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Abstract

This thesis investigates 3D reconstruction from depth images, focusing on three related

tasks. First, we present our work on reconstructing complete volumetric shapes from a

single depth image. Our model proposes to incorporate a dynamic latent code, allowing

the model to determine the appropriate code for the estimation. We further develop a

multi-stage approach to iteratively improve completion, and employ a classifier as an

auxiliary task to enhance estimation. Second, we advance the quality metric for 3D

shapes by leveraging rendering them using various styles and from different views. We

also improve the SSIM metric by introducing a mask to ensure it is stable with different

rendering canvas sizes. Subsequently, we develop a neural network to mimic human

visual judgment. Lastly, traditional reconstructions primarily target rigid bodies due

to the straightforwardness of their shape formation. So we further develop a method

for predicting canonical form, i.e., returning shapes to their original pose, which can

significantly simplify shape completion for deformable objects.
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Chapter 1

Introduction

1.1 Overview

Three-dimensional (3D) reconstruction refers to the reconstruction of 3D shapes from

lower dimensional inputs, such as 2D images (either single- or multi-view), or 2.5D,

i.e. depth images. The challenges in this process often arise from situations such as ill-

posed shapes where multiple solutions are possible due to heavy (self-)occlusion. Al-

though the world consists of 3D shapes, 2D images and relevant processing techniques

have been developed to more conveniently capture and analyse scenes. However, re-

cent research indicates a multitude of applications for 3D reconstruction, ranging from

object grasping [35, 38, 156] to depth estimation [108, 96, 121], while other studies

focus on the overall reconstruction process itself [49, 42]. Compared to 2D images, 3D

objects are more closely related to real-world tasks. Another major challenge faced in

3D research is the representation of 3D shapes. There is no single method for repres-

enting a 3D shape, which can be characterised by point clouds, voxels or mesh forms,

which, in turn, influence and divide research efforts.

In this chapter, we present an overview of the work completed in this thesis. Sec-

tion 1.2.2 delineates the goals of the thesis, while Section 1.2.1 discusses the under-

lying motivations. The structure of the thesis is detailed in Section 1.2.3. Finally,

Section 1.3 summarises our contributions throughout the manuscript.
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1.2 Thesis Summary

1.2.1 Motivation

Modern technological operations, like robotics and obstacle avoidance, heavily depend

on 3D reconstruction. Depth images are a primary data source for this. Capturing

depth details was once a significant hurdle, but affordable depth cameras have changed

this, making data collection easier. This has paved the way for novel uses, such as

virtual reality (VR) [76], with supporting datasets [63]. However, reconstructing a

full 3D form from a single depth image, which represents just one perspective, is still

challenging. Depth images do not fully depict a shape due to inherent self-occlusion,

causing incomplete reconstructions with gaps and inaccuracies. The ideal solution

should handle these challenging views since obtaining complete 3D information is

often unrealistic in real-world scenarios because of high costs and time. For example,

fully capturing indoor furniture would be tough due to significant blockages.

In this thesis, we focus on the reconstruction of 3D objects from single depth images,

proposing a novel cascading model to tackle the challenges (like estimating full shape

for heavily occluded shape) inherent to this process. