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Summary 

 

Background 

CD200 is an immunomodulatory protein that is expressed on the cell membrane of 

hair follicle bulge stem cells and basal cell carcinoma (BCC) cancer stem cells, 

consistent with the literature suggesting that human BCC arise from hair follicle bulge 

stem cells. The “driver” mutations in human BCC activate the hedgehog (Hh) 

signalling pathway. Similarly, growth factor pathway activation is common in cancer; 

notably Hh pathway activation is observed in one-quarter of all cancers.  

 

The recent development of targeted cancer therapies, typically small-molecule drugs 

that block growth factor activation, represents a great advance in cancer 

management. Yet targeted therapies, such as smoothened antagonists for the 

treatment of BCC, are beset by primary and secondary resistance, suggesting the 

presence of additional cell survival signalling pathways.  

 

Hypothesis  

Given primary and secondary resistance is seen with smoothened antagonists in BCC, 

I hypothesised that cancer stem cells facilitate this resistance via additional pathway 

activation. 

 

Aims 

1. Determine whether CD200 is a functionally relevant marker for the isolation and 

function of BCC cancer stem cells. 
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2. Use RNA sequencing to elucidate cell signalling pathways specific to the BCC 

cancer stem cell-enriched population. 

 

Methods  

To assess functional relevance of CD200 to CSCs, CD200-transduced HeLa and UW-

BCC1 cells were used in vivo to assess whether CD200 causes cancer immune cell 

evasion. Flow sorting followed by bulk and single-cell RNA sequencing approaches 

were used to define BCC cancer stem cells and signalling pathways in UW-BCC1 and 

primary human BCC samples. Immunohistochemistry was used to validate signalling 

pathway cascades identified by sequencing in primary human BCC.  

 

Results  

CD200 did not alter tumour growth rates but led to a significant reduction in tumour 

necrosis, immune cell infiltrate, and NK cell viability. Hence the CD200+ BCC 

subpopulation aids immune evasion and is therefore a functionally relevant cell 

surface marker to BCC CSCs. 

 

Bulk RNA sequencing comparing flow-sorted CD200+ and CD200- CD45- primary 

human BCC subpopulations revealed upregulation of endothelial cell processes, 

including VEGF signalling. The VEGF pathway differentially expressed genes included 

those predicated to be expressed on both tumour and endothelial cells, confirmed 

by VEGFR2 (KDR) immunohistochemical labelling. Single-cell RNA sequencing showed 

that up to 44% of flow-sorted CD200+ CD45- primary human BCC tumour dissociate 

were endothelial cells. Isolating the BCC keratinocytes, we identified 17 clusters 

based on transcriptomic similarities, which we were able to separate into three 
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functional categories. All BCC keratinocytes expressed Hh pathway-regulated genes. 

The CD200 high expressing “basal” BCC population demonstrated active TGFβ 

signalling, which we validated by immunohistochemical labelling to identify 

phosphorylated SMAD3 nuclear translocation in BCC tissues. This suggests that BCC 

CD200+ CSCs upregulate the TGFβ pathway which may facilitate metastasis and 

treatment resistance.  

 

Conclusions  

CD200 functions to protect BCC cancer stem cells from immune attack. The BCC 

cancer stem cell-enriched CD200+ CD45- tumour population, which included 

endothelial cells, is enriched for VEGF-mediated angiogenesis. This enrichment, 

however, may be emanating from the endothelial cell contamination of the dataset. 

Specifically, BCC cancer stem cells may use TGFβ signalling for survival and intrinsic 

resistance to Hh pathway antagonists.  
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Chapter 1 Introduction 

 

1.1 Hallmarks of Cancer 
 

Cancer is a term given to a group of over 100 diseases that involve the disruption of 

cell homeostasis resulting from uncontrolled proliferation. Unchecked, these cells 

can form a malignant tumour which is capable of metastasising to other body areas 

and ultimately can cause death. For a normal cell to transform, it must accumulate 

several deoxyribonucleic acid (DNA) mutations within genes that regulate cell growth 

and differentiation.  

 

Genome integrity is constantly under attack from endogenous or exogenous DNA-

damaging agents such as reactive oxygen species (ROS), ultraviolet (UV) light, DNA 

replication errors, mutagenic chemicals, and ionizing radiation (Cheong and Nagel 

2022; Steele et al. 2022). The DNA damage that these agents cause is usually repaired 

flawlessly, however, DNA-mutations do occur when these repair mechanisms fail. 

DNA mutations steadily accumulate over the lifetime of an individual and the 

majority of these are known as passenger mutations, which do not alter gene 

function and the fitness of the cell (Bozic et al. 2010). For a tumour to form, a driver 

mutation must occur resulting in deregulation of cell proliferation. Notably DNA-

mutations activate genes that promote cell proliferation (called oncogenes) or block 

the activity of genes that are associated with cell cycle regulation (called tumour 
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suppressors; Chial 2008b; Chial 2008a; Stratton et al. 2009). In the UK from 2017 to 

2019, cancer was responsible for over 25% of all deaths, higher in men (53% of all 

deaths) than women (47% of all deaths) (Cancer Research UK Annual Report 2021). 

In 2019, the World Health Organisation (WHO) estimated that cancer was the first or 

second leading cause of death for individuals <70 years in 112 of 183 countries (Bray 

et al. 2021). Hence Worldwide, cancer is a leading cause of death (Sung et al. 2021). 

 

Although the transformation of normal cells relies on DNA mutations, other factors 

are required in order for the transformation into cancer cells. These processes have 

been elucidated over many decades of research and can be summarised as the 

‘Hallmarks of Cancer’ (Figure 1.1; Hanahan and Weinberg 2000; Hanahan 2022). 

These ancillary processes that underpin the complex nature of cancer growth, as 

summarised below. 
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Figure 1.1 | The hallmarks of cancer. a) the current hallmarks of cancer embodying 

eight hallmarks and two enabling characteristics. These include evasion of growth 

suppressors, immune destruction avoidance, enabling of replicative immortality, 

tumour-promoting inflammation, activation of invasion and metastasis, vasculature 

induction or accession, genome instability and mutation, resisting of cell death, 

deregulation of cellular metabolism, and sustaining of proliferative signalling. b) two 

additional emerging hallmarks (blue) and two additional enabling characteristics 

(red) were introduced in 2011 and 2022 by the same authors. These included 

nonmutational epigenetic reprogramming, polymorphic microbiomes, senescent 

cells, and unlocking phenotypic plasticity. Figure taken from (Hanahan 2022). 
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1.1.1 Sustaining Proliferative Signalling  
 

Cancer cells are defined by sustained chronic proliferation. In normal cells, the cell 

cycle is carefully regulated to maintain tissue homeostasis. As mentioned earlier, 

cancer cells circumvent these controlling signals through driver mutations in one or 

more of the cell-signalling pathways (Vogelstein et al. 2013). Thus, cancer cells 

demonstrate cell autonomous proliferation, either in an autocrine manner (in which 

they produce and respond to their signalling ligands) and/or paracrine manner (in 

which the cancer cells signal to neighbouring normal cells (Hanahan and Weinberg 

2011). There are many examples by which DNA mutations promote cell proliferation, 

such as overexpression through gene amplification, constitutive activation through 

gene mutations, aberrant signalling through protein fusions as a result of 

chromosomal translocation, or impairment of the receptor recycling and degradation 

systems (Bache et al. 2004; Gschwind et al. 2004; Lemmon and Schlessinger 2010; 

Fouad and Aanei 2017).  

 

1.1.2 Evading Growth Suppressors 
 

Despite aberrant growth signalling, tight regulation of the cell cycle controls cell 

division, usually through the actions of tumour suppressor proteins. In order for 

growth of the cancer cells, they must deregulate the cell cycle and disrupt the 

checkpoints (Malumbres and Barbacid 2009). There have been dozens of confirmed 

tumour suppressor genes that do control cell proliferation. Two key suppressors 

encode the retinoblastoma-associated (RB) and Tumour protein P53 (TP53) proteins, 

whose main functions are to monitor DNA damage and initiate cellular responses to 
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various stresses, and regulate the cell cycle checkpoints, respectively, which in turn 

halt cancer growth  (Hanahan and Weinberg 2011). 

 

1.1.3 Tissue Invasion and Metastasis 
 

The successive steps of the metastatic process, the spread to a nearby or distant 

unrelated secondary site, is represented by four additional hallmarks; 1) Motility and 

invasion, 2) modulation of secondary sites or local microenvironments, 3) plasticity, 

and 4) colonisation of secondary tissues (Welch 2006; Nguyen and Massagué 2007; 

Chiang and Massagué 2008; Welch and Hurst 2019). This cascade involves the local 

invasion and dissemination of cells away from the originating tumour, followed by 

intravasation into the haematogenous or lymphatic systems, then extravasation of 

the cells into distant tissues to form secondary tumours that then colonise the site 

(Hanahan and Weinberg 2011; Eslami-S et al. 2020). It has since been shown that 

cells can also exit their residence via coelomic cavities, or along nerve fibres (Lugassy 

et al. 2004; Sleeman et al. 2011; Li et al. 2013; Dart 2017). 

 

1.1.4 Limitless Replicative Potential 
 

Under physiological conditions, cells have a limited capacity for division before they 

become senescent, which is the entry of a cell into an irreversible, but viable, non-

proliferative state (Shay and Wright 2011). Initially, it was observed that normal cells 

would divide between 40 and 60 times before entering programmed cell death 

(Hayflick and Moorhead 1961). Cells that proliferate beyond senescence enter crisis, 

resulting in genomic instability (Fouad and Aanei 2017). 
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1.1.5 Sustained Angiogenesis 
 

Angiogenesis describes the process of new blood vessel formation from existing 

vasculature. Angiogenesis is an important feature of tissue homeostasis as it ensures 

adequate vasculature for the delivery of nutrients to- and removal of metabolic 

wastes and carbon dioxide from cells. Angiogenesis is also an important aspect to 

tumour growth. Studies have shown that in the absence of angiogenesis, tumours 

cannot grow more than 1-2mm3 in diameter without growth arrest and cell death 

(Folkman 1971; Fouad and Aanei 2017). To overcome these problems, tumours 

generate a neovascularisation network that allows the vessels to reach the distant 

tumour cells, ensuring adequate nutrient delivery and waste removal (Majidpoor and 

Mortezaee 2021). Angiogenesis is a vital process during embryogenesis, where 

production of new endothelial cells and their subsequent aggregation into new 

tubules is seen (Breier 2000). Normal vasculature becomes quiescent following early 

development, and is only subsequently switched on in adult tissues during wound 

healing and menstrual cycles (Okada et al. 2014; Raina et al. 2021). 

 

The switching from quiescence to active angiogenesis is known as the ‘angiogenic 

switch’, and is required by tumours to escape dormancy and initiate rapid growth 

(Hanahan and Folkman 1996; Lugano et al. 2020). The most important trigger of the 

angiogenic switch is hypoxia, which is recognised by vascular endothelial cells via 

oxygen-sensing mechanisms which primarily interact with the hypoxia-inducible 

transcription factor (HIF) family that in turn regulate a plethora of genes involved in 

the expression of pro-angiogenic proteins (Fraisl et al. 2009; Yang et al. 2013; Lv et 

al. 2016; Fouad and Aanei 2017; Lugano et al. 2020). Hypoxia is a common feature of 

solid tumours due to their rapid growth (Emami Nejad et al. 2021), and so it is not a 
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surprise that HIF levels are higher in many cancers (Hashimoto and Shibasaki 2015). 

A key and potent regulator of angiogenesis is the vascular endothelial growth factor 

(VEGF) (Ferrara et al. 2003). VEGF is produced by many cells, including tumour cells, 

usually in response to an increase in tumour hypoxia through activation of the HIF 

signalling pathways (Sakurai and Kudo 2011; Kieran et al. 2012). VEGF signalling leads 

to endothelial cell proliferation, survival, migration, differentiation, and mediation of 

vascular permeability (Hicklin and Ellis 2005; Fouad and Aanei 2017). 

 

1.1.6 Evading Apoptosis 
 

Programmed cell death via apoptosis serves as a natural barrier to the development 

of cancer (Sharma et al. 2019). Apoptosis is an additional response to the 

transformation-associated stress that the growing tumour experiences. In cancer, 

the balance between cell death and proliferation is disturbed (Lopez and Tait 2015; 

Fouad and Aanei 2017). There are two pathways that lead to triggering apoptosis: 

the extrinsic and intrinsic pathways. The extrinsic pathway involves interactions 

between cell surface receptors and their ligands. The intrinsic pathway involves a 

shift in the balance between pro- and anti-apoptotic proteins as a result from internal 

stress signals. Mitochondrial outer membrane permeabilization (MOMP) is also seen, 

causing a release of activating molecules from the intermembrane space (Pfeffer and 

Singh 2018). Both pathways involve the activation of protein-cleaving caspases, 

which are vital to successfully completing apoptosis (Zaman et al. 2014). 

 

In cancer, there is inhibition of the intrinsic apoptotic pathways. But also, other 

mechanisms exist that allow the cancer cells to evade apoptosis (Xu et al. 2015; 
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Arbiser et al. 2017; Pfeffer and Singh 2018). A classic example of apoptosis evasion in 

cancer cells can be seen through the upregulation of the anti-apoptotic B-cell 

Lymphoma-2 (BCL-2) family of regulatory proteins (Hockenbery et al. 1990; Fuchs 

and Steller 2011; Martinou and Youle 2011). The BCL-2 protein family includes pro-

apoptotic effector proteins, pro-apoptotic BH3-only proteins, and anti-apoptotic 

BCL-2 proteins (Carneiro and El-Deiry 2020). Anti-apoptotic BCL-2 proteins inhibit the 

pro-apoptotic BCL-2 proteins, BCL-2-associated X protein (BAX) and BCL-2 

homologous antagonist killer (BAK). In cancer, there is a common occurrence of 

increased expression of anti-apoptotic BCL-2 proteins and a decrease of pro-

apoptotic proteins, BAX and BAK. This trend is observed in over fifty percent of all 

cancer types, indicating a prevalent mechanism of evasion from programmed cell 

death, irrespective of cancer type (Lopez and Tait 2015; Campbell and Tait 2018). 

 

1.1.7 Avoiding Immune Destruction 
 

The immune system is able to detect cells expressing aberrant proteins resulting from 

driver mutations in cancer. The mechanism of destruction of cancer cells is known as 

the cancer-immunity cycle. Interestingly, the immune system has also shown to 

constrain and/or promote cancer growth via cancer immunoediting.   

 
1.1.7.1 The Cancer-Immunity Cycle 
 

The immune system has long been known to play a fundamental role in virtually all 

types and stages of cancer (Mellman et al. 2023). The cancer-immunity cycle is a 

process in which the body eliminates cancer cells. Introduced in 2013, the process 

explains a cyclic process which is initiated by cancer cells that release antigens, and 
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concludes with the destruction of the cancer cells (Chen and Mellman 2013). The 

cycle illustrates that T cells do not respond or work on their own, but instead they 

exist in a series of steps that lead to the accumulation of immune-stimulatory factors 

which increase and broaden their responses (Figure 1.2). The cycle is split into 7 

major steps. The first step sees the release of antigens by the cancer cells as a result 

of cell death or destruction. This is followed by the capture of these antigens by 

antigen-presenting cells, dendritic cells (DCs). Here, the DCs process the antigens and 

produce peptides that bind to major histocompatibility complex (MHC) on cytotoxic 

T lymphocytes (CTLs). In step 3, we see the presentation of the MHC molecules by 

DCs to CTLs, which in turn primes and activates them. The activated CTLs then 

migrate toward the tumour via the blood vessels (step 4) and infiltrate the tumour 

bed (step 5). Here, the CTLs bind to cancer cells via their T cell receptor and MHC 

antigens (step 6), which ultimately results in the killing of the cancer cell (Step 7) and 

completion of the cycle. As the cancer cell dies, we see a release of antigens by the 

cell, which restarts the cycle again. 
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Figure 1.2 | The cancer immunity cycle. The generation of immunity to cancer is a 

cyclic process that can be self-propagating, leading to an accumulation of immune-

stimulatory factors that in principle should amplify and broaden T cell responses. The 

cycle is also characterized by inhibitory factors that lead to immune regulatory 

feedback mechanisms, which can halt the development or limit the immunity. This 
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cycle can be divided into seven major steps, starting with the release of antigens from 

the cancer cell and ending with the killing of cancer cells. In step one, cancer cells 

release cancer-specific antigens. In step two, dendritic cells process these antigens 

and produce peptides that bind to major histocompatibility complex (MHC) and 

present them on their surface where CD4+ T cells then recognise them. In step three, 

T cells become primed and activated and migrate towards the cancer cells in step 

four. In step five, the T cells infiltrate the tumour bed and bind to the cancer cells in 

step six via their T cell receptor and MHC antigens. This ultimately leads to the 

destruction of the cancer cells, which then cause further release of cancer-specific 

antigens, restarting the process. Each step is described above and, in the figure, with 

the primary cell types involved and the anatomic location of the activity listed. 

Abbreviations are as follows: APCs, antigen presenting cells; CTLs, cytotoxic T 

lymphocytes. Figure and Taken from Chen and Mellman 2013. 
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1.1.7.2 Cancer Immunoediting 
 

Cancer immunoediting was introduced as a framework to understand how the 

immune system can constrain and/or promote the cancer through three phases: 

Elimination, Equilibrium, and Escape (Gubin and Vesely 2022). From these phases, 

we see the adaptive immune system editing the tumour immunogenicity, and these 

edited tumours are then able to escape the host immune system, resulting in 

unrestrained growth (Figure 1.3). 

 

1.1.7.2.1 Elimination 
 

The elimination phase can be described as a classic immunosurveillance concept, in 

which both adaptive and innate immune cells detect transformed cells that have 

escaped the intrinsic tumour suppression mechanisms and destroy these cells before 

they become clinically visible. Here, we see normal cells transform into cancer cells 

by genotoxic insults and carcinogens and escape the classic tumour suppressor 

mechanisms such as p53. These cells express stress-induced molecules such as 

tumour antigens in the context of MHC class I molecules and NKG2D ligands which 

are recognised by CD8+ T cells and natural killer (NK) cells, respectively. From here, 

we see the activation of an effective cancer cell killing response triggered by the 

action of DCs (Mittal et al. 2014).  

 

1.1.7.2.2 Equilibrium 
 

The equilibrium phase can be described as the molecular mechanisms that result in 

triggering of immune-mediated tumour dormancy. In this phase, cancer cells that 
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were not destroyed during the elimination phase enter a state of dynamic dormancy. 

Here, we see the immune system maintains the tumour mass but does not kill the 

cells. This phase involves only the adaptive immune system, unlike the elimination 

phase which involves both adaptive and innate immunities. Tumours in this phase 

can exist for many years, but given that they are under constant immune pressures, 

develop many cancer cell clones that contain genetic and epigenetic changes. This 

can also lead to the dominance of certain subclones which are able to evade immune 

recognition and subsequently evade the immune destruction, which in turn can lead 

to the development of clinically relevant disease (Rojas-Domínguez et al. 2022). 

 

1.1.7.2.3 Escape 
 

For cancer cells to reach the escape phase, they must first have gained beneficial 

genetic and epigenetic changes which enabled them to avoid immune detection and 

elimination. This phase is also now identified as a hallmark of cancer (Fouad and 

Aanei 2017), and here tumours display unrestricted growth with high likelihoods of 

evading the innate and adaptive immune systems (Dunn et al. 2004). Tumour cells 

can escape the immune system in one of three ways: Loss or downregulation of 

tumour antigens and/or antigen presenting mechanisms combined with the 

reduction of co-stimulatory molecules that results in a reduced immune recognition 

and activation; induction of a tumour microenvironment (TME) that has 

immunosuppressive qualities via upregulation of suppressive immune cells and 

production of anti-inflammatory cytokines; and upregulation of anti-cytotoxic 

mechanisms (Mittal et al. 2014). 
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Figure 1.3 | The cancer immunoediting process. The cancer immunoediting 

hypothesis offers a framework for understanding the intricate and dynamic 

interactions between immune cells and cancer cells within the tumour 

microenvironment (TME). These interactions can either be beneficial in fighting 

against tumours, or supportive of tumour growth, illustrating the dual role of immune 

cells in tumour suppression and promotion. Cancer immunoediting involves three 

main phases: elimination, equilibrium, and escape. During the elimination phase, the 

innate and adaptive immune systems work together to eradicate emerging tumours, 

resulting in tumour destruction and restoration of tissue homeostasis. During the 

equilibrium phase, the immune system fails to completely eradicate the tumour, and 

the cancer enters a phase of dormancy, where the immune system maintains the 

mass but does not eradicate the cancer. During the escape phase, continued immune 

pressures cause several genetic and epigenetic changes in the tumour cells which 

enable their selective advantage and enable them to escape the immune system and 

then develop into clinically relevant disease. Figure and taken from Gubin and Vesely 

2022. 
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1.1.7.2.4 Mechanisms of Immune Escape 
 

There are a number of mechanisms that allow cancer cells to evade the immune 

system. These mechanisms allow evasion of both innate and adaptive immune 

systems, which in turn enables unrestricted tumour development and growth. We 

also see that cancer cells are able to recruit and induce immunosuppressive cytokines 

and cells within the TME, which in turn hinders the anti-cancer immune responses 

(Kim and Cho 2022). 

 

1.1.7.2.4.1 Decreasing of Immune Recognition 
 

The immune system recognises normal and malignant cells through antigen 

presentation, namely MHC-antigen complexes expressed at the surface of these 

cells. One of the most common mechanisms to evade immune recognition is for the 

cancer cell to downregulate the MHC class I antigens. Downregulation of the MHC I 

antigens has been shown to have no detrimental effect on the cells ability to grow, 

survive, or metastasize (Cornel et al. 2020). This downregulation is an independent 

prognostic factor in many cancer types, has been linked to possible immunotherapy 

resistance, and is seen in 40-90% of human cancers (Taylor and Balko 2022). 

According to the ‘missing self’ hypothesis, the loss of MHC I should result in an 

increase in NK cell infiltration and NK-mediated killing of these cells (Cruz-Muñoz et 

al. 2019). However, in reality, there have been no reports of MHC I negative tumours 

displaying an increase in NK cell infiltrate when compared to those with normal MHC 

I expression, implying a utilisation of other immune evasion methods (Taylor and 

Balko 2022). 
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1.1.7.2.4.2 Immune Resistance 
 

In addition to the downregulation of cell surface antigens to avoid immune cell 

detection and killing, tumour cells can additionally develop further resistance 

mechanisms to avoid the cytotoxic effects of the immune cells. Resistance 

mechanisms include the expression of anti-apoptotic molecules such as cellular FLICE 

(FADD-like IL-1β-converting enzyme)-inhibitory protein (c-FLIP) and B cell lymphoma 

extra-large (BCL-XL), as well as the constitutive activation of pro-oncogenic 

transcription factors like STAT3 (Wang et al. 2018). Furthermore, tumour cells can 

resist apoptosis induced by cytotoxic T lymphocytes (CTLs) and NK cells by 

downregulating and mutating death receptors such as TRAIL death receptor 5 (DR5) 

and Fas (Vesely et al. 2011).  

 

1.1.7.2.4.3 Immunosuppressive Tumour Microenvironment 
 

The TME is a complex ecosystem of cells, signalling molecules, and extracellular 

matrix that surrounds a tumour. The interactions between the tumour and the TME 

is essential for tumour survival, growth, and invasion. A key characteristic that the 

tumour needs for immune evasion is the development of an immunosuppressive 

TME. Immunosuppressive TMEs have shown to have a significant impact on patient 

survival and response to treatment (O’Donnell et al. 2018). The balance between a 

pro- or anti-tumour TME is dependent on the presence and activation status of 

immune cells that infiltrate the TME and the cytokines and chemokines that they 

produce (Labani-Motlagh et al. 2020). To create an immunosuppressive TME, the 

tumour must secrete regulatory cytokines, growth factors, and proteases in order to 

alter the phenotype of the infiltrating immune cells. Coupled with an increased 
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recruitment of immunosuppressive regulatory cells at the tumour site, the tumour is 

able to create the immunosuppressive environment that is capable of reducing the 

effectiveness of the anti-tumour immune response (Baghban et al. 2020). A key 

mediator of this activity is transforming growth factor beta (TGFβ), which is able to 

inhibit multiple stages of the anti-tumour immunity. This includes the inhibition of 

DC migration and activation, inhibition of NK and T cell functions, and promotion of 

Th2 and Treg cell development through differentiation of CD4+ T cells (Labani-

Motlagh et al. 2020). Another important mediator of note is VEGF. A critical 

component of tumour angiogenesis, VEGF enables the neovascularisation around the 

tumour, which can act as a barrier and inhibit the trafficking of effector immune cells 

to the tumour (Geindreau et al. 2021). VEGF has also shown to inhibit the function of 

T cells and DCs, reduce the cytotoxic effects of NK cells, and prevention of sufficient 

antigen uptake and presentation (Ribatti 2022). Likewise, a number of inflammatory 

mediators residing within the TME have shown to contribute to the development of 

cancer and metastasis. These mediators include tumour necrosis factor alpha (TNFα), 

IL-6, IL-10, and IL-12, to name a few. Additionally, these mediators also contribute to 

immune evasion through key immune cell suppression, such as macrophages and T 

cells. Subsequently, these have become attractive targets for cancer treatments 

(Morris et al. 2022).  

 

1.1.7.2.4.4 Negative Co-Stimulatory Pathways 
 

To avoid an overactive immune response, immune cell activation is tightly regulated 

by the balance between co-stimulatory and co-inhibitory signals. The activation of an 

immune cell requires this balance to tip in the favour of the stimulatory signals. In 

cancer however, we see this balance is often favoured towards inhibitory signals 
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which in turn results in the downregulation and subsequent inhibition of the anti-

tumour response. Regulation of the immune response is mediated through immune 

cells such as macrophages and T cells, regulatory cytokines such as TGFβ, and 

immune checkpoints such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) 

and programmed death protein 1 (PD-1; He and Xu 2020). Under physiological 

conditions, we see these mechanisms successfully regulate and maintain 

homeostasis, but in cancer, we see these mechanisms are enhanced which allow the 

cancer to subsequently evade the immune system (Marin-Acevedo et al. 2018). 

Immune checkpoints are known to be negative co-stimulatory pathways and are 

activated by their respective ligand-receptor interaction. This causes T cell activation 

and function at numerous points throughout the immune response. Several immune 

checkpoints have been studied and identified to have a role in cancer development. 

The most notable, and most studied, are CTLA-4 and PD-1. Both have involvement at 

different stages of the immune response. CTLA-4 ligand-receptor binding occurs 

during the T cell priming stage and results in limited T cell activation. PD-1 ligand-

receptor binding occurs during the effector phase and results in regulating the 

activity of activated T cells (Dyck and Mills 2017).  

 

1.3 Tumour Initiating Cells 
 

Tumour initiating cells (TICs), also known as cancer stem cells (CSCs), are cancer cells 

that harbour the ability to self-renew and initiate tumour growth. TICs are believed 

to recapitulate the original tumour through stem cell processes of self-renewal and 

differentiation (Qureshi-Baig et al. 2017). TICs form a small, distinct population within 

the tumour and have been shown to be the cause for relapse and metastases 
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(Suraneni and Badeaux 2013). As such, TICs have long since been a hot topic of study 

and therapeutic intervention. 

 

1.3.1 Tumour Propagation Models 
 

The method of tumour propagation has long been debated. Within different tumour 

types, we see functional heterogeneity of certain cells. This functional heterogeneity 

exists in various ways, such as differences in proliferative capacity, metastatic 

potential, and response to therapy. In breast cancer, certain subpopulations of cells 

may exhibit enhanced migratory abilities, facilitating metastasis to distant organs 

(Kong et al. 2020). Similarly in glioblastoma, subsets of cells with stem-like properties 

can resist conventional treatments and drive tumour recurrence (Mattei et al. 2021). 

We also see that tumours are formed from cells that display various proliferative and 

differentiation potentials. This heterogeneity has led to the development of two 

propagation models to account for this: the cancer stem cell model and the stochastic 

model. 

 

1.3.1.1 The Cancer Stem Cell Model 
 

The cancer stem cell model, also known as the hierarchical model, formulates that 

tumours are hierarchically organised, with the tumorigenic cancer stem cell residing 

at the top which can self-renew indefinitely and differentiate to form the tumour 

progeny (Walcher et al. 2020; Figure 1.4a). These progenies are non-tumorigenic but 

are essential to the contribution of the tumour growth. This model infers that only 

certain cancer stem cell subpopulations can drive the cancer progression, and so 

implies that specific characteristics can be identified and therapeutically targeted, 
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which eliminates the cancer stem cells and in turn prevents further generation of the 

tumour bulk, subsequently long-term killing the cancer (Ayob and Ramasamy 2018). 

This therapeutic intervention can further be supplemented with therapies that can 

target the rest of the tumour bulk, such as chemotherapy to target the proliferating 

cells.  

 

1.3.1.2 Stochastic Model 
 

The Stochastic model, also known as the clonal evolution model, works on the theory 

that any cell within the tumour mass has the potential to re-propagate the tumour. 

Here, the model describes that all cells within a tumour have the ability to gain 

genetic and epigenetic mutations that enable cancer stem cell properties of self-

renewal and differentiation (Rich 2016; Mondal et al. 2018; Figure 1.4b). These 

mutations could further accumulate in cells and enhance the cells fitness and 

resistance, which allows greater cell survival and cell selection to drive tumour 

progression and heterogeneity (Melzer et al. 2017). 

 

1.3.1.3 Alternative Models 
 
In 2010, the Stemness Phenotype Model (SPM) was also proposed, which introduced 

a non-hierarchical model in which there are no specific CSC populations within 

tumours (Kaushik et al. 2021). Instead, the model explains that cancer cells are highly 

plastic in stemness terms, and CSCs and non-CSCs can interconvert into each other 

depending on the microenvironment. The model predicts that there exists cancer cell 

populations ranging from pure CSC phenotype to a non-CSC phenotype, and survival 

of a single cell can originate a new tumour. In 2014, there was a study that stated the 
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gap between the CSC and stochastic models could be bridged with an alternative 

model. This model experimentally and mathematically showed the existence of both 

distinctive CSC subpopulations and the stochastic transitions of non-CSCs to CSCs 

(Wang et al. 2014).  
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Figure 1.4 | Tumour propagation models. a) The hierarchical (cancer stem cell) 

model in which only a subset of cells, the putative cancer stem cells, or tumour-

initiating cells (TICs), have the ability to proliferate indefinitely and can recapitulate 

the entire tumour, while all others are doomed to differentiation into transit-

amplifying cells (TACs) and eventual terminal differentiation (TD) and then cell death. 

b) Stochastic model, in which each tumour cell has the same ability, with low 

probability, to form tumours. Clonogenicity is represented on the bottom of each 

panel where, in a), the red box means that the TICs have high probability and all 

others have none, and in b), that all cells have equal, low clonogenic potential. Figure 

and legend taken and adapted from Scott et al. 2019. 
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1.4 Carcinoma 
 

Epithelial tissues, the environmental barriers of our bodies, are constantly exposed 

to cancer-causing agents. As such, carcinomas, the cancer of epithelial tissues, are 

the most common form of cancer accounting for 85% of all cancers and 78% of all 

cancer associated deaths (CR-UK database analysis; Ye and Weinberg 2015; Sung et 

al. 2021). Carcinomas frequently arise from a pre-cancerous transformation, known 

as intraepithelial neoplasia or field cancerisation (FC), within which multiple 

carcinomas can develop. The term FC describes the spread of premalignant changes 

across a tissue or organ that can lead to the development of multiple, independent 

tumours or areas of dysplasia within the same region (Willenbrink et al. 2020). 

 

1.5 Skin Biology 
 

The skin is the largest organ of the body and performs a plethora of functions. One 

of its main functions is to provide a barrier to the constant environmental insults that 

we encounter. The skin is formed of two layers, the outermost epidermis, and the 

innermost dermis (Figure 1.5). Both layers play an important part in skin homeostasis 

and differ in their structures and functions. In some areas of the body, we see 

differing skin thicknesses depending on the body location. We see a thicker layer of 

skin on hairless skin of the palms of hands and soles of feet as there is an additional 

epidermal layer known as the stratum lucidum, which is a layer of dead skin cells 

(Yousef et al. 2022). To mitigate against the environment, the epidermis undergoes 

a process of terminal differentiation leading to a water-tight barrier. The constant 

turnover of epidermal keratinocytes prevents infection and the acquisition of lasting 



  

 
 
26 

DNA mutations. At the basal layer, just above the interface of the epidermis and 

dermis, reside long-lasting keratinocyte stem cells (KSCs). KSCs undergo self-renewal, 

and through asymmetric division, give rise to progeny that are destined for terminal 

differentiation. Also interspersed in the basal layer are melanocytes, which provide 

pigmentation to the keratinocytes to protect against the DNA-damaging effects of 

ultraviolet light (Yousef et al. 2022). 

 

 

 
Figure 1.5 | Diagram of the layers and components of human skin. The skin is 

separated into two main sections, the outermost epidermis, and innermost dermis. 

Below the dermis is the subcutaneous tissue layer. Within the epidermis we see the 

hair follicle that protrudes into the dermis. In the dermis we see the erector pili muscle 

that attaches to the hair follicle, and the sweat glands that protrude through the 

epidermis and to the surface of the skin. Figure has been adapted from Cobb and 

Watson 2018.  
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1.6 Hair follicle 
 

The functional anatomy of the mature hair follicle (HF) in anagen phase has been 

extensively studied and can be divided into two regions longitudinally. The first 

section is the upper HF, which is permanent and does not visibly cycle. This region is 

composed of the infundibulum which is the opening of the hair canal to the skin and 

isthmus. The second section, the lower HF, undergoes continuous remodelling during 

every round of the hair cycle and represents the hair factory, the anagen bulb (Figure 

1.6a; Schneider et al. 2009).  

 

At the proximal end of the infundibulum, we see the joining to the isthmus region of 

the outer root sheath (ORS). This is also the site at which the erector pili muscle 

attaches. Within the isthmus, we see a population of melanocytic and epithelial HF 

stem cells that is known as the bulge region (Figure 1.6b). This region marks the end 

of the permanent, non-cycling region of the hair follicle. Separating the bulge from 

the lowest region of the HF, the anagen bulb, is the suprabulbular HF epithelial 

region. Within the anagen bulb, we see a matrix of keratinocytes and a HF pigmentary 

unit (de Groot et al. 2021). The activation of these matrix keratinocytes causes them 

to rapidly proliferate, and their number determines the size and diameter of the bulb 

and hair shaft, respectively. Upon termination of matrix keratinocyte proliferation, 

differentiation occurs which leads to the generation of the various cell lineages of the 

hair shaft and inner root sheath (IRS). The ORS however, is derived from a separate 

population of progenitor cells (Hsu et al. 2011; Figure 1.6c, d). 
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As we can see from Figure 1.6d, the bulb region contains around 8 concentric layers, 

each with a different population that contains a unique keratin pattern. From the 

outside to the inside, we have the connective tissue sheath (CTS), ORS, the four layers 

that consist of the IRS, companion layer, Henle’s layer, Huxley’s layer, and the IRS 

cuticle, then finally the hair cuticle, cortex, and medulla (that make up the hair shaft). 

The ORS contains epithelial HF stem cells that are located in the bulge region. 

Numerous studies have been able to isolate and study the various populations within 

the HF through cell surface protein expression. These HF stem cells have been 

postulated to be the cells of origin for terminally differentiated cells in adult tissues 

and are identified through expression of CD200 and KRT15 (Rompolas and Greco 

2014). 
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Figure 1.6 | Histomorphology of the hair follicle. a) Sagittal section through a human 

scalp hair follicle (anagen VI) showing the permanent (infundibulum, isthmus) and 

anagen associated (suprabulbar and bulbar area) components of the hair follicle. b) 

High magnification image of the isthmus. The dashed square indicates the 

approximate location of the bulge.  c) High magnification image of the bulb.  d) 

Schematic drawing illustrating the concentric layers of the outer root sheath (ORS), 

inner root sheath (IRS) and shaft in the bulb. (BM: basal membrane; APM: arrector 

pili muscle; CTS: connective tissue sheath; DP: dermal papilla; M: matrix; HS: hair 

shaft, IRS: inner root sheath; ORS: outer root sheath; SG: sebaceous gland). Figure 

adapted from Schneider et al. 2009. 
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1.7 Cutaneous Basal Cell Carcinoma 
 

Human cutaneous Basal Cell Carcinoma (BCC) together with cutaneous Squamous 

Cell Carcinoma (cSCC) arise from skin keratinocytes, collectively referred to as 

keratinocyte carcinoma (previously called non-melanoma skin cancers); combined, 

they are the most diagnosed cancer in the world. Previously a disease of the elderly, 

the incidence of both keratinocyte carcinomas has continued to increase annually 

over the last three decades, and now increasingly affects younger adults. Early 

detection and surgical excision are often curative, as is common practice in the U.K., 

therefore the metastatic rate remains low with approximately 250 deaths per 

annum. Once surgery is completed, patients are followed up 4-6 monthly for up to 5-

years. 

 

1.7.1 Incidence 
 

BCC is the most common skin cancer, with previous rates from roughly 3.6 million 

new cases diagnosed and 3000 deaths annually in the United States (Rogers et al. 

2015; Cameron et al. 2019a; Lashway et al. 2023) to an estimated 5.4 million new 

cases (Naik and Desai 2022). 

 

The metastatic and mortality rates for non-melanoma skin cancers (NMSCs) are very 

low, with the incidence of metastases in BCC and SCC ranging between 0.00281-

0.05% and 0.5-16%, respectively, and the age-adjusted mortality rate estimated to 

be 0.12/100,000 person years for BCC and 0.3/100,000 person years for SCC (Rogers 

et al. 2015; Apalla et al. 2017). Despite the relatively low malignant potential of both 
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NMSCs, they are however associated with remarkable morbidity and a substantial 

cost to the healthcare system (Hay et al. 2014; Perera et al. 2015). 

 

These numbers are, in reality, likely to be substantially different due to the fact that 

NMSCs are often not reported in global total cancer cases. The availability and quality 

of epidemiological data for BCC in the U.K has historically been of poor quality due 

to the high volume and multiplicity of cases. Coupled with the fact that most BCCs 

are under-diagnosed and usually treated in primary care facilities, this has led to the 

data frequently being omitted from national cancer registries and statistics (Venables 

et al. 2019).  

