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Order Modelling: a framework for faster and more

reliable electrical conductivity estimations
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Abstract

Inclusion of individualised electrical conductivities of head tissues is crucial for the accuracy of electrical
source imaging techniques based on electro/magnetoencephalography. Parametric electrical impedance to-
mography (pEIT) is a method to cheaply and non-invasively estimate them using electrode arrays on the
scalp to apply currents and measure the resulting potential distribution. Conductivities are then estimated
by iteratively fitting a forward model to the measurements, incurring into prohibitively computational cost
that is generally lowered at the expense of accuracy. Here, we introduce reduced order modelling (ROM) to
massively speed up the calculations of these solutions for arbitrary conductivity values. We demonstrate this
new ROM-pEIT framework using a realistic head model with 6 tissue compartments, with minimal errors in
both the approximated numerical solutions and conductivity estimations. We show that the computational
complexity required to reach a multi-parameter estimation with a negligible relative error is reduced by an
order of magnitude when using this framework. Moreover, we demonstrate that the relative error in the
estimations of all tissue compartments is at least half of that of previous methods with a typical reduction
in error of an order of magnitude, even in the presence of noise. As a result, this framework can transform
the use of pEIT for seeking personalised head conductivities, making it a valuable tool for researchers and
clinicians.

1 Introduction

Characterising the electromagnetic activity in the brain is essential for understanding its function
in health and disease. The preferred methods to measure this activity are electroencephalography
(EEG) and magnetoencephalography (MEG), forming the foundation of electrical source imaging
(ESI) techniques. ESI methods rely on computational models of head tissues including anatomical
structure and physical properties such as the electrical conductivity field [1]. The use of realistic and
individualised head models has been shown to greatly improve the accuracy of these methods [2,3].
To generate these models, anatomical structure can generally be obtained from magnetic resonance
or computerised tomography images using existing tools [4]. However, electrical conductivities are
typically selected as a population average for each tissue. A recent analysis has shown that con-
ductivity values in all human head tissues likely vary significantly between individuals, challenging
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these assumptions [5]. Moreover, studies have shown that inaccurate conductivity values lead to
errors in source localisation in EEG/MEG [2,6–9] and current localisation in transcranial electrical
stimulation (TES) [10, 11]. Therefore, there exists a need to estimate these conductivities on an
individual basis.

Parametric electrical impedance tomography (pEIT) is a relatively affordable and non-invasive
method for estimating the conductivities of tissues in a human head [12]. Using an array of elec-
trodes placed on the scalp, a small current is injected and extracted from a subset and the electrical
potential is measured on the complementary set. This technique seeks to estimate the conductivities
of head tissues by simulating forward solutions for sets of parameters and tuning the set to best
match the electrical potential measurements taken. This allows one to characterise an individualised
conductivity field. As this model becomes more detailed, the computational expense of these sim-
ulations increases, presenting a serious limitation for highly realistic models where pEIT can take
days to complete on a standard PC.

The current best effort to address this issue is to reduce the number of solutions required for
pEIT to converge by utilising a gradient assisted optimisation method [13]. This approach has proven
successful for estimating scalp and skull conductivities from in vivo and synthetic measurements
to a good level of accuracy [14, 15]. However, this method requires the additional calculation of
a gradient in each iteration, which itself is computationally costly. Furthermore, estimating the
conductivity of some tissues proves challenging. For example, the conductivity of the spongiform
bone inside the skull has been estimated with a coefficient of variation as large as 1 [14].

In this work, we apply reduced order modelling (ROM) directly to pEIT to alleviate the com-
putational demand while simultaneously improving conductivity estimations. ROM is a method
utilised to find approximate numerical solutions to a parameterised boundary value problem quickly
and accurately [16]. This process consists of a computationally intensive offline training phase and
a real-time online phase. During the offline phase, a reduced order model is constructed using so-
lutions to the boundary value problem at different points in a multi-dimensional parameter space.
The online phase then utilises this model for real-time approximations of solutions for any set of
parameters. We show that this framework yields significant improvements in the accuracy and speed
of the estimation of all tissues in the head, assimilating the new capability to confidently estimate
conductivities previously unreachable.

2 Methods

2.1 Parametric EIT Formulation

Parametric EIT is an ill-posed inverse problem (IP) that results in estimates of the electrical conduc-
tivities of tissue compartments. This is done by iteratively minimising the squared error between the
measurements y ∈ R

L and the conductivity-dependent simulated signals U ∈ R
L on L electrodes.

