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Abstract Zoonotic disease dynamics in wildlife hosts are rarely quantified at macroecolog-
ical scales due to the lack of systematic surveys. Non- human primates (NHPs) host Plasmodium 
knowlesi, a zoonotic malaria of public health concern and the main barrier to malaria elimination 
in Southeast Asia. Understanding of regional P. knowlesi infection dynamics in wildlife is limited. 
Here, we systematically assemble reports of NHP P. knowlesi and investigate geographic determi-
nants of prevalence in reservoir species. Meta- analysis of 6322 NHPs from 148 sites reveals that 
prevalence is heterogeneous across Southeast Asia, with low overall prevalence and high esti-
mates for Malaysian Borneo. We find that regions exhibiting higher prevalence in NHPs overlap 
with human infection hotspots. In wildlife and humans, parasite transmission is linked to land 
conversion and fragmentation. By assembling remote sensing data and fitting statistical models 
to prevalence at multiple spatial scales, we identify novel relationships between P. knowlesi in 
NHPs and forest fragmentation. This suggests that higher prevalence may be contingent on 
habitat complexity, which would begin to explain observed geographic variation in parasite 
burden. These findings address critical gaps in understanding regional P. knowlesi epidemiology 
and indicate that prevalence in simian reservoirs may be a key spatial driver of human spillover 
risk.

eLife assessment
This useful study presents findings regarding the impact of forest cover and fragmentation on the 
prevalence of malaria in non- human primates. The evidence supporting the claims of the authors is 
solid.
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Introduction
Zoonotic infectious diseases arise from the spillover of pathogens into human populations, typically 
from a reservoir in wildlife hosts. Anthropogenic land use and land cover change have now been 
widely linked to infectious disease outbreaks (Brock et al., 2019; Davidson et al., 2019a; Loh et al., 
2016). Such practices, including deforestation, logging, clearing for cash- crop plantations or conver-
sion of intact forest into arable land, are accelerating across tropical forests of Southeast Asia (Fornace 
et al., 2021; Imai et al., 2018; Fornace et al., 2021; Imai et al., 2018). Mechanisms that underly the 
association between habitat disturbance and spillover risk from wildlife hosts are complex and occur 
over multiple spatial scales (Brock et al., 2019). In Brazil, re- emergence of Yellow Fever Virus in both 
NHPs and humans has been linked to areas with highly fragmented forest (Ilacqua et al., 2021). In 
part, an increase in ‘edge’ habitat in fragmented or mosaic landscapes can facilitate spatial overlap 
and altered contact patterns between wildlife, vectors, and humans (Lehman et  al., 2006). Such 
ecological interfaces are also thought to contribute to parasite spillover in other vector- borne diseases 
including Zika (Li et al., 2021a), Babesiosis and Lyme disease (Simon et al., 2014), Trypanosoma cruzi 
(Vaz et al., 2007) and zoonotic malaria (Brock et al., 2019; Grigg et al., 2017). At the same time, 
habitat fragmentation can have detrimental impact on wildlife population viability, with reduced host 
species occupancy and reduced disease burden in highly disturbed habitats (Hanski and Ovaskainen, 
2000). Disentangling this interplay is essential to inform ecological strategies for surveillance and miti-
gation of diseases in regions undergoing landscape change (Fornace et al., 2021).

Zoonotic P. knowlesi is a public health threat of increasing importance across Southeast Asia, 
following the identification of a prominent infection foci in Borneo in 2004 (Singh et  al., 2004). 
P. knowlesi is a zoonosis, with a sylvatic cycle circulating in non- human primates (NHPs). Human 
cases currently occur only from spillover events (Ruiz Cuenca et al., 2022; Fornace et al., 2022; 
Fornace et al., 2023; Lee et al., 2011). Human transmission requires bites from infective mosquitos, 
primarily anopheline mosquitos of the Leucosphyrus Complex (Anopheles balabacensis, An. latens, 

eLife digest Zoonotic diseases are infectious diseases that are transmitted from animals to 
humans. For example, the malaria- causing parasite Plasmodium knowlesi can be transmitted from 
monkeys to humans through mosquitos that have previously fed on infected monkeys. In Malaysia, 
progress towards eliminating malaria is being undermined by the rise of human incidences of ‘monkey 
malaria’, which has been declared a public health threat by The World Health Organisation.

In humans, cases of monkey malaria are higher in areas of recent deforestation. Changes in habitat 
may affect how monkeys, insects and humans interact, making it easier for diseases like malaria to 
pass between them. Deforestation could also change the behaviour of wildlife, which could lead to an 
increase in infection rates. For example, reduced living space increases contact between monkeys, or 
it may prevent behaviours that help animals to avoid parasites.

Johnson et al. wanted to investigate how the prevalence of malaria in monkeys varies across South-
east Asia to see whether an increase of Plasmodium knowlesi in primates is linked to changes in the 
landscape. They merged the results of 23 existing studies, including data from 148 sites and 6322 
monkeys to see how environmental factors like deforestation influenced the amount of disease in 
different places.

Many previous studies have assumed that disease prevalence is high across all macaques, monkey 
species that are considered pests, and in all places. But Johnson et al. found that disease rates vary 
widely across different regions. Overall disease rates in monkeys are lower than expected (only 12%), 
but in regions with less forest or more ‘fragmented’ forest areas, malaria rates are higher. Areas with 
a high disease rate in monkeys tend to further coincide with infection hotspots for humans. This 
suggests that deforestation may be driving malaria infection in monkeys, which could be part of the 
reason for increased human infection rates.

Johnsons et al.’s study has provided an important step towards better understanding the link 
between deforestation and the levels of monkey malaria in humans living nearby. Their study provides 
important insights into how we might find ways of managing the landscape better to reduce health 
risks from wildlife infection.

https://doi.org/10.7554/eLife.88616
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An. introlactus) and Dirus Complex (An. dirus, An. cracens) (Moyes et al., 2016; Vythilingam et al., 
2006; Wong et al., 2015). Natural hosts for P. knowlesi are typically Long- tailed macaques (Macaca 
fascicularis) and Southern Pig- tailed macaques (M. nemestrina) (Moyes et al., 2016), both occurring 
widely across Southeast Asia. Currently, distribution of P. knowlesi cases is thought to be restricted 
to the predicted ranges of known vector and host species (Davidson et al., 2019b), although recent 
studies have also identified other NHPs found to be harbouring P. knowlesi. This includes Stump- tailed 
macaques (M. arctoides), which are now considered to be another natural reservoir (Fungfuang et al., 
2020).

Progress towards malaria elimination in Malaysia has been stymied by a recent rise in human 
incidence of P. knowlesi malaria. Even after accounting for increases in surveillance and diagnostic 
improvements it is now recognised as the most common cause of clinical malaria in Malaysia (Cooper 
et  al., 2020). Indeed, Malaysia was the first country not to qualify for malaria elimination due to 
ongoing presence of zoonotic malaria and the WHO updated the guidelines to reflect zoonotic 
malaria as a public health threat (World Health Organization, 2021). Emergence of Plasmodium 
knowlesi infections has been linked to changes in land cover and land use (Fornace et al., 2021). 
While sporadic cases have been reported across Southeast Asia, including in Indonesia (Setiadi et al., 
2016), the Philippines (Fornace et  al., 2018), Vietnam (Maeno et  al., 2015), Brunei (Koh et  al., 
2019), and Myanmar (Ghinai et al., 2017), the majority of P. knowlesi cases are found in East Malaysia 
(Borneo) with hotspots in the states of Sabah and Sarawak (Jeyaprakasam et al., 2020), areas that 
have seen extensive deforestation and landscape modification. In Sabah, human prevalence of P. 
knowlesi infection has recently been shown to be specifically associated with recent loss of intact 
forest, agricultural activities, and fragmentation across multiple localised spatial scales (Brock et al., 
2019; Fornace et al., 2019b; Fornace et al., 2016).

Prevalence of the pathogen in reservoir hosts is one of three crucial factors determining the force 
of infection in zoonotic spillover events (Murray and Daszak, 2013). Despite this, very little is known 
of the impact of rapid landscape change on the distribution of P. knowlesi in NHPs. Literature on 
the impacts of fragmentation on primates tends to focus on primate density and abundance (Link 
et al., 2010; Zunino et al., 2007). What is known is that effects of land cover changes on primate- 
pathogen dynamics are highly variable and context- specific. Although the vector species responsible 
for sylvatic transmission remain unknown, the Anopheles leucospryphus group, the only vector group 
implicated in P. knowlesi transmission, is widely associated with secondary, disturbed forest (Brant, 
2011; Hawkes et al., 2019; Wong et al., 2015). Macaques have been known to preferentially rely 
on fringe habitat, a behaviour that may be exaggerated in response to habitat fragmentation and 
facilitate exposure to vectors (Lehman et al., 2006; Stark et al., 2019). Changes to land composition 
can also create the biosocial conditions for higher rates of parasitism in primates. Under conditions of 
limited resources and reduction in viable habitat, conspecific primate density may increase as troops 
compete for available space. In turn, this can favour transmission via intra- species contact or allow the 
exchange of pathogens between troops dwelling in interior forest versus edge habitat (Faust et al., 
2018; Stark et al., 2019). Habitat use may also become more intensive, preventing parasite avoid-
ance behaviours (Nunn and Dokey, 2006). Land cover change is also known to favour more adapt-
able, synanthropic species such as M. fascicularis (McFarlane et al., 2012). Considering the spillover 
risk posed by wildlife reservoirs of P. knowlesi, clarifying any relationships between environmental 
factors and parasitaemia in key host species may contribute to a more comprehensive understanding 
of P. knowlesi transmission patterns.