 

1.7.2 Clinical Presentation 
 

BCC is derived from epidermal cells at basal layer of either interfollicular or hair 

follicles. BCC has been classified by the World Health Organization (WHO) into a 

number of subtypes. The most common subtypes seen in the clinic are nodular, 

superficial, and morpheaform BCCs. The less common BCC subtypes are 

infundibulocystic, fibroepithelial, infiltrative, micronodular, and basosquamous BCCs 

(Reiter et al. 2021). Table 1.1 shows the clinical and histological features of the 

various BCC subtypes. In addition to these subtypes, the WHO have also classified 

BCCs into risk categories, which is the risk for incomplete resection of free margin, 

recurrence, and locally aggressive capability. These risk categories can be beneficial 

for therapeutic intervention. High risk BCC subtypes are morpheaform, infiltrative, 

micronodular, and basosquamous BCCs, whilst the low risk BCCs are nodular and 

superficial (Puig and Berrocal 2015; Castrisos et al. 2021; Ciążyńska et al. 2021). An 
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additional aggressive histological BCC feature was also added by Cameron and 

colleagues in 2019, which describes perineural invasion that is found in both BCC and 

SCC but is predominantly observed in SCC and accounts for 2-6% of all NMSCs 

(Cameron et al. 2019). 
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Nodular is the most common BCC subtype in both males and females, followed by 

superficial and infiltrative BCC subtypes (Castrisos et al. 2021; Ciążyńska et al. 2021). 

We see that the superficial BCC is the most common subtype founder in younger 

patients (67.7 +/- 11.5 years VS other subtypes: 69.3 +/- 12.7 years, p<0.01), has a 

female predominance, and is most commonly found on the trunk. Other BCC 

subtypes appear to have a predominance to arise in the head and neck region, but 

show no preferences between age and sex (Ciążyńska et al. 2021). This confirmed 

that variable causal relationship between sun exposure and superficial BCC subtype 

is related to intermittent intense UV radiation in earlier ages, whereas other subtypes 

align with chronic consistent UV exposure. 

 

There is also a link between anatomical site and BCC subtype. Most BCCs occur on 

the face and account for 81% of high risk BCCs and 57% of low risk BCCs. The second 

most common anatomical region is the trunk, accounting for 10% of high risk BCCs 

and 26% low risk BCCs (Ciążyńska et al. 2021). The face is favored by the nodular and 

infiltrative BCC subtypes, whilst the trunk is favored by the superficial BCC subtypes 

(Castrisos et al. 2021). In the facial region, BCC occurs most commonly on the nose 

(29.7%), followed by eye (16.2%), cheek (15.8%), temple (12.0%), forehead (11.4%), 

earlobe (9.1%), lips (3.2%), chin (1.4%), nasolabial folds (0.62%), and the jawline 

(0.62%).  

 

In 2021, Omodaka and colleagues performed a retrospective study on UV-related 

skin cancer distribution on the face (Omodaka et al. 2021). The authors collected 

facial BCC samples from 292 Japanese patients (139 men, 153 women, mean age = 

75 years), SCC samples from 118 patients (56 men, 62 women, mean age = 78), and 
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melanoma samples from 51 patients (23 men, 28 women, mean age = 78) from 2000 

to 2017 and found that although these skin cancers are UV-induced and are 

distributed on the median face, which is a UV sensitive location, their dominant areas 

were different. BCC arose on the central area of the median face, whilst SCC and 

melanoma showed occupation on the external and internal areas of the median face, 

respectively (Figure 1.7). However, this was a single centre study reporting on a 

relatively small population of patients but implies the disease-specific aetiological 

factors apart from UV exposure. 
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Figure 1.7 | Distribution of BCC on the face surface. a) The distribution of lesional 

centers is shown. The six areas of the face surface are arbitrarily divided by straight 

lines between key anatomical structures. b) The density of each lesion is shown. The 

number of lesions per pixel is shown on a colour scale representing 10 levels. The 

lesional areas beyond the midline were not consolidated onto one side to avoid the 

artefact of aggregation of lesion-positive pixels near the midline. c) The three patterns 

in b) are superimposed including those from SCC and melanoma. Pixels with a low 

number of lesions/pixel [i.e. the four lightest hues in b)] are not colored. Figure and 

legend adapted from Omodaka et al. 2021. 
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1.7.3 Aetiology  
 

1.7.3.1 Age 
 

The ratio of BCC to SCC is greater in younger individuals 18-39 but decreases with 

age, with the ratio being 2.92 in individuals 40-64 and 1.33 in individuals 65> 

(Lukowiak et al. 2020). As patients get older, the odds of a NMSC becoming a BCC is 

decreased in both sexes. Nonetheless, the mean onset of a BCC is in patients aged 

70.1 years, based on a study of 11,548 patients ranging from 1999-2019 (Ciążyńska 

et al. 2021). The hypothesised reason for this is that a reduced ability to repair UV-

induced DNA damage is seen with age (Verkouteren et al. 2017). 

 

1.7.3.2 Previous History of BCC 
 

Having a history of previous BCCs, unsurprisingly, is a strong risk factor for the 

development of further BCCs, with a 10-times greater risk than normal populations 

(Fania et al. 2020). Studies have shown that patients with BCC have a 30-50% 

increased risk of developing an additional BCC within 5 years (Marcil and Stern 2000). 

Additionally, a strong risk factor is seen in patients who have a family history in skin 

cancers, with an estimated odds ratio of 2.2 (Vitasa et al. 1990). 

 

1.7.3.3 Genetic Factors 
 

1.7.3.3.1 Inheritance 
 

A predisposition to the development of keratinocyte carcinomas has been seen by 

the inheritance of genes. As aforementioned, studies have shown that patients who 
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have a positive family history of skin cancers are at an increased risk of BCC 

development. A more recent study showed that a positive family history of skin 

cancer was seen in 17% of BCC patients (Choquet et al. 2020). 

 

1.7.3.3.2 Genetic Predisposition 
 

With the advent of genome wide association studies (GWAS), numerous genetic 

determinants of BCC have been identified (Choquet et al. 2020). A number of single 

nucleotide polymorphisms (SNPs) have been shown to contribute to allelic variations 

which subsequently leads to the tendency of BCC tumorigenesis. A table of BCC-

associated SNPs that have been identified in up to 11% of inherited BCCs can be 

found in (Chahal et al. 2016). 

 

1.7.3.3.3 Genetic Syndromes 
 

There are 19 genetic syndromes that have been linked to an increased susceptibility 

of BCC (Table 1.2; Kilgour et al. 2021). Studies on Gorlins syndrome in the 1990’s 

paved the way to the understanding of BCC pathogenesis. The hallmark of Gorlins 

syndrome is the presence of multiple BCCs, with the median number being 8, but 

some patients can have >1000 (Jaju et al. 2016). Investigative studies have found that 

patients inherit a defective PTCH1 allele, which leads to the overactivation of the 

hedgehog signalling pathway (Hahn et al. 1996; Johnson et al. 1996). Basex-Dupre-

Christol syndrome, a rare X-linked recessive genetic syndrome, includes BCC as one 

of the defining features during diagnosis of this syndrome, which sees the BCC 

development in 50% of cases before the age of 20 (AlSabbagh and Baqi 2018). 

Likewise, Rombo syndrome, a rare autosomal dominant disorder, also sees patients 
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develop multiple BCCs (Van Steensel et al. 2001). Xeroderma Pigmentosa, an 

autosomal recessive disorder, renders patients with UV hypersensitivity and 

impaired DNA repair mechanisms and an extremely high risk of skin cancer 

development. Some studies have shown that patients have up to a thousand times 

higher risk of BCC development (Cameron et al. 2019; Choquet et al. 2020; Brambullo 

et al. 2022). 
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Table 1.2 | Genetic syndromes linked to increased susceptibility to BCC. Table 

shows the genetic syndromes and the genes and their associated functions that 

burden the individual with increased susceptibility to BCC development. 
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1.7.3.4 Ultraviolet Radiation 
 

The most important risk factor for the development of BCC is cumulative ultraviolet 

(UV) radiation from the sun and/or tanning beds. BCC is the most mutated cancer, 

with a tumour mutational burden of up to 65 mutations per megabase (Sharpe et al. 

2015). A direct association between BCC incidence and UV radiation has been 

reported, where it has been described as a primary risk factor for the occurrence and 

development of BCC (Olsen et al. 2015). DNA does not absorb UVA, but instead 

causes its damaging effects through the production of reactive oxygen species (ROS) 

and ROS-dependent DNA damage (Gloster and Brodland 1996). UVB is strongly 

absorbed by aromatic rings within DNA bases and the adjacent pyrimidines are 

subsequently susceptible to dimerization. This in turn leads to the formation of 

cyclobutene pyrimidine dimers, and if improperly repaired, can cause C>T, and CC>TT 

base transitions (Rodust et al. 2009). These mutations accumulate at the dipyrimidine 

sites and are known as a UVB signature mutations (Nishigori 2006). Increased 

incidence in BCC is usually seen within the aging population, where cumulative long-

term exposure is seen. However, studies have also shown that intense intermittent 

exposure to UV can also increase the risk of BCC (Kricker et al. 1995; Rosso et al. 1996; 

Teng et al. 2021). Population-based studies have shown that skin cancer rates, 

including BCC, are higher in areas that are in close proximity to the equator, where 

higher levels of UV are seen (Chuang et al. 1990; Reizner et al. 1993). Furthermore, 

with the gaining popularity of indoor tanning and beauty products such as tanning 

lamps and nail polish dryers amongst the younger population, we also have seen an 

increase in skin cancer incidence (Green et al. 2007; Schulman and Fisher 2009; 

Zhivagui et al. 2023). All studies show that UV radiation, whether obtained from the 

sun or from an artificial source, plays a massive part in the incidence of BCC. 



  

 
 

43 

1.7.3.5 Medications 
 

1.7.3.5.1 Photosensitizing Medications 
 

Photosensitizing medications (PSMs) are frequently prescribed to the elderly to treat 

chronic conditions, who are also simultaneously at a higher risk of BCC development 

(George et al. 2021). Studies have shown that drug metabolites from PSMs may react 

with UV radiation and result in ROS production. Multiple meta-analyses have shown 

a slight increase in the risk of BCC, for example, the risk factor of using some diuretics 

and development of BCC is 1.17 (Bendinelli et al. 2019). Similarly, studies on beta-

blockers have shown a marginal increase BCC risk of 1.09 (Tang et al. 2018). 

Interestingly, studies on non-steroidal anti-inflammatory drugs (NSAIDs) suggest a 

chemo preventative role, with a BCC risk of 0.94 (Ma et al. 2020b). 

 

1.7.3.5.2 Immunosuppressive Agents 
 

Patients who have had an organ transplant receive immunosuppressive medication 

to prevent organ rejection, such as Tacrolimus which is used to inhibit calcineurin 

activity and subsequently suppresses the activity of T cells and organ rejection in 

patients who have received transplanted organs such as kidney, heart, liver, and lung 

(First 2004). There have been numerous studies linking organ transplant recipients 

(OTRs) to an increased risk of skin cancer. When compared to the general population, 

OTRs are at an overall 2-fold risk of cancer incidence. When looking specifically at 

NMSCs, SCC has a risk of 65- to 250-fold increased risk, and BCC has a 10- to 16-fold 

increased risk (Collett et al. 2010; Mittal and Colegio 2017). 
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1.7.3.6 Ionizing Radiation 
 

There have been a plethora of studies evaluating the mortality and incidence of 

cancers in occupationally exposed people that work in the healthcare and nuclear 

industries (Gilbert 2009). These workers are at risk of exposure to ionising radiation, 

such as those who work with X-rays or those who work with nuclear material. One 

such study found the risk of BCC and SCC in patients who had a history of 

radiotherapy (non-diagnostic therapeutic ionizing radiation) was 5- to 6-fold (Lichter 

et al. 2000). There is an estimated 7 million healthcare workers that are 

professionally exposed to ionising radiation worldwide (Russo et al. 2012). 

Cardiologists are believed to be at an estimated 3 times higher exposure rate than 

conventional radiologists as they work closer to the X-ray source. A study on 27,011 

radiologists and technicians in China (working with X-rays) revealed a 4.1 relative risk 

of them developing all cancers compared to physicians working at the same 

hospitals, whereas those working for more than 15 years showed the highest risks of 

developing skin cancer (Wang et al. 1990; Wang et al. 2002). A more recent study on 

65,719 Caucasian radiology staff also confirmed an increased risk of BCC 

development if the dosages were received before 1960 or before the age of 30 (Lee 

et al. 2015). Several studies have assessed cancer incidences in nuclear-related 

workers. One study looking at skin cancer incidence in workers from a nuclear power 

plant in Russia found a significant increase in NMSC incidence in workers who were 

exposed to ionising radiation at cumulative doses > 2.0 Sv (Sievert; a unit 

representing the stochastic health risk of ionising radiation) when compared to a 

reference dose of 0 – 0.5 Sv (Azizova et al. 2018). Furthermore, risk of BCC was 

significantly associated with cumulative external gamma dose with ERR/Sv 0.49 

(excess relative risk per Sv). 
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1.7.3.7 Other Occupational Risks 
 

Certain occupations also come with an increased risk in skin cancer. Those who work 

in the outdoors, such as gardeners and lifeguards are certainly at risk of developing 

skin cancers due to their chronic exposure to UV radiation. However, those working 

in occupations such as tanning salons, nuclear, healthcare, and ground works are also 

at risk. Tanning salon workers are believed to be at an increased risk of developing 

skin cancers due to their working with, and use of sun beds (Dessinioti and Stratigos 

2022). In healthcare, those who work with radiating sources, such as X-rays, are also 

at an increase of developing skin cancer. Interestingly, an increase in skin cancer risk 

has been seen in welders. It is estimated that there are 11 million people working as 

welders worldwide. These welders are exposed to the full spectrum of UV radiation 

whilst working, and often experience burns or cutaneous erythema (Falcone and 

Zeidler-Erdely 2019). The most recent study demonstrated a significantly increased 

risk of BCC in the head and neck of these workers when compared to the control 

cohort (Heltoft et al. 2017). 

 

1.7.3.8 Arsenic Exposure 
 

Arsenic is a well-known carcinogen and has been attributed to multiple cancers, 

including skin cancer (Martinez et al. 2011). Arsenic can enter the body via ingestion, 

respiration, or via the skin (Huang et al. 2019). The most common source of arsenic 

exposure is through contaminated water. Other sources of exposure include 

ingestion of food that has been grown with contaminated water, smoking cigarettes, 

industrial manufacturing and wood preservation, and cosmetics (Lu 1990; Lim et al. 

2018; Huang et al. 2019). The recommended threshold levels of arsenic 
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concentration in drinking water are ≤10 μg/L, but chronic exposure exceeding this 

limit has been reported worldwide. Most recent figures show that there are more 

than 100 million people that are exposed to concentrations of > 50 µg/L (Moon et al. 

2012). Arsenic produces profound effects in multiple organs, but the skin is 

considered to be the most susceptible organ and is usually the first manifestation of 

toxicity (Rahman et al. 2009; Mayer and Goldman 2016). Studies have indicated the 

role of arsenic, in certain areas, to the formation of NMSCs. One such study of a 

Bangladesh population observed a dose-response relationship between arsenic and 

skin toxicity and following up with the same patients 6 years later revealed 1.6% of 

those patients developed BCC (11.2/700 patients). This translated to approximately 

266 new cases/100,000 patient years in this population (Kibriya et al. 2022). 

 

1.7.3.9 Skin Type and Gender 
 

The BCC incidence rate was greater in men (360/100,000) than women 

(292.9/100,000) in a study based in Minnesota ranging from 2000-2010 (Muzic et al. 

2017). In the UK, the incidence rate of BCC was higher in males than females from 

2013-2015 (352/100,00 vs 219/100,000, respectively; Venables et al. 2019). 

In younger individuals (<40), the incidence of BCC is seen more in women than men 

possibly due to the sun-seeking behaviour and a higher use of indoor tanning beds 

(Gangan 2022). The incidence rate of NMSCs is low in Asians, with a BCC incidence 

rate ranging from 1.5-15.57/100,000 people (Razi et al. 2015; Al-Qarqaz et al. 2018). 

The hypothesised reason for this is due to increased melanin in these individuals 

which asserts its protective function against UV damage. Interestingly, the incidence 

of SCC is higher than BCC in darker skinned populations (Talvalkar 1970; Fleming et 

al. 1975). Studies have also shown that individuals with light skin, light coloured eyes, 
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and red hair are at an increased risk of BCC (Khalesi et al. 2013; Harken and Fazio 

2022; Lashway et al. 2023). 

 

1.7.3.10 Pre-Existing Skin Disease 
 

There have been many studies investigating the effect of inflammatory conditions on 

the incidence of skin cancers. Chronic inflammation is responsible for the 

development and progression of approximately 20% of all cancers (Tang and Wang 

2016). As aforementioned, UV radiation can cause DNA damage and ROS generation, 

which can lead to an inflammatory response in the skin. This can also lead to the 

various cell populations of the skin to secrete pro-inflammatory cytokines to further 

add to insult (Sollberger et al. 2015). There are two types of inflammation stages, 

chronic and acute, and studies have linked chronic inflammation to tumorigenesis in 

the skin (Mantovani et al. 2008; Neagu et al. 2015; Neagu et al. 2019). A more recent 

study has reviewed the risk of BCC development in a range of chronic inflammatory 

conditions. The authors found that multiple studies confirmed that patients with 

atopic dermatitis, scleroderma have a significantly increased risk of BCC development 

whilst patients with psoriasis, hidradenitis suppurativa, prurigo nodularis had a 

nonsignificant increased risk (Ju et al. 2023). 

 

1.7.3.11 Vitamin D 
 

Vitamin D is a lipophilic vitamin produced by UV radiation from the sun and is also 

found in certain foods. It is known to have a role in a plethora of beneficial functions 

such as bone health, anti-proliferation, anti-angiogenic, and immune system 

modulation (Abdelwahab et al. 2022). It also has a protective role against several 
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cancer types. However, most recent studies have indicated vitamin D with an 

increased skin cancer risk. Mahamat-Saleh and colleagues found during a large meta-

analysis that circulating levels of 25(OH)D, a biomarker of vitamin D status which 

reflects both intake and synthesis in response to direct sun exposure, was associated 

with higher risks of keratinocyte carcinomas, with the relative risk of BCC being 1.41 

(Mahamat-Saleh et al. 2020). An additional area of study is on the genes that encode 

the vitamin D receptor (VDR). VDR is expressed on a plethora of cells, including 

epidermal basal keratinocytes (Vornicescu et al. 2020). Upon binding to the VDR, we 

see expression of VDR-responsive genes which exert the effects of the vitamin D. 

Interestingly, the VDR is highly polymorphic, with a > 618 variants. Most of these 

variants have been studied and are linked to increased skin cancer risk, particularly 

the FokI, ApaI, BsmI, and TaqI variants (Lesiak et al. 2011; Gnagnarella et al. 2014). 

 

1.7.4 Pathogenesis of BCC 
 

A hallmark of BCC is the dysregulation of the Sonic Hedgehog (SHH) growth factor 

signalling pathway (Epstein 2008). As aforementioned, the pathways’ role in BCC 

formation was first identified during studies of Gorlins syndrome, an autosomal-

dominant genetic disease that results in BCC (Johnson et al. 1996; Sinx et al. 2018). 

Studies showed that germ-line mutations in the Patched-1 (PTCH1) receptor led to 

multiple BCC’s. Further studies into the SHH pathway in BCC have shown that 

constitutive activation of downstream signalling members also results in BCC 

formation, confirming a pivotal role of SHH in BCC (Fan et al. 1997a; Oro et al. 1997; 

Xie et al. 1998; Grachtchouk et al. 2000).  
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1.7.4.1 Hedgehog Signalling Pathway 
 

The Hedgehog (Hh) growth factor cell signalling pathway was initially identified as a 

‘segment-polarity’ gene which is evolutionary conserved and essential during 

development (Figure 1.8; Nüsslein-Volhard and Weischaus 1980; Ingham and 

McMahon 2001; Weedon et al. 2008; Zhao et al. 2009). In vertebrates, the pathway 

is activated by three secreted hedgehog ligands: Sonic Hedgehog (SHh), Indian 

Hedgehog (IHh) and Desert Hedgehog (DHh); of which SHh is the key morphogenetic 

factor (Mann and Beachy 2004). All three ligands bind a single twelve-

transmembrane receptor protein, Patched (Ptch), on the recipient cell (Hooper and 

Scott 1989). In the absence of ligand binding, Ptch acts as a negative regulator of a 

seven-transmembrane G-protein coupled receptor smoothened (Smo; Alcedo et al. 

1996; Van den Heuvel and Ingham 1996; Stone et al. 1996). However, upon binding 

of Hh, Ptch relinquishes inhibition of Smo leading to Smo phosphorylation by CK1 and 

GRK2, which is aided by the co-receptor Cdo (Denef et al. 2000). Smo is regulated 

through multi-site phosphorylation in a dose-dependent manner, which regulates 

both the subcellular localization and conformation (Chen et al. 2011). The kinases 

CK1 and GRK2 are both required for the phosphorylation and activation of Smo at six 

Serine/Threonine clusters found in the Smo C-terminus (Sheng et al. 2004; Meloni et 

al. 2006; Chen et al. 2011). This phosphorylation induces the ciliary localization of 

Smo through the recruitment of β-arrestins that link Smo to the anterograde kinesin-

II motor (Kovacs et al. 2008; Chen et al. 2011). CK1/GRK2-mediated phosphorylation 

of the C-terminus that results in dimerization/oligomerisation of the Smo C-tail 

induces a conformational switch (Zhao et al. 2007). In the absence of ligand, Smo 

adopts an inactive conformation, which masks the kinase binding sites from 

CK1/GRK-2 (Chen et al. 2011). Furthermore, CK1 is accumulated in the primary cilia 
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in response to Hh ligand and therefore enhances the phosphorylation of Smo (Chen 

et al. 2011). 

 

Suppressor of fused (Sufu), a negative regulator, forms complexes with Gli proteins 

to inhibit their ability to translocate into the nucleus and thus drive gene 

transcription (Ding et al. 1999; Cheng and Michael Bishop 2002; Merchant et al. 2004; 

Barnfield et al. 2005). However, upon Hh ligand binding this complex dissociates and 

thereby relinquishes the full-length Gli proteins (Humke et al. 2010; Tukachinsky et 

al. 2010). Several kinases have been implicated in the regulation of Gli activity, 

including Cdc211, which binds Sufu to block inhibition of the pathway (Evangelista et 

al. 2008).  

 

Thus, the Hh signal transduction pathway leads to the activation of the Gli zinc-finger 

transcription factors. In vertebrates, there are three Gli proteins. Gli2 and 3 are 

activated by SMO, while Gli1 is transcriptionally induced by pathway activation and 

therefore acts in a positive feedback loop to reinforce Gli activity (Hui and Angers 

2011). In the absence of ligand, Gli proteins undergo proteolytic processing into a 

truncated form (GliR), which also functions as a transcriptional repressor (Figure 

1.8a). Hedgehog signalling inhibits Gli processing and converts the full length GliF into 

the active form GliA, which then acts as a transcription factor inducing downstream 

target genes (e.g. GLI 1, Gli2, K17, PDGFRα, PTCH1, BCL2) (Figure 1.8b). 
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Figure 1.8 | Hedgehog growth factor signalling pathway. a) In the absence of the 

Hh ligand, Patched (Ptch) localises to the primary cilia and inhibits Smoothened 

(SMO). SMO is then sequestered into endocytic vesicles. Intraflagellar transport (IFT) 

machinery shuttle GLI2/3 in and out of the primary cilium. Also, at the base of the IFT, 

GLI2//3 is phosphorylated by PKA, CK1, and GSK3β which results in cleavage of GLI2/3 

activator domain (red) and generates GLI2/3R, a transcriptionally repressive form. 

Additionally (not shown in figure), suppressor of fused (SuFu) can form complexes 

with, and sequester GLI2/3, which stops their phosphorylation into the active form, 

repressing transcription. b) Binding of Hh to Ptch causes Ptch to be transported from 

the cilium and marked for degradation, subsequently relinquishing the inhibition of 

SMO. SMO is then phosphorylated by CK1 and GRK-2, causing ciliary localisation via 

the IFT machinery. Activated SMO then inhibits PKA. GLI2/3 is then accumulated in 

the cilium and phosphorylated by CK1 to form a transcriptionally active form, 

GLI2/3A, which can then enter the nucleus and cause transcription of Hh target genes. 

Additionally (not shown in figure), PKA inhibition by SMO is insufficient for the 

phosphorylation of the SuFu/GLI complex. Unphosphorylated SuFu/GLI complex is 

transported to the cilia tip via the IFT machinery where it marked for ubiquitinylation, 

causing the release of GLI2/3, which can then be phosphorylated by CK1 to form 

GLI2/3A. Adapted from Petrova and Joyner 2014. 

  



  

 
 

53 

1.7.4.2 Driver DNA mutations in BCC 
 

Similarly to Gorlins syndrome, mutations of PTCH1, SMO, and SUFU have also been 

found in sporadic BCC (Epstein 2008; Kool et al. 2008). All cases of sporadic BCC show 

evidence of hedgehog pathway activity, with 90% associated with a loss of PTCH1 

(Gailani et al. 1996; Kim et al. 2002) and 10% with activating mutations in SMO (Xie 

et al. 1998; Reifenberger et al. 2005). Consistent with the allelic loss on chromosome 

9q22 in BCC formation previously observed (Gailani et al. 1996). Therefore, the 

mutational basis for BCC and therefore the key driver mutations reside within the Hh 

pathway, of which the most frequently mutated gene is PTCH1.  

 

1.7.4.3 Mouse models of BCC 
 

Mouse models also support the role of the Hh pathway in BCC pathogenesis. Wild-

type mice do not develop BCC, even after exposure to UV or ionizing radiation. 

However, transgenic mice in which one of the Ptch gene alleles has been knocked 

out, Ptch+/-, upon exposure to UV radiation frequently develop BCC (Aszterbaum et 

al. 1999). In this model, UV exposure is necessary to mutate the remaining Ptch allele 

(Mancuso et al. 2004). Furthermore, overexpression of the constitutively activated 

Hh signalling pathway members (SMO, GLI1 and GLI2) in transgenic mouse models 

or in human skin keratinocytes grafted onto mice, spontaneously develop BCC (Fan 

et al. 1997a; Fan et al. 1997b; Grachtchouk et al. 2000). Thus, mouse models support 

the fundamental role of the Hh pathway in the formation of BCC. 
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1.7.4.4 SMO antagonists in the treatment of BCC 
 

BCC rarely metastasise in part due to their growth on the skin and so early detection 

is common. Surgical excision is the gold standard treatment. Providing surgery 

achieves clear histological margins, there is a <2% recurrence rate after 5 years 

(Griffiths et al. 2005; Walker and Hill 2006). For BCC that have extended beyond the 

ability to surgically excise them, or for those rare BCC that have metastasised, SMO 

antagonists have been developed. A phase 1 clinical trial of 33 patients with locally 

advanced or metastatic BCC treated with the Smo antagonist vismodegib, 2 patients 

experienced complete response and 18 had a partial response (Von Hoff et al. 2009). 

A subsequent nonrandomized study on 104 patients (71 locally advanced BCC and 33 

metastatic BCC), found that vismodegib led to at least a partial response in 43% of 

locally advanced and 30% of metastatic BCC (Sekulic et al. 2012). A randomised, 

double-blind, placebo-controlled trial in Gorlins syndrome demonstrated reduced 

tumour burden (Tang et al. 2012). Similarly, Sonidegib (Novartis), a potent SMO 

inhibitor, showed a partial response in the treatment of locally advanced, metastatic, 

or Gorlins syndrome BCC (Skvara et al. 2011; Migden et al. 2015). In addition to the 

lack of primary response, continued treatment with SMO antagonists is also 

associated with secondary resistance (relapse); and occasionally with transformation 

into aggressive SCC (Chang and Oro 2012; Zhu et al. 2014; Saintes et al. 2015). 

 

Secondary resistance to SMO antagonists have been attributed to insensitive protein 

variants, genomic bypass signalling (such as loss of SUFU or amplification of Gli2),  

and activation of alternative growth factor pathways (for example RAS/MAPK, PI3K, 

or aPKC) (Buonamici et al. 2010; Dijkgraaf et al. 2011; Kool et al. 2014; Atwood et al. 



  

 
 

55 

2015; Zhao et al. 2015). Thus, BCC growth appears not to be solely dependent on Hh 

pathway driver mutations. 

 

1.7.4.5 DNA sequencing of BCC 
 

In contrast to targeted DNA sequencing, whole exome sequencing (WES) has been 

undertaken on 6 BCCs from a single patient (Xie et al. 2022). These BCCs were taken 

from an 83-year-old Caucasian male who had an extensive history of sun exposure, 

including 3 superficial BCCs on his legs and 3 nodular BCCs on his head and neck 

region. A total of 41,946 somatic cancer-associated mutations when comparing all 6 

tumours to the normal skin were found, with the Catalogue of Somatic Mutations in 

Cancer (COSMIC) UV radiation signature being the most dominant (27-62% of 

mutations). PTCH1 and TP53 were the most frequently mutated genes in 5/6 and 4/6 

BCCs, respectively.  CSMD1 mutations were observed in all nodular BCC, while 

CSMD3 and TPTE/PTEN2 mutations were in all superficial BCCs.  

 

Atwood and colleagues undertook Whole Exome Sequencing to determine the 

genetic basis for BCC resistance to SMO antagonists (Atwood et al. 2015). As 

expected, mutations were identified in PTCH1 (8/14) and TP53 (4/14), however, 

there was no greater frequency associated with BCC resistance. Instead, the authors 

found mutations within the remainder of the Hh pathway in 15/29 (in 85% of 

samples), in SMO (6/14), cAMP/PKC (4/14), and GLI2 amplification. Direct sequencing 

determined that SMO mutations were seen in 77% of resistant BCCs (23/30) and 33% 

of sporadic-untreated BCCs (12/36). 
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1.7.4.6 RNA sequencing of BCC 
 

To understand the biology of BCC growth, beyond the driver mutations, researchers 

have undertaken several different approaches, including transcriptomic analysis. In 

a study comparing adjacent normal skin with BCC, RNA sequencing identified 

upregulation of Hh signalling-associated target genes (Mackeh et al. 2018; Wan et al. 

2021). In addition, differentially expressed genes demonstrated enrichment of hair 

follicle and epidermal stem cell gene sets.  

 

Litvinov and colleagues undertook an analysis of three publicly available datasets, 

totalling 75 BCCs and 34 normal skin samples (Litvinov et al. 2021). The authors found 

KEGG gene set enrichment for: BCC signalling, Hh signalling, Wnt Signalling and IL-17 

signalling. PANTHER gene set enrichment analysis also identified Wnt, integrin, and 

cadherin pathways. By generating differentially expressed genes between normal 

and locally advanced BCC, the authors determined that normal BCCs were enriched 

for target genes of the Hh pathway [PTCH1 (15/15 BCCs), SMO (15/15 BCCs), and 

PTCH2 (12/15 BCCs)], Wnt pathway [LEF1 (14/15 BCCs), FZD8 (14/15 BCCs), and 

DACT1 (14/15 BCCs)],  IL-17 pathway [CXCL9 (14/15 BCCs)] and MMPs [MMP1 (13/15 

BCCs) and MMP10 (10/15 BCCs)]. Advanced BCC was associated with additional gene 

set enrichment of KEGG pathways including PI3K-Akt signalling, TLR signalling, and 

proteoglycans in cancer.  
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1.7.4.7 Single Cell RNA Sequencing of BCC 
 

Single-cell RNA sequencing has been used to understand the BCC tumour 

heterogeneity and importantly interaction between tumour cells and the 

microenvironment. There have been a number of single-cell RNA sequencing studies 

that have been published since 2020. These studies have addressed the tumour cell 

heterogeneity, tumour-associated fibroblasts, and the immune cell response. 

 

1.7.4.7.1 BCC tumour cell heterogeneity 
 

An analysis of 4 human BCCs, resulting in 45,656 cells, elucidated the cell 

heterogeneity within BCC, comprising of: keratinocyte clusters (characterised by 

keratin 14 expression and involucrin for differentiating keratinocytes), an endothelial 

cell cluster (characterised by PECAM1 expression), an immune cell population 

(characterised by PTPRC expression) and a fibroblast cluster (characterised by 

vimentin expression) (Figure 1.9; Yao et al. 2020). The isolated keratinocyte clusters 

were used to define cell surface proteins that could be used for the further isolation 

of vismodegib resistant cells characterised by MRTF expression. The most recent 

single cell study comes from Magnus Lynch’s group, who employed multiscale spatial 

mapping of cell populations across normal skin and BCC tissues (Ganier et al. 2024). 

The study used 9 BCCs and 11 normal skin samples from the face, and 15 normal skin 

samples from the rest of the body, which generated a scRNAseq dataset consisting 

of 233,379 cells, though only 155,401 cells passed quality control thresholds. They 

subsequently identified 30 skin cell clusters which consisted of 16 cell types (Figure 

1.10a). Their findings showed that in the face, there are 20 conserved skin cell 

populations, and found that there were differences in cell abundances. T cells and 
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NK cells were more abundant in BCC when compared to normal body skin (Figure 

1.10b). 

 

  



  

 
 

59 

 

Figure 1.9 | Cell heterogeneity within human BCC. Yao and colleagues analysed 4 

human BCCs resulting in 45,656 cells. a) Total clusters generated from the dataset. b-

f) UMAPs showing expression of KRT14, VIM, PTPRC, IVL, and PECAM1 which 

highlighted keratinocytes, fibroblasts, immune cells, differentiating keratinocytes, 

and endothelial cells, respectively. The authors used the sequencing to identify three 

prognostic surface markers which correlated to their previously identified SMO 

resistance mechanisms in BCC. Figure adapted from Yao et al. 2020. 
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Figure 1.10 | Cellular heterogeneity within human facial BCC and normal skin. 

Ganier and colleagues used 9 BCCs and 11 normal skin samples from the face, and 15 

normal skin samples from the rest of the body which generated a scRNAseq dataset 

consisting of 155,401 cells that passed quality control thresholds. The authors also 

used spatial transcriptomics and in vivo optical coherence tomography to generate a 

multiscale spatial atlas of healthy skin and basal cell carcinoma. a) UMAP showing 

identification of 30 skin cell clusters and 16 cell types. Skin cell populations are 

represented by different colours and cell types are encircled and annotated.  b) The 

abundance of cell types was assessed across different body areas. The bar graph 

shows the differences in cell type abundance. Figure adapted from Ganier et al. 2024. 
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1.7.4.7.2 BCC tumour-associated Fibroblasts 
 

Ganier and colleagues showed that there were 4 major fibroblasts populations in the 

face and body in both normal and BCC skin. They found the same populations were 

present across each sample location (normal and BCC face skin and normal body skin) 

but observed differences in population abundances and distributions. BCC skin 

showed a significant increase in POSTN+ fibroblasts when compared to normal skin, 

and when investigated further, were found to be located around the HFs and 

considerably increased around the BCC tumour nodules (Ganier et al. 2024). Another 

study by Yerly and colleagues investigated the invasive niche of BCC and found that 

tumour cells displayed a collective migratory phenotype which was characterised by 

cell-cell junction complexes. They also found that cancer-associated fibroblasts were 

present at this niche and displayed features of extracellular matrix remodelling. 

Further investigation into the BCC cells at this niche revealed that they strongly 

expressed cytokine Activin A and subsequently increased Activin A-induced gene 

signatures in the adjacent cancer-associated fibroblasts (Yerly et al. 2022). Another 

study by Guerro-Juarez and colleagues investigated the interaction between the BCC 

and the TME (Guerrero-juarez et al. 2022). Using a range of downstream analyses 

such as pseudotime, RNA velocity, and cellular entropy, they revealed a cancer-

specific rewiring of fibroblasts in which STAT1, TGFβ, and other inflammatory signals 

induced a non-canonical WNT5A program that maintained the inflammatory stromal 

state. They also found that tumour cells rapidly react to inflammatory signals 

released by the fibroblasts through the production of heat shock proteins, indicating 

that inflammatory cells act as an inflammatory hub that regulate BCC growth via 

these proteins.  
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1.7.4.7.3 T-cell response in BCC 
 

By combining single-cell sequencing and T-cell receptor sequencing, Yost and 

colleagues showed in advanced BCC that after immune checkpoint inhibitor therapy 

targeting PD-1, novel T-cell clones infiltrated the BCC and replaced their pre-existing 

exhausted counterparts rather than invigorating them (Yost et al. 2019; Srivastava et 

al. 2023). Using trajectory analysis, the authors assessed T cell evolution in response 

to this treatment and revealed a bifurcated trajectory and becoming either terminally 

activated or exhausted. 

 

1.7.4.8 Identification of BCC Cancer Stem Cells 
 

Our lab has been studying the heterogeneity to further elucidate the biology of BCC. 

BCC was found to demonstrate hair follicle differentiation patterns, in keeping with 

BCC arising from hair-bearing skin (Morgan et al. 2020a). Intriguingly, the pattern of 

hair follicle differentiation is stalled because of the lack of dermal papilla signals 

(Morgan et al. 2020b). Restoration of the dermal§ papilla signals was able to restore 

the ability of BCC cells to complete the pattern of differentiation. 

 

The presence of differentiation within the hair follicle raised the possible presence of 

a tumour-initiating cell population that would maintain BCC tumour growth similar 

to normal keratinocyte stem cells within the hair follicle. CD200, which identifies 

keratinocyte stem cells of the hair follicle bulge, was found to be expressed in small 

clusters of BCC tumour cells located in the basal and immediately adjacent 

suprabasal layers of tumour nodules. Using flow cytometry, we saw that all BCC 

samples contained a CD200+ tumour cell population of 1.63% +/− 1.11% (Colmont 
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et al. 2013a). When 105 flow-sorted BCC cells from 5 independent BCCs were plated 

into a colony-forming assay, CD200+ cells gave rise to three-fold more colonies when 

compared to their CD200- counterparts. The CD200- cells gave rise to fewer colonies 

than the unsorted BCC cells. Further experiments showed that this CD200+ 

population when xenografted into mice, was able to reproducibly form tumours that 

resembled the original BCC with as little as 1 x 104 cells, whilst the CD200- 

counterpart failed to produce tumours. Limiting dilution assays revealed the tumour-

initiating cell frequency of this population to be 1 in 822. We therefore concluded 

that the CD45- CD200+ BCC subpopulation is enriched in BCC cancer stem cells.  