Mathematically, this is generally expressed as

σ̂ = argmin
σ

{(y −U(σ))T (y −U(σ))}, (1)

where σ̂ are the estimated conductivities [15]. This results in an optimisation process that requires
the calculation of one or more forward problems (FPs) at each iteration and then updating σ based
on the error and the optimisation technique used (Fig. 1).

The pEIT-FP is a boundary value problem governed by a Laplace equation subject to Neumann
boundary conditions [17]. The formulation and numerical methods for the pEIT-FP solution are
well documented in the literature [14, 15, 17–19]. Here, we adopt the finite element (FE) method
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due to its flexibility to handle arbitrary compartments. The variational formulation of the pEIT-FP
considering the complete electrode model (CEM) [17,20] results in the system [19]

A(σ)u(σ) = b, (2)

where,

A(σ) =

[

K(σ) −B

−BT C

]

, (3a)

u(σ) =

[

un(σ)
U(σ)

]

, b =

[

0
I

]

, (3b)

un(σ) ∈ R
n is the solution vector on the n nodes of the volumetric FE mesh and I ∈ R

L is the
vector of injection currents on the electrodes. The matrix K(σ) ∈ R

n×n is known as the stiffness
matrix and depends on the conductivity values of each compartment σ = {σ1, σ2, ..., σP }, where P
is the number of tissue compartments. The matrices B ∈ R

n×L and C ∈ R
L×L encode information

about the electrodes on the surface of the domain and do not depend on the conductivity. The
entries of the matrices K, B and the diagonal matrix C are given by [21]

Kij =

∫

Ω

⟨σ∇ψi,∇ψj⟩dΩ+

L
∑

l=1

1

zl

∫

el

ψiψjd(∂Ω), (4a)

Bil =
1

zl

∫

el

ψid(∂Ω), (4b)

Cll =
1

zl

∫

el

d(∂Ω) =
|el|

zl
, (4c)

where el represents the lth electrode, |el| its area, zl its contact impedance, Ω is the domain (i.e.,
the head) with boundary ∂Ω, and ψi is a basis function on the nodes i = 1, 2, ..., n.

A useful property of the matrix K(σ) is that, in the case of homogeneous conductivities, it can
be linearly decomposed into several constituent stiffness matrices Kp ∈ R

n×n, each representing a
different compartment p in the head model and independent of σ. Consequently, the matrix A(σ)
can be split into p matrices Ap ∈ R

(n+L)×(n+L),i.e.,

A(σ) = A0 +

P
∑

p=1

σpAp, (5)

where A0 is a σ-independent matrix encoding the information from matrices B and C and the
second term in eq. (4a). It is straightforward to show that such a decomposition holds even in the
case of anisotropic conductivities [15]. This property is referred to as affine decomposition of the
parameters of interest (i.e., the conductivities) and it is a fundamental requirement for a system
where ROM is applied.

2.2 Reduced Order Modelling

ROM is a mathematically rigorous technique to efficiently build a low-dimensional model mapping
changes in a set of conductivities to changes in the solution of eq. (2) [16]. This model is constructed
in an offline phase using a relatively small number of N << (n+L) strategically selected solutions of
eq. (2) with specific conductivities, which are then used in the ‘online’ phase to find rapid solutions
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Solve 
forward 
problem

Update     

Yes

No

Fig. 1: Flow chart of the traditional implementation of the inverse problem for pEIT. Here, ϵ refers to
a stopping threshold, σ0 is the initial conductivity guess and σ̂ is the estimated conductivity
value. Note that each loop requires at least a full calculation of the forward problem.

for any set of conductivities. Below, we present a brief overview of the fundamental principles of
ROM.

Taking advantage of the affine decomposition, massively reduced versions of the Ap matrices can
be formed using the reduced model, allowing the assembly of a reduced system in the online phase
at any point in the P -dimensional parameter space P ∈ R

P (i.e., for any set of conductivities).
This new system can be solved in real-time, resulting in a reduced-basis solution uN ∈ R

