately fit the bulk and tail of the rainfall duration and

intensity. From the results of γ in Table 5.3 and Table 5.4, we can see that our rainfall

duration and intensity have a light tail with γ < 0. The outcomes of this research exhibit

promising implications for modelling rainfall event duration and intensity using the gen-

eralized F-Exp-GPD framework. By introducing an arbitrary distribution F, where F is

the best fit marginal distribution for the dataset, this study enriches the flexibility of the

hybrid modelling approach. This approach considers the Gaussian and GPD to represent

the bulk and tail behaviour and adapts to the dataset’s unique characteristics through

the F distribution.

102



Chapter 6

Dependence Modelling

6.1 Introduction

Rainfall events are summarized by duration, intensity, maximum intensity and volatility.

The dependence modelling of these variables is essential to understanding the relation-

ship between the different rainfall properties and their impact on various hydrological

processes. The multivariate Gaussian distribution is one of the most popular models

used. Multivariate Gaussian distributions are rarely adequate for summarising multivari-

ate data because the univariate margins may be skewed or heavily tailed, and the joint

distribution may exhibit tail dependency or asymmetries stronger than Gaussian depen-

dence [118]. From the data, we can see that there is no apparent multivariate distribution

to model the dependence of the data; therefore, we are proposing the copula approach as

it can be used to model complex dependencies [118] and has been applied in multivariate

modelling of hydrological variables [119].

6.2 Copula

Copulas are flexible functions that join two or more univariate distribution functions to

create a multivariate distribution for modelling the dependence structure of variables

independent of their marginal distributions. Sklar’s theorem is the foundation for the

development and applications of copula theory. Given the m-dimensional random vector

Y = (y1, ...,ym) with univariate marginal distributions Fi(yi) for i= 1, ...,m Sklar theorem

states that the joint distribution can be defined as [120]:

F (y1, ...,ym) = C(F1(y1), ...,Fm(ym)) (6.1)
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Where C(.) is a m-dimensional copula that converts the marginal uniform distributions

to their multivariate CDF defined in [0,1]m −→ [0,1].

Definition 6.2 (Copula)[121]: A m-dimensional copula, denoted as C, is a function that

fulfils the following requirements:

• Dom C = Im = [0,1]m

• C has margins Cm satisfying Cm(u) = C(1, ...,1,u,1, ...,1) = u ∀u ∈ I

When m is two, we have a bivariate or 2-dimensional copula C with domain I2 given the

following terms.

• ∀ u,w in I

C(u,0) = 0 = C(0,w) (6.2)

and

C(u,1) = u and C(1,w) = w; (6.3)

• ∀ u1,u2,w1,w2 in I ∋ u1 ≤ u2 and w1 ≤ w2

C(u2,w2)−C(u2,w1)−C(u1,w2)+C(u1,w1)≥ 0 (6.4)

Numerous bivariate copula families exist, each with distinct properties such as tail depen-

dence and asymmetric behaviour. Transitioning from bivariate to multivariate copulas

is complex due to the need for precise yet adaptable models. Historically, only elliptical

(containing the Gaussian and t-copula) and Archimedean families (including Clayton and

Gumbel copulas) were considered multivariate, but they had symmetry and tail depen-

dency limitations. Vine copulas overcome these limits by building a multivariate model

solely from bivariate copulas.

If variablesX and Y represent rainfall events log(duration) and log(intensity) respectively,

with HX(x) and HY (y) being their respective distribution function, then the joint pdf of
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X and Y can be expressed as [121]:

HX,Y (x,y) = C
(
HX(x),HY (y);θ

)
= C(u,w;θ) (6.5)

The parameter θ is the variable linked to the copula function, u=HX(x) and w=HY (y).

6.2.1 Measure of Dependence

In this section, we discuss the measures of dependence in copulas, notably Kendall’s tau

and Spearman’s rho.

Definition 6.2.1 (Concordance) [24]: if (Xi,Yi)T and (Xj ,Yj)T are two pairs of observa-

tions of the continuous random variable (X,Y )T then (Xi,Yi)T and (Xj ,Yj)T are concor-

dant and discordant when (Xi−Xj)(Yi−Yj)> 0 and (Xi−Xj)(Yi−Yj)< 0 respectively.

Definition 6.2.2 (Kendall Tau) [122]: Given the random vector (X,Y )T the Kendall tau

is defined by the expression:

τ(X,Y ) = Pr{(Xi−Xj)(Yi−Yj)> 0}−Pr{(Xi−Xj)(Yi−Yj)< 0} (6.6)

Theorem 6.2.1 [122]: Given the continuous random variables X and Y with marginal

distributions F and G, then the Kendall tau is given as

τ(X,Y ) = 4
∫ ∫

I2C2(u,w)dC1(u,w)−1 (6.7)

τ(X,Y ) = 4E(C(U,W ))−1 (6.8)

Proof : See [121]

The theoretical Kendall’s tau of the different bivariate copulas used in this study is listed

in Table 6.1.

Definition 6.2.3 (Spearman’s rho) [122]: Given the random vector (X,Y )T the Spear-
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man’s rho is defined by the expression

ρs(X,Y ) = 3(Pr{(Xi−Xj)(Yi−Yj)> 0}−Pr{(Xi−Xj)(Yi−Yj)< 0}) (6.9)

Theorem 6.2.2 [121]: Given the continuous random variables X and Y with marginal

distributions F and G and joint distribution functions H1 and H2, respectively, If C

denote their copula, then the Spearman’s rho is given as

ρs(X,Y ) = 12
∫ ∫

I2 u,wdC(u,w)−3 = 12
∫ ∫

I2C(u,w)dudw−3 (6.10)

Let U = F (X) and W =G(Y ), then

ρs(X,Y ) = 12
∫ ∫

I2 u,wdC(u,w)−3 = 12E(UW )−3 (6.11)

= E(UW )−1/4
1/12 = E(UW )−E(U)E(W )√

V ar(U)
√
V ar(W )

(6.12)

6.2.2 Tail Dependence

A measure of dependence strength in a multivariate distribution’s joint lower or upper tail

is known as tail dependence. It represents a metric that describes the extent of extreme

dependence between two random variables [123]. The coefficient of tail dependency is a

conditional probability that ranges from 0 to 1.

Lower tail dependence for a bivariate copula [17]:

ΛL = lim
q↘0+

Pr{X ≤ F−1
X (q)|Y ≤G−1

Y (q)}= lim
q↘0+

C(q,q)
q

(6.13)

If ΛL ∈ (0,1], and ΛL = 0, then the copula, C has lower tail dependence and lower tail

independence respectively.

Upper tail dependence for a bivariate copula:

ΛU = lim
q↗1−

Pr{X > F−1
X (q)|Y > G−1

Y (q)}= lim
q↗1−

1−2q+C(q,q)
1− q (6.14)
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If ΛU ∈ (0,1], and ΛU = 0, then the copula, C has upper tail dependence and upper tail

independence respectively. Where q is the quantile of X and Y . The upper and lower

tail dependence of the copulas used in research is given in Table 6.2.

6.2.3 Copula family

This study utilized different copulas that can be used to capture negative and positive

dependence: the Normal, t, Frank, Clayton, Gumbel, Joe, and Tawn Copula. The density

functions of these bivariate copulas are as follows:

• Normal Copula [124]: for θ ∈ (−1,1)

C(u,w;θ) = 1√
1− θ2 exp

(
2θΦ−1(u)Φ−1(w)− θ2(Φ−1(u)2 +Φ−1(w)2)

2(1− θ2)

)
(6.15)

where Φ−1(·) corresponds to the inverse of the standard normal distribution function

• t Copula [125]: for θ ∈ (−1,1) and v ∈ (2,∞)

C(u,w;θ,v) = Γ((v+2)/2)
Γ(v/2)πv

√
1− θ2

(
1+ x2−2θxy+y2

v

)−(v+2)
2

(6.16)

where x = t−1
v (u), y = t−1

v (w) and tv is the Student’s t distribution with v degree

of freedom

• Clayton Copula [119]: for θ ∈ (0,∞)

C(u,w;θ) = (u−θ +w−θ−1)−1/θ (6.17)

• Frank Copula [119]: for θ ∈ (−∞,∞), θ ̸= 0

C(u,w;θ) = −1
θ

ln
[
1+ (e−θu−1)(e−θw−1)

e−θ−1

]
(6.18)

• Joe Copula [126]: for θ ∈ (1,∞)

C(u,w;θ) = 1− [(1−u)θ +(1−w)θ− (1−u)θ(1−w)θ]1/θ (6.19)
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• Gumbel Copula [127]: for θ ∈ [1,∞]

C(u,w;θ) = exp
{
− [(− lnu)θ +(− lnw)θ)]1/θ

}
(6.20)

• Tawn Copula [128, 17]: for θ ∈ [1,∞) and t ∈ [0,1]

C(u,w;θ) = (u,w)exp{A(φ)} (6.21)

with φ= log(u)
log(uw) and A(·) is the Tawn copula Pickand function given as:

A(t) = (1−ψ2)(1− t)+(1−ψ1)t+
[
(ψ1(1− t))θ +(ψ2t)θ

]1/θ

(6.22)

with 0≤ ψ1,ψ2 ≤ 1.

The Tawn copula is a Gumbel copula with two extra asymmetry parameters, ψ1 and ψ2.

We obtain the Gumbel copula when both of these parameters equal 1 [128]. The Type

1 and Type 2 Tawn copulas, which refer to ψ2 = 1 and ψ1 = 1 [17]. The normal and t

copulas belong to the class of elliptical copulas. The Frank, Clayton, Joe, and Gumbel

copulas belong to the Archimedean copulas, while the Tawn copula is an extreme value

copula (see [123] for definition of copula classes).

Table 6.1: Kendall Tau of different bivariate copula families [17]

Copula Families Kendall Tau Range of τ
Normal 2

π arcsinθ [−1,1]
t 2

π arcsinθ [−1,1]
Clayton θ

θ+2 [0,1]
Frank 1− 4

θ +4D(θ)
θ with D(θ) =

∫ θ
0

x/θ
exp(x)−1 dx (Debye function) [129] [−1,1]

Joe 1+ 4
θ2
∫ 1
0 x log(x)(1−x)2(1−θ)/θ dx [0,1]

Gumbel 1− 1
θ [0,1]

Tawn Type 1
∫ 1
0

t(1−t)A
′′

(t)
A(t) with A(t) = (1−ψ1)t+[(ψ1(1− t))θ + tθ]1/θ [0,1]
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Table 6.2: Tail Dependence of different bivariate copula families (− means undefined)
[15]

Copula Families Lower Tail Dependence Upper Tail Dependence
Normal - -

t 2tv+1

(
−
√
v+1

√
1−θ
1+θ

)
2tv+1

(
−
√
v+1

√
1−θ
1+θ

)
Clayton 2−1/θ -
Frank - -
Joe - 2−21/θ

Gumbel - 2−21/θ

Tawn - (ψ1 +ψ2)− (ψθ
1 +ψθ

2)1/θ

If C(·, ·) is a bivariate copula, rotating it will cause the tail dependency to move to one

of the four vertices of the unit square, and the resulting versions may be derived using

the formulas below [130, 15]:

Cr90◦(u,w) = C(1−w,u) (6.23)

Cr180◦(u,w) = C(1−u,1−w) (6.24)

Cr270◦(u,w) = C(w,1−u) (6.25)

Figure 6.1 gives an example of copula rotation.
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Figure 6.1: Clayton copula rotation with contour plots: left top: 0◦ rotation (τ = 0.5),
right top: 90◦ rotation (τ =−0.5), left bottom: 180◦ rotation (τ = 0.5), and right bottom:
270◦ rotation (τ =−0.5)[15]

6.2.4 Estimating Bivariate Copula

Before estimating the copula parameters, the appropriate distributions for the marginals

(duration and intensity) were selected. Given X and Y with their corresponding cdf as

H(x;β1) and H(y;β2) and pdf as h(x;β1) and h(y;β2) where β1 and β2 are the vector

parameters. Then the copula-based pdf is given as

H(x,y;β1,β2;θ) = C(HX(x;β1),HY (y;β2);θ) (6.26)

where θ is the vector of parameters of the copula function. The loglikelihood function of

the copula model is given by

l(θ,β1,β2) =
n∑

i=1
logh(xi,yi;β1,β2, θ) (6.27)
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where n is the number of data. Using numerical optimisation, the copula parameters are

obtained by maximizing Equation 6.27. The algorithm requires starting values, which

were calculated by inverting Kendall’s τ . Inverting Kendall’s tau in copula modelling

involves finding the variable value corresponding to a given probability under a copula

distribution. In cases with greater than one parameter, the process becomes more complex

as the parameters influence the dependency structure, requiring numerical optimization

to determine the variable value that satisfies the desired probability.

6.2.5 Model Selection for Copulas

The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) were

used to select an appropriate copula model. Given the transformed data ui and wi,

i= 1, ...,n. The AIC and BIC for a bivariate copula C(u,w;θ) is given as [17]:

AIC =−2
N∑

i=1
log

[
C(ui,wi;θ)

]
+2k (6.28)

BIC =−2
N∑

i=1
log

[
C(ui,wi;θ)

]
+log(N)k (6.29)

Where k is the number of copula parameters, and N represents the total amount of data.

The copula model with the lowest AIC and BIC values is the most appropriate among

the copula models considered for the joint distribution of rainfall event duration and

intensity. N represents the total amount of data.

6.2.6 Results and Discussion

The methodology described above for copula parameter estimation, model selection, and

Kendall’s tau measure of dependence was applied to the rainfall event duration and inten-

sity data using the different considered copula models and the result is given Table 6.3.

As seen in the copula pairs plot (Figure 6.2), duration and intensity exhibit negative

dependence τ =−0.32.
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Figure 6.2: Upper Triangle: pair plot of copula data (duration and intensity), Diagonal:
Marginal histogram of copula data, and Lower Triangle: empirical contour plots of nor-
malized copula data

Figure 6.3: Scatter plot of the rainfall event duration and intensity
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Table 6.3: Results for parameter estimates, loglikelihood, AIC, BIC, τ , ΛL, ΛU

Copula Parameter(s) loglikelihood AIC BIC τ ΛL ΛU

Normal θ1=-0.47 416.71 -831.43 -825.28 -0.31 0 0
t θ1=-0.47 422.36 -840.71 -828.42 -0.31 0 0

θ2=19.67
Rotated 270◦ Clayton θ =−1 662.66 -1323.31 -1317.17 -0.33 0 0

Frank θ =−2.99 385.27 -768.53 -762.39 -0.31 0 0
Rotated 90◦ Joe θ =−1.83 657.8 -1313.59 -1307.45 -0.32 0 0

Rotated 90◦ Gumbel θ =−1.49 579.02 -1156.03 -1149.89 -0.33 0 0
Rotated 90◦ Tawn Type 1 θ1=-4.69 869.63 -1735.25 -1722.96 -0.29 0 0

θ2=0.32

Various copula models were considered to capture the joint distribution of duration and

intensity. Our evaluation revolves around different bivariate copulas, including Normal,

t, Rotated 270◦ Clayton, Frank, Rotated 90◦ Joe, Rotated 90◦ Gumbel and Rotated

90◦ Tawn Type 1 copula. The performance of these copulas is compared based on log-

likelihood, AIC, BIC, τ , and tail dependence parameters, ΛL and ΛU . From the result in

Table 6.3, the Rotated 90◦ Tawn Type 1 copula exhibits the most desirable characteristics.

This copula has the highest log-likelihood value of 869.35, surpassing all other tested

copulas. Furthermore, this copula presents the lowest AIC of -1735.25. The parameters

of the Rotated 90◦ Tawn Type 1 copula, θ1 =−4.69 and θ2 = 0.32, and the Kendall’s tau

is -0.29 for the Rotated 90◦ Tawn Type 1 copula. This value suggests a weak negative

association between duration and intensity, consistent with our empirical observations.

As for the tail dependence, none of the evaluated copulas exhibits lower or upper tail

dependence, as evidenced by ΛL and ΛU equal to 0 across all models. This lack of

tail dependence indicates no increased likelihood of extreme events coinciding in the

distribution’s lower or upper tails. Based on our evaluation criteria, the Rotated 90◦

Tawn Type 1 copula best represent the joint distribution of duration and intensity.

6.2.7 Bivariate Copula Simulation

This section explores data simulation using the suggested copula model and compares

the simulated and observed data correlations. We used samples from the cumulative

distributions to conduct the simulations. Generating (u,w) from the tawn type 1 copula,
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then applying the marginal transformations, i.e. skew t for log(duration) and GEV for

log(intensity). See Appendix D.1 for the R code.

Figure 6.4: Scatter plot of observed data vs copula simulated data

Figure 6.4 shows the scatter plot of the observed data versus simulated data from the

proposed copula model. The figure shows that the simulated data compares favourably

with the observed data. We can see that both the simulated and original data exhibit

similar dependence patterns.
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6.3 Vine Copula Construction

Vine copula models aim to provide a method for creating multivariate copulas solely from

bivariate copulas, which are highly flexible and capable of describing varieties of complex

dependencies [131]. The modelling approach involves decomposing a multivariate density

by utilizing a sequence of pair copulae. This methodology is applied to both the orig-

inal variables and their respective conditional and unconditional distribution functions.

[132]. Joe [133] provided the first pair copula structure in terms of distribution functions,

whereas Bedford and Cooke [134, 135] produced constructs in terms of densities. Given

the joint density function f(y1, ...,ym) of a vector Y = (Y1, ...,Ym) of random variables.

This joint density function can be rewritten as

f(y1, ...,ym) = f(ym) ·f(ym−1|ym) ·f(ym−2|ym−1,ym) · · ·f(y1|y2, ...,ym) (6.30)

Equation 6.30 shows that the variables’ dependency structure and probability distribu-

tions are implicitly included in the joint distribution function. Applying Sklar theorem

to the density f(y1, ...,ym) we have

f(y1, ...,ym) = c1...m{F1(y1), ...,Fm(ym)} ·f1(y1) · · ·fm(ym) (6.31)

where c1...m is some m-variate copula density. Equation 6.31 can be simplified in a

bivariate case as

f(y1,y2) = c12{F1(y1),F2(y2)} ·f1(y1) ·f2(y2)

Here c1,2(·, ·) is the proper pair-copula density for the two transformed variables F1(y1)

and F2(y2). According to [132], the conditional probability distribution function in equa-

tion (3) can be decomposed into the proper pair-copula (cyνj |ν−j
) and a conditional

marginal density using the following formula

f(y|ν) = cyνj |ν−j
{F (y|ν−j),F (νj |ν−j)} ·f(y|ν−j) (6.32)
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where ν is a m-dimensional vector; νj is an arbitrary chosen component from vector ν

and ν−j is vector ν, where νj is not included. Using Equation 6.32 the conditional density

for two random variables Y1 and Y2 can be written as

f(y1|y2) = c12{F1(y1),F2(y2)} ·f1(y1)

for three random variables Y1, Y2 and Y3 we have

f(y1|y2,y3) = c12|3{F (y1|y3),F (y2|y3)} ·f(y1|y3)

= c12|3{F (y1|y3),F (y2|y3)} · c13{F1(y1),F3(y3)} ·f1(y1)

Pair-copula construction requires marginal conditional distributions like F (y|ν) and [133]

demonstrated that, for every j,

F (y|ν) =
∂cyνj |ν−j

{F (y|ν−j),F (νj |ν−j)}
∂F (νj |ν−j)

(6.33)

where Cyνj |ν−j
is a bivariate copula function. When ν is univariate Equation 6.33 becomes

F (y|ν) = ∂cyν{F (y),F (ν)}
∂F (ν) (6.34)

When y and ν are uniform, i.e., f(y) = f(ν) = 1,F (y) = y and F (ν) = ν the function

h(y,ν,Θ) gives the conditional distribution [132].

h(y,ν,Θ) = F (y|ν) = ∂Cy,ν(y,ν,Θ)
∂ν

(6.35)

where ν denotes the conditioning variable and Θ is the copula’s set of parameters for the

joint distribution of y and ν.

6.3.1 Regular Vine

The regular vine structure was developed by [134] and [135] as a suitable graphical tool

to model high-dimensional dependencies. A typical vine structure comprises linked trees,

116



where the edges of one tree become the nodes of the next tree.

Definition 6.3.1 [136]: A m-dimensional regular vine copula V is a pair-copula construc-

tion with m variables consisting of linked trees T1, ...,Tm−1 where Nj and Ej are the

nodes and edges respectively in tree Tj satisfying:

1. T1 consist nodes N1 = {1, ...,m} and edges E1

2. For j = 2, ...,m−1, Tj is with nodes Nj = Ej−1, i.e., the nodes in Tj are the edges

in Tj−1

3. Two edges in Tj can only be joined as nodes in Tj+1 by an edge, if they share

common node in Tj (Proximity condition)

Each edge e in Ej is connected to a bivariate copula Cg(e),k(e)|D(e) to construct a regular

vine with nodes N = {N1, ...,Nm−1} and edges E = {E1, ...,Em−1}. Here, nodes g(e) and

k(e) represent the nodes subject to conditioning, with D(e) serving as the set that per-

forms the conditioning. The combined set {g(e),k(e),D(e)} acts as the set of constraints.

The density of the R-Vine copula is given as [137]:

f(y1, ...,ym) =
[ m∏

k=1
fk(yk)

]
×
[m−1∏

j=1

∏
e∈Ej

Cg(e),k(e)|D(e)(F (yg(e)|yD(e)),F (yk(e)|yD(e)))
]

(6.36)

on the right-hand side of Equation 6.36, the right factor is a result of m(m−1)/2 bivariate

copula densities. The log-likelihood function of the regular vine copula with parameter

ΘRV and E1, ...,Em−1 is written as [138]:

ℓRV (ΘRV |ν) =
N∑

k=1

m−1∑
j=1

∑
e∈Ej

log
[
Cg(e),k(e)|D(e)

(
F (uj,g(e)|uj,D(e))|Θg(e),k(e)|D(e)

)]
(6.37)

where uj = (uj ,1, ...,uj ,m)′ ∈ [0,1]m, j = 1, ...,N . Cg(e),k(e)|D(e) is a bivariate copula den-

sity with parameter Θg(e),k(e)|D(e) and edge e
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Figure 6.5: Six dimensional regular vine tree structure [15]

Explaining complete union, conditioned, and conditioning set, we make use of the edge

e= {{1,2},{1,5}} of T1 in Figure 6.5. The complete union in T1 included in e is {1,2,5}.

The conditioning set and conditioned set are D(e) = {1} and {2,5} respectively. Special

cases of regular vine copula are canonical (C-Vine) and drawable (D-Vine) copula. For

more details and properties of R-Vine copulas see [137] and [15]

6.3.2 Canonical Vine (C-Vine)

Definition 6.3.2: A regular vine tree structure V = (T1, ...,Tm−1) is called a canonical

vine (C-Vine) if in each tree Tj there exists one unique node n such that it has degree

m− j. i.e., this unique node is connected to m− j edges, and it is called the root node

of the tree Tj [15]. The m-dimensional density of a C-Vine is given by [132]:

m∏
k=1

f(yk)
m−1∏
j=1

m−j∏
i=1

cj,j+1|1,...,j−1{F (yj |y1, ...,yj−1),F (yj+i|y1, ...,yj−1)} (6.38)

The log-likelihood function of the C-Vine is given by

m−1∑
j=1

m−j∑
i=1

T∑
t=1

log
[
cj,j+1|1,...,j−1{F (yj,t|y1,t, ...,yj−1,t),F (yj+i,t|y1,t, ...,yj−1,t)}

]
(6.39)

Equation 6.33 and Equation 6.35 are used to calculated the conditional distributions

F (yj,t|y1,t, ...,yj−1,t) and F (yj+i,t|y1,t, ...,yj−1,t). If the C-Vine has m variables, then we
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have m!/2 different canonical vines on m nodes [132]. Employing the canonical vine could

be beneficial if a specific variable is identified as the main driver of interactions within

the data. In such scenarios, this variable could be positioned at the core of the C-Vine

[136].

Figure 6.6: Four-dimensional Canonical Vine [16]

The four-dimensional C-Vine in Figure 6.6 is expressed as

f(y1,y2,y3,y4) = f1(y1) ·f2(y2) ·f3(y3) ·f4(y4)

·c12{F1(y1),F2(y2)} · c13{F1(y1),F3(y3)} · c14{F1(y1),F4(y4)}

c23|1{F (y2|y1),F (y3|y1)} · c24|1{F (y2|y1),F (y4|y1)}

·c34|12{F (y3|y1,y2),F (y4|y1,y2)} (6.40)

6.3.3 Drawable Vine (D-Vine)

Definition 6.3.3: A regular vine tree structure V = (T1, ...,Tm−1) is called a drawable vine

(D-Vine) if each tree Tj has a degree less or equal to two. i.e. no node is connected to

more than two edges. The decomposition is determined by the m(m−1)/2 edges and the

marginal densities of each variable. In Tj+1, edges from Tj transform into nodes. If they

have a mutual node in Tj , they are connected by an edge in Tj+1. The m-dimensional
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density of a D-Vine is given by [132]:

m∏
k=1

f(yk)
m−1∏
j=1

m−j∏
i=1

ci,i+j|i+1,...,i+j−1{F (yi|yi+1, ...,yi+j−1),F (yi+j |yi+1, ...,yi+j−1)} (6.41)

The log-likelihood function of the D-Vine is given by

m−1∑
j=1

m−j∑
i=1

T∑
t=1

log
[
ci,i+j|i+1,...,i+j−1{F (yi,t|yi+1,t, ...,yi+j−1,t),F (yi+j,t|yi+1,t, ...,yi+j−1,t)}

]
(6.42)

Figure 6.7: Four-dimensional D-Vine [16]

Figure 6.7 shows a four-dimensional D-Vine structure. The m-dimensional D-Vine has

m− 1 trees. Tree Tj has (m+ 1− j) nodes and (m− j) edges. Each edge corresponds

to a pair-copula, e.g., in tree 2 edge 24|3 corresponds to the pair-copula C24|3. The

four-dimensional D-Vine is expressed as

f(y1,y2,y3,y4) = f1(y1) ·f2(y2) ·f3(y3) ·f4(y4)

·c12{F1(y1),F2(y2)} · c23{F2(y2),F3(y3)} · c34{F3(y3),F4(y4)}

c13|2{F (y1|y2),F (y3|y2)} · c24|3{F (y2|y3),F (y4|y3)}

·c14|23{F (y1|y2,y3),F (y4|y2,y3)} (6.43)

6.3.4 Selection of R-Vine Model

This section describes a systematic procedure to specify an R-Vine copula model, lever-

aging the empirical Kendall’s tau. Given a set i.i.d random vectors, the method identifies

the optimal spanning tree by maximizing the sum of absolute empirical Kendall’s taus.
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This optimization is essential for capturing the intricate dependencies between variables.

A suitable copula is selected for every edge within this spanning tree using the small-

est AIC, and its parameters are estimated. The algorithm then extends its approach

to conditional settings, ensuring a comprehensive model fit across all variable interac-

tions. Utilizing this structured method ensures a robust and nuanced understanding of

the dependencies within the data.
Algorithm 1: Choosing an R-Vine model using Kendall’s tau [137]

Input: Data points (yl1, . . . ,yln), where l = 1, . . . ,N (independent and identically
distributed random vectors)

Output: Specification of an R-Vine copula.
1 Determine the empirical Kendall’s tau, τ̂i,j for each unique pair of variables {k, l}

where 1≤ i < j ≤ n.
2 Choose the spanning tree that optimizes the absolute value of the τ (weight)

max∑e={i,j}in spanning tree|τ̂i,j |
3 Select a copula for every edge i, j within the chosen spanning tree and determine

its associated parameter(s). Then Transform F̂i|j(yli|ylj) and F̂j|i(ylj |yli),
l = 1, ..,N , utilizing the estimated copula model Ĉij .