Earth Observation (EO) data provides novel opportunities to investigate epidemiological 
patterns of diseases which are linked to environmental drivers (Kalluri et al., 2007). In relation to P. 
knowlesi, utility of fine- scale remote- sensing data has been demonstrated: examples include satellite- 
derived data used to examine household- level exposure risk in relation to proximate land configu-
ration (Fornace et al., 2019b), UAV- imagery used to link real- time deforestation to macaque host 
behavioural change (Stark et al., 2019), and remote- sensing data used to interrogate risk factors for 
vector breeding sites (Byrne et al., 2021). Although macroecological studies that utilise geospatial 
data are often confounded by issues of matching temporal and spatial scales, as well as by the quality 
and accuracy of available georeferencing, measures can be taken to account for this when examining 
the role of environmental factors in modulating disease outcomes. Furthermore, ecological processes 
occur and interact over a range of distances, or ‘spatial scales’ (Brock et al., 2019; Fornace et al., 
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2016; Loh et al., 2016). This applies to determinants of vector- borne disease ecology, from larval 
breeding microclimate to wildlife host foraging behaviour. As multiple influential variables are rarely 
captured by a single scale (Cohen et al., 2016), data- driven methods can be applied to examine risk 
factors over multiple scales and identify covariates at their most influential extent (Byrne et al., 2021).

We hypothesise that prevalence of P. knowlesi in primate host species is spatially heterogeneous 
and that higher prevalence is partially driven by forest loss and fragmentation, contributing to the 
strong associations described between land use, land cover and human P. knowlesi risk. This study 
is the first to systematically assess P. knowlesi prevalence in NHPs at a regional scale, and across a 
wide range of habitats. In conceptual frameworks and transmission models, it is often assumed that 
P. knowlesi infections in NHPs are chronic (low level, persistent infection) and ubiquitous (uniformly 
distributed across populations; Brock et  al., 2016; Jeyaprakasam et  al., 2020). No studies have 
systematically assessed the extent and quality of all available data on P. knowlesi in NHPs. Indepen-
dent studies investigating P. knowlesi in primates are typically constrained by small sample sizes and 
confined geographic areas, limiting inference that can be made about relationships between infection 
dynamics and landscape characteristics. Systematic tools developed for epidemiological studies of 
disease prevalence in human populations are rarely applied to the study of wildlife disease prevalence; 
however, such tools can be used to capture the scale and contrast required in macroecological studies 
to quantify disease burdens regionally. Furthermore, while recent research has shown the impact of 
deforestation on the distribution of macaques in the context of P. knowlesi (Moyes et al., 2016; Stark 
et al., 2019), associations between landscape and variation in the prevalence of simian Plasmodium 
spp. in primates have not been explored. We aimed to (1) assemble a georeferenced dataset of P. 
knowlesi in NHPs; (2) evaluate variation in NHP P. knowlesi prevalence by geographic region; and (3) 
assess environmental and spatial risk factors for P. knowlesi prevalence in NHPs across Southeast Asia.

Results
A systematic literature review was conducted in Medline, Embase, and Web of Science to identify arti-
cles reporting prevalence of naturally acquired Plasmodium knowlesi in NHPs. Twenty- three research 
articles were identified (Akter et al., 2015; Amir et al., 2020; Chang et al., 2011; Fungfuang et al., 
2020; Gamalo et al., 2019; Ho et al., 2010; Zamzuri et al., 2020; Jeslyn et al., 2011; Kaewchot 
et al., 2022; Lee et al., 2011; Li et al., 2021b; Muehlenbein et al., 2015; Nada- Raja et al., 2022; 
Putaporntip et  al., 2010; Saleh Huddin et  al., 2019; Salwati et  al., 2017; Seethamchai et  al., 
2008; Shahar, 2019; Gilhooly et al., 2016; personal correspondence, 2013 and 2015 ; Vythilingam 
et al., 2008; Yusuf et al., 2022; Zhang et al., 2016), containing 148 unique primate survey records 
to form the dataset for analyses (see Appendix 2 for details of JBI Critical Assessment) (Munn et al., 
2015). Year of sampling ranges from 2004 to 2019. No primatological studies were identified from 
Vietnam, Brunei, or Timor- Leste. Full characteristics of the articles and individual study methodologies 
are reported in Appendix 1—table 2. Spatial resolution of the survey sites varied from GPS point 
coordinates to country- level administrative boundaries (Appendix 5—table 1). Geographic distribu-
tion of sampling is illustrated in Figure 1.

Overall, records report on a total of 6322 primates, with the largest proportion sampled from 
Peninsular Malaysia (48.5%, n=3069/6322). Primate surveys were primarily conducted on Long- tailed 
macaques (Macaca fascicularis) (90.5%, n=5720/6322) followed by Pig- tailed macaques (M. nemes-
trina; n=532/6322; Amir et al., 2020; Lee et al., 2011; Muehlenbein et al., 2015; Putaporntip et al., 
2010; Appendix 1—table 3). Reported prevalence of Plasmodium knowlesi in NHPs ranged from 0% 
to 100%. Only 87 of the surveys (58.8%, n=87/148) reported a positive diagnosis, with the remaining 
61 sites finding no molecular evidence of P. knowlesi infection (41.2%) in any primates tested. A full 
breakdown of P. knowlesi infection rates according to reported primate characteristics can be found 
in Appendix 1.

Meta-analysis of P. knowlesi prevalence
To quantify regional heterogeneity in simian cases of P. knowlesi, a one- stage meta- analysis of prev-
alence (number positive out of the number sampled) was conducted on primate malaria survey data. 
Overall pooled estimate for P. knowlesi prevalence was 11.99% (CI95% 9.35–15.26). Overall heteroge-
neity was assessed using the I2 statistic. Substantial between- study heterogeneity (I2 ≥75%) was found 
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across all prevalence records (I2=80.5%; CI95% 77.3–83.1). In the sub- group analysis by region, pooled 
prevalence estimates are consistently low for Thailand (2.0%, CI95% 1.1–3.5%), moderate in Penin-
sular Malaysia (14.3%, CI95% 11.1–18.2) and elevated in Singapore (23.3%, CI95% 11.0–42.8) and 
Malaysian Borneo (41.1%, CI95% 20.8–64.9) (Figure 2). Sub- group heterogeneity was assessed using 
prediction intervals, derived from τ 2 statistic used to describe between- study variability. Prediction 
intervals indicate high heterogeneity of estimates within regions, consistent with expectations of high 
variability of prevalence across individual study sites. Detailed forest plots for individual prevalence 
estimates can be found in Appendix 3—figure 2.

Figure 1. Sampling sites and primate species sampled across Southeast Asia. ‘Other’ includes Trachypithecus obscurus and undefined species from the 
genus Presbytis. Total surveys (n) = 148.

https://doi.org/10.7554/eLife.88616
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Risk factor analysis
Covariate data and P. knowlesi prevalence data were used to fit additional models to explore the 
relationships between localised landscape configuration and NHP malaria prevalence. Environmental 
covariates were extracted from satellite- derived remote sensing datasets (Table  1) at either true 
sampling sites (GPS coordinates) or 10 random pseudo- sampling sites to account for geographic 

Figure 2. Random- effects meta- analysis of P. knowlesi prevalence across Southeast Asia. (A) Forest plot of pooled estimates for P. knowlesi prevalence 
(%) in all non- human primates tested (n=6322) across Southeast Asia, disaggregated by species and sampling site (k=148). Random- effects meta- analysis 
sub- grouped by region, with 95% confidence intervals and prediction intervals. (B) Map of regional prevalence estimates for P. knowlesi prevalence 
in NHP in Southeast Asia from meta- analysis. Point colour denotes pooled estimate (%). Size denotes total primates tested per region (n). Shading 
indicates data availability.

https://doi.org/10.7554/eLife.88616
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uncertainty in prevalence data. Host species was grouped as ‘Macaca fascicularis’ or ‘Other’ due to 
sample counts of <10 for certain primate species. Only 57.4% (n=85/148 records) of data included 
year of sampling, deemed to be insufficient to assess temporal patterns in prevalence. Tree canopy 
cover ranged from negligible to near total cover (100%) within buffer radii (Appendix 4—table 2). 
Details of covariate data processing is illustrated in Appendix 4.

Following a two- stage approach for selection of explanatory variables, tree cover and fragmenta-
tion (measured by perimeter: area ratio, PARA) were retained at 5 km as linear terms, human popula-
tion density was retained at both 5 km and 20 km and primate species was retained as a categorical 
variable. Spearman’s rank tests for residual correlation between final variables at selected scales indi-
cates a strong negative correlation between tree cover and fragmentation index (PARA; ρ = –0.75; 
Appendix 6—figure 2).

Adjusting for all other covariates in the model, we identified strong evidence of an effect between 
increasing tree canopy cover and higher prevalence of P. knowlesi in NHPs within a 5 km radius (aOR 
= 1.38, CI95% 1.19–1.60; p<0.0001). Evidence was also found for an association between likelihood of 
P. knowlesi and higher degrees of habitat fragmentation (PARA) within 5 km (aOR = 1.17, CI95% 1.02–
1.34, p<0.0281). Evidence suggests that human population density within a 5 km radius is associated 

Table 1. Spatial and temporal resolution (res.) and sources for environmental covariates.
Summary metrics extracted within 5, 10 and 20 km circular buffers.