N that is
transformed to ua ∈ R

n+L approximating the solution of the high-dimensional system u.
The model is trained using a number of full-order solutions, called snapshots, which are selected

strategically across P. Judiciously choosing the points with which to build the reduced model is
done by employing a greedy algorithm. A distinguishing feature of ROM is the presence of a rigorous
upper bound ∆(σ) on the error of the approximate solutions, which guides the greedy algorithm in
the snapshot selection, acting as a proxy for the error [16]. This bound on the error can be calculated
almost instantly for any given point in P and can therefore efficiently explore the space to guide
the next snapshot point. During each iteration of the greedy algorithm, the bound is calculated for
a finite sample set Ξ ⊂ P and a snapshot is calculated using the conductivity set that minimises
it. Ξ is chosen to represent the entire P-dimensional space P. Utilising the bound to select the
snapshots presents two advantages. Firstly, it allows an extremely quick assessment of the maximum
error attainable at a fine discritisation of P. Secondly, it can be used as a stopping criterion for
certifying the maximum error in ua [16]. The relationship between the a posteriori relative error
[RE(σ)] for a given point in P and the a posteriori relative error bound [∆RE(σ)] is [16]

RE(σ) ≜
||u(σ)− ua(σ)||L2

||ua(σ)||L2

≤
∆(σ)

||uN (σ)||L2

≜ ∆RE(σ). (6)

The reduced model takes the form of a reduced-basis space, built using the snapshots calcu-
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lated by the greedy algorithm. To obtain the reduced system, the full-order stiffness matrices are
projected on the space during the offline phase. This reduced-basis space is represented by the
matrix V ∈ R

(n+L)×N . To construct the orthonormal basis, V we perform a Gram-Schmidt or-
thonormalisation on a snapshot, before adding it to the orthonormal basis iteratively. We begin by
selecting a random parameter vector σ1 ∈ Ξ and computing the full-order solution u(σ1). The first
basis vector for the orthonormal space is simply the first snapshot, which is a full-order solution
(i.e., ζ1(σ1) = u(σ1)). Thereafter, the orthonormalised solutions ζj(σ) for the jth snapshot are
concatenated,

V = [u(σ1), ζ2(σ2), ..., ζN (σN )], (7)

such that {σ1,σ2, ...,σN} ⊂ Ξ. Also known as the transformation matrix, V relates the projected
stiffness matrix AN (σ) ∈ R

N×N and projected independent vector bN (σ) ∈ R
N with the full-order

versions through the expressions [16]

AN (σ) = V
TA(σ)V, bN (σ) = V

T b(σ), (8)

resulting in the reduced system to solve

AN (σ)uN (σ) = bN (σ), (9)

where ua(σ) = VuN (σ). It is clear from eq. (8) that, as N << (n + L), the dimensions of the
resulting system are massively reduced, requiring significantly fewer operations to solve. Ultimately,
this means that a FP can be calculated at any point in P almost instantly. Fig. 2 shows a flowchart
of the greedy algorithm, demonstrating the construction of V.

Finally, it should be noted that the calculation of the bound relies on a σ-dependent parameter
called the stability factor βh(σ), related in the following way

∆(σ) =
||b−A(σ)VuN (σ)||L2

βh(σ)
. (10)

The numerator of eq. (10) is known as the residual and can be found very quickly with some com-
putational splitting inside the greedy algorithm. Obtaining the stability factor, however, is a more
computationally intensive calculation requiring the solution to a generalized eigenvalue problem [16].
Therefore, we employ a similar schema as before, splitting it into an offline training phase and online
real-time phase. The offline phase involves creating an interpolant using radial basis functions and
interpolation points in P which can then be used in the online phase for a quick evaluation of
βh(σ) for any point in P. For details on the splitting of the residual, calculation of the bound, its
offline/online decomposition, and its calculation for a rank-deficient stiffness matrix, the reader is
referred to Quarteroni et al. (2016) [16, Ch.3,4,6].

2.3 Implementation and Experiments

2.3.1 Set-up

We used a realistic head model discritised with 4M tetrahedral elements and 800k nodes. The model
was based on the Colin27 atlas [22] and processed as in previous publications [2]. A cross section is
shown in Fig. 3a depicting different tissue compartments, i.e., scalp, compact skull bone, spongiform
bone, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM). The conductivities
chosen for the synthetic measurements were uniform random samples within the ranges described
in Table 1 for each of the tissues. These ranges were chosen to be consistent with the work carried
out by McCann et al. (2019) [5]. A reduced model for each electrode pair used was trained for
conductivity parameters within these ranges.
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Yes

No

Calculate

Find then

, solve

Fig. 2: Greedy algorithm used in the offline training phase for ROM where ϵ is some stopping thresh-
old.

