
Applied Energy 371 (2024) 123526

A
0

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Discrete-time state-of-charge estimator for latent heat thermal energy
storage units based on a recurrent neural network
Hector Bastida, Ivan De la Cruz-Loredo, Pranaynil Saikia, Carlos E. Ugalde-Loo ∗

School of Engineering, Cardiff University, Queen’s Buildings, Cardiff, CF24 3AA, Wales, UK

A R T I C L E I N F O

Dataset link: http://doi.org/10.17035/d.2024.
0322710137

Keywords:
Latent heat thermal energy storage
Recurrent neural network
State-of-charge estimator
Long short-term memory
Artificial intelligence

A B S T R A C T

Energy storage systems enable balancing supply and demand and facilitate the integration of intermittent
renewable energy sources. In particular, latent heat thermal energy storage units are attractive for deployment
in thermal systems due to their high energy density. However, knowledge of the state-of-charge of a thermal
store is crucial to effectively regulate its charging and discharging cycles. To achieve this, continuous-time
non-linear observers may be employed to estimate the state-of-charge at the expense of a high computational
cost. The emergence of artificial intelligence solutions may be helpful to reduce computational burden, but
their adoption for thermal stores has been limited. This paper bridges this research gap by presenting a
novel approach to predict the state-of-charge of a latent heat unit. It employs a discrete-time estimator based
on a recurrent neural network, which is based on a long short-term memory structure and the regression
method for estimation. The estimator offers a reduced computation time for state-of-charge estimation and
allows flexible sampling adjustments without sacrificing accuracy. Additionally, the presented approach
simplifies data collection by independently handling charging and discharging processes through internal
state resets. The estimator, trained using MATLAB’s deep learning toolbox, uses a dataset comprising various
operating conditions obtained from simulations of a physics-based model. When compared against a more
traditional state-of-charge estimation method using a discrete-time non-linear observer, the advantages of a
recurrent neural network-based estimator are evidenced, highlighting its potential for practical applications.
The presented method exhibited high accuracy with a maximum root mean square error under 0.73% and
a mean absolute error below 0.41% with respect to direct state-of-charge calculation. Although the discrete-
time non-linear observer exhibited a marginal higher accuracy, the recurrent neural network-based estimator
achieved a significant improvement in computational efficiency. These findings make the proposed approach
a robust tool facilitating enhanced control strategies, optimised energy management, and increased overall
thermal system performance.
1. Introduction

The importance of energy storage systems has increased in recent
times, proving crucial for the enhanced management of energy systems.
Energy storage systems help addressing the mismatch between peaks
in energy supply and demand. For instance, the intermittent nature
of renewable energy sources such as wind and solar energy can be
managed to optimise system performance through peak shaving and
load shifting mechanisms [1,2].

Among the available thermal energy storage (TES) technologies,
sensible heat TES (SHTES) and latent heat TES (LHTES) units are highly
effective for heating and cooling systems [3]. Water is predominantly
used as the storage medium in sensible heat thermal stores for heat
provision. District heating and residential systems integrate water tanks

∗ Corresponding author.
E-mail address: ugalde-looc@cardiff.ac.uk (C.E. Ugalde-Loo).

to store hot water during periods of low-cost thermal energy produc-
tion, such as when a co-generation system produces electricity to meet
high loads in the absence of thermal energy demand [4]. The water
utilised for energy storage retains its phase (liquid), thus employing
only sensible heat to store the thermal energy by increasing the water
temperature.

Phase change materials (PCMs) constitute the storage media for
LHTES units. In these thermal stores, heat transfer during charging and
discharging processes is facilitated by circulating a heat transfer fluid
(HTF). A PCM stores energy during its transition between phases [5].
When energy is released, the PCM reverts to its nominal phase. Due to
the large amount of energy released or absorbed during phase change,
LHTES units in general possess a greater storage capacity compared to
vailable online 12 June 2024
306-2619/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.apenergy.2024.123526
Received 28 October 2023; Received in revised form 29 April 2024; Accepted 20 M
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ay 2024

https://www.elsevier.com/locate/apenergy
https://www.elsevier.com/locate/apenergy
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
http://doi.org/10.17035/d.2024.0322710137
mailto:ugalde-looc@cardiff.ac.uk
https://doi.org/10.1016/j.apenergy.2024.123526
https://doi.org/10.1016/j.apenergy.2024.123526
http://creativecommons.org/licenses/by/4.0/


Applied Energy 371 (2024) 123526H. Bastida et al.
Nomenclature

Abbreviations
AI Artificial intelligence �̇�𝑓 Mass flow rate
HTF Heat transfer fluid 𝑛 Number of inputs
LHTES Latent heat thermal energy storage 𝑜 Output gate
LSTM Long short-term memory tanh Hyperbolic tangent
MAE Mean absolute error 𝑇𝑓 Temperature of HTF
ODE Ordinary differential equation 𝑇𝑝 Temperature of PCM
PCM Phase change material 𝑈 Weights for hidden state
ReLU Rectified linear unit layer 𝑊 Weights for input
RMSE Root mean square error 𝑥 Input vector
RNN Recurrent neural network 𝐗 Input subset of training profiles
SHTES Sensible heat thermal energy storage 𝑦 Output vector
TES Thermal energy storage 𝐘 Output subset of training profiles
SoC State-of-charge 𝐙 Subset of training profiles
ZOH Zero-order hold ⊙ Hadamard product

Greek Symbols Subscripts
𝜎 Sigmoid function 𝑎 Ice tank tube 1

𝑏 Ice tank tube 2
Variables and mathematical functions 𝐷 Dense layer
𝑎 Output vector layer 𝑓 Refers to forget input
𝑏 Bias vector 𝑔 Number of layers
𝑐 Cell state vector ℎ Refers to hidden state
𝑐 Cell state candidate vector 𝑖 Refers to input gate
𝑓 Forget gate in Input
𝑔 Activation functions 𝑜 Refers to output gate
ℎ Hidden state vector 𝑝 Refers to phase change material
𝑖 Input gate 𝑅 Refers to ReLU layer
𝑘 Number of outputs S Refers to ice tank
𝑚 Number of neurons 𝑡 Time-step number
their sensible heat counterparts [6]. The storage capacity is determined
by the specific latent heat value of the PCM. Thus, the size of the
TES unit could be significantly reduced if an appropriately selected
PCM is adopted. Additionally, the melting temperature of the PCM
is a critical factor in determining the suitability of a TES unit for
a specific application [7]. These characteristics have made the use
of TES with PCM very popular in different engineering applications.
Relevant examples include solar energy use through solar cookers [8]
and cold-chain transportation [9] to name but a few. Other interesting
applications are available in the construction sector, where concrete
walls integrate PCM into modified concrete [10], wallboards store heat
using PCM [11], and ceiling boards integrating PCM facilitate active
cooling in renovated buildings [12].

Monitoring the state-of-charge (SoC) is paramount for the optimal
and efficient operation of a TES unit regardless of its type. SoC is a
dimensionless number defined by the ratio between the instantaneous
available energy and the maximum energy stored in a TES unit. If it
is accurately quantified in a timely manner, potential overcharging or
incomplete discharging of the thermal store can be avoided [13]. For
a thermally stratified SHTES tank, SoC is defined by the temperature
gradient through its different levels, the specific heat of the storage
medium, and its total mass [14]. However, for LHTES units, SoC
quantifies the specific latent heat value released or absorbed during
charging and discharging [15].

Although a two-dimensional modelling approach was employed
in [16] to model an LHTES unit with a high accuracy and Kalman filters
were adopted in [17] to effectively estimate its SoC, a decreased model
complexity is desirable to facilitate the design of the estimator and
reduce its implementation requirements. For instance, the SoC calcu-
lation method introduced in [15] relies on a suitable one-dimensional
mathematical model of the LHTES unit and the use of a continuous-
time non-linear state observer to estimate the temperature distribution
2

of the PCM within the thermal store. A significant advantage of such
an approach is the reduced number of measurements required for an
effective SoC estimation. For instance, only the mass flow rate and
the input and output temperatures of the HTF are needed. However,
even for a continuous-time observer based on a simplified model, its
implementation is constrained to a high-speed sampling which guar-
antees that the measurements of the inputs and outputs of the system
emulate a continuous-time system [18]. This may require expensive
instrumentation and a robust computational processing to solve the
observer model. This is significant as the observer is described by
non-linear differential equations.

The use of machine learning and artificial intelligence (AI) based
algorithms, and in particular recurrent neural networks (RNNs), is an
interesting approach for estimating SoC in energy storage systems due
to their suitability for predicting time-series data. This capability is
evident in highly non-linear dynamic systems such as LHTES units.
For instance, an RNN with a feedback loop was adopted in [19] to
model a compressor. Such an approach enabled to effectively capture
the compressor’s transient behaviour. This is a relevant example within
the context of LHTES units as the compressor’s outputs are its mass flow
rates and pressures. The RNN’s performance yielded a root mean square
error (RMSE) of less than 4% when compared with physical measure-
ments. Refs. [20,21] detail the modelling of pulse propagation in the
ultrashort pulse evolution within fibre optical parametric amplifiers—
a notably intricate non-linear system. Both models in the references
exhibit a high efficacy, with normalised RMSE values of up to 0.12%
and 0.026%.

In the field of energy systems, RNN-based architectures for estimat-
ing the SoC of electrical batteries have gained attention and have been
investigated in the literature. For instance, Ref. [22] presents a detailed
formulation for a time-delayed RNN to estimate the SoC of lithium-
ion batteries. This method achieves an estimation error of less than



Applied Energy 371 (2024) 123526H. Bastida et al.

a
e
o
t
p
d
b
m
f
f

1%. In [23], a modified RNN structure termed ‘clockwork RNN’ was
proposed. This architecture divides hidden layers into distinct modules
with varying clock speeds, thereby addressing long-term dependencies
and reducing the training and computation costs. The RMSE of the
estimated SoC value was less than 1.29% in the reference.

Long short-term memory (LSTM) structures have been employed in
RNNs with successful results for estimating SoC of electrical lithium-ion
batteries [24,25]. In these references, the estimated SoC was compared
using different prediction methods. When compared to an extended
Kalman filter, the LSTM-based RNN exhibited a significant reduction of
RMSE of approximately nine times under constant current conditions
and around seven times under dynamic conditions [24]. The LSTM-
based RNN also exhibited a reduced RMSE (1.02%) when compared
to that obtained with a simple RNN (1.30%) in [25].

Despite the encouraging results in accurately estimating SoC in
electrical batteries, the adoption of AI for predicting the behaviour
of TES units has been restricted to a handful of studies. Pioneering
work using a feed-forward back propagation artificial neural network
(ANN) was presented in [26] to quantify the total energy stored in an
LHTES unit during a charging process. The ANN directly estimates the
total energy stored in the unit without intermediate calculations from
temperatures, thus reducing the complexity of the estimation. However,
system parameters and critical values in the calculation of heat transfer
such as the heat transfer area and Reynolds number are included
as inputs of the ANN. The need for these preliminary calculations
before deploying the ANN may result in an inefficient implementation.
Moreover, a reliable SoC quantification is not achievable as the method
estimates the stored energy at 30-min intervals only. Ref. [27] is of
relevance, as the PCM temperature for a heat exchanger-based LHTES
unit was successfully predicted using an LSTM-based RNN. However,
the approach does not consider calculation of SoC.

More recent works have successfully employed LSTM-based struc-
tures for LHTES units. In [28] an LSTM-back propagation neural net-
work to predict the transient melting process in an LHTES tank is
presented. The liquid fraction and the average temperature of the PCM,
a paraffin wax, are predicted considering the velocity and input tem-
perature of the HTF as inputs while achieving reduced values of RMSE
and mean absolute error (MAE) (0.0050% and 0.0042%). Although the
results are promising, the use of this LSTM-based structure, as in [27],
was restricted to temperature monitoring only.

This paper presents a novel SoC estimator for LHTES units under-
pinned by AI methodologies. An in-depth examination of the require-
ments and characteristics of the approach is carried out by addressing
the following research questions:

• Is it feasible to estimate SoC of an LHTES unit using an LSTM-
based RNN architecture and what are requirements of this ap-
proach in terms of training datasets and structure?

• What is the effect of sampling time on the accuracy, training
times, and computational cost of the LSTM-based RNN SoC es-
timator?

• What are the advantages of using an LSTM-based RNN architec-
ture for SoC estimation of an LHTES unit over a conventional state
observer?

In the presented approach, the output of the SoC estimator serves
s feedback for the subsequent time-step prediction. Then, the previous
stimation value is used to generate the subsequent estimation. These
utputs are generated at a predefined time (depending on the sampling
ime), making the proposed method a discrete-time estimator. The
resented LSTM-based RNN architecture relieves the need for highly
emanding computational resources and small sampling times required
y continuous-time observers as it relies on basic matrix operations and
oderate sampling times. SoC is directly estimated by the RNN, which

urther reduces complexity by avoiding any intermediate calculations
rom PCM temperatures to determine the energy stored by the LHTES
3

unit. This facilitates an easy implementation into a basic microcon-
troller. Training of the neural network was conducted with the machine
learning toolbox available in MATLAB R2023a. To this end, simulation
output data of the validated physics-based model of the LHTES unit
presented in [29] were adopted.

Via simulations conducted in MATLAB/Simulink, the performance
of the RNN estimator was compared against that of a discrete-time
non-linear observer suitable for practical implementation. Specifically,
the RNN estimator exhibited a good accuracy, with RMSEs kept under
0.73%, and MAEs below 0.41% with respect to direct SoC calculation.
The RNN estimator significantly outperformed the discrete-time ob-
server in terms of computational resources, as the computation time for
estimation observed a significant drop, from 284 μs to 12 μs, marking
a nearly 24-fold acceleration. The estimation efficiency enabled am-
plifying the sampling interval from 0.5 s to 300 s (600-fold) without
compromising accuracy. In turn, due to such higher sampling time
adopted, the RNN estimator required only 12 estimations per hour of
simulation—a considerable reduction compared to the 7200 estima-
tions per hour performed by the observer. These key results underscore
the RNN estimator’s robustness and its potential for improving the
operation of LHTES units.

The key contributions of the paper to the state-of-the art are sum-
marised as follows:

• The introduction of a novel AI-based methodology for directly
estimating SoC of an LHTES unit through the use of an RNN based
on LSTM layers. This approach notably decreases the computation
time compared to continuous-time non-linear observers reported
in the literature. This effect stems from the primary use of matrix
operations instead of ordinary differential equations (ODEs). To
the best of the authors’ knowledge, the use of such an AI archi-
tecture for estimating SoC of LHTES units has not been previously
reported in the literature.

• As opposed to continuous-time non-linear observers, the sampling
time to estimate SoC using the proposed RNN estimator can be
increased without compromising accuracy. Although the discrete-
time version of a non-linear observer significantly reduces the
complexity of implementation by avoiding the use of an ODE
engine solver, it requires concurrently solving several algebraic
equations at the same sampling time to ensure convergence. This
in turn demands significant computational resources.

• The use of the internal states reset (for hidden and cell states) of
LSTM layers to improve the performance of the prediction. This
novel approach for SoC estimation enables simplifying the col-
lection of training data by considering charging and discharging
processes independently. The trained RNN estimator is applied for
charging–discharging cycles, with a reset of these states being the
only requirement to achieve a good performance.

2. Description of the LHTES unit under study

2.1. Ice tank for cooling provision

The LHTES unit adopted for this work is the commercial 1098C ice
tank from CALMAC [30]. A schematic of the unit is shown in Fig. 1.
It has a nominal storage capacity of 350 kWh and its storage medium
(i.e. PCM) is water. The internal structure of the tank comprises 68
spiralled polyethylene tubes grouped into 34 pairs to resemble counter-
flow heat exchangers. The tubes are submerged in water and a 34%
water–glycol mixture flowing through the tubes acts as the HTF. To
store cooling energy, the system injects cold HTF (e.g. at −6 ◦C) into the
tank, thereby freezing the water around the tubes into ice. Conversely,
the discharging process involves injecting a warmer HTF (e.g. at 12 ◦C)
to extract the cooling energy during the melting process of the ice.

The operation of the ice tank is governed by two key variables:
mass flow rate (�̇� ) and input temperature of the HTF (𝑇 ). The
𝑓 𝑓,in



Applied Energy 371 (2024) 123526H. Bastida et al.
Fig. 1. (a) Internal structure of the ice tank and its external connections [31]. (b) Schematic of the internal counter-flow heat exchanger structures formed by the pair of tubes
and their HTF flows [29].
Table 1
Ranges of input temperature and mass flow rate of the HTF.

Variable Charging Discharging

�̇�𝑓
[

18 22
]

kg∕s
[

5 6
]

kg∕s
𝑇𝑓,in −6 ◦C

[

10 14
]

◦C

operating conditions for charging and discharging adopted for this
work are shown in Table 1. These were assumed based on experimental
data presented in [32,33], as the tank manufacturer does not provide
specific information. According with the experiments reported in the
references, 𝑇𝑓,in ranges from 10 ◦C to 14 ◦C during the discharging
process. Although these temperature limits may be exceeded in prac-
tice, in this paper discharging was restricted within these boundaries
to maintain simplicity. Conversely, 𝑇𝑓,in ranges from −3.7 ◦C to −6 ◦C
during charging due to the limited capabilities of the chiller used in the
experiment. However, a constant 𝑇𝑓,in = −6 ◦C was here considered,
assuming a chiller with a higher capacity.

The duration of experiments was 500 min (8.33 h) for discharging
and 1400 min (23.33 h) for charging. These durations were conse-
quence of the HTF mass flow rates for discharging and charging (�̇�𝑓 =
1.027 kg∕s = 3689 kg/h and �̇�𝑓 = 0.68 kg∕s = 2454 kg/h) and a special
setup of the thermal store employed to reduce the storage capacity
from 350 kWh to 172 kWh [33]. While the discharging and charging
times under the same operating conditions may double when the ice
tank operates at full capacity (i.e. 16 h for discharging and 46 h for
charging), a full charging cycle is expected to last between 6 to 12 h
in a practical application [34]. Thus, higher values of �̇�𝑓 were here
adopted to keep the discharging and charging times within this time
range according to [15]. To meet cooling demand, �̇�𝑓 is maintained
between 5 kg/s and 6 kg/s for discharging operations. In contrast,
the charging process requires a considerable increase in mass flow
rate, with �̇�𝑓 ranging between 18 kg/s and 22 kg/s. This increment
is required as the temperature difference between 𝑇𝑓,in = −6 ◦C and
the melting temperature of the PCM (i.e. 0 ◦C) is significantly reduced
when compared to a discharging process as 𝑇𝑓,in ranges from 10 ◦C to
14 ◦C.

2.2. On the mathematical model of the ice tank and its continuous-time
observer for SoC estimation

The choice of an ice tank as the LHTES unit is motivated by its
widespread use in cooling systems, such as food and pharmaceutical
cold-chains and large district cooling systems, and its cost-effectiveness
arising from the convenient melting temperature of the PCM (i.e. wa-
ter) and considerable latent heat absorbed or released during phase
4

transition. Detailed data on the internal structure of the tank and
thermophysical properties of the HTF are provided in [30,35].

A mathematical model of the tank is provided in [29], which is
based on principles of energy balance and heat transfer theory. A
one-dimensional spatial discretisation method is employed to model
the thermal stratification within the tank. This approach divides the
tank’s volume into a number of discrete volumes or nodes to capture
the temperature gradient of water within the tank (either in liquid or
crystallised form) and the HTF circulating through the tubes.