4 for k = 2 to d−1 do
5 Compute the τ̂i,j|D, for every pair of variables {i, j|D} eligible to be in the

tree Ti, specifically those pairs that meet the proximity criteria.
6 Choose the spanning tree from these edges that optimizes the cumulative

absolute value of empirical Kendall’s taus.
max∑e={i,j|D}in spanning tree|τ̂i,j|D|

7 Select a conditional copula and determine its associated parameters for every
edge, {j,k|D} within the chosen spanning tree. Then Transform
F̂i|j∪D(yli|ylj ,ylD) and F̂j|i∪D(ylj |yli,ylD), l = 1, ..,N , utilizing the estimated
copula model Ĉij .

8 end

6.3.5 Dependence Results (DIMV)

Applying the Vine copula methodology described above and implementing Algorithm 1

using the RVineStructureSelect function (VineCopula package) in R. The D-Vine Copula

was selected as the best fit Vine Copula structure for the dependence modelling of du-

ration, intensity, maximum intensity and volatility (DIMV), having the least AIC value

compared to the R-Vine and C-Vine and the results are given in Table 6.4. The copula
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pairs plot is given in Figure 6.8 and the D-Vine tree structure for DIMV is given in

Figure 6.9. The R code for the implementation is given in Appendix D.2

Figure 6.8: Pairs copula plot for DIMV
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Figure 6.9: D-Vine Tree Plot for DIMV
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Table 6.4: D-Vine copula with pair-copulas

Tree Edge Pair-Copula θ1 θ2 τ λL λU

1 2,1 Rotated Tawn type 2 270◦ -4.69 0.32 -0.29 - -
1 3,2 Gaussian 0.76 - 0.55 - -
1 4,3 Tawn type 2 3.17 0.85 0.6 - 0.69
2 3,1;2 Rotated BB1 180◦ 0.10 1.42 0.33 0.37 0.01
2 4,2;3 Tawn type 2 2.15 0.28 0.21 - 0.25
3 4,1;3,2 Rotated BB8 270◦ -3.11 -0.54 -0.20 - -

1 ↔ Duration; 2 ↔ Intensity; 3 ↔ Maximum Intensity; 4 ↔ Volatility

The Table 6.4 presents the resulting D-Vine copula structure derived from the earlier

discussed algorithm. An interesting observation from the table is the presence of multiple

types of copulas, reflecting the complex interplay of dependencies among variables. The

negative dependence in specific pairs indicates that as one variable decreases, the other

tends to increase, and vice versa. Meanwhile, the positive tau values represent direct

correlations.

Table 6.5: Dependence (τ) table for copula simulated data

Duration Intensity Max Intensity Volatility
Duration 1.00000000 -0.3527273 -0.09252525 -0.1321212
Intensity -0.35272727 1.0000000 0.56040404 0.3866667
Max Intensity -0.09252525 0.5604040 1.00000000 0.5959596
Volatility -0.13212121 0.3866667 0.59595960 1.0000000

Table 6.6: Dependence (τ) table for observed data

Duration Intensity Max Intensity Volatility
Duration 1.00000000 -0.3244918 -0.03858472 -0.07826699
Intensity -0.32449177 1.0000000 0.58241328 0.48054569
Max Intensity -0.03858472 0.5824133 1.00000000 0.64976489
Volatility -0.07826699 0.4805457 0.64976489 1.00000000
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Figure 6.10: Pairs plot of copula simulated data (blue) and observed data (red)
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Figure 6.11: Q-Q plot of copula simulated data and observed data

To study the accuracy of the fitted vine copula model. The quadruple (DIMV) was

simulated using the selected vine copula, and the appropriate transformations were carried

out as defined in Chapter 3 for each variable. We calculated Kendall’s tau for each pair

of D-Vine copula simulated sample variables to see if the proposed vine copula can keep

the sample dependencies (DIMV) among the rain event characteristics. We compared the

results with Kendall’s tau for each pair of variables of the observed DIMV. The results

are given in Table 6.5 and Table 6.6. From the result, the D-Vine copula can preserve the

sample dependencies, as shown in Figure 6.8. Figure 6.11 shows that the Q-Q plot of the

copula simulated data resembles that of the observed data, giving a promising alignment

between theoretical expectations and empirical observation.
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Chapter 7

Irregular Pulse Model (Intensity-Duration-Maximum-Volatility)

7.1 Introduction

Stochastic generation models can be broadly categorized into profile-based and pulse-

based. Profile-based models concentrate on individual rainfall events, typically defining

them through inter-event time and leveraging joint or individual statistical distributions

to delineate the main storm features. This accumulated rainfall is splited into distinct

depth values at defined time steps. On the other hand, pulse-based models view rain

events as events distributed randomly over time, following a Poisson distribution. Each

storm is seen as a cluster of rain cells, with each cell being a pulse with a random

length and consistent intensity. These cells are distributed over time based on models

like Neyman-Scott or Bartlett-Lewis [20]. Due to their proficiency in mirroring ongoing

rainfall sequences, they have numerous applications in hydrological studies [4]. However,

their implementation requires estimating numerous parameters and a substantial histor-

ical rainfall dataset in a continuous format. Cameron et al. [36] pointed out that while

these models adeptly mimic observed gaps between rainfalls across various scales, they

struggle with accuracy when simulating extreme statistics at shorter durations. These

models can not reproduce the long-term rainfall event data needed in reality [139]. As a

result, many experts have proposed the use of profile-based models. This chapter presents

a novel stochastic rainfall event simulator that reproduces observed rainfall events using

its variables: duration, intensity, maximum intensity and volatility.
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7.2 Simulating Rainfall using IAT

Suppose Xi is the inter-arrival time (IAT) between ith and (i+1)th rainfall event. Then

we model Xi ∼ 1 +Ei, where Ei ∼ Exponential distribution with rate parameter λi.

λi = λ(ti) where ti is the end time of the ith event. For rv’s X1, ...,Xn with joint density

f(x1, ...,xn) then, logL= logf(x1, ...,xn). If Xi are independent, we have,

f(x1, ...,xn) =
n∏

i=1
fi(xi) (7.1)

logL(θ;x) =
n∑

i=1
logfi(θ;xi) (7.2)

Since Xi−1 follows an exponential distribution with rate parameter λi

f(xi−1;λθ(ti)) = λ(ti)e−λ(ti)(xi−1) (7.3)

logf(xi−1;λθ(ti)) = logλ(ti)e−λ(ti)(xi−1) (7.4)

logf(xi−1;λθ(ti)) = logλ(ti)−λ(ti)(xi−1) (7.5)

l(λθ(ti);xi−1) =
n∑

i=1

[
logλ(ti)−λ(ti)(xi−1)

]
(7.6)

l(λθ(ti);xi−1) = n logλ(ti)−λ(ti)
n∑

i=1
(xi−1) (7.7)

We explore several ways for a parametric model for λ. In terms of notation, we will

summarise the involved parameter on θ.

λθ(t) = α1 sin
(

2π t

365

)
+β1 cos

(
2π t

365

)
+α2 sin

(
4π t

365

)
+β2 cos

(
4π t

365

)
(7.8)
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Figure 7.1: Rainfall events using inter-arrival time (IAT). Where start time = t0, end
time = tmax, intensity = I, duration =D, and interarrival time = ri

7.3 Simulating Rain Depth (Intensity) (given D, I,M, V)

Given intensity, duration, max intensity, volatility (I,D,M,V ), h = time step, the goal

is to create a rainfall event as given by a sequence (xi), i= 1, ...,n, where n= ⌈ d
h⌉ which

meets the following constraints,

I = 1
n

∑
i

xi (7.9)

M = max
1≤i≤N

xi (7.10)

V = 1
n

n−1∑
i=1

(xi+1−xi)2 (7.11)

xi ≥ 0 (7.12)

at least approximately with some numerical precision. Therefore, we propose the following

algorithm given by the following pseudo-code
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7.4 Proposed algorithm for the rainfall event simulator

Algorithm 2: Simulating a Rainfall Event (Pseudocode) - Part 1
Input: intensity (I), duration (d), maximum intensity (M), volatility (V),

stepsize, tol, α, β, maximum iteration (max_it), j, num_calls
Output: sequence of rain depths (xi), i= 1, ...,n where n= ⌈ d

stepsize⌉
1 Set x= array of size n
2 if num_calls≥ 2 then
3 return (x, "failure")
4 end
5 if n= 1 then
6 if |M −n× I|≥ tol then
7 return (x, "raineventsim: inconsistent I, D, M, V, n == 1")
8 end
9 else

10 x[1]←M

11 return (x, "success")
12 end
13 end
14 if n= 2 then
15 if random number < 0.5 then
16 x← (M,2I−M)
17 end
18 else
19 x← (2I−M,M)
20 end
21 end
22 if Vol(x)≈ V and min(x)≥ 0 then
23 return (x, "success")
24 end
25 else
26 return (x, "raineventsim: inconsistent I, D, M, V, n == 2")
27 end
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Algorithm 3: Simulating a Rainfall Event (Pseudocode) - Part 2
1 if j =−1 then
2 j← ⌈random number from Beta(α,β)×n⌉
3 end
4 x[j]←M

5 for i in 1, . . . ,n but not j do
6 x[i]← n×I−M

n−1
7 end
8 if min(x)< 0 or max(x)>M then
9 return (x, "inconsistent I, D, M, V, n ≥ 3")

10 end
11 num_reps← 0
12 fail_count← 0
13 while fail_count<max_it do
14 V_err← |Vol(x)−V |
15 if V_err≤ tol then
16 return (x, "success")
17 end
18 Pick two random indices h and i excluding j
19 Compute perturbations for the values at these indices
20 if either perturbation improves V_err then
21 Update x with better perturbation
22 Reset fail_count
23 end
24 else
25 Increment fail_count
26 end
27 end
28 if j ̸= 1 and j ̸= n then
29 j← random choice from {1,n}
30 end
31 else
32 j← random choice from {2, . . . ,n−1}
33 end
34 Call raineventsim with new j and incremented num_calls
35 return (x, "raineventsim: maximum iterations exceeded")
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7.5 Implementation in R

Building on the algorithmic foundation in Sections 7.3 and 7.4, this section delves into

the actual R implementation of the rainfall event simulator. Each snippet of R code

corresponds to critical segments of the proposed algorithm, elucidating how theoretical

constructs translate into practical, executable code.

7.5.1 Handling Single-Step Rainfall Events

Single-step events represent the simplest form of rainfall events, where the event duration

is equal to the step size. In such cases, the simulator directly assigns the maximum

intensity (M) to the event, ensuring consistency with the specified average intensity (I)

within a defined tolerance (tol).

1 # Handle case where duration consists of only one step

2 if (n == 1) {

3 # Check if maximum intensity matches expected average

intensity within tolerance

4 if ( abs (M - (n * I)) >= tol ) {

5 # Return failure state if parameters are inconsistent

6 return ( list (x = x, state = " raineventsim : inconsistent I,

D, M, V, n == 1"))

7 } else {

8 # Assign maximum intensity to the event and return success

9 x [1] = M

10 return ( list (x = x, state = " success "))

11 }

12 }

Listing 7.1: Single-Step Events

The code handles the scenario where the rainfall event duration consists of only a single

time step. This is a particular case in the simulation process. The function checks whether

the maximum intensity (M) matches the expected average intensity (I), given that there

is only one step in the event. If the absolute difference between M and the product of the

number of steps (n) and average intensity (I) is within a specified tolerance (tol), it is
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considered a successful match, and the single intensity value (M) is assigned to the event.

Otherwise, it indicates an inconsistency between the input parameters for a single-step

event.

7.5.2 Addressing Two-Step Events

In scenarios where the event spans two steps, the simulator employs a randomized ap-

proach to distribute intensity, ensuring the overall average intensity aligns with the input

while meeting volatility constraints.

1 # Handle case for events with two steps

2 if (n == 2) {

3 # Randomly decide the order of intensities to match the

average intensity requirement

4 x <- ifelse ( runif (1) < 0.5 , c(M, 2 * I - M), c(2 * I - M, M)

)

5 # Validate if adjusted intensities result in correct

volatility within tolerance

6 if ( abs ( Vol (x) - V) <= tol && min (x) >= 0) {

7 # Return success if conditions are met

8 return ( list (x = x, state = " success "))

9 } else {

10 # Return failure state if conditions are not met

11 return ( list (x = x, state = " raineventsim : inconsistent I,

D, M, V, n == 2"))

12 }

13 }

Listing 7.2: Two-Step Events

In the unique scenario of two-step rainfall events, this code segment addresses the chal-

lenge of appropriately allocating the event’s total intensity across both steps. The aim

is to ensure that the computed average intensity accurately reflects the predefined input

value for average intensity (I). To achieve this, the algorithm introduces a measure of

randomness in selecting the placement of the maximum intensity value (M) in the initial

or concluding step. Subsequently, it recalibrates the intensity of the remaining step to

preserve the overall average intensity as specified. This process includes a meticulous
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verification step to confirm that the modified intensity values sum up correctly while

maintaining all intensities above zero and aligning the event’s volatility with the speci-

fied tolerance range. When these conditions are satisfied, the configuration qualifies as

successfully executed.

7.5.3 Positioning of Maximum Intensity

The position of the maximum intensity within the event is a pivotal aspect, influenced

by the beta distribution parameters, alpha and beta, fostering variability in simulation

outcomes.

1 # Determine the position of maximum intensity if not

predefined

2 if (j == -1) {

3 # Position is determined based on a beta distribution for

variability

4 j <- ceiling ( rbeta (1 , alpha , beta ) * n)

5 }

6 # Assign maximum intensity to its position

7 x[j] <- M

Listing 7.3: Maximum Intensity Position

The variable j determines the maximum intensity (M) positioning within the event. If j is

not predefined (i.e., -1), its position is decided stochastically based on a beta distribution

characterized by parameters α and β. This probabilistic approach for determining M ’s

position introduces variability in the simulation, allowing for exploring diverse rainfall

event patterns where the peak intensity can occur at different points within the event

duration.