Covariate Spatial res. Temporal res. Source

Human density (p/km2) 1 km 2012 WorldPop, 2018

Elevation (m) 1 km 2003 SRTM 90 m Digital Elevation v4.1 Jarvis et al., 2008

Tree cover (1/0)* 30 m Annual Hansen’s Global Forest Watch Hansen et al., 2013

*Derivatives: Proportion canopy cover (%), Perimeter: area ratio (PARA >0)

Figure 3. Multivariable regression results. Spatial scale denoted in square bracket. Canopy cover = %. Adjusted odds ratios (OR, dots) and 95% 
confidence intervals (CI95%, whiskers) for factors associated with P. knowlesi in NHPs at significant spatial scales. N=1354, accounting for replicate 
pseudo- sampling.

https://doi.org/10.7554/eLife.88616
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with risk of P. knowlesi in NHP (aOR = 1.36, CI95% 1.16–1.58, p=0.0001) whilst human density within 
20 km has an inverse effect on likelihood of P. knowlesi (aOR = 0.56, CI95% 0.46–0.67, p<0.0001). M. 
fascicularis is also associated with higher prevalence relative to all other non- human primate species 
(aOR = 2.50, CI95% 1.31–4.85; p=0.0051). Additional complexity did not improve optimal model fit 
and effect modification was not pursued. In sensitivity analyses removing data points with excessive 
spatial uncertainty or restricting data points only to areas with high probability of macaque occur-
rence, evidence was consistently found that tree canopy cover (5 km) and host species exhibit a strong 
positive association with prevalence of P. knowlesi in NHP (Appendix 6). Final adjusted OR for the full 
multivariable model can be visualised in Figure 3.

Discussion
Land use and land cover change is widely linked to spillover of zoonotic pathogens from sylvatic reser-
voirs into human populations, and pathogen prevalence in wildlife host species is key in driving the 
force of infection in spillover events. Our initial analyses found that for Plasmodium knowlesi, there 
is substantial spatial heterogeneity and prevalence in non- human primates varies markedly between 
regions of Southeast Asia (Zhang et al., 2016). Consistent with our hypothesis that parasite density 
in primate hosts would be higher in areas experiencing habitat disturbance, we identified strong links 
between P. knowlesi in NHPs and measures of contemporaneous tree cover and habitat fragmenta-
tion. To our knowledge, this is the first systematic study to find evidence of landscape influencing 
the distribution of P. knowlesi prevalence in NHPs. Results offer evidence that P. knowlesi infection 
rates in NHPs are linked to changes in landscape across broad spatial scales, and that prevalence of 
P. knowlesi in reservoir species may be driving spillover risk across Southeast Asia. These findings 
could provide insight to improving surveillance of P. knowlesi and to the development of ecologically 
targeted interventions.

While previous studies have estimated that P. knowlesi infection would be chronic in all macaques, 
or as high as 50–90% for modelling P. knowlesi transmission in Malaysia (Brock et al., 2016), this data 
strongly suggests that this is not the case. Overall prevalence of P. knowlesi infection in all NHPs is 
markedly lower than usual estimates, emphasising the importance of accounting for absence data in 
estimations of prevalence. Considerable heterogeneity was identified between and within regional 
estimates for P. knowlesi across Southeast Asia, which likely reflects genuine differences according to 
distinct climates and habitats (Shearer et al., 2016). Malaysian Borneo was found to have an estimated 
prevalence over five- fold higher than West Malaysia. Crucially, such extreme prevalence estimates for 
NHPs in Borneo align with the known hotspot for human incidence of P. knowlesi (Cooper et al., 
2020). By comparison, for Peninsular Malaysia, estimated prevalence is far lower than anticipated. 
Cases of human P. knowlesi do occur in West Malaysia, although transmission has been found to 
exhibit spatial clustering (Phang et al., 2020) which may correspond to pockets of high risk within the 
wider context of low prevalence of P. knowlesi in macaque populations. Regional trends in P. knowlesi 
also mask differences in infection rates between sample locations, driven by more localised factors. 
Multiple studies reported finding P. knowlesi infections in wild macaques to be low or absent in peri- 
domestic or urbanised areas, attributed to the absence of vector species typically found in forest 
fringes (Brant et al., 2016; Chua et al., 2019; Manin et al., 2016). This pattern is seen in reports from 
Peninsular Malaysia (Saleh Huddin et al., 2019; Vythilingam et al., 2008), Singapore (Jeslyn et al., 
2011; Li et al., 2021b), and Thailand (Fungfuang et al., 2020; Putaporntip et al., 2010). The high 
heterogeneity of reports here suggests that the picture is even more complex. P. knowlesi infections 
may even vary between troops within a single study site, as was seen in the Philippines (Gamalo et al., 
2019). Fine- scale interactions are unlikely to be captured by the scale of this study.

Ecological processes determining P. knowlesi infection are influenced by dynamic variables over 
multiple spatial scales (Cohen et al., 2016). We utilised a data- driven methodology to select variables 
at distances that capture maximum impact on P. knowlesi prevalence (Byrne et al., 2021; Fornace 
et al., 2019b), with tree cover and fragmentation influential at localised scales and human popula-
tion density also exerting influence within wider radii. Contrary to previous studies on risk factors 
for human incidence of P. knowlesi (Fornace et  al., 2019b; Fornace et  al., 2016), elevation was 
not found to be associated with P. knowlesi in NHPs at any scale. Vector and host species compo-
sition vary substantially across tropical ecotones, and it is likely that the study extent encompasses 
a range of putative vectors across different landscapes, such as those of the Minimus Complex in 

https://doi.org/10.7554/eLife.88616
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northern regions (Parker et al., 2015) or the recently incriminated An.-collessi and An.-roperi from 
the Umbrosus Group (De Ang et al., 2021). Given that the vector species driving sylvatic transmis-
sion remain elusive, it is conceivable that the elevation range covers multiple vector and host species 
niches and explains the lack of observed relationship between elevation and P. knowlesi in NHPs. 
Human population density was found to be significant at multiple distances, with contrasting effects 
on parasite prevalence in NHP. Previous studies have found a negative association between human 
density and vector density and biting rates in forested landscapes (Fornace et al., 2019a). Across 
wide spatial scales, increased vector density in less populated, more forested areas could generate 
higher parasite prevalence in NHPs. At the same time Long- tailed macaques, a species shown here 
to have higher prevalence rates, are notorious as nuisance animals and many of the available samples 
were collected opportunistically in urban areas, which might underly the observed positive associa-
tion between localised high human density and higher prevalence in NHP. Whilst more data would be 
needed to understand this interaction, this further demonstrates the importance of using approaches 
to identify disease dynamics across multiple spatial scales (Brock et al., 2019).

A key finding is the link between high prevalence of P. knowlesi in primate host species with high 
degrees of habitat fragmentation. Habitat fragmentation is a key aspect of landscape modification, 
where large contiguous areas of habitat (for example, forests) are broken into a mosaic of smaller 
patches. This disturbs the ecological structure by increasing the density of fringes or ‘edges’, dynamic 
habitat often at the boundaries between natural ecosystems and human- modified landscapes (Borre-
mans et al., 2019). Other studies have linked habitat fragmentation to increased generalist parasite 
density in primates. In Uganda, a higher prevalence and infection risk of protozoal parasites was 
observed in wild populations of red colobus primates (Procolobus rufomitratus) inhabiting fragmented 
forests compared to those in undisturbed habitat (Gillespie and Chapman, 2008). For P. knowlesi, 
creation of edge habitat is thought to favour vectors of the Leucosphyrus Complex (Davidson et al., 
2019a; Hawkes et al., 2019). Anopheles spp. presence can be predicted by indices of fragmentation 
in Sabah, Borneo, with land cover changes creating more suitable micro- climate for larval habitats 
(Byrne et al., 2021), and an increased abundance of An. balabacensis found in forest fringes (Hawkes 
et  al., 2019; Wong et  al., 2015). Increasing landscape complexity results in increased density of 
edge habitat, with conceivably higher density of vectors in forest fringes. Therefore, preferential use 
of fringe habitat and high exposure to vectors in forest fringes may contribute to higher conspecific 
transmission of P. knowlesi between primates in increasingly fragmented habitats. This finding also 
lends clarity to landscape fragmentation as a risk factor for human exposure to P. knowlesi in Malay-
sian Borneo (Brock et al., 2019; Fornace et al., 2019b), with changes in relative host density, vector 
density and wildlife parasite prevalence in nascent forest fringes potentially enhancing the spillover of 
this disease system into human populations in fragmented habitats.

Conversely, we saw a strong association between high parasite prevalence and high tree canopy 
coverage. Given that a strong inverse relationship with fragmentation was observed, with high tree 
density correlating to low fragmentation indices and vice versa, this speaks to a trade- off between 
dense canopy cover and high habitat complexity and suggests an ‘ideal’ amount of habitat fragmenta-
tion that facilitates prevalence in primate hosts. For animals with larger home ranges, individual- based 
disease models combined with movement ecology approaches have shown that the most highly 
fragmented areas are less favourable for maintaining parasite transmission (White et al., 2018). In 
Sabah, individual macaques were shown to increase ranging behaviour in response to deforestation 
(Stark et al., 2019). Forest edge density also peaks at intermediate levels of land conversion (Borre-
mans et  al., 2019). With smaller habitat patches in maximally fragmented landscapes potentially 
insufficient to support macaque troops, this interplay between disease ecology and metapopulation 
theory may explain why both tree density and habitat fragmentation appear to pose a greater risk for 
simian P. knowlesi. Likewise, this may relate to the finding that in Borneo, larger forest patches (lower 
fragmentation indices) were associated with P. knowlesi spillover in Borneo (Fornace et al., 2019b). 
Overall, this finding offers an insight to mechanisms that underpin the increased force of infection of 
P. knowlesi that is associated with landscape change.