The temperature distribution of each node in the tank model is
described by [29]

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�̇�𝑓,𝑖,𝑎
�̇�𝑤,𝑖,𝑎

�̇�𝑓,𝑖,𝑏
�̇�𝑤,𝑖,𝑏

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�̇�𝑓 𝑐𝑝,𝑓 ,1,𝑎
[

𝑇𝑓,𝑖−1,𝑎−𝑇𝑓,𝑖,𝑎
]

+𝑈(𝐴𝑡𝑟∕𝑁)
[

𝑇𝑤,𝑖,𝑎−𝑇𝑓,𝑖,𝑎
]

𝜌𝑓,𝑖,𝑎𝑐𝑝,𝑓 ,𝑖,𝑎
(

𝑉𝑓 ∕𝑁
)

𝑈(𝐴tr∕𝑁)
[

𝑇𝑓,𝑖,𝑎−𝑇𝑤,𝑖,𝑎
]

+𝑈𝑤(𝐴𝑒∕𝑁)
[

𝑇𝑤,𝑖,𝑏−𝑇𝑤,𝑖,𝑎
]

+𝑈𝑙(𝐴𝑒∕𝑁)
[

0−𝑇𝑤,𝑖,𝑎
]

𝜌𝑤,𝑖,𝑎𝑐𝑝,𝑤,𝑖,𝑎(𝑉𝑤∕𝑁)
�̇�𝑓 𝑐𝑝,𝑓 ,1,𝑏

[

𝑇𝑓,𝑖+1,𝑏−𝑇𝑓,𝑖,𝑏
]

+𝑈(𝐴𝑡𝑟∕𝑁)
[

𝑇𝑤,𝑖,𝑏−𝑇𝑓,𝑖,𝑏
]

𝜌𝑓,𝑖,𝑏𝑐𝑝,𝑓 ,𝑖,𝑏
(

𝑉𝑓 ∕𝑁
)

𝑈(𝐴𝑡𝑟∕𝑁)
[

𝑇𝑓,𝑖,𝑏−𝑇𝑤,𝑖,𝑏
]

+𝑈𝑤(𝐴𝑒∕𝑁)
[

𝑇𝑤,𝑖,𝑎−𝑇𝑤,𝑖,𝑏
]

+𝑈𝑙(𝐴𝑒∕𝑁)
[

0−𝑇𝑤,𝑖,𝑏
]

𝜌𝑤,𝑖,𝑏𝑐𝑝,𝑤,𝑖,𝑏(𝑉𝑤∕𝑁)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(1)

where 𝑇 [◦C], 𝑐𝑝 [J/(kg ◦C)] and 𝜌 [kg/m3] refer to the temperature,
specific heat coefficient and density, subscripts ‘𝑓 ’ and ‘𝑤’ refer to HTF
and water, and subscripts ‘𝑎’ and ‘𝑏’ refer to each individual tube within
the tank. Subscript ‘𝑖’ refers to the node modelled, while ‘𝑖 − 1’ and
‘𝑖 + 1’ refer to nodes immediately before and after node 𝑖. 𝑉𝑓 and 𝑉𝑤
[m3] refer to the volume fractions of HTF and water, 𝐴𝑡𝑟 [m2] and
𝑈 [W/(m2 ◦C)] are the heat transfer area and heat transfer coefficient
between the water in the tank and the HTF in the tubes, 𝐴𝑒 [m2] is
the external area of the node, and 𝑈𝑤 and 𝑈𝑙 [W/(m2 ◦C)] are the
conduction heat transfer coefficients of water and between the node
and the environment.

To model the phase change of water, specific heat curves were
defined for 𝑐𝑝,𝑤 to characterise the charging and discharging processes.
These are given by the probability density function (PDF) [29]

𝑐𝑝,𝑤 = 1000
[

𝑎0 + 𝑎1(𝜑(𝑇 ) − 𝑎2)
]

, (2)

where

𝜑(𝑇 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

exp
[

−
(

(

ln
[

−𝑇 ∕𝛾
])2 ∕

(

2𝜎2
)

)]

−𝑇𝜎
√

2𝜋
, 𝑇 < 0

0, 𝑇 ≥ 0

, (3)

where 𝑎0, 𝑎1, 𝑎2, 𝛾 and 𝜎 are dimensionless parameters heuristically
adjusted to replicate experimental data.



Applied Energy 371 (2024) 123526H. Bastida et al.

f
f
p
p

v
a
o
e
t
p
H
t
u

i
c
o
i
w
t
i

2

u
i
s
f
i
o
S
H
i
t

𝑚

a
d
o
o
t

i
t
d
t
u
S
r
w
c

(
a
m
𝑚
a
t
t

3

r
f
o
d
a
i
3

a

ℎ

𝑦

w
v
t
S
f

a
i
f
t
t

𝜎

3

v
t
b
t
s
t
t
s
t

t
f
v
T
𝑥
g
o
i
a
c
f
c

The tank’s model was validated in [29] by comparison with ex-
perimental data available in [32,33], with further information on the
modelling considerations also provided. Results in [29] demonstrate
high modelling accuracy, with values of mean square error of 0.23 ◦C
or the HTF’s output temperature in charging processes and of 0.04 ◦C
or discharging with respect to experimental data. To avoid duplicating
ublished work, no further discussion on the model validation is here
rovided. Interested readers are referred instead to [29].

A continuous-time non-linear observer based on the experimentally
erified model of the ice tank presented in [29] was developed and
ssessed in [15] for the estimation of SoC with successful results. The
bserver determines SoC by estimating the PCM’s temperature and
mploying a calculation methodology that considers the specific heat–
emperature curve of the PCM and its latent heat value. The observer’s
erformance to estimate the input and output temperatures of the
TF and the temperature gradient of the PCM was successful, with

he estimation error converging to zero in all the operating conditions
nder examination.

An overview of the continuous-time non-linear observer is provided
n [15], with the method to calculate SoC included in Appendix B for
ompleteness. A methodology to obtain a discrete-time representation
f the continuous-time observer is presented in Appendix A, and this
s further discussed in Section 5. To prevent duplication of published
ork, no further discussion on the validation of the ice tank model or

he continuous-time non-linear observer is here provided and, instead,
nterested readers are referred to [15,29].

.3. Simulations of the ice tank model

The charging and discharging processes of the ice tank were sim-
lated in MATLAB/Simulink using the mathematical model presented
n [29]. The model was spatially discretised into 20 nodes. As demon-
trated in the same reference, increasing the number of discrete nodes
or modelling the ice tank does not produce a significant improvement
n the accuracy of the simulation results. Simulations were run for the
perating conditions defined in Table 1, with results shown in Fig. 2.
ubscripts ‘5’, ‘6’, ‘18’ and ‘22’ in the figure’s legend stand for the
TF’s mass flow rate in kg/s employed in a given simulation. The

nput temperature of the HTF (𝑇𝑓,in) is shown with a green trace. The
emperature of the final node of the PCM (i.e. water, 𝑇𝑝, shown with

blue traces) was included alongside the HTF output temperature (𝑇𝑓,o,
black traces) to visualise the exact moment when this node reaches a
solid or liquid state depending on whether the tank was being charged
or discharged. The maximum and minimum mass flow rates defined
in Table 1 were used for charging simulations: �̇�𝑓 = 18 kg∕s and
̇ 𝑓 = 22 kg∕s with a similar 𝑇𝑓,in = −6 ◦C for both. As it can

be observed, there is a reduction in the rate of change of the PCM
temperature during the release of specific latent heat between 1 h and
7.5 h into the simulation for charging (see Fig. 2(a)), whereas such a
reduction is exhibited from the beginning of the simulation to 2.3 h
(with �̇�𝑓 = 5 kg∕s and 𝑇𝑓,in = 10 ◦C) and 3.5 h (with �̇�𝑓 = 6 kg∕s
nd 𝑇𝑓,in = 14 ◦C) during the absorption of the specific latent heat for
ischarging (see Fig. 2(b)). After the specific latent heat is fully released
r absorbed, the temperature gradient increases until the temperature
f the PCM and the output temperature of the HTF reach the input
emperature.

For completeness, SoC during charging and discharging was also
ncluded in Fig. 2 and is shown with solid and dashed red traces. In
his calculation, SoC only considers the specific latent heat of water as
efined in [15] (see Appendix B). This approach is adopted to exclude
he sensible heat, whose value depends on the HTF’s input temperature
sed to discharge the unit. Thus, during charging, shown in Fig. 2(a),
oC starts to increase 1 h into the process as the sensible heat is firstly
eleased. Once the specific latent heat has been released through the
hole PCM volume, SoC reaches a value of 100% and the unit is
5

onsidered as fully charged. On the other hand, during discharging T
Fig. 2(b)), SoC immediately decreases as the specific latent heat is
bsorbed by the start of the process. This concludes after 2 h for a
ass flow rate �̇�𝑓 = 5 kg∕s (solid red trace) and after 3 h when

̇ 𝑓 = 6 kg∕s (dashed red trace), when, in either case, SoC drops to
value of 0% and the ice tank is fully discharged. The behaviour of

he traces for SoC aligns with the variations in the rate of change of
he PCM’s temperature.

. Recurrent neural networks

Machine learning algorithms such as support vector regression,
andom forest, and the widely used feed-forward neural network do not
eature memory [36,37]. This means they do not retain any state from
ne time-step to the next one and thus require an entire time-series or
ata sequence to make a prediction. In contrast, an RNN incorporates
n internal loop that retains a state, thereby preserving historical
nformation from previous time-steps throughout the operations [38,
9].

The mathematical formulation of a basic RNN structure is defined
s follows [40]:

𝑡 = 𝑔
(

𝑊ℎ𝑥𝑡 + 𝑈ℎℎ𝑡−1 + 𝑏ℎ
)

, (4)

𝑡 = 𝑔
(

𝑊𝑦ℎ𝑡 + 𝑏𝑦
)

, (5)

here 𝑥 is the input vector, ℎ is the hidden layer vector, 𝑦 is the output
ector, 𝑊 is the weight matrix for the inputs, 𝑈 is the weight matrix for
he hidden state, 𝑏 is the bias vector, and 𝑔 is the activation function.
ubscript ‘𝑡’ stands for the time-step number, whereas ‘ℎ’ and ‘𝑦’ stand
or matrices corresponding to hidden state and output calculations.

Activation functions such as the hyperbolic tangent and sigmoid
re critical for neuron activation and determining the relevance of the
nputs to network predictions. Both are derived from the exponential
unction and guide the hidden state in recognising significant informa-
ion from the cell state. Mathematically, the sigmoid and hyperbolic
angent functions are expressed as [38,41,42]

(𝑥) = 1
1 + 𝑒−𝑥

, (6)

tanh(x) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
. (7)

.1. Overview of long short-term memory structures

Due to the gradient-based learning nature of conventional RNNs, a
anishing gradient issue can be experienced during training in which
he error function (i.e. the gradient) decays exponentially [43]. Such a
ehaviour is not desired as a vanishingly small gradient may prevent
he RNN weights from being updated and this effect could prematurely
top the training process. Ref. [38] introduced a state memory cell to
ackle this issue. The memory cell is included in an LSTM structure
o relay information across time-steps. This ensures a constant error
ignal overflow during generation of the network weights throughout
he training process.

Fig. 3 shows the internal structure of an LSTM cell including its
hree main components, termed forget, input, and output gates. The
orget gate, indicated with a light red shading, employs a sigmoid acti-
ation function to decide which information must be kept or discarded.
he input gate, illustrated with a purple shading, feeds the current state
𝑡 and the previous hidden state ℎ𝑡−1 into a second sigmoid function to
enerate the input data 𝑖𝑡. This function facilitates the transformation
f values within the range of 1 (indicating significance) to 0 (indicating
nsignificance). In parallel, ℎ𝑡−1 and 𝑥𝑡 are fed to a hyperbolic tangent
ctivation function. The purpose of using this function is to establish
ontrol over values flowing through the network to prevent information
rom fading. Thus, the output of this operator is used to generate the
ell state candidate, 𝑐𝑡, with potential values ranging from −1 to 1.
hen, a proportion of 𝑖 is incorporated into the cell state, 𝑐 , based
𝑡 𝑡



Applied Energy 371 (2024) 123526H. Bastida et al.

m

Fig. 2. Simulation results of the ice tank with input and output temperatures of the HTF (𝑇𝑓,in and 𝑇𝑓,o), PCM temperature of the last node of a 20-nodes spatially discretised

odel (𝑇𝑝), and SoC: (a) charging; (b) discharging. The additional numerical subscript in the variables stands for the mass flow rate in kg/s employed for charging and discharging.
Fig. 3. LSTM architecture with the forget, input, and output gates highlighted in light red, purple, and light blue. Input, output, hidden, and cell states are shown as inputs for
the cell.
on a Hadamard product with 𝑐𝑡. The Hadamard product operator, also
known as the element-wise product, is indicated in the figure by the
red circle with a white dot.

The output gate determines the hidden state, ℎ𝑡, which encodes
information from prior inputs. It involves processing 𝑥𝑡 and state ℎ𝑡−1
through a third sigmoid function to generate the output 𝑜𝑡 in addition
to processing 𝑐𝑡 through a hyperbolic tangent activation function. Both
outputs from the activation functions are multiplied using a Hadamard
product to determine the relevant information for the hidden state used
in the prediction. ℎ𝑡 and 𝑐𝑡 are then propagated to the subsequent
time-step. The mathematical formulation for all the described internal
calculations within an LSTM layer is as follows [38,41]:

𝑖𝑡 = 𝜎
(

𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖
)

, (8)

𝑓𝑡 = 𝜎
(

𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓
)

, (9)

𝑐𝑡 = tanh
(

𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐
)

, (10)

𝑜𝑡 = 𝜎
(

𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜
)

, (11)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡, (12)

ℎ = 𝑜 ⊙ tanh
(

𝑐
)

, (13)
6

𝑡 𝑡 𝑡
where subscripts ‘𝑐’, ‘𝑓 ’, ‘𝑖’, and ‘𝑜’, stand for the corresponding weights
of the candidate cell state, forget gate, input gate, and output gate and
⊙ stands for the Hadamard product.

Fig. 4 shows the temporal unfolding of an LSTM cell showing
both the hidden and cell states. It is important to emphasise the need
for initial conditions (ℎ𝑖 and 𝑐𝑖) both for the training process and
subsequent computation during implementation of the LSTM-based
network. They are critical for ensuring an accurate prediction. Fig. 5
provides an extended diagram showing the calculations for the first
three time-steps to highlight the internal structure of the LSTM cell and
the interconnections between hidden and cell states.

3.2. Proposed network architectures

The architectures proposed in this work comprise either five or six
layers in total considering three distinct types of layers. Dense layers
are used at the beginning and end of the network to align the number
of inputs and outputs with the neuron count in the hidden layers. A
rectified linear unit (ReLU) layer is placed after the input layer and
before the output layer (both dense layers) to execute a threshold
operation retaining only positive values. Thus, by introducing such a
non-linearity the issue of vanishing gradients during the training pro-
cess is mitigated [44]. Finally, one or two LSTM layers are integrated in

the middle of the structure, leading to the two architectures shown in



Applied Energy 371 (2024) 123526H. Bastida et al.

F
a
w
T

p
i
n

Fig. 4. Architecture of the LSTM unfolding through the time-steps.
Fig. 5. LSTM cell unfolded during three time-steps including its internal structure.
Fig. 6. Architecture of the proposed RNN for the SoC prediction of an LHTES unit: (a) one LSTM hidden layer, (b) two LSTM hidden layers.
ig. 6. The LSTM layers provide memory feedback through their hidden
nd cell states. Both architectures consider an overall feedback loop,
hich represents the use of data regression in the predictive process.
he predictive process will be discussed later in Section 4.2.

A mathematical description of the architectures shown in Fig. 6 is
rovided next. The dense layers at the network’s extremities are deeply
nterconnected with their preceding layer (or inputs) by linking each
euron, given by the weight matrix 𝑊 and bias vector 𝑏, to reinforce
7

the connection. This is mathematically expressed, in compact form, as
[42]

𝑦𝐷 = 𝑊𝐷𝑥𝑡 + 𝑏𝐷, (14)

where 𝑥 represents the input vector (with 𝑛 elements) and 𝑦 the output
vector (with 𝑘 entries) of the dense layer. Subscript ‘𝐷’ is used to denote
the dense layer. The dimensions of 𝑊 and 𝑏 must be consistent with



Applied Energy 371 (2024) 123526H. Bastida et al.

t
w

b
𝑦
n
T
C

𝑎

t

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Fig. 7. (a) Interconnection of the inputs from a previous layer to the first neuron of a dense layer through its matrix of weights. (b) Schematic of the RNN with two LSTM layers
specifying the number of inputs (𝑛), the number of neurons (𝑚), and the number of outputs (𝑘). ReLu layers are not shown for clarity.
he layer’s number of inputs 𝑛 and outputs 𝑘, and the size of vector 𝑏,
hich is equal to the number of neurons 𝑚.

As a way of an example, let the outputs of each layer be represented
y vector 𝑎 (to distinguish it from the adopted notation in (14) using
as the output). Superscripts within parentheses indicate the layer

umber and subscripts stand for the number of the vector element.
his way, the outputs of layer 0 are the inputs of layer 1 (dense layer).
alculation of 𝑎(1)1 , as shown in Fig. 7(a), is given by

(1)
1 = 𝑤1,1𝑎

(0)
1 +𝑤1,2𝑎

(0)
2 +⋯ +𝑤1,𝑛𝑎(

0)
𝑛 + 𝑏(1)1 =

𝑛
∑

𝑖=1
𝑤1,𝑖𝑎

(0)
𝑖 + 𝑏(0)1 . (15)

Expanding (15) to consider all the elements of the output vector of
he dense layer leads, in matrix form, to:

𝑎(1)1

𝑎(1)2

⋮

𝑎(1)𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎦[𝑚×1]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑤1,1 𝑤1,2 ⋯ 𝑤1,𝑛

𝑤2,1 𝑤2,2 ⋯ 𝑤2,𝑛

⋮ ⋮ ⋱ ⋮

𝑤𝑚,1 𝑤𝑚,2 ⋯ 𝑤𝑚,𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦[𝑚×𝑛]

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑎(0)1

𝑎(0)2

⋮
𝑎(0)𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦[𝑛×1]

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑏(1)1

𝑏(1)2

⋮

𝑏(1)𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎦[𝑚×1]

(16)

where the dimensions of the matrices and vectors are explicitly given
as subscripts within square brackets. For a dense layer the number of
neurons is equal to its number of outputs, so 𝑘 = 𝑚.

The ReLU layer employs a piecewise linear function. It outputs the
input values directly when these are positive and zero otherwise. This
is mathematically described as [42]

𝑦𝑅 =

{

𝑥𝑡, 𝑥𝑡 ≥ 0
0, 𝑥𝑡 < 0

(17)

where subscript ‘𝑅’ stands for ReLU layer. For this type of layer, the
number of inputs and outputs is equal, so 𝑛 = 𝑘.