7.5.4 Enhancing Simulation Accuracy through Random Search

For events exceeding two steps, a random search algorithm fine-tunes intensity values

across the event’s duration, aiming for volatility that mirrors the input value as closely

as possible.
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1 # Implement random search to minimize discrepancy in target

volatility

2 while ( fail _ count < max _it) {

3 # Calculate the current error in volatility

4 V_ err <- abs ( Vol (x) - V)

5 # Check if the current configuration meets the tolerance

criteria

6 if (V_ err <= tol ) return ( list (x = x, state = " success "))

7

8 # Randomly select two positions to adjust , excluding the

position of M

9 hi <- sample ((1: n)[-j], 2)

10 h <- hi [1]

11 i <- hi [2]

12 # Determine the maximum possible adjustment without

violating constraints

13 eps _ max <- min (x[h], M - x[h], x[i], M - x[i])

14 # Apply adjustment

15 eps <- runif (1 , -eps _max , eps _ max )

16

17 # Create two potential new configurations

18 y <- x; y[h] <- y[h] - eps ; y[i] <- y[i] + eps

19 z <- x; z[h] <- z[h] + eps ; z[i] <- z[i] - eps

20

21 # Calculate new errors

22 V_ err _y <- abs ( Vol (y) - V)

23 V_ err _z <- abs ( Vol (z) - V)

24

25 # Select the configuration that reduces the error most

26 if (V_ err _y < V_ err || V_ err _z < V_ err ) {

27 fail _ count <- 0 # Reset failure count on improvement

28 x <- (V_ err _y < V_ err _z) ? y : z

29 } else {

30 # Increment failure count if no improvement

31 fail _ count <- fail _ count + 1

32 }

33 }

Listing 7.4: Random Search for Better Volatility Matching
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This part of the code implements a random search algorithm to adjust the intensities

within the event better to match the target volatility (V ). By iteratively making small

adjustments to a pair of randomly selected intensities, the algorithm seeks to minimize

the discrepancy between the calculated volatility of the current event configuration and

the target volatility. This process involves evaluating potential adjustments (eps) that

would bring the event’s volatility closer to the desired value, ensuring the event remains

realistic by keeping intensities positive and within bounds.

The function is a sophisticated tool for simulating intricate rainfall events over discrete

time intervals. Accepting inputs such as average intensity (I), event duration (D), max-

imum intensity (M), and volatility (V ), along with optional parameters to control the

simulation’s precision, the function offers a hybrid approach that melds deterministic

constraints with stochastic variability. At its core, the function is conditioned to handle

different event lengths: for short durations (when n = 1 or 2), specific logic is applied,

while for longer durations (n≥ 3), a random search algorithm is invoked to satisfy given

constraints. This search algorithm dynamically adjusts the intensities of two random

intervals to approximate the desired volatility. Suppose adjustments don’t align with the

target criteria. In that case, the algorithm iteratively refines its solution, using recur-

sive calls to ensure the optimal placement of the maximum rainfall intensity within the

simulated event. This systematic logic flow, combined with its balanced approach of de-

terministic adjustments and stochastic considerations, makes it a quintessential tool for

hydrologists and climatologists seeking precision and realism in their rainfall simulations.

The R code for the implementation is given in Appendix E.1.

7.6 Effects of Parameters

7.6.1 Alpha and Beta parameters

The α and β parameters are pivotal in the simulator’s approach to determining the

position of maximum intensity (M) within a rainfall event. They influence the probability
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distribution from which the position (j) is drawn, utilizing the Beta distribution as a

foundational tool. The choice of α and β values introduces a layer of flexibility, allowing

the simulation to represent a wide range of natural rainfall patterns, from those with

early peaks to those with late peaks in intensity.

(i) Setting α and β to very high values and maintaining them constant effectively

reduces the variability in the placement of j, making the simulation less random

and more predictable. In extreme cases where α and β are exceedingly high, this

could approximate "fixing" the position of j as the Beta distribution’s variance

diminishes, concentrating the probability mass around a specific point within the

event’s duration.

(ii) Setting both α and β to 1 in the Beta distribution for determining the position of

maximum intensity (j) in a rainfall event converts the distribution to a Uniform one,

equalizing the likelihood of j’s placement across the event. While this maintains

randomness, it removes the nuanced control over j’s placement offered by the Beta

distribution with varied α and β values, which can more closely mimic natural

rainfall patterns by allowing for skewed or specific placements of peak intensities.

Therefore, to capture the variability and complexity of natural rainfall events accurately,

it’s crucial to avoid setting the α and β parameters of the Beta distribution to excessively

high values or to the uniformity of 1, ensuring a balanced approach that leverages the

distribution’s ability to offer nuanced randomness and precise control over peak intensity

placement.

7.6.2 Tolerance (tol) and Maximum Iterations (max_it)

Tolerance (tol) and maximum iterations (max_it) control the simulator’s precision

and computational effort. The tolerance level sets the acceptable deviation from desired

parameters, such as volatility, ensuring that simulated events closely match specified

conditions. The maximum iterations parameter caps the number of attempts to adjust

an event to meet these criteria, balancing accuracy with computational efficiency.
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We undertake a computational experiment to investigate the impact of varying simulation

tolerance (tol) levels on the runtime and volatility error (V_err) across a spectrum of

rainfall events characterized by differing DIMV. For each specified event, the simulation is

executed across multiple tolerance levels, ranging from relatively coarse (0.1) to extremely

fine (0.00001). The tolerance parameter is crucial as it dictates the permissible deviation

from the target volatility (V). The core of the analysis lies in measuring two primary

outcomes for each simulation run: the runtime, indicative of computational efficiency,

and the volatility error (V_err), reflective of the simulation’s accuracy in achieving

the desired event volatility. The runtime is measured in milliseconds, quantitatively

measuring the simulator’s performance efficiency, while V_err offers insight into the

precision of the simulated rainfall event relative to the specified volatility target.

Figure 7.2: Simulation Runtime vs Volatility Error across Tolerance Levels and
Events: Short Event1 = (I=0.4363636, D=66, M=0.8, V=0.07636364); Long Event1
= (I=0.9428571, D=378, M=6.2, V=1.881905); Short Event2 = (I=0.4, D=18, M=0.4,
V=0); Long Event2 = (I=0.1919414, D=1638, M=1.6, V=0.07194139) )

From the results presented in Figure 7.2, simulations with higher tolerance levels, such

as 0.1 and 0.01, exhibited notably higher volatility errors. This observation suggests

that while a coarser tolerance may reduce computational complexity, it does so at the
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expense of precision in achieving the target volatility (V). Conversely, lower tolerance

levels, ranging from 0.001 to 0.00001, consistently resulted in a negligible volatility er-

ror, approaching zero. This delineates the efficacy of fine-grained tolerance settings in

enhancing the simulator’s precision, ensuring the simulated rainfall events closely align

with the specified volatility parameters. Furthermore, examining the runtime across var-

ious event characteristics revealed that longer-duration events typically necessitated ex-

tended computational times. This trend highlights the inherent computational demands

of simulating more complex or prolonged rainfall events due to the increased number

of iterations required to converge on the specified event parameters within the defined

tolerance levels.

7.6.3 Recursive Calls (num_calls)

The num_calls parameter manages the depth of recursive adjustments when optimizing

event characteristics. It prevents infinite loops during the simulation process, ensuring

the algorithm converges to a solution within a reasonable timeframe.

The interplay of these parameters within the rainfall event simulator allows for the gen-

eration of diverse and realistic rainfall events. By adjusting these parameters, we can

tailor simulations to specific scenarios or investigate the impacts of different rainfall char-

acteristics. This flexibility makes the simulator a valuable tool in practical applications

in climatology and hydrology.

7.7 Comparison of the simulated event and the original rain

event

To check for applicability, the simulator was tested using our 36 years of high-resolution

rainfall events (DIMV), and the simulator reproduced realistic rainfall intensities for each

case and its main characteristics. Figure 7.3 compares the actual event and the simulated

events; from the plot, it can be seen that the simulator shows very satisfying results. We

also explored different scenarios: (I) When the volatility is high with a short duration,
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the maximum intensity often lies at the border. The simulator effectively reproduced

this, reinforcing the simulator’s adaptability to diverse event structures. (ii) When V=0,

the depth is equally distributed along the duration, which is also reproduced by the

simulator; this affirms its robustness in capturing and representing even linear rainfall

patterns. (iii) event with long duration. In many of these events, the maximum intensity

(M) tends to gravitate towards the central region, but this is more difficult to reproduce

as the distribution of M has different possibilities. While the simulator demonstrated

competence in approximating these central intensities, it is conceivable that more intricate

elements influencing the placement of M were partially encapsulated. This opens the door

for further refinement, where potential external features not yet integrated into our model

could be explored for a more holistic simulation approach. Figure 7.4 gives the plot of

the different scenarios considered. Our simulator is a potent tool for simulating realistic

rainfall patterns, which will be helpful in the design of hydrological structures and urban

planning.
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Figure 7.3: Original Rainfall Events (left) and Simulated Events with observed DIMV
(columns 2 to 4)
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Figure 7.4: Illustration of how simulated events with given DIMV characteristics look like
and resemble realistic events. Original Rainfall Events (left) and Simulated Events with
identical DIMV characteristics (columns 2 to 4); different scenarios have been considered:
Volatility V = 0 (top), High Volatility V = 25.192 (middle) and Long Event (Duration
D = 378 minutes, bottom)
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Figure 7.5: Illustration of how simulated events with given DIMV characteristics look like
and resemble realistic events. Original Rainfall Events (left) and Simulated Events with
identical DIMV characteristics (columns 2 to 4); different scenarios with long duration
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Figure 7.6: Illustration of how simulated events with given DIMV characteristics look
like and resemble realistic events. Original Rainfall Events (left) and Simulated Events
with identical DIMV characteristics (columns 2 to 4); different scenarios with large total
rainfall (DxI)
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7.8 Assessment of Model Robustness to Extreme Rainfall

Scenarios

This section systematically evaluates our rainfall simulation model’s resilience and accu-

racy in the face of hypothesized extreme weather conditions. Such an assessment is crucial

for demonstrating the model’s reliability for future climate variability and hydrological

forecasting.

7.8.1 Scaling Factor Choice

The assessment of the model’s robustness was tested using the last year’s data. The

selection of scaling factors for our analysis was meticulously considered to ensure a mean-

ingful augmentation of rainfall data parameters. Specifically, average intensity (I) and

maximum intensity (M) were scaled by a factor of 2, effectively doubling their values.

In parallel, duration (D) and volatility (V) increased by 1.5. This strategic approach

aimed to create conditions that simulate plausible extreme weather scenarios potentially

arising from climate change. The underlying rationale for these choices was grounded in

observed data trends and a concerted effort to balance realism and the imperative to test

the model under challenging conditions rigorously.

Our methodology applied the aforementioned scaling factors to the observed rainfall

event data last year. Following this modification, the simulation model was deployed to

generate rainfall events based on the original (unscaled) and modified (scaled) datasets.

1 run _ simulation <- function (df) {

2 x_ sim <- list ()

3 errors <- 0

4 for (i in 1: nrow (df)) {

5 c_I <- df$I[i]

6 c_D <- df$D[i]

7 c_M <- df$M[i]

8 c_V <- df$V[i]

9
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10 x <- raineventsim2 (I=c_I, D=c_D, M=c_M, V=c_V, max _it =

100)

11 if (x$ state != " success ") {

12 errors <- errors + 1

13 x_ sim [[i]] <- NA

14 cat (i, x$ state , "\n")

15 } else {

16 x_ sim [[i]] <- x$x

17 }

18 }

19 list ( simulated _ data = x_sim , errors = errors )

20 }

Listing 7.5: Simulation code for unscaled and scaled data

7.8.2 Results

Visualization of the simulation outcomes, specifically through box plots in Figure 7.7,

alongside Welch Two Sample t-tests conducted to compare the average intensities between

scaled simulations and their corresponding original data, furnished valuable insights.

Figure 7.7: Box plot of intensity for the scaled data and the simulated intensity data
obtained using our rainfall event simulator
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1 t_ test _ result <- t. test ( average _ intensities _ simulated , df_

scaled $I)

2 print (t_ test _ result )

3

4 # Output

5 Welch Two Sample t- test

6

7 data : average _ intensities _ simulated and df_ scaled $I

8 t = 0, df = 190 , p- value = 1

9 alternative hypothesis : true difference in means is not equal

to 0

10 95 percent confidence interval :

11 -0.2200866 0.2200866

12 sample estimates :

13 mean of x mean of y

14 0.5601614 0.5601614

Listing 7.6: Welch Two Sample t-test results

The t-test result reinforces the model’s accuracy, as it shows no significant difference in

mean intensities between the simulated events and the scaled data, further validating

the model’s efficacy under simulated extreme conditions. The consistency between sim-

ulated and scaled intensities, as evidenced by the t-test and error-free simulation runs,

compellingly illustrates the model’s efficacy under extreme conditions. Successfully re-

producing scaled intensities—a proxy for extreme weather scenarios—without deviation

from statistical norms or introducing errors attests to the model’s precision and reliability.

This finding validates the model’s utility in current climatic conditions and bolsters con-

fidence in its application to future climate variability studies and hydrological forecasting

endeavours.
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Figure 7.8: Simulation result for scaled and unscaled data
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7.9 Simulating of Rainfall Events

In this section, we introduce an algorithm designed to reproduce a sequence of sub-hourly

rain events, considering their inherent complexities and diverse temporal patterns. The

proposed algorithm is given below:

7.9.1 Proposed Algorithm

Algorithm 4: Simulating a Sequence of Rainfall Events (Pseudocode)
Input: start time t1, end time tmax, seasonal rate function λ, rate constant c,

joint distribution model, time step h, raineventsim with turning
parameters Θ

Output: List of events Xi = (xi
1, ...,x

i
n(i−j)), event start time si, and event end

time ti = n(i)h+ si

1 Set t1 = h⌊t1/h⌋
2 Set i= 1
3 while ti < tmax do
4 Generate duration Di, intensity Ii, max intensity Mi, and volatility Vi from

joint distribution model
5 Update D̄i = ni ∗h
6 Generate ri = c+ ei, where ei is drawn from the exponential distribution with

rate parameter λ(ti + D̄i)
7 Update ri = ⌈ri/h⌉h
8 ti+1 = ti + D̄i + ri

9 i= i+1
10 ni = ⌈D̄i/h⌉h
11 Using D̄i, Ii,Mi,Vi generate list of rain events Xi from raineventsim with Θ
12 end
13 Return list of rain events Xi, start time si and end time ti

This algorithm facilitates the simulation of sub-hourly rain events within a specified

timeframe, using inputs like a seasonal rate function λ, a joint distribution model, a time

step h, and the rain event simulator. It derives values for Di, Ii, Mi, and Vi from the

D-vine copula joint distribution model. After updating D̄i, the algorithm calculates a

random interval ri influenced by λ, ensuring a realistic temporal spacing between rain

events. This interval, along with the duration D̄i, is used to predict the next event’s start
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time ti+1. The number ni is then computed and utilized with other derived parameters

to generate a series of rain events Xi using the simulator. This sophisticated approach

allows for detailed and accurate simulations of rainfall patterns. The R code for the

implementation is given in Appendix E.2

Also, to assess our rainfall event simulator’s robustness, we conducted simulations to

replicate observed daily rainfall data characteristics. We calculated the mean and stan-

dard deviation of rainfall intensities for each simulation set and compared these metrics

against the observed data.

Figure 7.9: Comparison of Simulated and Observed Rainfall Intensity Characteristics.

The boxplots in Figure 7.9 illustrate the distribution of mean intensities and standard
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deviations across 19 sets of simulated daily rainfall events, with red lines indicating the

mean (0.1928) and standard deviation (0.4115092) of the observed rainfall data. The

alignment of these reference lines within the simulated data demonstrates the simula-

tor’s capability to replicate the variability and intensity distribution of real-world rainfall

events accurately. This indicates the simulator’s reliability for hydrological and climato-

logical studies, especially in contexts lacking observational data, confirming its suitability

for generating realistic rainfall event sequences for analytical purposes.

Figure 7.10: Series of Rainfall events for two years period by the Rainfall simulator using
Algorithm 4
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Figure 7.11: Series of Rainfall events for a year produced by the Rainfall simulator using
Algorithm 4
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Figure 7.12: Series of Rainfall Events at different time resolutions produced by the
Rainfall Simulator from Algorithm 4
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7.10 Discussion

The rainfall event simulator generates values for DIMV using a joint distribution model

calibrated from observed data. This approach ensures that the simulated events authen-

tically reflect the statistical characteristics of real-world rainfall occurrences. Further-

more, the starting time of subsequent events is computed by integrating the seasonal rate

function (representing inter-event time) with the exponential distribution. This method

introduces a temporal pattern to the events that account for both regular and irregular

intervals between rainfall occurrences, ensuring that the results closely resemble actual

events. We simulated a 6-month sequence of rainfall events at different time resolutions

to show the model’s (Algorithm 4) efficacy in consistently generating sequences of rainfall

events that align with the hydrological characteristics of the specified region. The results

are given in Figure 7.10, Figure 7.11 and Figure 7.12. The model’s parsimony is evident,

given that its only parameters are those of D, I, M, and V, the seasonal rate parame-

ters, and the tuning parameters of the rainfall simulator. The strategic choice of scaling

factors, grounded in data-driven insights, played a pivotal role in this validation pro-

cess. By carefully calibrating the extent of modification to the rainfall data parameters,

the model was effectively challenged yet demonstrated its capacity to produce realistic

and accurate simulations. This is particularly commendable given the intricate nature of

rainfall events. This model provides a good representation and forecasting tool for rain-

fall patterns needed to design and plan hydrological structures. This balance between

fidelity to observed data trends and the imposition of extreme conditions facilitated a

robust evaluation of the simulation model, underscoring its potential as a predictive tool

in hydrology and climate science.
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Chapter 8

Conclusions

This chapter offers a comprehensive summary of the research and findings outlined in

this thesis. Finally, some future research directions on rainfall event modelling are also

outlined in this chapter.

8.1 Research Summary

Rainfall is crucial for our environment, but extreme rainfall events lead to problems like

floods and droughts. When planning hydrological structures, it’s essential to consider

these risks. Unfortunately, the high-resolution rainfall data needed to model these risks

is not available in most cases, and we often use rainfall simulators that can accurately

reproduce realistic rainfall patterns. This research aims to build a stochastic parsimonious

high-frequency rainfall simulator from high-frequency data that can accurately represent

critical characteristics of rainfall events and temporal patterns of inter-event times.

Chapter 1 described the importance of the simulation of rainfall events and outlined the

research aim and agenda. It also described the structure of the thesis and the novel

contribution. Chapter 2 review of mathematical rainfall simulation models.

In Chapter 3, we defined and extracted rainfall events from a novel dataset of 6-minute

high-resolution rainfall gauge data spanning 36 years from Sunbury, Australia, using

rainfall characteristics: duration (D), intensity(I), maximum intensity (M), and volatil-

ity (V)(collectively referred to as DIMV) using 1-hour minimum interevent time (IET).

DIMV were found to exhibit skewness in their distributions. A log transformation was

applied to address the skewed nature of the DIMV data and effectively model them, and

a log transformation was applied, i.e. (log(DIMV)). To study the behaviour of the data,

we fitted appropriate marginal distributions to each of the rainfall characteristics, as this
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also plays a critical role in joint (copula) modelling. Based on the AIC Criterion, the

skew t distribution provided the most suitable fit for duration and volatility. On the other

hand, the intensity and maximum intensity were appropriately fitted by the Generalized

Extreme Value (GEV) distribution. Identifying these distributions sets the foundation

for compound distribution and copula modelling.

Chapter 4, the extreme value analysis conducted on Sunbury, Victoria, Australia’s rain-

fall events, intricately examines three pivotal variables: duration, intensity, and total

rainfall. Through the adept application of univariate and bivariate threshold method-

ologies underpinned by the GPD, nuanced insights into the behaviour of these variables

under extreme conditions have been garnered.The univariate POT approach, specifically

tailored for this analysis, has proficiently modelled the exceedances for rainfall duration

and total rainfall data, demonstrating a commendable fit as evidenced by the diagnos-

tic plots. This robust modelling provides valuable predictive insights, notably enabling

the accurate estimation of significant return levels, such as the 100-year return level for

duration and total rainfall. The GPD model’s efficacy in capturing these variables’ tail

behaviour and extremes underscores its utility in providing reliable forecasts for these

crucial aspects of rainfall events.

Conversely, the intensity data presented unique challenges. While the GPD model gener-

ally showed a good fit in initial evaluations, a closer examination revealed its limitations

in accurately modelling the most extreme outliers in the intensity data. This shortfall

indicates a significant area for further research and methodological refinement, especially

in enhancing the model’s capacity to encapsulate all aspects of intensity data’s extremal

behaviour. The duration and intensity data manifest a negative correlation. This obser-

vation does not suggest an asymptotic dependence between these two variables. Among

the array of extreme bivariate models assessed, the negative bivariate logistic model

emerged as the superior fit, having the smallest AIC value. When we compare our sim-

ulated data to the observed data, we find that even the best bivariate extreme value

distribution provides a poor fit as this model is designed for positive dependence, making
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it impractical. We do not pursue any further analysis on bivariate extremes. The study

validates the POT method and GPD model’s effectiveness in capturing the extremes of

rainfall duration and total rainfall, which is essential for water resource management and

climate adaptation strategies. It also highlights the challenges in modelling rainfall inten-

sity extremes, emphasizing the need for improved extreme value modelling techniques.

Additionally, the research exposes the complexities of bivariate relationships in extreme

values, suggesting a reevaluation of current models towards more accurate representations

of rainfall events. These insights are pivotal in advancing the understanding of extreme

rainfall dynamics and stress the necessity for ongoing methodological advancements to

boost the precision and scope of extreme value analyses in hydrological contexts.

In Chapter 5, we developed a flexible univariate hybrid model F-Exp-GPD for modelling

rainfall events duration and intensity by generalising the existing hybrid distribution: G-

Exp-GPD by Debbabi et al. [113] by incorporating an arbitrary distribution F, where F

is the best-fit distribution for the data set under consideration. The novel hybrid model

F-Exp-GPD achieves a balanced representation of the bulk and tail behaviour. Using

the F-Exp-GPD hybrid, three unique hybrid distribution models were formed: Skew

t-Exp-GPD, Skew Normal-Exp-GPD and GEV-Exp-GPD. To demonstrate the efficacy

in accurately characterising rainfall duration and intensity. The parameter estimation

through MLE, implemented using the Maxlik package and the Nelder-Mead method in

R, ensures precise fitting and robust results. The GEV-Exp-GPD model emerges as

the most suitable, evidenced by its lowest AIC value which is also better than the AIC

values for the skew t distribution for log(duration) (see Table 3.2) and GEV distribution

for log(intensity) (see Table 3.3) in Chapter 3. Thereby, capturing the bulk and tail

behaviour of the rainfall events duration and intensity data. The skew-t-Exp-GPD can

also be used to model rainfall events duration. This research underscores the potential

of the F-Exp-GPD approach for hydrological applications.

In Chapter 6, the dependence modelling and simulation of rainfall event characteristics

- duration (D), intensity (I), maximum intensity (M), and volatility (V) were performed
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using the vine copula approach. The focus was on determining the best copula model

to represent the interdependence among these characteristics. Out of the vine copula

structures, namely the R-vine, C-vine, and D-vine, The D-vine copula was identified as

the best model because of its lowest AIC value, signifying a superior fit to the data. The

robustness of the D-Vine copula model was further analysed by simulating the quadruple

(DIMV) using the D-Vine copula. The appropriate transformations were implemented

using the best marginal distribution for each characteristic: Skew t for both duration

and volatility and GEV distribution for intensity and maximum intensity to make these

simulated results comparable to the observed data. The results revealed that the pro-

posed copula model effectively maintained the sample dependencies among the rain event

characteristics. The copula simulated and observed data show a substantial similarity.

The D-vine copula effectively bridges theoretical expectations with real-world data, prov-

ing its accuracy in modelling the complex dependencies of rainfall event characteristics.

Both statistical and graphical assessments back its reliability. The D-vine copula offers

a robust method for understanding and simulating rainfall events data dependencies.

In Chapter 7, we developed a flexible rainfall event simulator (raineventsim) for the de-

tailed simulation of rainfall events, emphasising temporal intensity patterns. The function

simulates accurate and realistic rainfall patterns across discrete time intervals by acknowl-

edging crucial parameters such as average intensity, event duration, maximum intensity,

and volatility. Its hybrid approach, incorporating deterministic constraints and stochastic

variability via a random search method, ensures that simulated events represent actual

rainfall events and are adaptable to specific requirements. Furthermore, the function’s

recursive structure and ability to adjust based on the provided constraints attest to its

robustness. This tool is helpful for hydrologists, climatologists, and researchers seeking

to model or analyse rainfall patterns with precision and realism. Next, we developed

a model for simulating a sequence of rainfall events over a specified time range, which

follows the steps: (1) Iterating from the start time t1 to the end time tmax (2) Drawing

values for DIMV from the joint distribution model calibrated based on the observed data

which add authenticity to the simulated events and assures that the generated DIMV
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data mirrors the statistical properties of real-world rainfall events (3) Computing the

next event’s start time through the integration of the season rate function (inter-event

time) and the exponential distribution, which introduces a realistic temporal pattern to

the events and respects both consistent and irregular intervals between rain events (4)

Generating a sequence of rain events where each event’s internal structure is also cap-

tured making the simulated event rich in detail. This stochastic model is invaluable for

hydrological studies, urban planning and climate change modelling, where high-resolution

rainfall event data might be scarce or insufficient.

The methodology developed in this thesis for simulating point rainfall events exhibits a

unique combination of strengths and areas for improvement when considered in the con-

text of spatial simulations. Among its most notable strengths is the innovative approach

to encapsulating the intricacies of rainfall dynamics through a high-resolution simula-

tor. This approach leverages vine copulas and a hybrid model to accurately capture the

dependencies among key rainfall event characteristics—duration, intensity, maximum in-

tensity, and volatility—offering detailed insights into rainfall patterns with implications

for hydrological forecasting and climate change studies.

However, while detailed and precise, the model’s focus on point rainfall events introduces

limitations in its applicability to broader spatial analyses. The calibration and validation

of the model are demonstrated within a specific geographical and climatic context, raising

questions about its generalizability across diverse environments. This limitation suggests

a potential area for further research to adapt and validate the model for various geographic

locations and extend its capabilities to encompass spatial rainfall distribution, thereby

enhancing its utility for regional-scale hydrological modelling and planning.

Furthermore, the model’s computational demands, particularly when employing copula-

based methodologies for capturing complex dependencies among rainfall event character-

istics, present challenges for scalability and real-time applications. Addressing these com-

putational efficiency aspects, alongside expanding the model to simulate spatial rainfall
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variability more effectively, represents critical pathways for future work. This evolution

would bolster the model’s robustness and applicability and contribute significantly to the

broader field of hydrological sciences. Specifically, adapting to and minimising the effects

of climatic unpredictability and change.

8.2 Further work

• The study of the hybrid model in Chapter 5 opens several avenues for future re-

search. Further refinements to the F-Exp-GPD model could also be explored, in-

corporating other distribution types or additional parameters to enhance its ability

to capture complex data patterns. The model could also be tested on different

environmental data types to assess its applicability beyond rainfall. Additionally,

investigating more sophisticated linking functions or different fitting methods might

offer additional improvements in model performance. Lastly, incorporating this hy-

brid model into broader weather forecasting and climate change models could be

an exciting and impactful direction for future work.