There are limitations to consider in the available data and interpretation of these findings. ‘Small- 
study effects’ were observed in the dataset, suggestive of a bias toward positive effect estimates 
(Stewart et al., 2012). This may be a result of data disaggregation and small studies creating artefac-
tually higher estimates or may reflect true bias in data collection toward areas known to be endemic 
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for P. knowlesi and convenience sampling of macaques. Assumptions have also been made that 
sample site equates to habitat, which may not reflect actual habitat use, and even accurate georefer-
enced data points are unlikely to entirely reflect surrounding habitat within the macaque home range. 
Variability in study designs and data reporting also impacted geospatial accuracy. Steps were taken 
to account for spatial bias by extracting covariates at randomly generated pseudo- sampling points. 
Whilst uncertainty cannot be eliminated, we demonstrate a robust methodology to accommodate 
for geographical uncertainty in ecological studies. Future investigations should prioritise systematic, 
georeferenced sampling across a range of landscape scenarios.

Results show important regional ecological trends, but broad geographic patterns may not be 
generalisable at individual levels, or to all putative host species in all geographic contexts (Zhang 
et al., 2016). Follow- up studies should be conducted at higher spatial and temporal resolution to char-
acterise the effect of local landscape configuration on wildlife P. knowlesi prevalence. Effects of frag-
mentation are likely to be dependent on land conversion type, species composition and surrounding 
matrix habitat (Fornace et al., 2019b). Use of perimeter: area ratio (PARA) as a fragmentation index 
was justified given high canopy coverage in study sites (Wang et al., 2014), although Edge Density 
(ED) or normalised Landscape Shape Index (nLSI) might be more appropriate in future analyses to 
account for variation in forest abundance. Specific land configurations have previously been linked to 
P. knowlesi exposure in Borneo (Fornace et al., 2019b), notably in areas where palm oil plantation is 
a dominant industry. Given this, broad forest classifications used here may mask important differences 
in P. knowlesi prevalence between land classes. As it was not possible to include contemporary land 
cover classifications in this analysis, future studies would also benefit from looking at specific habitat 
type (e.g., primary forest, agroforest, plantation).

Concluding remarks
Strong links have been identified between land use and land cover change and ecosystem pertur-
bation that favours the transmission of vector- borne diseases (Loh et  al., 2016). Prevalence of P. 
knowlesi in macaques is likely to be a crucial determinant of human infection risk, and more represen-
tative estimates of P. knowlesi prevalence derived here can better inform regional transmission risk 
models. This study also characterises landscape risk factors for heightened prevalence of P. knowlesi 
in NHPs. Findings provide evidence that P. knowlesi in primate hosts is partly driven by landscape 
modification across Southeast Asia. While the full complexity is not captured by the covariates used, 
it is clear that P. knowlesi infection in NHPs is not restricted to densely forested areas. This study also 
demonstrates the utility of systematic meta- analysis tools and remote- sensing datasets in the inves-
tigation of macroecological disease trends, in conjunction with methods to standardise a spatially 
heterogeneous dataset and data- driven selection of spatial scales. Gaps identified in data reporting 
should inform more systematic and localised primatological surveys to disentangle precise mecha-
nisms. Notwithstanding limitations, this study highlights the marked spatial heterogeneity and role 
of landscape complexity in driving P. knowlesi infection rates in NHPs. Given the clear intersection 
between human epidemiology and wildlife ecology, it is essential that infection dynamics within wild-
life reservoirs are considered in future public health interventions.

Methods
Study site
This study focused on the simian malaria Plasmodium knowlesi across Southeast Asia, within 
28°30'00.0"N, 92°12'00.0"E and 11°00'00.0"S, 141°00'00.0"E. Climate mainly corresponds to the 
equatorial tropical zone, with high temperatures and high humidity.

Data assembly
A systematic literature review was conducted under the CoCoPop framework (Condition, Context, 
Population) (Ruiz Cuenca et  al., 2022; Munn et  al., 2015). All studies identified in the literature 
review were screened for data on NHPs with a confirmed P. knowlesi diagnosis or absence data (zero 
counts of P. knowlesi with appropriate diagnostic methods). Exclusion criteria included (a) studies 
exclusively relying on microscopy (Antinori et al., 2013) (b) laboratory, animal model or experimental 
infection studies (c) data from outside of Southeast Asia. No limit was set on the temporal range for 
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primate survey records. Duplicate records reporting results from the same surveys were removed, 
with one record per survey retained. Critical appraisal of the studies was conducted using the Joanna 
Briggs Institute (JBI) checklist for prevalence studies (Munn et al., 2015; see Appendix 1 for details 
and criteria). A flowchart of the selection process is illustrated in Appendix 1—figure 3, with a full list 
of articles included provided in Appendix 1—table 2.

Primary outcome was defined as P. knowlesi prevalence (p, proportion positive for P. knowlesi 
infection from n sampled NHPs). For each independent primate study, the following variables were 
extracted: year of data collection, primate species sampled, primate status (wild/captive), diagnostic 
test (PCR/sequencing) and target gene(s), sampling method (routine/purposive), number of P. knowlesi 
positive samples, number of Plasmodium spp. positive samples, total number of primates tested and 
geographical information.

In most studies identified, study site was only geolocated to a geographic area or descriptive loca-
tion. Geolocation was assigned at the lowest available level of administrative polygon (i.e. district/
state/country) by cross- referencing reported sampling location with GADM (v3.6) administrative 
boundaries. If specific location was given, GPS coordinates were assigned via Google Maps. For data 
visualisation, point coordinates were plotted in QGIS (3.10.14) and R (4.1.0) software.

Meta-analysis of P. knowlesi prevalence
Meta- analysis was conducted using methods that are standard in the analysis of human disease preva-
lence for individual participant datasets (IDP) (Liberati et al., 2009; Stewart et al., 2012). Data were 
disaggregated by geographic location (site) and primate species, to illustrate variance in prevalence 
by survey unit (Stewart et al., 2012). One- stage meta- analysis is considered appropriate for studies 
where the outcome may be infrequent, so data was included in a single model under the ‘DerSi-
monian and Laird’ variance estimator (Munn et al., 2015). Sensitivity analyses were conducted to 
compare methods for the back- transformation of prevalence estimates. For studies where prevalence 
estimates tend towards 0% or 100%, variance tends towards 0. To stabilise the variance and enable 
back- transformation of zero prevalence records, logit method was selected for the transformation of 
prevalence, with the inverse variance method used for individual study weights (see Appendix 3 for 
details).

Overall heterogeneity of prevalence records was assessed using the I2 statistic (von Hippel, 2015), 
a relative estimate of true between- study variance. Sub- group analysis was conducted according 
to geographic region, with the heterogeneity of reported prevalence within regional sub- groups 
assessed using prediction intervals derived from the τ 2 statistic. Small- study effects, including selec-
tion and publication biases, were assessed by examining funnel plots and imputing ‘missing’ estimates 
using the trim- and- fill method (Lin and Chu, 2018). Full rationale and details of small- study effect 
assessments can be found in Appendix 3.

Remote sensing data
Satellite- derived remote sensing datasets were used to assemble local environmental and anthropo-
genic covariates. Gridded UN- adjusted human population estimates were assembled at 1 km reso-
lution from WorldPop, 2018. Elevation data was obtained from NASA SRTM 90 m Digital Elevation 
Database v4.1 (CGIAR- CSI) (Jarvis et al., 2008) with a spatial resolution of 1 km. Contemporaneous 
tree cover was derived from Hanson’s Global Forest Watch (30 m) (Hansen et al., 2013), extracted 
for every year between 2006 and 2020.Tree cover was classified as ≥50% crown density, and then 
matched to primate data by sample site geolocation and by year of sample collection to account 
for rapid forest loss (Appendix 4—figure 1). Where a broad timeframe of sampling was provided 
(≥3 years), median year was used. Full details for variable selection and processing can be found in 
Appendix 4.

Perimeter: area ratio (PARA, ratio of patch perimeter length to patch surface area) of given land 
class is a key metric for habitat conversion, where a higher PARA provides a measure of boundary 
complexity and indicates a more fragmented landscape (McGarigal et  al., 2021). Mean PARA 
was extracted from canopy cover within circular buffers. Habitat fragmentation has been shown to 
correlate with disease transmission parameters (Borremans et  al., 2019; Faust et  al., 2018), but 
definitions often lack precision and can be considered with respect to ‘separation effects’ (division 
and isolation of patches) and ‘geometric effects’ (changes to ratios of perimeter and core habitat; 
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Wilkinson et al., 2018). PARA provides a measure of edge density within the buffer area (PARA >0) 
and has been shown to provide a good index of fragmentation and good discrimination of spatial 
aggregation across areas where habitat abundance (tree canopy cover) is high (Wang et al., 2014; 
Appendix 4—table 2, Appendix 4—figure 4).

Covariate assembly
For studies with exact GPS coordinates, precise environmental data at a single site could be obtained. 
For surveys published without GPS coordinates, there is considerable geographic uncertainty in the 
exact sampling location (Appendix 5). Uncertainty in the spatial and environmental determinants of 
prevalence generates a sampling bias, with the precision of covariates correlated to certain studies. 
Use of a single centroid proxy site is standard procedure, but often generates erroneous estimates in 
large or heterogenous sampling units (Cheng et al., 2021). Alternative strategies were employed to 
account for and mitigate the effect of spatial uncertainty and spatial bias. Each prevalence observa-
tion was replicated and assigned a random sample of environmental realisations. 10 random sampling 
points were generated within the sampling area provided by the study, and covariates were extracted 
at each proxy sampling site (Appendix 5—figure 1). Selection of random points was validated by 
visual inspection of the stability of model coefficients with the inclusion of an increasing number of 
points. Number of points was selected conservatively at the point where coefficients stabilised (n=10).

For every georeferenced sampling point, mean values for all selected covariates were extracted 
within buffer radii at 5 km, 10 km, and 20 km (Appendix 4). Buffer area sizes were selected to investigate 
multiple spatial scales over which associations between risk factors and P. knowlesi prevalence might 
occur. A minimum radius of 5 km was chosen to approximate the maximum ranging distance for M. 
fascicularis (Waxman et al., 2014), with wider radii (10–20 km) included to account for the geographic 
uncertainties in areal data. Flowchart of data processing chain can be found in Appendix 4—figure 2.