2.3.2 Technical Implementation

For each conductivity sample, the FP was solved for each of the 132 pairs of electrodes, where
the injection and extraction electrode had 20 µA and −20 µA applied, respectively. All pairs are
composed of a unique injection electrode and a sink electrode that is common for all pairs placed on
the scalp above the Sagittal suture. The systems of equations were solved with the Preconditioned
Conjugate Gradient (PCG) solver with incomplete LU preconditioners [23]. They were solved with
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a tolerance of 10−10 and a maximum number of iterations of 6000. The Gaussian noise added to
the measurements had a standard deviation of 0.82 µV , which is similar to the noise found in real
measurements [14]. The 133 electrodes were modelled as 1 cm diameter circles on the surface of the
scalp with an effective contact impedance of 5 Ωm2.

The FE method was implemented using first-order linear basis functions on the mesh nodes as
used by Vauhkonen et al. (1999) [19]. Analytical expressions of the element matrices needed in
eqs. (4a)-(4c) were utilised to avoid errors due to numerical quadrature [24].

The ROM method was trained using the same model, injection patterns and range of conduc-
tivities as above. We chose to train ROM for up to 100 snapshots to demonstrate the reduction in
error in the FPs and IPs. However, as will become clear, there are a number of stopping criteria
that can guide how many snapshots to take.

Similarly to other work [14], we have removed some erroneous estimations from injection pat-
terns where the IP has either not converged or has given an unrealistic conductivity (e.g., negative
conductivities), which may occur for the traditional method only as it is based on an unconstrained
optimisation technique.

2.3.3 Experiment 1 - ROM Performance

Our first experiment serves two main purposes. The first is to confirm that the pEIT-FP is mean-
ingfully reducible in the sense that, for small N values, ua quickly converges to u. The second is to
validate our bound while simultaneously assessing its tightness. To achieve these aims, we plotted
the average and maximum RE(σ) and ∆RE(σ) as a function of N . The ∆RE(σ) was calculated in
the training phase during the greedy algorithm for a 6000 sample train across P for each electrode
pair. The mean and maximum ∆RE(σ) across the sample train were found for each electrode pair
and then averaged across all electrode pairs. The RE(σ) was calculated for each electrode pair for
100 samples of P. The average RE(σ) across all electrodes for each sample was found before plotting
the average and maximum across P. This was repeated for an increasing number of snapshots.

2.3.4 Experiment 2 - IP Performance

To assess how useful the ROM-pEIT framework is, we considered two important metrics in pEIT:
the accuracy of the estimations from the inverse problem and the computational cost required to
achieve them. To that end, we compared our results with the best approach currently in the field,
which provides reliable estimations for scalp and compact skull electrical conductivities [14]. This
method minimises eq. (1) using the gradient-assisted quasi-Newton method. However, this requires
the calculation of the gradient of the solution for each FP, for each of the parameters being searched
for [14, 25]. The gradient can be found using [14]

∂A−1(σ)b

∂σp
= −A−1(σ)Apu. (11)

Scalp Compact Spongiform CSF GM WM
bone bone

Min (S/m) 0.303 0.002 0.013 1.450 0.268 0.092
Max (S/m) 0.444 0.009 0.043 1.794 0.508 0.177

Tab. 1: Range of conductivities used for training.
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From eq. (11), it is clear that finding each of the gradients requires solving another large system of
equations similar to the FP. This results in a significant overhead in terms of computational cost,
especially when multiple parameters are being estimated simultaneously. Inserting this into the loop
in Fig. 1 shows that, for each iteration in the optimisation, the number of large systems of equations
to solve is equal to the FP plus the number of tissues being estimated. Henceforth, we shall refer to
this method of gradient assisted optimisation using the full-order FP as the traditional method.

A further consequence of using the reduced system of eqs. (9) is that the derivative (11) can
no longer be calculated and therefore neither can the quasi-Newton method be utilised efficiently.
However, using quasi-Newton methods to reduce the computational cost is no longer of concern, and
we are free to explore other methods, such as the interior-point optimisation approach. Although this
method requires more loops and therefore more systems to solve than the quasi-Newton algorithm,
the cost of the new optimisation is still negligible compared to the traditional technique.

Therefore, we have chosen to compare the computational cost of the ROM-pEIT framework and
the traditional method by using the number of (n+L)× (n+L) linear systems of equations needed
to be solved for each electrode pair. For ROM, all of these systems are solved in the offline phase.
Given that these systems embody the bulk of the computational work, it is an appropriate metric
for comparison. Making the comparison independent of the electrode pairs means that the savings
are the same irrespective of the injection protocols used.