• Chapter 6 presents significant potential for future exploration. Applying the copula

methodology to model the joint distribution of rainfall characteristics in other re-

gions of Australia would provide a comprehensive assessment of its versatility and

robustness across varied climates and geographical conditions. Since this study uti-

lized a parametric method, future work could consider exploring non-parametric

approaches for modelling the joint distribution of rainfall event characteristics.

Non-parametric methods offer a flexible alternative advantageous in cases where

the underlying data distribution is complex or unknown.

• Given the advancements achieved in Chapter 7, several intriguing avenues for fu-

ture research manifest themselves. Firstly, while the developed simulator exhibits

significant precision in modelling rainfall patterns, incorporating spatial variabil-

ity into the tool could further enhance its realism. This spatial extension would

allow researchers to investigate the interconnectedness of rainfall patterns across
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varying geographical terrains. Additionally, with the ever-evolving nature of cli-

matic patterns due to global changes, integrating real-time data or climate change

projections could keep the simulator’s outputs continually relevant. The current

model’s adeptness in capturing temporal patterns and internal event structures of-

fers a firm foundation for extending it to simulate more complex events, such as

simultaneous rain and wind, potentially of paramount importance for urban plan-

ners and architects. Machine learning techniques could be amalgamated into the

model, facilitating it to continually learn and adapt from newly generated data.

Lastly, given the emphasis on hydrological studies and urban planning, it would

be pertinent to integrate the simulator’s outputs with hydraulic and hydrodynamic

models, ensuring a holistic approach to water and infrastructure management. Such

synergistic interplay between different models could revolutionize the predictability

and mitigation strategies associated with flooding and related natural calamities.
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Appendix A: R code for Rainfall Events Extraction

Appendix A.1: Data Cleaning and Rainfall Extraction

#Data Cleaning and Rainfall Extraction

library(lubridate)

rainfall_data <- read.csv("C:/Users/Administrator/

Documents/R/SITE_230202_MR_510.csv", header = TRUE, stringsAsFactors = FALSE)

rainfall_data<-read.csv(file.choose(),header = TRUE)

all.times <- rainfall_data$measure_date

all.times.POSIX <- dmy_hms(all.times, tz = "Australia/Melbourne")

diff.all.times.POSIX <- diff(all.times.POSIX)

diff.all.times.POSIX==360 #checking if the data had 6mins gap

#

length(diff.all.times.POSIX) #length will be equal to original length minus 1

png(file="C:/Users/Administrator/Documents/rainfall plot")

plot(rainfall_data$measure_value ~ all.times.POSIX,

main="Rainfall Data", ylab = "Depth(mm)" ,xlab = "Year",)

dev.off()

identical(round_date(all.times.POSIX, unit ="seconds"),all.times.POSIX)

#View(rainfall_data)

rainfall_data <- rainfall_data[-(111621:111906), ] #deleting the last month

rainfall_data <- rainfall_data[-c(107417, 107418, 107445, 107446), ]

#deleting zero readings with odd time stamps

time.POSIX <- dmy_hms(rainfall_data[,3], tz = "Australia/Melbourne")

#converting to POSIXct format

#Creating 6mins time stamps Method 1

minute.POSIX <- minute(time.POSIX)

w <- which(minute.POSIX %% 6 != 0)
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time.POSIX[w]

time.POSIX <- round_date(time.POSIX, unit="minute")

time.POSIX[w]

which(minute(time.POSIX) %% 6 != 0)

all(as.numeric(diff(time.POSIX)) %% 360 == 0)

# year(time.POSIX)

# month(time.POSIX, label=T)

# month(time.POSIX)

time.6minutes <- cumsum(c(0,diff(time.POSIX)) / 360) + 1

## how many 6 minute intervals have passed since the first ever measurement

## time.POSIX[which(time.6minutes==42)]

depth<-rainfall_data[,4]

time<-time.6minutes

# fill in zeros

maxt <- max(time)

newd <- rep(0, maxt)

ti <- 1 #time counter

idx <- 1 #position in depth vector

newd[1] <- depth[1]

while (ti < maxt) {

ti <- ti + 1

if (ti == time[idx+1]) {

idx <- idx + 1

newd[ti] <- depth[idx]

}

}

New_Rainfall_Data<-data.frame(Datetime=time.POSIX[1]+360*

(0:(maxt-1)), Time=1:maxt, Depth=newd)

save(New_Rainfall_Data, file = "Clean_Rainfall_Data.RData")

#data name:New_Rainfall_Data

#Load the clean data

load(file="Clean_Rainfall_Data.RData")
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IET <- 10

#since it is 6 mins time resolution

newd <- New_Rainfall_Data$Depth

# newd vector of rainfall depth every 6min

# IET measured in units of 6min

# returns a matrix where each row is a rainfall event

# cols give durations depths intensities starttimes

durations <- c()

depths <- c()

starttimes <- c()

n_events <- 0

ti <- 1

ti_max <- length(newd)

event_flag <- FALSE

event_zeros <- 0

event_durtn <- 0

event_depth <- 0

while (ti <= ti_max) {

if (event_flag) { # in an event

if (newd[ti] == 0) {

event_zeros <- event_zeros + 1

event_durtn <- event_durtn + 1

if (event_zeros == IET) { # rain event finishes

durations[n_events] <- event_durtn - IET

depths[n_events] <- event_depth

event_flag <- FALSE

cat("event", n_events, "duration", event_durtn - IET,

"depth", event_depth, "\n")

}

} else {

event_zeros <- 0

event_durtn <- event_durtn + 1

event_depth <- event_depth + newd[ti]

}

} else { # between events
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if (newd[ti] > 0) {

n_events <- n_events + 1

event_flag <- TRUE

event_zeros <- 0

event_durtn <- 1

event_depth <- newd[ti]

starttimes[n_events] <- ti

}

}

ti <- ti + 1

}

#return(cbind(durations, depths, depths/durations, starttimes))

events <- list()

for (i in 1:n_events) {

idx <- starttimes[i]:(starttimes[i]+durations[i]-1)

events[[i]] <- New_Rainfall_Data[idx,]

}

events

save(events, file = "events_rainfall.RData")

#Load the rainfall events data

load(file="events_rainfall.RData")

library(lubridate)

#Extraction of relevant summaries

#durations; total depth, total intensity, volatility and max intensity

n_events<- length(events)

t_duration <- rep(NA, n_events)

t_depth <- rep(NA, n_events)

event_rows <- rep(NA, n_events)

t_intensity <- rep(NA, n_events)# Total intensity

idx_intensity <- rep(NA, n_events)

volatility<- rep(NA, n_events)

mod_volatility<- rep(NA, n_events)

max_intensity <- rep(NA, n_events)
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#Start Time, End Time,

start_time <- c()

end_time <- c()

n_depth_zeros <-rep()

# Function to calculate the volatility

vol <- function(x) {

sum(diff(x)^2)/length(x)

}

# # Function to calculate the modified volatility

# mod_vol <- function(x) {

# sum(diff(x + runif(length(x),0,.1/6))^2)/length(x)

# }

indx<-setNames( rep(c(’summer’, ’autumn’, ’winter’, ’spring’),each=3), c(12,1:11))

for (i in 1:n_events ){

event_rows[i] <- (nrow(events[[I]]))

# Previous duration used before conversion

t_duration[i] <-(event_rows[[i]]*6)

# Multiplied by 6 to give total number of mins

t_depth[i] <- sum(events[[i]]$Depth)

t_intensity[i] <- (t_depth[i])/t_duration[i]

idx_intensity <- events[[i]]$Depth/6 # Indexed intensities

max_intensity[i] <- max(idx_intensity)

volatility[i] <- vol(idx_intensity)

#mod_volatility[i] <- mod_vol(idx_intensity)

start_time[i] <- events[[i]]$Datetime[[1]]

end_time[i] <- events[[i]]$Datetime[[1]] + t_duration[i]*60

}

start_time <- as_datetime(start_time, tz = "Australia/Melbourne")

end_time<-as_datetime(end_time, tz = "Australia/Melbourne")

months<- month(start_time)

seasons <-unname(indx[as.character(months)])

R_Summary<-data.frame(Duration=t_duration,Depth=t_depth,Intensity=t_intensity,
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Max_intensity=max_intensity,Volatility=volatility,

start_time=start_time,end_time=end_time,months=months,seasons=seasons)

View(R_Summary)

save(R_Summary, file = "Summary_Events.RData")

#Load the rainfall events data

load(file="Summary_Events.RData")

#Removing small events where total depth is lower than 1mm

idx<-R_Summary[,2] >=1

idx

Summary_Events_needed <- data.frame(R_Summary[idx,])

names(Summary_Events_needed)<- c("Duration","Depth","Intensity",

"Max_Intensity", "Volatility", "Start_Time", "End_Time","Months", "Seasons")

Summary_Events_needed

save(Summary_Events_needed, file = "Rainfall_Events_Summary.RData")

View(Summary_Events_needed)
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Appendix A.2: Q-Q Plot for DIMV using fitted distributions

Figure 1: Q-Q plot for log(duration) with fitted distributions
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Figure 2: Q-Q plot for log(intensity) with fitted distributions
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Figure 3: Q-Q plot for log(maximum intensity) with fitted distributions
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Figure 4: Q-Q plot for log(volatility) with fitted distributions

186



Appendix B.1: Rainfall event with highest total rainfall (Event 9556)

Figure 5: Rainfall event with highest total rainfall (Event 9556), start time: 2005-02-
02 01:54:00; end time: 2005-02-03 07:48:00; duration: 1794 minutes; total intensity:
168.4mm
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Appendix B.2: Rainfall with largest intensity events

Figure 6: Rainfall with largest intensity events
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Appendix C: F-Exp-GPD

C.1: Quantile Function of F-Exp-GPD
Given the cdf of the hybrid density, h can be expressed as

H(x;θ) =


r1F (x;θ) if −∞< x < t1

r1F (t1;θ)+ r2(e−λt1− e−λx) if t1 < x≤ t2

1− r3(1+ γ
β (x− t2))−1/γ if t2 < x <∞

(1)

Solving for the quantile function by

when x≤ t1

Set u= r1F (x,θ)

F (x,θ) = u

r1

x = F−1
(
u

r1

)
(2)

when t1 ≤ x≤ t2

set u= r1F (t1, θ)+ r2(e−γt1− e−γx); Let u1 = r1F (t1, θ)

Then u= u1 + r2(e−γt1− e−γx)

u−u1
r2

= e−γt1− e−γx

−e−γx = u−u1
r2

e−γx = u1−u+ r2e−γt1

r2

−γx = log
(
u1−u+ r2e−γt1

r2

)
x = −1

γ
log

(
u1−u+ r2e−γt1

r2

)
= γ−1 log

(
r2

u1−u+ r2e−γt1

)
(3)
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when x≥ t2

u = 1− r3

(
1+ γ

β
(x− t2)

)−1/γ

u−1 = −r3

(
1+ γ

β
(x− t2)

)−1/γ

1−u = r3

(
1+ γ

β
(x− t2)

)−1/γ

1−u
r3

=
(

1+ γ

β
(x− t2)

)−1/γ

(1−u
r3

)−γ = 1+ γ

β
(x− t2)(1−u

r3

)−γ

−1 = γ

β
(x− t2)

β

γ

(1−u
r3

)−γ

−1 = x− t2

x =
[
β

γ

(1−u
r3

)−γ

−1
]

+ t2

=
[
β

γ

(1−u−u2
r3

)−γ

−1
]

+ t2

(4)

u2 = 1− r3

Then, the quantile function is given by

H−1(u;θ) =



F−1( u
r1

;θ) if u≤ u1 = r1F (t1;θ)
1
λ log

[
r2

u1−u+r2e−λt1

]
if u1 ≤ u≤ u2 = 1− r3

β
γ

[
(1− u−u2

r3
)γ−1

]
+ t2 if u≥ u2

(5)
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Appendix C.2: Functions for St-Exp-GPD

#===============================================================================

#================================================================================

library(extraDistr)# contains some univariate distributions

library(sn)# contains the skew families

library(EnvStats)# contains some univariate distribution

#===============================================================================

####################### SKEW T-EXP-GPD hybrid model ###########################

#===============================================================================

#derivative of the stew t density

#u1=threshold 1, u2=threshold 2,mu=mu,sigma=sigma, a=alpha,v=v

dstprime<-function(u1,mu,sigma,a,v){

z=(u1-mu)/sigma

p=a*z*((v+1)/(v+z^2))^(0.5)

ti=dt(x=z,df=v)

Ti=pt(q=p,df=v+1)

tiprime=(-z*(v+1)/v)*((1+(z^2/v))^(-1)*ti)*Ti

Tiprime=ti*a*((v+1)^(0.5))*(v/(v+z^2)^(3/2))*dt(p,df=v+1)

Ttprime=(2/(sigma^2))*(tiprime+Tiprime)

return(Ttprime)

}

#==============================================================================

#===============================================================================

#st_e_gpd pdf

dst_e_gpd<-function(x,u1,mu,sigma,a,v,u2,xi){

d1=rep(0,length(x))

lambda= -dstprime(u1,mu,sigma,a,v)/dst(u1,mu,sigma,a,v)

beta1= (xi+1)/lambda

r2=1/((1+(lambda*pst(u1,mu,sigma,a,v)/dst(u1,mu,sigma,a,v)))*exp(-lambda*u1)

+(lambda*beta1-1)*exp(-lambda*u2))

r1=r2*dexp(u1,lambda)/dst(u1,mu,sigma,a,v)

r3=r2*beta1*dexp(u2,lambda)

d1[which(x<=u1)]<-r1*dst(x[which(x<=u1)],mu,sigma,a,v)

d1[which(x<=u2 & x>u1)]<-r2*dexp(x[which(x<=u2 & x>u1)],lambda)

d1[which(x>u2)]<-r3*dgpd(x[which(x>u2)]-u2,0,beta1,xi)

return(d1)

}

#===============================================================================
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#st_e_gpd cdf

pst_e_gpd<-function(q,u1,mu,sigma,a,v,u2,xi){

p1=rep(0,length(q))

lambda= -dstprime(u1,mu,sigma,a,v)/dst(u1,mu,sigma,a,v)

beta1= (xi+1)/lambda

r2=1/((1+(lambda*pst(u1,mu,sigma,a,v)/dst(u1,mu,sigma,a,v)))*exp(-lambda*u1)