Analysis of environmental risk factors
Generalised linear mixed- effect regression models (GLMM) were fitted to NHP prevalence data using 
a binomial distribution with a logit link. To account for within- study correlation in reported average 
prevalence, a unique identifier combining author and study was included as a random intercept in 
all models. Artificial inflation of sample size in the replicated data (10 pseudo- sampling sites for data 
geolocated to administrative areas) was accommodated by reducing individual observation weights 
to 1/10th within the model.

Each covariate at each spatial scale was assessed for inclusion in the multivariable model based on 
bivariable analysis and a criterion of p>0.2 under likelihood ratio tests (LRT; Appendix 6—table 1). A 
quadratic term for the fragmentation index ‘PARA’ was included to account for possible nonlinearity. 
Multicollinearity among independent predictors at multiple scales was examined via variance inflation 
factors (VIF). The VIF of each predictor variable was examined following a stepwise procedure, starting 
with a saturated model and sequentially excluding the variable with the highest VIF score from the 
model. Stepwise selection continued in this manner until the entire subset of explanatory variables 
in the global model satisfied a moderately conservative threshold of VIF ≤6 (Rogerson, 2001). Quali-
fying variables obtained were then assessed for model inclusion using a backward stepwise strategy, 
removing variables with the highest p value (LRT) until a pre- defined threshold of α<0.05. Spearman’s 
rank tests were conducted on the selected variables to observe residual correlation, plotted as a 
correlation matrix (Appendix 6—figure 2).

Fully adjusted odds ratios (OR) for associations between environmental covariates and P. knowlesi 
prevalence were derived from the final multivariable GLMM with p values derived from LRT. Spatial 
sensitivity analyses were conducted by excluding data points from administrative boundaries outside a 
reasonable size or above a reasonable threshold of environmental certainty, according to the standard 
deviation (SD) of the covariate values within each set of 10 environmental realisations (Appendix 5—
figure 2, Appendix 6—tables 4–6). Ecological sensitivity analyses were conducted by removing data 
points that fall outside areas with high predicted probability of occurrence for Macaca fascicularis, 
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Macaca nemestrina, and Macaca leonina and running regression analyses on the constrained dataset 
(Moyes et al., 2016; Appendix 6—figures 3–5, Appendix 6—tables 7–9).
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Appendix 1
Data assembly
Prior to conducting the study, a review of current literature was constructed to find articles related 
to ‘Plasmodium knowlesi’ or to both ‘malaria’ and ‘primate’, including synonyms and sub- headings. 
The search was elaborated to specify environmental factors (Appendix 1—figure 1). The following 
databases were searched:

• Medline
• Embase
• Web of Science

Provisional data were extracted using a standardised form (Appendix 1—figure 2) using standardised 
definitions (Appendix  1—table 1), from which an initial set of studies were identified for this 
investigation. Duplicate records (confirmed/suspected to be the same specimens) were removed, 
with one record retained (Appendix 1—figure 3)

Appendix 1—figure 1. Search strategy for background research.

Appendix 1—figure 2. WHO Report primate data extraction form.
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Appendix 1—figure 3. Flow chart illustrating study selection process.
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Appendix 1—table 1. Standardised definitions for qualitative primate characteristics.

Variable Category Definition

Sampling

Routine Animals collected for surveillance purposes or extracted from human–conflict zones; data 
collected opportunistically Shearer et al., 2016

Study Animals captured and sampled specifically for a study of Plasmodium spp and/or P. knowlesi

Status

Captive Animal resident in sanctuary or conservation park

Wild Free- living animal, not registered/resident in any sanctuary

Sanctuary A wildlife sanctuary/rehabilitation centre housing key primate species Gamalo et al., 2019

Area

Forest Areas that are uninhabited with extensive tree cover

Peri–domestic As defined by the author. Example definitions as follows: 

• Rural areas (areas with low human density, 
close to secondary/scrub forest) Shahar, 2019 

• Public nature reserve park Jeslyn et al., 2011 

• 2 km from longhouse communities Lee et al., 2011 

• Wild Long- tailed macaque samples collected based on their proximity to 
humans Saleh Huddin et al., 2019

Agricultural Animal located in agricultural areas, predominantly monoculture (e.g. orchard, plantation) 
Shahar, 2019

Urban As defined by the author. Generally, areas with high human population density Li et al., 2021b

Appendix 1—table 2. Characteristics of the included studies.
Author Year(s) Country/region N* Sample† Diagnostic Target gene(s) Primer

Lee et al., 2011 2004–2008 Malaysia/Borneo 108 Study Nested PCR SSU- rRNA/csp/mtDNA Kn1f/Kn3r

Seethamchai et al., 2008 2006 Thailand 99 Study Sequencing A- type- SSU- rRNA/cytb •

Vythilingam et al., 2008 2007 Malaysia/Peninsular 145 Study PCR/Sequencing SSU- rRNA/csp Pmk8/Pmkr9

Zhang et al., 2016

2007 Singapore 40 Study PCR • •

2007–2010 Indonesia/Sumatra 70 Study PCR • •

2011 Cambodia 54 Study PCR • •

2012 Philippines 68 Study PCR • •

2015 Laos 44 Study PCR/Sequencing SSU- rRNA PK18SF/PK18SRc

Jeslyn et al., 2011 2008 Singapore 13 Routine PCR/Sequencing SSU- rRNA /csp Pmk8/Pmkr9

Ho et al., 2010 2008 Malaysia/Peninsular 107 Routine Nested PCR SSU- rRNA Pmk8/Pmkr9

Li et al., 2021b 2008–2017 Singapore 1039 Routine Nested PCR SSU- rRNA Pmk8/Pmkr9

Putaporntip et al., 2010 2009 Thailand 655 Study Sequencing cytb •

Chang et al., 2011 2010 Myanmar 45 Study PCR SSU- rRNA •

Muehlenbein et al., 2015 2010 Malaysia/Borneo 41 Study PCR mtDNA/AMA- 1/MSP- 1 •

Shahar, 2019 ‡ 2010–2017 Malaysia/Peninsular 1587 Routine Nested PCR SSU- rRNA •

§ 2013 Malaysia/Peninsular 15 Study PCR • •

§ 2013–2016 Malaysia/Borneo 25 Study Nested PCR cytb PKCBF/PKCBR

Saleh Huddin et al., 2019 2014 Malaysia/Peninsular 415 Study PCR/Sequencing SSU- rRNA Pmk8/Pmkr9

Akter et al., 2015 2015 Malaysia/Peninsular 70 Routine PCR/Sequencing A- type- SSU- rRNA Pmk8/Pmkr9

Amir et al., 2020 2016 Malaysia/Peninsular 103 Routine Nested PCR SSU- rRNA PkF1140/PkR1550

Gamalo et al., 2019 2017 Philippines 95 Study Nested PCR SSU- rRNA Kn1f/Kn3r

Fungfuang et al., 2020 2017–2019 Thailand 93 Study Nested PCR SSU- rRNA Kn1f/Kn3r

Nada- Raja et al., 2022 2018 Malaysia/Borneo 73 Study Nested PCR SSU- rRNA/csp/mtDNA Kn1f/Kn3r

Appendix 1—table 2 Continued on next page
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Author Year(s) Country/region N* Sample† Diagnostic Target gene(s) Primer

Yusuf et al., 2022 2016–2019 Malaysia 419 Study Nested PCR SSU- rRNA Kn1f/Kn3r

Zamzuri et al., 2020 2018 Malaysia/Peninsular 212 Routine PCR • •

Kaewchot et al., 2022 2019 Thailand 649 Study Nested PCR SSU- rRNA Pmk8/Pmkr9

Salwati et al., 2017 2015 Indonesia/Sumatra 38 Study PCR/Sequencing • •

*N=number of primates sampled.
†Animal trapped either on routine or study basis.
‡Unpublished, personal correspondence (p/c).
§Danau Girang Field Centre, p/c from Dr Salgado Lynn.

Of the 87 records reporting presence of P. knowlesi, only 22 records (containing 248 P. knowlesi 
positive macaques) report whether P. knowlesi infection was a mono- infection or mixed infection 
with other simian Plasmodium spp. With a low proportion of data represented, this was deemed 
insufficient to conduct any further investigations.

Macaca fascicularis is the predominant species tested. However, reports also include M. 
nemestrina (6.1%, n=9/148; 527 macaques) (Amir et al., 2020; Lee et al., 2011; Putaporntip et al., 
2010; Muehlenbein et al., 2015), M. arctoides (1.4%, n=2/148; 36 macaques) (Fungfuang et al., 
2020; Putaporntip et  al., 2010), M.-leonina (n=1/148; 25 macaques) (Fungfuang et  al., 2020), 
Trachypithecus obscurus (Dusky leaf monkey) (n=1/148; 7 tested) and unspecified species from 
the Presbytis genus (n=1/148; 2 tested) (Appendix 1—table 3). One study additionally sampled 
1 Presbytis melalophos (Black- crested Sumatran langur) (Vythilingam et  al., 2008), but species- 
specific P. knowlesi was not reported (Appendix 1—table 4).

Appendix 1—table 3. Published studies of P. knowlesi infections (n) in non- human primate species 
collected (N) in Southeast Asia, grouped by region and author.