 

Consistent with BCC chemotherapy resistance, a proportion of CD200+ CD45- BCC 

expressed the multidrug resistance protein ABCB1 (Colmont et al. 2014). The CD45 

cell surface marker was used to eliminate all haematopoietic cells. We showed that 

both the ABCB1+ CD200+ CD45- BCC sub-population and the ABCB1- CD200+ CD45- 

BCC sub-population could recreate BCC growth in vivo, wherein in vivo growth 

induced ABCB1 expression in the ABCB1- CD200+ CD45- BCC sub-population 

(Colmont et al. 2014) .  

 

1.8 Hypothesis 
 

BCC growth after the acquisition of driver mutations follows differentiation patterns 

that are consistent with normal hair follicle tissue pattern of differentiation and also 

consistent with the presence of BCC CSCs. For BCC to persist and grow after SMO 

antagonist therapy, BCC CSCs must have additional cell survival pathways that allow 

the circumvention of the Hh pathway inhibition. 



  

 
 

65 

 

1.8.1 Aims 
 

To elucidate the cell survival pathways within BCC CSCs, I have two aims: 

 

1. Determine whether CD200 is a functionally relevant marker for the study of 

BCC CSCs. 

2. Use RNA sequencing to elucidate cell signalling pathways specific to the BCC 

CD200+ CSC-enriched population. I will be investigating the signalling 

pathways related to cell survival post-Hh inhibition.  
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Chapter 2: Methods 

 

2.1 Cell Culture 
 

2.1.1 Established Cell Lines 
 

The cell lines that have been used in this project have been summarised in Table 2.1. 

Both cell lines were already present at the Patel laboratory upon my arrival. The long-

term human BCC cell line, UWBCC1, is well characterised and will serve as a 

biologically relevant cell line. The cell line was kindly gifted by Vladimir Spiegelman 

(Pennsylvania State University, Hershey, Pennsylvania, USA). The human cervical 

keratinocyte cancer cell line, HeLa (ATCC ref: CCL-2), has been previously transduced 

by an ex-PhD student into a HeLa CD200+ and a HeLa CD200- cell line and will 

subsequently serve as biologically relevant positive and negative controls, 

respectively (Morgan et al. 2022).  
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Table 2.1 | Cell lines used, their required media, and their passaging ratio/seeding 

densities. All mediums and reagents were purchased from Thermofisher Scientific 

(UK). Medias were made under sterile conditions using a laminar flow class 2 tissue 

culture hood.  
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2.1.2 Maintenance of Cell Lines 
 

2.1.2.1 Thawing Cell Lines 
 

All cell lines were thawed at 37◦C in a bead bath and then transferred to a 15mL 

Falcon tube (Corning). 9 volumes of pre-warmed media were added drop-by-drop 

and then cells were pelleted at 300xg for 5 minutes at RT and supernatant discarded. 

Cell pellets were then resuspended in 15mL previously mentioned media and 

transferred to a T75 culture flask and incubated at 37◦C (5% CO2). Media was changed 

every 2-3 days and cells were sub-cultured at 80% to 90% confluence. Culture medias 

used to maintain cell lines are summarised in Table 2.1. 

 

2.1.2.2 Sub-Culturing Cell Lines 
 

For both cell lines, media was aspirated, and cells were washed with 5mL pre-

warmed PBS (Gibco, UK). Cells were then incubated at 37◦C for 10 minutes with 0.05% 

Trypsin-EDTA or TrypLe (Gibco, UK), or until cells detached from the culture flask. 

Four volumes of media containing 10% FBS was then added to inhibit the Trypsin 

activity (serum-free media was also used to dilute-out the TrypLe). Cells were then 

transferred to a 15mL Falcon and centrifuged for 300xg for 5 minutes at RT. 

Supernatant was removed and the cells were resuspended in media and counted 

using a haemocytometer. Cells were then seeded into the appropriate culture vessel 

(Table 2.2). Cells were then incubated at 37◦C until 80% to 90% confluent. 

 



  

 
 

69 

 

Table 2.2 | Culture vessels used in the culturing of cells and their volumes of 

media required. Culture vessels were purchased from Sigma-Aldrich (UK). Vessels 

were opened under sterile conditions inside a laminar flow class 2 tissue culture 

hood. 

 

2.1.2.3 Cryopreserving Cell Lines for Storage 
 

All cell lines were prepared in the same manner as sub-culturing, except for the 

resuspension of the cells in freezing medium following centrifugation. All cell lines 

were frozen at a cell concentration of 1.5x106 cells/mL. All cell lines were frozen in 

media containing 10% DMSO and 90% FBS. Cells prepared for cryopreservation were 

placed in 2mL cryovials and stored at -80◦C overnight in a cryopreservation container, 

and then logged and transferred to liquid nitrogen the next day. 
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2.1.2.4 Transduction of Cell Lines 
 

The UWBCC1 was transduced to overexpress CD200 (Morgan et al. 2022). This was 

kindly done by Giusy Tornillo (ECSCRI, Cardiff University). Briefly, complimentary DNA 

for CD200 was sub-cloned into the PINCO retroviral expression vector which co-

expresses the green fluorescent protein (GFP). CD200-expressing PINCO-GFP and 

PINCO-GFP control vectors were then transfected into Phoenix packaging cells. 

Phoenix cells were then cultured, and virus was harvested. CD200-expressing PINCO-

GFP and PINCO-GFP control retroviral supernatants were then added to RetroNectin-

coated 24-well plates and centrifuged at 4,000rpm for 90 minutes. Viruses were then 

aspirated, and 2.5 x 105 UWBCC1 cells were then added per well and incubated for 

24 hours. Cells were then trypsinised and CD200 expression levels were confirmed in 

the UWBCC1 CD200pos and CD200neg cell lines through flow cytometry (Appendix 

3.3). 

 

2.1.3 Colony Forming Cell Assays 
 

Colony forming cell assays were performed on UW-BCC1 cells. This assay was used 

to assess the ability of the cells to survive, proliferate, and expand to form small 

colonies. All experiments were performed in triplicate, using 3 biological replicates 

and 3 technical replicates per biological replicate. Cells were first antibody labelled 

and sorted into CD200+ and CD200- populations. 6-well plates were then taken and 

labelled into CD200-, CD200+, and unsorted plates. One plate was used for each 

condition. 2mL of media was added to each well (Table 2.2). 100 and 500 sorted and 

unsorted cells were then added to their respective wells and plates were gently 

agitated to disperse the cells. Plates were then incubated for 7 days. On day 8, media 
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was gently aspirated, and wells were washed twice with PBS. 400 µl Crystal Violet 

was added to each well and incubated on a rocker plate for 20 minutes. Crystal Violet 

was then aspirated, and plates were gently rinsed with tap water. Plates were then 

left to air dry at room temperature. Colonies were then imaged on a GelCount plate 

reader (Oxford Optronix) and quantified using QuPath software. 

 

2.2 Immunohistochemistry 
 

IHC was performed with an additional no primary antibody control either on a 

separate tissue section, or on a spot on the same tissue section where possible. Table 

2.3 shows antibodies used. Paraffin embedded tissue sections were baked for 30 min 

at 60˚c and dewaxed and rehydrated using the following method: Xylene (10 min x2), 

100% ethanol (5 min x 2), 95% ethanol (5 min x 1), 70% ethanol (5 min x 1) then 

phosphate-buffered saline (PBS; 5 min x 1). Sections were incubated in citrate buffer 

(8 mM sodium citrate, pH 6.0) in a pressure cooker heated in a microwave at full 

power (750 W, 10 min) for antigen retrieval. After cooling specimens were washed 

in PBS (5 min x 1), a hydrophobic barrier was drawn around the tissue using an 

ImmEdge PAP pen (Vector Laboratories; #H-4000) and endogenous peroxidase 

activity blocked with DAKO Dual Endogenous Enzyme-Block (Agilent Technologies; 

#K4065) for 10 min at room temperature (RT) and blocked for 1 hour at RT in BlockAid 

(Thermofisher; #B10710). Tissue sections were washed (PBS; 5min x 4) and incubated 

overnight with primary antibodies diluted in BlockAid. Sections were washed in PBS-

Tween20 (0.05%) (5 min x 4) and incubated for 1 hour at RT with appropriate 

biotinylated secondary antibody diluted in BlockAid. Protein labelling was detected 

using Vectastain avidin-biotin enzyme complex (ABC-DAB; Vector Laboratories) or 
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ABC-alkaline phosphatase (ABC-AP; Vector Laboratories) with diaminobenzidine 

(DAB; DAKO, Agilent) or Immpact Vector Red (Vector Laboratories) as the 

chromagen, respectively. After washing (PBS; 5 min x 4) sections were incubated with 

ABC or AP for 30 min at RT and washed again in PBS (5 min x 4). Chromogen was then 

added and observed under a light microscope for appropriate colour development. 

Sections were then counterstained with haematoxylin (Atom Scientific) and 

dehydrated using the following method: 70% ethanol (20 sec x 1), 95% Ethanol (20 

sec x 1), 100% ethanol (2 min x 3), Xylene (2 min x 2). Slides were mounted and 

images acquired using a light microscope.  

 

2.3 Immunofluorescence 
 

Immunofluorescence was performed on cells that were sorted into drops/spots on a 

Poly-L-lysine coated microscope slide (Thermofisher: #160005) at a rate of 50 

cells/drop/spot. Sorted cells were firstly allowed to attach to the microscope slide for 

10 minutes. Areas were then circled with an ImmEdge PAP pen (Vector Laboratories; 

#H-4000) and then fixed in 4% formalin for 10 minutes at RT followed by a 5-minute 

PBS wash. Fixed cells were then permeabilised in 0.25% Triton/PBS for 10 mins at RT 

followed by another 5-minute PBS wash. Permeabilised cells were then blocked for 

1 hour at RT in BlockAid. Samples were washed in PBS (4 x 5 mins) and incubated 

overnight at 4◦C with primary antibodies in BlockAid. A summary of primary 

antibodies used can be found in Table 2.3. Sections were washed in PBS-Tween20 

(0.05%) (5 minutes x4) and incubated at RT for 1 hour with secondary antibodies 

(Table. 2.4) diluted in PBS with 1μL of 20μg/mL DAPI for nuclear staining. Specimens 

were washed in PBS-Tween20 (0.05%) (4 x 5 mins) and a coverslip mounted over the 
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areas using Vectashield mounting medium (Vector Laboratories). Images were 

acquired using a DM6000B upright fluorescence microscope (Leica Microsystems). 

Image analysis was performed using QuPath.  

 

 
Table 2.3 | Primary antibodies used. All primary antibodies were diluted in BlockAid 

and incubated on samples overnight at 4 ◦C. 



  

 
 
74 

 
Table 2.4 | Secondary antibodies used. All secondary antibodies were diluted in 

PBS. 1 µL of DAPI (20 µg/mL) was also added to the PBS. Samples were then 

incubated with the secondary antibodies for 1 hour at room temperature. 

 

2.4 Flow Cytometry  
 

Single cell suspensions were taken, antibody labelled, and then analysed or flow 

sorted for further analyses. All antibody incubations were carried out for 1 hour at 

4◦C in FACS buffer (PBS containing 10% FBS and 0.1% sodium azide) in FACS tubes. All 

centrifugations were performed at 1400rpm for 5 minutes at 4◦C. Single cell 

suspensions up to 1x106 cells/mL were stained with anti-CD45-FITC, anti-CD200-AF-
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647, and the live-dead stain, DAPI. Table 2.5 summarises the antibodies used. Cells 

were analysed on an LSR Fortessa (BD Biosciences) or sorted on a FACS Aria (Becton 

Dickenson, Oxford, UK). Cells were sorted into sterile 1.5mL Eppendorf tubes 

maintained at 4◦C. Single stained samples and Isotype controls were used as 

compensation controls and to assess background staining, respectively. Doublets, 

dead cells (DAPI+) and pan-leukocytes (CD45+) were excluded. FlowJo software was 

used to analyse the resulting data and create figures. 

 

 
Table 2.5 | Antibodies used for flow cytometry. Single cell suspensions were 

antibody labelled and then analysed or flow sorted on an LSR Fortessa or FACS Aria, 

respectively. 

 

2.5 qRT-PCR 

 

RNA was extracted from cells using an RNeasy Mini Kit (Qiagen). Cells were 

resuspended in RLT Plus buffer, transferred to a gDNA eliminator spin column with 

2mL collection tube and centrifuged for 30s at 8,000xg. One volume of 70% ethanol 



  

 
 
76 

was added to the flow through and transferred to an RNeasy spin column and 

centrifuged for 30s at 8,000xg. The membrane was subsequently washed with Buffer 

RW1 and centrifuged for 30s at 8,000xg and then washed twice in Buffer RPE and 

centrifuged for 2 mins at 8,000xg. The RNA was then eluted by adding 30-50μl of 

RNase-free water and centrifuging for 1 minute at 8,000xg. RNA quality and 

concentration was then measured on a Nanodrop 2000 (Thermo Scientific). cDNA 

synthesis was performed using the Quantitect Reverse Transcription Kit (Qiagen). 

gDNA was removed from the sample by adding 500ng of RNA to 2μl of gDNA wipeout 

and made up to a total volume of 14μl with RNase-free water. A 2-minute incubation 

at 42◦C was performed in a thermocycler. 1μl of reverse transcriptase and primer mix, 

and 4μl of RT buffer was then added to each sample and incubated for a further 15 

minutes at 42◦C followed by a 3-minute incubation at 95◦C in a thermocycler. 

Resulting cDNA was then used as input for qRT-PCR analyses. briefly, TaqMan probes 

were purchased from Thermofisher Scientific (CD200; Hs01033303_m1 and β-Actin; 

Hs01060665_g1). All analyses were run on the QuantStudio 7 Flex Real-Time PCR 

system (Applied Biosystems) using the Quantstudio software (v1.7.2). All reactions 

were run in triplicates, and housekeeping gene β-Actin was used as the reference 

gene for each plate. Reactions were run using the TaqMan Universal Master Mix II, 

with UNG (Applied Biosystems) according to manufacturer’s guidelines. Reactions 

were assembled in 96-well plates using a final reaction volume of 15μl and final 

concentration of 20ng of RNA/cDNA. Reactions were run using the following 

conditions: 50◦C for 2 mins, 95◦C for 10 mins, followed by 40 cycles of 95◦C for 15 

seconds and 60◦C for 1 min. Samples with reproducible cycle times (CT) values were 

analysed using the 2-delta delta Ct method. The Ct value of the reference sample was 

used to calculate absolute units. 
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2.6 Image Analysis 
 

Image analysis was performed using QuPath (v0.5.0). A new QuPath project was 

created for each experiment and each image was imported into that project.  

 
2.6.1 Colony Forming Cell Assays 
 

Each well image was opened, and the wand tool was used to select each colony. The 

benefit of using the wand tool is that it also recognises the size of the colony, and 

subsequently highlights it. Once all colonies were selected, the points tool was 

selected, which enumerated the number of selected colonies. Additionally, given 

that the wand tool highlighted the size and shape of each colony, the colony areas 

were measured. This was done by clicking on the measurements table button and 

then clicking the annotation measurements option.  

 

2.6.2 Immunohistochemical Image Analysis 
 

H&E images were used to count total tumour cells and necrotic areas. To count total 

tumour cells, the brush tool was selected and used to draw around the whole tissue 

(Figure 2.1a). The cell detection tool was then used to count total number of cells in 

the tumour. The parameters of the cell detection tool, specifically the requested pixel 

size, were adjusted as to only detect larger cells (Figure 2.1b). Doing this enabled the 

detection of tumour cells and not detection of smaller immune cells. The number of 

detected cells were then obtained by clicking on the show annotations 

measurements tool (Figure 2.1c). To enumerate the number of immune cells present 

within each tumour section, the H&E sections were first inspected to identify areas 
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of immune cell infiltrate. Immune cells are small and are densely packed, forming 

darker patches within the tissue. These areas were highlighted with the brush tool 

and the cell detection tool was again used to count the cells. Necrotic areas were 

defined as areas with high immune cell infiltrate that have no cells present on the 

inside. These areas appear as dark patches with light pink areas in the centre. To 

calculate the ratio of necrotic areas to tumour cell areas, the brush tool was first used 

to select all necrotic areas and then the total number of cells present in these areas 

were calculated using the cell detection and annotations measurement tool. Then 

the brush tool was used to select the whole tissue and cell detection and annotations 

measurement tools were used to count all cells present in the tissue. The necrotic 

ratio was then calculated by dividing the total number of necrotic cells by the total 

number of cells. For enumeration of marker-positive cells, the tissue was first 

selected using the brush tool, and then the positive cell detection tool was used with 

the optical density sum option selected (Figure 2.1d). The nucleus: DAB OD mean 

threshold was adjusted to ensure proper positive cell detection (Figure 2.1e, f). 

Again, the annotation measurements tool was used to obtain the number of positive 

and negative cells. To enumerate the percentage of NK cells expressing Cleaved 

Caspase 3 and CD200R, I used serial tissue sections. I firstly identified clusters of 

positive NK1.1 staining and then highlighted these areas with the brush tool. I then 

stained the serial sections with CD200R and Cleaved Caspase 3 and cross referenced 

those highlighted areas. I again used the brush tool to select those areas on the 

respective slides and used the positive cell detection tool to count positive cell 

staining.  
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Figure 2.1 | QuPath tool overview. QuPath tool was downloaded (version 0.5.0) and 

used to analyse and quantify imaging data. a) The brush tool is used to highlight areas 

on the image. b) The cell detection tool is used to detect cells within highlighted areas. 

c) The annotation measurement tool is used to quantify the number of detected cells 

from the cell detection or positive cell detection tool. d) The positive cell detection 
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tool is used to detect positive cells on immunohistochemistry slides. e, f) An example 

of the number of cells detected when changing the pixel size whilst using the cell 

detection tool at 0.5µm and 3µm, respectively. 
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2.7 Mouse Experiments 
 

All mouse experiments were performed in accordance with a UK Home Office Licence 

(Project Licence 30/3382). Nude mice (NU(NCr)-Foxn1nu, 6- to 8-week-old females; 

Charles River) were used to study the impact of CD200 expression on in vivo tumour 

growth. Mouse husbandry was performed by our laboratories research technician, 

Boris Shorning, and xenografting was performed by myself under the supervision of 

Boris. Both Boris and I have personal licences (My PIL #I19564663) to perform these 

experiments. Mice were anesthetised with isoflurane (induced at 5% Isoflurane 

concentration and maintained at 2%) and then injected with 1 x 106 UWBCC1 CD200+ 

and UWBCC1 CD200- (n=5 each) that had been mixed with 100 µl of Matrigel matrix 

(Corning) into the left and right flank of the mouse. Tumours were left to establish 

over 5 days, and then mice were culled by cervical dislocation and tumours 

harvested. Tumours were first measured for total area using callipers, and then sent 

to Cardiff Universities Histology Hub for paraffin embedding, sectioning, and H&E 

staining. H&E slides were then assessed under a microscope for tumour cellularity 

and CD200 expression (Figure 3.1 and Appendix 3.3; Morgan et al. 2022). 

 

2.8 Human Tissue Samples 
 

Human BCC tissue was obtained following appropriate NHS and ethics approval (09-

WSE-02-1) with informed and written consent from the patients. After excision, 

tumours were placed in an appropriately labelled 50mL Falcon tube containing Cryo-

SFM (PromoCell) and immediately stored at 4◦C until I came to collect them. All 

samples entering the laboratory were logged in accordance with the Human Tissue 
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Act and were processed within 24 hours. Undissociated tissue was disposed of in the 

appropriate human waste bins. All incoming samples were anonymised by the 

dermatologist and then re-labelled by myself before proceeding. 

 

2.8.1 Tissue Dissociation 
 

Tumour tissues were dissociated into a single-cell suspension in a laminar flow class 

2 tissue culture hood for cell culture. Briefly, 1mL of Medium 199 (conventional 

protocol) or RPMI 1640 (MACS protocol) was pipetted into a sterile 10cm2 petri dish. 

Using sterile forceps, the tumour tissue was dipped in PBS to rinse and then placed 

into the petri dish. Then, using sterile iris scissors, the tumour was minced for 15 to 

20 minutes. The minced tumour was then transferred to either a 6 well plate or a 

MACS C-tube. Following enzymatic digestion, red cell lysis was performed by 

resuspending cell pellets in 1mL Ammonium Chloride Solution (Stemcell 

Technologies; #07800) for 2 minutes and then 9mL PBS was added to dilute and 

inactivate it. Samples were centrifuged again and resuspended in FACS buffer. 

 

2.8.1.1 Patel Lab BCC Dissociation Protocol 
 

This method has been described previously (Morgan et al. 2019; Olivero et al. 2019). 

Briefly, minced tumour tissue is divided into two wells of a 6 well plate, and each well 

was filled with 2mL Media 199 supplemented with 25U Neutral Protease 

(Worthington). Tumour tissue was then agitated using a P1000 and 1mL pipette tip 

before being incubated for 90 minutes at 37◦C. Tumour tissue was agitated every 30 

minutes. 200U of Collagenase III (Worthington) was then added to each well and 

agitated again before a 30-minute incubation at 37◦C. Tissue was disrupted every 15 
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minutes. Tissue was transferred to two 50mL Falcon tubes (1 well/Falcon) and 25mL 

Media 199 was added to each tube. Samples were then centrifuged for 7 minutes at 

1300rpm. Supernatant was discarded and samples were resuspended in 5mL TrypLe 

(GibCo, UK), vortexed, and placed in a bead bath at 37◦C for 15 minutes. Samples 

were vortexed every 5 minutes. Following TrypLe digestion, 25U DNase I 

(Thermofisher; #18047019) was added to each sample (According to manufacturer 

instructions), vortexed, and incubated in a bead bath at 37◦C for 5 minutes. Samples 

were then filtered through a 70µm filter into one Falcon tube containing 25mL Media 

199. The filter was rinsed with 5mL Media 199, and the sample was centrifuged for 7 

minutes at 1300rpm. 

 
2.8.1.2 MACS Diccociation Protocol 
 

Minced tumour tissue was placed into a MACS C-tube along with 4.7mL RPMI 1640 

or DMEM, 200µL Enzyme H, 100µL Enzyme R and 25µL Enzyme A. The lid of the MACS 

tube was tightly shut, and the tube was placed upside down into a gentleMACS 

Dissociator. The h_tumour_01 protocol was run, and the tube was then transferred 

to a MACSMix Tube Rotator and incubated at 37◦C for 30 minutes. Following 

incubation, the C-tube was again placed in the gentleMACS Dissociator and the 

H_Tumour_ protocol was run (the number of the protocol depended on the amount 

of digestion of the tissue). Another 30-minute incubation on the MACSMix Tube 

Rotator was performed. The H_Tumour_ protocol was performed one more time and 

the C-tube was placed in a centrifuge and quickly spun for 5-10 seconds. 4mL 

supernatant was taken from the C-tube and filtered through a 70µm filter into a 50mL 

Falcon using a 70µm strainer. The remaining 1mL ‘pellet’ was then gently 

manipulated to the bottom of the C-tube and placed onto the gentleMACS 
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Dissocator. The M_imp_Tumour_01 protocol was run and then the C-tube was 

quickly spun again for 5 – 10 seconds. The supernatant was taken and filtered into a 

50mL Falcon. The C-tube was then rinsed with 5mL RPMI 1640 or DMEM and filtered 

into the 50mL Falcon. The filter was then washed with 15mL RPMI 1640 or DMEM. 

The 50mL Falcon tube was then centrifuged at 300xg for 7 minutes. 

 

2.8.2 Tissue Freezing, Cryosectioning, and Staining 
 

Residual tumour tissue was collected from 70µm filters and embedded in OCT 

(Tissue-Tek) compound on dry ice. Frozen samples were then cryosectioned using 

the Leica Cryostat CM1860 UV (Leica Systems, England). The cryostat chamber was 

cleaned with 70% ethanol and samples were placed in the chamber to acclimatise for 

10 minutes. Samples were then removed out of the plastic mould and attached to 

the metal chuck using OCT compound. Samples were then sectioned to a thickness 

of 15µm onto glass slides and left to air-dry at RT. Glass slides were then stained with 

Toluidine Blue (Sigma) for 10 seconds and then washed under a running tap face-

down for 1 minute. Samples were then left to air-dry at RT. Stained samples were 

then imaged under a light microscope. 

 

2.9 Statistical Analyses 
 

Statistical analyses were performed in Graphpad Prism 10 software. Normality tests 

of data sets were tested using a Shapiro-Wilks test. Normally distributed data 

between 2 groups was tested using an unpaired t-test, non-normally distributed data 

were compared using a Mann-Whitney U test. To compare the means of >2 non-
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normal distributed groups, a Brown-Forsythe and Welch analysis of variance 

(ANOVA) was used. Bar graphs were then auto generated in Graphpad. Statistically 

significant differences were marked as * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001, 

and **** = p ≤ 0.0001. 

 

2.10 Sequencing Sample Preparation 
 

2.10.1 Bulk RNA Sequencing 
 

RNA sequencing was performed on CD200+ CD45- and CD200- CD45- cancer stem 

cells from primary human BCCs. RNA was subsequently extracted from each cell 

population as described in Chapter 2.5 with the exception of using the RNeasy Micro 

Kit (Qiagen) and eluting RNA into 14µL of RNase-free water. RNA was then sent the 

Wales Gene Park (WGP) for sequencing. Whilst at WGP, cDNA libraries were made 

from each RNA sample and NEBNext sequencing adaptors were added along with 

sample barcodes. Samples were then paired-end sequenced using a Novaseq S1. 

 
2.10.2 Single-Cell RNA-sequencing 
 

Freshly sorted cells were firstly centrifuged at 1400rpm for 3 minutes at 4°C. the 

supernatant was then aspirated, and cells were resuspended in cold Media 199 at an 

optimal cell concentration according to the target cell recovery table provided by 10x 

Genomics. Prepared cells were then handed over to Ngoc-Nga Vinh (Dementia 

Research Institute, Cardiff University), who processed the cells according to 

manufacturer’s Single Cell 3’ Reagent Kit (v3.1) protocol. Briefly, cells were loaded 
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onto the 10x Chromium controller along with the GEM kit (v3.1) to generate Gel 

Beads-In-Emulsion (GEMs). Reverse transcription is then performed on the GEMs, 

and cDNA is purified, amplified, and again purified. Using the Single Cell Library Kit 

(v3.1), cDNA libraries were then made through multiple rounds of PCR 

fragmentation, end repair, poly-A-tailing, size selection purification, and indexing. 

Finally, libraries were quality checked using a TapeStation 4200, and library yields 

were assessed via qPCR. Libraries were then frozen at -80°C until ready for 

sequencing. Libraries were sent via 24-hour tracked courier on 5-10kg dry-ice to 

Novogene, where they were sequenced on a Novaseq S4 (PE150) at a depth of 200 

million reads per sample. Post-sequencing, data underwent an in-house quality check 

pipeline before being returned to me. 

 

2.11 Sequencing Data Processing 
 

2.11.1 Bulk RNA-sequencing 
 

FastP was used on all sequencing reads to provide a quality control check and trim 

the adaptors. Quality checked reads were then mapped against the human reference 

genome (GRCH38 using Spliced Transcripts Alignment to a Reference (STAR) software 

in 2-pass mode. Genomic features were then counted from the mapped sequence 

reads using the reads summarisation program, featureCounts, which generated a 

normalised count matrix for each sample against the GENCODE v27 gene model. A 

normalised count matrix consists of a table containing the amount of sequence 

fragments that have been assigned to each gene. The normalised count matrices 

were then used to generate differentially expressed genes (DEGs) through the use of 
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the SARTools package (wrapper to DESeq2). Normalised count matrices were then 

used as input data for PCA, heatmap and correlation analyses (ggfortify, heatmap.2, 

and corrplot packages in R, respectively. All packages were used with default 

parameters). DEGs were used as input for IPA, GSEA, enrichment analyses and to 

generate a volcano plot (EnhancedVolcano package in R). Enrichment analyses were 

performed using the clusterprofiler package in R. 

 

2.11.2 Single-Cell RNA Sequencing 
 

Sample fastq files were first downloaded from Novogene and checksums were 

generated using the ‘md5sum’ program in Linux and cross-referenced with the 

checksums provided by Novogene to ensure full downloads and no data loss. Fastq 

files were then uploaded onto Cardiff Universities HAWK supercomputer and were 

again checked for complete upload through regeneration of checksums. Next, the 

human reference genome (GRCh38) dataset was downloaded as a gzipped tarball 

directly from the 10x Genomics website into the working directory on HAWK using 

the ‘curl’ command. The gzipped tarball was unpackaged using the ‘tar’ command.  

To generate count matrices for each sample, the ‘cellranger’ package was loaded, 

and the ‘count’ function was run on each sample whilst using 10,000 as the expected 

number of cells, which mapped and quantified genes for each sample. Results were 

then either downloaded from HAWK and used as input to R for downstream 

processing or kept on HAWK where they were then used as input for copy number 

variation analysis (Section 2.11.2.13.2). The ‘cellranger count’ pipeline also 

generated a webpage report for each sample, which serves as an initial QC.  
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2.12 Bioinformatics Analyses 
 

2.12.1 Bulk RNA-sequencing 
 

Data was analysed using R (version 4.3.1). The normalised count matrices were 

imported into R and the standard SARTools pipeline (wrapper to DESeq2) was run to 

generate normalised count matrices and differentially expressed genes. Normalised 

count matrices were then used as input data for PCA, heatmap and correlation 

analyses (ggfortify, heatmap.2, and corrplot packages in R, respectively. All packages 

were used with default parameters). DEGs were used as input for IPA, GSEA, 

enrichment analyses and to generate a volcano plot (EnhancedVolcano package in 

R). For GSEA heatmaps, the top normalised enrichment scores (NES) were taken and 

input into Morpheus (Broad Institute). Venn diagrams were generated by using the 

normalised read counts as input into the ggVennDiagram package in R. Enrichment 

analyses were performed using the clusterprofiler package in R. 

 

2.12.2 Single-Cell RNA-sequencing  
 

2.12.2.1 Optimisation of Analysis Protocol 
 

Over the course of the PhD project, a total of 13 samples were successfully processed 

for scRNAseq, these consisted of ten BCCs and three NS samples (Table 5.1). Samples 

were dissociated, labelled and FACS sorted as previously described in Chapter 2.4. 

The first batch consisted of three BCCs and one NS (BCC_1-3 and BCC_2_NS) and was 

generated via the four-reaction chromium kit immediately after the first COVID 

lockdown. This batch was sent for sequencing as soon as the samples were generated 
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to obtain the sequencing data before the inevitable second lockdown. For the second 

batch, incoming samples were immediately processed into libraries and frozen back 

until a total of thirteen libraries were generated using the sixteen-reaction chromium 

kit. This second batch consisted of seven BCCs, and two NS (BCC_4-8, and BCC_NS_1 

and BCC_7_NS). The remaining libraries consisted of murine samples from our lab’s 

other projects. 

 

The first stage of the scRNAseq project was to optimise the analysis protocol. Since 

its development, there has been an explosion of tools and methods to perform and 

analyse scRNAseq data, which makes it difficult to select the best method for your 

data (Hie et al. 2020; Schneider et al. 2021). However, the sequencing data from the 

first batch of samples that were sent to Novogene was used as a ‘pilot’ dataset, which 

enabled the generation and optimisation of an analysis script, which allowed me to 

test various tools and methods, and was later used to process the full dataset. 

Samples were pre-processed individually, and clustering was assessed for putative 

cell types that were identified using canonical markers. Samples were then 

integrated into one dataset using a selection of integration methods. Clustering was 

performed on the integrated dataset to assess how well each method performed at 

separating the putative cell types. A schematic workflow for the scRNAseq analysis 

can be seen in Figure 2.2. 
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Figure 2.2 | Schematic of single cell RNA sequencing workflow. Briefly, tumours 

were taken from patients and immediately dissociated into single cell suspensions. 

Cells were then antibody labelled for CD45, CD200, and DAPI, and then flow sorted 

into 3 populations. These populations were then used as input into 10X Genomics 

single cell pipeline to generate single cell libraries. Libraries were then sequenced at 

Novogene (Cambridge, UK). Sequenced samples were then input into 10X Genomics 

Cellranger pipeline where they were firstly demultiplexed and subsequently genes 

were counted. Putative doublets, empty cells, cells with high mitochondrial reads, and 

bad quality cells were then removed during the quality control step, which was then 

followed by normalisation. Cell cycle stages were then calculated, and highly variable 

genes were selected. All samples were then integrated into one dataset. 

Dimensionality reduction was then performed in the form of PCA, followed by Seurat 

clustering using the PCAs, followed by UMAP. Downstream analyses were then 

performed: Cell type identification, RNA Velocity, CNV analysis, and scGSEA.  
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A total of 936,290,456 raw sequencing reads were generated across 6,224 raw single 

cells from all four samples (BCC = 693,860,583 raw reads across 5,326 raw cells and 

NS = 242,429,873 raw sequencing reads across 888 raw cells). On average, there were 

3,160 median genes and 10,428 median Unique Molecular Identifiers (UMI)’s per cell 

for the BCC samples and 3,172 median genes and 14,014 median UMI’s for the NS 

sample. Each sequencing fragment is tagged with a Unique Molecular Identifier 

(UMI), which allows for identification of PCR duplicates and unique molecules during 

the library preparation stage. There was an average of 90.45% reads confidently 

mapped to the human genome (BCC = 90.3% average and NS = 90.9%) and 52.2% 

reads confidently mapped to the human transcriptome (BCC = 49.9% and NS = 

59.1%). Cell Ranger also generates a sequencing saturation statistic, which provides 

an insight into library complexity and sequencing depth. The statistic looks at the 

number of reads originating with an already-observed UMI. Taking the inverse of one 

minus sequencing saturation indicates the number of additional reads it would take 

to detect a new transcript. There will be differing amounts of RNA present in different 

cell types and subsequently results in differing amounts of total transcripts in the 

sequencing library, which is referred to as library complexity. As sequencing depth 

increases so does the number of genes that are detected, but this reaches saturation 

at certain depths depending on cell type. In essence, the sequencing saturation gives 

an indication into how complex your libraries are and how deep they have been 

sequenced. On average, sequencing saturation was 79.95% across all samples (BCC = 

77.2% average saturation and NS = 88.1% saturation). Raw sequencing statistics can 

be found in Table 5.1. 
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2.12.2.2 Quality Control 
 

Whilst at Novogene, sample libraries are pooled together to increase sequencing 

efficiency. This is known as multiplexed sequencing. Following sequencing of the 

libraries, one sequencing file is produced which contains the sequencing reads from 

all samples. This file is then demultiplexed, which uses the samples UMI’s to generate 

sequencing files for each sample. Demultiplexing was performed by Novogene and 

the resulting files were returned to me. Demultiplexed samples were then input into 

R (version 4.2.1) and processed individually using Seurat (version 4.3.0). Samples 

were initially read into R via the ‘Read10x’ function and made into Seurat objects 

using the ‘CreateSeuratObject’ function with the minimum number of cells = 3 and 

minimum number of features = 200. QC was then performed in order to remove 

doublets and low-quality cells. To do this, violin plots were generated for the 

following metrics: nCount_RNA, nFeature_RNA, and percent.MT (Appendix 2.2, 2.3, 

and 2.4, respectively) nCount_RNA is a measure of the total number of molecules 

detected within a cell, nFeature_RNA is a measure of how many genes are detected 

within a cell, and percent.MT is a measure of the percentage of reads that map to 

the mitochondrial genome. Given the nature of the library preparation method, it is 

possible to obtain more than one cell (doublets or multiplets) per GEM bead and 

obtain empty GEM beads. The former can generate aberrantly higher gene count per 

‘cell’ and the latter can contain very few gene counts. A Gel Bead in Emulsion (GEM) 

is a key component to the 10x Genomics sequencing method. Each GEM contains a 

single bead with a unique barcode plus the reagents (including UMI’s) required for 

RNA amplification. During the library generation process, each single cell is 

encapsulated within one GEM and the resulting protocol generates reads that have 

the same barcode, allowing identification of those reads to that one cell. A low 
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nFeature_RNA count for a cell indicates that it may be dead or dying, or that it was 

an empty droplet. Likewise, a high nFeature_RNA and/or nCount_RNA count 

indicates that the ‘cell’ is a doublet/multiplet. Low-quality and/or dying cells also 

demonstrate extensive mitochondrial contamination, which increases the 

percent.MT metric. Cells were first filtered using nFeature_RNA and percent.MT and 

then nCount_RNA was assessed. In all samples, the former filtering metrics were 

deemed appropriate at filtering out these cells. Filter metrics are displayed in 

Appendix 2.5. Following QC and filtering, a total of 5,020 viable cells remained, BCC 

= 4288 (BCC_1 = 2119, BCC_2 = 1773, and BCC_3 = 396) and NS =732.  

 

2.12.2.3 Normalisation 
 

The next step in the analysis protocol is to normalise each sample. Post-QC and 

filtering, scRNAseq datasets can also contain noise and variability that can be 

attributed to cell type, size, RNA content, cell cycle stages, gender differences, and 

sequencing depth (Lafzi et al. 2018). These technical variances need to be corrected 

through a process called normalisation. Normalisation methods correct for these 

variations so that gene expression profiles are comparable across cells and samples. 

 

There are a number of normalisation methods that have been developed and 

benchmarked specifically for scRNAseq, which range from variations of bulk-RNAseq 

methods to the development of completely new methods specific to scRNAseq (Lytal 

et al. 2020). However, none of them have come out universally superior during 

benchmark studies. The most common approach to processing and analysing 

scRNAseq data is via the Seurat package in R (Satija et al. 2015a). Seurat has a built-

in function, ‘NormalizeData’, which ensures expression values across cells are on a 
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comparable scale. There are three options for normalising the data through the 

‘NormalizeData’ function: log transformation (LogNormalize), centred log ratio 

transformation (CLR), and relative counts (RC). Given the number of parameters 

available at each step of the analysis protocol, the ‘LogNormalize’ argument was pre-

selected as the preferred method for ‘NormalizeData’, as studies have shown that 

CLR and RC perform similarly, generating fewer clusters downstream, having 

similarity scores >90%, and generally underperforming when compared to 

‘LogNormalize (Schneider et al. 2021). The ‘LogNormalize’ argument divides the 

counts for each gene by the total counts in the cell, multiplies that value by the scale 

factor, which by default is 104, and then log transforms the results. This method aims 

to normalise the biases in sequencing coverage between cells and then log-

transforming the data ensures downstream analyses are comparable on a relative, 

rather than absolute, scale (Lun 2018). The scale factor is used to ensure that one 

normalised count corresponds to roughly one raw count that is observed in one 

‘average-sized’ single cell. By default, this is 104 as this is the usual number of UMIs 

per cell in a typical 10x Genomics experiment. However, in deeper sequencing 

methods, such as Smart-seq2, the number of UMIs per cell can range from 105-106, 

and so the scaling factor would need to be changed accordingly. For my samples, the 

average UMI per cell was ~1.4 x 104 for both the pilot dataset and the full dataset, so 

the default scaling factor was chosen.  