+(lambda*beta1-1)*exp(-lambda*u2))

r1=r2*dexp(u1,lambda)/dst(u1,mu,sigma,a,v)

r3=r2*beta1*dexp(u2,lambda)

p1[which(q<=u1)]<-r1*pst(q[which(q<=u1)],mu,sigma,a,v)

p1[which(q<=u2 & q>=u1)]<- (r1*pst(u1,mu,sigma,a,v)+

r2*(pexp(q[which(q<=u2 & q>=u1)],lambda)

-pexp(u1,lambda)) )

p1[which(q>=u2)]<- (r1*pst(u1,mu,sigma,a,v)+

r2*(pexp(u2,lambda)-pexp(u1,lambda))+

r3*pgpd(q[which(q>=u2)],u2,beta1,xi) )

return(p1)

}

#==============================================================================

#st_e_gpd quantile

qst_e_gpd<-function(p,u1,mu,sigma,a,v,u2,xi){

q1=rep(0,length(p))

lambda= -dstprime(u1,mu,sigma,a,v)/dst(u1,mu,sigma,a,v)

beta1= (xi+1)/lambda

r2=1/((1+(lambda*pst(u1,mu,sigma,a,v)/dst(u1,mu,sigma,a,v)))*exp(-lambda*u1)

+(lambda*beta1-1)*exp(-lambda*u2))

r1=r2*dexp(u1,lambda)/dst(u1,mu,sigma,a,v)

r3=r2*beta1*dexp(u2,lambda)

a1=r1*pst(u1,mu,sigma,a,v)

b1=1-r3

q1[which(p<=a1)]=qst(p[which(p<=a1)]/r1,mu,sigma,a,v)

q1[which(p<=b1 & p>=a1)]=qexp(((p[which(p<=b1 & p>=a1)]-a1)/r2)+

pexp(u1,lambda),lambda)

q1[which(p>=b1)]=qgpd((p[which(p>=b1)]-b1)/r3,0,beta1,xi)+u2

return(q1)

}
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Appendix C.3: R Functions for Sn-Exp-GPD

#===============================================================================

#===============================================================================

library(extraDistr)# contains some univariate distributions

library(sn)# contains the skew families

library(EnvStats)# contains some univariate distribution

#==============================================================================

###############################################################################

#################### SKEW NORMAL-EXP-GPD hybrid model #########################

###############################################################################

#==============================================================================

#derivative of the skew normal density

#u1=u1,mu=mu,sigma=sigma, a=alpha

dsnprime<-function(u1,mu,sigma,a){

z=(u1-mu)/sigma

s=a*z

snprime= (2*dnorm(z,0,1)/sigma^2)*(a*dnorm(s,0,1)-z*pnorm(s,0,1))

return(snprime)

}

#===============================================================================

#sn_e_gpd pdf

dsn_e_gpd<-function(x,u1,mu,sigma,a,u2,xi){

d2=rep(0,length(x))

lambda= -dsnprime(u1,mu,sigma,a)/dsn(u1,mu,sigma,a)

beta1= (xi+1)/lambda

r2=1/((1+(lambda*psn(u1,mu,sigma,a)/dsn(u1,mu,sigma,a)))*exp(-lambda*u1)

+(lambda*beta1-1)*exp(-lambda*u2))

r1=r2*dexp(u1,lambda)/dsn(u1,mu,sigma,a)

r3=r2*beta1*dexp(u2,lambda)

d2[which(x<=u1)]<-r1*dsn(x[which(x<=u1)],mu,sigma,a)

d2[which(x<=u2 & x>u1)]<-r2*dexp(x[which(x<=u2 & x>u1)],lambda)

d2[which(x>u2)]<-r3*dgpd(x[which(x>u2)]-u2,0,beta1,xi)

return(d2)

}

#===============================================================================

#sn_e_gpd cdf

psn_e_gpd<-function(q,u1,mu,sigma,a,u2,xi){

p2=rep(0,length(q))
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lambda= -dsnprime(u1,mu,sigma,a)/dsn(u1,mu,sigma,a)

beta1= (xi+1)/lambda

r2=1/((1+(lambda*psn(u1,mu,sigma,a)/dsn(u1,mu,sigma,a)))*exp(-lambda*u1)

+(lambda*beta1-1)*exp(-lambda*u2))

r1=r2*dexp(u1,lambda)/dsn(u1,mu,sigma,a)

r3=r2*beta1*dexp(u2,lambda)

p2[which(q<=u1)]<-r1*psn(q[which(q<=u1)],mu,sigma,a)

p2[which(q<=u2 & q>=u1)]<- (r1*psn(u1,mu,sigma,a)+

r2*(pexp(q[which(q<=u2 & q>=u1)],lambda)

- pexp(u1,lambda)))

p2[which(q>=u2)]<- (r1*psn(u1,mu,sigma,a)+

r2*(pexp(u2,lambda)-pexp(u1,lambda))+

r3*pgpd(q[which(q>=u2)],u2,beta1,xi))

return(p2)

}

#==============================================================================

#sn_e_gpd quantile function

qsn_e_gpd<-function(p,u1,mu,sigma,a,u2,xi){

q2=rep(0,length(p))

lambda= -dsnprime(u1,mu,sigma,a)/dsn(u1,mu,sigma,a)

beta1= (xi+1)/lambda

r2=1/((1+(lambda*psn(u1,mu,sigma,a)/dsn(u1,mu,sigma,a)))*

exp(-lambda*u1)

+(lambda*beta1-1)*exp(-lambda*u2))

r1=r2*dexp(u1,lambda)/dsn(u1,mu,sigma,a)

r3=r2*beta1*dexp(u2,lambda)

a1=r1*psn(u1,mu,sigma,a)

b1=1-r3

q2[which(p<=a1)]=qsn(p[which(p<=a1)]/r1,mu,sigma,a)

q2[which(p<=b1 & p>=a1)]=qexp(((p[which(p<=b1 & p>=a1)]-a1)/r2)+

pexp(u1,lambda),lambda)

q2[which(p>=b1)]=qgpd((p[which(p>=b1)]-b1)/r3,0,beta1,xi)+u2

return(q2)

}
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Appendix C.4: R Functions for GEV-Exp-GPD

#===============================================================================

#================================================================================

library(extraDistr)# contains some univariate distributions

library(sn)# contains the skew families

library(EnvStats)# contains some univariate distribution

library(stats)

#==============================================================================

#################### GEV-EXP-GPD hybrid model #################################

#==============================================================================

#derivative of the GEV density

dgevprime<-function(u1,mu,sigma,k){

z=(u1-mu)/sigma

v<-(1+k*z)^(-1/k)

vprime<-(-1/sigma)*(1+k*z)^((-1/k)-1)

gevprime= vprime*dgev(u1,mu,sigma,k)*((k+1)*(v)^(-1)-1)

return(gevprime)

}

#=============================================================================

#gev_e_gpd pdf

dgev_e_gpd<-function(x,u1,mu,sigma,k,u2,xi){

d3=rep(0,length(x))

lambda= -dgevprime(u1,mu,sigma,k)/dgev(u1,mu,sigma,k)

beta1= (xi+1)/lambda

r2=1/((1+(lambda*pgev(u1,mu,sigma,k)/dgev(u1,mu,sigma,k)))*exp(-lambda*u1)

+(lambda*beta1-1)*exp(-lambda*u2))

r1=r2*dexp(u1,lambda)/dgev(u1,mu,sigma,k)

r3=r2*beta1*dexp(u2,lambda)

d3[which(x<=u1)]<-r1*dgev(x[which(x<=u1)],mu,sigma,k)

d3[which(x<=u2 & x>u1)]<-r2*dexp(x[which(x<=u2 & x>u1)],lambda)

d3[which(x>u2)]<-r3*dgpd(x[which(x>u2)]-u2,0,beta1,xi)

return(d3)

}

#==============================================================================

#gev_e_gpd cdf

pgev_e_gpd<-function(q,u1,mu,sigma,k,u2,xi){

p3=rep(0,length(q))

lambda= -dgevprime(u1,mu,sigma,k)/dgev(u1,mu,sigma,k)
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beta1= (xi+1)/lambda

r2=1/((1+(lambda*pgev(u1,mu,sigma,k)/dgev(u1,mu,sigma,k)))*exp(-lambda*u1)

+(lambda*beta1-1)*exp(-lambda*u2))

r1=r2*dexp(u1,lambda)/dgev(u1,mu,sigma,k)

r3=r2*beta1*dexp(u2,lambda)

p3[which(q<=u1)]<-r1*pgev(q[which(q<=u1)],mu,sigma,k)

p3[which(q<=u2 & q>=u1)]<- (r1*pgev(u1,mu,sigma,k)+

r2*(pexp(q[which(q<=u2 & q>=u1)],lambda)

- pexp(u1,lambda)) )

p3[which(q>=u2)]<-( r1*pgev(u1,mu,sigma,k)+

r2*(pexp(u2,lambda)-pexp(u1,lambda))+

r3*pgpd(q[which(q>=u2)],u2,beta1,xi) )

return(p3)

}

#==============================================================================

#gev_e_gpd quantile

qgev_e_gpd<-function(p,u1,mu,sigma,k,u2,xi){

q3=rep(0,length(p))

lambda= -dgevprime(u1,mu,sigma,k)/dgev(u1,mu,sigma,k)

beta1= (xi+1)/lambda

r2=1/((1+(lambda*pgev(u1,mu,sigma,k)/dgev(u1,mu,sigma,k)))*exp(-lambda*u1)

+(lambda*beta1-1)*exp(-lambda*u2))

r1=r2*dexp(u1,lambda)/dgev(u1,mu,sigma,k)

r3=r2*beta1*dexp(u2,lambda)

a1=r1*pgev(u1,mu,sigma,k)

b1=1-r3

q3[which(p<=a1)]=qgev(p[which(p<=a1)]/r1,mu,sigma,k)

q3[which(p<=b1 & p>=a1)]=qexp(((p[which(p<=b1 & p>=a1)]-a1)/r2)+

pexp(u1,lambda),lambda)

q3[which(p>=b1)]=qgpd((p[which(p>=b1)]-b1)/r3,0,beta1,xi)+u2

return(q3)

}
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Appendix D: R Functions for Copula Simulation

Appendix D.1: Bivariate Copula Simulation

rm(list = ls())

#load the VineCopula package

library(VineCopula)

##Loading Event Summary Data

load("C:/Users/c1834516/OneDrive - Cardiff University/

Documents/Research Data and Code/Simulation/Rain_Events_OS.RData")

View(Rain_Events_OS)

#Selecting DIMV

data=Rain_Events_OS[, c("Duration","Intensity",

"Max_Intensity","Volatility")]

#Selecting D & I then taking the log in order to

#effectively model the data

ndata<-cbind(log(data[,1]),log(data[,2]))

#Converting the data to Univariate U[0,1]

udata<-pobs(cbind(ndata[,1],ndata[,2]))

#Selecting the Best fitted Copula using the AIC criteria

cop<-BiCopSelect(udata[,1],udata[,2])

cop

#Bivariate copula: Rotated Tawn type 1 90 degrees

#(par = -4.69, par2 = 0.32, tau = -0.29)

# Simulate from the proposed Copula

set.seed(1234) # For reproducibility

n <- 3450 # Number of samples

simData <- BiCopSim(n, family= 124, par=-4.69, par2=0.32)

#Loading the needed library for the transformation

library(fitdistrplus)
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library(sn)

library(VGAM)

#Converting simData from U[0,1] to original scale

#Using skew t dist for log(duration)

D <- (qst(simData[,1], xi = 5.256585, omega = 1.135632,

alpha = -1.145267, nu = 18.396395))

#Using GEV for log(intensity)

I <- (qgev(simData[,2], location = -2.07344987,

scale = 0.67027053, shape = -0.04415461))

# Visualization for Comparism of Simulated data and Observed Data

png(filename = "Observed data vs Copula Simulated.png",

height=24,width=18,units="cm",res=200)

plot(D,I, main = ’’, xlab = "log(duration)", ylab = "log(intensity)",

col=’darkgray’,ylim=c(-4,3), xlim=c(0,8),

lwd=4, pch = 19, cex = 0.5)

points(ndata[,1],ndata[,2], col="black")

legend(’bottomleft’, c(’simulated’,’observed’), lwd=3,

col= c(’darkgray’,’black’))

dev.off()

#Table 6.3 formation

#Normal Copula

Est1<-BiCopEst(udata[,1],udata[,2], family=1, method = "mle")

summary(Est1)

#t Copula

Est2<-BiCopEst(udata[,1],udata[,2], family=2, method = "mle")

summary(Est2)

#Rotated 270 degree Clayton Copula

Est3<-BiCopEst(udata[,1],udata[,2], family=33, method = "mle")

summary(Est3)

#Frank Copula

Est4<-BiCopEst(udata[,1],udata[,2], family=5, method = "mle")
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summary(Est4)

#Rotated 90 degree Joe Copula

Est5<-BiCopEst(udata[,1],udata[,2], family=26, method = "mle")

summary(Est5)

#Rotated 90 Tawn type 1 copula

Est6<-BiCopEst(udata[,1],udata[,2], family=124, method = "mle")

summary(Est6)

199



Appendix D.2: Vine Copula Simulation for DIMV

## Loading Appropriate Copula Package

library(VineCopula)

##Compute Pseudo-observations for Copula Inference

udata <- pobs(log(data))

#Selecting Appropriate Tree Structure

rvm=RVineStructureSelect(data=udata)

#Copula pair selection multivariate

pair_cop=RVineCopSelect(data=udata, familyset = NA,

Matrix =rvm$Matrix, selectioncrit = "AIC",

indeptest = FALSE, level = 0.05)

#Simulating from the multivariate copula

RVM =RVineMatrix(Matrix = pair_cop$Matrix, family = pair_cop$family,

par= pair_cop$par,

par2 = pair_cop$par2, names = c("D", "I", "M", "V"))