For the traditional method, the IP was run as a 3-parameter search, optimising for the scalp,
compact skull and spongiform bone simultaneously. For the conductivities not being optimised (CSF,
GM, WM), they were fixed to the ground truth values used to make the synthetic measurements.
We chose this format to isolate and assess the estimation of the three conductivities stated only. The
estimation progress was logged at each iteration and plotted as the RE(σ) between the estimation
and the sample parameters. The ROM IP was run as a 6-parameter search to estimate all of the
compartments in the model. All optimisations were started from the centre point of the ranges
specified in Table 1.

The mean of the relative error (RE) in the estimation for each tissue for each number of iter-
ations (and function evaluations within those iterations) was calculated, and then averaged across
10 randomly selected conductivity samples. We used 10 samples due to the computational cost of
the traditional method. The IP with ROM was then run for a further 90 samples of P and plotted
separately with the average RE across the samples and electrodes displayed for all tissues.

2.3.5 Experiment 3 - Anisotropy

It has been shown that the inclusion of the spongiform bone in head models reduces the error
in the EEG-FP and IP [2]. However, in the event of missing spongiform information, the skull
may be modelled as a single compartment with anisotropic conductivity [15, 26]. Therefore, a
separate experiment aimed to demonstrate the adaptation of ROM-pEIT to model a homogeneous
and anisotropic skull conductivity.

Firstly, we modified the realistic head model by merging the compact and spongiform bone to
create one homogeneous skull compartment. We then trained another ROM model with the new
head model where the conductivity tensor field for the skull compartment has been transformed
from a Cartesian basis to a radial and tangential basis relative to the centre point of the brain. The
range of values used for both radial and tangential conductivities were from the minimum compact
skull (0.002 S/m) to the maximum spongiform skull (0.043 S/m) used in the previous experiments.
This was to accommodate for a wide range of possible skull compositions, from entirely compact
skull to significant proportions of spongiform bone.

We analysed the sensitivity of the ROM-pEIT framework to anisotropic conductivities in the
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Fig. 3: a) Cross section of the FE mesh with compartments coloured separately. b-d) Selection of
the first basis vectors (ζ2, ζ4 and ζ11, respectively) for the transformation matrix V made
for an electrode pair plotted on the FE mesh. The colour indicates the value of the projected
basis vector at each node that represents the additional information being encoded.

skull by assessing the RE in each compartment. To achieve this, we created 100 synthetic measure-
ments using the full-order model with noise. The model was adapted by merging the compact and
spongiform skull and given an anisotropic conductivity in the same range used for ROM. These mea-
surements were then used to run the IP with a new reduced model, trained with radial and tangential
conductivities in the whole skull. We plotted the RE in the estimation for each tissue compartment
to assess the sensitivity of the reduced basis IP to the radial and tangential components of the skull
conductivity. As before, the IP was run as a 6-parameter estimation, this time estimating the radial
and tangential values, replacing the compact and spongiform skull conductivities.
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Fig. 4: Average and maximum ∆RE(σ) and RE(σ) for a sample of parameters (averaged across
electrodes) against the number of snapshots.

3 Results

3.1 Experiments

3.1.1 Experiment 1 - ROM Performance

Figs. 3b-d show a subset of the basis vectors (i.e., ζi for i = 2, 4, 11) that constitute the reduced basis
space. Each additional function to the first is an orthogonal projection to the matrix V and encodes
additional information into the reduced model. In particular, the basis vector ζ11 (Fig. 3d) shows
that after the projection there is a significant difference in electrical potential solution in the brain
between the previous sample conductivities and those for the snapshot. Once added, this results in
a reduced model with specific information about the response of the electrical potential in the brain
to conductivity changes in the model. This demonstrates the greedy algorithm in action. The same
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Fig. 5: Average (black lines) and maximum (red lines) of the RE in the estimation of the conductiv-
ities across multiple electrode pairs and for 10 sets of synthetic measurements with uniformly
distributed conductivity samples. The red and black dotted lines in each figure correspond to
the traditional method and the red and black full lines with crosses and triangles respectively
are for ROM.
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effect can be seen with the spongiform bone with respect to the bright spots in the skull in basis
vector ζ4 (Fig. 3c) and ζ11.

Fig. 4 shows the average and maximum ∆RE(σ) and RE(σ) as a function of snapshots. The
∆RE(σ) was calculated across the sample set Ξ and the RE(σ) was found for 100 conductivity
samples. It is interesting to note that the bound becomes slightly sharper as the number of snapshots
increases. Fig. 4 also demonstrates that ∆RE(σ) can be used as a stopping criteria for the number
of snapshots used to train the model. When set, the greedy algorithm will stop when ∆RE(σ) for
every point in the fine sample is below the threshold stated. Using this stopping criteria ensures
that the RE(σ) in the FP is below the threshold. However, choosing a threshold is not trivial (see
Section 4) and there is a risk of unnecessary training of the model.