The mathematical description of the LSTM layers aligns with the
formulation described in Section 3.1. However, this is simplified here
by merging the weight matrices of the gates and the cell state into a
single matrix before the activation functions. This enables the indepen-
8

dent calculation of the outputs of the gates (𝑖𝑡, 𝑓𝑡, 𝑐𝑡, and 𝑜𝑡) as defined
by (8)–(11). In compact form, this is expressed by

⎡

⎢

⎢

⎢

⎢

⎣

𝑖𝑡
𝑓𝑡
𝑐𝑡
𝑜𝑡

⎤

⎥

⎥

⎥

⎥

⎦[4 𝑚×1]

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑊𝑖
𝑊𝑓
𝑊𝑐
𝑊𝑜

⎤

⎥

⎥

⎥

⎥

⎦[4 𝑚×𝑛]

𝑥𝑡[𝑛×1] +

⎡

⎢

⎢

⎢

⎢

⎣

𝑈𝑖
𝑈𝑓
𝑈𝑐
𝑈𝑜

⎤

⎥

⎥

⎥

⎥

⎦[4 𝑚×𝑛]

ℎ𝑡−1[𝑛×1] +

⎡

⎢

⎢

⎢

⎢

⎣

𝑏𝑖
𝑏𝑓
𝑏𝑐
𝑏𝑜

⎤

⎥

⎥

⎥

⎥

⎦[4 𝑚×1]

(18)

The dimensions of matrices in (18) shown with subscripts within
square brackets are defined by the number of inputs 𝑛 of the LSTM
layer and the number of neurons 𝑚. As for the dense layer, 𝑚 is equal
to the number of outputs 𝑘 (i.e. 𝑘 = 𝑚).

Then, as shown in Fig. 3, the two outputs of the LSTM cell 𝑐𝑡 and
ℎ𝑡 are calculated as

𝑐𝑡 = 𝜎
(

𝑓𝑡
)

⊙ 𝑐𝑡−1 + 𝜎
(

𝑖𝑡
)

⊙ tanh
(

𝑐𝑡
)

, (19)

and the hidden state vector ℎ𝑡 is obtained with

ℎ𝑡 = 𝜎
(

𝑜𝑡
)

⊙ tanh
(

𝑐𝑡
)

. (20)

The dimensions of the cell and hidden vectors in the LSTM layer are
consistent with the number of neurons.

Fig. 7(b) shows a detailed schematic of the proposed RNN. The
relationship between each layer is shown through lines representing
the weight values that multiply the output of each neuron for the subse-
quent layer connection. The ReLU layers were excluded for simplicity as
they do not feature any weight matrix or bias vector. The layer number
is indicated by the superscript in the neuron label.

The simplification made by merging the weight matrices of the
gates and the cell state into a single matrix before the activation
functions, which in turn provides an output in column form, is relevant
as it facilitates an implementation in Simulink. This is consistent with
the outputs following RNN training using the deep learning toolbox
in MATLAB, where the weight matrices and their corresponding bias
vectors for the calculation of 𝑖𝑡, 𝑓𝑡, 𝑐𝑡, and 𝑜𝑡 are returned in two single
matrices ordered in column form.

4. RNN SoC estimator: problem formulation, datasets and training

In this section, a detailed description of the RNN estimator based on

LSTM layers introduced in Section 3.2 and its training are presented.



Applied Energy 371 (2024) 123526H. Bastida et al.

t
a
b
S
e
t
p
a
e
e
n
g
a

4

t

Fig. 8. General architecture of the RNN-based SoC estimator.
f
m
S
m
r
t
d
t
a
t
p
a
t
I
a
(

a
o
m
a
o
f
4
H
a

w
b
t
t

4

i
T
f
i
e

Fig. 9. Delay implementation over the feedback of the output of the RNN-based SoC
estimator.

SoC prediction of the LHTES unit is formulated as a time-series forecast-
ing problem—an approach borrowed from the field of statistics [45].
This approach guides the definition of the dataset employed during
the training stage and is presented first. Then, the training of the
RNN estimator is described. Since the objective of adopting a neural
network is not to conduct a time-series analysis but rather to implement
the SoC estimator, the trained RNN serves as a reduced-order model
that may substitute a more intricate model (in this case, a non-linear
continuous-time observer). This facilitates the dynamic SoC estimation
using real-time measurements of key system variables (i.e. mass flow
rate and input temperature of the HTF).

Fig. 8 shows a high-level schematic of the SoC estimation process
of the ice tank using an RNN. Measurements of �̇�𝑓 and 𝑇𝑓,in are
aken to activate the neural network as these variables are typically
ccessible in practical LHTES units. This way, the RNN predicts SoC
ased on prior training. (Details on the training process are provided in
ection 4.4.) However, predicting SoC requires considering the previous
stimation value, which is similar to a linear regression problem. Thus,
he RNN inputs comprise the actual HTF values (�̇�𝑓 , 𝑇𝑓,in) and the
reviously estimated SoC. This earlier value is obtained by including
unit delay to the SoC prediction, as shown in Fig. 9. Unlike the

stimators presented in [46], there is no pre-established data window to
ncapsulate several measurements and then estimate the corresponding
umber of outputs as used in time-series analysis. The RNN estimator
enerates a single SoC value only every time the previous input values
re fed.

.1. Dataset for training

The primary objective of the estimator is to predict the SoC of
he TES unit upon variations in system inputs (e.g. changes in mass
9

low rate or temperature of the HTF). Through simulations of the
athematical model of the ice tank (briefly discussed in Section 2.2),

oC was obtained using the temperature of the PCM and the calculation
ethod presented in [15] (see Appendix B). The interested reader is

eferred to [29] for a comprehensive description of the model of the ice
ank used to obtain the training dataset for this paper. The dataset was
etermined by simulating charging and discharging operations of the
ank considering the operating limits in Table 1. A range of temperature
nd mass flow rate inputs of the HTF (𝑇𝑓,in and �̇�𝑓 ) was adopted
o generate the possible combinations of the operating conditions. A
articular condition considered is the initial temperatures of the PCM
nd HTF during charging. This condition was determined by the inlet
emperature of the HTF 𝑇𝑓,in previously used for a discharging process.
n contrast, variations for a discharging process consider �̇�𝑓 and 𝑇𝑓,in,
s the initial temperatures of the PCM and HTF are always −6 ◦C
i.e. for full charge).

Table 2 shows the range of the variables to obtain SoC for charging
nd discharging. The set of inputs was generated varying the value
f �̇�𝑓 and 𝑇𝑓,in in steps of 0.1 for each variable. Thus, 41 different
ass flow rate inputs and 41 different initial conditions of the HTF

nd PCM temperatures were used for charging, leading in turn to a set
f 1681 SoC profiles. In contrast, the smaller range of mass flow rate
or discharging produced only 11 different inputs, which led to a set of
51 SoC profiles considering the 41 different input temperatures of the
TF. A total of 2132 SoC profiles was thus generated and these profiles
re graphically shown in Fig. 10.

The simulation time for each charging and discharging operation
as 10 h. Although discharging is considerably shorter than charging,
y establishing the same duration the number of data elements for
he training process was homogenised. This prevented issues during
raining arising from an element number mismatch in the dataset.

.2. Regression problem

The underpinning concept of the regression problem for estimation
nvolves leveraging preceding values to forecast the subsequent step.
hus, the simulation-generated data must be adjusted to be suitable
or training an RNN which will use this approach for prediction. This
s illustrated in Table 3 for a sequence of the initial four time-steps. In
ach time-step, output 𝑦 is directly generated by input 𝑥. The output

generated is subsequently converted into the input of the next step.
Using previous values of the output as an input simplifies the dataset

adjustment process [46]. Thus, by having the dataset of the system
variable that will be predicted, the input and output of the system
for training are defined by truncating the final elements of the dataset

arrays and shifting these arrays. This process is shown in Fig. 11 for



Applied Energy 371 (2024) 123526H. Bastida et al.

c

Table 2
Combinations of the input variables and initial conditions for generating the training dataset.
Charging Discharging
Constant input temperature Constant initial conditions
of the HTF: 𝑇𝑓,in = −6 ◦C of the PCM and HTF at −6 ◦C

Variable Range Variable Range

Mass flow rate [kg/s]
[

18 18.1 ⋯ 22
]

Mass flow rate [kg/s]
[

5 5.1 ⋯ 6
]

Initial conditions [◦C]
[

10 10.1 ⋯ 14
]

Input temperature [◦C]
[

10 10.1 ⋯ 14
]

p
c
n
t
d
o
s
(

Fig. 10. SoC profiles (2132 in total) for all possible combinations of the operating
onditions in Table 2.

Table 3
Sequence of inputs and outputs produced during the
implementation of a regression method.

Step Input and output relationship

𝑡0 𝑥
(

𝑡0
)

→ 𝑦
(

𝑡0
)

𝑡1 𝑦
(

𝑡0
)

= 𝑥
(

𝑡1
)

→ 𝑦
(

𝑡1
)

𝑡2 𝑦
(

𝑡1
)

= 𝑥
(

𝑡2
)

→ 𝑦
(

𝑡3
)

𝑡3 𝑦
(

𝑡2
)

= 𝑥
(

𝑡2
)

→ 𝑦
(

𝑡3
)

⋮ ⋮

Fig. 11. (a) Input and output arrays. (b) New arrangement after a one-element shift
is applied.

a one-element shift. In time-series analysis, such a shift procedure is
implemented using a sliding window over dataset arrays which include
more than one element [46].

In this paper, since SoC estimation is performed at each time-step,
shifting is done by moving the dataset array one element to the right
to generate the output array. On the other hand, the input array is
arranged by eliminating the last element.
10
4.3. Sampling time

The training dataset as discussed in Section 4.1 was obtained from
simulations conducted in MATLAB/Simulink. A time-step of 0.5 s was
originally adopted to achieve good accuracy [29]. Such a small time-
step is necessary to ensure convergence in the implementation of the
discrete-time non-linear observer (see Appendix A). This resulted in
72,000 elements for the array corresponding to each variable when
considering a 10-h simulation period (as discussed in Section 4.1).
Given three variables are under consideration (�̇�𝑓 , 𝑇𝑓,in, and SoC), the
resulting dataset is large. Such a considerable number of elements may
affect the RNN’s training when multiplied by the number of profiles
encompassing all possible operating modes of the ice tank.

To prevent issues such as a vanishing gradient, long periods of train-
ing, or convergence to suboptimal results, it is essential to reduce the
number of elements of the dataset by downsampling. This is achieved
by increasing the sampling time. Using a sampling time of 5 min instead
of 0.5 s, the number of elements was brought down to 120 elements per
array. The rationale behind adopting a longer sampling time compared
to that of the discrete-time observer is that knowing SoC every second
is not required in a practical application of the ice tank.

Fig. 12 shows an example of downsampling of the datasets. A profile
for charging and one for discharging as in Fig. 2 were sampled at 5-
min intervals. Subscripts ‘s’ and ‘5’ denote the results derived from the
simulation with a time-step of 0.5 s and the re-sampled results every
5 min. Notably, larger sampling times can be adopted as the SoC does
not exhibit abrupt changes during charging or discharging—thereby
eliminating the need for a shorter sampling time. Hence, considering
the slow thermal dynamics of the ice tank, a 5-min sampling time is
deemed suitable for a practical SoC estimation.

4.4. Training

A subset 𝐙 of 132 randomly selected profiles from the total 2132
rofiles described in Section 4.1 was adopted for training. The subset
onsiders 26 charging profiles and 106 discharging profiles. The ratio-
ale for the reduced subset was to expedite the training process. Given
hat each profile consists of 121 samples, a significant reduction was
eemed necessary. In addition, a considerable impact on the accuracy
f the estimator was not expected as the SoC profiles do not exhibit
ignificant variations between them for either charging or discharging
see Fig. 10). Each selected profile incorporates three variables: �̇�𝑓 ,
𝑇𝑓,in, and the corresponding SoC output. Then, the downsampling
process, the elimination of the last element of the arrays to obtain the
input dataset 𝐗, and the shifting to obtain the output dataset 𝐘 were
implemented to subset 𝐙 as discussed in Sections 4.2 and 4.3. All this
is schematically illustrated in Fig. 13.

MATLAB’s machine learning toolbox, a comprehensive suite of al-
gorithms and tools for constructing, training, and validating machine
learning models, was used to train the RNN-based SoC estimator. The
toolbox enabled specifying the neural network structure, determining
hyperparameters, and launching the training regime. The Adam op-
timisation algorithm was employed to iteratively update the network
weights based on training data. This algorithm, widely utilised in com-
puter vision and natural language processing applications, was adopted

due to its straightforward implementation, computation efficiency, and



Applied Energy 371 (2024) 123526H. Bastida et al.
Fig. 12. Downsampling process of the SoC profiles. (a) Charging. (b) Discharging.
Fig. 13. Illustrative dataset shifting.
the use of hyperparameters that are intuitively interpretable and re-
quire minimal tuning [47]. These hyperparameters include the learning
rate (driven by the estimated error, it determines the magnitude of
adjustments made to the model parameters when updating the weight
matrices), the learning drop factor (which modifies the learning rate
after a specified number of epochs have elapsed), and the learning drop
period (the number of epochs after which the drop factor is applied).
Further information on these hyperparameters is available in [48].

The RNN training process was conducted using MATLAB R2023a
and an AMD Ryzen 7 7730U CPU @ 2.00 GHz. It was started with
an initial learning rate of 0.005. The learning rate drop factor was
set at 0.6, adjusting every 10,000 epochs (learning rate drop period).
To achieve an optimal learning rate, the number of epochs was set to
30,000. As a way of an example, Fig. 14 shows the outcome of the
training process for the architecture comprising 2 LSTM layers and 20
neurons as obtained using MATLAB’s machine learning toolbox, which
presents an approximate duration of ∼34 min for training completion.
Even when the validation data were excluded from training to speed-up
the process (and thus the validation RMSE field is not here applicable),
a consistent learning rate of 0.0018 was achieved, which is a value
deemed acceptable [49,50]. Such learning rate was exhibited by all the
RNN architectures (not shown). This is further evaluated in the next
section.

Fig. 15 schematically shows the training process discussed in this
section. While some papers in the literature adopt systematic hyperpa-
rameter methods to fine-tune the optimal number of neurons of an RNN
architecture, this was determined manually in this paper as in [51,52].
The rationale behind this was the relatively simple architecture of the
proposed RNN. Eight different configurations were assessed in total.
One and two LSTM hidden layers were adopted to prevent potential
overfitting issues [52], as shown in Fig. 6. A minimum number of 5
neurons and a maximum of 20 neurons were considered in the LSTM
11
layers. This led to four different configurations with one LSTM hidden
layer and 5, 10, 15, and 20 neurons and four additional configurations
with two LSTM hidden layers and 5, 10, 15, and 20 neurons. The
minimum and maximum number of neurons per layer and the steps
of 5 neurons were defined heuristically.

5. Implementation and results

This section presents the implementation process of the RNN-based
SoC estimator. It uses MATLAB functions within the MATLAB/Simulink
environment where the code was integrated. A detailed assessment of
the performance of the estimator was carried out and a comparison
was made against a discrete-time non-linear observer. This observer
is the discretised version of the continuous-time domain non-linear
observer discussed in Section 2.2 and originally presented in [15].
Discretisation is based on signal sampling concepts and was achieved
using the mathematical representation of a data-hold circuit, a sampler,
and the two-point backward difference formula. The method enables
defining a discrete-time observer represented by a set of algebraic
equations—circumventing the need for an ODE engine solver. For
further details, interested readers are referred to Appendix A, which
provides an overview of the discretisation process.

5.1. Discrete-time non-linear observer

The observer’s performance was evaluated considering the ice tank
model adopted from [29], the observer model included in Appendix A,
and the SoC calculation methodology relying on the observer’s esti-
mated temperatures of the PCM shown in Appendix B. The ice tank
model and the observer structure consider a (thermal) discretisation
of the TES unit into 20 nodes. As discussed in Section 2, given that
there are two tubes per control volume (denoted ‘𝑎’ and ‘𝑏’) and



Applied Energy 371 (2024) 123526H. Bastida et al.
Fig. 14. Training results for an RNN with 2 LSTM layers and 20 neurons.
Fig. 15. Illustration of the complete RNN training process including dataset processing. In the training block within the red rectangle, �̂� is a subset of 𝐘 used to verify the training
process.
𝑚

considering the HTF and PCM elements, this leads to an ice tank model
of 80 ODEs and 80 algebraic functions for the discrete-time non-linear
observer model. The observer requires sampled values of mass flow
rate and input and output temperatures of the HTF for each tube.
It also requires the estimated temperatures from the previous time-
step. To achieve this, a delay was included in a feedback loop as
illustrated in Fig. 16. Fig. 17 shows screenshots of the discrete-time
observer configuration as implemented in MATLAB/Simulink. (Note:
when alluding to a discrete-time observer, this refers to a dynamic
structure operating in a discrete-time domain in a control engineering
sense and not to a thermally discretised (or stratified) model of the ice
tank.)
12
Fig. 18 shows the response of the discrete-time observer during a
charging process. To better appreciate its performance, initial condi-
tions were set at 0 ◦C and constant values for the input temperature
and mass flow rate of the HTF were adopted (𝑇𝑓,in = −6 ◦C and
̇ 𝑓 = 22 kg∕s). The system states being tracked, denoted with variable
𝑥 and shown with dashed traces, correspond to the temperatures of
the HTF and PCM at the different nodes, that is 𝑇𝑓,𝑖,𝑎 = 𝑥4𝑖−3 and
𝑇𝑤,1 = 𝑥4𝑖−2, where subscript ‘𝑓 ’ stands for the HTF, ‘𝑤’ for the PCM
(water), and ‘𝑖’ for the node number. A hat notation is used to identify
the estimated states, shown with solid traces. Only temperatures at
nodes 1, 11, and 20 of tube ‘𝑎’ are explicitly provided for simplicity.
These correspond to the following states: 𝑇𝑓,1,𝑎 = 𝑥1, 𝑇𝑤,1,𝑎 = 𝑥2,
𝑇 = 𝑥 , 𝑇 = 𝑥 , 𝑇 = 𝑥 and 𝑇 = 𝑥 . As shown in
𝑓,11,𝑎 41 𝑤,11,𝑎 42 𝑓,20,1 77 𝑤,20,1 78



Applied Energy 371 (2024) 123526H. Bastida et al.
Fig. 16. Block diagram of the ice tank model, discrete-time non-linear observer, and SoC calculation using a look-up table. The estimation values from the previous time-step
required for the calculation of the algebraic functions is obtained using a feedback loop with a delay over the observer output.
Fig. 17. Screenshot of the discrete-time observer implementation in MATLAB/Simulink: S-function of the one-dimensional model of the ice tank, MATLAB function with the code
of the discrete-time non-linear observer, and SoC calculation using a look-up table as presented in [15].
Fig. 18(a), the observer tracks the system states accurately—mirroring
the findings reported in [15] with a continuous-time observer. By the
beginning of the simulation, the temperatures of the HTF exhibit oscil-
lations. The temperatures of the PCM, in contrast, indicate a marginally
slower response with smaller oscillations. This is shown more clearly
in the zoomed-in graph within the figure. Fig. 18(b) demonstrates the
observer’s precision in estimating SoC (SoCDo, red trace) compared to
that calculated directly from the system temperatures (SoCS, dashed
blue trace). Both traces match well.

Fig. 18(c) and (d) show the system’s estimation errors for all the
discretised nodes. The observer estimates the states of the dynamic
model of the ice tank, which are the temperatures of the control
volumes. The estimation error shown in the figures is the deviation
between these states and the estimations from the observer. As it can
13
be seen, the observer exhibits a convergence to zero within about one
min into the simulation for the node temperatures of the HTF and
within 2.5 min for the temperatures of the PCM. For further clarity,
Fig. 18(e) and (f) show the behaviour of the estimation errors for nodes
1 and 20 only during the beginning of the simulation. Given the slow
thermal dynamics intrinsic to the ice tank, these convergence times are
deemed acceptable. Like the continuous-time observer performance, a
quicker error convergence to zero is achieved in HTF nodes near the
HTF inlet, whereas PCM temperature estimation presents a slower but
more uniform response.