 

2.12.2.4 Cell Cycle Scoring 
 

Following normalisation, cell cycle stage was calculated for each cell in each sample. 

Stages of the cell cycle can introduce unwanted sources of heterogeneity within 

scRNAseq datasets and can affect downstream clustering. Seurat’s ‘CellCycleScoring’ 
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function assigns cells a score based on expression of S and G2/M phase markers and 

then predicts the phase of the cell as either G2M, S or G1 phase. The cell cycle score 

for each cell can then be added to the Seurat object as a new metadata column and 

used to regress out the cell cycle effects before performing clustering. Regressing out 

the cell cycle phase removes all signals associated with the cell cycle. This could, 

however, potentially negatively impact downstream analysis, especially in 

differentiating processes where stem cells are quiescent and differentiating cells are 

proliferating. Regressing out the cell cycle in this instance can impede the distinction 

between stem and progenitor cells. Instead, Seurat recommends that the difference 

between the G2M and S phases should be regressed. The resulting regression would 

allow signals that separate non-cycling/cycling cells to remain and differences in 

phase among often uninteresting proliferating cells to be removed. 

 

2.12.2.5 Highly Variable Gene Selection 
 

The dataset still currently consists of noisy data which comprises mostly lowly 

expressed genes that have similar expression across cells and samples. Using all 

genes for downstream clustering would be unwise as many of them provide no 

biological insight. Instead, a selection of highly ‘informative’ genes is made and used 

for downstream clustering. In doing so, we are simultaneously removing irrelevant 

genes, background noise, and computation time. Assuming that biological processes 

are driven as a result of changes in gene expression, we can exploit this by selecting 

genes that show high variance across cells, genes that are highly expressed in some 

cells, but lowly expressed in others (Brennecke et al. 2013; Satija et al. 2015b). 

Selecting these highly variable genes (HVGs) highlights biological signals and vastly 

improves downstream clustering. However, scRNAseq data includes many zero 
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counts that can inflate gene variance, and so directly using gene variance is not 

advised as it contains both biological and technical variance. Seurat’s 

‘FindVariableFeatures’ function circumvents this problem by fitting the gene variance 

against the average expression and then calculates a standard variance for each 

gene, which represents the genes variance from the fitted value. The selected HVGs 

then represent genes that are more variable than genes which have similar average 

expression. This method is known as variance-stabilizing transformation and is the 

default correction method in the method (selection.method = ‘vst’) (Mayer et al. 

2018; Hafemeister and Satija 2019a). 3000 HVGs were selected for each sample in 

the pilot dataset for downstream clustering (Appendix 2.6).  

 

2.12.2.6 Scaling 
 

The next step of the protocol is to scale the data. Scaling the data linearly transforms 

the data, which shifts the expression of each gene so that the mean expression is 

zero and the variance across the cells is one. This ensures that highly expressed genes 

do not dominate during downstream analyses. Scaling also allows for the regression 

of ‘uninteresting’ signals. In Seurat, the ‘ScaleData’ function models the relationship 

between gene expression and the features that we want to be regressed. Scaled 

residuals of the model then represent a corrected expression matrix which can then 

be used for downstream analysis. Here, the cell cycle difference, nCount_RNA (total 

number of molecules detected within a cell), and percent.MT (percentage of reads 

that map to the mitochondrial genome) were regressed from the data. 
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2.12.2.7 Linear Dimensionality Reduction 
 

In order to visually assess putative cell populations within each sample, 

dimensionality reduction was performed. Each sample is highly dimensional, 

consisting of hundreds to thousands of cells with thousands of expressed genes. 

Humans are unaccustomed to perceiving greater than three dimensions, so 

dimensionality reduction is an important process for the visualisation and 

identification of cell clusters. Reducing the dimensionality of the data also reduces 

the noise of the data (Ilicic et al. 2016; Tsuyuzaki et al. 2020), avoids the curse of 

dimensionality (Altman and Krzywinski 2018) in which a higher number of dimensions 

leads to an increased volume in which that data can occupy, resulting in extremely 

sparse data and makes it difficult to distinguish differences between two points due 

to the distances between them becoming too similar. Dimensionality reduction also 

compresses the data, making downstream analyses less compute intensive. An 

increase in similarity between dimensions is also seen as the number of dimensions 

increases, which can make downstream analyses difficult due to the high 

multicollinearity.  

 

A reduction has already been made in the gene space in the form of HVG selection, 

but the resulting datasets are still highly dimensional. Consideration was made as to 

which reduction method was chosen, as some methods aim to preserve global 

structure, whereas others aim to preserve local structures (Nguyen and Holmes 

2019). 
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2.12.2.7.1 Principal Component Analysis 
 

The most common dimensionality reduction method is principal component analysis 

(PCA). PCA is a multivariate linear statistical dimensional reduction technique that 

transforms a multidimensional dataset into a smaller set of summative indices, 

known as principal components (PCs) (Karl Pearson 1901; Hotelling 1933; Lever et al. 

2017). For scRNAseq, the technique allows for each cell, which currently contains 

3000 HVGs, to be condensed into one point along each PC, enabling its visualisation 

in a one- or two-dimensional plot. Running PCA on a dataset X containing N rows 

(observations/genes) and K columns (variables/cells) will produce a K-dimensional 

variable space. Each variable (K) in the dataset (X) represents a coordinate axis 

(Appendix 2.7a, using three variable axes as example). The length of each variable is 

first standardised by scaling the unit variance to ensure equal contribution to the 

analysis. Each observation (N) is then projected onto the K-dimensional variable 

space and the variable averages are then subtracted from the data to form a vector 

of averages and represents one point in the K-dimensional space (Appendix 2.7b and 

c, respectively). Variable average, red point). This average point is then mean-centred 

(repositioned to the origin of the K-dimensional space), which re-positions the 

coordinate system (Appendix 2.7d). The first summary index, PC1, is then fitted onto 

the K-dimensional space so that it passes through the average point and contains 

most of the variance. Each observation is then projected onto the PC1 line and the 

coordinates from the average point (origin) are recorded (Appendix 2.7e). This 

reduces the multidimensional data into one-dimension coordinates. A second 

summary index, PC2, is then calculated by plotting it orthogonal to the PC1 line 

(Appendix 2.7f). Again, the PC2 line will pass through the average point (origin) in a 

direction that contains most of the variance, observations are projected onto PC2, 
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and coordinates taken. PCA generates K-PCs for the dataset. The first PC contains the 

maximum information, the second PC contains the remaining maximum information 

and so on. The PCs are orthogonal vectors, meaning that the variance captured by 

each PC is independent to each other and the explained variances do not overlap. 

This method is an unsupervised approach to dimensionality reduction.  

 

PCA was performed on all 4 samples using the ‘RunPCA’ function, which by default, 

generates 50 PCs. DimPlots were first generated on the PC1 and PC2 to assess for any 

primary sources of heterogeneity (Figure 2.3a, d, g, j). When plotted against each 

other, PC1 and PC2 appear to separate out 3 general populations of cells across all 

samples. Probing further into the BCC_1 sample, Table 2.6 shows the top 5 sources 

of heterogeneity in PCs 1-5. Amongst the top positive genes showing heterogeneity 

in PC1 are Keratins 5, 14, and 17, which are all common markers of epithelial 

keratinocytes (Wang et al. 2020; Zhang et al. 2022), suggesting the larger cluster at 

around coordinates 0, 0 (PC1, PC2) are keratinocytes. Along PC2, there are two 

general populations that reside on either end of the coordinates, with the 

prospective keratinocyte population residing in the middle. The top positive genes 

showing heterogeneity in PC2 are PECAM1, PLVAP, EGFL7, RAMP2, and ADGRL4, 

which are expressed by endothelial cells (Fitch et al. 2004; Malta et al. 2018; Favara 

et al. 2019; Goncharov et al. 2020; Lai et al. 2021; Denzer et al. 2023). Together, PC1 

and PC2 appear to define keratinocytes, fibroblasts, and endothelial cells. 

Subsequent PCs identify a possible melanocyte population (PMEL, MLANA, CDH19, 

TRPM1, and CAPN3, defined by PC4 Weeraratna et al. 2004; Guo et al. 2012; Moody 

et al. 2016; Belote et al. 2021) and contain considerable variance.  
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The difficulty here is selecting which PCs best represent the data, as using just PC1 

and PC2 are not enough to define all expected cell types within the samples. The PCs 

also are unable to subcluster any populations. Unlike bulk-RNAseq, where PC1 

usually defines most of the variance, PC1 in scRNAseq usually defines <10% of the 

variance due to the complexity of the data (multiple cell types and random noise, for 

example). Multiple PCs are therefore needed to correctly represent the majority of 

variance in the datasets. To do this, two methods are commonly used: Jack Straw 

Plot (Macosko et al. 2015) and Elbow Rule (Nguyen and Holmes 2019). The Jack Straw 

Plot is a resampling test that randomly permutes the dataset, reruns PCA and 

constructs a ‘null distribution’ of feature scores and repeats the process. The method 

allows for the identification of significant PCs, those who have strong enrichment of 

low p-value features. Significant PCs should show a left skew in p-value distributions 

(coloured curves) when compared to the null distribution (dashed line). All samples, 

except for BCC_3, showed a left skew (Figure 2.3c, f, i , l). BCC_3 sample showed left 

skew for around 35/40PCs. For BCC_3 and BCC_2_NS samples however, p-value 

significance started to lose significance after 30PCs.  

 

Another method of PC selection is the Elbow Rule, where the number of PCs is 

selected when an ‘elbow’ in the plotted variances is detected. The variances of each 

PC are plotted using a scree plot and ranked in accordance to variance explained. The 

variance explained will tail off towards latter PCs and form an ‘elbow’ in the data, 

meaning that the majority of the variance has been better explained by previous PCs 

and that subsequent PCs will explain roughly the same variance. Again, taking 

Mix_BCC_CD45 sample as example, the scree plot shows that an elbow is present at 

PC9/10 (Figure 2.3b). However, the variance starts to plateau after PC30, therefore 
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PCs 1-30 were selected for clustering. Similar patterns of variance were seen with the 

other three samples, with variance plateauing after PC30 (Figure 2.3e, h, k). Taking 

both methods into consideration, 30 PCs were therefore selected for clustering. 
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Figure 2.3 | PCA and JackStraw analysis of pilot dataset. PCA was performed on each 

sample. JackStraw analysis was also performed, which resamples the dataset and 

randomly permutates it, reruns PCA and constructs a ‘null distribution’ of feature 

scores and repeats the process. Each PC is represented as a coloured line on the plot. 

The method allows for identification of significant PCs, those who have strong 

enrichment of low p-value features. Significant PCs show a left skew in p-value 

distributions when compared to the null distribution (dashed line). The elbow rule was 

also used to select PCs. Variances of each PC are plotted using a scree plot and are 

ranked in accordance to the variance explained. The number of PCs selected is based 

on where an ‘elbow’ occurs in the plot, which means that most of the variance has 

been better explained by the previous PCs and that subsequent PCs will explain 

roughly the same amount of variance. a, d, g, j) Biplot of PC’s 1 and 2 for each sample. 

These plots show the spread of the cells along both axes. b, e, h, k) Scree plot for each 

sample. These plots were used for the elbow rule. c, f, I, l) JackStraw Plot for each 

sample. dotted line depicts null distribution. 
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Table 2.6 | Top PCA loadings for BCC_1. Principle Component Analysis (PCA) was 

performed on the BCC_1 sample. Table shows the top 5 sources of heterogeneity for 

the first 5 PCs.  
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2.12.2.8 Clustering  
 

Having chosen the dimensionality of the samples, clustering can now be performed. 

Clustering is an important step in the analysis, as it allows for the separation of the 

cells into unique clusters based on similarity (Appendix 2.8). Appropriate clustering 

enables cell type separation as well as separation of cell subtypes. The most common 

approach to clustering is to use an unsupervised hypothesis-free method. Many of 

these methods exist, including hierarchical clustering, k-means, and graph-based 

(Lafzi et al. 2018). 

 

Hierarchical clustering can either combine individual cells into larger clusters, known 

as agglomerative clustering, or divide larger groups into smaller ones, known as 

divisive clustering (Appendix 2.8c; Kiselev et al. 2019). Hierarchical methods provide 

consistent results without a predefined number of clusters, however, can be 

extremely compute intensive with increasing dataset size. 

 

K-means clustering methods use k centroid estimation (centres of each cluster), 

assigns each cell to its nearest centroid, recomputes k centroids on the basis of the 

means of the cells in each centroid clusters, and then reiterates the steps until 

convergence (when the assignments no longer change; Appendix 2.8b; Lafzi et al. 

2018). K-means clustering is a fast approach method to clustering given the simplicity 

of the algorithm. However, the method has shown to favour spherical clusters, which 

can lead to incorrect clustering on irregular size and shaped datasets (containing 

multiple cell types, for example). The number of k clusters must also be specified, 

which can lead to under- or over-clustering of the dataset, and the method is 

completely dependent on the randomly chosen starting coordinates, meaning the 
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method must be run multiple times to ensure the clustering is stable (Hicks et al. 

2021). 

 

Graph based clustering has become a popular approach since the development of 

the Seurat pipeline(s). The graph-based method embeds cells into a highly 

dimensional graph-like structure using the PCA space as input, where each node 

represents a cell, and each cell is connected to its nearest neighbour. Edges are then 

drawn between cells with similar gene expression patterns, with more similar cells 

having more weighted edges and less similar cells having less weighted edges. The 

graph is then partitioned into ‘quasi-cliques’ or highly connected ‘communities’ 

through the use of a Louvian algorithm (Appendix 2.8d, e) (Blondel et al. 2008; Satija 

et al. 2015a). The graph construction avoids making assumptions about cluster shape 

and number of cells per cluster and is scalable to larger datasets. The method also 

accepts a range of data input types, including processed data such as PCs (Lafzi et al. 

2018) which has shown to generate better cluster separation. The user also is not 

required to provide a number of output clusters, instead a resolution parameter is 

needed. The resolution parameter determines how many nearest neighbours each 

cell has when constructing the graph, a higher resolution generates more tightly 

connected clusters (i.e. more, and potentially smaller clusters) and a lower resolution 

generates less-connected clusters (i.e. less, and larger clusters). A low resolution can 

be useful for identifying general cell populations within a heterogeneous dataset, 

whereas a higher resolution may be better at finding rare subpopulations. 
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The main disadvantage to the method is that the algorithms don’t work well with 

smaller datasets (< 1000 cells), as they rely on many connections between nodes. 

Information on clustering parameters can be found in Chapter 5.2 and Appendix 5.1 

 

2.12.2.9 t-Stochastic Neighbour Embedding (t-SNE) 
 

T-SNE models the probability distribution of neighbours (set of points) around each 

point in the dataset. Higher probabilities are given to points (cells) that are more 

similar, and lower probabilities are given to points that are more dissimilar. Euclidean 

distances are first measured for each point between all points. Probability (which 

represents similarity) is then measured, and a Gaussian centred probability 

distribution is created. The same method is then performed on the points in the two- 

or three-dimensional space (dimensions are provided by the user) with exception to 

a t-distribution used to measure the probability between the low dimensional points. 

The distance between the two distributions, in relation to the coordinates of the 

points, is then minimised using Kullback-Leibler divergence model and the data is 

successfully reduced. The overall goal of t-SNE is to create a two- or three- 

dimensional mapping that maximises similarities and minimises differences between 

the distributions over all points in the dataset. t-SNE efficiently highlights local 

structure, however, suffers at computing inter-cluster relationships and is faced with 

slow compute times when scaled to large-scale datasets (Becht et al. 2018). Users 

also must provide a ‘perplexity’ value when performing t-SNE. Perplexity is a fitting 

parameter which is coarsely equivalent to the number of nearest neighbours to use 

when running the algorithm. A low perplexity value aims to preserve local 

interactions, whereas higher values aim to preserve a more global structure. T-SNE 

is also a stochastic method, which chooses random starting points each time it is run. 
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This starting point is also referred to as a seed value. The method is also sensitive to 

perplexity values, and so users should therefore save the seed which was first used 

and run the method multiple times to choose the best perplexity value (Andrews and 

Hemberg 2018). T-SNE parameters can be found in Chapter 5.2 and Appendix 5.2  

 

2.12.2.10 Uniform Manifold Approximation and Projection (UMAP) 
 

To overcome some of t-SNE’s limitations, UMAP was developed by McInnes and 

colleagues in 2018. The authors claim this method preserves just as much local 

structure and more global structure, coupled with significantly faster compute times. 

The method is comparable to t-SNE, where it aims to preserve the relationships 

between the datapoints in a high-dimensional space and project into a two- or three-

dimensional space.  

 

The method first constructs a ‘fuzzy simplical complex’. A weighted graph is 

constructed using a complex mathematical formula, involving the generation of a 

Čech complex and a Vietoris-Rips complex. A Čech complex is a method of 

representing a topology, which uses building blocks known as simplices (a k-

dimensional object which is formed through the connection of k + 1 points). A 0-

simplex is a point, a 1-simplex is a line, and a 2-simplex is a triangle. The topology of 

the dataset can be accurately captured and represented through the use of simplices, 

and a Čech complex can be formed through the combination of these simplices. Each 

datapoint in the dataset represents a 0-simplex and extending a radius, the size of 

which is determined by the distance to its kth-nearest neighbour, from each 0-

simplex will construct a set of 1-, 2-, and higher-simplices. When two radii intersect, 

a 1-simplex is generated. As the radii continue to expand, increasing simplices are 
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formed. The graph then becomes ‘fuzzy’. Each connection is made into a probability 

of similarity, the further away cells are from each other, the lower the probability 

and the more ‘fuzzier’ the graph. Therefore, as the radius grows, the less likely cells 

are to be related and the ‘fuzzier’ the graph becomes. Most of the dataset can be 

represented by 0- and 1-simplices, which compose the Vietoris-Rips complex. 

Computationally, this complex is very easy to work with, and is what gives UMAP its 

superior speeds. Local structure is furthermore preserved by requiring that each 

point must be connected to its nearest neighbour. This generates a highly 

dimensional space which is then used to construct and optimise a two- or three-

dimensional space in a similar manner to t-SNE. This projection into a lower 

dimensional space is significantly quicker than t-SNE due to the mathematical 

approaches used during the construction of the fuzzy simplical complex.  

 

UMAP also has two hyperparameters that can be adjusted: n_neighbours and 

min_dist. N_neighbours is the number of approximate nearest neighbours used to 

construct the initial graph. This parameter is used to balance local versus global 

structure. Min_dist is the minimum distance between the points in the low 

dimensional space and controls how tightly packed the points are together on the 

UMAP plot. These parameters are easier to understand than the t-SNE parameters 

and help to generate more meaningful representations of the dataset. UMAP 

parameters can be found in Chapter 5.2 and Appendix 5.2. 

 

2.12.2.11 Cell Type Identification 
 

Clusters were next identified and appropriately annotated using marker visualisation 

and DEG analysis. Cell type markers were obtained from the Human Protein Atlas 
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(HPA) and various journal articles (Ji et al. 2020; Solé-Boldo et al. 2020; Wang et al. 

2020; Guerrero-Juarez et al. 2022; Yerly et al. 2022; Quah et al. 2023; Ren et al. 2023; 

The Human Protein Atlas. 2023). Markers used can be found in Appendix 5.3. UMAP 

and Violin Plots were used to visualise each marker, and Seurat’s ‘FindAllMarkers’ 

function was used to generate DEGs for each cluster. Top cluster DEGs were then 

visually assessed for common cell type markers, and also used as input into g:Profiler 

and the g:GOSt functional profiler analysis was performed. The HPA result section 

was scrutinised the most, as results such as ‘skin1: melanocytes’ worked in 

conjunction with the marker visualisation. Once clusters were identified, identities 

were assigned using the ‘RenameIdents’ function. 

 

2.12.2.12 Dataset Integration 
 

The method addresses common problems associated with the investigation of 

multiple samples, such as the number and type of cells, and technical properties such 

as sample processing, library preparation, and sequencing depths. There are 

different integration methods, each encompassing different algorithms and 

assumptions on the data (Argelaguet et al. 2021; Forcato et al. 2021). All methods of 

integration use an ‘anchor’, a feature which is used to link all datasets. There are 

three types of anchors that can be used, and therefore three types of integration: 

Horizontal integration (features as anchors), vertical integration (cells as anchors), 

and diagonal integration (no anchor). Horizontal integration is used for same-

modality experiments where cells have been profiled from the same tissues across 

independent samples. This method uses the common gene set as the integration 

anchor. Vertical integration is used for multi-modality experiments where different 

assays have been performed on the same cells (matched assays). For this method, 
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the cells would be used as the integration anchors. Finally, diagonal integration is 

used where both the cells and the genomic features differ between experiments. An 

example of this is where scRNAseq and single cell assay for transposase-accessible 

chromatin using sequencing (scATACseq) are applied to separate groups of cells. All 

of my experiments involved the transcriptomic profiling of the same tissues across 

independent samples, so horizontal integration was performed. I selected and tested 

three of what I considered to be the most used horizontal integration methods at the 

time: Seurat v3 (Stuart et al. 2019), scTransform (Hafemeister and Satija 2019a), and 

Harmony (Korsunsky et al. 2019). These three methods, along with others, are 

classically referred to as batch correction tools, as they address the problems faced 

with different batches of experiments (both biological and technical variation). It is 

important to note that whilst the integration techniques group cells based on similar 

gene expression, this does not necessarily mean that those grouped cells belong to 

the same cluster. These integration techniques are used primarily as a batch 

correction method. 

 

2.12.2.12.1 Seurat v3 Integration 
 

Samples are first processed individually by log normalising and selecting HVGs. An 

initial dimensional reduction is made in the form of a Canonical Correlation Analysis 

(CCA; Butler et al. 2018), which finds linear combinations of features across cells in 

the datasets that are maximally correlated, therefore identifying shared correlation 

structures across those datasets (also known as diagonal-CCA). The CCA returns 

vectors, similar to PCA, but whose gene-level projections are correlated between the 

datasets, but not necessarily aligned. Similar to Seurat’s clustering method, each CCA 

vector represents a metagene, and each metagene is linearly transformed, and the 
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mapping between each metagene is stretched or compressed through ‘dynamic time 

warping’, which corrects for changes in population density. This results in a single, 

aligned, low-dimensional space that represents all the datasets. The key difference 

between CCA and PCA here is whilst CCA identifies correlated gene modules that are 

present in all datasets that define shared biological states, PCA will only identify 

sources of variation in individual datasets whether said variation is present across all 

samples or not. However, the authors note in a later publication that the comparison 

of CCA vectors across datasets can still be problematic (Stuart et al. 2019). CCA, unlike 

PCA, does not account for global differences in scale between each dataset (such as 

differences in normalisation). A new version of Seurat’s integration was presented 

(v3), which addressed this issue and also built upon the algorithm to further improve 

the integration of datasets. The initial CCA dimensional reduction is firstly improved 

through L2-normalisation of the CCA vectors across all samples, which scales the 

expression of genes across the datasets, so they are on a comparable scale. Post-

dimensional reduction, K-Nearest Neighbours (KNNs) are calculated for each cell 

within each paired dataset based on the L2-normalised CCA vectors. KNNs is an 

algorithm that calculates the k (k is a user defined hyperparameter) most similar 

points to a new data point, and then assigns the new data point to the same class (or 

cluster) as the majority of its neighbours. KNN firstly calculates the distances 

between each data point and all other data points, and the k data points that have 

the shortest distances are then considered to be the nearest neighbours of the new 

data point. Finally, the KNNs are then used to calculate the Mutual Nearest 

Neighbours (MNNs) for each cell across different datasets that are in the same 

cluster. These pairwise incidences are referred to as ‘anchors’. This method is 

essentially identifying clusters of cells that have similar gene expression for each 
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dataset first, and then overlaying clusters between datasets that have similar gene 

expression to create one integrated dataset (Appendix 2.9). An interesting point to 

make about this method is that when performing integration, the user can use a 

‘reference’ dataset. This reference dataset can be used to guide the algorithm (as 

cluster identities are already known) when integrating ‘query’ datasets. The method 

can also be run without using a reference. The anchor identification is key for the 

integration of the datasets. In some incidences, there will be a population of cells 

that are present in one dataset, but not present in the other and should therefore 

not create any anchor pairs. However, in practice, this does happen in low 

frequencies. To combat this, anchor filtering and scoring is performed before the final 

integration occurs. Firstly, the nearest neighbours of each anchor query cell are 

checked in the reference dataset. If the anchor reference cell is found within the first 

k.filter neighbours (again, user defined), then the anchor is retained. Secondly, to 

further minimise the likelihood of incorrectly identified anchors, a shared nearest 

neighbours (SNN) graph is generated for each reference anchor cell. This shows 

which cells are neighbours of the anchor cell in both the reference and the query 

datasets. The shared neighbour overlap is then computed between anchor and query 

cells and is assigned as an anchor score. Higher scoring anchors are more likely to be 

accurate than lower scoring anchors. This anchor score is then implemented into the 

algorithm during final integration. After Seurat integration, the dataset is then 

processed as previously described (scaled, PCA, Clustering, UMAP). 

 

2.12.2.12.2 scTransform Normalisation 
 

scTransform, whilst not an integration method, is a more recently endorsed 

normalisation strategy that aims to avoid some of the pitfalls associated with the 
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standard normalisation processes. The authors (Satija lab – Seurat developers) have 

included this normalisation as an improvement to their standard integration pipeline 

at the bottom of their manual page, hence why I have included it as another 

integration method in this section. The publication came at the end of 2019, shortly 

after their Seurat v3 integration update (Hafemeister and Satija 2019a). 

 

The authors observed, for the standard log normalisation approach, did not affect all 

genes equally. Genes with low-medium abundances were typically normalised more 

effectively than genes with high abundances. This is because the variances of low 

abundance genes are amplified with log normalisation, but very little effect is seen 

on variances of high abundance genes. They also observed a significant imbalance of 

variances in the data. Cells with low total UMI counts tend to have higher variances 

for higher abundance genes, this is due to the amplification of variance in all genes 

by log transformation, but the variance is already high in cells with low total UMI 

counts, leading to a situation where the variance of high abundance genes is 

disproportionately high, making identification of differentially expressed genes 

difficult. To combat this, the authors solution was to use Pearson’s residuals to 

transform the data. Briefly, the Pearson’s residuals from a ’regularised negative 

binomial regression’, in which cell sequencing depth is utilised as a covariate in a 

generalised linear model, can successfully remove the technical noise from 

downstream analyses whilst simultaneously preserving biological heterogeneity. 

Rather than applying a global scaling factor (as is the case in log normalisation), this 

model multiplies gene expression by a gene-specific weight which is governed by 

evidence that a gene is non-uniformly expressed across cells. Genes with a more 

uniform expression across cells will have a lower weight, whereas genes with a more 
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non-uniform distribution of expression will have a higher weight. The benefit to this 

approach is that the model considers both the expression of the gene and the 

distribution of its expression across the cells, allowing for the effective identification 

of rare cell types. 

 

2.12.2.12.3 Harmony Integration 
 

Harmony integration was first introduced by Korsunsky and colleagues in late 2019 

(Korsunsky et al. 2019) as a ‘superior’ approach to integrating of datasets. The 

authors claimed this approach could be performed on up to one million cells on a 

personal computer. The method first starts with a low-dimensional space generated 

through PCA analysis, and then applies L2-normalisation to each cell to generate a 

cosine distance. This cosine difference is a more robust measurement of cell-to-cell 

similarities. This projects the cells into a unit hypersphere, and so the next step of the 

algorithm uses k-means clustering (Chapter 2.11.2.8) with 10 random restarts to find 

initial locations of the cluster centroids. These cluster centroids are then used as 

input into another algorithm that assigns cluster membership to each cell. This 

algorithm calculates the distance of each cell to each cluster centroid and assigns a 

value from 0 to 1. The initial cluster diversity is then calculated by aggregating the 

number of cells from each dataset assigned to each cluster. This initialised Harmony 

object (initial cluster assignments, scaled PC embeddings, and cluster diversity 

statistics) is then used to perform Harmony clustering (or maximum-diversity 

clustering), which performs iterative (user defined) centroid estimation and cluster 

assignment. Cells are then re-assigned to the cluster centroids using the cluster 

diversity to maximise diversity within the clusters, and cluster centroids are then re-

positioned to be closer to their assigned cells. The result here is the identification of 
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shared groups of cells between datasets. A correction model is then applied to the 

data, which, for each cell, estimates how much its dataset identity contributes to its 

PCA scores and subtracts this contribution from that cells PCA score. Harmony then 

reiterates all steps above until cell cluster assignments are stable (Appendix 2.10).  

 

2.12.2.12.4 Integration Method Testing 
 

Default parameters were used for all three methods, with exception for Seurat v3 

integration, where no reference dataset was used. For Seurat v3 integration, samples 

were processed individually (QC), normalised, cell cycle scored, and HVGs were 

selected (as described in Chapter 2.11.2.2-2.11.2.5). Samples were then integrated 

using Seurat’s ‘SelectIntegrationFeatures’, ‘FindIntegrationAnchors’, and 

‘IntegrateData’ functions. The integrated dataset was then scaled, and PCA, 

clustering, and UMAP was performed (as described in Chapter 2.11.2.6-2.11.2.8, and 

Chapter 2.11.2.10, respectively). For scTransform, samples were processed 

individually, and cell cycle scoring was performed.  Samples were then normalised, 

scaled and HVGs were selected using the ‘SCTransform’ function. Integration was 

then performed using ‘SelectIntegrationFeatures’, ‘PrepSCTIntegration’, and 

‘FindIntegrationAnchors’ and ‘IntegrateData’ using “SCT” as the normalisation 

method. The integrated dataset was then processed in the same manner as the 

Seurat v3 method. For Harmony integration, samples were first processed 

individually and then merged into one dataset using the ‘merge’ function. The 

merged dataset is then normalised, cell cycle scored, HVGs selected, and PCA 

performed. ‘RunHarmony’ function is then used to perform Harmony’s integration 

on the merged dataset. The integrated dataset is then clustered and UMAP is 

performed. 
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2.12.2.13 Downstream Analysis of Integrated Data 
 

2.12.2.13.1 Calculating the Percentage of Cells Expressing Marker Genes in Each 
Cluster for Each Sample 
 

To account for these differences, a duplicate dataset was made for each marker gene 

and an expression filter of > 1 (log of normalised reads + 1) was used. The following 

calculation was then used to identify the percentage of cells expressing the marker 

gene > 1 in each cluster for each sample group: 

 

𝑵𝒖𝒎𝒃𝒆𝒓	𝒐𝒇	𝒄𝒆𝒍𝒍𝒔	𝒘𝒊𝒕𝒉	𝒆𝒙𝒑𝒓𝒆𝒔𝒔𝒊𝒐𝒏 > 𝟏	𝒊𝒏	𝒄𝒍𝒖𝒔𝒕𝒆𝒓
𝑻𝒐𝒕𝒂𝒍	𝒏𝒖𝒎𝒃𝒆𝒓	𝒐𝒇	𝒄𝒆𝒍𝒍𝒔	𝒊𝒏	𝒄𝒍𝒖𝒔𝒕𝒆𝒓 	× 	𝟏𝟎𝟎 

 

2.12.2.13.2 Copy Number Variation Analysis 
 

inferCNV was used to identify putative tumour cells in the samples. inferCNV is a 

Python package that can also be run in R via the Reticulate package (version 1.34.0) 

which provides a Python interface. For the inferCNV package (version 1.3.3) to 

operate functionally, the following packages were additionally installed: igraph 

(version 1.5.1), Seurat-disk (version 0.0.0.9015), Seurat-data (version 0.1.0), 

DECIPHER (version 2.30.0), and Phylogram (version 2.1.0). A conda environment was 

created and selected using the ‘reticulate::use_condaenv’ function, and the following 

Python packages were installed using the ‘reticulate::py_install’ function: NumPy 

(version 1.22.3), Python-igraph (version 0.11.2), Pandas (version 2.0.3), UMAP-learn 

(version 0.5.4), and Leidenalg (version 0.10.1). The integrated dataset was next 

subsetted into individual samples via the ‘subset’ function using the ‘orig.ident’ 

metadata slot to select each sample. subsetting of the integrated dataset enabled 
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each individual sample to retain the clustering and cell type information. To run 

inferCNV, count matrices were generated for each sample by pulling the counts for 

each cell from the RNA assay for each sample. Sample annotations were also 

generated by pulling the Seurat cluster information from the metadata and 

reformatting it into a data frame. An InferCNV object was then created using the 

‘CreateInfercnvObject’ function, using the generated counts matrices, sample 

annotations, and a downloaded human Gencode gene coordinate file (version 19) as 

input, and Melanocytes, Fibroblast-like, and Endothelial cells as the references. 

inferCNV was then run on the inferCNV object via the ‘infercnv::run’ function with 

analysis mode = ‘samples’, ‘ward.D2’ as the hierarchical clustering method, and a 

value of 0.1 as the cut-off which is vital for 10x Genomics data. Following UMAP and 

cell annotation of the main dataset, keratinocyte populations were subsetted via the 

‘subset’ function using the cell identities as the subsetting factor. PCA, clustering, and 

UMAP was rerun on the keratinocyte dataset, with a higher resolution parameter to 

generate smaller, more defined clusters. Keratinocyte populations were then 

identified through marker expression and gene set expression. Gene set expression 

was assessed through the ‘AddModuleScore’ function, which takes a list of genes as 

input and calculates a ‘module score’ for that gene set. Gene sets were obtained from 

the Molecular Signatures Database (mSigDB), CellMarker 2.0 database, and journal 

articles. Keratinocyte populations were annotated as previously described, and 

populations of interest were manually selected via the ‘CellSelector’ function and 

selected cells were annotated and added to the cell identities in the respective 

metadata slot. DEGs were then generated between the various populations using the 

‘FindMarkers’ function, using the ‘ident.1’ and ‘ident.2’ as the comparative entities.  
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2.12.2.13.3 RNA Velocity Analysis 
 

A minor pitfall to scRNAseq experiments is that they provide only a snapshot of 

cellular dynamics at the time the cell was processed. Whilst providing an unbiased 

and high-resolution transcriptomic landscape of captured cells, it does not 

conventionally offer a look into the dynamical transitions between cellular states 

(Kolodziejczyk et al. 2015; Li et al. 2023). This naturally led to the development of 

trajectory inference algorithms which constructed potential branching trajectories 

which was based on the similarity of the transcriptomic profiles of the cells (Bendall 

et al. 2014; Haghverdi et al. 2016; Setty et al. 2019). The main challenge of these 

algorithms was determining the direction of the velocities and the root and terminal 

cell states. One such method to incorporate all this is RNA velocity analysis, which 

counts nascent (unspliced) mRNA’s and mature (spliced) mRNA’s and computes their 

correlation (La Manno et al. 2018). RNA velocity analysis was performed using the 

python package, scVelo (Bergen et al. 2020). The Seurat object was first exported 

from R into an anndata object and then the standard scVelo pipeline was performed 

using the stochastic model. RNA velocity was performed using the scVelo Python 

package (version 0.2.5). Three datasets were analysed: BCC & NS Keratinocytes, BCC 

keratinocytes, and NS keratinocytes. The BCC and NS keratinocyte datasets were 

generated by subsetting the BCC & NS keratinocyte dataset with the ‘subset’ 

function. Firstly, metadata tables were generated for each dataset by extracting the 

following: cell IDs, UMAP embeddings, and cell barcodes. Expression matrices were 

generated by extracting the count data from the RNA data slot via the ‘GetAssayData’ 

function. Dimensionality matrices were generated by extracting the PCA embeddings 

and finally, gene names were also extracted. Sample loom files were generated using 

the HAWK supercomputer. Briefly, the velocyto (version 0.17) and samtools (version 
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1.10) modules were loaded and velocyto was run on each sample using each samples 

barcode and binary alignment map (BAM) files as input along with a human gene 

reference file (Gencode GRCh38). In Python, the following packages were then 

loaded: ScanPy (version 1.9.4), anndata (version 0.10.0), NumPy (version 1.22.3), 

Pandas (version 2.0.3), cellrank (version 1.5.1), and scVelo (version 0.2.5). Metadata 

tables were read in along with the loom file to make an anndata object for each 

sample. Sample anndata objects were then concatenated into one object and pre-

processed using the ‘scv.pp.filter_and_normalize’ and ‘scv.pp.moments’ functions. 

RNA velocity was then estimated using the ‘scv.tl.velocity’ function and embedding 

fields were projected using the ‘scv.pl.velocity_embedding_stream’ function. 

Trajectory inferences were also generated by using PAGA graph abstraction. PAGA 

velocity graphs were generated using the ‘scv.tl.paga’ and ‘scv.pl.paga’ functions. 

 

2.12.2.13.4 Single Cell GSEA 
 

Single cell GSEA (scGSEA) was performed on the clusters to understand the enriched 

pathways and gene sets between them. The hierarchical clustering from the scGSEA 

analyses was also used to investigate cluster similarity. scGSEA was performed using 

the singleseqgset package in R. Firstly, the gene sets of interest were downloaded 

and loaded into R: Hallmarks, C2 Biocarta, C2 KEGG, C2 PID, C2 Reactome, and C2 

WikiPathways. The log fold change was then calculated between clusters for all genes 

using the logFC function. scGSEA was then performed on each cluster for each gene 

set using the Wilcoxon Mann Whitney correlation corrected GSEA function 

(wmw_gsea). The statistics and p value columns were then extracted and corrected 

for multiple comparisons. Heatmaps were then generated for each gene set database 

using the heatmap3 package and scaling the rows.  
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Chapter 3: The Role of CD200 on 
BCC Cancer Stem Cells 

 

3.1 Introduction 
 

Our previous work demonstrates that CD200 is expressed by BCC cancer stem cells 

and is essential for the formation of the BCC tumour (Colmont et al. 2012; Colmont 

et al. 2013b). However, we were unable to definitively conclude whether CD200 is a 

functionally relevant marker of these cancer stem cells, or if it is merely just a protein 

that happens to be located on the surface of these cells. Given that only 1 in 822 

CD45- CD200+ BCC cells are able to recapitulate the tumour, the latter statement is 

likely to be true. However, CD200 is an immune modulator and therefore may be 

essential for BCC cancer stem cell survival. 