3.1.2 Experiment 2 - IP Performance

Displayed in Fig. 5 is the average and maximum RE in the conductivity estimations for ROM
and the traditional method across 10 samples and all electrode pairs. It can be seen that there
are improvements in computational cost and accuracy of the ROM-pEIT framework compared to
the traditional method. This is shown for the first three compartments of the head model (scalp,
compact skull and spongiform bone) and the scalp and spongiform bone separately. Focusing on
the three compartment graph (Fig. 5c), we can see that the RE in the IP estimation averaged
across compartments, injection patterns, samples of parameter space improves by nearly an order of
magnitude, with the number of linear systems to solve reducing by an order of magnitude too. The
maximum error for any injection pair for any sample is displayed in red crosses and also demonstrates
an improvement over the average of the traditional method.

The number of injection pairs removed from the traditional estimations due to erroneous results
was approximately 30 for two of the samples and none for the rest. All injection pairs were preserved
for the ROM-pEIT IPs.

It is useful to separate all of the conductivities to see which are contributing the most to the
REs seen in Fig. 5c. The RE for the scalp is shown in Fig. 5a, where the improvement in accuracy
and computational effort due to the ROM-pEIT framework is most apparent with a reduction in
systems to solve from 250 to 10 maintaining an order of magnitude improvement in RE. In Fig. 5b,
we see that the traditional method cannot obtain a reliable estimate for the spongiform bone with
the optimisation implementation used. However, the ROM-pEIT framework is able to estimate the
conductivity of the spongiform bone down to an average RE of almost 1% and a maximum RE of
5%.

As previously mentioned, the benefits of using ROM become most clear during a 6-parameter
search where the IP can optimise for all compartments in the model. Fig. 6 shows the average RE
for ROM but for all tissue compartments, as a function of the number of snapshots used in the
estimation. The figure shows us that with ROM and the optimisations it allows, the IP is able to
estimate CSF, GM and WM in the brain to approximately a 3%, 4%, 7% RE, respectively. It is also
worth noting that the coefficient of variation in the electrode estimations was between 0.001 and 0.1
for all tissues after 30 snapshots.

From Figs. 5 and 6 it is clear that the accuracy of the IP with ROM stops improving after 30
snapshots. Therefore, we chose to only train the anisotropic reduced model in Experiment 3 up to
this number to perform the sensitivity analysis.

3.1.3 Experiment 3 - Anisotropy

The results of the sensitivity analysis described in Section 2.3.5 are displayed in Fig. 7. From this
analysis we can see that the framework presented is sensitive to the tangential and radial conductivity
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Fig. 6: RE for each individual compartment as a function of snapshots across 100 samples and 132
injection pairs using the ROM-pEIT method.

components of the skull while remaining sensitive to the inner compartments.

4 Discussion

We have presented a framework for the solution of the pEIT-FP using ROM, where we have demon-
strated significant reductions in computational expense as compared to the current state-of-the-art
approach. Similarly, we have shown that huge improvements can be achieved in conductivity esti-
mations for all tissues, many previously unreachable by pEIT.

We have validated this approach experimentally by testing both methods on a realistic 6-layered
head model to emulate typical use cases. Fig. 5 exhibits the speed up and accuracy improvement of
using ROM-pEIT over the traditional method when the inner tissue conductivities are assumed to be
known. A more realistic scenario would be that the inner tissue conductivities are unknown. In this
instance, we found that after 200 full order systems solved the error in scalp estimations was half an
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Fig. 7: Sensitivity Analysis across 100 samples for the reduced basis anisotropic model. The estima-
tions are for the full 6-parameter space using 30 snapshots for each electrode pair. Each box
plot shows the estimation error in a single tissue that is labelled.

order of magnitude higher than that achieved assuming the inner conductivities known (Fig. 5). We
also found that the spongiform bone could not be estimated reasonably for the traditional algorithm.

For models that have been built from only T1-weighted MRI images, where segmenting spongi-
form bone in the skull accurately is not feasible, it has been shown to reduce errors in the EEG FP
and IP when the anisotropy of the skull conductivity is considered [9]. In this context, ROM-pEIT
also extends to such a situation. Fig. 7 also shows us that this IP is more sensitive to the radial
conductivity than the tangential conductivity, which is consistent with reported findings [15]. The
reduced anisotropic model is also bounded and we found that, for 30 snapshots, the mean ∆RE(σ)
was approximately 10−2 and the mean RE(σ) was 10−4.