Region

Species

Total RefM. fascicularis M. nemestrina M. arctoides Other

Peninsular 25/107 • • •

473/3069

Ho et al., 2010

Malaysia 48/415 • • • Saleh Huddin et al., 2019

21/70 • • • Akter et al., 2015

11/98 0/5 • • Amir et al., 2020

0/15 • • •

10/145 • • • Vythilingam et al., 2008

215/1587 • • • Shahar, 2019

66/415 • • • Yusuf et al., 2022

74/207 3/5 • • Zamzuri et al., 2020

Borneo 4/26 2/15 • •

119/251

Muehlenbein et al., 2015

71/82 13/26 • • Lee et al., 2011

18/25 • • •

7/45 2/28 • • Nada- Raja et al., 2022

2/4 • • • Yusuf et al., 2022

Sumatra 0/70 • • •

6/108

Zhang et al., 2016

5/32 1/4 • 0/2† Salwati et al., 2017

Appendix 1—table 2 Continued

Appendix 1—table 3 Continued on next page
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Region

Species

Total RefM. fascicularis M. nemestrina M. arctoides Other

Thailand 1/195 5/449 0/4 1/7 ‡

8/1496

Putaporntip et al., 2010

0/21 • • • Seethamchai et al., 2008

0/4 • • • Fungfuang et al., 2020

0/32 0/25* 1/32 • Fungfuang et al., 2020

0/78 • • • Seethamchai et al., 2008

0/649 • • • Kaewchot et al., 2022

Philippines 18/95 • • •

18/163

Gamalo et al., 2019

0/68 • • • Zhang et al., 2016

Singapore 3/13 • • •

148/1092

Jeslyn et al., 2011

145/1039 • • • Li et al., 2021b

0/40 • • • Zhang et al., 2016

Laos 1/44 • • • 1/44 Zhang et al., 2016

Cambodia 0/54 • • • 0/54 Zhang et al., 2016

Myanmar 0/45 • • • 0/45 Chang et al., 2011

Total 743/5720 26/557 1/36 1/9 773/6322

*Macaca- leonina (Northern Pig- tailed macaque, recently classified as separate species).
†Presbytis spp.
‡Trachypithecus obscurus (Dusky leaf monkey).

Appendix 1—table 4. Characteristics of primates tested and number/percentage of confirmed P. 
knowlesi infections (Pk+).

N (%)* Pk+ Pk+ (%)† CI95% ‡

Species M. fascicularis 5720 (90.5%) 745 13.0% (12.2–13.9)

M. nemestrina 532 (8.4%) 26 4.9% (3.4–7.1)

M. leonina 25 (0.4%) 0 0.0% (0.0–13.3)

M. arctoides 36 (0.6%) 1 2.8% (0.5–14.2)

T. obscurus 7 (0.1%) 1 14.3% (2.6–51.3)

Presbytis spp. 2 (0.03%) 0 0.0% (0.0–65.8)

Area Forest 1740 (27.5%) 253 14.5% (13.0–16.3)

Agriculture 491 (7.8%) 72 14.7% (11.8–18.1)

Peri- domestic 2192 (34.7%) 341 15.6% (14.1–17.1)

Urban 1143 (18.1%) 56 4.9% (3.8–6.3)

Sanctuary 109 (1.7%) 5 4.6% (2.0–10.3)

Unspecified 647 (10.2%) 46 7.1% (5.4–9.4)

Status Wild 6183 (97.8%) 768 12.4% (11.6–13.3)

Captive 139 (2.2 %) 5 3.6% (1.5–8.1)

Region Pen. Malaysia 3069 (48.5%) 473 15.4% (14.2–16.7)

Borneo 251 (4.0%) 119 47.4% (41.3–53.6)

Sumatra 108 (1.7%) 6 5.5% (2.6–11.6)

Thailand 1496 (23.7%) 8 0.5% (0.3–1.1)

Appendix 1—table 3 Continued

Appendix 1—table 4 Continued on next page
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N (%)* Pk+ Pk+ (%)† CI95% ‡

Philippines 163 (2.6 %) 18 11.0% (7.1–16.8)

Singapore 1092 (17.3%) 148 13.6% (11.7–15.7)

Cambodia 54 (0.9%) 0 0.0% (0.0–6.6)

Laos 44 (0.7%) 1 2.3% (0.4–11.8)

Myanmar 45 (0.7%) 0 0.0% (0.0–7.9)

Total 6322 (100%) 773 12.2% (11.4–13.1)

*Percentage of total number of primates tested (column %).
†Proportion of N positive for P. knowlesi (row %).
‡95% confidence interval (CI95%) calculated in R using count and sample size (binomial distribution).

Appendix 1—table 4 Continued
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Appendix 2
Quality appraisal
Quality was assessed using the Joanna Briggs Institute (JBI) Critical Appraisal tool for prevalence 
studies (Munn et al., 2015). Studies were assessed on nine standardised criteria used to inform 
inclusion in the meta- analysis. Full criteria and examples of scoring are given in Appendix  2—
tables 1 and 2. Studies assessed to be of lower quality were those that omitted key information 
about the sampling method . Two studies were considered to be of higher quality owing to robust 
sampling and completeness of evidence (Lee et al., 2011; Saleh Huddin et al., 2019). Given the 
objective to assess variation in reported prevalence, and in considering the limited usefulness of 
criteria designed for human participants, the reliable diagnostic methods identified in all studies and 
the appreciable limitations in surveying wild animals, data from all studies (n=148 estimates) were 
included for further analyses.

Appendix 2—table 1. JBI criteria for assessing bias in meta- analyses of prevalence studies.

Criteria Yes No Unclear N/A

Q1 Was the sample frame appropriate to address the target population?

Q2 Were study participants sampled in an appropriate way?

Q3 Was the sample size adequate?

Q4 Were the study subjects and the setting described in detail?

Q5 Was the data analysis conducted with sufficient coverage of the identified sample?

Q6 Were valid methods used for the identification of the condition?

Q7 Was the condition measured in a standard, reliable way for all participants?

Q8 Was there appropriate statistical analysis?

Q9
Was the response rate adequate, and if not, was the low response rate managed 
appropriately?

Appendix 2—table 2. Example rationale for quality appraisal.

Sample question Example Assessment

Q1 Was the sample frame appropriate to address the target Wild animal Yes

population? Captive animal No

Not specified Uncertain

Q2 Were study participants sampled in an appropriate way? Trapped for study Yes

Routine collection No

Not specified Uncertain

Q9 Was the response rate adequate? Primate data N/A

https://doi.org/10.7554/eLife.88616
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Appendix 3
Meta analysis
Sub- group analysis by region was conducted under a random- effects model. Pooled estimates are then 
back- transformed for interpretation. The Freeman- Tukey double arcsine method is recommended 
in the transformation of prevalence (Munn et al., 2015). However, recent studies have found that 
back- transformation of the Freeman- Turkey method can generate misleading results, owing to the 
requirement for a global sample size for inversion (Schwarzer et al., 2019). A sensitivity analysis 
conducted using the logit transformation and untransformed proportions (Appendix 3—table 1) 
revealed a deficit in the back- transformation of the pooled prevalence estimate for Thailand under 
the Freeman- Tukey transformation, generating a null point estimate. To avoid this error, meta- 
analysis was conducted under the logit transformation with the inverse variance estimator to account 
for individual study weighting.

Appendix 3—table 1. Sensitivity analysis for transformation of P. knowlesi prevalence estimate 
under random- effects model, shown overall and for Thailand subgroup analysis.

Method

Overall (k=148) Subgroup (Thailand, k=21)

P* CI95% P CI95%

Freeman- Turkey double arcsine 0.0943 (0.0641–0.1284) 0.0000 (0.0000–0.0000)

Logit 0.1199 (0.0935–0.1526) 0.0199 (0.0113–0.0346)

Untransformed 0.1415 (0.1101–0.1730) 0.0022 (0.0000–0.0059)

*Estimated proportion

Small study effects, including selection and publication bias, were assessed by examining funnel 
plots and imputing ‘missing’ estimates using the trim- and- fill method (Lin and Chu, 2018). Funnel 
plots were generated using both SE and study size as metrics of variance, as study size has been 
shown to be more accurate for meta- analyses of proportions where raw estimates tend towards 0 or 
1 (Munn et al., 2015). Funnel plots for the disaggregated dataset are shown using SE as the variance 
estimate in Appendix  3—figure 1. Asymmetry is highlighted by the trim- and- fill interpolation 
method, which provides an estimate of missing data and added an additional 54 imputed points to 
the plot.

https://doi.org/10.7554/eLife.88616
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Appendix 3—figure 1. Assessment of small study effects in meta- analysis. (A) Funnel plot of transformed 
prevalence (%) against standard error (SE) for study sites (B) Funnel plot with imputed data to illustrate asymmetry 
using trim- and- fill method.

Meta- analysis was conducted with data disaggregated by survey location and primate species 
(k=148). Forest plot of individual study prevalence, presented with pooled regional prevalence 
estimates and relative sampling effort for the disaggregated data can be visualised in Appendix 3—
figure 2.

https://doi.org/10.7554/eLife.88616
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Appendix 3—figure 2. Forest plot of P. knowlesi prevalence (%) in all species of NHPs in Southeast Asia, 
disaggregated by species and sampling site, including 95% confidence intervals and individual study weighting. 
Random- effects analysis, sub- grouped by region. N=148. Zarith et al. refers to personal correspondence derived 
from the reference Shahar, 2019.

https://doi.org/10.7554/eLife.88616
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Appendix 4
Remote sensing data and covariate assembly
Environmental covariates were extracted from satellite- derived remote- sensing datasets. Elevation 
can be used as a proxy for vector range, with malaria transmission patterns often correspond to 
altitudinal ranges of vector species (Hawkes et al., 2019). Estimates of human population density 
provide a measure of urbanisation, used to examine risks related to human settlement proximity. 
Metrics of deforestation including canopy cover (cumulative loss) and degree of fragmentation, 
which are key determinants of macaque habitat selection (McGarigal et al., 2021) and of mosquito 
vector breeding sites and were derived from Hansen’s Global Forest Watch (Hansen et al., 2013) 
Land use classification maps derived from the Intact Forest Landscape (IFL) (Potapov et al., 2008) 
and Copernicus Global Land Service (100 m) (Buchhorn et al., 2020) were also explored to provide 
more detailed information on specific landscape composition. However, as 77.0% of NHP records 
were collected before the earliest land classification in 2015 (N=114/148), datasets were of limited 
utility and not pursued further.