 

There have been multiple lines of evidence to suggest the ability of the host immune 

system is able to eradicate BCC. In the immunosuppressed setting, such as organ 

transplant recipients, the incidence of BCC is higher. Cessation of the 

immunosuppression has shown that the risks associated with immunosuppressive 

therapies are diminished (Lobo et al. 1992; Euvrard et al. 1995; Otley et al. 2001). 

Similarly, an increased risk in BCC incidence is also seen in HIV patients (Lobo et al. 

1992; Crum-Cianflone et al. 2009). Histological analyses have shown that 20% of BCCs 

demonstrate regression that is associated with an invading inflammatory cell 
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infiltrate (Go et al. 2019). Multiple studies have also investigated the effects of 

various therapies, such as direct stimulation of the immune system by injection of 

interferons which resulted in BCC resolution, and peri-lesional injection of 

interleukins which resulted in BCC killing (RC et al. 1990; Lkić et al. 1991; Alpsoy et al. 

1996; Kaplan and Moy 2000). The BCC Tumour Microenvironment (TME) contains a 

large amount of tumour infiltrating CD45+ inflammatory cells, representing ~13% +/- 

11% of all cells. The BCC immune response consists mainly of T cells, with a ratio of 

2:1 (CD4+/CD8+), and compared to normal surrounding skin, BCC tumours contain 

significantly greater numbers of Tregs (>25% of tumour associated CD4+ T cells; 

Kaporis et al. 2007). Attenuation of dendritic cells (DCs), T cell effector responses, 

and NK cell recruitment is also seen in BCC TME due to the release of IL-2, TGF-β, IL-

2, and IL-12 by the BCC keratinocytes (Curson and Weedon 1979; Wong et al. 2000; 

Stary et al. 2007; Vivier et al. 2011). 

 

CD200 is an immunomodulatory protein that binds to its receptor, CD200R, which in 

turn downregulates immune cell activity (Barclay et al. 2002). CD200 is widely 

expressed in a range of cell types including B and T cells, dendritic cells, endothelial 

cells, and kidney cells, to name a few (Wright et al. 2001). CD200:CD200R interaction 

has been shown to modulate immune cell activity via inhibition of proinflammatory 

cytokine secretion and NK and basophil cell activities, enhancement of anti-

inflammatory cytokine secretion, and promotion of regulatory T cell induction (Choe 

and Choi 2023). Overexpression of CD200 has been seen in a number of solid cancers 

and haematological malignancies and its increased expression has been linked to 

poor prognosis (Coles et al. 2011). The expression of CD200 is also thought to provide 

cells, in particular stem cell populations, with an immune-protective function which 
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in turn protects from immune damage (Gorczynski et al. 2001). Our lab has previously 

shown that CD200 is also expressed by BCC cancer stem cells and have hypothesised 

that its expression provides an immune-evasive role (Colmont et al. 2013b; Morgan 

et al. 2019). 

 

Although the CD200+ CD45- BCC cell subpopulation has a tumour initiating cell (TIC) 

frequency of 1 in 822, expression of CD200 may still be functionally relevant. 

Therefore, I first sought to determine whether CD200 expression in BCC, in particular 

BCC cancer stem cells, was functionally important. To do this, I first assessed whether 

CD200 in a non-skin cancer cell line was able to cause immune evasion. I then 

xenografted CD200+ cells into mice and assessed the same thing. Lastly, I then used 

a well characterised BCC cell line and performed the same experiments and 

additionally assessed colony forming ability of the sorted cells to determine the 

functional relevance of CD200. The majority of the work from this chapter was 

included in a recent publication where we assessed CD200’s ability to cause immune 

evasion (Morgan et al. 2022). 

 

3.2 Optimisation of CD200 Flow Sorting Protocol 
 

I first wanted to determine the specificity of the CD200 antibody and the ability of it 

to detect positive, and not negative, cells. I used a cervical keratinocyte cancer cell 

line, HeLa, which does not normally express CD200, that had been transduced in our 

lab with CD200+-GFP or vector control-GFP (Morgan et al. 2022). Flow cytometric 

analysis of HeLa CD200+ and CD200- cell lines reproducibly showed that the CD200 

antibody specifically identified CD200+ cells and could distinguish CD200- cells (n=5; 
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Figure 3.1a, HeLa wt; Figure 3.1b, HeLa-GFP+-CD200-; Figure3.1c, HeLa-GFP+-

CD200+). Both cell lines also demonstrated consistent protein expression through 

flow cytometry (Figure 3.1d; HeLa CD200+, 93.90% +/- 0.21 SEM. HeLa CD200-, 0.31% 

+/- 0.11 SEM) and CD200 RNA expression was confirmed by RT-PCR when flow-

sorting the HeLa CD200+ cell line into CD200+/CD200- cells (Figure 3.1e; HeLa 

CD200+, 2090 AU. HeLa CD200-, 0 AU. n=3).  



  

 
 
126 

 
 



  

 
 

127 

Figure 3.1 | Assessment of CD200 expression in HeLa cell lines. HeLa cells were 

transduced with CD200+-GFP or vector control-GFP and run through a flow cytometer 

to assess GFP and CD200 expression. a) HeLa wild type cell line, b) HeLa vector control 

(CD200-) cell line, c) HeLa CD200+ cell line. d) Percentage of live cells expressing 

CD200 in HeLa CD200+ and HeLa CD200- cell lines, n = 4 biological replicates per cell 

line. Error bar shows mean +/- SEM e) HeLa CD200+ cell line was flow sorted into 

CD200+ and CD200- cells, and RT-PCR was performed to assess CD200 RNA 

expression, n=3 technical replicates. 
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3.3 CD200 Expression is associated with a Reduction in Immune 
Cell Infiltration and Increases NK Cell Apoptosis in Transduced 
HeLa Xenografts 
 

Our in vitro data, which is now published (Morgan et al. 2022), had determined that 

BCC demonstrated an absence of NK cells within the tumour microenvironment due 

to CD200-mediated apoptosis. As CD200 is a cell surface marker used to enrich BCC 

cancer stem cells, I next wanted to determine whether CD200 had a functional role 

that may substantiate its role as a cancer stem cell associated protein. To address 

this, I performed xenotransplantation of HeLa CD200+ and HeLa CD200- cells into 

athymic nude mice (Figure 3.2a). Having determined that 106 HeLa cells could 

generate a 1cm tumour within mice (Liu et al. 2012),  1 x 106 CD200+ and CD200- 

cells were injected into the left and right flanks of 6- to 8-week old nude mice (both 

n = 5). After 5 days, tumours reached size thresholds and mice were subsequently 

culled. HeLa CD200+ tumours demonstrated ubiquitous CD200 expression when 

compared to HeLa CD200- tumours (Appendix 3.1). Initial measures of the tumours 

showed no significant differences in volume (CD200+, 8.26 +/- 5.26 mm3 and CD200-

, 11.42 +/- 11.52 mm3, mean +/- SEM; Figure 3.2c). H&E-stained sections (Figure 3.2b) 

comparing HeLa CD200+ to HeLa CD200- tumours determined significantly greater 

number of tumour cells (1,952 +/- 114.80 vs 1,240 +/- 90.99 per mm2 of tissue, mean 

+/- SEM; P < 0.001; Figure 3.2d) and lower necrotic areas (Figure 3.2c, necrotic areas 

marked with asterisk, and Figure 3.2e; 0.14 +/- 0.04 vs 0.36 +/- 0.07, mean +/- SEM; 

P < 0.05). Importantly, CD200+ tumours demonstrated a significant decrease in 

immune cell infiltrate (1,180 +/- 77.39 vs 1,551 +/- 128.60 per mm2 of tissue, mean 

+/- SEM; P < 0.05; Figure 3.2f). HeLa CD200+ tumours also demonstrated fewer NK 

cells within the infiltrate when compared to HeLa CD200- tumours (NK1.1; 1,024 +/- 
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239.8 vs 2,085 +/- 251.9 NK cells per mm2 of tumour tissue, respectively; Figure 3.3a, 

c and Figure 3.3bi). Thus, CD200 expression on HeLa cells led to immune evasion. 

 

To determine whether CD200 led to NK cell apoptosis, I next investigated the number 

of NK cells that were expressing CD200R and Cleaved Caspase 3. To address this, I 

used serial sectioning and staining, and identified the same region of NK cells across 

the sections. This allowed me to firstly quantify the number of NK cells (Figure 3.3bi 

and Figure 3.3c) and then quantify the percentage of these NK cells that express 

CD200R (Figure 3.3bii and Figure 3.3d) and Cleaved Caspase 3 (Figure 3.3biii and 

Figure 3.3e). I found that HeLa CD200+ tumours had a significantly greater number 

of apoptosing NK cells when compared to HeLa CD200- tumours (25.45 +/- 5.18% vs 

9.88 +/- 2.70%; mean +/- SEM; Figure 3.3biii and Figure 3.3e). There was no 

significant difference in CD200R expressing NK cells (11.76 +/- 3.00% vs 19.05 +/-

7.31%; mean +/- SEM; Figure 3.3bii and Figure 3.3d). Together, these findings 

supported our in vitro findings such that BCC CD200 ectodomain shedding leads to 

an absence of NK cells within the TME, thus suggesting that its functionally relevant 

to BCC cancer stem cells (Morgan et al. 2022). 
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Figure 3.2 | Xenotransplantation of HeLa CD200+/- cells. HeLa cells were transduced 

with CD200+-GFP or vector control-GFP and injected into the left and right flanks of 

athymic nude mice (both n=5) and left to establish for 5 days. Mice were then culled, 

and tumours harvested. Dissected tumours were fixed, paraffin embedded, and 

sectioned. a) Experiment schematic. b) Haematoxylin & Eosin (H&E) staining of both 

tumours. Asterisks denote necrotic areas. Zoomed panel shows enlarged necrotic 

areas. c) Tumours were measured post-dissection and volumes calculated in mm3. d) 

Total tumour cells were counted and displayed as cells per mm2 of tissue. e) Ratio of 

necrotic area to total tissue was calculated. f) Total immune cells were counted and 

displayed as cells per mm2 of tissue. Error bars = mean +/- SEM; *P<0.05; ***P<0.001 

by Mann Whitney test. 
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Figure 3.3 | Immunohistochemical analysis of HeLa CD200 +/- xenograft tumours. 

HeLa CD200+/- cells were transplanted into athymic nude mice and left to establish. 

Tumours were harvested 5 days later, and tumours sectioned. a) 

Immunohistochemical (IHC) staining for NK1.1 denotes NK cells. Zoomed panel shows 

enlarged area with NK1.1 staining. b) IHC staining for NK1.1 (i), CD200R (ii), and 

cleaved caspase-3 (iii). Dotted line depicts the same area of NK cells (NK1.1-positive) 

across the three histological sections. c) Quantification of the NK1.1 staining and 

depicted as number of NK cells per mm2 of tissue. d and e) Percentage of NK cells 

(NK1.1-positive) that express CD200R and cleaved caspase-, respectively. P < 0.05 (*). 

P < 0.001 (***). QuPath was used to analyse images. Graphs and statistical analyses 

were generated and performed in Graphpad. Error bars = mean +/- SEM; *P<0.05 by 

Mann Whitney test. 
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3.4 CD200 Expression is Associated with a Reduction in Immune 
Cell Infiltration and an Increase in NK Cell Apoptosis in 
Transduced UW-BCC1 Xenografts 
 

I next wanted to assess if CD200 could similarly invoke immune evasion in a BCC cell 

line, UW-BCC1. I first assessed the expression of CD200 in the cell line by flow 

cytometry which revealed a distinct population of CD200+ cells consisting of 3.9% +/- 

0.75 SEM of the total population (n=8, Figure 3.4a, b). I next flow sorted the CD200+ 

and CD200- populations and assessed CD200 RNA quantity and performed colony 

forming assays. Both populations contained extremely low amounts of CD200 RNA 

with no significant difference between them (1.76 AU vs 1.58 AU, respectively; Figure 

3.4c). I undertook three separate experiments, plating 100 and 500 cells per well in 

colony forming cell assays, to compare CD200+ to CD200- flow sorted cells. In all 

experiments, the colony forming efficiency of unsorted cells was higher than the 

sorted populations (Figure 3.5). There was significantly greater number of colonies in 

the unsorted population when 500 cells were plated in a colony forming cell assay 

(Figure 3.5c, P < 0.01). There were no significant differences in colony number 

between CD200+ and CD200- (26.33 +/- 2.53 vs 28.50 +/-1.97 and 77.57 +/- 5.52 vs 

67.63 +/- 6.06, mean number of colonies +/- SEM, Figure 3.5a, c, respectively) or area 

(2147 +/- 229.10 vs 2256 +/- 182.30 and 1974 +/- 288.70 vs 2167 +/- 259.40, mean 

colony area in mm2, Figure 3.5b, d, respectively). Hence there was no increase in 

colony forming efficiency in the CD200 population.  
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Figure 3.4 | In vitro analysis of CD200 expression in UW-BCC1 cell line. a) UW-BCC1 

was stained for CD200 antibody and expression was analysed on a flow cytometer. 

plot shows CD200 expression across live cells (DAPI-). b) graph shows CD200-positive 

cells as a percentage of live cells (DAPI-), n=8. Mean +/- SEM. c) UW-BCC1 cell line 

was sorted for CD200+ and CD200-. RNA was extracted from both populations and 

RT-PCR was performed with 3 technical replicates per population. Graph shows the 
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CD200 arbitrary units (AU) calculated by the 2-delta delta Ct method. Error bar = 

mean +/- SEM. 
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Figure 3.5 | Colony forming assays of CD200-sorted UW-BCC1 cells. UW-BCC1 cells 

were sorted for CD200+ and CD200-. 100 (a, b) and 500 cells (c, d) of each population, 

plus unsorted cells, were then plated for colony forming assay. Experiments were 

performed in triplicate biological replicates with triplicate technical replicate per 
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sample. Graphs and statistical analysis were performed in Graphpad. Error bars = 

mean +/- SEM; *P<0.05; **P<0.01 by Brown-Forsythe and Welch ANOVA test. 
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To test the hypothesis that CD200 expression on BCC cells would lead to immune 

evasion, I next transduced the UW-BCC1 cells with a lentiviral vector containing 

CD200+-GFP or GFP alone. To transduce cells, a CD200 complimentary DNA (provided 

by the I.M.A.G.E Consortium, clone ID 5299899) was subcloned into a PINCO 

retroviral expression vector which co-expresses GFP from an internal CMV promoter 

(kindly gifted by Professor Alex Tonks). Cells were then transduced with the vectors 

(transduction was kindly performed by Dr. Giusy Tornillo). Following transduction, 

CD200 expression was validated by flow cytometry (Appendix 3.2) and 

xenotransplantation experiments were then performed. Experiments were 

performed the same as with the HeLa cells. 1 x 106 UW-BCC1 CD200+ and UW-BCC1 

CD200- cells were injected in the left and right flanks (both n=5) of 6- to 8-week old 

athymic nude mice and left to establish. Tumours were first measured, which 

revealed no significant difference between the UW-BCC1 CD200+ and UW-BCC1 

CD200- cell lines (19.46mm3 +/- 5.76 vs 21.28mm3 +/- 7.58, mean +/- SEM; Figure 

3.6a). UW-BCC1 CD200+ tumours demonstrated ubiquitous CD200 protein 

expression when compared to the CD200- counterpart (Appendix 3.3).  

 

Quantification of H&E-stained sections (Figure 3.6c) showed a small, but significant 

increase in the number of tumour cells (3,786.57 +/- 97.15 vs 3,258.54 +/- 143.12; P 

< 0.05; mean +/- SEM; Figure 3.6b). UW-BCC1 CD200+ tumours also demonstrated 

significantly lower number of immune cells when compared to CD200- tumours 

(18,631 +/- 1,745 vs 25,941.30 +/- 2,362.23; P < 0.05; mean +/- SEM; Figure 3.7a). A 

significantly lower ratio of necrotic to normal tumour areas was also seen in the 

CD200+ tumours (0.017 +/- 0.003 vs 0.038 +/- 0.006; mean +/- SEM; P < 0.05; Figure 

3.7b). There were significantly lower numbers of NK cells in the CD200+ tumours 
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compared to the CD200- tumours (1,096.43 +/- 150.89 vs 2,333.04 +/- 368.69; P < 

0.05; mean +/- SEM; Figure 3.7c). Using serial tissue sections, I was able to determine 

the percentage of NK cells that expressed CD200R and Cleaved Caspase 3. UW-BCC1 

CD200+ tumours had significantly higher expression of cleaved caspase-3 (31.59% +/- 

6.28 vs 14.08% +/- 4.11; P < 0.05; mean +/- SEM; Figure 3.7d) but no significant 

difference in CD200R expression (40.73% +/- 6.02 vs 35.82% +/- 6.50; mean +/- SEM; 

Figure 3.7e). 
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Figure 3.6 | Xenotransplantation of UW-BCC1 CD200+/- cells. UW-BCC1 cells were 

transduced with CD200+-GFP or vector control-GFP and injected into the left and right 

flanks of athymic nude mice (both n=5) and left to establish for 5 days. Mice were 

then culled, and tumours harvested. a) Tumours were measured post-dissection and 
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volumes calculated. Volumes are given in mm3. Dissected tumours were fixed, 

paraffin embedded, and sectioned. c) Haematoxylin & Eosin (H&E) staining of both 

tumours. Zoomed panel shows enlarged necrotic areas. b) Total tumour cells were 

counted and displayed as cells per mm2 of tissue. *P<0.05 by Mann Whitney test. 

QuPath was used to analyse images. Graphs and statistical analyses were generated 

and performed in Graphpad. Error bars = mean +/- SEM. 
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Figure 3.7 | Analysis of UW-BCC1 CD200 +/- xenograft tumours. UW-BCC1 cells were 

transduced with CD200+-GFP or vector control-GFP and injected into the left and right 

flanks of athymic nude mice (both n=5) and left to establish for 5 days. Tumours were 

then harvested and sectioned for analyses. a) H&E section was used to count number 

of immune cells in the tumours. Total immune cells were counted and displayed as 

cells per mm2 of tissue. b) Ratio of necrotic area to total tissue was calculated. c) 

Immunohistochemical (IHC) staining for NK1.1 was used to identify and quantify NK 

cells. d and e) Percentage of NK cells (NK1.1-positive) that express cleaved caspase-3 
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and CD200R, respectively. P < 0.05 (*). QuPath was used to analyse images. Graphs 

and statistical analyses were generated and performed in Graphpad. Error bars = 

mean +/- SEM; *P<0.05 by Mann Whitney test. 
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3.5 Discussion 
 

CD200 had been used to identify the presence of cancer stem cells within BCC 

through the enrichment of tumour-initiating cells (Colmont et al. 2013b). The utility 

of CD200 in BCC, beyond its ability to act as a cancer stem cell marker, had not been 

established. CD200 has been reported to modulate the immune response. In the 

context of hair follicle, a reduction in CD200 expression has been associated with the 

permanent destruction of the hair follicle leading to hair loss (Rosenblum et al. 2006). 

Herein, I sought to determine the functional significance of CD200 on BCC cancer 

stem cells by undertaking in vivo studies to support the in vitro data outlining the 

mechanisms for CD200-mediated immune evasion (Morgan et al. 2022).   

 

First, I validated the use of a new CD200 antibody to successfully detect CD200-

positive cells, which could then be used to isolate live cells by flow-sorting for 

functional study. Building on in vitro data generated in the lab, I was able to 

undertake a xenografting experiment to determine if CD200 expression in vivo led to 

NK cell apoptosis. Using the existing HeLa cell model of CD200 expression, I showed 

that cultured CD200+ and CD200- HeLa cells could propagate tumour growth in vivo 

after subcutaneous injection of 1 million cells. I validated CD200 expression within 

tumour sections. In CD200- HeLa cell tumours there were large areas of necrosis, and 

the number of tumour cells was greater in the CD200+ HeLa cell tumours. The was a 

significant reduction in the immune infiltrate surrounding CD200+ HeLa tumours, 

notably a reduction in NK cell numbers. I used serial-section labelling of NK cells to 

show NK cell apoptosis in the tumour microenvironment of CD200+ HeLa tumours. 
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These findings supported our hypothesis that CD200 was a novel NK cell-specific 

immune checkpoint.  

 

Since BCC cells may be different from HeLa cells, I obtained a BCC cell line, UW-BCC1. 

These cells demonstrated equivocal CD200 labelling by antibody. I showed the flow 

cytometry characteristics of a CD200+ sub-population, did not express CD200 by RT-

PCR and did not enhance colony-forming efficiency as one might expect from cancer 

stem cell enrichment. Therefore, I transduced UW-BCC1 cells with a vector 

containing GFP alone and another containing CD200 and GFP, which I validated by 

flow sorting and RT-PCR. Once more, CD200 expression did not affect tumour size. 

As with the HeLa cell experiments, CD200 expression on UW-BCC1 cells led to NK cell 

apoptosis. 

 

Our recent work, which included the data from this chapter, showed that CD200 is 

functionally relevant to enable BCC immune evasion (Morgan et al. 2022). We have 

shown that CD200 ectodomain shedding, through matrix metalloproteinases MMP3 

and MMP11, releases a biologically active soluble CD200 form into the tumour 

microenvironment. Thus, even though CD200 is only expressed by a small BCC 

population, through ectodomain shedding, it was sufficient to reduce the 

peritumoural NK cell numbers. 

 

In conclusion, CD200 expression may be an important protein in mediating BCC 

cancer stem cell immune evasion. Even though CD200 is expressed by a small fraction 

of BCC cells, the tumour-initiating cell frequency is 1 in 822. However, CD200 

expression in BCC may define an important subgrouping worthy of further study.    
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Chapter 4: Bulk RNA Sequencing 
of Human BCC 

 

4.1 Introduction 
 

CD200 is used to identify BCC cancer stem cells based on its expression on human HF 

bulge stem cells, from which BCCs are thought to arise. Moreover, CD200 appears to 

be essential for maintaining BCC tumour immune evasion. Even though CD200 is only 

expressed by a small tumour population, ectodomain shedding means that CD200 

shields BCC from NK cell attack. Thus, CD200 defines an important functional subset 

within BCC which is enriched for BCC cancer stem cells.  

 

Since we have showed that CD200 is functionally relevant for immune evasion and 

survival of BCC cells and simultaneously identifies a TIC population, I next performed 

bulk RNA sequencing on this population. The aim of this chapter was to determine 

novel BCC cancer stem cell pathways that promote survival. In this chapter, I 

performed bulk RNA sequencing on CD200+ and CD200- UW-BCC1 BCC cancer cell 

line populations. I also optimised a conventional BCC tumour tissue dissociation 

protocol and subsequently performed bulk RNA sequencing on human BCC CD200+ 

CD45- and CD200- CD45- populations. 
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4.2 Results  
 

4.2.1 RNA Sequencing of Human BCC Cell Line, UW-BCC1 
 

In the previous results chapter, I had identified a CD200+ population in the UW-BCC1 

cell line. I next decided to undertake bulk RNA sequencing of flow sorted CD200+ and 

CD200- populations. I firstly isolated the CD200 population along with its negative 

counterpart using FACS and subsequently extracted RNA (n=4 per population). RNA 

quantity and quality of the samples was first determined using nanodrop™ and 

Bioanalyser™, respectively. All samples had an RNA concentration > 40ng/μL and a 

RIN quality score > 9. Samples were then sent to Novogene (Cambridge, UK) for 

library preparation and subsequent sequencing of the samples. Samples underwent 

and passed an internal quality control (QC) prior to mRNA, poly A enrichment and 

library preparation. One sample failed to produce a library and was subsequently 

removed from the sequencing run. The remaining libraries (4 x UW-BCC1 CD200+, 3 

x UW-BCC1 CD200-) were then sequenced on a NovaSeq 6000 S1 flow cell (PE150) to 

produce 6Gb of raw sequencing data per sample. Adapter sequences were removed, 

and low-quality reads were removed from the raw reads using the following 

parameters: 1) reads containing N > 10% (where N is an undetermined base), and 2) 

reads where the quality value of >50% of the bases in that read is ≤ 5 (base quality is 

provided by the sequencing machine). High quality reads were then mapped to the 

human reference genome (GRCh38) using Hisat2 (v2.0.5) (Kim et al. 2019). 

Normalised gene expression counts (FPKM) were then generated by featureCounts 

(v1.5.0-p3) (Liao et al. 2014). On average, there were 52 million 150 base pair (bp) 

paired-end total reads per sample, 95.99% of which were uniquely mapped to the 
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human genome and 93.42% that mapped to a unique position of the human genome. 

There was an average of 92.87% Q30 sequence quality and 49.71% GC content. An 

average of 89.41% reads mapped to exons, 8.49% mapped to introns, and 2.07% 

mapped to intergenic regions. There was a total of 58,735 mapped features, 25,823 

(43.97%) of which contained a null count across all samples. RNAseq sample 

information can be found in Appendix 4.1. Data was then run through a DESeq2 

pipeline (Love et al. 2014) to normalise the read counts, detect and remove any 

outliers, and produce CD200+ vs CD200- DEGs.  

 

I next checked for any correlations between the sorted populations. Samples were 

firstly checked for normal (Gaussian) distribution using a Shapiro-Wilk’s normality 

test (using α = 0.05). All samples were below the α level (< 0.05) and so the null 

hypothesis was rejected, indicating that samples are not normally distributed. A 

nonparametric two-tailed Spearman’s correlation test was therefore used to test for 

both positive and negative correlations between samples. A correlation matrix was 

generated and used as input for the gplots heatmap.2 function in R, which generated 

a heatmap of the R2 values and a dendrogram (Figure 4.1a). As expected, samples 

were highly correlated with a Spearman’s R2 > 0.95, though intriguingly, a marginally 

higher correlation was seen amongst the CD200+ sorted populations compared to 

their negative counterparts (average R2 = 0.961 and R2 = 0.956, respectively) which 

was also demonstrated through secondary dendrogram clade separation. Venn 

diagrams were also generated between the CD200+ samples and CD200- samples 

using normalised reads, in which there was a 13,544 and 13,461 gene overlap, 

respectively (Figure 4.1b and c, respectively).  I next wanted to observe any 

differences between the sample groups. To do this, a PCA was performed on the 



  

 
 
150 

normalised data, which generated 6 principal components. PC1 and PC2 were 

selected as the input for biplot generation, which represented > 50% of the dataset’s 

variance (50.54%). Interestingly, although all samples are highly correlated (as seen 

in the correlation analysis), the CD200+ population was clearly separated from the 

CD200- population along the PC1 axis (Figure 4.1, and e, respectively) and samples 

were clustered together, albeit slightly spread along the PC2 axis. We also see that 

the CD200- samples were less clustered and were widely dispersed along the PC2 

axis, suggesting that the gene expression amongst the CD200- population is more 

heterogeneous. A heatmap was generated on the 2,364 significant DEGs (normalised 

data, p.adj < 0.05) and hierarchical clustering (1 – Pearson’s correlation) was 

performed on the rows (genes) and columns (samples). The heatmap displayed a 

clear separation in gene expression profiles between the CD200+ and CD200- 

samples and similar gene expression within the groups, which is confirmed by the 

hierarchical clustering (Figure 4.2).  
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Figure 4.1 | Sample correlation analyses following bulk RNA sequencing. UW-BCC1 

cell line was sorted into CD200+ and CD200- populations (n=4 and n=3, respectively) 

and subsequently bulk RNA sequenced. a) A nonparametric two-tailed Spearman’s 

correlation test was performed using the normalised counts and heatmap was 

generated using the gplots package in R. The colour key represents the R2 values. 

These values are also in each box. Values closer to 1 depict higher similarities, 

whereas values closer to 0 depict no similarities. b, c) VENN analysis was performed 

on the CD200+ and CD200- normalised reads, respectively, which shows the number 

of genes shared or unique between the different samples. d, e) 2D and 3D principal 

component analysis (PCA) was performed on the normalised reads. PC1 and PC2 axes 

were used to plot d) and PC1, PC2, and PC3 axes were used to plot e). Red points, 

CD200- samples. Blue points, CD200+ samples. Percentages in brackets on the axes 

labels in d) depict the percentage of variation explained by that PC. All analyses and 

plots were generated in R. 
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Figure 4.2 | Heatmap of UW-BCC1 CD200+ and CD200- samples. UW-BCC1 cell line 

was sorted into CD200+ and CD200- populations (n=4 and n=3, respectively) and 

subsequently bulk RNA sequenced. Heatmap was generated using the sample 

normalised reads and the gplots package in R. Hierarchical clustering was also 

performed on the samples (columns) and genes (rows). Primary segregation was seen 

between the two sample groups, which have been separated by a black line. Colour 
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key shows the colours associated with the row Z-score. The row Z-score is an indicator 

of the expression value, which has been scaled across the samples to allow for 

comparison.  

 

Of the 2,364 significant DEGs (adjusted p value ≤ 0.05), 998 were up (Log2FC > 0, 

range 0.11 - 2.58) and 1366 were down (Log2FC < 0, range -0.1 - -4.98; Figure 4.3). 

CD200 was not a DEG. On further analysis of the data there were no read counts for 

CD200 in the negative or more importantly the CD200+ population. I validated the 

absence of CD200 in the sample sets by RT-PCR (Figure 3.4c). In summary, UWBCC1 

population did not demonstrate a flow cytometric discrete CD200+ population, did 

not express CD200 transcripts, and showed no increase in colony forming efficiency.  

Thus, UWBCC1 was a poor surrogate for the study of tumour initiating cells and 

therefore we had to rely on the study of primary human tumour tissues. 
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Figure 4.3 | Volcano plot of UW-BCC1 CD200+ vs CD200- differentially expressed 

genes. UW-BCC1 cell line was sorted for CD200+ and CD200- populations and 

subsequently RNA sequenced. Differential gene expression was then performed on 

both populations and a volcano plot was generated using the EnhancedVolcano 

package in R. Dotted lines denote significance boundaries. 
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4.2.2 Bulk RNA Sequencing of Primary Human BCC Cells 
  

4.2.2.1 Optimisation of Human BCC Dissociation Protocol 
 

While in vitro isolation of HeLa and UW-BCC1 cells requires simple trypsinisation, the 

isolation of human BCC cells requires both mechanical and enzymatic digestion. The 

original protocol for human BCC dissociation was over a decade old, so I initially 

compared it to the MACS tumour dissociation kit. First, I determined the impact of 

enzymatic degradation by comparing a 3-year-old batch of enzymes with a freshly 

purchased enzyme set. As expected, the new enzymes led to more efficient isolation 

of the human BCC cells (4.0 x 105 cells vs 1.9 x 105 cells, Figure 4.4b, a, respectively) 

and simultaneously preserved the CD200 epitope (2.4% vs 1.18%, Figure 4.4d, c, 

respectively). 
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Figure 4.4 | Comparison of enzyme batches on the conventional human BCC 

dissociation protocol. Two enzyme batches were compared during a dissociation 

protocol. a, c) show the data for the 3-year-old enzyme batch, hereby referred to as 

‘old’. b, d) show the data for the newly purchased enzyme batch. Using our labs 
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previously published protocol, human BCC tumours were mechanically dissociated 

and then enzymatically digested to isolate the BCC cells. Following cell isolation, the 

undigested tissue was collected, cryosectioned, and stained with Toluidine Blue. a) 

Undigested tissue visualised under a light microscope for the old enzyme batch. b) 

Undigested tissue visualised under a light microscope for the new enzyme batch. 

Isolated BCC cells were then stained for CD45, CD200, and DAPI and analysed on a 

flow cytometer. c) Flow cytometry plot for the old enzyme batch depicting percentage 

of live cells (DAPI-) that are CD45- (Y-axis) and CD200+ (X-axis). d) Flow cytometry 

plot for the new enzyme batch depicting live cells (DAPI-) that are CD45- (Y-axis) and 

CD200+ (X-axis). CD200 expression is summarised as a histogram above each plot. 
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Having optimised the conventional approach, I next compared dissociation against 

the MACS protocol. In every experiment, the MACS protocol consistently generated 

greater cell numbers (2.4 x 106 +/- 1 x 106 vs 2.5 x 105 +/- 8.6 x 104, mean +/- SEM, 

respectively; Figure 4.5a; n=6). In two experiments where both protocols were 

directly compared, the MACS protocol liberated >5-fold more cells (1.02 x 106 +/- 

6.75 x 105 vs 1.02 x 105 +/- 8.75 x 104, mean +/- SEM, respectively; Figure 4.5b). 

However, residual cells in the tumour tissue were evident, with clear epidermal cell 

layer structures also visible (Figure 4.5c). These results suggest that the MACS 

dissociation protocol appeared to be an improvement to the existing protocol when 

assessing the number of cells liberated from the tissue. 
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Figure 4.5| Comparison of conventional and MACS human tumour dissociation 

protocols in basal cell carcinoma. a) Graph shows the average number of cells 

obtained from conventional and MACS tumour dissociation protocols over 6 

individual experiments with varying amounts of tumour tissue. Bars represent mean 

+/- SEM, *P<0.05 by Mann Whitney test. b) Graph represents two individual 

experiments where equal amount of tumour tissue was used for each dissociation 

protocol. Experiment 1, equally divided tumour tissue; Experiment 2, 0.18g tumour 

tissue for each protocol. Undigested tumour tissue was taken from after the MACS 

protocol and was stained using Toluidine Blue. c) Figure shows many cells residing in 

undigested BCC tumour tissue following dissociation with the MACS protocol.  
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Following tumour dissociation, single-cell suspensions were antibody labelled for 

flow cytometric analyses. Despite a greater yield of cells, there appeared to be less 

CD200 expression with the MACS protocol when compared to the conventional 

protocol (Figure 4.6a vs Figure 4.6b, CD200+ percentages 0.86% vs 2.4%, 

respectively). The conventional protocol (Figure 4.6b) demonstrates a distinct CD200 

cancer stem cell peak, which is absent in dissociated BCC using the MACS protocol. 

This could also be a result of inadequate dissociation of the full epidermal layer and 

subsequent release of the basal cell layer. Hence, the MACS protocol was deemed 

not suitable for skin cancer tissue dissociation as it inadequately dissociates the 

tumour tissue and degrades the cell surface antigen used to select cells. My findings 

suggest that the original protocol for BCC dissociation remains the best for isolating 

all the BCC keratinocytes and maintaining CD200 expression. 
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Figure 4.6 | Assessment of CD200 expression in BCC dissociated by two different 

protocols. BCC tissue was dissociated and labelled with the cell surface markers 

CD200 and CD45. The flow cytometry plot was determined using unlabelled and single 

stain controls. CD45 marker is used to eliminate tumour infiltrating leukocytes. 

CD200+ CD45- represents the BCC cancer stem cell population (Morgan et al. 2019). 

Histograms shows the CD200 fluorescence intensity. a) BCC dissociation and flow 

cytometry using the MACS protocol. b) BCC dissociated with a conventional 

dissociation protocol. 
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Next, I undertook flow sorting for CD200+/- CD45- BCC subpopulations using the 

conventional protocol. As previously described, CD200+ CD45- BCC cells were 

identified in all tumour samples at a frequency of 1.35% - 5.2% of the total tumour 

(Figure 4.7; mean 2.93% +/- 0.32 SEM, n = 11; Colmont et al. 2013). Flow sorted BCC 

cells demonstrated strong CD200 expression by immunofluorescence on the 

membrane of the cells, but expression was absent in the negative-sorted cells (Figure 

4.8). The BCC dissociation and CD200+ CD45- population isolation was therefore 

optimised. Sorted samples were then sent to Wales Gene Park for RNA sequencing.  
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Figure 4.7 | CD200 expression in human BCCs.  11 BCC tumours were dissociated into 

single-cell suspensions and stained for CD45 and CD200. Live/dead stain, DAPI, was 

added and then CD200+/- CD45- populations were then isolated using fluorescence-

activated cell sorting (FACS). Graph shows CD200 expression levels in each BCC. Each 
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point represents one BCC tumour that was processed and analysed. Error bar = mean 

+/- SEM. 
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Figure 4.8 | Immunofluorescence showing expression of BCC cancer stem cell 

marker, CD200, on CD200+/- CD45- BCC cells. Human BCC tumours were 

mechanically and enzymatically dissociated to produce single cell suspensions. Cells 

were then fluorescently stained with CD45, CD200, and DAPI, and CD200+/- CD45- 

populations were isolated using FACS. Some cells were sorted onto microscope slides 

and fixed in 4% formalin. Fixed cells were then stained for α-Tubulin (red), CD200 

(green), and DAPI (blue).  
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4.2.2.2 Bulk RNA Sequencing of Primary Human BCC Cells 
 

A total of 11 patients with BCC were recruited. Samples were successfully dissociated 

and CD200+ CD45- and CD200- CD45- populations isolated. RNA was isolated and 

quality checked. A total of 7 CD200+/- CD45- populations (total of 14 samples) passed 

the RNA integrity (RIN) assessment and were therefore selected for library 

preparation and bulk-RNA sequencing.  