Some efforts have been made to avoid the computational expense of EIT while retrieving subject-
specific conductivity values. Akalin Acar et al. (2016) [27] and Costa et al. (2017) [28] demonstrated
techniques for the simultaneous estimation of the conductivity of the skull and the location of the
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source of electrical activity. Others have used a pre-calibration technique for combined EEG and
MEG where an initial conductivity value for the skull is given and then tuned before the source
localisation by using somatosensory evoked potential data [29–31]. However, these techniques have
only been demonstrated for estimating the skull and brain conductivities. Moreover, the method
presented in [27] which uses only EEG data requires computational effort to converge, reported to
be in the order of days by the authors. Using ROM-pEIT allows all compartments to be estimated
simultaneously in a reasonable time frame.

The computational costs of ESI related methods become particularly prohibitive when performing
sensitivity analyses, where effects of conductivity uncertainty in specific head tissues is explored.
One way this problem has been circumvented is through the use of generalized Polynomial Chaos
(gPC) expansions, where a result distribution is described by a linear combination of multivariate
orthogonal polynomial basis functions and corresponding coefficients [8, 32]. Similarly to ROM,
this method involves the calculation of the model output at multiple points on a sparse grid with
specific parameters required to weight the coefficients. This technique was utilised by Schmidt et
al. (2015) [32] for a sensitivity analysis in transcranial Direct Current Stimulation (tDCS) and by
Vorwerk et al. (2019) [8] in EEG. Generalised PC has also been used for a conductivity uncertainty
analysis in transcranial magnetic stimulation (TMS) and tDCS by Saturnino et al. (2019) [33].
Although resulting in an essential reduction in computational effort for these experiments, they still
required the evaluations of the full FP at hundreds of points in parameter space for gPC convergence.
The framework we present requires only a few dozen full order FP evaluations to reach a low RE in
the FPs and IPs.

A closely related work by Maksymenko et al. (2020) also demonstrates a reduced order technique
for fast solutions of the EEG FP [34]. Similarly, this framework used a set of full-order solutions at
points in parameter space chosen via a greedy algorithm. This model could generate approximate
lead field matrices for any conductivity set in parameter space very rapidly. There are, however, some
notable differences between this framework and the one that we present in this work. Firstly, the
implementation differs, where the former is applied to the EEG FP and solved using the Boundary
Element Method with a small number of nodes in a model with 3 tissue compartments. Although it
is suggested that it could equally be applied to FEM, this is not shown. Fundamentally, we present
a rigorous a posteriori bound on the error in the reduced FP solution, and explicitly show this using
a set of samples across the parameter space. Whereas, in the aforementioned publication [34], the
error is not properly bounded.

Similarly, work by Codecasa et al. (2016) [35] has merged the techniques of ROM and gPC
to perform an uncertainty analysis in TMS, where the model order reduction is used to guide the
selection of the conductivity samples used for the polynomial chaos expansion. This work resulted
in a significant speed up over gPC with regression, demonstrating the power of reduced order model
techniques. There are a few differences in our work that make it distinguishable from this, such as a
bound on the approximation error, application to pEIT, and the investigation of 3 additional tissues
(scalp, compact skull and spongiform skull).

For studies involving gPC, where a model is trained using hundreds of support points, all were
sensitivity analyses. Due to the nature of this work it is essential to have a highly trained model.
However, for personalised conductivity field reconstruction, there is more interest in reducing the
time from measurement to result. This is one of the strengths of ROM-pEIT. Shown in Figs. 5
and 6, only 10− 30 support points per injection pattern are required for accurate estimations in all
tissues.

McCann et al. (2019) showed that spongiform bone varies between subjects and measurement
techniques and that few attempts have been made to measure the conductivity of this tissue in vivo.
Fernández-Corazza et al. (2017) [14] used pEIT but with a significant standard deviation and Aydin
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et al. (2014) [30] used the pre-EEG calibration method. The latter found a spongiform conductivity
of 84 mS/m [30] while the former found 173± 151 mS/m [14]. In the case of the former, a mixture
of random error and numerical error (both present when using real data) may be responsible for
the large standard deviation, however, the comparisons we draw above only consider numerical
error. Clearly, in vivo measurements of spongiform bone have been challenging and the distribution
of conductivity of this tissue among the population remains poorly understood as a result. The
framework that we present is able to estimate spongiform bone to a high level of precision in vivo
at the frequencies used for ESI, which as of writing has not been achieved by any other validated
method in the literature. Furthermore, to the best of our knowledge, only two studies on non-invasive
in vivo estimations of the CSF are present in the literature, with large errors in the estimations
reported [36,37].