Appendix 4—figure 1. Recent forest loss in Peninsular Malaysia (first row) and Malaysian Borneo (secoond row), 
shown for the years (A) 2006 (B) 2012 and (C) 2019.

Gridded UN- adjusted human population estimates were assembled at 1 km resolution from 
WorldPop, 2018 for multiple timepoints as a measure of urbanisation, a proxy for risks related to 
human settlement proximity. As minimal variation between timepoints was observed, only 2012 
(median year of primate data collection) was retained.

https://doi.org/10.7554/eLife.88616
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Appendix 4—table 1. Environmental covariates assembled for regression analysis.
Summary values extracted for each covariate within 5, 10, and 20 km circular buffers during 
processing.

Covariate Description Metric

Resolution

Processing SourceSpatial Temporal

Population

UN- adjusted 
gridded posterior 
population model 
estimates at 30 arc- 
seconds resolution

Person 
count/1 
km2 1 km

2000 2012 
2019

Population density reclassified 
as high/low (≤300 persons/km2) 
in QGIS

WorldPop, 2018 
Downloaded as tiff files 
per country in AOI for 
years 2000/2012/2019

Elevation
Mean height above 
sea level m 1 km 2003

Mean and SD of continuous 
elevation per radii. Mean- centred 
and scaled. Categorised into 
discrete classifications: low 
(≤200 m), moderate (200–500 m) or 
high elevation (>500 m)

NASA SRTM 90 m 
Digital Elevation 
Database v4.1 (CGIAR- 
CSI) Jarvis et al., 2008. 
Downloaded as a tiff 
file at 1 km resampled 
resolution

Forest

Percentage 
canopy cover per 
grid cell. Derived 
from tree cover 
(vegetation >5 m) 
and loss (forested 
to non- forested) 0–1 30 m

Annual 
2006–2020

Tree cover classified as ≥50% 
crown density per raster 
cell, generating binary raster 
(1=forest, 0=non- forest). Annual 
cover calculated by subtracting 
cumulative loss per year 2006–
2019. Data records matched to 
reclassified tile by geolocation 
and year. Posterior proportions 
categorised as high (>50%) 
medium (20–50%) or low (≤20%)

Hansen’s Global Forest 
Watch, 30 m resolution 
Landsat imagery Hansen 
et al., 2013. Tiles 
downloaded as tiff files 
for each year 2006–2019 
to cover AOI

Fragmentation 
(perimeter: area 
ratio, PARA)

Perimeter length 
(m) to patch area 
(m2) ratio for 
contiguous forest 
cover McGarigal 
et al., 2021 within 
buffer PARA >0 30 m

Annual 
2006–2020

Extracted from annual reclassified 
tree cover rasters within 5, 10 
and 20 km circular buffers Output 
categorised into quartiles

Hansen’s Global Forest 
Watch Hansen et al., 
2013 (as above)

https://doi.org/10.7554/eLife.88616
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Appendix 4—figure 2. Flowchart of data processing. Details of pseudo- sampling and environmental covariate 
extraction at multiple spatial scales to create final weighted dataset (N=1354).

https://doi.org/10.7554/eLife.88616
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Appendix 4—figure 3. Example covariate resolutions in Peninsular Malaysia. (A) Data point and (B) 20 km buffer 
over population density layer, 1 km resolution. (C) Data point and (D) 20 km buffer over SRTM elevation layer, 1 km 
resolution.

Elevation, population density and forest cover all varied markedly across surveyed sites. Forest 
cover ranges from negligible to near total cover within 5 km, and up to 99.96% and 99.64% within 
10 km and 20 km respectively (Appendix 4—table 2, Appendix 4—figure 4). Within a 20 km buffer, 
46.1% of sites have dense forest cover ≥50% (n=683/1480) and 83.85% have moderate or high forest 
cover (≥20%), with similar distributions over 5 km and 10 km. Example buffers over forest cover data 
can be visualised in Appendix 4—figure 5.

Appendix 4—table 2. Summary of forest cover data (N=1480).

Mean SD Range

Forest cover (5 km) 50.20% ±29.29% 0.00–100.00%

Forest cover (10 km) 49.68% ±27.30% 0.00–99.96%

Forest cover (20 km) 48.29% ±25.35% 0.00–99.64%

Total 1480 (100%)

https://doi.org/10.7554/eLife.88616
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Appendix 4—figure 4. Boxplots showing distribution and interquartile range (IQR) of proportional forest cover 
(0–1) for sampling sites within 5, 10 and 20 km circular buffers across all sites (N=1354).

Appendix 4—figure 5. Examples of buffer zones around macaque sample sites. Shown over forest cover for 2019 
(Hansen et al., 2013).

https://doi.org/10.7554/eLife.88616
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Appendix 5

Spatial uncertainty
Available spatial resolution of the survey sites varied. 14 records (9.5%, n=14/148) could be 
geolocated to a point, using geographic coordinates provided or inferred. The remaining 134 
were geolocated to the lowest administrative polygon according to GADM boundary definitions 
(Appendix 5—table 1).

Appendix 5—table 1. Geo- positioning of available primate survey data.

Resolution/GADM* Records/n Primates/N Min. (km2)† Max. (km2)

Polygon Country/GID0 6 (4.9%) 853 (17.3%) 700 77,650

State/GID1 40 (22.0%) 2699 (32.2%) 130 87,860

District/GID2 88 (61.8%) 2433 (43.6%) 270 15,890

Point GCS ‡ 14 (11.4%) 337 (6.8%) – –

Total 148 (100%) 4931 (100%)

*Administrative boundaries, as classified by GADM (v3.6).
†Minimum and maximum size (km2) of polygons containing P. knowlesi data at each admin level.
‡Geographic Coordinate System.

Crude sensitivity analyses were initially conducted to evaluate use of centroids vs random points 
to approximate macaque survey site. Using GADM classifications, the largest polygon containing 
NHP data was identified at each administrative level. 10 points were randomly generated within each 
polygon in QGIS, with buffers at 5/10/20 km. Proportion of forest cover per buffer was extracted, 
categorised and compared to the forest cover for the centroid (Appendix 5—figure 1).

Appendix 5—figure 1. Sensitivity analysis comparing centroid forest cover to 10 randomly generated points, 
shown per radius for the largest polygon at each GADM level.

Results indicate that at district level (GID2), minimal change in forest cover between the points 
was observable (5 km: 0.68–0.96). However, for both the state of Southern Sumatra (GID1 5 km: 

https://doi.org/10.7554/eLife.88616
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0.26–0.97) and for Myanmar (GID0 5  km: 0.16–0.99) variation was observed, with several points 
classifying as ‘moderate’ (20–50% cover) rather than ‘high’ (>50%) as suggested by the centroid. 
Overall, results show a disparity between covariates obtained at a central point compared with 
random points within larger administrative polygons, indicating inadequate sensitivity of centroids 
as a proxy for local landscape variables where there is spatial uncertainty (Cheng et al., 2021).

Appendix 5—figure 2. Boxplots of standard deviation in repeat sampling of covariates at multiple buffer 
and boundary sizes. Standard deviation of environmental covariates across 10 sampling site realisations within 
5/10/20km buffers, grouped by administrative boundary size or GPS coordinates. Shown for (A) canopy cover (%) 
(B) forest fragmentation (P: A ratio) and (C) human population density (p/km2).

https://doi.org/10.7554/eLife.88616
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Appendix 6
Regression analysis

Appendix 6—table 1. Bivariable analysis for P. knowlesi in NHP against all covariates at all spatial 
scales (N=1354).

Bivariable analysis

Variable Crude OR CI95% p value†

Elevation (m) *

≤5 km 1.18 (1.07–1.28) 0.000562

≤10 km 1.20 (1.09–1.31) 0.0001246

≤20 km 1.22 (1.11–1.33) 7.23E- 05

Human density (p/km2) *

≤5 km 0.84 (0.77–0.92) 4.72E- 05

≤10 km 0.75 (0.68–0.82) 2.70E- 12

≤20 km 0.71 (0.63–0.79) 1.37E- 12

Forest cover (%) *

≤5 km 1.34 (1.21–1.49) 1.86E- 08

≤10 km 1.41 (1.26–1.57) 6.51E- 10

≤20 km 1.47 (1.30–1.67) 8.66E- 10

Fragmentation (PARA) *

≤5 km 0.85 (0.76–0.95) 0.003944

≤10 km 0.69 (0.60–0.80) 1.80E- 07

≤20 km 0.67 (0.57–0.79) 5.14E- 07

PARA2 * Quadratic term

≤5 km 0.69 (0.60–0.80) 0.10 2.06E- 06

≤10 km 0.64 (0.55–0.74) 0.08 2.65E- 08

≤20 km 0.67 (0.57–0.78) 0.03 2.78E- 06

Host species

Other Ref

M. fascicularis 2.37 (1.25–4.60) 0.007971

*Continuous variable, mean- centred and scaled.
†p value derived from Likelihood ratio test (LRT).

https://doi.org/10.7554/eLife.88616
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Appendix 6—figure 1. Spearman’s correlation matrix for all candidate covariates at all spatial scales (n=1354).

https://doi.org/10.7554/eLife.88616
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Appendix 6—figure 2. Spearman’s correlation matrix for covariates at selected spatial scales for final model 
inclusion (n=1354). Percentage forest cover (5 km) and forest fragmentation (PARA, 5 km) show strong negative 
correlation (ρ=–0.75).