Samples were then sent to the WGP, where library preparation and sequencing were 

performed. One sample failed to produce a sequencing library and was therefore 

removed from the experiment. The remaining 13 libraries were then normalised, and 

an additional quality control check was performed. Libraries were then sequenced 

on a NovaSeq 6000 S1 flow cell (PE100) to produce 10Gb of raw sequencing data per 

sample. Adapter sequences were removed, and low-quality reads were removed 

from the raw reads using Fastp with the following parameters: 1) reads containing N 

> 10% (where N is an undetermined base), and 2) reads where the quality value of 

>50% of the bases in that read is ≤ 5. High quality reads were then mapped to the 

human reference genome (GRCh38) using STAR (Dobin et al. 2013). Expression 

counts were then generated from the mapped reads using the featurecounts read 

quantifier against the GENCODE v27 gene model. The mapped reads data table was 

then explored to check for mapping features and counts. On average, there were 

55.5 million, 100 base pair (bp) paired-end reads obtained from each sample with a 

total of 58,288 mapped features. 16,287 (27.94%) of those features contained a null 

count across all samples. On average, 92.43% of the fragments were uniquely 

mapped across the 13 samples with 62% of reads mapping to genomic features and 
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48.33% GC content. The data was then run through SARTools (a wrapper to DESeq2) 

to generate normalized reads, detect and remove outliers, and produce differentially 

expressed genes (DEGs; CD200+ CD45- vs CD200- CD45-). The resulting dataset 

consisted of 5 CD200+ CD45- and 5 CD200- CD45- samples with an average of 25,692 

expressed genes per sample (sequencing data summary can be found in Appendix 

4.2). Upon receipt of the data from WGP, experiment validation was performed via 

assessment of CD200 expression and differential expression in all samples. CD200 

expression was observed in all the CD200+ CD45- samples with residual expression 

(10-fold lower) in the CD200- CD45- samples (CD200/ENSG00000091972; 3511 mean 

reads +/- 2890 SD vs. 257 mean reads +/- 208 SD, respectively) and demonstrated a 

significant 3.661 Log2fold- change (adjusted P value = 3.67E-16) (Figure 4.9a and b, 

respectively). Next, I wanted to validate that the sequencing data was from BCC basal 

keratinocytes. To do this, I assessed the expression of known keratinocyte markers 

and BCC Hedgehog signalling pathway markers. Read counts were present across all 

samples for keratinocyte markers KRT5, KRT17, and COL17A1 (Figure 4.10a-c, 

respectively). Expression of BCC Hedgehog signalling members was also present 

across all samples (Figure 4.10d-h). Interestingly, there appeared to be an increase in 

Hedgehog signalling expression amongst the CD200+ CD45- samples, indicating a 

further enrichment of BCC cells via CD200+ expression.  
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Figure 4.9 | Validation of CD200 expression in bulk RNA sequencing data from 

CD200+ CD45- and CD200- CD45- BCC cells. CD200+ CD45- and CD200- CD45- BCC 

cells were sorted, and subsequently bulk RNA sequenced. The final dataset, following 

quality control, consisted of 5 CD45- CD200+ and 5 CD45- CD200- samples. a) 

CD200/ENSG00000091972 expression was assessed by checking normalised read 

counts across all samples. b) Differential Gene Expression (DGE) analysis was 

performed, comparing CD45- CD200+ samples to the CD45- CD200- samples. CD200 

was the top differentially expressed gene (DEG). Bar graph shows the log2 Fold 

Change value for the gene. 
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Figure 4.10 | Validation of expression of keratinocyte and BCC signalling pathway 

members in CD200+ CD45- and CD200- CD45- bulk RNA sequencing data. CD200+ 

CD45- and CD200- CD45- BCC cells were sorted (n=5 per group), and subsequently 

bulk RNA sequenced. Normalised read counts were then investigated for expression 

of known BCC Hedgehog signalling pathway members and basal keratinocyte 
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markers and plotted as bar graphs. a-c) Normalised read counts were checked for 

basal keratinocyte markers KRT5, KRT17, and COL17A1, respectively. d-h) Normalised 

read counts were checked for BCC Hedgehog signalling pathway members SMO, 

PTCH1, PTCH2, GLI1, and GLI2, respectively. 
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Having confirmed the sequencing of BCC basal keratinocytes through expression of 

BCC Hedgehog signalling members and basal keratinocyte markers in all samples, I 

next performed PCA and nonparametric two-tailed Spearman’s correlation analysis 

on all the significant genes (normalised values used as input, adjusted P value <0.05) 

to check for any gene expression variation or correlations between both populations. 

PCA generated 5 principal components. PC1 and PC2 were selected as the input for 

the biplot, as combined, they explain > 60% of the dataset’s variance (65.49%). The 

biplot clearly separated the CD200+ CD45- from the CD200- CD45- samples along the 

PC1 axis (Figure 4.11a and b). Interestingly, the CD200- CD45- samples form a tighter 

cluster along both axes, signifying less transcriptional variation in this population. 

CD200+ CD45- samples were distributed more along both axes compared to the 

CD200- CD45- samples, indicating a greater variation in gene expression in this 

population. For the correlation test, samples were first checked for normality using 

a Shapiro-Wilk’s test. All samples were below the 0.5 α level and so the null 

hypothesis was rejected. A Spearman’s non-parametric correlation test was 

therefore performed on the samples and a correlation metric plot was made. A 

greater correlation was seen amongst the CD200- CD45- samples than amongst the 

CD200+ CD45- samples (average R = 0.88 and R = 0.42, respectively; Figure 4.11c) and 

a strong inverse correlation was seen between the two sorted populations. A 

heatmap was generated on the 1,372 DEGs (normalised data, p.adj < 0.05) and 

hierarchical clustering (1-Pearson’s correlation) was performed on the rows (genes) 

and columns (samples). The heatmap displayed a similar gene expression within 

populations and the hierarchical clustering displayed a clear separation between the 

populations (Figure 4.12).  



  

 
 

175 

 



  

 
 
176 

Figure 4.11 | Sample correlation analyses following bulk RNA sequencing of human 

BCC CD200+ CD45- and CD200- CD45- populations. Human BCCs were sorted into 

CD200+ CD45- and CD200- CD45- populations (n=5 per group)) and subsequently bulk 

RNA sequenced. Following quality control, normalised read counts were used as input 

into Principal Component Analysis (PCA) and correlation analysis. a, b) 2D and 3D PCA 

was performed on the normalised read using Principal Component (PC)1 and PC2, and 

PCs 1, 2, and 3, respectively. c) A nonparametric two-tailed Spearman’s correlation 

test was performed using the normalised read counts and a heatmap was generated 

using the gplots package in R. The top half of triangle displays the R-squared values, 

and the bottom half of the triangle displays the values as a pie chart. Both halves are 

also coloured based on R-squared values. R-squared values closer to one are 

considered highly similar, whereas R-squared values close to zero are not similar. All 

analyses and plots were generated in R. 
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Figure 4.12 | Heatmap of human BCC CD200+ CD45- and CD200- CD45- samples. 

Human BCCs were sorted into CD200+ CD45- and CD200- CD45- populations (n=5) 

and subsequently bulk RNA sequenced. Following quality control, normalised read 

counts were used for heatmap generation. Hierarchical clustering was also performed 

on the samples (columns) and genes (rows). Primary segregation was seen between 

the two sample groups, which have been separated by a black line. Colour key shows 
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the colours associated with the row Z-score. The row Z-score is an indicator of the 

expression value, which has been scaled across the samples to allow for comparison. 

Heatmap was generated using the gplots package in R. 

Differential expression analysis generated 1,372 DEGs, of which 517 were 

upregulated and 855 were downregulated (adjusted P value <0.05) (Figure 4.13). 
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Figure 4.13 | Volcano plot of human BCC CD200+ CD45- vs CD200- CD45- 

differentially expressed genes. Human BCCs were sorted for CD200+ CD45- and 

CD200- CD45- populations and subsequently RNA sequenced. Differential gene 

expression was then performed on both populations and a volcano plot was 

generated using the EnhancedVolcano package in R. dotted lines denote significance 

boundaries (Adjusted P Value < 0.05). Blue, significant downregulated genes, red, 

significant upregulated genes, black, non-significant genes. 
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Enrichment analysis was first performed on the DEGs to identify enriched pathways. 

As a first pass, all 1372 DEGs were used as the input for clusterProfiler’s enrichGO 

and enricher packages in R to perform Gene Ontology (GO) and Wikipathways 

enrichment analyses, respectively. Gene-Concept Network (CNET) plots were made 

for both analyses, which plots the linkages of the genes and the enriched concepts 

that they are involved in. The gene expression values were also added as an extra 

layer of information to the CNET plot with the addition of the foldChange argument. 

Enrichment dot plots were also generated, which incorporates functional enrichment 

scores, gene counts, gene ratios and P values into one plot. GO Enrichment analysis 

revealed that the CD200+ CD45- BCC cells demonstrate enrichment in cartilage 

development, extracellular matrix organisation, extracellular structure organisation, 

regulation of angiogenesis and skeletal system morphogenesis (Figure 4.14). The 

most significant enriched terms have been included in the dot plot, and include terms 

such as cellular calcium ion homeostasis, cell junction assembly, mesenchymal cell 

differentiation, and Rho protein signal transduction (Figure 4.15).  
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Figure 4.14 |Gene Ontology (GO) gene-concept network (CNET) plot of BCC CD200+ 

CD45- vs CD200- CD45- DEGs. CD200+ CD45- vs CD200- CD45- human BCC DEGs were 

used as input for GO analysis. CNET plot was then generated, which displays the top 

GO terms and genes associated with those terms. Lines and colours depict the GO 

category enrichment. Size of the dark grey dots (top) depict number of DEGs involved 

in the enriched GO term. Colour of the gene dots depict the log2 fold change value. 
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Figure 4.15 | Gene Ontology (GO) enrichment plot of BCC CD200+ CD45- vs CD200- 

CD45- DEGs. CD200+ CD45- vs CD200- CD45- human BCC DEGs were used as input for 

GO analysis. An enrichment dot plot was then generated from the results, which 

depicts the top 40 significantly enriched GO terms. Size and colour of the dots depict 

the number of DEGs involved in the enriched GO process and the associated 

significance. 
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Wikipathways analysis revealed enrichment in the Focal Adhesion-PI3K-Akt-mTOR-

signalling pathway, PI3K-Akt-signalling pathway, Epithelial to mesenchymal 

transition in colorectal cancer, osteoblast differentiation and Imatinib and Chronic 

Myeloid Leukaemia (Figure 4.16). Amongst the most significantly enriched pathways 

were Matrix Metalloproteases, Hippo-Merlin signalling dysregulation and 

Complement activation (Figure 4.17). 
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Figure 4.16 | Wiki Pathways gene-concept network (CNET) plot of BCC CD200+ 

CD45- vs CD200- CD45- DEGs. CD200+ CD45- vs CD200- CD45- human BCC DEGs were 

used as input for Wiki Pathways analysis. CNET plot was then generated, which 

displays the top Wiki Pathways terms and genes associated with those terms. Lines 

and colours depict the Wiki Pathway category enrichment. Size of the dark grey dots 

(top) depict number of DEGs involved in the enriched GO term. Colour of the gene 

dots depict the log2 fold change value. 
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Figure 4.17 | Wiki Pathways enrichment plot of BCC CD200+ CD45- vs CD200- CD45- 

DEGs. CD200+ CD45- vs CD200- CD45- human BCC DEGs were used as input for Wiki 

Pathways analysis. An enrichment dot plot was then generated from the results, 

which depicts the top 40 significantly enriched Wiki Pathways terms. Size and colour 

of the dots depict the number of DEGs involved in the enriched Wiki Pathways process 

and the associated significance. 

  



  

 
 
186 

To investigate the dataset further, DEGs were split into upregulated (Log2FC >0) and 

downregulated (Log2FC<0) gene sets and GO enrichment and Wikipathways analyses 

were performed again. Upregulated genes showed GO enrichment in epithelial cell 

migration, Ras protein signal transduction, Rho protein signal transduction (Figure 

4.18a) and enrichment in Wnt signalling, Regulatory circuits of the STAT3 signalling 

pathway, and miR-509-3p alteration of TAP1/ECM axis (Figure 4.18b).  
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Figure 4.18 | GO and Wiki Pathways enrichment plots of BCC CD200+ CD45- vs 

CD200- CD45- upregulated DEGs. CD200+ CD45- vs CD200- CD45- human BCC 

upregulated DEGs were used as input for Wiki Pathways analysis. An enrichment dot 

plot was then generated from the results, which depicts the top 40 significantly 

enriched terms from a) GO, and b) Wiki Pathways. Size and colour of the dots depict 

the number of DEGs involved in the enriched processes and the associated 

significance. 
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Amongst the downregulated genes, negative enrichment was observed in 

extracellular matrix organisation, connective tissue development and mesenchymal 

cell proliferation (Figure 4.19). Interestingly, negative enrichment for regulation of 

Wnt signalling pathway and epithelial to mesenchymal transition was also seen. 

Wikipathways failed to generate enrichment results.  
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Figure 4.19 | GO enrichment plot of BCC CD200+ CD45- vs CD200- CD45- 

downregulated DEGs. CD200+ CD45- vs CD200- CD45- human BCC downregulated 

DEGs were used as input for GO analysis. An enrichment dot plot was then generated 

from the results, which depicts the top 40 significantly enriched GO terms. Size and 
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colour of the dots depict the number of DEGs involved in the enriched GO process and 

the associated significance. 
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Pre-ranked Gene Set Enrichment Analysis (GSEA) was also performed on the DEGs on 

the following curated gene set collections from the Molecular Signatures Database 

(MSigDB): Hallmark (H), Curated gene sets (C2), Ontology gene sets (C5), and Cell 

type signature gene sets (C8). These gene sets were selected as they provide the most 

informative enrichment results and are the most used in publications. The top 25 

positive- and negative-Normalised Enrichment Scores (NES) were taken from each 

analysis and used as the input for Broad Institute’s Morpheus to generate heatmaps. 

Amongst the most positively enriched Hallmark gene sets were KRAS signalling up, 

UV response up, reactive oxygen species pathway, P53 pathway, and WNT Beta 

Catenin pathway. Amongst the most negatively enriched Hallmark gene sets were 

TGF Beta signalling, Epithelial Mesenchymal Transition, Notch signalling, and 

MTORC1 signalling (Figure 4.20a). The most positive and negative enriched gene sets 

for C2 Curated can be found in Figure 4.20b. These top enriched gene sets seem to 

be disease-specific and may require further investigation in order to provide any 

value to the data. However, there does appear to be a positive enrichment for VEGF 

signalling. 
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Figure 4.20 | Pre-ranked Gene Set Enrichment (GSEA) analysis of Hallmark and C2- 

Curated gene sets in human BCC CD200+ CD45- vs CD200- CD45- DEGs. Significant 

DEGs were pre-ranked from highest-to-lowest log2 fold-change and then used as 

input into GSEA pre-ranked tool. The top 25 positive and negative normalised 
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enrichment scores (NES) were taken from each analysis and used as input for 

Morpheus heatmap software (Broad Institute). 
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The top- and bottom-25 GSEA results for C5 – Ontology and C8 – Cell Type gene sets 

are displayed in Figure 4.21. Of note, amongst the most positively enriched gene sets 

in C5 – Ontology are Endothelial related (Endothelium Development, Endothelial Cell 

Development, Establishment of Endothelium Barrier) and amongst the most 

negatively enriched was skin development.  
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Figure 4.21 | Pre-ranked Gene Set Enrichment (GSEA) analysis of C5 – Ontology and 

C8 – Cell Type gene sets in human BCC CD200+ CD45- vs CD200- CD45- DEGs. 

Significant DEGs were pre-ranked from highest-to-lowest log2 fold-change and then 

used as input into GSEA pre-ranked tool. The top 25 positive and negative normalised 
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enrichment scores (NES) were taken from each analysis and used as input for 

Morpheus heatmap software (Broad Institute). 

  



  

 
 
198 

From the pre-ranked GSEA analyses, it was apparent that the CD200+ CD45- DEGs 

were enriched for the VEGF signalling pathway. To investigate which DEGs were 

playing a major role in the pre-ranked GSEA analyses, I next performed leading edge 

analysis. The leading edge is a subset of genes that appear in the ranked DEG list at 

or before the point in which the running enrichment score sum reaches its maximum 

deviation from zero, meaning that these genes can be interpreted as the core genes 

that account for a gene set enrichment signal. Leading edge analysis was performed 

on the C2 – Curated and Hallmarks top 20 positively enriched gene sets. I also 

performed the same analyses but performed them on a manually curated list of gene 

sets with the following criteria: size > 10 and enrichment score > 0.5. Both analyses 

confirmed that endothelial cell markers were amongst the top genes in this dataset 

(see Figure 4.22 for leading edge results). I also used the positively enriched DEGs as 

input into Rummagene. Rummagene takes a list of DEGs and searches them against 

688,108 published gene sets on PubMed. Similarly, results showed matches for 

datasets containing cancer-associated fibroblasts and endothelial cells. 
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Figure 4.22 | Leading-edge analysis of Pre-ranked Gene Set Enrichment Analysis of 

Human BCC CD200+ CD45 vs CD200- CD45- DEGs. Significant DEGs were pre-ranked 

from highest-to-lowest log2 fold-change and then used as input into GSEA pre-ranked 

tool. Leading-edge analysis was then performed on the a) C2-Curated and b) 

Hallmarks results. Figures are screenshots of the top results, depicting the genes 

involved in the most processes. 
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I then investigated the DEGs via the Ingenuity Pathway Analysis (IPA) software 

(Qiagen). Using all significant DEGs as input, I performed a causal analysis. The 

overview page was first assessed, which revealed the top canonical pathways were 

axonal guidance signalling, CREB signalling in neurons, hepatic fibrosis, and 

granulocyte adhesion and diapedesis (Figure 4.23a). Amongst the top diseases and 

functions was cancer and dermatological diseases and conditions (Figure 4.23bi). The 

top molecular and cellular functions was cellular movement, cellular development, 

cellular function and maintenance, cellular growth and proliferation, and cell-to-cell 

signalling and interaction (Figure 4.23bii). Interestingly, the top physiological system 

development and function was cardiovascular system development and function 

(Figure 4.23biii). Another interesting observation was from the top regulator effect 

networks, which contained regulators involved in activation of blood cells (Figure 

4.23c). 
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Figure 4.23 | Ingenuity Pathway Analysis (IPA) overview of human BCC CD200+ 

CD45- population DEGs. Human BCC CD200+ CD45- significant DEGs were used as 
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input into Ingenuity Pathway Analysis (IPA) and a causal network analysis was 

performed. Following analysis completion, a summary page is firstly provided. Figure 

shows the summary page. a) Summary of the top canonical pathways. b) Summary 

of the top Diseases and Bio Functions. c) Summary of the top regulator effect 

networks. Each result is provided with an associated p-value, indicating the 

significance of the enrichment, and the overlap, which indicates the number of genes 

that are involved in other processes. The ‘# Molecules’ depicts the number of DEGs 

involved in a particular process. 
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When investigating and ordering the most enriched signalling pathways by activation 

z score, amongst the top pathways were again VEGF signalling (Figure 4.24a). There 

were no genes of interest when investigating the causal networks. I then performed 

biomarker analysis on the dataset. To do this, I ran the biomarker analysis tool in IPA, 

and filtered the results for molecules that were located on the plasma membrane 

and positively enriched. I also added the other following filters: expressed in 

keratinocytes, expressed in dermis, expressed in epidermis, expressed in skin. This 

resulted in 5 biomarkers of interest: ABCB1, ABCG1, CCRL2, KDR, and TNFRSF10A 

(Figure 4.24b). This analysis showed that VEGFR2 (KDR) was amongst the top 

differentially expressed genes, and amongst the top actionable biomarkers. I next 

wanted to assess the expression of the members associated with this pathway. To do 

this, I loaded up the VEGF pathways in IPA and used the overlay tool to overlay the 

BCC CD200+ CD45- DEGs (Figure 4.25). The results showed that VEGFR and VEGFR2 

(KDR) are both highly enriched in the BCC CD200+ CD45- DEGs. There appears to be 

signalling at the cell surface via VEGF/VEGFR and VEGFC/D/VEGFR2. There was also 

a strong predicted activation of the ROCK signalling mechanism, and plausible 

predictions of PI3K/AKT and SRC/PI3K signalling. Overall, this analysis supported the 

model that there is VEGF signalling within these cells but may encompass more than 

one cell type. 
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Figure 4.24 | Ingenuity Pathway Analysis results of human BCC CD200+ CD45- 

population DEGs. Human BCC CD200+ CD45- significant DEGs were input into 

Ingenuity Pathway Analysis (IPA) and a causal network analysis was performed. 

Canonical pathway analysis was investigated and ranked by activation Z-score. The 



  

 
 

205 

Z-score statistic is a combination of activation (positively or negatively activated, 

indicated by a positive or negative score, respectively) and significance. a) Top 

canonical pathways ordered by activation z-score. Bars show -log(p-value) of the 

pathways. b) Biomarker analysis was performed. This analysis takes a range of user-

defined inputs and identifies biomarkers. Table shows the 5 results after querying for 

cell surface markers that are present on keratinocytes, dermis, epidermis, and skin. X 

depicts presence of marker. 
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Figure 4.25 | VEFG signalling pathway with human BCC CD200+ CD45- DEGs 

overlaid. Diagram shows the VEGF signalling pathway that was loaded and opened 

in Ingenuity Pathway Analysis (IPA) with the human BCC CD200+ CD45- DEGs 

overlaid. Red and green indicate overlaid DEG expression on the pathway. Orange 
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and blue indicate predicted activity of the pathway in the dataset. Strength of the 

red/green and orange/blue indicate the size of the expression and predicted activity. 
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4.2.2.3 Immunohistochemical validation of VEGFR2 expression in primary human BCC 
tissue 
 

As the VEGFR2 signalling pathway was the most significant finding in the bulk RNAseq 

analyses, I next wanted to check its expression in human BCC tissue sections. A new 

VEGFR2 antibody was purchased and was first validated on the tissue sections by IHC 

and positive labelling in the blood vessels in the dermis (Figure 4.26a). When 

assessing VEGFR2 expression in human BCCs, I saw in some samples there was 

expression within the tumour nodules (4/10 BCCs; Figure 4.26b), and in others the 

expression was seen in the endothelial cells surrounding the tumour nodules (6/10 

BCCs; Figure 4.26c). interestingly, from the BCCs that displayed expression within the 

tumour nodule, the expression appeared to be mainly located around the tumour 

periphery. From these studies, I concluded that there was an endothelial cell 

contamination within the bulk RNA sequencing. 
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Figure 4.26 | Immunohistochemical staining for VEGFR2 in human BCCs. Human 

BCC tissue was sectioned and stained for VEGFR2 and counterstained with 

haematoxylin. Stained sections were then imaged on a light microscope and analysed 

in QuPath software. a) The blood vessels located within the dermis of each tissue 

section was used as an internal positive staining control. b, c) VEGFR2 staining was 

seen within the tumour nodules and on the surrounding tumour endothelial cells, 

respectively. Red squares depict the zoomed areas. 
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4.3 Discussion 
 

In this chapter, I performed bulk RNA sequencing on a BCC cancer cell line, optimised 

the conventional human BCC dissociation protocol, and subsequently bulk RNA 

sequenced human BCC. 

Having established that transduced CD200 expression within the UW-BCC1 cell line 

led to immune evasion in xenograft mice, I next decided to perform bulk RNAseq on 

the innate CD200-positive cells within the cell line. I first showed that the CD200 +/- 

populations unsurprisingly showed high correlation between them, with a slight 

increase in correlation between the CD200+ samples. This was also shown via PCA 

analyses, where CD200+ samples were tightly clustered along the PC1 axis. 

Generating a heatmap from the normalised reads of all samples, there was a clear 

separation between both groups and a clear difference in program of gene 

expression in both sample groups, indicating that CD200+ UW-BCC1 cells have a 

distinct program of transcription compared to their CD200- counterparts. This can 

also be demonstrated through the number of significant DEGs present. However, 

upon inspection of the DEGs and read counts, CD200 was not expressed in either 

sample group. It is clear that there was no CD200 expression within this cell line, 

consistent with the findings in chapter 3. As such, my analysis suggests that maybe I 

isolated a subpopulation that does not enrich for cancer stem cells. 

I next sequenced the CD200+ CD45- and CD200- CD45- populations from human 

BCCs. I first needed to optimise our outdated tumour dissociation protocol. Isolating 

single cells in vitro requires simple trypsinisation of the cells, whereas human tissue 
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required both mechanical and enzymatic dissociation. At the time, there were two 

dissociation methods available to me, the first being the current conventional 

protocol that had been previously used by our lab to dissociate human skin cancers, 

and the second being a commercial kit developed and sold by Miltenyi Biotec. I firstly 

optimised the conventional dissociation protocol and demonstrated the importance 

of using fresh enzymes. I also showed that using this method was able to preserve 

the CD200 epitope. I also showed that the commercial Miltenyi kit was able to 

liberate more cells from the BCC tissue than the conventional method. Interestingly, 

despite a greater yield of cells, there were still large areas of undigested tissue 

present post-dissociation. When comparing this undigested tissue to the 

conventional method, we see that there were large areas of epidermal tissue still 

present. I also showed that the Miltenyi kit led to a degradation of the CD200 

epitope. The company have not revealed the list of ingredients within their enzyme 

cocktail. There is a possibility that Trypsin is present, which is known to cleave the 

extracellular domain of CD200 in several regions. The Miltenyi protocol was 

therefore deemed not appropriate for the isolation of the CD200+ CD45- population 

within human BCC.  

Having optimised the BCC dissociation protocol, I next sequenced the CD200+ CD45- 

and CD200- CD45- BCC populations. I firstly showed the accuracy of the FACS at 

sorting CD200+ CD45- and CD200- CD45- cells via immunofluorescence. For the 

RNAseq analysis, I generated a final dataset consisting of 10 samples, and showed 

that these were sequenced at a considerable depth with an average of 55.5 million 

reads per sample and 92.4% of those reads mapping to the human genome. I showed 

that I did in fact sequence BCC keratinocyte by assessment of keratinocyte and BCC 

markers. I also showed that CD200 was expressed in the CD200+ CD45- sorted 
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samples, and not in the CD200- CD45- sorted samples. I then checked for correlation 

within and between the samples through correlation and PCA analyses. Even though 

BCC is known to be heterogeneous, the CD200+ CD45- sorted samples showed a high 

degree of correlation between them, as demonstrated by tighter clustering on the 

PCA analyses, and higher R-squared values. There was also a clear separation 

between the two populations, indicating differing transcriptional programs between 

the two. Through heatmap analyses, I showed again that there was a clear separation 

between the two populations through hierarchical clustering. An interesting 

observation here was that there were more downregulated genes present in the 

CD200+ CD45- sample, as indicated by blue rows in the figure. This was also 

confirmed by DGE analysis between the two populations, resulting in 517 up- and 

855-down regulated DEGs. Analysing the DEGs, I showed that the most significant 

findings were related to endothelial processes. The VEGF signalling pathway, in 

particular, VEGFR2 signalling, most frequently appeared amongst the results during 

analysis of the upregulated DEGs. Pre-ranked GSEA analysis revealed the key genes 

involved in the enriched gene sets, which identified VEGFR2 (KDR) as a significant 

player. I used a new analysis tool, Rummagene, to show that my list of significant 

DEGs were highly related to other published datasets. These datasets were also 

endothelial cell related. Using the IPA software to analyse the DEGs, I again showed 

that the VEGFR signalling pathway was amongst the most significant. I then showed 

that the VEGFR2 (KDR) gene was the amongst the results during a biomarker analysis, 

and indeed, when overlaying my DEGs onto the VEGF pathway in IPA, I saw an 

upregulation of the VEGF and VEGFR2 receptors. 

The RNAseq analysis showed that there was a clear endothelial cell signature present. 

The IPA analysis of the VEGF pathway identified from the DEGs suggested that there 
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was communication between at least two different cell populations. This was 

confirmed when I undertook VEGFR2 labelling of BCC tissues which demonstrated 

positive tumour nodules and presumed endothelial cells. these findings could 

suggest that there are CD200-expressing endothelial cells present within BCC and 

that our flow sorting strategy may have included more than one cell type leading to 

a potential contamination of our dataset. 

To conclude, I was not able to accurately identify an enriched BCC-specific signalling 

pathway due to the potential contamination of the dataset with endothelial cells. To 

address these findings in chapter 5, I undertook single cell RNA sequencing.  

  



  

 
 

215 

Chapter 5: Single Cell RNA 
Sequencing of Human BCC 

 

5.1 Introduction 
 

Bulk RNA-sequencing has long been the method of choice to investigate aberrant 

gene expression in disease. The method has been widely used in cancer research to 

classify, identify biomarkers, discover gene fusions, and optimise therapeutic 

interventions (Li and Wang 2021). The method is most commonly used to identify 

biomarkers of diseases in order to aid diagnosis, prognosis, and predictions. To date, 

there have been many successful applications where bulk RNAseq has been used to 

generate and validate disease-specific signatures (Van Allen et al. 2015; Chen et al. 

2016; Shukla et al. 2017; Han et al. 2018; Zhou et al. 2019). There has however, only 

been a few of these signature panels that have been successfully translated into 

clinical practice. One of the main reasons behind this is due to the nature of the bulk 

RNAseq coupled with the inherent nature of the diseases being studied. Bulk RNAseq 

analyses the average gene expression across a large, bulk population of cells. This 

method operates under the assumption that all cells within a given sample have 

similar gene expressions and therefore the downstream results accurately represent 

them. However, it has been long known that cancers display a high degree of inter-

tumour and intra-tumour heterogeneity (Liu et al. 2018). The problem here is that 

differences between individual cells and/or populations within samples are masked, 
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making it impossible to identify and distinguish rare cell populations. One such 

solution to this problem, particularly if a population of interest was being studied, is 

to isolate these cells through FACS, ensuring elimination of other cell populations. 

The problem with this approach is that the flow sorting strategy is limited by the 

ability to remove lineage negative cells. In our case, we only removed immune cells 

identified by CD45 and thus may have left behind endothelial cells that could have 

confounded our findings. 

 

To combat this, single cell RNA-sequencing (scRNAseq) was developed. The method 

was first introduced in 2009 in which it was used in a 4-cell-stage blastomere (Tang 

et al. 2009). This method saw the generation of single cell libraries in individual tubes 

and lacked the ability to increase multiplex numbers, meaning that each sample had 

to be sequenced individually. The introduction of multiplexed scRNAseq was seen in 

2011, where the barcoding of single cells in 96-well plates was used and then 

transferred to a single tube (Islam et al. 2011). In 2012, a new scRNAseq method was 

introduced, which demonstrated the ability to linearly amplify libraries, allowing for 

greater numbers of cells to be sequenced (Hashimshony et al. 2012). This method led 

to the first commercial application of scRNAseq in 2014, which is where the method 

gained traction. Since then, there have been many scRNAseq methods generated, 

mainly those that employ droplet-based or well-based methods (Lafzi et al. 2018). 

One of the more popular scRNAseq methods used today is a droplet-based technique 

developed by 10X Genomics. The company developed a chromium system, which 

uses advanced microfluidics to perform single cell partitioning and barcoding, and up 

to 8 samples and 20,000 cells-per-sample can be processed at once (Li and Wang 

2021). The method generates Gel Bead-in-emulsion (GEMs), which contain a single 
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cell plus all the reagents required to amplify and specifically tag each RNA molecule 

that has come from that cell, which allows the identification of those amplified RNA 

molecules to be traced back to the cell. Post-sequencing, the company also has a 

software, cellranger, that performs sample demultiplexing, barcode processing, and 

gene mapping and counting. This allows users to directly input their sequencing data 

into downstream analysis pipelines. 

 

In this chapter, I used scRNAseq to investigate the CD200+ BCC cell population. I 

employed the 10X Genomics scRNAseq method to sequence 13 BCC and normal skin 

samples. To analyse the complete dataset, I first used a smaller dataset to optimise 

the analysis pipeline. I then used the optimised pipeline to fully analyse the dataset. 

I was able to identify the cell types present within sorted and unsorted samples and 

accurately identify the BCC tumour keratinocytes. I was then able to identify aberrant 

signalling pathways that were specific to these cells and validate the activity of the 

TGFβ pathway in human BCC tissue sections.   

 

5.2 BCC single-cell RNA Sequencing Analysis Protocol 
Optimisation 
 

For single-cell sequencing, we recruited 11 patients, generating a total of 13 samples. 

The tissues were dissociated as described in chapter 2 and 4 and single cell 

suspensions were obtained following flow-sorting: CD45- (BCC and normal skin) and 

specifically the CD200+ CD45- population.  Samples were then sent to Novogene 

(Cambridge, UK) for sequencing. A total of 4,337,304,263 raw sequencing reads were 

generated across 16,878 raw single cells from all thirteen samples (BCC = 
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3,505,339,430 raw reads across 13,836 raw cells and NS = 831,864,732 raw reads 

across 3,042 raw cells). On average, there were 3,144 median genes and 11,111 

median UMI’s per cell for the BCC samples and 3,208 median genes and 14,401 

median UMI’s per cell for the NS samples. On average, 82.38% of reads were 

confidently mapped to the human genome (BCC = 81.14% average and NS = 86.53% 

average) and 49.72% of reads were confidently mapped to the human transcriptome 

(BCC = 48.37% average and NS = 54.2% average). On average, sequencing saturation 

was 86.72% across all samples (BCC = 86.89% average and NS = 86.13% average). Raw 

sequencing statistics can be found in Table 5.1. Samples were then processed as 

described in Chapter 2: Methods.  
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To optimise the analysis pipeline, I first used the first batch of samples that were sent 

to Novogene. This dataset consisted of 4 samples (3 BCCs, 1 NS). Initially, each sample 

was processed individually to assess any differences between clustering and how well 

separated cell types were. Please see Methods 2.12.2.1 for a detailed overview of 

the optimisation. When clustering the samples, a clustering resolution of 0.1 was 

chosen (see Appendix 5.1). To visualise the clustering, two common approaches were 

taken: t-distributed stochastic neighbour embedding (t-SNE; Maaten and Hinton 

2008) and Uniform Manifold Approximation and Projection (UMAP; McInnes et al. 

2018; see Appendix 5.2). Both methods were used to visualise the clustering in the 

four samples. Favour was initially given to UMAP, as it works better at preserving 

both local and global interactions, is quicker, and works well on larger datasets. The 

integrated dataset will also consist of a large number of cells. Downstream functions 

also use UMAP as the default visualisation tool. Both methods were performed using 

default parameters (t-SNE: perplexity = 30. UMAP: n_neighbours = 5, min_dist = 0.03) 

and number of dimensions = 3 to allow for three-dimensional exploration of the 

clustering. Figure 5.1 displays both dimension reduction plots for each sample. In 

samples where there were more than 1000 cells (BCC_1 and BCC_2, Figure 5.1a and 

c, respectively), UMAP appeared to generate more defined and well-separated 

clusters. For the samples with < 1000 cells, both methods produced very similar 

clustering. However, UMAP generated ‘smoother’ clusters, whereas t-SNE generated 

more dispersed and granular clusters. It became evident that correctly clustering 

samples with less than 1000 cells would be a difficult task. In the two samples where 

there was improved clustering, t-SNE in both cases displayed a cluster(s) within a 

cluster, whereas in UMAP, there was no overlapping of the clusters. However, 

plotting a third dimension (tSNE_3) of the data shows the separation of those 
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overlapping clusters for both samples (Figure 5.2). Therefore, both methods are able 

to distinguish all clusters, but a third dimension and subsequently more compute 

power is needed. UMAP was therefore chosen as the visualisation tool.
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Figure 5.1 | t-SNE and UMAP cluster visualisations of 4 single cell samples. Seurat’s 

clustering algorithm was used with a resolution parameter of 0.1 and using 30 

Principal Components (PCs) as input. t-Stochastic Neighbour Embedding (t-SNE) and 

Uniform Manifold Approximation and Projection (UMAP) were then used with default 

parameters to visualise the clustering. Left, t-SNE plots. Middle, UMAP plots. Right, 

number of cells per Seurat cluster. a) BCC_1 sample, b) BCC_2_NS sample, c) BCC_2 

sample, and d) BCC_3 sample. 
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Figure 5.2 | 3-Dimensional t-SNE and UMAP cluster visualisations of 4 single cell 

samples. Seurat’s clustering algorithm was used with a resolution parameter of 0.1 

and using 30 Principal Components (PCs) as input. t-Stochastic Neighbour Embedding 

(t-SNE) and Uniform Manifold Approximation and Projection (UMAP) were then used 

with default parameters plus the number of dimensions set to 3 to visualise the 

clustering in 3-D. Left, t-SNE plots. Right, UMAP plots. a) BCC_1 sample, b) BCC_2_NS 

sample, c) BCC_2 sample, and d) BCC_3 sample. 
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5.2.1 Cell Type Identification on Individual Samples 
 

To identify the clusters, a variety of cell type markers were obtained from The Human 

Protein Atlas (HPA) and the literature, and their expression was observed via UMAP 

and Violin plots (Ji et al. 2020; Solé-Boldo et al. 2020; Wang et al. 2020; Guerrero-

juarez et al. 2022; Yerly et al. 2022; Quah et al. 2023; Ren et al. 2023; The Human 

Protein Atlas. 2023). A table of all markers used can be found in Appendix 5.3. 

Seurat’s ‘FindAllMarkers’ was also performed on each sample to generate 

differentially expressed genes (DEGs) for each cluster. Significant DEGs (adjusted p 

value < 0.05) were then entered into g:Profilers g:GOSt functional profiler (Raudvere 

et al. 2019) and results were used in conjunction with the marker expression to 

determine the identity of each cluster. Finally, immune cell markers were checked to 

validate their removal during sample processing. 3 of 4 samples had no CD45 

expression (gene = PTPRC), whilst the BCC_1 sample had 16 cells with expression 

ranging from 0.1-1 (Appendix 5.4). 