As evidenced by Fig. 18(c)–(f), the estimation errors exhibit a
fluctuating behaviour. To explain this, it is worth recalling that the
observer aims to accurately estimate the states of a dynamic system
represented by non-linear differential equations. The observer is also



Applied Energy 371 (2024) 123526H. Bastida et al.
Fig. 18. Performance of the discrete-time non-linear observer during a charging process for constant operating conditions of the HTF (�̇�𝑓 = 22 kg∕s and 𝑇𝑓,in = −6 ◦C). (a) System
states and estimation by the discrete-time non-linear observer (HTF and PCM temperatures are shown for nodes 1, 11 and 20). (b) Calculated SoC of the ice tank model (SoCS)
and using the discrete-time non-linear observer (SoCDo). Estimation errors for all node temperatures (c) of the HTF and (d) the PCM. For the sake of clarity, the estimation errors
for nodes 1 and 20 are presented in (e) for the HTF and in (f) for the PCM during the beginning of the simulations.
a non-linear system and both the ice tank model and the observer
require initial conditions to initialise the simulations. For the observer
states these were set to 0 ◦C, while the initial conditions for a charging
process were set to 14 ◦C. Due to this discrepancy, the observer requires
time to converge on a zero-estimation error, as shown by the results
14
and, during the transitory period, fluctuations dictated by the assigned
dynamics of the observer are exhibited.

Fig. 19 presents the performance of the discrete-time non-linear
observer during a discharging process. In this operation mode, constant
values of �̇� = 5 kg∕s and 𝑇 = 12 ◦C were used. The initial
𝑓 𝑓,in



Applied Energy 371 (2024) 123526H. Bastida et al.

s
a
f

c
t
a
d
t
w

Fig. 19. Performance of the discrete-time non-linear observer during a discharging process for constant operating conditions of the HTF (�̇�𝑓 = 5 kg∕s and 𝑇𝑓,in = 12 ◦C). (a) System
tates and estimation by the discrete-time non-linear observer (HTF and PCM temperatures are shown for nodes 1, 11 and 20). (b) Calculated SoC of the ice tank model (SoCS)
nd using the discrete-time non-linear observer (SoCDo). Estimation errors for all node temperatures (c) of the HTF and (d) the PCM. For the sake of clarity, the estimation errors
or nodes 1 and 20 are presented in (e) for the HTF and in (f) for the PCM during the beginning of the simulation.
m
t
5
w
2

onditions of the observer were also set as 0 ◦C, while for the ice
ank these were defined as −6 ◦C. The temperatures of nodes 1, 11,
nd 20 are shown in Fig. 19(a), demonstrating the capabilities of the
iscrete-time observer to accurately estimate the node temperatures of
he HTF and PCM. This is further evidenced by Fig. 19(c) and (d),
here the estimation errors for all nodes converge to zero following
15

t

inor oscillations albeit with a slightly slower response compared to
he charging process: approximately 2.5 min for the HTF and around

min for the PCM. This is further evidenced by Fig. 19(e) and (f),
hich present the behaviour of the estimation errors for nodes 1 and
0 only by the start of the discharging process. As shown by Fig. 19(b),

he estimated SoC (SoCDo, red trace) is comparable to that calculated



Applied Energy 371 (2024) 123526H. Bastida et al.
Fig. 20. Screenshot of the implementation in MATLAB/Simulink of the trained RNN of the estimation of SoC.
directly from the system temperatures (SoCS, blue trace). Therefore,
it can be concluded that the observer maintains a consistently good
performance for both charging and discharging processes.

Note: To achieve convergence for the discrete-time non-linear ob-
server when solving the 80 algebraic equations and accurately esti-
mate SoC, the sampling time was established at 0.5 s. Sampling times
exceeding this value presented convergence problems.

5.2. RNN-based SoC estimator

The trained RNN was stored in a mat file within MATLAB for
subsequent deployment using commands of the deep learning toolbox.
This mat file considers the weights and biases for all the layers of
the RNNs. The MATLAB/Simulink function ‘Stateful predict ’ from the
toolbox was used to call the trained RNN. The delay in the RNN’s
output was afforded with a delay block, while a zero-order hold (ZOH)
is applied to the three inputs of the RNN estimator as shown in Fig. 9.
The sample time for both functions was set to 5 min. Fig. 20 provides
a screenshot of this implementation.

Simulations of the 8 different RNN configurations as discussed by
the end of Section 4.4 were conducted in parallel with the mathematical
model of the ice tank. To assess their performance 20 profiles were
used: 10 for charging and 10 for discharging. The profiles were chosen
randomly and were different from those employed for training. To
clearly identify the 8 RNNs, the subscript notation ‘𝑔, 𝑚’ was adopted,
where ‘𝑔’ denotes the number of LSTM layers and ‘𝑚’ the number of
neurons.

Simulation results for the different charging and discharging pro-
cesses are shown in Fig. 21, where the SoC derived from system
temperatures is presented alongside the responses of the RNN con-
figurations. An error analysis was undertaken to numerically quantify
the agreement between the mathematical model and RNN estimator.
This analysis entailed the calculation of the RMSE and the MAE for
the estimated SoC (SoCr) relative to the SoC determined by the system
temperatures (SoCS).

Table 4 shows the mean values of the errors (RMSEave and MAEave)
from the ten simulations for charging and the ten simulations for
discharging. Overall, seven RNN structures exhibit an excellent perfor-
mance, with their RMSE and MAE values falling below 1% for charging.
For discharging the performance is comparable, with the RMSE always
less than 2% and the MAE less than 1.04%. However, RNN[2,10] is
an exception, as observed by the brown trace in Fig. 21. This RNN
architecture inadequately estimates the SoC for both charging and
discharging and particularly leads to a larger estimation error for the
charging process.

In general, a slight increase in both error values for the SoC esti-
mation of a charging process is observed. Nonetheless, RNN[1,10] and
RNN[2,15] exhibit a superior accuracy for both processes with reduced
RMSE and MAE values. Owing to their superior estimation perfor-
mance, these two RNN architectures were selected for comparison with
the discrete-time non-linear observer in Section 5.3.
16
5.3. Comparison between the discrete-time observer and RNN-based SoC
estimators

Both types of SoC estimators were assessed during charging and
discharging cycles of the ice tank upon variations of �̇�𝑓 and 𝑇𝑓,in as
shown by Fig. 22(a) and (b). The discharging processes take place by
the beginning and the end of the simulations. For the first discharging
operation, �̇�𝑓 = 5 kg∕s and 𝑇𝑓,in = 10 ◦C, whereas �̇�𝑓 = 5.5 kg∕s and
𝑇𝑓,in = 13 ◦C for the second discharging run. The charging process
at the middle of the simulations was run with �̇�𝑓 = 18.5 kg∕s and
𝑇𝑓,in = −6 ◦C. All simulations were carried out using MATLAB R2023a
and a central processing unit with an AMD Ryzen 7 7730U CPU @
2.00 GHz.

Fig. 23 shows the simulation results for the conditions shown in
Fig. 22. The direct SoC calculation using the PCM temperatures of the
ice tank model (SoCS, see the cyan trace with the circular marker) is
plotted alongside the estimations obtained with the RNNs (SoC1,10 with
black trace, and SoC2,15 with red trace) using the MATLAB/Simulink
function block ‘Stateful predict ’. As discussed towards the end of Sec-
tion 5.2, only two RNN architectures are considered for this compar-
ison. The estimation of SoC obtained by the discrete-time non-linear
observer (SoCo, blue trace) is also included.

As shown in Fig. 23, the use of the ‘Stateful predict ’ block, which
relies solely on a mat file with weight values for all layers of the RNN,
results in significant errors in SoC estimation following the completion
of the first discharging process (see the black and red traces). The
estimation provided by RNN[1,10], SoC1,10 with the black trace, exhibits
a substantial discrepancy compared to the direct SoC calculation (SoCS)
at the onset of the charging process approximately 10 h into the
simulation. This leads to values of SoC approximately 10% higher than
for the rest of the estimations. Similarly, the estimation by RNN[2,15],
SoC2,15 with the red trace, exhibits an erratic performance during the
second discharging process. This includes a high peak by the start of the
process at around 22 h into the simulation as shown in the zoomed-in
graph. This is followed by a wrong SoC estimation with values 10%
higher than the system estimation SoCS.

The previous results deserve additional discussion. Initially the RNN
estimations using the ‘Stateful predict ’ block provide accurate results
during the first discharging operation, but accuracy dramatically re-
duces for the subsequent processes. This behaviour is attributed to
residual information within the hidden and cell states (ℎ, 𝑐) given that
the RNNs were trained independently for charging and discharging
(see Section 5.2). Therefore, the information retained in these states
is not needed when a new process begins, requiring a reset of the
states. However, the use of the ‘Stateful predict ’ block function does
not permit access to this information when running a simulation. This
limitation was circumvented by an additional RNN implementation
based on operation matrices and activation functions explicitly using
the equations in Section 3.



Applied Energy 371 (2024) 123526H. Bastida et al.
Fig. 21. Comparison of the SoC calculated from the ice tank model (SoCS) and the estimated values provided by the eight different configurations of the RNN estimators (SoC𝑔,𝑚)
for: (a) charging and (b) discharging.
Table 4
RMSE and MAE of the direct calculation of SoC and estimated SoC given by the eight configurations of the RNN-based estimator.

RNN configurations (RNN[𝑔,𝑚])

Error Charging Discharging

RNN RNN RNN RNN RNN RNN RNN RNN RNN RNN RNN RNN RNN RNN RNN RNN
[1, 5] [1, 10] [1, 15] [1, 20] [2, 5] [2, 10] [2, 15] [2, 20] [1, 5] [1, 10] [1, 15] [1, 20] [2, 5] [2, 10] [2, 15] [2, 20]

RMSEave 0.88 0.45 0.53 0.43 0.46 2.41 0.47 0.52 1.72 1.85 1.68 1.95 1.97 1.18 1.68 1.79
MAEave 0.66 0.32 0.40 0.34 0.34 1.86 0.34 0.38 0.90 0.97 0.87 1.03 1.02 0.78 0.87 0.90
Fig. 22. Simulation conditions to compare the performance of the SoC estimators: (a) Mass flow rate of the HTF; (b) input temperature of the HTF. These consider two discharging
processes and one charging process of the ice tank.
For the alternative RNN implementation just described, the weights
and biases derived from the RNN estimator training were used. The
MATLAB deep learning toolbox provides all this information for each
layer of the network. For further insight into these data, Table 5 shows
the dimensions of the matrices for each layer of the investigated archi-
tectures shown in Fig. 6. The dimensions vary according to the number
17
of neurons adopted. For instance, in the LSTM layer of architecture
RNN[2,15], the hidden state weight matrix has a dimension [60 × 15].
Here, 15 is the number of neurons and 60 represents the sum of rows
of the weight matrix used to calculate the input and forget gates, the
candidate cell gate, and the output gate.



Applied Energy 371 (2024) 123526H. Bastida et al.
Fig. 23. Comparison between the SoC calculated with the continuous-time non-linear model of the ice tank (SoCS) and the estimated SoCs given by the RNNs (SoC𝑔,𝑚) and the
discrete-time non-linear observer (SoCo).
Table 5
Dimensions of weights and bias of all layers for RNN[1,10] and RNN[2,15].

Layer Parameter Dimensions

RNN[1,10] RNN[2,15]

1st fully connected layer 𝑊2 , 𝑏2 [10 × 3] , [10 × 1] [15 × 3] , [15 × 1]

1st LSTM layer
𝑊4 =

[

𝑊𝑖,4;𝑊𝑓,4;𝑊𝑐,4;𝑊𝑜,4
]

[40 × 10] [60 × 15]
𝑈4 =

[

𝑈𝑖,4;𝑈𝑓,4;𝑈𝑐,4;𝑈𝑜,4
]

[40 × 10] [60 × 15]
𝑏4 =

[

𝑏𝑖,4; 𝑏𝑓,4; 𝑏𝑐,4; 𝑏𝑜,4
]

[40 × 1] [60 × 1]

2nd LSTM layer
𝑊5 =

[

𝑊𝑖,5;𝑊𝑓,5;𝑊𝑐,5;𝑊𝑜,5
]

–
[60 × 15]

𝑈5 =
[

𝑈𝑖,5;𝑈𝑓,5;𝑈𝑐,5;𝑈𝑜,5
]

[60 × 15]
𝑏5 =

[

𝑏𝑖,5; 𝑏𝑓,5; 𝑏𝑐,5; 𝑏𝑜,5
]

[60 × 1]

2nd fully connected layer 𝑊7 , 𝑏7 [1 × 10] , [1 × 1] [1 × 15] , [1 × 1]
Fig. 24. Comparison between the SoC calculated with the continuous-time non-linear model of the ice tank (SoCS) and the estimated SoCs given by the RNNs (SoC𝑔,𝑚) employing
matrix operations.
T
T

f
v
G
d
(
m

Table 6 shows the pseudo-code for an RNN estimator function built
in MATLAB/Simulink. The matrix operations and activation functions
are embedded within a ‘for ’ loop which, in turn, is executed every
five minutes. This is consistent with the dataset used for training. To
prevent the issues arising with the ‘Stateful predict ’ block, a reset is
implemented at the onset of each charging and discharging process.
Fig. 24 shows the results of this implementation. The state resets are
indicated by navy blue arrows for clarity. As opposed to the results
shown in Fig. 23, there is a notable improvement in the SoC estimation
for both configurations, namely RNN[1,10] (SoC1,10, black trace) and
RNN[2,15] (SoC2,15, red trace).

The performance of the discrete-time non-linear observer is note-
worthy for its high accuracy in SoC estimation. Results are also shown
18

a

in Figs. 23 and 24 for a direct comparison with the RNN architectures.
At the beginning of the simulation, the discrete-time observer exhibits a
minor divergence due to the initial conditions of its states (set at 0 ◦C).

he estimation process requires ∼150 s to reach a zero estimation error.
his is further appreciated in the zoomed-in graph within Fig. 23.

Table 7 shows a comparison of the computation time required
or the execution of each step in the SoC estimation process. These
alues were also recorded using an AMD Ryzen 7 7730U CPU @ 2.00
Hz and do not consider the time required to solve the non-linear
ifferential equations representing the dynamic model of the ice tank.
Note: a comprehensive analysis on the run time for solving the ice tank
odel used in this paper is already available in [29] and is not here
ccounted for to restrict the discussion to SoC estimation only.) Each



Applied Energy 371 (2024) 123526H. Bastida et al.

e

Table 6
Pseudo-code of the RNN estimator implemented in MATLAB/Simulink.

Pseudo-code of RNN estimator

1: Input: 𝐙 = {𝑇𝑓,in,𝑡−1 , �̇�𝑓,𝑡−1 , SoCRNN,𝑡−1}
2: Given parameters: 𝑊2 , 𝑏2 ,𝑊4 , 𝑈4 , 𝑏4 ,𝑊5 , 𝑈5 , 𝑏5 ,𝑊7 , 𝑏7
3: Initialise ℎ4 , 𝑐4 , ℎ5 , 𝑐5 = 0
4: for 𝑡 = 1,… , 𝑡𝑡𝑜𝑡 do
5: Check if a new process will start to reset ℎ4 , 𝑐4 , ℎ5 , 𝑐5 = 0
6: otherwise the values remain as ℎ4 = 𝑍4 , 𝑐4 = 𝑐𝑡,4 , ℎ5 = 𝑍5 , 𝑐5 = 𝑐𝑡,5
7: Normalise inputs 𝑍 (rescale 0 to 1)
8: Calculate the first full connection 𝑍2 = 𝑊2𝑍 + 𝑏2
9: Calculate first ReLU layer 𝑍3 = 𝑍2(id) = 0 with id = 𝑍2 < 0 for first
LSTM layer
10: Calculate 𝑖𝑡,4 (Eq. (8)), 𝑓𝑡,4 (Eq. (9)), 𝑐𝑡,4 (Eq. (10)), with 𝑥4 = 𝑍3
11: Calculate 𝑜𝑡,4 (Eq. (11))
12: Update cell state 𝑐𝑡,4 (Eq. (12))
13: Calculate ℎ4 (Eq. (13))
14: Update hidden and cell state 𝑐4 = 𝑐𝑡,4 , 𝑍4 = ℎ4 for second LSTM layer
15: Calculate 𝑖𝑡,5 (Eq. (8)), 𝑓𝑡,5 (Eq. (9)), 𝑐𝑡,5 (Eq. (10)), with 𝑥5 = 𝑍4
16: Calculate 𝑜𝑡,5 (Eq. (11))
17: Update cell state 𝑐𝑡,5 (Eq. (12))
18: Calculate ℎ5 (Eq. (13))
19: Update hidden and cell state 𝑐5 = 𝑐𝑡,5 , 𝑍5 = ℎ5
20: Calculate second ReLU layer 𝑍6 = 𝑍5 (id) = 0 with id = 𝑍5 < 0
21: Calculate the second full connection 𝑍𝑡 = 𝑊7𝑍6 + 𝑏7
22: end for
23: Output: SoC=

[

𝑍1 , 𝑍2 ,… , 𝑍𝑡𝑜𝑡
]

Table 7
Run time in μs employed by the RNNs and discrete-time non-linear observer to compute
ach time-step for SoC estimation.
Average run time for each step (μs)

Discrete-time observer RNN[1,10] RNN[2,15]

∼284 ∼12 ∼21

solution step for the 80 algebraic equations describing the discrete-time
non-linear observer demands an average run time of ∼284 μs when
a sampling time of 0.5 s is used. In contrast, the matrix operations
and execution of activation functions only require ∼12 μs for RNN[1,10]
and ∼21 μs for RNN[2,15] (with a sampling time of 5 min for either
RNN structure). Thus, the reduced run time and larger sampling time
afforded by the RNN estimators may be critical parameters for practical
implementation when the computation resources are constrained—such
as with basic microcontrollers.

For further assessment of the SoC estimators, a cycle of five
charging–discharging operations was simulated. Fig. 25 shows the con-
ditions for the HTF (�̇�𝑓 and 𝑇𝑓,in). During the charging processes, �̇�𝑓
ranged from 18.5 kg/s to 22 kg/s and 𝑇𝑓,in remained constant at −6 ◦C.
For the discharging processes, �̇�𝑓 varied between 5 kg/s and 6 kg/s
and 𝑇𝑓,in between 10 ◦C and 14 ◦C. Fig. 26 presents the simulation
results. As observed, both the RNNs (black and red traces with circle
markers) and the discrete-time non-linear observer (navy blue trace
with diamond marker) exhibit a good estimation performance when
compared to the SoC calculation obtained from the ice tank model
(cyan trace with the circle marker). It is evident that by resetting the
states of the RNNs their performance is significantly enhanced.

To assess the accuracy of both the discrete-time non-linear observer
and the RNN estimator, an error analysis was conducted by quantifying
the RMSEs and MAEs of the estimated values against those directly
obtained with the ice tank model. This exercise was conducted for the
complete simulation of charging and discharging cycles. A summary
of this error quantification is shown in Table 8. The discrete-time non-
linear observer exhibits the lowest values of RMSE (0.7159%) and MAE
(0.0434%). This was expected as this control structure achieves a high
accuracy at the expense of an increased computational cost, performing
864,000 estimations during the simulated 120 h. In contrast, larger er-
rors were exhibited by the RNN estimators, as shown in the table. These
19

are however deemed acceptable considering the significantly faster
Table 8
RMSE and MAE of estimated SoC by RNNs and non-linear observer with respect to the
SoC directly calculated from the simulated values of the PCM temperatures.

Discrete-time observer RNN[1,10] RNN[2,15]

RMSE (%) 0.7159 1.1160 0.9955
MAE (%) 0.0434 0.4357 0.3015

Table 9
RMSE and MAE values for the estimated SoC using the discrete-time non-linear observer
when compared to the directly calculated SoC over 25 charging–discharging cycles.

Discrete-time observer RNN[1,10] RNN[2,15]

RMSE (%) 0.0844 0.7294 0.5335
MAE (%) 0.0146 0.4032 0.2610

computational processing (see Table 7), with RNN[1,10] and RNN[2,15]
performing a total of 1440 estimations each in the 120-h simulation.
Despite these minor discrepancies, the performance of all estimators is
deemed successful as their RMSE and MAE values fall below 1.12%.

For completeness, 25 additional charging–discharging cycles were
simulated to provide further evidence on the accuracy afforded by
the RNN estimators. These simulations include variations in the initial
conditions for charging, ranging from 10 ◦C to 14 ◦C in increments of
1 ◦C for the input temperature of the HTF, and from 18 to 22 kg/s in
increments of 1 kg/s for the mass flow rate. In contrast, step increments
of 1 ◦C from 10 ◦C to 14 ◦C for the HTF input temperature and of
0.25 kg/s from 5 kg/s to 6 kg/s for the mass flow rate were used
for discharging. Results for these extended simulations are shown in
Fig. 27. An error analysis of the SoC estimation using the discrete-time
observer and the RNNs with respect to the directly calculated SoC is
summarised in Table 9.

Fig. 27(a) shows the mass flow rate of the HTF for the 25 additional
charging–discharging cycles, while Fig. 27(b) shows the input temper-
ature conditions of the HTF. As it can be observed, as in the simulation
results presented in Fig. 26, a good SoC estimation performance is
achieved by the discrete-time observer and the RNNs throughout the
simulation. As shown by Table 9, the observer yields the most accurate
SoC estimation and exhibits the lowest RMSE and MAE, with a total
of 3,960,000 estimations over the 550-h simulation. Among the RNN
estimators, RNN[2,15] exhibits slightly lower RMSE and MAE values than
RNN[1,10], with each conducting a total of 6600 estimations.

5.4. Influence of the sampling time-step in training, performance accuracy,
and computational cost of RNN-based SoC estimators

Sections 4.3 and 4.4 illustrate the practical implications of adopting
a specific sampling time in the training process of the RNN-based
estimators. In turn, the sampling time also impacts the training time
and the performance accuracy of the RNNs. A rigorous analysis of
the optimal sampling time is out of the scope of this work. However,
a comparative analysis is carried out in this section to illustrate the
impact of using different sampling times in the duration of training,
accuracy, and computational cost of the studied RNN-based estimators.

Both SoC estimators (i.e. RNN[1,10] and RNN[2,15]) were trained using
sampling times of 120 s and 600 s (2 min and 10 min) in addition to the
300 s (5 min) previously used in Sections 5.2 and 5.3. Compared to the
120 data points in the training profiles required with a 300-s sampling
time, the adjustments result in an increment to 300 data points for the
120-s sampling time and a decrement to 60 data points for the 600-s
sampling time.

Table 10 shows the training times for the RNN estimators under
different sampling times. Using the 300-s sampling time as a reference,
the training time for RNNs with a 120-s sampling time increased to
34 min (from 16 min) for RNN[1,10] and 71 min (from 27 min) for
RNN[2,15]. The training time also decreased to 10 min for RNN[1,10] and

16 min for RNN[2,15] when the sampling time was 600 s.



Applied Energy 371 (2024) 123526H. Bastida et al.

t
e
e
c
i
u
‘

t
s
s
M
t

Fig. 25. (a) Mass flow rate and (b) input temperature profiles of the HTF for a series of five discharging and charging cycles of the ice tank.
Fig. 26. Comparison between the SoC calculated from the temperature of the ice tank and the estimated SoCs given by the RNNs and the discrete-time non-linear observer for
five discharging–charging cycles.
Table 10
Time required for the training using different sampling times (𝑇𝑠).

𝑇𝑠 = 120 s 𝑇𝑠 = 300 s 𝑇𝑠 = 600 s

RNN[1,10] 34 min 16 min 10 min
RNN[2,15] 71 min 27 min 16 min

The RNN-based estimators trained under the additional sampling
imes were simulated and results compared against those obtained with
stimators with a 300-s sampling time (presented in Section 5.3) to
valuate their performance accuracy. To this end, the 30-h discharging–
harging–discharging cycle shown in Fig. 22 was adopted. The compar-
son of simulation results is shown in Fig. 28, where subscript ‘A’ was
sed for results obtained with a sampling time of 120 s and subscript

B’ for a sampling time of 600 s.
RNNs trained with a 120-s sampling time (see black and orange

races) show an enhanced accuracy, while RNNs trained with a 600-s
ampling time (red and teal traces) exhibit a decreased accuracy. To
upport these observations, Table 11 shows the specific RMSEs and
AEs of the direct calculation of SoC and estimated SoC. It is evident

hat the accuracy afforded by both RNN[1,10] and RNN[2,15] increases as
the sampling time is reduced—at the expense of longer training times
20

as shown in Table 10.
The average run time was also analysed for both RNN structures
under different sampling times, with results provided in Table 12.
However, as expected, no variations were observed in run time for
a given RNN as the same activation functions and matrix operations
are used to estimate SoC. This calculation procedure is detailed in
Section 5.3 and it is not affected by sampling time. The only differences
between RNNs with the same structure and different sampling times are
the weights of the layers.

The relatively short durations of the training processes, along with
the unchanged efficiency of calculations of the RNN estimators due
to sampling time, indicate that selecting the sampling time involves
a trade-off only between the available computational resources and
desired accuracy. For simplicity, a sampling time of 300 s was cho-
sen as suitable in this paper because it ensures a reasonable training
duration without compromising accuracy, facilitating rapid evaluation
of different structures (see Section 5.2 and Table 4).

6. Discussion

As shown in Section 5.3, the comparative analysis of the perfor-
mance of SoC estimators for an ice tank based on either a discrete-time
non-linear observer or an RNN indicates a high estimation accuracy for
both approaches. RMSE and MAE values below 1% were obtained for

both. However, the computational efficiency of these methods varies



Applied Energy 371 (2024) 123526H. Bastida et al.

d
t
a

Fig. 27. (a) Mass flow rate profile of HTF (�̇�𝑓 ) with variations from 10 kg/s to 22 kg/s in steps of 1 kg/s for charging and from 5 kg/s to 6 kg/s in steps of 0.25 kg/s for
ischarging. (b) Input temperature profile (𝑇𝑓,in) with variations from 10 ◦C to 14 ◦C in steps of 1 ◦C for discharging a constant value of −6 ◦C for charging. (c) Comparison of
he SoC obtained from the temperature of the ice tank (light blue trace, SoCS), the discrete-time non-linear observer (dark blue, SoCO), and the RNN estimators (black, SoC[1,10],
nd red, SoC[2,15]) under different operating conditions which include variations in the initial conditions, input temperature, and mass flow rate of the HTF.
Fig. 28. Comparison between the SoC calculated with the continuous-time non-linear model of the ice tank (SoCs) and the estimated SoCs given by the RNNs with different
sampling times. Subscripts ‘A’ and ‘B’ respectively stand for a sampling time of 120 s and 600 s.
Table 11
RMSE and MAE of the direct calculation of SoC and estimated SoC given by RNN[1,10] and RNN[2,15] with sampling times (𝑇𝑠)
of 120 s, 300 s and 600 s.

RNN[1,10] RNN[2,15]

𝑇𝑠 = 120 s 𝑇𝑠 = 300 s 𝑇𝑠 = 600 s 𝑇𝑠 = 120 s 𝑇𝑠 = 300 s 𝑇𝑠 = 600 s

RMSE (%) 0.73 1.71 1.79 0.75 1.29 2.20
RMSE (%) 0.41 0.85 0.98 0.38 0.67 1.02
21



Applied Energy 371 (2024) 123526H. Bastida et al.
Table 12
Average run time in μs to compute SoC estimation of RNN[1,10] and RNN[2,15] with
sampling times (𝑇𝑠) of 120 s, 300 s and 600 s.

Average run time for each step (μs)

RNN[1,10] RNN[2,15]

𝑇𝑠 = 120 s 𝑇𝑠 = 300 s 𝑇𝑠 = 600 s 𝑇𝑠 = 120 s 𝑇𝑠 = 300 s 𝑇𝑠 = 600 s

∼12 ∼12 ∼12 ∼21 ∼21 ∼21

Fig. 29. Development diagram for the (a) discrete-time non-linear observer, (b) RNN
estimator using experimental data, and (c) mathematical model for simulations.

substantially. While the discrete-time non-linear observer takes 284 μs
to produce a SoC estimation and requires a sampling time of 0.5 s to
ensure convergence, the examined RNN estimators take 12 and 21 μs
to estimate SoC every 300 s. Considering this may thus aid in their
selection and implementation in embedded systems.

The discrete-time non-linear observer requires a verified mathe-
matical model of the LHTES unit under consideration—in this case
a thermally discretised ice tank. Additionally, a comprehensive un-
derstanding of the thermophysical properties of the HTF, PCM, and
the tube materials where the HTF circulates is essential. Assuming
this information is readily available, the design and implementation
of the discrete-time observer may be conducted by following the steps
presented in this paper (see Appendix A and [15] for further informa-
tion). In contrast, the RNN estimator requires experimental data from
a practical system or simulation data derived from an accurate (in this
case verified) mathematical model. Once the architecture of the RNN is
established, the training process can be completed within minutes using
MATLAB’s machine learning toolbox. A summary of the development
process for both estimators is presented in Fig. 29.

Although the development of both estimators can be achieved as
long as sufficient information is available and the methodologies pre-
sented in this paper are followed, the critical aspect lies in their
implementation. The RNN-based estimator offers a distinct advantage
over its discrete-time non-linear observer counterpart. For the RNN
architecture, SoC estimation relies solely on matrix operations and the
execution of basic activation functions. In contrast, the discrete-time
non-linear observer requires solving numerous algebraic operations.
22
Despite a reduction in complexity when compared with the continuous-
time version of the non-linear observer presented in [15], which re-
quires an ODE engine solver, the discrete-time version still has a high
computational demand as all operations must be completed within
a sampling time of 0.5 s. Notably, the RNN implementation with a
sampling time of 5 min yields highly accurate estimation results.

The most important constraint for the design of an RNN estimator
is the availability of mathematical models (or experimental data) and
the different profiles required for training. Additionally, the operating
conditions of the TES unit may influence the scope of the use of the
estimator. In other words, a larger number of profiles for training is
required if the operating conditions span through a large range of
temperatures and mass flow rates of the HTF. However, the ice tank
investigated in this paper has a unique characteristic: the charging
process was conducted at temperatures near −6◦C, thereby limiting
the operating mode to a (nearly) constant value. For discharging, the
operating conditions were restricted to a narrow range of mass flow
rate (within 5 kg/s to 6 kg/s). These specific characteristics enable a
reasonably limited number of combinations for the dataset adopted in
the paper. As discussed in Section 4.1, this comprised a total of 2132
SoC profiles, with 1681 used for charging but only 451 for discharging,
with 132 random profiles of the dataset used for training purposes.
Nevertheless, conducting additional simulations or experimental runs
considering a broader operating range could enhance the reliability of
the RNN estimators.

As highlighted in Section 3.1, RNN architectures are susceptible
to a vanishing gradient, which inhibits their ability to capture long-
term dependencies. To alleviate issues with gradient dispersion, LSTM
layers were incorporated into the RNN structure, where the provision
of a state memory enables maintaining a constant error signal flow
during the generation of network weights throughout the training
process [38]. RNN structures may also exhibit stability and robust-
ness issues when dealing with long time-series data. To prevent this,
downsampling was conducted. This enabled reducing the number of
elements per profile from 72,000 elements for a time-step of 0.5 s
for a 10-h simulation to 120 elements only using a sampling time of
5 min (i.e. 300 s) instead. This number of elements may vary while still
yielding favourable outcomes, as demonstrated in Section 5.4, where
training was conducted adopting 60 and 300 elements per profile.

The comparison of three different sampling times—2 min, 5 min,
and 10 min (i.e. 120 s, 300 s, and 600 s)—in Section 5.4 revealed
an improvement in accuracy as time was shortened and a reduced
accuracy as it was increased. Regarding training duration, a longer
training period was observed with a 120-s sampling time (300 el-
ements) compared to the durations required for 300 s and 600 s.
Nevertheless, all training times are reasonably short considering the
number of elements and profiles used. Moreover, training time is not a
parameter related to the calculation cost of SoC. In fact, the SoC com-
putation time remains consistent regardless of the choice of sampling
time. It is concluded that an optimal sampling time may be reached
through a direct trade-off between implementation requirements from
users and desired performance accuracy.

Based on the previous discussion, an LSTM-based RNN architec-
ture may be suitable for other engineering applications that require
managing long process data. Although in this paper long charging
and discharging processes have been employed for training, the results
presented in Section 5 do not exhibit instability or convergence issues
in SoC estimation.

By considering an increase in sampling time, the RNN estimator is
able to produce similar results to those obtained by the discrete-time
non-linear observer faster and with a significantly lower number of
estimations. This has a meaningful implication for practical engineering
applications: namely, the selection of the data acquisition system,
which for the RNN estimator would require, for example, a lower stor-
age memory, reduced power consumption, and reduced susceptibility
to noise.



Applied Energy 371 (2024) 123526H. Bastida et al.
Fig. 30. RNN-LSTM performance under different initial conditions of SoC: (a) charging; (b) discharging.
𝑚

7. On the limitations of the presented SoC estimator and its adop-
tion for other systems

The work presented in this paper has been centred around thermal
stores for cooling applications. Due to the promising results afforded by
the presented RNN architecture for SoC estimation, extending its use to
other energy storage systems may be of interest.

The proposed RNN estimator requires SoC data from the LHTES
unit under varying operating conditions for training purposes. These
conditions, arising from changes in HTF parameters, determine the be-
haviour of the thermal store during charging and discharging processes.
While the method can be easily adapted for LHTES units for heating
applications by establishing the ranges of the HTF conditions (namely
mass flow rate and input temperature), its application for electric
batteries would require to identify the distinct operating conditions
and the variables that affect the battery performance. For instance, the
state-of-health of an electric battery also influences its performance,
adding further complexity for SoC estimation. As a result, adapting
the proposed method to electric batteries, although promising and of
arguably a high research value, would require further analysis which
falls out of the scope of this paper.

On the same note, a discrete-time non-linear observer could be also
adopted for SoC estimation in thermal stores for heating applications.
As it has been explained in Section 5.1, the continuous-time non-linear
observer for the ice tank is essentially a dynamic model described
by ODEs. Its design is based on the mathematical model of the ice
tank. The observer equations consider the thermophysical properties
of elements in the tank involved in heat transfer and parameters such
as volumetric capacity and heat transfer area. A dynamic model and
its corresponding continuous-time non-linear observer were developed
for an LHTES unit for heating applications in [15] following a similar
methodology as the one adopted for the ice tank. In that reference, a
comparison with experimental data showed an accurate performance of
both the dynamic model of the TES unit and its observer, demonstrating
the suitability of the modelling approach and the observer design for
different types of TES technologies and for different applications. The
interested reader is referred to [15] for a detailed description on the
modelling implications for a heating system.

It is worth highlighting that a continuous-time observer for either
an ice tank or an LHTES unit for heating applications would exhibit a
similar mathematical structure. However, differences may arise when
considering the internal structure of the storage unit and the properties
of the HTF and PCM (including the PCM’s specific heat–temperature
curve, which is a key modelling parameter). Despite these modelling
differences, a similar discretisation method (from a continuous-time to
23

a discrete-time domain) as the one used for the ice tank can be easily
adopted for non-linear observers for heating storage units. Designing
a discrete-time non-linear observer for a heating application, however,
falls out of the scope of this paper.

While the RNN-based estimator presented in this paper offers an
accurate SoC quantification for an ice tank, it is necessary to recog-
nise its limitations. Its performance depends on the continuous-time
monitoring of its inputs—namely, the input temperature and mass flow
rate of the HTF—and precise initial SoC conditions. In contrast, a well-
designed observer or a Kalman filter has the capacity to reduce the
estimation error to zero even when SoC initial conditions do not match
the ice tank’s actual conditions. Thus, the need for consistent input
measurements limits the RNN’s implementation. Arguably, a simpler
SoC estimation method relying on the cumulatively calculation of
SoC using the temperature difference (input–output) of the HTF and
its mass flow rate would be sufficient. However, such an approach
would require three measurements to be effective. The proposed RNN-
based estimator however needs only two sensors. This attribute may be
significant when assessing the operation of multiple ice tanks within a
single system—as it is common in large district cooling systems, where
a large number of variables may be monitored.

The results presented in this paper so far only consider initial con-
ditions for a fully charged or a fully discharged ice tank. The rationale
behind this selection is that the use of initial conditions with a SoC
ranging from 0% to 100% would considerably increase the number
of profiles to be used for training, thereby increasing the duration of
the process. However, the RNN-LSTM architecture presented in the
paper could be re-trained to consider random initial conditions for SoC
and still exhibit an acceptable SoC estimation performance. To support
this idea, 210 additional SoC profiles were considered alongside those
previously discussed in Section 4.4 to train an RNN with two LSTM
layers with 15 neurons in each layer. The training process for this RNN,
which considered a total of 342 profiles, had a duration of 4 h.

Fig. 30 shows the performance of the re-trained RNN. Charging and
discharging processes were simulated for HTF conditions of 𝑇𝑓,in =
−6◦C and �̇�𝑓 = 18 kg∕s for charging and with 𝑇𝑓,in = 10◦C and
̇ 𝑓 = 5 kg∕s for discharging. In the figure, subscript ‘s’ stands for the

SoC calculated directly from the mathematical model (dashed traces)
and ‘RNN’ for the SoC obtained with the RNN estimator (solid traces). It
can be observed that the estimation accuracy afforded by the estimator
declined slightly.

Fig. 31 shows the simulation results for three consecutive charging–
discharging cycles. The reduced accuracy observed in Fig. 30 is also ap-
preciated in these results, as an increased estimation error is exhibited
(notably during charging).

Even when the estimation accuracy of the re-trained RNN was

reduced when compared to the results presented in Section 5, the



Applied Energy 371 (2024) 123526H. Bastida et al.

w
o
w
(

e
e
t
c
t
r
a
H

S
l
p
o
o
c

n
g

S
C
i
y
F
–
F

D

c
i

D

a
d

Fig. 31. Simulation conditions to assess the performance of a RNN estimator trained
ith SoC profiles that include variations in the initial conditions: (a) Mass flow rate
f HTF; (b) input temperature of the HTF; and (c) comparison of the SoC calculated
ith the mathematical model of the ice tank (SoCS) and the re-trained RNN estimator

SoCRNN).

xample presented in this section demonstrates that the proposed SoC
stimation methodology enables adopting new arbitrary initial condi-
ions not limited to SoCs of 0% and 100%. The estimation performance
ould be further improved by expanding the dataset for training. During
his process, some profiles could be excluded from the dataset to
estrict it to a manageable size while improving training efficiency and
chieving an optimal estimation performance following deployment.
owever, this exercise falls out of the scope of this paper.

Although the results presented in the paper demonstrate a good
oC estimation performance by an RNN estimator incorporating LSTM
ayers into its architecture, increasing the overall data deviation would
rovide further confidence on the suitability of the presented methodol-
gy. Owing to the constraints imposed by the discrete-time non-linear
bserver’s convergence issues and efficiency of RNN training, such a
omprehensive analysis falls out of the scope of this work.

It is important to clarify that this paper adopted well-established
eural network architectures to address a well-defined practical en-
ineering challenge rather than to advance AI theory or to enhance
24
existing LSTM structures and RNNs. To the best of the authors’ knowl-
edge, these neural network architectures have not been previously used
to estimate the SoC of thermal stores for cooling applications.

8. Conclusions

Effective management of energy systems incorporating thermal
stores requires the accurate knowledge of the state of the TES units
to achieve effective control strategies and operational optimisation.
However, this may require significant investment in instrumentation
which, in turn, can lead to high implementation costs. To address these
challenges, an RNN-based SoC estimator for LHTES units was presented
in this paper. The RNN-based estimator eliminates the need for internal
temperature sensors and only requires measurements of mass flow rate
and input temperature of the HTF for its operation. It also enables a
simpler implementation compared to other alternatives by adopting
LSTM layers within its architecture.

A key advantage of the RNN-based SoC estimator lies in its compu-
tational efficiency. It operates with a reduced set of matrix operations
and activation functions, resulting in a decreased computation time (24
times faster) when compared to a discrete-time non-linear observer-
based SoC estimator. This is possible as the sampling time afforded
by the RNN structure may be substantially increased without signifi-
cantly compromising estimation precision. The training methodology
can be suitably tailored for charging–discharging cycles with varied
time durations by resetting the hidden and cell states of LSTM layers.
This adjustment in the internal parameters of the RNN architecture
considerably streamlines training, enabling an independent evaluation
of charging and discharging and ensuring a precise SoC estimation
across these processes.

When compared with direct calculations using the mathematical
model of the ice tank, RNN estimators registered RMSE and MAE values
below 0.73% and 0.41% over a long range of charging–discharging
cycles under varying operating conditions. In contrast, a discrete-time
non-linear observer produced RMSE and MAE values of 0.08% and
0.015%. While the observer exhibited marginally enhanced accuracy
metrics, its drawbacks concerning sampling and computation times ren-
der the RNN-based SoC estimator a better alternative towards practical
implementation.

CRediT authorship contribution statement

Hector Bastida: Writing – original draft, Visualization, Validation,
oftware, Methodology, Investigation, Formal analysis, Data curation,
onceptualization. Ivan De la Cruz-Loredo: Writing – review & edit-

ng, Writing – original draft, Methodology, Investigation, Formal anal-
sis, Conceptualization. Pranaynil Saikia: Methodology, Investigation,
ormal analysis, Conceptualization. Carlos E. Ugalde-Loo: Writing
review & editing, Supervision, Resources, Project administration,

unding acquisition, Conceptualization.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Relevant datasets produced for this paper have been made available
s supplementary material. These are available in the Cardiff University
ata catalogue at http://doi.org/10.17035/d.2024.0322710137.

http://doi.org/10.17035/d.2024.0322710137


Applied Energy 371 (2024) 123526H. Bastida et al.

𝑥

Acknowledgements

The work presented in this paper was supported by the Engineering
and Physical Sciences Research Council (EPSRC), United Kingdom, UK
Research and Innovation (UKRI), through the project ‘Flexibility from
Cooling and Storage (Flex-Cool-Store)’, grant EP/V042505/1.

Appendix A. Discretisation of continuous-time non-linear
observer

The continuous-time non-linear observer presented in [15] was dis-
cretised (to a discrete-time domain in a control engineering sense) for
comparison with the RNN-based SoC estimator presented in this paper.
Discretisation of the set of ODE describing the non-linear observer is
based on signal sampling concepts, resulting in a simple and accurate
discrete-time observer.

The basic concept of system discretisation is to convert a
continuous-time signal to discrete-time values determined by a periodic
sampling. Thus, the signal can be rebuilt continuously from a discrete-
time sequence using data hold circuits. The most common and simplest
hold circuit is the ZOH, mathematically expressed as:

ℎ
(

𝑗𝑇𝑠 + 𝑡
)

= 𝑥
(

𝑗𝑇𝑠
)

, for 0 ≤ 𝑇𝑠 (A.1)

where 𝑗 is the number of the sample and 𝑇𝑠 is the sampling time. Thus,
the values from a sampling instant are retained and kept constant until
the next sampling instant.

A sampler and a ZOH are required to generate the discretised signal.
This is illustrated in Fig. A.32, where a signal is sampled at specific
times. Then the signal values are retained by the ZOH until the next
sample occurs.

The continuous-time non-linear observer presented in [15] is con-
verted to a discrete-time form such that obtaining a solution to this
dynamic system does not involve an ODE engine solver. In turn, this
reduces the computational resources required. The mathematical pro-
cedure for this is illustrated in Fig. A.33 with a block diagram. The
two-point backward difference formula [53] was used to represent the
ODEs as a set of derivatives considering a specific time-step. This is
also defined as the sampling time of the implementation. This method

′

25

establishes that the derivative of a function 𝑓 (𝑡) in a specific point is
given by the difference between the function evaluated at an immedi-
ately subsequent point and the function evaluated at the current point
(i.e 𝑓

(

𝑥 + ℎ𝑥
)

−𝑓 (𝑥)) divided by the difference ℎ𝑥 between the points.
This is expressed mathematically as

𝑓 ′ (𝑥) =
𝑓
(

𝑥 + ℎ𝑥
)

− 𝑓 (𝑥)
ℎ𝑥

. (A.2)

Given that a state–space representation is a set of derivative func-
tions as in (A.2), the described method is employed to solve them using

𝑓
(

𝑥 + ℎ𝑥
)

= ℎ𝑥𝑓
′ (𝑥) + 𝑓 (𝑥) , (A.3)

where ℎ𝑥 is the increment 𝛥𝑥 to define the next point to solve the
function.

The continuous-time non-linear observer is described by Eq. (A.4)
given in Box I.

By replacing 𝑓 ′ (𝑥) with the function of the estimated state variable
̇̂ as 𝑓 ′ (𝑥) = ̇̂𝑥, and defining the evaluation of the function in (𝑥 + ℎ𝑥)
as the solution of the state variable for two instances of times (𝑡0 and
𝑡1) as 𝑓 (𝑥) = 𝑥

(

𝑡0
)

and 𝑓
(

𝑥 + ℎ𝑥
)

= 𝑥
(

𝑡1
)

, the solution of the state
variables, represented as vector �̂�, for time 𝑡1, is defined by

�̂�
(

𝑡1
)

= 𝛥𝑡 ̇̂𝐱
(

𝑡0
)

+ �̂�
(

𝑡0
)

= 𝛥𝑡
[

𝑓
(

�̂�
(

𝑡0
)

,𝐮
(

𝑡0
))

+ 𝐉
(

𝐲
(

𝑡0
)

− 𝐂
(

�̂�
(

𝑡0
)))]

+ �̂�
(

𝑡0
)

, (A.5)

where 𝛥𝑡 = 𝑡1 − 𝑡0. By adopting a discrete-time notation in (A.5),
the general expression for the solution of the state variables of the
non-linear observer is expressed as

�̂�
(

(𝑗 + 1) 𝑇𝑠
)

= 𝑇𝑠
[

𝑓
(

�̂�
(

𝑗𝑇𝑠
)

,𝐮
(

𝑗𝑇𝑠
))

+ 𝐉
(

𝐲
(

𝑗𝑇𝑠
)

− 𝐂�̂�
(

𝑗𝑇𝑠
))]

+ �̂�
(

𝑗𝑇𝑠
)

, (A.6)

where 𝑇𝑠 is the time-step defined for the discrete-time solution of the
equation, 𝐉 is the observer gain matrix, 𝐮 is the input vector of the
state–space representation of the ice tank, and 𝐂 is the output matrix.

To illustrate the use of the discretisation method described pre-
viously to solve the ODEs of the non-linear observer, the first two
equations of the set in (A.4) are used. These equations describe the
temperature of the HTF and PCM for the first node, with the state

variables defined as 𝑇𝑓,1,𝑎 = 𝑥1 and 𝑇𝑤,1,𝑎 = 𝑥2. Assuming a (thermal)
Fig. A.32. Illustrative sequence of the sampling process of a signal using a sampler and a ZOH.



Applied Energy 371 (2024) 123526H. Bastida et al.
Fig. A.33. Implementation of discretised non-linear state observer for the ice tank.
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̇̂𝑇 𝑓,1,𝑎
̇̂𝑇𝑤,1,𝑎
̇̂𝑇 𝑓,1,𝑏
̇̂𝑇𝑤,1,𝑏
⋮

̇̂𝑇 𝑓,𝑖,𝑎
̇̂𝑇𝑤,𝑖,𝑎
̇̂𝑇 𝑓,𝑖,𝑏
̇̂𝑇𝑤,1,𝑏
⋮

̇̂𝑇 𝑓,𝑁,𝑎
̇̂𝑇𝑤,𝑁,𝑎
̇̂𝑇 𝑓,𝑁,𝑏
̇̂𝑇𝑤,𝑁,𝑏

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̇̂𝑥1
̇̂𝑥2
̇̂𝑥3
̇̂𝑥4
⋮
̇̂𝑥𝑙+1
̇̂𝑥𝑙+2
̇̂𝑥𝑙+3
̇̂𝑥𝑙+4
⋮

̇̂𝑥4𝑁−3
̇̂𝑥4𝑁−2
̇̂𝑥4𝑁−1
̇̂𝑥4𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[

�̇�𝑓 𝑐𝑝,𝑓 ,1
(

𝑇𝑓,in−�̂�1
)

+𝑈(𝐴𝑡𝑟∕𝑁)(�̂�2−�̂�1)
𝜌𝑓,1𝑐𝑝,𝑓 ,1

(

𝑉𝑓 ∕𝑁
)

]

+
[

𝐽1𝑒𝑎 + 𝐽1𝑒𝑏
]

[

𝑈(𝐴𝑡𝑟∕𝑁)(�̂�1−�̂�2)+𝑈𝑤(𝐴𝑒𝑥∕𝑁)(�̂�4−�̂�2)+𝑈𝑙𝑠(𝐴𝑒𝑥∕𝑁)(0−�̂�2)
𝜌𝑤,2𝑐𝑝,𝑤,2(𝑉𝑤∕𝑁)

]

+
[

𝐽2𝑒𝑎 + 𝐽2𝑒𝑏
]

[

�̇�𝑓 𝑐𝑝,𝑓 ,3(�̂�7−�̂�3)+𝑈(𝐴𝑡𝑟∕𝑁)(�̂�4−�̂�3)
𝜌𝑓,3𝑐𝑝,𝑓 ,3

(

𝑉𝑓 ∕𝑁
)

]

+
[

𝐽3𝑒𝑎 + 𝐽3𝑒𝑏
]

[

𝑈(𝐴𝑡𝑟∕𝑁)(�̂�3−�̂�4)+𝑈𝑤(𝐴𝑒𝑥∕𝑁)(�̂�2−�̂�4)+𝑈𝑙𝑠(𝐴𝑒𝑥∕𝑁)(0−�̂�4)
𝜌𝑤,4𝑐𝑝,𝑤,4(𝑉𝑤∕𝑁)

]

+
[

𝐽4𝑒𝑎 + 𝐽4𝑒𝑏
]

⋮
[

�̇�𝑓 𝑐𝑝,𝑓 ,𝑙(�̂�𝑙−4−�̂�𝑙)+𝑈(𝐴𝑡𝑟∕𝑁)(�̂�𝑙+1−�̂�𝑙)
𝜌𝑓,𝑙𝑐𝑝,𝑓 ,𝑙

(

𝑉𝑓 ∕𝑁
)

]

+
[

𝐽𝑙𝑒𝑎 + 𝐽𝑙𝑒𝑏
]

[

𝑈(𝐴𝑡𝑟∕𝑁)(�̂�𝑙−�̂�𝑙+1)+𝑈𝑤(𝐴𝑒𝑥∕𝑁)(�̂�𝑙+3−�̂�𝑙+1)+𝑈𝑙𝑠(𝐴𝑒𝑥∕𝑁)(0−�̂�𝑙+1)
𝜌𝑤,𝑙+1𝑐𝑝,𝑤,𝑙+1(𝑉𝑤∕𝑁)

]

+
[

𝐽𝑙+1𝑒𝑎 + 𝐽𝑙+1𝑒𝑏
]

[

�̇�𝑓 𝑐𝑝,𝑓 ,𝑙+2(�̂�𝑙+6−�̂�𝑙+2)+𝑈(𝐴𝑡𝑟∕𝑁)(�̂�𝑙+3−�̂�𝑙+2)
𝜌𝑓,𝑙+2𝑐𝑝,𝑓 ,𝑙+2

(

𝑉𝑓 ∕𝑁
)

]

+
[

𝐽𝑙+2𝑒𝑎 + 𝐽𝑙+2𝑒𝑏
]

[

𝑈(𝐴𝑡𝑟∕𝑁)(�̂�𝑙+2−�̂�𝑙+3)+𝑈𝑤(𝐴𝑒𝑥∕𝑁)(�̂�𝑙+1−�̂�𝑙+3)+𝑈𝑙𝑠(𝐴𝑒𝑥∕𝑁)(0−�̂�𝑙+3)
𝜌𝑤,𝑙+3𝑐𝑝,𝑤,𝑙+3(𝑉𝑤∕𝑁)

]

+
[

𝐽𝑙+3𝑒𝑎 + 𝐽𝑙+3𝑒𝑏
]

⋮
[

�̇�𝑓 𝑐𝑝,𝑓 ,4𝑁−3(�̂�4𝑁−7−�̂�4𝑁−3)+𝑈(𝐴𝑡𝑟∕𝑁)(�̂�4𝑁−2−�̂�4𝑁−3)
𝜌𝑓,4𝑁−3𝑐𝑝,𝑓 ,4𝑁−3

(

𝑉𝑓 ∕𝑁
)

]

+
[

𝐽4𝑁−3𝑒𝑎 + 𝐽4𝑁−3𝑒𝑏
]

[

𝑈(𝐴𝑡𝑟∕𝑁)(�̂�4𝑁−3−�̂�4𝑁−2)+𝑈𝑤(𝐴𝑒𝑥∕𝑁)(�̂�4𝑁−�̂�4𝑁−2)+𝑈𝑙𝑠(𝐴𝑒𝑥∕𝑁)(0−�̂�4𝑁−2)
𝜌𝑤,4𝑁−2𝑐𝑝,𝑤,4𝑁−2(𝑉𝑤∕𝑁)

]

+
[

𝐽4𝑁−2𝑒𝑎 + 𝐽4𝑁−2𝑒𝑏
]

[

�̇�𝑓 𝑐𝑝,𝑓 ,4𝑁−1
(

𝑇𝑓,in−�̂�4𝑁−1
)

+𝑈(𝐴𝑡𝑟∕𝑁)(�̂�4𝑁−�̂�4𝑁−1)
𝜌𝑓,4𝑁−1𝑐𝑝,𝑓 ,4𝑁−1

(

𝑉𝑓 ∕𝑁
)

]

+
[

𝐽4𝑁−1𝑒𝑎 + 𝐽4𝑁−1𝑒𝑏
]

[

𝑈(𝐴𝑡𝑟∕𝑁)(�̂�4𝑁−1−�̂�4𝑁 )+𝑈𝑤(𝐴𝑒𝑥∕𝑁)(�̂�4𝑁−2−�̂�4𝑁 )+𝑈𝑙𝑠(𝐴𝑒𝑥∕𝑁)(0−�̂�4𝑁 )
𝜌𝑤,4𝑁 𝑐𝑝,𝑤,4𝑁 (𝑉𝑤∕𝑁)

]

+
[

𝐽4𝑁𝑒𝑎 + 𝐽4𝑁𝑒𝑏
]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.4)

Box I.
26



Applied Energy 371 (2024) 123526H. Bastida et al.

𝑥

�̂�2 [𝑗 + 1] =�̂�2 [𝑗] +

{

𝑇𝑠

[

𝑈
(

𝐴𝑡𝑟∕𝑁
) (

�̂�2 [𝑗] − �̂�1 [𝑗]
)

+ 𝑈𝑤
(

𝐴𝑒𝑥∕𝑁
) (

�̂�4 [𝑗] − �̂�2 [𝑗]
)

+ +𝑈𝑙𝑠
(

𝐴𝑒𝑥∕𝑁
) (

0 − �̂�2 [𝑗]
)

𝜌𝑓,1𝑐𝑝,𝑓 ,1
(

𝑉𝑓∕𝑁
)

]

+

[

𝐽1𝑒𝑎 [𝑗] + 𝐽1𝑒𝑏 [𝑗]

] } , (A.10)

Box II.
discretisation model of the ice tank of 20 nodes, the ODEs for these
state variables are defined as

̇̂
1 =

[

�̇�𝑓 𝑐𝑝,𝑓 ,1
(

𝑇𝑓,in − �̂�1
)

+ 𝑈
(

𝐴𝑡𝑟∕𝑁
) (

�̂�2 − �̂�1
)

𝜌𝑓,1𝑐𝑝,𝑓 ,1
(

𝑉𝑓∕𝑁
)

]

+
[

𝐽1𝑒𝑎 + 𝐽1𝑒𝑏
]

(A.7)

and

̇̂𝑥2 =

[

𝑈
(

𝐴𝑡𝑟∕𝑁
) (

�̂�2 − �̂�1
)

+ 𝑈𝑤
(

𝐴𝑒𝑥∕𝑁
) (

�̂�4 − �̂�2
)

+ 𝑈𝑙𝑠
(

𝐴𝑒𝑥∕𝑁
) (

0 − �̂�2
)

𝜌𝑤,2𝑐𝑝,𝑤,2
(

𝑉𝑓∕𝑁
)

]

+
[

𝐽2𝑒𝑎 + 𝐽2𝑒𝑏
]

, (A.8)

where the errors are 𝑒𝑎 = 𝑇𝑓,o − 𝑇𝑓,𝑁,𝑎 and 𝑒𝑏 = 𝑇𝑓,o − 𝑇𝑓,1,𝑏, 𝑐𝑝 [J/kg
◦C] is the specific heat, 𝑈 [W/(m2 ◦C)] is the overall heat transfer
coefficient between the HTF and PCM, 𝐴𝑡𝑟 [m2] is the heat transfer area
between the HTF and PCM, 𝑁 is the number of nodes, 𝜌 [kg/m3] refers
to density, 𝑉 [m3] refers to volume, 𝑈𝑤 [W/(m2 ◦C)] is the conduction
heat transfer coefficient between the control volumes of water within
the tubes, 𝑈𝑙𝑠 [W/(m2 ◦C)] is the conduction heat transfer coefficient
given by the heat lost due to the portion of water whose phase change
is incomplete, and 𝐴𝑒𝑥 [m2] is the external surface area of the control
volume.