A key feature of this work is the certified upper bound on the error in the FP. Although it
guarantees a maximum error for each snapshot number, its usefulness as a stopping criteria is limited
given the sharpness of the bound. A further challenge is that drawing a connection between the error
in the FP and IP is not trivial. However, from Figs. 5 and 6 it is clear that optimal performance
was achieved after 30 snapshots. Additionally, when the error between the full-order and the RB
signal becomes much smaller than the noise, eq. (1) becomes approximately the norm of the noise
over the electrodes. Relative to the measurements, that becomes approximately 4− 5× 10−6 RE(σ)
(for the noise we have used), which on Fig. 4 corresponds to about 30 snapshots, as observed in the
IP. For our head model, this connects the observations in the FPs and IPs and therefore we suggest
30 snapshots as the optimal number and this can serve as a stopping criteria. However, this could
change between participants, and more work is needed to confirm how variable this would be.

A time penalty incurred by ROM is the computational cost associated with training the stability
factor interpolant during the offline phase, requiring multiple solutions to a generalised eigenvalue
problem. This process takes approximately 15-30 minutes per problem (for an Intel Xeon CPU at
2.8 GHz for our model) and can be parallelised on a cluster. The interpolant generated is source
vector independent, and therefore can be used for all electrode pairs. Although small in comparison
to the training for ROM and the traditional method, this should still be considered as part of
the offline training process. There exists some techniques that minimise the computational load
of this stage such as greedy algorithms to reduce the number of interpolation points needed [38].
Exploring these optimisations of the framework will be work for the future. Further, we’ve found
that interpolating between these points in a 6-dimensional space is a non-trivial task due to the
complexity of the resulting manifold and the possible noise in the interpolation data. We found that
the use of too many randomly selected interpolation points led to over-fitting and consequently a
poor interpolation. The more conservative strategies suggested by Manzoni et al. (2015) [38] may
help tackle this class of problem and this shall be explored in future work.

In this framework, we use the L2-norm in both the ∆RE(σ) and the projection due to its ease
of implementation. However, an equally valid ∆RE(σ) can also be calculated using the norm of the
space containing the solution [16]. The solution to the variational formulation of the problem can
be found in an appropriate quotient Hilbert space, equipped with a norm that can be used for this
task [17]. Modifying our framework to utilise this norm may improve the sharpness of the bound.

McCann et al. (2022) also investigated the effect of sutures on the EEG FP and IP and found
that omission of the sutures from a head model led to significant source localisation errors [2]. It is
unclear how the inclusion of sutures in a realistic head model may affect the training of the reduced
order model, however this should be considered in future models. Moreover, with the possibility
of estimating inner tissue compartments, the impact of including sutures on the estimation of the
inner compartments could be assessed.

TDCS has been shown to produce a greater intensity and focality of the electric current at a point
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of interest when highly accurate head models are considered [10] and optimal injection patterns are
generated [39]. ROM could reduce the time constraints involved and in an online process estimate the
conductivities and optimal injection patterns together almost instantly. Future work could involve
producing a pipeline for TDCS such that the number of measurements taken from the patient are
kept to a minimum.

One artefact of the training noticed was the loss of orthogonality in the transformation matrix
after approximately 150 snapshots. This could be due to numerical errors introduced into the Gram-
Schmidt orthonormalisation. We use the classical Gram-Schmidt process in this work, however, a
well known and more numerically stable method called the modified Gram-Schmidt method could
also be used [40]. Other numerically stable implementations of the Gram-Schmidt process have been
developed and these may be explored in the future [41].

An additional substantial speed-up was achieved in the greedy algorithm by utilising the reduced
model at each iteration to provide an initial guess for the PCG method when solving for a snapshot.
As snapshots are added to the reduced model, the initial guess improves which leads to faster PCG
solutions. Practically, this means that the time taken for one snapshot is halved after approximately
40 snapshots.

In conclusion, this new framework embodies a fresh approach to pEIT that will change its
accessibility and reliability, recasting its role in the generation of personalised realistic head models
used for ESI methods.

The software developed for this research can be found here: https://github.com/09nwalkerm/ROMpEIT.
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