 

There was a total of nine clusters for the BCC_1 sample (Figure 5.3a). Cell type marker 

expression revealed clusters 0, 1, 3, 4, 5, and 7 highly expressed keratinocyte markers 

KRT5, KRT14, and KRT17 (Figure 5.3b), whilst cluster 2 highly expressed endothelial 

markers CD34, PECAM1, CDH5, and KDR (Figure 5.3c), cluster 6 expressed fibroblast-

like markers COL3A1, LUM, and DCN (Figure 5.3d), and cluster 8 expressed 

melanocyte markers MLANA and PMEL (Figure 5.3e). Enrichment analysis for each 

cluster confirmed the marker expression with HPA terms such as ‘skin 1: cells in basal 

layer’, ‘skin 2: cells in spinous layer’, ‘skin 1: cells in basal layer’ for the keratinocyte 

clusters, ‘skin 1: endothelial cells’ and ‘skin 2: endothelial cells’ for the endothelial 

cell cluster, ‘skin 1: fibrohistiocytic cells’ and ‘skin 2: fibrohistiocytic cells’ for the 
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fibroblast-like cluster, and ‘skin 1: melanocytes’, ‘skin 2: melanocytes’ and 

‘melanocyte differentiation’ for the melanocyte cluster (Appendix 5.5). CD45 (PTPRC) 

expression was also assessed in this sample, which returned 16 expressing cells. The 

expression ranged from 0.1 - 1 and cells were dispersed throughout the keratinocyte 

clusters (Appendix 5.4). This demonstrates the limitations of FACS, where CD45+ cells 

are being sorted during a CD45- sort. Fortunately, I can identify these cells and 

remove them from the analysis. Cell types were then assigned to each cluster using 

the ‘RenameIdents’ Seurat function. This function renames the identities of each cell 

in the dataset from cluster ID (0-8) to cell type (Figure 5.3f). In line with similar 

studies, all four cell types are distinctly clustered from each other, with the 

keratinocyte clusters demonstrating a more complex cluster pattern (Figure 5.3g; Ji 

et al. 2020; Solé-Boldo et al. 2020; Wang et al. 2020; Guerrero-juarez et al. 2022; 

Yerly et al. 2022; Quah et al. 2023). 
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Figure 5.3 | Cell annotation of BCC_1 sample.  Single cell RNA sequencing was 

performed on the BCC_1 sample. Various markers were obtained from the literature 

and from the Human Protein Atlas (HPA) and used to annotate the sample. a) UMAP 

showing the number of Seurat clusters generated for the sample. b-e) UMAPs (top) 

and Violin plots (bottom) showing expression of KRT14, PECAM1, PMEL, and COL3A1, 

respectively, showing keratinocytes, endothelial cells, melanocytes, and fibroblast-

like cells, respectively. e) A heatmap was generated, which shows marker expression 

for each cell type in each Seurat cluster.  f) The marker analysis confidently identified 

specific cell types. Each cluster was then annotated for its cell type. Figure shows the 

annotated UMAP. Expression values represent normalised reads. 
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The BCC_2 sample produced a total of five clusters (Figure 5.4a). Clusters 1, 2, and 3 

expressed keratinocyte markers KRT5, KRT14, and KRT17 (Figure 5.4b), cluster 0 

expressed endothelial markers CD34, PECAM1, CDH5, and KDR (Figure 4.5c), and 

cluster 4 expressed fibroblast-like marker FABP4 (Figure 5.4e). Whilst there were a 

small number of cells expressing MLANA and PMEL (melanocyte markers) in cluster 

0 (Figure 5.4d), none of these cells highly expressed these markers or formed a 

distinct subcluster. For the fibroblast-like cluster, the usual markers either showed 

no expression, or variable expression across the dataset. However, FABP4 clearly 

identified cluster 4 as fibroblast-like. Enrichment analysis confirmed these findings 

with g:Profiler HPA terms similar to the BCC_1 sample (Appendix 5.6). Again, cell 

types were distinctly clustered apart from each other (Figure 5.4g). Interestingly, for 

this sample, there were more endothelial cells than keratinocytes, implying that 

enriching for CD200+ CD45- cells also enriched for endothelial cells. There were also 

fewer keratinocyte clusters for this sample.  
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Figure 5.4 | Cell annotation of BCC_2 sample.  Single cell RNA sequencing was 

performed on the BCC_2 sample. Various markers were obtained from the literature 

and from the Human Protein Atlas (HPA) and used to annotate the sample. a) UMAP 

showing the number of Seurat clusters generated for the sample. b-e) UMAPs (top) 

and Violin plots (bottom) showing expression of KRT14, PECAM1, PMEL, and COL3A1, 

respectively, showing keratinocytes, endothelial cells, melanocytes, and fibroblast-

like cells, respectively. e) A heatmap was generated, which shows marker expression 

for each cell type in each Seurat cluster.  f) The marker analysis confidently identified 

specific cell types. Each cluster was then annotated for its cell type. Figure shows the 

annotated UMAP. Expression values represent normalised reads. 
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The BCC_2_NS sample initially produced 2 clusters at resolution = 0.1 (Figure 5.5a). 

This is potentially due to the resolution parameter being too ‘granular’ coupled with 

the low number of cells to perform the algorithm on. After inspecting the UMAP, it 

was clear that the dataset can be further distilled into more clusters through the 

increasing of the resolution. Keratinocyte and endothelial marker expression further 

confirmed this as both cell types were shown to belong to cluster 1 (Figure 5.5d and 

e, respectfully). There was no melanocyte or fibroblast-like cells present in this 

sample (Figure 5.5f and g, respectfully). The Clustree results were further studied to 

select an appropriate resolution (Appendix 5.1.2d). Specifically, cluster 1 at 

resolution 0.1 could be split further. At resolution = 0.4, this cluster is split to form 

two new clusters, therefore this resolution was imputed and clustering and UMAP 

was regenerated. Unfortunately, the endothelial cluster failed to separate at this 

resolution, so resolution = 0.8 was then selected (Figure 5.5b). Again, this resolution 

failed to isolate the endothelial cell cluster. The Clustree analysis was regenerated 

with a higher set of resolutions (0.8 – 8). The cluster containing the endothelial cells 

at resolution = 0.8 (cluster 7) failed to divide until resolution = 7, which produced 35 

clusters (Figure 5.5c). At this resolution, the UMAP lost a lot of its structure, and 

unfortunately failed to isolate the endothelial cells. To truly isolate the endothelial 

cells, the ‘CellSelector’ tool could be used to draw around the cluster and manually 

annotate in that fashion. However, as this is just the optimisation phase, I chose not 

to do this and to annotate using the resolution = 0.8. Integrating the samples may 

enhance the separation of these cells, as there will be more endothelial cells in the 

integrated dataset with similar expression matrices. 
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Figure 5.5 | Cell annotation of BCC_2_NS sample.  Single cell RNA sequencing was 

performed on the BCC_2_NS sample. Various markers were obtained from the 

literature and from the Human Protein Atlas (HPA) and used to annotate the sample. 

a-c) UMAPs showing the number of Seurat clusters generated for the sample at 

clustering resolutions 0.1, 0.8, and 7, respectively. Clustering resolution of 0.8 was 

used for marker analysis. d-g) UMAPs (top) and Violin plots (bottom) showing 

expression of KRT14, PECAM1, PMEL, and COL3A1, respectively, showing 

keratinocytes, endothelial cells, melanocytes, and fibroblast-like cells, respectively. h) 

A heatmap was generated, which shows marker expression for each cell type in each 

Seurat cluster.  i) The marker analysis confidently identified specific cell types. Each 

cluster was then annotated for its cell type. Figure shows the annotated UMAP. 

Expression values represent normalised reads. 
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Clustering generated two clusters at resolution = 0.1 for the BCC_3 sample (Figure 

5.6a). Cell type marker expression analysis showed the presence of keratinocytes, 

endothelial, and fibroblast-like cells present in cluster 0 (Figure 5.6c, d, and f, 

respectfully), indicating that an increase in resolution was needed. There were no 

melanocytes present in this sample (Figure 5.6e). After inspecting the Clustree for 

this sample, cluster 0 (at resolution = 0.1) is subdivided into three new, smaller 

clusters at resolution = 0.4. This resolution was able to separate the keratinocytes 

and endothelial cells but failed to isolate the fibroblast-like cells. A resolution of 2.5 

was sufficient to partially isolate the fibroblast-like cluster, however, increasing the 

resolution further than 2.5 produced the same effect as the BCC_2_NS sample, 

therefore resolution = 2.5 was used (Figure 5.6b, g, h). The current analysis protocol 

was therefore applied to the larger dataset to identify cell populations across all 

samples. 
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Figure 5.6 | Cell annotation of BCC_3 sample.  Single cell RNA sequencing was 

performed on the BCC_3 sample. Various markers were obtained from the literature 

and from the Human Protein Atlas (HPA) and used to annotate the sample. a, b) 

UMAPs showing the number of Seurat clusters generated for the sample at clustering 

resolutions 0.1 and 2.5, respectively. Clustering resolution of 2.5 was used for marker 

analysis. c-f) UMAPs (top) and Violin plots (bottom) showing expression of KRT14, 

PECAM1, PMEL, and COL3A1, respectively, showing keratinocytes, endothelial cells, 

melanocytes, and fibroblast-like cells, respectively. g) A heatmap was generated, 

which shows marker expression for each cell type in each Seurat cluster.  h) The 

marker analysis confidently identified specific cell types. Each cluster was then 

annotated for its cell type. Figure shows the annotated UMAP. Expression values 

represent normalised reads. 
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5.3 Cell Type Identification Within the Integrated Dataset 
 

Highly variable genes (HVGs) were selected before being integrated using Seurat’s v3 

integration method (see Appendix 5.7 for integration optimisation). Following 

integration, the dataset was scaled, and PCA, clustering, and UMAP was performed. 

Low-resolution clustering was first performed to identify the putative cell 

populations. A resolution of 0.1 was initially used, which identified eight clusters. Cell 

type marker analysis placed both melanocytes and endothelial cells within cluster 1, 

identifying an increase in resolution was needed to correctly separate both 

populations. Clustree analysis was therefore performed, which revealed that 

resolution = 0.2 was sufficient to further split cluster 1. Clustering was therefore 

reperformed at resolution = 0.2, which generated nine clusters, and UMAP was re-

run (Figure 5.7a). There appeared to be good integration of each sample across the 

clusters, however, it was apparent that the BCC_3 sample comprised the majority of 

cluster 2 (Figure 5.7b). Cell type marker analysis was again performed which 

displayed correct isolation of cell type clusters (Figure 5.7c-g). On average, 73.56% of 

cells in each sample accounted for keratinocytes (+/- 18.09 SD), 17.14% accounted 

for endothelial cells (+/- 21.66 SD), 4.13% accounted for melanocytes (+/- 4.98 SD), 

and 5.16% accounted for fibroblast-like cells (+/- 5.76 SD). However, looking 

specifically at the four CD200+ CD45- BCC samples, it was apparent that each sample 

had also been enriched for endothelial cells, with an average of 43.56% of cells per 

sample (range 15.46% - 63.73%). This is accompanied by a reduction in keratinocytes, 

with an average of 54.72% cells per sample (range 34.91% - 80.62%). These findings 

indicate a possible flaw in the bulk RNA sequencing previously performed, where a 

sizable population of endothelial cells may indeed mask the signals from the 
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keratinocyte CD200+ CD45- cancer stem cells. The superior advantage to performing 

single cell analyses on these samples is the pure isolation of these keratinocytes, 

allowing identification of true signals emanating from these cancer stem cells. In 

total, there were 10,024 keratinocytes, 2,180 endothelial cells, 652 melanocytes, and 

730 fibroblast-like cells present in the integrated dataset. The 2D UMAP displays a 

clear separation between the keratinocytes and the other cell types, however, the 

other three cell types appear to be clustered closer together. These clusters did not 

fully separate during 3D UMAP analysis. To aid visualisation of the different cell 

isolations performed via FACS prior to sequencing, a new metadata column was 

added onto the integrated object, which labelled samples as BCC (CD45-), BCC 

CD200- (CD200- CD45-), BCC CD200+ (CD200+ CD45-), and NS (Normal Skin, CD45-). 

This metadata was used to plot the UMAP (Figure 5.7h) and a stacked bar graph was 

also generated to display the composition of each sample type within each identified 

cell type (Figure 5.7i).  
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Figure 5.7 |Integration, clustering, and cell annotation of 13 single cell samples.  13 

single cell samples were integrated using Seurat’s v3 integration pipeline. Seurat 

clustering was performed using a resolution of 0.2 and UMAP was subsequently 

performed. a) UMAP showing number and distribution of Seurat generated clusters. 

b) UMAP showing sample distribution across Seurat clusters. c-f) UMAP’s showing 

expression of COL3A1, PECAM1, KRT14, and MLANA which depict cell type identities 

of fibroblast-like, endothelial, keratinocyte, and melanocyte, respectively. g) The 

marker analysis confidently identified specific cell types. Each cluster was then 

annotated for its cell type. Panel shows cell type annotated UMAP. Cell metadata was 

used to further annotate the dataset into samples and cells that were Basal Cell 

Carcinoma (BCC) or Normal Skin (NS) and CD45- (BCC and NS), CD200- CD45- (BCC 

CD200-), and CD200+ CD45-(BCC CD200+). The new metadata was called BCC Cancer 

Type. h) UMAP showing BCC Cancer Type metadata overlay. i) Stacked bar graph of 

the BCC Cancer Type metadata. Graph shows the cell type on the Y-axis and the 

percentage of each sample on the X-axis. Expression values in UMAPs represent 

normalised reads. 
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5.4 Chromosomal Analysis of BCC Cells 
 

Next, putative tumour cells were identified in each individual sample by analysing the 

chromosomal landscape of inferred copy number variations using inferCNV (Tickle et 

al. 2019). Aberrant genomic profiles were observed purely in the keratinocyte 

clusters when compared to their counterpart internal reference cells in all samples 

(melanocytes, endothelial cells, and fibroblast-like cells). These profiles are 

associated with chromosomal deletions (blue) or duplications (red) (Figure 5.8, with 

background reduction. Appendix 5.8, without background reduction). Some tumour 

keratinocytes displayed substantial genomic changes across whole chromosomes (as 

depicted by a colour bar spanning the whole width of the chromosome), whereas 

others displayed very little genomic changes and had a similar CNV profile to the 

normal skin samples (as depicted by a coloured bar spanning only a part of the 

chromosome; BCC_6 chromosome 15, BCC_1 chromosome 6, BCC_8+ chromosome 

15 vs BCC_5, BCC_4-, respectively). This indicates that not all BCCs have CNVs that 

drive tumour growth, an observation similar to those seen in a similar study 

(Guerrero-juarez et al. 2022). Furthermore, no BCC sample contained genomic 

alterations that spanned the whole of the keratinocyte population (as depicted by 

partial-coloured bars along the y axis/rows of a particular chromosome. For example, 

for the BCC_8+ sample, for chromosome 15, there is a section of cells/rows that do 

not have the chromosomal deletion; Appendix 5.8), suggesting the presence of 

normal keratinocytes within these BCC samples. To confirm this, known BCC markers 

(BCAM and EPCAM) were visualised in the integrated dataset via UMAP (Figure 5.9c, 

e, g). PTCH1 and EPCAM were strongly and solely expressed within the keratinocyte 

clusters, whereas BCAM was expressed strongly in both the keratinocyte and 
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endothelial cell clusters. Looking more specifically at the keratinocyte clusters, and 

subsequently subsetting them (Figure 5.9b), the BCC markers were expressed in 

clusters 0, 3, 5, and 8, but not in cluster 1 (Figure 5.9d, f, h). Interestingly, CD200 was 

strongly expressed within the endothelial clusters (Figure 5.9i), which was not 

expected, and in a subset of the keratinocyte clusters (Figure 5.9j). 
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Figure 5.8 |Chromosomal landscape of inferred copy number variations and 

identification of putative tumour cells in single cell samples. inferCNV analysis was 

performed on the keratinocyte populations of 13 single cell samples by comparing 

their genomic profiles to their internal reference counterparts: endothelial cells, 

melanocytes, and fibroblast-like cells. Chromosomal deletions are depicted as blue 

bars and chromosomal duplications are depicted by red bars. Left, chromosomal 

aberrations of the internal reference cells. Right, chromosomal aberrations of the 

keratinocytes (observations). a) genomic profiles for BCC samples (CD45-), b) BCC 

CD200- samples (CD200- CD45-), c) BCC CD200+ samples (CD200+ CD45-), d) normal 

skin samples (CD45-). 
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Figure 5.9 |Identification of Basal Cell Carcinoma (BCC) cells. Single cell RNA 

sequencing was performed on 13 BCC and normal skin samples. Following clustering 

and UMAP, known BCC markers were visualised in the integrated dataset. a, c, e, g, 

i) UMAPs showing the full dataset. The dataset was also subsetted to contain only 

keratinocytes. b, d, f, h, j) UMAPs showing the keratinocyte subsetted dataset. BCC 

markers were visualized in the full and keratinocyte subsetted datasets. a, b) UMAP 

of the full dataset showing 10 clusters, and the keratinocyte subsetted dataset 

showing five clusters, respectively. c, e, g, i) UMAPs of the full dataset showing 

expression of PTCH1, BCAM, EPCAM, and CD200, respectively. d, f, h, j) UMAPs of 

keratinocyte subsetted datasets showing expression of PTCH1, BCAM, EPCAM, and 

CD200, respectively. Keratinocyte clusters are circled in red with an arrow pointing to 

the keratinocyte subsetted dataset UMAP. Expression values in UMAPs represent 

normalised reads. 
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5.5 Re-clustering of BCC Cells 
 

To further investigate the BCC keratinocyte populations, the keratinocyte-only 

dataset was re-clustered at resolution = 1, which resulted in 17 clusters (Figure 5. 

10a). Investigating sample composition of each cluster revealed clusters 14 and 16 

comprised purely of keratinocytes from the BCC samples, and clusters 6 and 11 

comprising mostly of keratinocytes from BCC samples with less than 5% of cells 

belonging to normal skin samples (Figure 5.10b). To identify and confirm the 

presence of BCC tumour clusters, BCC markers (Guerrero-juarez et al. 2022; Yerly et 

al. 2022) and Hedgehog signalling pathway and Basal Cell Carcinoma KEGG gene set 

pathways (from Molecular Signatures Database) were visualised. BCC marker 

analysis showed that BCC cells resided on the left two thirds of the UMAP (clusters 

0, 1, 3, 5, 6, 7, 8, 11, 13, 14, and 16, roughly indicated by dotted line) (Figure 5.10c-

h). These observations were consistent when overlaying the KEGG BCC and 

Hedgehog gene sets, which highlighted the same clusters (Figure 5.10i, j, 

respectively). Interestingly, cluster 6 showed increased expression of BCC markers 

and increased enrichment of the BCC and Hedgehog gene sets when compared to 

the other BCC clusters. CD200 also showed expression within the left two-thirds of 

the clusters (Figure 5.10k). A density plot of CD200 expression was generated, which 

revealed enrichment of CD200 at clusters 0, 1, 5,7, and 11 (Figure 5.10l). 
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Figure 5.10 |Identification of Basal Cell Carcinoma (BCC) cells within keratinocyte 

subpopulations. a) Keratinocytes were subsetted from an integrated single cell 

dataset, and re-clustered using Seurat’s clustering method with a resolution of 1. 

UMAP shows 17 clusters. b) stacked bar graph showing the percentage of cancer type 

(Y-axis) belonging to each Seurat cluster (X-axis). c-h) UMAP’s showing expression of 

known BCC markers, BCAM, EPCAM, HHIP, MYCN, GLI1, and GLI2, respectively, within 

the keratinocyte clusters. i, j) UMAP’s showing KEGG BCC and KEGG Hedgehog 

pathway expression overlaid, respectively. Seurat’s ‘AddModuleScore’ function was 

used to overlay the pathway onto the dataset, which generates an expression value 

of the whole pathway based on the gene expression. k) UMAP showing CD200 

expression within the keratinocyte clusters. Dotted outlines depict the left two-thirds 

of the UMAP where BCC marker and CD200 marker expression is greatest. l) UMAP 

showing density of CD200 expression. Expression values in c-h and k represent 

normalised reads. 
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I next split the UMAP based on CD200 marker status (CD200- CD45- and CD200+ 

CD45-) and assessed the expression of the BCC markers and gene sets. GLI2, EPCAM, 

HHIP, BCAM, MYCN, KEGG BCC, KEGG Hedgehog signalling, and CD200 visibly showed 

greater expression in the CD200+ Basal/BCC clusters when compared to CD200- 

Basal/BCC clusters, whereas PTCH1, GLI1, and GLI2 was difficult to determine (Figure 

5.11c-j and a-b, respectively). However, it was apparent that there were more cells 

present in the CD200+ dataset, making marker expression comparisons difficult. 

These differences were corrected by calculating the percentage of cells expressing 

the marker gene in each cluster for each sample group (Section 2.12.2.13.1). 

Calculating the percentages confirmed the initial findings, with 20.8% of cells 

expressing GLI2 (compared to 8%), 42.1% cells expressing HHIP (compared to 20.3%), 

8.26 cells expressing MYCN (compared to 3.5%), 63.8% cells expressing EPCAM 

(compared to 31.6%), and 73.8% cells expressing BCAM (compared to 65.9%) in the 

CD200+ group when compared to the CD200- group. CD200+ samples also displayed 

greater enrichment for KEGG BCC and HH gene sets, which appeared to have a 

concentrated expression at the top and bottom of the Basal/BCC clusters (clusters 1, 

7, 16 and cluster 6, respectively). This observation is also reflected in the BCC marker 

expression.  
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Figure 5.11 |Assessment of Basal Cell Carcinoma (BCC) markers between CD200- 

and CD200+ sorted populations.  Keratinocytes were subsetted from an integrated 

single cell dataset and re-clustered using Seurat’s clustering method with a resolution 

of 1. The dataset was then further subset into BCC CD200- and CD200+ sorted samples 

and known BCC markers were assessed. a-g) UMAP’s showing expression of PTCH1, 

GLI1, GLI2, EPCAM, HHIP, BCAM, and MYCN, respectively. h-i) UMAP’s showing KEGG 

BCC and KEGG Hedgehog pathway overall expression. Seurat’s ‘AddModuleScore’ 

function was used to overlay the pathway onto the dataset, which generates an 

expression value for the whole pathway based on the gene expression. j) UMAP 

showing CD200 expression. BCC CD200+ samples are the top UMAP’s, CD200- 

samples are the bottom UMAP’s. Expression values in a-g represent normalised reads. 
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5.6 RNA Velocity of BCC Cells 
 

Using a stochastic model, an embedding stream was generated for the normal skin 

samples, which displays the RNA velocities of the cells (Figure 5.12a). The RNA 

velocities, represented in this analysis, define development relationships and 

differentiation, which are vectors that represent the direction and speed of 

movement of cells. The embedding stream revealed that the velocity vectors are 

rooted at cluster one (top cluster, light blue), and terminate toward cluster six 

(bottom cluster, dark blue). The rooted cluster one vectors also appear to migrate 

toward an intermediate state at clusters twelve and thirteen (light and dark green 

clusters, respectively) before terminating at cluster four (right cluster, light red). To 

next identify the major transition states between clusters, a velocity partition-based 

graph abstraction (PAGA) analysis was performed (Figure 5.12b). This algorithm 

connects the cell clusters based on major transitions, with each edge (arrow) 

representing a confident probability of one cluster transitioning to the next. This 

analysis partially corroborated with the embedding stream, confirming the 

progression of cells from cluster one to cluster six. The direct progression from 

cluster one to cluster four was not confidently confirmed by the analysis, as indicated 

by faint, dashed lines. However, the indirect progression was confidently confirmed 

through intermediate clusters zero, six, and two. A confident progression from 

cluster six to cluster three and a non-confident progression from cluster three to 

toward cluster four was also seen. We also see that cluster eight progresses toward 

cluster one and seven, and toward cluster two. 
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In keeping with the stem cell hypothesis, it appears that clusters one and seven are 

a progenitor population which asymmetrically divide to give rise to two different 

populations: transient amplifying cells, as evidenced by velocity vectors terminating 

toward cluster six and PAGA analysis showing transition from cluster six towards the 

clusters on the right hand side, and differentiating cells, as evidenced by velocity 

vectors terminating toward clusters nine and ten. Cluster zero appears to be in a mid-

transitional state toward the transient amplifying cells in cluster six. The clusters on 

the right-hand side of the UMAP appear to be in varying differentiated states, 

perhaps fated to form the various cell populations within the skin. Regardless of 

state, these clusters are either derived from the transient amplifying population 

(cluster six) or the progenitor population (clusters one and seven). We also see a 

similar progenitor behaviour from the proliferating cells in cluster eight, where they 

asymmetrically divide, producing cells belonging to clusters one and/or seven, and 

cells belonging to cluster two.  
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Figure 5.12 |RNA velocity of normal skin keratinocytes. scVelo was used to project 

the RNA velocity of normal skin keratinocytes. Keratinocytes were first subsetted from 

the full integrated dataset and re-clustered using Seurat’s clustering method with a 
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resolution of 1, and then normal skin keratinocytes were subsetted. a) Embedding 

stream displaying the cell velocities. Velocities represent the speed and direction of 

the cells. Arrows depict the direction of the velocities. b) Velocity partition-based 

graph abstraction (PAGA) analysis showing major transition states between clusters. 

Arrows represent confident transitions from one cluster to another. 
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To observe BCC cellular dynamics, I again performed the same analyses on the BCC 

keratinocytes (Figure 5.13a). For the BCC keratinocytes, we see a similar, but more 

defined embedding stream, with velocity vectors rooting from the top-right of cluster 

one and terminating at cluster six and cluster four, again indicating cells of cluster 

one as a progenitor population. Interestingly, when looking at the PAGA graph, we 

see different cellular dynamics within the clusters on the right-hand side of the UMAP 

for the BCC keratinocytes (Figure 5.13b). There is no confident linkage between the 

apparent progenitor or transient amplifying clusters and the clusters on the right-

hand side of the UMAP, however we do see confident links from the far-right clusters 

on the UMAP (cluster four, nine, ten, and twelve) to the various other clusters on the 

right-hand side (cluster two, for example). This is similar to the normal skin 

keratinocytes, and again is possibly where the cells of these clusters are travelling 

down various differentiation trajectories to recapitulate various cell types of the skin. 

There is a clear connection between cluster eight and the rest of the clusters for the 

BCC sample keratinocytes, again possibly because there is a greater number of cells 

to form the linkage. In this case, we see cluster eight showing asymmetrical divisional 

traits to form cells of two different clusters. Both analyses show clusters one and six 

as root and terminal vectors, which indicate progenitor and transient amplifying 

clusters, respectively. 



  

 
 
260 

 
Figure 5.13 |RNA velocity of Basal Cell Carcinoma (BCC) keratinocytes. scVelo was 

used to project the RNA velocity of BCC keratinocytes. Keratinocytes were first 

subsetted from the full integrated dataset and re-clustered using Seurat’s clustering 
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method with a resolution of 1, and then BCC keratinocytes were subsetted. a) 

embedding stream displaying the cell velocities. Velocities represent the speed and 

direction of the cells. Arrows depict the direction of the velocities. b) Velocity 

partition-based graph abstraction (PAGA) analysis showing major transition states 

between clusters. Arrows represent confident transitions from one cluster to another. 
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5.7 Stem-like Cluster Identification  
 

Combining the previous analyses with the observed increase in BCC marker 

expression in clusters one and six, I next hypothesised an increase in stemness in 

these clusters. To investigate this, literature and online databases were explored for 

lists of stem-like markers, and then visualised via UMAP. Firstly, the molecular 

signatures database was searched for relevant gene sets which returned one suitable 

list: MALTA_CURATED_STEMNESS_MARKERS (M30411). This gene set was curated 

from the literature by Malta and colleagues in 2018 and includes a collection of genes 

that mark normal and cancer stem cells (Malta et al. 2018). Secondly, the 

CellMarker2.0 database identified a list of 32 genes associated with stem cells and 

cancer stem cells of the epidermis and hair follicle. Lastly, two lists of differentially 

expressed genes were obtained from Ali and colleagues in 2021, who performed 

microarray analysis on human epidermal keratinocytes from neonatal foreskin 

tissues (Ali et al. 2021). The first list was a list of DEGs uniquely upregulated in 

keratinocyte stem cells (KSCs), and the second list was upregulated DEGs uniquely in 

transient amplifying cells. These gene lists were overlaid onto the combined UMAP 

(Figure 5.14a-d).  

 

Visualising the CellMarker2.0 list of stem and cancer stem cell-related genes revealed 

widespread expression, with visibly heightened expression at clusters one, six, and 

seven (Figure 5.14a). Similarly, when visualising the KSC-related genes from Ali and 

colleagues, we see a similar pattern, with expression mainly focused on the central 

BCC clusters and a heightened expression at clusters one, six, and seven (Figure 

5.14b). Interestingly, when visualising the stem and cancer stem cell-related genes 
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from Malta and colleagues, we see that expression is focused on the BCC and 

differentiating clusters but is absent or very low at clusters one and seven (Figure 

5.14c). When observing the expression of the transient amplifying markers from Ali 

and colleagues, we see a similar expression pattern in the BCC clusters to the Malta 

and colleagues’ markers (Figure 5.14d). If we just take the KSC and transient 

amplifying markers into consideration from Ali and colleagues, we see that both the 

top and bottom of the BCC clusters (clusters one, six, and seven) show expression of 

the KSC markers, which would support the theory that these clusters are progenitor 

and transient amplifying populations that retain stem-like properties. However, only 

cluster six shows expression of the transient amplifying cell markers. Coupling this 

with the previous velocity analyses, it appears that as cells transition from clusters 

one and seven, the apparent progenitor population, they steadily gain expression of 

the transient amplifying marker genes, supporting the hypothesis that cluster six is a 

population of transient amplifying cells. Adding to the complexity of these findings, 

perhaps the markers identified by Malta and colleagues are those that best represent 

a ‘universal’ stem and cancer stem cell, which is what the transient amplifying cells, 

and not the progenitor cells, show characteristics of.  
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Figure 5.14 |Visualisation of stemness-related genes in Basal Cell Carcinoma (BCC) 

keratinocytes. Literature and databases were used to obtain four stemness-related 

gene sets. These gene sets were then used to generate a gene set expression score 

which was then visualised via UMAP. Seurat’s ‘AddModuleScore’ function was used 

to overlay the pathway onto the dataset, which generates an expression value for the 

whole pathway based on the gene expression. a) UMAP showing CellMarker2.0 

database’s stem and cancer stem cell related-genes expression score. b) UMAP 

showing Keratinocyte Stem Cell (KSC)-related genes expression score from Ali and 

colleagues (Ali et al. 2021). c) UMAP showing stem and cancer stem cell-related genes 

expression score from the molecular signatures database (M30411). d) UMAP 

showing transient amplifying markers gene expression score from Ali and colleagues 

(Ali et al. 2021). e) UMAP showing number of Seurat clusters, for reference. 
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5.8 CD200+ Cancer Stem Cell Cluster Identification 
 

I next hypothesised that there would be a CD200-expressing population residing 

within these progenitor and transient amplifying cell populations. As 

aforementioned, plotting CD200 on the UMAP revealed heterogeneous expression 

throughout the BCC clusters, with a focused cluster of higher-expressing cells residing 

in clusters one and seven (Figure 5.15a). A small number of cells with the highest 

CD200 expression in a small portion of cells residing in cluster six is also seen. 

Interestingly, when plotting a phase portrait for the CD200 gene with scVelo, we see 

that the gene has increased velocity in clusters one, six, and seven (Figure 5.15b). 

This analysis examines the genes dynamics by interpreting spliced and unspliced 

transcripts of that gene. A positive velocity here indicates an upregulation of the gene 

as there are a higher amount of unspliced transcripts which indicates transcriptional 

induction.  
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Figure 5.15 |Assessment of CD200 expression in Basal Cell Carcinoma (BCC) 

keratinocytes. Keratinocytes were subsetted from an integrated dataset and re-

clustering was performed using Seurat’s clustering method with a resolution of 1. a) 

UMAP showing CD200 expression. Expression represents normalised reads. b) Phase 

portrait showing velocity of CD200 using scVelo. Expression scale represents velocity. 

Positive velocity indicates an upregulation of the gene due to higher amounts of 

unspliced transcripts. c) UMAP showing Seurat clusters, for reference. 
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5.9 Characterisation of BCC Cancer Stem Cell/Stem-like 
Populations 
 

I next wanted to functionally characterise the clusters and identify any aberrant 

signalling pathways between them. To do this, I used single cell gene set enrichment 

analysis (scGSEA), which provides enrichment information at the cluster level. DEGs 

were first generated for each cluster, which were then used as input into the 

‘singleseqgset’ package in R (Cillo 2021). An additional benefit of this analysis is that 

it also uses hierarchical clustering to group the clusters based on functional similarity 

(see Appendix 5.9 for all scGSEA results). Whilst a common enrichment theme did 

not immediately present itself across the scGSEA results, the most notable finding 

was the common primary segregation in the hierarchical clustering of the clusters for 

all gene set databases. The same clusters were being primarily separated. A 

summarisation of the primary segregation from the hierarchical clustering for each 

gene set database can be found in Figure 5.16a. Using this table, I was able to identify 

modules of functionally related clusters. I first looked for primary hierarchical 

clustering segregation that was in agreement across ≥ 5 of the gene set databases. 

The first obvious module encompassed clusters 2, 3, 4, 9, 10, 12, and 15 (Figure 5.16a 

– blue) was generated and highlighted via UMAP (Figure 5.16c). Interestingly, these 

clusters resided at the right-hand side of the UMAP and were enriched for gene sets 

associated with differentiating cells. This is also in agreement with the direction of 

flow determined by the RNA velocity analyses. Given this functional module and the 

findings from the RNA velocity analyses, I hypothesised that these clusters were 

differentiating keratinocyte populations. To investigate this, I visualised known 
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keratinocyte differentiation markers via UMAP (Figure 5.16d-f). Marker analysis 

revealed that the far-right clusters (2, 3, 4, 9, 10, 12, and 15) were strongly enriched 

for these markers, indicating that these clusters are indeed differentiating 

keratinocytes. Given this data, and the results from the RNA velocity analyses, I then 

hypothesised that cluster 8 (bottom left of UMAP) was a population of proliferating 

keratinocytes. scGSEA analysis of this cluster revealed strong enrichment of 

proliferation-associated processes such as cell cycle, DNA replication, and G2M 

checkpoint. I then visualised expression of well-known markers of proliferation, 

MKI67, TOP2A, and UBE2C (Figure 5.16g-i) as well as visualised the annotation from 

the previously performed cell cycle scoring (Figure 5.16j), which confirmed cluster 8 

as a population of proliferating keratinocytes. I next looked at clusters that were 

hierarchically clustered apart from the first module during the primary segregation 

(Figure 5.16a - grey). The most closely related clusters were 0, 5, 6, 14, and 16 (in 

agreement with ≥ 4 gene set databases) which populated primarily the middle-

bottom portion of the central section of the UMAP (except for cluster 16 which 

resides at the middle-top; Figure 5.17a). When investigating the secondary 

hierarchical clustering, I saw that clusters 1, 7, and 11 were also closely related 

(Appendix 5.9 and Figure 5.17b). Intriguingly, these clusters express the highest levels 

of CD200 (Figure 5.17c). I have therefore shown that there are 3 functionally distinct 

BCC keratinocyte populations. I was therefore able to re-cluster the BCC 

keratinocytes based on their functional similarities (Figure 5.17d). 
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Figure 5.16 | Cluster analysis of BCC keratinocytes. Single cell Gene Set Enrichment 

Analysis (scGSEA) was performed on BCC keratinocyte clusters. Wikipathways, 

Biocarta, PID, KEGG, Hallmark, and Reactome results were all analysed. The primary 

segregations from the hierarchical clustering from each result was taken and made 

into a table.  a) Samples were assigned colours based on where the root node first 

branches into two clades (primary segregation), as either grey or blue. b) UMAP 

highlighting Seurat clusters, for reference. c) Using the information from a, a module 

of primary segregation was identified and clusters were highlighted via UMAP. Panel 

shows the highlighted clusters (2, 3, 4, 9, 10, 12, and 15). d-i) Differentiation markers 

were assessed in the keratinocyte clusters via UMAP. Panels show UMAPs 

highlighting expression of KRT1, KRT10, KRTDAP, MKI67, TOP2A, and UBE2C, 

respectively. j) UMAP highlighting the estimated cell cycle phase for each cell. 
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Figure 5.17 | Basal BCC keratinocytes show functional similarity. Single cell Gene 

Set Enrichment Analysis (scGSEA) was performed on BCC keratinocyte clusters. 

Wikipathways, Biocarta, PID, KEGG, Hallmark, and Reactome results were all 

analysed. The primary segregations from the hierarchical clustering from each result 



  

 
 

273 

was taken and made into a table. Samples were assigned colours based on where the 

root node first branches into two clades (primary segregation), as either grey or blue. 

This table is shown in the previous figure. Using this table, a module of primary 

segregation was identified and highlighted in the previous figure. a) When 

investigating the table further, a second module of segregation was identified which 

was apart from the first module. Panel shows a UMAP highlighting the clusters that 

form this module. b) Secondary hierarchical clustering was then investigated, which 

identified a further module of closely related clusters. Panel shows a UMAP 

highlighting these functionally similar clusters. c) UMAP highlighting the CD200 

expression density. d) Combining the information from these analyses (including 

previous figure), the clusters were re-annotated based on the clusters’ functional 

similarities. Panel shows a UMAP with the new cell identities based on functional 

similarity. 
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Having identified 3 unique functionally similar populations of BCC keratinocytes 

(Figure 5.17d) and showed that CD200 expression is found within the ‘Basal_BCC’ 

keratinocyte populations, I next hypothesised that BCC cancer stem cells reside 

within this population. I then wanted to identify any aberrant signalling pathways 

that distinguish this population from the proliferating and differentiating BCC 

populations. To address this, I firstly performed DGE analysis between the Basal_BCC 

clusters and both proliferating and differentiating clusters to generate a set of DEGs 

that were unique to the Basal_BCC clusters. As I wanted to identify aberrant 

signalling pathways that were investigable in the lab, I next took the positively 

enriched DEGs and performed g:Profiler analysis using GO: Molecular Function, 

KEGG, Reactome, and Wiki Pathways databases (Appendix 5.10). EnrichR analysis 

was also performed on the positively enriched DEGs (Appendix 5.11).  g:Profiler 

results showed enriched TGFβ-related signalling, Notch signalling, insulin signalling, 

and Hedgehog signalling, amongst others. Amongst relevant results in the EnrichR 

analysis, the most common top hits were TGFβ signalling-related, Wnt signalling-

related, Insulin-related pathways, Notch-related, and angiogenesis-related. I then 

performed scGSEA on the 3 populations (Appendix 5.12). Amongst the top positively 

enriched gene sets for the Basal_BCC population with Biocarta was Integrin pathway, 

TGFβ pathway, IGF1 pathway, and PTEN pathway. Amongst the top negatively 

enriched gene sets for biocarta were Death pathway, Inflammation pathway, 

Caspase pathway, and EPONNFKB pathway (Appendix 5.12.1). When looking at 

Hallmarks, amongst the top positively enriched gene sets were Hedgehog signalling, 

Notch signalling, epithelial-mesenchymal-transition, and TGFβ signalling. Amongst 

the top negatively enriched gene sets were allograft rejection, interferon α response, 

interferon gamma response, and MYC targets v1 (Appendix 5.12.2). For KEGG, 
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amongst the top positively enriched gene sets were Insulin signalling pathway, Basal 

cell carcinoma, Notch signalling pathway, TGFβ signalling pathway, and MAPK 

signalling. Amongst the top negatively enriched gene sets were Pyrimidine 

metabolism, autoimmune thyroid disease, steroid hormone biosynthesis, and 

oxidative phosphorylation (Appendix 5.12.3). For PID, amongst the top positively 

enriched gene sets were Wnt signalling pathway, hedgehog signalling pathway, AVB3 

Integrin pathway, and RET TF pathway. Amongst the top negatively enriched gene 

sets were PKL1 pathway, E2F pathway, FOXM1 pathway, and Delta NP63 pathway 

(Appendix 5.12.4). For Reactome, amongst the top positively enriched gene sets were 

IRS mediated signalling, signalling by NTRKs, signalling by NOTCH, PI3K AKT signalling 

in cancer, and IL7 signalling. Amongst the top negatively enriched gene sets were 

gene and protein expression by JAK STAT signalling after IL12 stimulation, interferon 

gamma signalling, cytokine signalling in immune system, and innate immune system 

(Appendix 5.12.5). Lastly, for Wiki Pathways, amongst the top positively enriched 

gene sets were embryonic stem cell pluripotency pathways, IL4 signalling pathway, 

hedgehog signalling pathway, MAPK signalling pathway, Notch signalling, and TGFβ 

signalling pathway. Amongst the top negatively enriched gene sets were pyrimidine 

metabolism, complement system, IL10 anti-inflammatory signalling pathway, and 

prostaglandin signalling (Appendix 5.12.6). To visualise all of the above analyses, I 

took the most relevant enriched signalling pathways from the g:Profiler and EnrichR 

analyses and assessed their enrichment values in the scGSEA analyses (Figure 5.18). 