Appendix 6—table 2. Multivariable binomial regression analysis of P. knowlesi prevalence in NHP 
with environmental covariates at influential spatial scales, full dataset (N=1354).
AIC = 1229.8.

Multivariable analysis

Variable Radius aOR * CI95% p value †

Human density (p/km2) ‡

≤5km 1.36 (1.16–1.58) 1.082E- 04

≤20 km 0.56 (0.46–0.67) 1.311E- 10

Forest cover (%) ‡

≤5 km 1.38 (1.19–1.60) 2.046E- 05

Fragmentation (PARA) ‡

≤5 km 1.17 (1.02–1.34) 0.0281

Appendix 6—table 2 Continued on next page
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Multivariable analysis

Host species Other Ref

M. fascicularis 2.50 (1.31–4.85) 0.005121

*Odds Ratios adjusted for all other variables in the table (aOR). Radius calculated as distance from sample point.
†p value derived from Likelihood ratio test (LRT).
‡Continuous variable, mean- centred and scaled. OR shown per 1 SD increase.

For observations with high geographic uncertainty, random pseudo- sampling of 10 sites (as 
described in the manuscript and Appendix 4—figure 2) was used to avoid overgeneralisations and 
biases typical when centroids are used as proxy sampling sites35, with data weighted accordingly. 
However, this has the potential to introduce extreme or unrealistic values by generating points in 
landscapes that are outside reasonable estimations of primate study site. Given this, further sensitivity 
analyses were conducted to validate the results against geographic precision of observations. Data 
were first truncated to include only data geolocated to administrative boundaries for relatively small 
area size (see Appendix 6—table 3) and exclude highly variable data from country- level boundaries 
(GID0). Singapore was retained as small administrative unit. GLMM regression models were fit to the 
truncated dataset.

Appendix 6—table 3. Admin boundary sensitivity analysis.
Binomial regression analysis of P. knowlesi prevalence in NHP for datapoints assigned to GPS or 
small sized administrative boundaries (excluding country data) (N=1324).

AIC = 1221.9

Multivariable analysis

aOR CI 95% p value (Wald test)*

Human density [5 km] 1.36 (1.16–1.58) ***

Human density [20 km] 0.56 (0.46–0.67) ***

Forest cover (%) [5 km] 1.38 (1.19–1.60) ***

Fragmentation (PARA) [5 km] 1.18 (1.02–1.34) *

Host group Other
M. fascicularis

REF
2.51 (1.–.31–4.85) **

*Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Administrative boundaries are arbitrary categories and vary considerably in size and landscape 
consistency. To better evaluate environmental uncertainty associated with each observation, 
standard deviation (SD) of the covariate values within each set of 10 environmental realisations was 
calculated (resulting in a single standard deviation value for each covariate at each scale for every 
prevalence data point). Studies for which the uncertainty (SD) of covariates exceeded half of the 
maximum standard deviation were censored to avoid spurious associations derived from unreliable/
extreme values for both forest cover (5 km) and fragmentation (5 km). Regression models were fit 
to the winsorized dataset and compared to results from the full dataset to ensure that associations 
are robust.

Appendix 6—table 4. Distribution of standard deviations across 10 environmental covariates per 
prevalence data point for landscape variables at all spatial scales (N=1354).

Covariate Mean Range Median IQR

Canopy [5 km]* 0.1588 0.0000–0.4237 0.1534 0.1039–0.2277

Canopy [10 km] 0.1319 0.0000–0.4124 0.1177 0.0827–0.1891

Canopy [20 km] 0.1051 0.0000–0.3999 0.0921 0.0541–0.1635

Fragmentation [5 km]* 0.0083 0.0000–0.0375 0.0063 0.0041–0.0094

Fragmentation [10 km] 0.0061 0.0000–0.0455 0.0043 0.0025–0.0071

Appendix 6—table 2 Continued

Appendix 6—table 4 Continued on next page
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Covariate Mean Range Median IQR

Fragmentation [20 km] 0.0041 0.0000–0.0316 0.0027 0.0017–0.0047

*Spatial scales selected in final variables.

Appendix 6—table 5. Tree canopy cover sensitivity analysis.
Binomial regression of P. knowlesi prevalence in NHP for datapoints, with data where SD < ½ the 
maximum for tree canopy within 5 km (N=814).

AIC = 771.1

Multivariable analysis

aOR CI 95% p value (Wald test)*

Human density [5 km] 0.90 (0.67–1.20) -

Human density [20 km] 0.72 (0.50–1.01) .

Forest cover (%) [5 km] 1.70 (1.30–2.24) ***

Fragmentation (PARA) [5 km] 1.38 (1.01–1.88) *

Host group Other
M. fascicularis

REF
2.63 (1.35–5.21) **

*Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘-’ 1.

Appendix 6—table 6. Landscape fragmentation sensitivity analysis.
Binomial regression of P. knowlesi prevalence in NHP for datapoints, with datapoints where SD < ½ 
the maximum for fragmentation within 5 km (N=1134).

AIC = 982.9

Multivariable analysis

aOR CI 95% p value (Wald test)*

Human density [5 km] 0.91 (0.69–1.18) -

Human density [20 km] 0.69 (0.52–0.93) *

Forest cover (%) [5 km] 1.31 (1.08–1.60) **

Fragmentation (PARA) [5 km] 1.18 (0.90–1.54) -

Host group Other
M. fascicularis

REF
2.52 (1.33–4.87) **

*Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Sensitivity analysis has shown that the trends are robust when the data is constrained according to 
small administrative boundaries or by measures of spatial uncertainty in the environmental variables. 
However, given that a proportion of points are randomly generated, questions remain about how 
suitable the resulting sites are for macaque species and consequently whether the associations 
observed are a realistic indication of ecological trends. To address this, points were subset according 
to macaque species habitat suitability maps, derived from Moyes et al., 2016.

Predicted occurrence maps were combined for three species Macaca fascicularis, Macaca 
nemestrina and Macaca leonina to create a joint macaque extent for Southeast Asia. Binary maps 
of predicted habitat extent were then generated using thresholds of moderate (predictions of 0.5 
and above), high (>0.75) and very high predicted probability of occurrence (>0.9) (Moyes et al., 
2016; Appendix 6—figures 3–5). Datapoints from the main analysis were then overlayed with each 
map, and any points (±5 km buffer) that occurred outside of predicted habitat extent for macaque 
species were removed. Regression models were then fit to the reduced datasets to assess whether 
associations observed are plausible according to macaque ecology (Appendix 6—tables 7–9).

Appendix 6—table 4 Continued
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Appendix 6—figure 3. Distribution and habitat range of dominant macaque species (M. fascicularis, M. 
nemestrina, M. leonina) according to predicted probability of occurrence ≥0.5 (on a scale of 0–1.0) per 5x5 km 
pixel.

Appendix 6—table 7. Macaque habitat suitability sensitivity analysis.
Binomial regression of P. knowlesi prevalence in NHP for datapoints, including only datapoints 
with 5 km buffers that intersect with areas with ≥0.5 probability of predicted macaque occurrence 
(N=1331).

AIC = 1197.2

Multivariable analysis

aOR CI 95% p value (Wald test)*

Human density [5 km] 1.32 (1.13–1.54) ***

Human density [20 km] 0.55 (0.45–0.66) ***

Forest cover (%) [5 km] 1.30 (1.12–1.52) ***

Fragmentation (PARA) [5 km] 1.12 (0.97–1.29) -

Host group Other
M. fascicularis

REF
2.48 (1.31–4.82) **

*Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

https://doi.org/10.7554/eLife.88616
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Appendix 6—figure 4. Distribution and habitat range of dominant macaque species (M. fascicularis, M. 
nemestrina, M. leonina) according to predicted probability of occurrence ≥0.75 (on a scale of 0–1.0) per 5x5 km 
pixel.

Appendix 6—table 8. Macaque habitat suitability sensitivity analysis.
Binomial regression of P. knowlesi prevalence in NHP for datapoints, including only datapoints 
with 5 km buffers that intersect with areas with ≥0.75 probability of predicted macaque occurrence 
(N=1177).

AIC = 1115.5

Multivariable analysis

aOR CI 95% p value (Wald test)*

Human density [5 km] 1.34 (1.14–1.58) ***

Human density [20 km] 0.57 (0.47–0.69) ***

Forest cover (%) [5 km] 1.23 (1.04–1.47) *

Fragmentation (PARA) [5 km] 1.04 (0.86–1.24) -

Host group Other
M. fascicularis

REF
2.69 (1.38–5.38) **

*Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

https://doi.org/10.7554/eLife.88616
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Appendix 6—figure 5. Predicted distribution and habitat range of all macaque species (M. fascicularis, M. 
nemestrina, M. leonina) according to predicted probability of occurrence ≥0.9 (on a scale of 0–1.0) per 5x5 km 
pixel.

Appendix 6—table 9. Macaque habitat suitability sensitivity analysis.
Binomial regression of P. knowlesi prevalence in NHP for datapoints, including only datapoints 
with 5 km buffers that intersect with areas with ≥0.9 probability of predicted macaque occurrence 
(N=567).

AIC = 685.2

Multivariable analysis

aOR CI 95% p value (Wald test)*

Human density [5 km] 1.86 (1.49–2.32) ***

Human density [20 km] 0.36 (0.26–0.49) ***

Forest cover (%) [5 km] 1.47 (1.14–1.90) **

Fragmentation (PARA) [5 km] 1.35 (1.02–1.77) *

Host group Other
M. fascicularis

REF
3.13 (1.50–6.75) **

*Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

https://doi.org/10.7554/eLife.88616
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