DIMV_sim<-function(){

# Initialize a variable to keep track of the condition

condition_met <- FALSE

# Run the simulation until the condition is met

while (!condition_met) {

# Simulating from the multivariate copula

simdata <- RVineSim(1, RVM)

# Check dimensions of simdata

#print(dim(simdata))

# Converting to initial scale

# Convert simdata[1] to original scale using skew #t distribution

Duration <- exp(qst(simdata[1], xi = 5.256585,

omega = 1.135632, alpha = -1.145267, nu = 18.396395))
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# Convert simdata[2] to original scale using GEV #distribution

Intensity <- exp(qgev(simdata[2],

location = -2.07344987, scale = 0.67027053,

shape = -0.04415461))

# Convert simdata[3] to original scale using GEV #distribution

Max_Intensity <- exp(qgev(simdata[3],

location = -0.80075293, scale = 0.64562950,

shape = -0.06081438))

# Convert simdata[4] to original scale using #skew t distribution

Volatility <- exp(qst(simdata[4], xi = -3.9269208,

omega = 0.9956432, alpha = 1.7540797,

nu = 2.5856904))

# Check if the conditions are met

#(simdata$Max_Intensity >= (simdata$Intensity/simdata$Duration)) and

#(Volatility >= 0)

if (Max_Intensity <= Intensity * Duration &&

Max_Intensity >= Intensity && Volatility >= 0) {

condition_met <- TRUE

}

}

return(c(Duration, Intensity, Max_Intensity, Volatility))

}

DIMV <- matrix(nrow=3450, ncol=4)

for (I in 1:3450) DIMV[I,] <- DIMV_sim()

# Visualization for Comparison of Simulated Data and Observed Data

png(filename = "Q-Q plot of observed data vs Copula Simulated.png",

height=24,width=18,units="cm",res=200)

par(mfrow=c(4,2))

plot(sort(DIMV[,1]), sort(data[,1]), xlab="sort(simulated duration)",

ylab="sort(duration)")

abline(a=0,b=1,col="red")

plot(sort(DIMV[,2]), sort(data[,2]), xlab="sort(simulated intensity)",

ylab="sort(intensity)")
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abline(a=0,b=1,col="red")

plot(sort(DIMV[,3]), sort(data[,3]),

xlab="sort(simulated maximum intensity)",

ylab="sort(maximum intensity)")

abline(a=0,b=1,col="red")

plot(sort(DIMV[,4]), sort(data[,4]), xlab="sort(simulated volatility)",

ylab="sort(volatility)")

abline(a=0,b=1,col="red")

dev.off()
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Appendix E: R Functions for Rain Events Simulation

Appendix E.1: R Code for Simulating Simulating a Rain Event

rm(list=ls())

# Function for Vol(x)

Vol <- function(x) {

sum(diff(x)^2)/length(x)

}

raineventsim2 <- function(I, D, M, V, stepsize = 6, tol = 0.001,

alpha = 2, beta = 2, max_it = 100,

j = -1, num_calls = 0) {

# comments: what are the inputs, what is the output, what is the method

n <- ceiling(D/stepsize)

x <- rep(NA, n)

if (num_calls >=2) return(list(x = x, state = "failure"))

# case n == 1

if (n == 1) {

if (abs(M - (n * I)) >= tol) {

return(list(x = x, state = "raineventsim: inconsistent I, D, M, V, n == 1"))

} else {

x[1] = M

return(list(x = x, state = "success"))

}

}

if (n == 2) {

if (runif(1) < 0.5) {

x <- c(M, 2*I - M)

} else {

x <- c(2*I - M, M)
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}

if (abs(Vol(x) - V) <= tol && min(x) >= 0) {

return(list(x = x, state = "success"))

} else {

return(list(x = x, state = "raineventsim:

inconsistent I, D, M, V, n == 2"))

}

}

# # choose case when v==0

# if (V==0){

# x<-rep(M,length(x))

# return(list(x=x, state= "success"))

# }

# choose location of max value

if (j == -1) {

j <- ceiling(rbeta(1, alpha, beta) * n)

}

x[j] <- M

# initial solution satisfying I, D, M constraints

for (i in (1:n)[-j]) {

x[i] <- ((n * I) - M) / (n - 1)

}

# check min max value constraints

if (min(x) < 0 || max(x) > M + sqrt(.Machine$double.eps)) {

return(list(x = x, state = paste0("raineventsim: inconsistent I = ", I,

", D = ", D, ", M = ", M, ", V =", V, ", n >= 3")))

}

# ==========================================================

# random search for better volatility, assuming n >= 3

num_reps <- 0

fail_count <- 0

while (fail_count < max_it) {

num_reps <- num_reps + 1

V_err <- abs(Vol(x) - V)

if (V_err <= tol) {
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return(list(x = x, state = "success"))

}

hi <- sample((1:n)[-j], 2)

h <- hi[1]

i <- hi[2]

eps_max <- min(x[h], M - x[h], x[i], M - x[i])

eps <- runif(1, -eps_max, eps_max)

y <- x

z <- x

y[h] <- y[h] - eps

y[i] <- y[i] + eps

z[h] <- z[h] + eps

z[i] <- z[i] - eps

V_err_y <- abs(Vol(y) - V)

V_err_z <- abs(Vol(z) - V)

if (V_err_y < V_err || V_err_z < V_err) {

fail_count <- 0

if (V_err_y < V_err_z) {

x <- y

V_err <- V_err_y

} else {

x <- z

V_err <- V_err_z

}

} else {

fail_count <- fail_count + 1

}

}

#print(Vol(x) - V)

if (!(j == 1 || j == n)) {

j <- sample(c(1, n), 1)

return(raineventsim2(I, D, M, V, stepsize, tol, alpha, beta, max_it, j = j,

num_calls = num_calls + 1))

} else {

j <- sample(2:(n-1), 1)

return(raineventsim2(I, D, M, V, stepsize, tol, alpha, beta, max_it, j = j,

num_calls = num_calls + 1))
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}

return(list(x = x, state = "raineventsim: maximum iterations exceeded",

num_reps = num_reps))

}
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Appendix E.2: R Code for Testing Rainevent Simulator using observed

DIMV

rm(list = ls())

#Load the rainfall events data

load(file="Rain_Events_OS.RData") #Rain_Events_OS

View(Rain_Events_OS)

source("raineventsim.R")#script for rain simulation

#input data frame

df<-data.frame(I=Rain_Events_OS$Intensity,D=Rain_Events_OS$Duration,

M=Rain_Events_OS$Max_Intensity,V=Rain_Events_OS$Volatility)

#loop over each row of the dataframe

x_sim <- list()

errors <-0

for (i in 1:nrow(df)) {

#get the current values of I,D,M,V

c_I<-df$I[i]

c_D<-df$D[i]

c_M<-df$M[i]

c_V<-df$V[i]

#perform the simulation

x <- raineventsim2(I=c_I, D=c_D, M=c_M, V=c_V, max_it = 100)

if (x$state != "success") {

errors <- errors + 1

x_sim[[i]] <- NA

cat(i, x$state, "\n")

} else {

x_sim[[i]] <- x$x

}

}

errors

#[1] 0
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Appendix E.3: R Code for Simulating a Sequence of Rainfall Events

## Simulating list of Rainfall Events

rm(list = ls())

#loading Auxilliary Functions

#script for generating time, IAT & \lambda

source("Auxilliary function for time.R")

source("Vine Copula Model.R") #script for generating D,I,M,V

source("raineventsim.R") #script for rain simulation

start <- as_datetime(0)

end <- start + dyears(1) + dminutes(0)

#time.df <- time.sequence.information(start,end)

# head(time.df)

# tail(time.df)

load(file="Rain_Events_OS.RData") #Rain_Events_OS

# #Simulation function for Rainfall Events using IAT

lambda_hat_hours = 1/(tapply(Rain_Events_OS$IAT,

Rain_Events_OS$Months, mean, na.rm=TRUE) - 1)

lambda_hat_hours

SimRF_List <- function(start_time, end_time, rainsim = raineventsim3, stepsize = 6) {

# Simulating Rainfall Events using IAT

# stepsize in minutes

# start_time and end_time as POSIX objects (count time in seconds)

sim_time <- start_time

X <- list()

s <- c()

t <- c()

event_counter <- 0
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while (sim_time < end_time) {

print(sim_time)

event_counter <- event_counter + 1

# current event

result <- rainsim()

D <- length(result)*stepsize*60

s[event_counter] <- sim_time

t[event_counter] <- sim_time + D

X[[event_counter]] <- result

# time for next event

sim_time <- sim_time + D # time previous event finishes

m <- month(sim_time)

#print(m)

r <- 3600 + rexp(1, (lambda_hat_hours[m] / 3600))

#print(r)

r <- ceiling(r/(stepsize*60)) * stepsize * 60 # update r

sim_time <- sim_time + r

}

return(list(X = X, s = s, t = t))

}

Event_list <- SimRF_List(start_time = start, end_time = end)

View(Event_list)

all_intensities <- rep(0, (as.numeric(end) - as.numeric(start))/60/6)

for (i in 1:length(Event_list$X)) {

j <- (Event_list$s[i] - as.numeric(start))/60/6

k <- (Event_list$t[i] - as.numeric(start))/60/6

print(c(k - j, length(Event_list$X[[i]])))

all_intensities[(j+1):k] <- Event_list$X[[i]]

}

plot((1:1000)/240, all_intensities[1:1000], type="s") # time in days

plot((1:2000)/240, all_intensities[1:2000], type="s") # time in days
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Appendix E.5: source("Auxilliary function for time.R") in E.4

rm(list = ls())

#function for start and end time

## auxiliary function

library(lubridate)

time.sequence.information <- function(start,end){

require(lubridate)

times <- seq(start, end, by="1 min")

## derived quantities with lubridate functions

year <- year(times)

ymonth <- month(times) ## month in the year (starting with 1)

yweek <- week(times) ## week in the year (starting with 1)

yday <- yday(times) ## day in the year (starting with 1)

dhour <- hour(times) ## hour in the day (starting with 0)

hmin <- minute(times) ## minute in the hour (starting with 0)

## derived quantities beyond lubridate functions

dmin <- dhour * 60 + hmin ## minute in the day

ymin <- (yday-1) * 24 * 60 + dmin ## minute in the year

## create data frame storing this information

times.df <- data.frame(time=times, year=year,

ymonth=ymonth, yweek=yweek, yday=yday, ymin=ymin,

dhour=dhour, dmin=dmin,

hmin=hmin)

stopifnot(as.integer(difftime(end,start,units="mins"))+1==dim(times.df)[1])

return(times.df)

}

#Load the rainfall events data

#load("C:/Users/c1834516/OneDrive - Cardiff University/Documents

/Research Data and Code/Simulation/Rain_Events_OS.RData") #Rain_Events_OS

load(file="Rain_Events_OS.RData") #Rain_Events_OS

#View(Rain_Events_OS)

# #Simulation function for Rainfall Events using IAT
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lambda_hat_hours = 1/(tapply(Rain_Events_OS$IAT,

Rain_Events_OS$Months, mean, na.rm=TRUE) - 1)

lambda_hat_hours
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Appendix E.6: source("Vine Copula Model.R") in E.4

# Clear the environment

rm(list = ls())

##########################################################

## Loading Appropriate Copula Package

library(VineCopula)

library(sn)

library(VGAM)

# Matrix for D-Vine tree structure

Matrix <- c(1, 4, 3, 2, 0, 2, 4, 3, 0, 0, 3, 4, 0, 0, 0, 4)

Matrix <- matrix(Matrix, 4, 4)

# Selected Copula families

family <- c(0, 40, 17, 234, 0, 0, 204, 1, 0, 0, 0, 204, 0, 0, 0, 0)

family <- matrix(family, 4, 4)

# Selected families Parameter 1

par1 <- c(0, -3.10604485, 0.09710537, -4.68930339, 0, 0, 2.1508557, 0.7618961,

0, 0, 0, 3.16914, 0, 0, 0, 0)

par1 <- matrix(par1, 4, 4)

# Selected families Parameter 2

par2 <- c(0, -0.5414058, 1.4199392, 0.3232532,

0, 0, 0.2789502, 0, 0, 0, 0, 0.8501189, 0, 0, 0, 0)

par2 <- matrix(par2, 4, 4)

# Define RVineMatrix Object

RVM <- RVineMatrix(Matrix = Matrix, family = family, par = par1, par2 = par2,

names = c("D", "I", "M", "V"))

# Function for simulation

sim_data1 <- function(n) {

# Create an empty matrix to store the results

result <- matrix(NA, nrow = n, ncol = 4)
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for (i in 1:n) {

simdata <- RVineSim(1, RVM)

# Converting to initial scale

# Convert simdata[1] to original scale using skew t distribution

Duration <- exp(qst(simdata[1], xi = 5.256585, omega = 1.135632,

alpha = -1.145267, nu = 18.396395))

# Convert simdata[2] to original scale using GEV distribution

Intensity <- exp(qgev(simdata[2], location = -2.07344987,

scale = 0.67027053, shape = -0.04415461))

# Convert simdata[3] to original scale using GEV distribution

Max_Intensity <- exp(qgev(simdata[3], location = -0.80075293,

scale = 0.64562950, shape = -0.06081438))

# Convert simdata[4] to original scale using skew t distribution

Volatility <- exp(qst(simdata[4], xi = -3.9269208,

omega = 0.9956432, alpha = 1.7540797, nu = 2.5856904))

# Store the results in the result matrix

result[i, ] <- c(Duration, Intensity, Max_Intensity, Volatility)

}

# Convert the matrix to a data frame and return

return(result)

}
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Appendix E.7: source("raineventsim.R") in E.4

#Same as E2 with the addition below

raineventsim3 <- function() {

state <- "failure"

while (state != "success") {

theta <- sim_data1(1)

out <- raineventsim2(theta[2], theta[1], theta[3], theta[4])

state <- out$state

#print(state)

}

return(out$x)

}
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