Following discretisation, (A.7) and (A.8) are expressed as

�̂�1 [𝑗 + 1] = �̂�1 [𝑗]

+

{

𝑇𝑠

[

�̇�𝑓 [𝑗] 𝑐𝑝,𝑓 ,1
(

𝑇𝑓,in [𝑗] − �̂�1 [𝑗]
)

+ 𝑈
(

𝐴𝑡𝑟∕𝑁
) (

�̂�2 [𝑗] − �̂�1 [𝑗]
)

𝜌𝑓,1𝑐𝑝,𝑓 ,1
(

𝑉𝑓∕𝑁
)

]

+

[

𝐽1𝑒𝑎 [𝑗] + 𝐽1𝑒𝑏 [𝑗]

]}

, (A.9)

and Eq. (A.10) given in Box II, where the discrete-time form of the
errors is given by 𝑒𝑎 [𝑗] = 𝑇𝑓,o [𝑗] − 𝑇𝑓,𝑁,𝑎 [𝑗] and 𝑒𝑏 [𝑗] = 𝑇𝑓,o [𝑗] −
𝑇𝑓,1,𝑏 [𝑗].

As for its continuous-time counterpart, the calculation of the overall
heat transfer coefficient is also needed for the discrete-time non-linear
observer. This requirement entails additional computational time as the
thermophysical properties of the HTF and PCM must be incorporated
and these are dependent on temperature. Thus, the mathematical model
of the discrete-time non-linear observer is described by a set of alge-
braic functions that requires the previous state values to calculate the
solution of all states at the current sampling time. Then, the model of
the discrete-time non-linear observer is defined by Eq. (A.11) given in
Box III, where 𝑎1 = �̇�𝑓 𝑐𝑝,𝑓 ,𝑙, 𝑎2 = 𝑈

(

𝐴𝑡𝑟∕𝑁
)

, 𝑎3 = 𝑈𝑤
(

𝐴𝑒𝑥∕𝑁
)

, and
𝑎4 = 𝑈𝑙𝑠

(

𝐴𝑒𝑥∕𝑁
)

.
For an easy implementation in software, the pseudo-code corre-

sponding to the discrete-time observer is shown as Eq. (A.12) in Box IV.
The discretisation method for the continuous-time non-linear ob-

server is summarised by the flowchart in Fig. A.34.
It is important to note that while the continuous-time non-linear ob-

server presented in [29] was developed based on the non-linear model
of the LHTES unit, the discrete-time version presented in this section
was derived by applying a discretisation method. Such an approach fol-
lows standard methodologies available in control theory which enable
obtaining a discrete-time representation of a continuous-time system
which is suitable for practical implementation. More specifically, by
27
Fig. A.34. Flowchart describing the procedure to discretise a continuous-time dynamic
system.

Fig. A.35. Block diagrams of the implementation of the SoC calculation method using
numerical integration and a look-up table [15].

adopting a method based on the backward difference formula, the
discrete-time observer is represented by a set of algebraic equations and
requires storing previous estimation values for estimation in subsequent



Applied Energy 371 (2024) 123526H. Bastida et al.

m
t
b

l

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�̂�1 [𝑗 + 1]
�̂�2 [𝑗 + 1]
�̂�3 [𝑗 + 1]
�̂�4 [𝑗 + 1]

⋮
�̂�𝑙+1 [𝑗 + 1]
�̂�𝑙+2 [𝑗 + 1]
�̂�𝑙+3 [𝑗 + 1]
�̂�𝑙+4 [𝑗 + 1]

⋮
�̂�4𝑁−3 [𝑗 + 1]
�̂�4𝑁−2 [𝑗 + 1]
�̂�4𝑁−1 [𝑗 + 1]
�̂�4𝑁 [𝑗 + 1]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�̂�1 [𝑗] + 𝑇𝑠

{

𝑎1
(

𝑇𝑓,in[𝑗]−�̂�1[𝑗]
)

+𝑎2(�̂�2[𝑗]−�̂�1[𝑗])
𝜌𝑓,1𝑐𝑝,𝑓 ,1

(

𝑉𝑓 ∕𝑁
) +

[

𝐽1𝑒𝑎 [𝑗] + 𝐽1𝑒𝑏 [𝑗]
]

}

�̂�2 [𝑗] + 𝑇𝑠

{

𝑎2(�̂�1[𝑗]−�̂�2[𝑗])+𝑎3(�̂�4[𝑗]−�̂�2[𝑗])+𝑎4(0−�̂�2[𝑗])
𝜌𝑤,2𝑐𝑝,𝑤,2(𝑉𝑤∕𝑁) +

[

𝐽2𝑒𝑎 [𝑗] + 𝐽2𝑒𝑏 [𝑗]
]

}

�̂�3 [𝑗] + 𝑇𝑠

{

𝑎1(�̂�7[𝑗]−�̂�3[𝑗])+𝑎2(�̂�4[𝑗]−�̂�3[𝑗])
𝜌𝑓,3𝑐𝑝,𝑓 ,3

(

𝑉𝑓 ∕𝑁
) +

[

𝐽3𝑒𝑎 [𝑗] + 𝐽3𝑒𝑏 [𝑗]
]

}

�̂�4 [𝑗] + 𝑇𝑠

{

𝑎2(�̂�3[𝑗]−�̂�4[𝑗])+𝑎3(�̂�2[𝑗]−�̂�4[𝑗])+𝑎4(0−�̂�4[𝑗])
𝜌𝑤,4𝑐𝑝,𝑤,4(𝑉𝑤∕𝑁) +

[

𝐽4𝑒𝑎 [𝑗] + 𝐽4𝑒𝑏 [𝑗]
]

}

⋮

�̂�𝑙 [𝑗] + 𝑇𝑠

{

𝑎1(�̂�𝑙−4[𝑗]−�̂�𝑙[𝑗])+𝑎2(�̂�𝑙+1[𝑗]−�̂�𝑙 [𝑗])
𝜌𝑓,𝑙𝑐𝑝,𝑓 ,𝑙

(

𝑉𝑓 ∕𝑁
) +

[

𝐽𝑙𝑒𝑎 [𝑗] + 𝐽𝑙𝑒𝑏 [𝑗]
]

}

�̂�𝑙+1 [𝑗] + 𝑇𝑠

{

𝑎2(�̂�𝑙 [𝑗]−�̂�𝑙+1[𝑗])+𝑎3(�̂�𝑙+3[𝑗]−�̂�𝑙+1[𝑗])+𝑎4(0−�̂�𝑙+1[𝑗])
𝜌𝑤,𝑙+1𝑐𝑝,𝑤,𝑙+1(𝑉𝑤∕𝑁) +

[

𝐽𝑙+1𝑒𝑎 [𝑗] + 𝐽𝑙+1𝑒𝑏 [𝑗]
]

}

�̂�𝑙+2 [𝑗] + 𝑇𝑠

{

𝑎1(�̂�𝑙+6[𝑗]−�̂�𝑙+2[𝑗])+𝑎2(�̂�𝑙+3[𝑗]−�̂�𝑙+2[𝑗])
𝜌𝑓,𝑙+2𝑐𝑝,𝑓 ,𝑙+2

(

𝑉𝑓 ∕𝑁
) +

[

𝐽𝑙+2𝑒𝑎 [𝑗] + 𝐽𝑙+2𝑒𝑏 [𝑗]
]

}

�̂�𝑙+3 [𝑗] + 𝑇𝑠

{

𝑎2(�̂�𝑙+2[𝑗]−�̂�𝑙+3[𝑗])+𝑎3(�̂�𝑙+1[𝑗]−�̂�𝑙+3[𝑗])+𝑎4(0−�̂�𝑙+3[𝑗])
𝜌𝑤,𝑙+3𝑐𝑝,𝑤,𝑙+3(𝑉𝑤∕𝑁) +

[

𝐽𝑙+3𝑒𝑎 [𝑗] + 𝐽𝑙+3𝑒𝑏 [𝑗]
]

}

⋮

�̂�4𝑁−3 [𝑗] + 𝑇𝑠

{

𝑎1(�̂�4𝑁−7[𝑗]−�̂�4𝑁−3[𝑗])+𝑎2(�̂�4𝑁−2[𝑗]−�̂�4𝑁−3[𝑗])
𝜌𝑓,4𝑁−3𝑐𝑝,𝑓 ,4𝑁−3

(

𝑉𝑓 ∕𝑁
) +

[

𝐽4𝑁−3𝑒𝑎 [𝑗] + 𝐽4𝑁−3𝑒𝑏 [𝑗]
]

}

�̂�4𝑁−2 [𝑗] + 𝑇𝑠

{

𝑎2(�̂�4𝑁−3[𝑗]−�̂�4𝑁−2[𝑗])+𝑎3(�̂�4𝑁 [𝑗]−�̂�4𝑁−2[𝑗])+𝑎4(0−�̂�4𝑁−2[𝑗])
𝜌𝑤,4𝑁−2𝑐𝑝,𝑤,4𝑁−2(𝑉𝑤∕𝑁) +

[

𝐽4𝑁−2𝑒𝑎 [𝑗] + 𝐽4𝑁−2𝑒𝑏 [𝑗]
]

}

�̂�4𝑁−1 [𝑗] + 𝑇𝑠

{

𝑎1
(

𝑇𝑓,in[𝑗]−�̂�4𝑁−1[𝑗]
)

+𝑎2(�̂�4𝑁 [𝑗]−�̂�4𝑁−1[𝑗])
𝜌𝑓,4𝑁−1𝑐𝑝,𝑓 ,4𝑁−1

(

𝑉𝑓 ∕𝑁
) +

[

𝐽4𝑁−1𝑒𝑎 [𝑗] + 𝐽4𝑁−1𝑒𝑏 [𝑗]
]

}

�̂�4𝑁 [𝑗] + 𝑇𝑠

{

𝑎2(�̂�4𝑁−1[𝑗]−�̂�4𝑁 [𝑗])+𝑎3(�̂�4𝑁−2[𝑗]−�̂�4𝑁 [𝑗])+𝑎4(0−�̂�4𝑁 [𝑗])
𝜌𝑤,4𝑁 𝑐𝑝,𝑤,4𝑁 (𝑉𝑤∕𝑁) +

[

𝐽4𝑁𝑒𝑎 [𝑗] + 𝐽4𝑁𝑒𝑏 [𝑗]
]

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.11)

Box III.
⎡

⎢

⎢

⎢

⎢

⎣

𝑇𝑓,𝑖,𝑎
𝑇𝑤,𝑖,𝑎
𝑇𝑓,𝑖,𝑏
𝑇𝑤,𝑖,𝑏

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

�̂�𝑗+1 (𝑖)
�̂�𝑗+1 (𝑖 + 1)
�̂�𝑗+1 (𝑖 + 2)
�̂�𝑗+1 (𝑖 + 3)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

�̂�𝑗 (𝑖)
�̂�𝑗 (𝑖 + 1)
�̂�𝑗 (𝑖 + 2)
�̂�𝑗 (𝑖 + 3)

+𝑇𝑠
{ �̇�𝑓 𝑐𝑝,𝑖

[

�̂�𝑗 (𝑖−4)−�̂�𝑗 (𝑖)
]

+𝑈 (𝑐)(𝐴𝑡𝑟∕𝑁)
[

�̂�𝑗 (𝑖+1)−�̂�𝑗 (𝑖)
]

𝜌𝑓,𝑖𝑐𝑝,𝑓 ,𝑖
(

𝑉𝑓 ∕𝑁
) +

[

𝐽𝑖𝑒𝑎,𝑗 + 𝐽𝑖𝑒𝑏,𝑗
]

}

+𝑇𝑠
{𝑈 (𝑐)(𝐴𝑡𝑟∕𝑁)

[

�̂�𝑗 (𝑖)−�̂�𝑗 (𝑖+1)
]

+𝑈𝑤(𝐴𝑒𝑥∕𝑁)
[

�̂�𝑗 (𝑖+3)−�̂�𝑗 (𝑖+1)
]

+𝑈𝑙𝑠(𝐴𝑒𝑥∕𝑁)
[

0−�̂�𝑗 (𝑖+1)
]

𝜌𝑓,𝑖+1𝑐𝑝,𝑓 ,𝑖+1(𝑉𝑤∕𝑁)
+
[

𝐽𝑖+1𝑒𝑎,𝑗 + 𝐽𝑖+1𝑒𝑏,𝑗
]

}

+𝑇𝑠
{ �̇�𝑓 𝑐𝑝,𝑖+2

[

�̂�𝑗 (𝑖+6)−�̂�𝑗 (𝑖+2)
]

+𝑈 (𝑑)(𝐴𝑡𝑟∕𝑁)
[

�̂�𝑗 (𝑖+3)−�̂�𝑗 (𝑖+2)
]

𝜌𝑓,𝑖+2𝑐𝑝,𝑓 ,𝑖+2
(

𝑉𝑓 ∕𝑁
) +

[

𝐽𝑖+2𝑒𝑎,𝑗 + 𝐽𝑖+2𝑒𝑏,𝑗
]

}

+𝑇𝑠
{𝑈 (𝑑)(𝐴𝑡𝑟∕𝑁)

[

�̂�𝑗 (𝑖+2)−�̂�𝑗 (𝑖+3)
]

+𝑈𝑤(𝐴𝑒𝑥∕𝑁)
[

�̂�𝑗 (𝑖+1)−�̂�𝑗 (𝑖+3)
]

+𝑈𝑙𝑠(𝐴𝑒𝑥∕𝑁)
[

0−�̂�𝑗 (𝑖+3)
]

𝜌𝑓,𝑖+3𝑐𝑝,𝑓 ,𝑖+3(𝑉𝑤∕𝑁)
+
[

𝐽𝑖+3𝑒𝑎,𝑗 + 𝐽𝑖+3𝑒𝑏,𝑗
]

}

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.12)

Box IV.
time-steps but prevents the use of an ODE solver—which is an essential
requirement for a continuous-time observer based on ODEs.

Appendix B. State-of-charge calculation method

The specific latent heat 𝛥ℎ𝑙 represents the energy required per unit
ass to produce a phase change in a PCM. 𝛥ℎ𝑙 can be determined using

he specific heat–temperature curve of the PCM and the temperature
oundaries of the phase change transition zone (𝑇empty and 𝑇full).

As proposed in [15], integrating the curve from 𝑇full to the current
temperature of the PCM 𝑇𝑝 divided by 𝛥ℎ𝑙 quantifies the remaining
28

atent heat stored by the PCM. In turn, this indicates a completely
discharged ice tank when the melting PCM temperature (𝑇empty) has
been exceeded. This is expressed mathematically as

SoC𝑇 (𝑇 ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 𝑇𝑝 > 𝑇empty

100 −
⎡

⎢

⎢

⎣

∫ 𝑇𝑝
𝑇full

𝑐𝑝 (𝑇 ) 𝑑𝑇

𝛥ℎ𝑙
× 100

⎤

⎥

⎥

⎦

𝑇full ≤ 𝑇𝑝 ≤ 𝑇empty

100 𝑇𝑝 < 𝑇full.

. (B.1)

For the ice tank model, the specific latent heat (𝛥ℎ𝑙 = 334 kJ/kg K)
is limited by 𝑇full = −5.7 ◦C and 𝑇empty = 0 ◦C. If (B.1) is applied to all
the estimated PCM temperatures of the nodes 𝑁 given by the non-linear



Applied Energy 371 (2024) 123526H. Bastida et al.
Fig. C.36. Schematic showing how training and implementation of the RNN are carried out.
observer, the SoC of the total volume of the PCM is determined by

SoC =
∑𝑁

𝑖=1 SoC𝑇𝑖
𝑁

, (B.2)

where 𝑇𝑖 is the temperature at node 𝑖.
A schematic for the implementation of SoC calculation is shown

in Fig. A.35, where the integration of a well-defined specific heat–
temperature curve is replaced by a look-up table to expedite the calcu-
lation process, thereby eliminating the need for numerical integration
during the estimation time. The interested readers are directed to [15]
for further details on the method.

Appendix C. MATLAB commands and flow chart for training and
implementation of the RNN-based estimator

Commands available within MATLAB’s machine learning toolbox
enable creating the RNN architectures presented in Section 3.2 and
undertaking its training process as described in Section 4.4. As a way
of an example, the code to create the RNN with 2 LSTM layers and 15
neurons is provided next.

% Number of neurons
numNeurons = 15;
% Number of inputs and outputs
numInp = 3;
numOut = 1;
% Architecture of the RNN defined in Fig. 6(a)
layers = [

% Normalization of the inputs from 0 to 1
sequenceInputLayer(numInp,Normalization=‘‘rescale-zero-one’’)
% Dense layer
fullyConnectedLayer(numNeurons)
% ReLU layer
reluLayer
% LSTM layer
lstmLayer(numNeurons)
% ReLU layer
reluLayer
% Dense layer
fullyConnectedLayer(numOut)
% Regression layer to computes the half-mean-squared-error
% Loss during training process (this layer is only used during
29
% training and it is not part of the RNN architecture)
regressionLayer];

The training options are comprehensively detailed in the third
paragraph of Section 4.4 and shown below.

options = trainingOptions(‘‘adam’’, ...
MaxEpochs=Epochs2, ...
GradientThreshold=1, ...
InitialLearnRate=5e-3, ...
LearnRateSchedule=‘‘piecewise’’, ...
LearnRateDropPeriod=1e4, ...
LearnRateDropFactor=0.6, ...
Verbose=0, ...
Plots=‘‘training-progress’’);

Finally the command to start the training process is
trainNetwork(Xtrain, Ttrain, layers, options);

where Xtrain and Ttrain correspond to the inputs and targets profiles
for training. The RNN is called ‘layers’ and the training options are
defined with the parameter ‘option’.

The implementation in MATLAB/Simulink can be executed either
by employing the predefined block function (‘Stateful predict’) or by
using the layer weights and biases. These values are extracted from the
‘mat’ file generated by training. Fig. C.36 illustrates the link between
the training process and the implementation of the RNN.

References

[1] Pachori H, Choudhary T, Sheorey T. Significance of thermal energy storage
material in solar air heaters. Mater Today: Proc 2022;56:126–34. http://dx.doi.
org/10.1016/j.matpr.2021.12.516.

[2] Fan Y, Zhang C, Jiang L, Zhang X, Qiu L. Exploration on two-stage latent thermal
energy storage for heat recovery in cryogenic air separation purification system.
Energy 2022;239:122111. http://dx.doi.org/10.1016/j.energy.2021.122111.

[3] Cabeza LF, de Gracia A, Zsembinszki G, Borri E. Perspectives on thermal energy
storage research. Energy 2021;231:120943. http://dx.doi.org/10.1016/j.energy.
2021.120943.

[4] Hou J, Li H, Nord N, Huang G. Model predictive control for a university
heat prosumer with data centre waste heat and thermal energy storage. Energy
2023;267:126579. http://dx.doi.org/10.1016/j.energy.2022.126579.

[5] Lizana J, Chacartegui R, Barrios-Padura A, Valverde JM. Advances in thermal
energy storage materials and their applications towards zero energy buildings:
A critical review. Appl Energy 2017;203:219–39. http://dx.doi.org/10.1016/j.
apenergy.2017.06.008.

[6] Bruno F, Belusko M, Liu M, Tay NHS. Using solid-liquid phase change materials
(PCMs) in thermal energy storage systems. Woodhead Publishing; 2015, p.
201–46. http://dx.doi.org/10.1533/9781782420965.2.201.

http://dx.doi.org/10.1016/j.matpr.2021.12.516
http://dx.doi.org/10.1016/j.matpr.2021.12.516
http://dx.doi.org/10.1016/j.matpr.2021.12.516
http://dx.doi.org/10.1016/j.energy.2021.122111
http://dx.doi.org/10.1016/j.energy.2021.120943
http://dx.doi.org/10.1016/j.energy.2021.120943
http://dx.doi.org/10.1016/j.energy.2021.120943
http://dx.doi.org/10.1016/j.energy.2022.126579
http://dx.doi.org/10.1016/j.apenergy.2017.06.008
http://dx.doi.org/10.1016/j.apenergy.2017.06.008
http://dx.doi.org/10.1016/j.apenergy.2017.06.008
http://dx.doi.org/10.1533/9781782420965.2.201


Applied Energy 371 (2024) 123526H. Bastida et al.
[7] Reddy KS, Mudgal V, Mallick TK. Review of latent heat thermal energy storage
for improved material stability and effective load management. J Energy Storage
2018;15:205–27. http://dx.doi.org/10.1016/j.est.2017.11.005.