One pathway that routinely appeared amongst the top positively enriched pathways 

and displayed strong enrichment values across all the scGSEA databases during the 

analyses was the TGF-β pathway. Other pathways that showed strong enrichment 

across 5/6 databases was Notch signalling, Wnt signalling, and Insulin signalling. 
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Having found strongly enriched pathways to investigate in the lab, I decided to 

investigate the TGFβ signalling pathway. To internally validate the pathways 

involvement within the Basal_BCC clusters, I first checked the expression of various 

database TGFβ signalling gene sets, which uniformly showed increased enrichment 

within the Basal_BCC clusters, particularly within the lower clusters (Figure 5.19a-e). 

Our lab has also previously generated a TGFβ gene panel, which showed similar 

enrichment to the other generic gene sets (Figure 5.19f). 
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Figure 5.18 | Heatmap of commonly enriched signalling pathways in BCC basal 

cells. Differential gene expression (DGE) was performed to generate BCC basal cell 

differentially expressed genes (DEGs). Positively enriched DEGs were then used as 

input into g:Profiler and EnrichR. The most commonly enriched signalling pathways 

were then noted. Single cell gene set enrichment analysis (scGSEA) was then 

performed on the BCC basal cells, and the enrichment score for the commonly 

upregulated signalling pathways that were found from the g:Profiler and EnrichR 
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analyses were taken and used as input into Broad Institutes Morpheus heat mapping 

software. Black squares depict no enrichment seen. 
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Figure 5.19 | Assessment of TGFβ Signalling in BCC keratinocytes. TGFβ gene sets 

were downloaded from their respective databases and used as input to Seurat’s 

‘AddModuleScore’ function, which gives an overall enrichment score for the gene set. 

a-f) UMAPs showing module scores for Panther, Hallmark, KEGG, WikiPathways, 

Reactome, and GKP labs TGFβ signalling pathway gene sets, respectively.  
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I next assessed the expression of SMAD2 and SMAD3, which are the major signalling 

components of the canonical TGFβ signalling pathway. As expected, SMAD2 and 

SMAD3 were enriched in the Basal_BCC cluster, with SMAD2 showing more cells with 

increased expression (Figure 5.20a and b, respectively). I then hypothesised that 

TGFβ signalling, specifically SMAD2 and SMAD3, showed co-expression with CD200. 

To assess this, I used density plots to plot the individual marker densities across the 

Basal_BCC cluster, then a co-density plot of the marker with CD200 expression. 

Density plots confirmed what was found within the expression UMAPs but indicated 

increased expression within specific areas of the Basal_BCC cluster (Figure 5.20c and 

d). Interestingly, both co-density plots highlighted the same populations of cells that 

expressed both CD200 and SMAD2/3.  
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Figure 5.20 | SMAD2/3 signalling within CD200+ basal cell carcinoma basal 

keratinocytes. BCC basal keratinocytes were assessed for enrichment of the TGFβ 
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signalling pathway components, a) SMAD2 and b) SMAD3. Co-density plots were then 

generated to check correlation between expression of CD200 and c) SMAD2 or d) 

SMAD3. c, d) Left, CD200 density plot. Middle, SMAD2 or SMAD3 density plot, 

respectively. Right, co-density plot. Expression levels in a and b represent normalised 

reads. Normalised reads are also used as input for the density plots. Scale bars in c 

and d represent the density, or co-density, of the respective genes in the cells. 
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5.10 Validation of TGFβ Signalling in BCC CD200+ Basal Cells 
 

Having found a viable enriched signalling pathway within CD200+ BCC basal cells, I 

next wanted to investigate where these TGFβ signalling-positive cells were located. I 

hypothesised that these cells would be positioned on the tumour periphery, as we 

see with CD200+ cells. To investigate the pathway, I used IHC on human BCC samples. 

Active TGFβ signalling can be seen within the bulge region of the hair follicle of the 

normal skin and is identified by nuclear labelling with a pSMAD3 antibody. I therefore 

decided to use nuclear pSMAD3 labelling as an indicator of active TGFβ signalling 

within the BCC tissue. pSMAD3 expression was first validated by checking for 

expression within the hair follicle in normal skin regions on BCC sections (Figure 

5.21a). pSMAD3 expression was then checked in BCC tissues, which displayed 

positivity in 21.78% +/- 1.88 SEM in BCC tumour nodules (n=15 BCCs, Figure 5.21b). 

Interestingly, pSMAD3 expression appeared to be increased at the tumour periphery. 

Indeed, when counting pSMAD3-positive cells at the tumour periphery, 38.01 % +/- 

2.26 SEM were positive.  
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Figure 5.21 | pSMAD3 nuclear staining of human BCC tissues. pSMAD3 staining was 

performed on n=14 human BCC tumours. a) pSMAD3 staining is positive in the bulb 

region of the hair follicle in normal skin, and so used as an internal positive control. 

b) pSMAD3 staining in human BCC tumour nodules. left, zoomed out image of 

tumour, right, zoomed in image of tumour. Each tumour nodule represents a technical 
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replicate for a given BCC tissue section. n=15 BCC tissue sections. error bars represent 

mean +/- SEM, ***P<0.001 by Mann Whitney test. 
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5.11 Discussion 
 

In this chapter, I optimised a single cell RNA-sequencing pipeline to analyse and 

characterise 13 BCC and normal skin samples. I showed that these samples were 

deeply sequenced, with average sequencing saturations > 80%. Using a small batch 

of 4 samples, I was able to optimise an analysis pipeline to accurately and 

reproducibly identify and cluster the various cell types present within human BCC. 

Using the full dataset and both supervised and unsupervised approaches, I was able 

to clearly identify the cell types present within human BCCs. Regardless of how many 

cells are present in each sample, all samples have a large keratinocyte and 

endothelial cell population. An interesting observation was that the CD200+ sorted 

samples showed an enrichment of endothelial cells rather than keratinocytes, whilst 

eliminating the melanocyte population. Significantly improved clustering was also 

observed in samples with > 1000 cells, signifying the importance of sample size for 

single cell analysis. I have demonstrated that all samples, regardless of how the cells 

were isolated via FACS (either CD45- or CD200+ CD45-), contain an endothelial cell 

and keratinocyte population, showing strong expression of the same markers across 

samples. Using chromosomal analysis, I was able to show that BCC tumour cells 

resided within the keratinocyte populations, as they contained significant 

chromosomal duplications and deletions when compared to the other cell types. An 

interesting finding was that not all BCC samples harboured significant genomic 

alterations, suggesting that BCC tumour development and progression is not purely 

reliant on chromosomal aberrations.  
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In conclusion, I have shown that CD200 is functionally important in immune cell 

evasion in BCC and is therefore a valuable marker for these BCC keratinocytes to 

possess as it provides the cells protection from immune attack. From my bulk RNAseq 

analyses of CD200+ BCC cells, I saw a mix of populations present. I have shown that 

even flow sorting cells (via FACS) results in heterogeneity in cell populations. For the 

first time, I have finally got to the population of interest by performing single cell RNA 

sequencing (and the cell type identification). Using a low-resolution approach, I was 

able to isolate the keratinocyte populations from the other cell types and create a 

keratinocyte-only dataset. By re-clustering the dataset at a higher resolution, I was 

able to demonstrate the number of, and heterogeneity of keratinocyte populations. 

I have shown that there is a large collection of populations that display known BCC 

gene marker expression. These populations are closely clustered and resemble the 

main body of the BCC keratinocyte populations. I additionally showed that there are 

distinct proliferating and differentiating keratinocyte populations residing within the 

BCC keratinocytes. Using RNA velocity analyses, I showed varying transitional states 

of the keratinocyte populations. I also provided evidence that points to the existence 

of a progenitor and a transient amplifying cell population that resides within the main 

BCC keratinocyte population. I then looked at CD200 expression within the BCC 

keratinocytes, which showed heterogeneous expression throughout with a few areas 

showing increased expression. These areas also showed high expression in hedgehog 

signalling. Using pseudo bulk DEG analyses, I showed a number of enriched pathways 

within these BCC keratinocyte populations. A particular pathway that showed 

prevalence was the TGFβ signalling pathway. 
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Having found a pathway of interest, I then investigated its expression within human 

BCC tissue sections. I used the pSMAD3 antibody to show expression of, and the 

activity of TGFβ signalling, which showed increased expression and activity in cells 

around the BCC tumour periphery. CD200+ cells are also located around the tumour 

periphery. TGFβ signalling therefore may be a functionally relevant signalling 

pathway to CD200+ cancer stem cells residing within the BCC tumour periphery. 
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Chapter 6: Discussion 

 

While cancers develop as a result of DNA mutations that lead to cell transformation, 

the evolution of cancer growth is much more complex and dependent upon many 

factors. At one level, BCC is a simple cancer in that the driver mutations are clearly 

defined and result in the activation of a very specific growth factor pathway: the Hh 

growth factor pathway. Yet, SMO antagonists are confounded by both primary and 

secondary resistance, and rarely achieve a cure. Herein, we have hypothesised that 

the persistence of BCC tumour cells in the face of SMO antagonism is due to the 

survival of BCC cancer stem cells through alternative cell survival mechanisms.  

 

To date, three principal mechanisms have been identified to account for the lack of 

response to growth factor inhibitors: 1) the activation of alternate signalling 

pathways that are capable of driving tumour growth, 2) target mutations that 

prevent drug activity, and more recently 3) the presence of intrinsically resistant 

cancer stem cells (Valent et al. 2012). Our work has focused on the latter mechanism, 

in which we have sought to identify specific survival pathways that may be amenable 

to therapeutic targeting. 
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6.1 CD200: a functionally relevant cancer stem cell-associated 
protein 
 

Cell surface proteins used to isolate cancer stem cells may or may not have a 

functional role. This point is particularly pertinent, even though Cluster of 

Differentiation 200 (CD200; also known as OX-2) enriches the tumour-initiating cell 

population in BCC the frequency of tumour-initiating cells is still only 1 in 822 

(Colmont et al. 2013a). That said, CD200 has long been considered a relevant cancer-

associated protein (Moreaux et al. 2006). Of note, earlier defined cancer stem cell 

markers CD44 and CD133 often localise with CD200 in specific cancers: glioblastoma, 

breast and prostate (Kawasaki and Farrar 2008).  

 

CD200 is a type 1 transmembrane glycoprotein comprised of two Ig-like domains and 

has a single transmembrane domain with a short, 19 amino acid intracellular domain 

(Hatherley et al. 2013). Due to its short cytoplasmic domain, CD200 provides a one-

way interaction with the CD200R (Liu et al. 2016). The CD200 receptor (CD200R) has 

structural similarity to CD200 but has a longer cytoplasmic domain for intracellular 

signalling (Ngwa and Liu 2019). In contrast to CD200, CD200R expression is restricted 

to cells of myeloid lineages, activated T cells, B cells and NK cells (Kawasaki and Farrar 

2008). The broad distribution of CD200 but immunologically restricted expression of 

CD200R is consistent with specificity associated with immune evasion. 

 

CD200-/- mice had a normal lifespan and fertility but compared to WT mice, had 

significantly higher numbers of CD11b+ macrophage populations, highlighting its 

importance in immune regulation (Hoek et al. 2000). CD200 regulates immune 

responses in bone development and homeostasis, infection response, transplant 
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acceptance and reproductive biology, and pathologies including neuroinflammation, 

autoimmune and allergic disorders and cancer growth (Gorczynski 2012; Zhao et al. 

2019). CD200 has a role in a number of cancers including multiple myeloma (MM), 

lymphocytic leukaemia (CLL) and acute myeloid leukaemia (AML), and solid cancers 

such as melanoma, breast, prostate, lung, renal and ovarian (Moreaux et al. 2008; 

Siva et al. 2008; Twito et al. 2013). 

 

In studying the inflammatory infiltrate surrounding BCC and SCC, we had observed 

there was a near absence of NK cells (as defined by CD56+HLA-DR+) in BCC when 

compared to SCC and normal skin (1.53% +/- 1.00% vs 22.21% +/- 9.80% and 8.17% 

+/- 2.55%, both P < 0.05, respectively. Morgan et al. 2022). In BCC, we showed that 

CD200 could undergo ectodomain shedding by metalloproteinases within the 

tumour microenvironment. Previously it had been shown that CD200:CD200R 

interaction led to negative regulation of the MAPK signalling pathway, which is 

necessary for immune cell activation (Mihrshahi and Brown 2010). Using NK cell lines 

that were CD200R-positive (NK92MI; NK+) and CD200R-negative (NKL; NK-), we 

showed that incubation with a CD200 peptide resulted in a 4-fold reduction in p-

ERK1/2 levels in NK+ but not NK-, wherein p-ERK1/2 was as an indicator of NK cell 

activation through MAPK signalling. Incucyte time-lapse co-culture assay with HeLa 

CD200+ and HeLa CD200- cells with NK+ cells demonstrated CD200 signalling-

dependent NK cell killing. NK cell killing could be prevented when CD200+ cells were 

cocultured with NK+ cells that had been initially pre-treated with a CD200R shRNA. 

Western blot analysis showed that CD200 signalling led to inhibition of the MAPK 

pathway and, in turn, to an increase in PPARγ signalling, promoting the expression of 

FAS receptor and FAS ligand. Thus, continuous CD200 signalling led to NK cell 
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apoptosis. The in vivo experiments performed as part of this thesis validated our 

earlier in vitro findings.  

 

Herein, I found that CD200+ and CD200- tumours grew to similar sizes, but that 

CD200- tumours had a greater anti-tumour immune response. The immune response 

was associated with areas of necrosis within the CD200- tumour. CD200 expression 

by tumour cells moderated this immune response, and importantly was 

accompanied by NK cell apoptosis, since NK cells are preserved in Nude mice used 

for xenografting. Collectively, these findings supported the functional role of CD200 

in helping BCC cancer stem cells evade immune cell-mediated destruction. 

 

6.2 CD200+ CD45- BCC subpopulation included endothelial cells 
and identified angiogenesis 
 

Unfortunately, the absence of CD200 expression in the UWBCC1 cell line, precluded 

its use for analysis of BCC cancer stem cells. In hindsight, the flow-cytometry did not 

define a distinct CD200+ population. Even when I thought I had flow-sorted CD200+ 

cells, there was no CD200 mRNA detectable by RT-PCR or RNA sequencing.  

 

Our earlier work to characterise BCC cancer stem cells had used a simple flow sorting 

strategy using CD45 as a sole linage negative marker. Using this strategy, the isolated 

cells had been determined to be keratinocytes by co-labelling with pan-cytokeratin 

(Colmont et al. 2013a). Moreover, the CD200+ CD45- BCC subpopulation 

demonstrated expression of Hh pathway-regulated gene expression, including 

keratin 17 by western blot analysis. Yet in our RNA sequencing and subsequent 
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immunohistochemistry experiments, we have shown that the CD200+ CD45- BCC 

sub-population also clearly identified endothelial cells. 

 

Clinically, BCCs are discernible by the presence of dilated blood vessels surrounding 

the tumour, and many patients first acknowledge the presence of a BCC because of 

bleeding (Lupu et al. 2019). There is a close relationship between angiogenesis and 

tumour growth (Folkman et al. 1989). The term ‘angiogenic switch’ refers to the 

predominance of proangiogenic factors, resulting in the formation of new blood 

vessels (Folkman and Shing 1992). VEGF is the main proangiogenic factor found to be 

increased in BCCs when compared to normal skin and squamous cell carcinoma 

(Bowden et al. 2002). VEGF-associated angiogenesis in BCCs is dependent on tumour 

cell expression of COX-2, matrix metalloproteinase-9 (MMP-9), and Maspin (Tjiu et 

al. 2006). 

 

Our bulk RNA sequencing analysis comparing CD200+ CD45- and CD200- CD45- BCC 

flow-sorted cells identified 1,372 DEGs, of which 517 were up-regulated. Gene 

ontology of up-regulated genes identified enrichment of regulation of vasculature 

development, angiogenesis cell and migration. Likewise, C5-Ontology and C8-cell 

type results showed endothelial cells and related functions. To elucidate the 

regulation of VEGF pathway proteins, we overlayed the DEGs onto the VEGF 

pathway, leading to the identification of components both within BCC cells, but also 

possibly endothelial cells themselves. To confirm this, we used over-expression of 

the VEGFR2 to label BCC tissues by immunohistochemistry and observed labelling in 

both tumour and endothelial cells, suggesting that there may be CD200+ CD45- 

endothelial cell enrichment in the BCC CD200+ CD45-sorted cells. Hence, to 
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determine the cell types and the interplay of cells in angiogenesis we undertook IPA 

analysis, which confirmed presence of multiple cell types, and therefore we 

undertook single-cell sequencing.   

 

6.3 Single cell sequencing: A TGFβ signature 
 

As suspected from the bulk RNA sequencing results, the flow-sorted CD200+ CD45- 

BCC subpopulation was indeed heterogenous. This sub-population, in addition to BCC 

keratinocytes, contained a sizable fraction of endothelial cells and occasional 

fibroblasts based on gene expression profiles. Compared to normal skin and unsorted 

BCC, the proportion of endothelial cells was much greater in the CD200+ CD45- BCC 

flow-sorted sub-population, unlike melanocytes and fibroblasts, suggesting that 

endothelial cells were positively selected. I was able to use bioinformatics analyses 

to demonstrate CD200 expression on endothelial cells to validate this. One of the 

future directions for this work is to further elucidate the interplay between BCC 

keratinocytes and endothelial cells to better understand the bias towards 

angiogenesis in BCC. 

 

By combining the different samples to generate a single dataset, we were able to 

further re-cluster the BCC keratinocytes to identify 17 distinct clusters based on gene 

expression. Consistent with BCC keratinocytes, both the CD200+ CD45-and CD200- 

CD45- BCC subpopulations expressed BCC associated genes: Ptch1, Gli1, Gli2, EPCAM, 

Hhip, BCAM, and MycN. Concordant with these observations, the Kegg BCC and Hh 

gene sets were enriched in both BCC subsets. RNA velocity and expression of known 

stem cell gene sets were used to identify the progenitor cell clusters, which also 
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expressed the highest levels of CD200.  The progenitor population, also called 

“basal”, was represented by clusters 0, 1, 5, 6, 7, 11, 13, and 16. Cluster 8 represented 

keratinocytes undergoing proliferation, while the clusters on the right-hand side of 

the UMAP exhibited a differentiated cell phenotype. By undertaking gene set 

enrichment analysis across several gene sets, consistently identified active TGFβ 

signalling within the progenitor populations supported by our immunohistochemical 

labelling of BCC tissues.  

 

We have shown that in BCC, a Hh-driven cancer, the cancer stem cells exhibited 

active TGFβ signalling. In hair follicle bulge stem cells, TGFβ signalling-associated 

proliferation is observed during the anagen hair follicle cycle, consistent with the 

potential cell of origin for BCC cancer stem cells (Youssef et al. 2010; Wang et al. 

2011). Active TGFβ signalling has also been identified in cancer stem cells from other 

cancer types (Shipitsin et al. 2007; Peñuelas et al. 2009; Ikushima and Miyazono 

2010; You et al. 2010; Bruna et al. 2012; Lo et al. 2012; Mima et al. 2012; Bhola et al. 

2013; Oshimori et al. 2015). The interplay between TGFβ and Hh signalling has been 

previously reported in BCC, wherein GLI2 is a downstream target gene of the TGFβ 

signalling cascade (Dennler et al. 2007). In response to TGFβ, SMAD3 was rapidly 

recruited to distinct elements within the GLI2 promoter and enhanced its 

transcription (Dennler et al. 2009). Also following TGFβ pathway activation, GLI1 a 

specific marker for Hh signalling activity, was induced in a GLI2-dependent manner. 

Recently, Yao and colleagues found TGFβ signalling to be active in BCC demonstrating 

resistance to SMO antagonists, leading to activation of MRTF regulated transcription 

(Yao et al. 2020). Thus, there is crosstalk between the Hh and TGFβ pathways, evident 
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within BCC, in particular after SMO antagonism and more specifically as we have 

found in BCC cancer stem cells. 

 

TGFβ is the prototypic cytokine responsible for epithelial-mesenchymal transition, 

which could aid BCC cancer stem cell invasion (Zavadil and Böttinger 2005). Many of 

the epithelial-mesenchymal transition genes regulated by the TGFβ pathway are GLI-

dependent (Li et al. 2007). TGFβ-dependent GLI2 expression and GLI-dependent 

transcription were responsible for epithelial-mesenchymal transition to form 

invasive myoepithelial cells in breast ductal carcinoma in situ (Miller et al. 2000; Hu 

et al. 2012). Likewise, TGFβ Hh-independent GLI2 expression resulting in bladder 

cancer invasiveness (Mechlin et al. 2010). In ovarian cancer stem cells, TGFβ was 

associated with GLI1 and 2 mediated resistance to cisplatin (Steg et al. 2012). 

Therefore, the ability of TGFβ to maintain Hh signalling may provide a mechanism for 

BCC cancer stem cell survival following SMO antagonist therapy.  

 

In conclusion we have determined that CD200 is a functionally relevant BCC cancer 

stem cell protein, which is responsible for a specific pattern of immune evasion 

observed in BCC through ectodomain shedding. In attempting to further define this 

population using transcriptomic approaches, we have identified VEGF angiogenesis. 

More importantly, using single cell sequencing, we have been able to identify highly 

enriched clusters of potential BCC cancer stem cells, where we have observed 

expression of TGFβ regulated genes. Consistent with our earlier observations to 

suggest that BCC cancer stem cells are not killed by SMO antagonists, we find that 

TGFβ signalling can support Hh pathway gene transcription. 
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6.4 Future Directions 
 
In this thesis, I was able to investigate the TGFβ signalling pathway in BCC tissue 

sections. Expression of TGFβ signalling member, pSMAD3 was seen in the tumour 

periphery, the same area where the CD200+ BCC CSCs are located. Further studies 

should look at the following: 1) Isolate the CD200+ pSMAD3+ cells and perform 

stem cell assays to identify whether these cells have enhanced survival and colony 

forming abilities when compared to their negative and CD200+ only counterparts. 

2) Perform TGFβ knockdown experiments in vitro and assess whether the canonical 

TGFβ signalling pathway has any functional effects on the cells, and if there are any 

changes to Hh signalling. These findings could ultimately lead to the testing of dual 

inhibitor treatment, where the Hh and TGFβ pathways are inhibited. This could 

potentially lead to better response rates in BCC patients.  

 

Other enriched signalling pathways were also identified during the single cell RNA 

sequencing analyses. If time permitted, these pathways would have been 

investigated in a similar manner to the TGFβ pathway, and further analyses could 

have been performed as described above. Of particular interest would be the 

identification of cell surface markers that could enable to the further isolation of 

the BCC CSCs. Performing DGE analysis of the progenitor and transient amplifying 

clusters could potentially provide these markers, combined with IPA’s biomarker 

analysis. These markers could then be used in conjunction with CD200 to sort cells 

and perform xenografting experiments.  
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Appendix 

 
Appendix 2.2 | nCount RNA violin plots used for QC. 
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Appendix 2.3 | nFeature RNA violin plots used for QC. 
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Appendix 2.4 | Mitochondria gene percentage violin plots used for QC. 
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Appendix 2.5 | QC filter parameters 
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Appendix 2.6 | Variable feature selection plots. 
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Appendix 2.7 | PCA Theory. 
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Appendix 2.8 | Clustering methods overview. 
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“Representation of different clustering approaches for single-cell RNA sequencing 

(scRNA-seq) using the Deng data set of early mouse embryo development. a | True 

clusters, as defined by the authors, are based on the developmental stage. b | k-

means separates cells into k = 5 groups. Because k-means assumes equal-sized 

clusters, the larger group of blastocysts is split from the other cell groups before the 

8-cell and 16-cell stages are separated from each other. c | Complete-linkage 

hierarchical clustering creates a hierarchy of cells that can be cut at different levels 

(the result for k = 5 is indicated by the coloured bars at the bottom). Cutting farther 

down the tree would reveal finer substructures within the clusters. d,e | Louvain 

community detection29 is applied to a shared-nearest-neighbour graph connecting 

the cells and finds tightly connected communities in the graph (number of nearest 

neighbours used to construct the graph is five for part d and ten for part e). Increasing 

the number of neighbours when constructing the cell–cell graph indirectly decreases 

the resolution of graph-based clustering. Each clustering algorithm was implemented 

in R (igraph for parts d and e) and applied to the first two principal components (PCs) 

of the data.” 

  

https://www.nature.com/articles/s41576-018-0088-9
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Appendix 2.9 | Seurat integration method overview 
 

 
“Figure 1Schematic Overview of Reference “Assembly” Integration in Seurat v3 

(A) Representation of two datasets, reference and query, each of which originates 

from a separate single-cell experiment. The two datasets share cells from similar 

biological states, but the query dataset contains a unique population (in black). 

(B) We perform canonical correlation analysis, followed by L2 normalization of the 

canonical correlation vectors, to project the datasets into a subspace defined by 

shared correlation structure across datasets. (C) In the shared space, we identify pairs 

of MNNs across reference and query cells. These should represent cells in a shared 

biological state across datasets (gray lines) and serve as anchors to guide dataset 

integration. In principle, cells in unique populations should not participate in anchors, 

but in practice, we observe “incorrect” anchors at low frequency (red lines). (D) For 
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each anchor pair, we assign a score based on the consistency of anchors across the 

neighbourhood structure of each dataset. (E) We utilize anchors and their scores to 

compute “correction” vectors for each query cell, transforming its expression so it can 

be jointly analysed as part of an integrated reference.” 

  



  

 
 

367 

Appendix 2.10 | Harmony integration overview  
 

 
“PCA embeds cells into a space with reduced dimensionality. Harmony accepts the 

cell coordinates in this reduced space and runs an iterative algorithm to adjust for 

dataset specific effects. a, Harmony uses fuzzy clustering to assign each cell to 

multiple clusters, while a penalty term ensures that the diversity of datasets within 

each cluster is maximized. b, Harmony calculates a global centroid for each cluster, 

as well as dataset-specific centroids for each cluster. c, Within each cluster, Harmony 

calculates a correction factor for each dataset based on the centroids. d, Finally, 

Harmony corrects each cell with a cell-specific factor: a linear combination of dataset 

correction factors weighted by the cell’s soft cluster assignments made in step a. 

Harmony repeats steps a to d until convergence. The dependence between cluster 

assignment and dataset diminishes with each round. Datasets are represented with 

colours, cell types with different shapes.” 
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Appendix 3.1 | CD200 expression by IHC in HeLa CD200+/- tumours 
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Appendix 3.2 | CD200 expression by flow cytometry in UW-BCC1 and UW-
BCC1 CD200+/- Cell lines  
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Appendix 3.3 | CD200 expression by IHC in UW-BCC1 CD200+/- tumours 
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Appendix 4.1 | UW-BCC1 RNAseq sample information table 
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Appendix 4.2 | Human BCC RNAseq sample information table 
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Appendix 5.1 | Low resolution clustering to identify cell types 
 
Appendix 5.1.1 | Writing 
 
I first hypothesised that a low clustering resolution would be able to identify the 

major cell types in the samples. To evaluate this hypothesis, Seurat’s clustering 

method was chosen to initially cluster the four samples individually using 30 PCs. 

Seurat uses the PCA results to generate the graph-like structure, where each PC 

embodies a ‘meta feature’ which aggregates information across a correlated feature 

set. To select the optimal resolution to identify the major cell types for each sample, 

the ‘clustree’ package was used (Zappia and Oshlack 2018). Clustree takes a range of 

provided resolution parameters (0.1, 0.2, 0.4, 0.8, 1) as input and generates a 

clustering tree which visualises how cell membership of clusters changes between 

different resolution parameters. Each row in the tree represents a different 

resolution parameter, with each node representing a unique cluster and the size of 

the node representing the number of cells present within that cluster. Going from 

top to bottom of the tree (from low to high resolution), the arrows represent the 

redistribution of the cells into a new node(s). The clustering tree therefore allows for 

the identification of ‘stable’ resolution parameter(s) and distinct or unstable clusters. 

Clustree analysis for each sample can be seen in Appendix 5.1.2. Initial observations 

demonstrate that across all samples, there is a large cluster of cells at resolution = 

0.1. Cells from this larger cluster redistribute into smaller clusters as the resolution 

increases. Interestingly, cells from the other clusters at resolution = 0.1 do not 

redistribute and form smaller subclusters with cells that were redistributed from the 

large cluster, with exception for BCC_2 sample, where cells from cluster 4 at 

resolution = 0.1 redistribute at resolution = 0.8 and form a subcluster with cells that 
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were belonging to the large cluster 0 at resolution = 0.1 (Appendix 5.1.2b). This 

suggests that cells belonging to the large cluster (cluster 0 for all samples at 

resolution = 0.1) belong to the same cell type, and increasing the resolution enables 

the sub clustering of these cells into more specific subtypes of those cells. I 

hypothesised that cluster 0 at resolution = 0.1 for all four samples here represent the 

keratinocytes, and higher resolutions are able to subcluster the various different 

types of keratinocytes present within the epidermis, such as basal, spinous, and 

granular keratinocytes. Four cell types were expected to be present within all 

samples: keratinocytes, endothelial cells, melanocytes, and fibroblasts/fibroblast-

like cells. Given the relatively low cell numbers present in the clustering of each 

sample, resolution = 0.1 was chosen as the resolution parameter, as increasing the 

resolution resulted in even smaller clusters, potentially making it difficult to identify 

the clusters downstream.  
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Appendix 5.1.2 | Figures 
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Appendix 5.1.2 | Clustree analysis of 4 single cell samples reveal number of clusters 

available at different resolution parameters. A range of resolution parameters (0.1-

1) was used along with 30 Principal Components (PCs) as input into Seurat’s clustering 

algorithm. The Clustree package was then used to generate a clustree of the 

clustering, which shows the differences in cell membership of clusters between each 

resolution parameter. The clustrees read from top-to-bottom and are ordered from 

lowest-to-highest resolution parameter. Clustrees generated in this figure are from a) 

BCC_1 sample, b) BCC_2 sample, c) BCC_3 sample, and d) BCC_2_NS sample. 
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Appendix 5.2 | Visualisation 
 

Both methods are non-linear dimensionality reduction techniques which overcome 

one of the major pitfalls to other dimensionality reduction techniques, such as PCA. 

A major problem with PCA, whilst effective at reducing the dimensionality, 

identifying sources of heterogeneity of the data, and preserving global structure of 

the data, is overcrowding. The linear nature of PCA means that where two cells may 

be well separated in a highly dimensional space, reducing them down to one PC may 

result in them overlapping or becoming very close together. T-SNE and UMAP 

overcome these limitations through non-linear methods and are effective at 

preserving local structure. The algorithms allow the separation of data that cannot 

be separated by a straight line (as in linear methods). Importantly, cells within the 

generated clusters from Seurat’s graph-based clustering tend to co-localize on both 

dimensional reduction plots due to the use of the PCs as the input data. 
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Appendix 5.3 | Markers used to identify cell types 
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Appendix 5.4 | BCC_1 PTPRC expression via (CD45) violin plot 
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Appendix 5.5 | g:Profiler results examples for BCC_1 
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Appendix 5.6 | g:Profiler results examples for BCC_3 
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Appendix 5.7 | Dataset integration 
 
Appendix 5.7.1 | Writing 
 
The primary goal of Integration is to allow for the identification of shared and/or 

unique subpopulations across samples (Yu et al. 2002; Colomé-Tatché and Theis 

2018; Stuart et al. 2019; Lähnemann et al. 2020; Ma et al. 2020a; Forcato et al. 2021). 

This method takes all inputted samples and aligns cells with similar gene expression, 

resulting in one ‘integrated’ dataset with clusters representing a common cell 

type/subtype between all samples. Following the mostly successful identification of 

cell types in the individual samples, I next hypothesised that integration of the 

samples into one dataset would generate more accurate clustering and better 

separate the cell types. To test this hypothesis, I employed and tested three 

horizontal integration methods; Seurat v3 (Stuart and Satija 2019) , scTransform 

(Hafemeister and Satija 2019b), and Harmony (Korsunsky et al. 2019). 

  

Initially, low resolution clustering (resolution = 0.1) was performed to identify the 

putative cell populations and assess how well the integration worked. Determining 

the success of the integration across all three methods proved difficult. The main 

factor contributing to this was the number and type of cells in each sample. Samples 

with more cells (BCC_1 and BCC_2) appeared to dominate in the clustering and made 

it difficult to see the presence of the other samples. Additionally, I was not expecting 

a full integration of each sample into each cluster, as some samples had been treated 

differently to the others. Sorting for CD200+ CD45- cells would undoubtedly cause a 

skew in the cell types present in those samples and vice versa. Low resolution 

clustering was unable to fully separate out the main cell populations in all three 
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methods. However, Seurat’s v3 method was the only method that completely 

separated the endothelial cell clusters from the keratinocyte clusters. To fully isolate 

each cell population, a resolution of 1.2 was needed for the Seurat v3 method 

(Appendix 5.7.2a-h), 2.2 was needed for the scTransform method (Appendix 5.7.2i-

p), and 6 was needed for the Harmony (Appendix 5.7.2q-x). Clustering at these 

resolutions generated 18, 25, and 50 clusters, respectively (Appendix 5.7.2b, j, and r, 

respectively). 3D UMAPs were required to successfully isolate the populations for the 

Harmony method (Appendix 5.7.2t-w). All three methods generated similar 

melanocyte clusters that required increased resolution to successfully isolate 

(Appendix 5.7.2e, m, and u). In the Seurat v3 and scTransform methods, this 

melanocyte population resided within/immediately adjacent to the endothelial cell 

clusters, whereas this population was amongst the keratinocyte clusters in the 

Harmony method (Appendix 5.7.2h, p, and x, respectively). The fibroblast-like 

population was completely isolated from all other populations in the Seurat v3 and 

Harmony methods but was immediately adjacent to the endothelial cell population 

in the scTransform method (Appendix 5.7.2h, x, and p, respectively). The endothelial 

cell populations failed to completely separate from the keratinocyte populations in 

the scTransform and Harmony methods, whereas they were completely separated in 

the Seurat v3 method (Appendix 5.7.2p, x, and h, respectively). In terms of 

complexity of the clustering, both Seurat v3 and Harmony produced more complex-

appearing clusters for the keratinocyte populations, an attribute that will be 

beneficial during the investigations of those populations in the main dataset.  

Seurat’s v3 method was selected as the integration method of choice as it 

successfully isolated each putative cell population with a lower resolution and at this 

resolution, produced more complex clustering of the keratinocytes. This method also 
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runs significantly faster than the other two methods, so will be beneficial when 

working with the larger dataset. In terms of complexity of the clustering, both Seurat 

v3 and Harmony produced more complex-appearing clusters for the keratinocyte 

populations, an attribute that will be beneficial during the investigations of those 

populations in the main dataset.  

 

Seurat’s v3 method was selected as the integration method of choice as it 

successfully isolated each putative cell population with a lower resolution and at this 

resolution, produced more complex clustering of the keratinocytes. This method also 

runs significantly faster than the other two methods, so will be beneficial when 

working with the larger dataset.  
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Appendix 5.7.2 | Figures 
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Appendix 5.7.2 | Comparison of three single cell integration methods. Three dataset 

integration/batch correction methods were used and compared to integrate 4 single 

cell samples. a-h) Seurat’s v3 integration method was used with a clustering 

resolution of 1.2. a-b) UMAPs showing sample distributions and Seurat cluster 

distributions, respectively. c) bar chart showing the percentage of samples per Seurat 

cluster, d-g) UMAPs showing expression of COL3A1, MLANA, PECAM1, and KRT14 

that represent fibroblast-like, melanocyte, endothelial cell, and keratinocyte 

populations, respectively, h) annotated umap. i-p) scTransform normalisation 

method with Seurat’s v3 integration method with a clustering resolution of 2.2. i-j) 

UMAPs showing sample distributions and Seurat cluster distributions, respectively. k) 

bar chart showing the percentage of samples per Seurat cluster, l-o) UMAPs showing 

expression of COL3A1, MLANA, PECAM1, and KRT14 that represent fibroblast-like, 

melanocyte, endothelial cell, and keratinocyte populations, respectively, p) 

annotated umap. q-x) Harmony integration method was used with a clustering 

resolution of 6. q-r) UMAPs showing sample distributions and Seurat cluster 

distributions (n=50 clusters), respectively. s) bar chart showing the percentage of 

samples per Seurat cluster, t-w) UMAPs showing expression of COL3A1, MLANA, 

PECAM1, and KRT14 that represent fibroblast-like, melanocyte, endothelial cell, and 

keratinocyte populations, respectively, x) annotated umap. 
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Appendix 5.8 | InferCNV analysis without background reduction 
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Appendix 5.9 | single cell GSEA results 
 

Appendix 5.9.1 | Reactome 
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Appendix 5.9.2 | WikiPathways 
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Appendix 5.9.3 | PID 
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Appendix 5.9.4 | KEGG 
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Appendix 5.9.5 | Hallmarks 
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Appendix 5.9.6 | Biocarta 
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Appendix 5.10 | g:Profiler results of Basal_BCC cluster DEGs 
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Appendix 5.11 | EnrichR results of Basal_BCC cluster DEGs 
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Appendix 5.12 | single cell GSEA results for Basal_BCC cluster DEGs 
 
Appendix 5.12.1 | Biocarta 
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Appendix 5.12.2 | Hallmark 
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Appendix 5.12.3 | KEGG 

 



  

 
 

399 

Appendix 5.12.4 | PID 
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Appendix 5.12.5 | Reactome 
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Appendix 5.12.6 | WikiPathways 

 