[8] Domanski R, El-Sebaii AA, Jaworski M. Cooking during off-sunshine hours using
PCMs as storage media. Energy 1995;20(7):607–16. http://dx.doi.org/10.1016/
0360-5442(95)00012-6.

[9] Liu G, Li Q, Wu J, Xie R, Zou Y, Marson A, Scipioni A, Manzardo A. Improving
system performance of the refrigeration unit using phase change material (PCM)
for transport refrigerated vehicles: An experimental investigation in South China.
J Energy Storage 2022;51:104435. http://dx.doi.org/10.1016/j.est.2022.104435.

[10] Cabeza LF, Castellón C, Nogués M, Medrano M, Leppers R, Zubillaga O. Use
of microencapsulated PCM in concrete walls for energy savings. Energy Build
2007;39(2):113–9. http://dx.doi.org/10.1016/j.enbuild.2006.03.030.

[11] Athienitis AK, Liu C, Hawes D, Banu D, Feldman D. Investigation of the thermal
performance of a passive solar test-room with wall latent heat storage. Build
Environ 1997;32(5):405–10. http://dx.doi.org/10.1016/S0360-1323(97)00009-
7.

[12] Koschenz M, Lehmann B. Development of a thermally activated ceiling panel
with PCM for application in lightweight and retrofitted buildings. Energy Build
2004;36(6):567–78. http://dx.doi.org/10.1016/j.enbuild.2004.01.029.

[13] Shanks M, Jain N. Control of a hybrid thermal management system: A heuristic
strategy for charging and discharging a latent thermal energy storage device.
In: 2022 21st IEEE intersociety conference on thermal and thermomechanical
phenomena in electronic systems. iTherm, 2022, p. 1–10. http://dx.doi.org/10.
1109/iTherm54085.2022.9899546.

[14] De la Cruz-Loredo I, Zinsmeister D, Licklederer T, Ugalde-Loo CE, Morales DA,
Bastida H, Perić VS, Saleem A. Experimental validation of a hybrid 1-D
multi-node model of a hot water thermal energy storage tank. Appl Energy
2023;332:120556. http://dx.doi.org/10.1016/j.apenergy.2022.120556.

[15] Bastida H, De la Cruz-Loredo I, Ugalde-Loo CE. Effective estimation of the
state-of-charge of latent heat thermal energy storage for heating and cooling
systems using non-linear state observers. Appl Energy 2023;331:120448. http:
//dx.doi.org/10.1016/j.apenergy.2022.120448.

[16] Barz T, Seliger D, Marx K, Sommer A, Walter SF, Bock HG, Körkel S. State
and state of charge estimation for a latent heat storage. Control Eng Pract
2018;72:151–66. http://dx.doi.org/10.1016/j.conengprac.2017.11.006.

[17] Pernsteiner D, Schirrer A, Kasper L, Hofmann R, Jakubek S. State estimation
concept for a nonlinear melting/solidification problem of a latent heat thermal
energy storage. Comput Chem Eng 2021;153:107444. http://dx.doi.org/10.1016/
j.compchemeng.2021.107444.

[18] Katayama H. Digital implementation of continuous-time observers for nonlinear
networked control systems. SICE J Control Meas Syst Integr 2021;14(1):213–22.
http://dx.doi.org/10.1080/18824889.2021.1956405.

[19] Venturini M. Simulation of compressor transient behavior through recurrent
neural network models. J Turbomach 2005;128(3):444–54. http://dx.doi.org/10.
1115/1.2183315.

[20] Salmela L, Tsipinakis N, Foi A, Billet C, Dudley JM, Genty G. Predicting ultrafast
nonlinear dynamics in fibre optics with a recurrent neural network. Nat Mach
Intell 2021;3:344–54. http://dx.doi.org/10.1038/s42256-021-00297-z.

[21] Sui H, Zhu H, Wu J, Luo B, Taccheo S, Zou X. Modeling pulse propagation in
fiber optical parametric amplifier by a long short-term memory network. Optik
2022;260:169125. http://dx.doi.org/10.1016/j.ijleo.2022.169125.

[22] Xi Z, Wang R, Fu Y, Mi C. Accurate and reliable state of charge estimation
of lithium ion batteries using time-delayed recurrent neural networks through
the identification of overexcited neurons. Appl Energy 2022;305:117962. http:
//dx.doi.org/10.1016/j.apenergy.2021.117962.

[23] Feng X, Chen J, Zhang Z, Miao S, Zhu Q. State-of-charge estimation of lithium-ion
battery based on clockwork recurrent neural network. Energy 2021;236:121360.
http://dx.doi.org/10.1016/j.energy.2021.121360.

[24] Ren X, Liu S, Yu X, Dong X. A method for state-of-charge estimation of lithium-
ion batteries based on PSO-LSTM. Energy 2021;234:121236. http://dx.doi.org/
10.1016/j.energy.2021.121236.

[25] Ma L, Hu C, Cheng F. State of charge and state of energy estimation for lithium-
ion batteries based on a long short-term memory neural network. J Energy
Storage 2021;37:102440. http://dx.doi.org/10.1016/j.est.2021.102440.

[26] Ermis K, Erek A, Dincer I. Heat transfer analysis of phase change process in
a finned-tube thermal energy storage system using artificial neural network.
Int J Heat Mass Transfer 2007;50(15):3163–75. http://dx.doi.org/10.1016/j.
ijheatmasstransfer.2006.12.017.

[27] Benzaama MH, Menhoudj S, Mokhtari AM, Lachi M. Comparative study of the
thermal performance of an earth air heat exchanger and seasonal storage systems:
Experimental validation of Artificial Neural Networks model. J Energy Storage
2022;53:105177. http://dx.doi.org/10.1016/j.est.2022.105177.

[28] Xiao T, Liu Z, Lu L, Han H, Huang X, Song X, Yang X, Meng X. LSTM-
BP neural network analysis on solid-liquid phase change in a multi-channel
thermal storage tank. Eng Anal Bound Elem 2023;146:226–40. http://dx.doi.
org/10.1016/j.enganabound.2022.10.014.
30
[29] Bastida H, Ugalde-Loo CE, Abeysekera M, Jenkins N. Dynamic modelling of ice-
based thermal energy storage for cooling applications. IET Energy Syst Integr
2022;4(3):317–34. http://dx.doi.org/10.1049/esi2.12061.

[30] CALMAC - Ice Bank energy storage tanks. CALMAC, N. J.. 2022, https://www.
calmac.com/. [Accessed 03 October 2022].

[31] Drees KH, Braun JE. Modeling of area-constrained ice storage tanks. HVAC&R
Res 1995;1(2):143–58. http://dx.doi.org/10.1080/10789669.1995.10391315.

[32] Lopez-Navarro A, Biosca-Taronger J, Torregrosa-Jaime B, Corberan JM, Bote-
Garcia JL, Paya J. Experimental investigations on the influence of ice floating
in an internal melt ice-on-coil tank. Energy Build 2013;57:20–5. http://dx.doi.
org/10.1016/j.enbuild.2012.10.040.

[33] Lopez-Navarro A, Biosca-Taronger J, Torregrosa-Jaime B, Martinez-Galvan I,
Corberan JM, Esteban-Matias JC, Paya J. Experimental investigation of the
temperatures and performance of a commercial ice-storage tank. Int J Refrig
2013;36(4):1310–8. http://dx.doi.org/10.1016/j.ijrefrig.2012.09.008.

[34] CALMAC - Ice bank energy storage model C tank. CALMAC, NJ. 2024, https:
//www.calmac.com/icebank-energy-storage-model-c. [Accessed 02 February
2024].

[35] Barz T, Zauner C, Lager D, López Cárdenas DC, Hengstberger F, Cruz Bour-
nazou MN, Marx K. Experimental analysis and numerical modeling of a shell
and tube heat storage unit with phase change materials. Ind Eng Chem Res
2016;55(29):8154–64. http://dx.doi.org/10.1021/acs.iecr.6b01080.

[36] Khairudin NBM, Mustapha NB, Aris TNBM, Zolkepli MB. Comparison of machine
learning models for rainfall forecasting. In: 2020 International conference on
computer science and its application in agriculture. ICOSICA, 2020, p. 1–5.
http://dx.doi.org/10.1109/ICOSICA49951.2020.9243275.

[37] Cordeiro-Costas M, Villanueva D, Eguía-Oller P, Martínez-Comesaña M, Ramos S.
Load forecasting with machine learning and deep learning methods. Appl Sci
2023;13(13):7933. http://dx.doi.org/10.3390/app13137933.

[38] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput
1997;9(8):1735–80. http://dx.doi.org/10.1162/neco.1997.9.8.1735.

[39] Jung M, da Costa Mendes PR, Önnheim M, Gustavsson E. Model predic-
tive control when utilizing LSTM as dynamic models. Eng Appl Artif Intell
2023;123:106226. http://dx.doi.org/10.1016/j.engappai.2023.106226.

[40] Elman JL. Finding structure in time. Cogn Sci 1990;14(3):179–211. http://dx.
doi.org/10.1207/s15516709cog1402-1.

[41] Gers FA, Schmidhuber J, Cummins F. Learning to forget: continual prediction
with LSTM. In: 1999 Ninth international conference on artificial neural networks.
ICANN 99, 1999, p. 850–5. http://dx.doi.org/10.1049/cp:19991218.

[42] Geron A. Hands-on machine learning with scikit-learn, keras, and tensorflow:
Concepts, tools, and techniques to build intelligent systems. 2nd ed.. Sebastopol,
United States: O’Reilly Media; 2022.

[43] Wang Y. A new concept using LSTM Neural Networks for dynamic system
identification. In: 2017 American control conference. ACC, 2017, p. 5324–9.
http://dx.doi.org/10.23919/ACC.2017.7963782.

[44] Detect vanishing gradients in deep neural networks by plotting gra-
dient distributions - MATLAB & Simulink - MathWorks United King-
dom. 2023, https://uk.mathworks.com/help/deeplearning/ug/detect-vanishing-
gradients-in-deep-neural-networks.html. [Accessed 19 June 2023].

[45] Mariani M, Tweneboah O, Beccar-Varela M. Data science in theory and practice:
Techniques for big data analytics and complex data sets. Wiley; 2021, p. 370.

[46] Llerena Caña JP, García Herrero J, Molina López JM. An approach to
forecasting and filtering noise in dynamic systems using LSTM architec-
tures. Neurocomputing 2022;500:637–48. http://dx.doi.org/10.1016/j.neucom.
2021.08.162.

[47] Kingma DP, Ba J. Adam: A method for stochastic optimization. In: 3rd Interna-
tional conference for learning representations. 2015, p. 1–15. http://dx.doi.org/
10.48550/arXiv.1412.6980.

[48] Beale MH, Hagan MT, Demuth HB. Deep learning toolbox user’s guide. The
MathWorks, Inc; 2023, p. 1–4872.

[49] Bengio Y. Practical recommendations for gradient-based training of deep archi-
tectures. In: Neural networks: Tricks of the trade. Lecture notes in computer
science, vol. 7700, Berlin, Germany: Springer; 2012, http://dx.doi.org/10.1007/
978-3-642-35289-8-26.

[50] Goodfellow I, Bengio Y, Courville A, Bach F. Deep Learning. Cambridge, Mass:
MIT Press; 2017.

[51] Chen J, Zhang Y, Wu J, Cheng W, Zhu Q. SOC estimation for lithium-ion
battery using the LSTM-RNN with extended input and constrained output. Energy
2023;262:125375. http://dx.doi.org/10.1016/j.energy.2022.125375.

[52] Shafi J, Ghalambaz M, Fteiti M, Ismael M, Ghalambaz M. Computational
modeling of latent heat thermal energy storage in a shell-tube unit: Using
neural networks and anisotropic metal foam. Mathematics 2022;10(24):4774.
http://dx.doi.org/10.3390/math10244774.

[53] Ogata K. Discrete-time control systems. 2nd ed.. Englewood Cliffs, N.J: Pearson;
1995.

http://dx.doi.org/10.1016/j.est.2017.11.005
http://dx.doi.org/10.1016/0360-5442(95)00012-6
http://dx.doi.org/10.1016/0360-5442(95)00012-6
http://dx.doi.org/10.1016/0360-5442(95)00012-6
http://dx.doi.org/10.1016/j.est.2022.104435
http://dx.doi.org/10.1016/j.enbuild.2006.03.030
http://dx.doi.org/10.1016/S0360-1323(97)00009-7
http://dx.doi.org/10.1016/S0360-1323(97)00009-7
http://dx.doi.org/10.1016/S0360-1323(97)00009-7
http://dx.doi.org/10.1016/j.enbuild.2004.01.029
http://dx.doi.org/10.1109/iTherm54085.2022.9899546
http://dx.doi.org/10.1109/iTherm54085.2022.9899546
http://dx.doi.org/10.1109/iTherm54085.2022.9899546
http://dx.doi.org/10.1016/j.apenergy.2022.120556
http://dx.doi.org/10.1016/j.apenergy.2022.120448
http://dx.doi.org/10.1016/j.apenergy.2022.120448
http://dx.doi.org/10.1016/j.apenergy.2022.120448
http://dx.doi.org/10.1016/j.conengprac.2017.11.006
http://dx.doi.org/10.1016/j.compchemeng.2021.107444
http://dx.doi.org/10.1016/j.compchemeng.2021.107444
http://dx.doi.org/10.1016/j.compchemeng.2021.107444
http://dx.doi.org/10.1080/18824889.2021.1956405
http://dx.doi.org/10.1115/1.2183315
http://dx.doi.org/10.1115/1.2183315
http://dx.doi.org/10.1115/1.2183315
http://dx.doi.org/10.1038/s42256-021-00297-z
http://dx.doi.org/10.1016/j.ijleo.2022.169125
http://dx.doi.org/10.1016/j.apenergy.2021.117962
http://dx.doi.org/10.1016/j.apenergy.2021.117962
http://dx.doi.org/10.1016/j.apenergy.2021.117962
http://dx.doi.org/10.1016/j.energy.2021.121360
http://dx.doi.org/10.1016/j.energy.2021.121236
http://dx.doi.org/10.1016/j.energy.2021.121236
http://dx.doi.org/10.1016/j.energy.2021.121236
http://dx.doi.org/10.1016/j.est.2021.102440
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.12.017
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.12.017
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.12.017
http://dx.doi.org/10.1016/j.est.2022.105177
http://dx.doi.org/10.1016/j.enganabound.2022.10.014
http://dx.doi.org/10.1016/j.enganabound.2022.10.014
http://dx.doi.org/10.1016/j.enganabound.2022.10.014
http://dx.doi.org/10.1049/esi2.12061
https://www.calmac.com/
https://www.calmac.com/
https://www.calmac.com/
http://dx.doi.org/10.1080/10789669.1995.10391315
http://dx.doi.org/10.1016/j.enbuild.2012.10.040
http://dx.doi.org/10.1016/j.enbuild.2012.10.040
http://dx.doi.org/10.1016/j.enbuild.2012.10.040
http://dx.doi.org/10.1016/j.ijrefrig.2012.09.008
https://www.calmac.com/icebank-energy-storage-model-c
https://www.calmac.com/icebank-energy-storage-model-c
https://www.calmac.com/icebank-energy-storage-model-c
http://dx.doi.org/10.1021/acs.iecr.6b01080
http://dx.doi.org/10.1109/ICOSICA49951.2020.9243275
http://dx.doi.org/10.3390/app13137933
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.engappai.2023.106226
http://dx.doi.org/10.1207/s15516709cog1402-1
http://dx.doi.org/10.1207/s15516709cog1402-1
http://dx.doi.org/10.1207/s15516709cog1402-1
http://dx.doi.org/10.1049/cp:19991218
http://refhub.elsevier.com/S0306-2619(24)00909-7/sb42
http://refhub.elsevier.com/S0306-2619(24)00909-7/sb42
http://refhub.elsevier.com/S0306-2619(24)00909-7/sb42
http://refhub.elsevier.com/S0306-2619(24)00909-7/sb42
http://refhub.elsevier.com/S0306-2619(24)00909-7/sb42
http://dx.doi.org/10.23919/ACC.2017.7963782
https://uk.mathworks.com/help/deeplearning/ug/detect-vanishing-gradients-in-deep-neural-networks.html
https://uk.mathworks.com/help/deeplearning/ug/detect-vanishing-gradients-in-deep-neural-networks.html
https://uk.mathworks.com/help/deeplearning/ug/detect-vanishing-gradients-in-deep-neural-networks.html
http://refhub.elsevier.com/S0306-2619(24)00909-7/sb45
http://refhub.elsevier.com/S0306-2619(24)00909-7/sb45
http://refhub.elsevier.com/S0306-2619(24)00909-7/sb45
http://dx.doi.org/10.1016/j.neucom.2021.08.162
http://dx.doi.org/10.1016/j.neucom.2021.08.162
http://dx.doi.org/10.1016/j.neucom.2021.08.162
http://dx.doi.org/10.48550/arXiv.1412.6980
http://dx.doi.org/10.48550/arXiv.1412.6980
http://dx.doi.org/10.48550/arXiv.1412.6980
http://refhub.elsevier.com/S0306-2619(24)00909-7/sb48
http://refhub.elsevier.com/S0306-2619(24)00909-7/sb48
http://refhub.elsevier.com/S0306-2619(24)00909-7/sb48
http://dx.doi.org/10.1007/978-3-642-35289-8-26
http://dx.doi.org/10.1007/978-3-642-35289-8-26
http://dx.doi.org/10.1007/978-3-642-35289-8-26
http://refhub.elsevier.com/S0306-2619(24)00909-7/sb50
http://refhub.elsevier.com/S0306-2619(24)00909-7/sb50
http://refhub.elsevier.com/S0306-2619(24)00909-7/sb50
http://dx.doi.org/10.1016/j.energy.2022.125375
http://dx.doi.org/10.3390/math10244774
http://refhub.elsevier.com/S0306-2619(24)00909-7/sb53
http://refhub.elsevier.com/S0306-2619(24)00909-7/sb53
http://refhub.elsevier.com/S0306-2619(24)00909-7/sb53

	Discrete-time state-of-charge estimator for latent heat thermal energy storage units based on a recurrent neural network
	Introduction
	Description of the LHTES unit under study
	Ice tank for cooling provision
	On the mathematical model of the ice tank and its continuous-time observer for SoC estimation
	Simulations of the ice tank model

	Recurrent neural networks
	Overview of long short-term memory structures
	Proposed network architectures

	RNN SoC estimator: problem formulation, datasets and training
	Dataset for training
	Regression problem
	Sampling time
	Training

	Implementation and results
	Discrete-time non-linear observer
	RNN-based SoC estimator
	Comparison between the discrete-time observer and RNN-based SoC estimators
	Influence of the sampling time-step in training, performance accuracy, and computational cost of RNN-based SoC estimators

	Discussion
	On the limitations of the presented SoC estimator and its adoption for other systems
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A. Discretisation of continuous-time non-linear observer
	Appendix B. State-of-charge calculation method
	Appendix C. MATLAB commands and flow chart for training and implementation of the RNN-based estimator
	References


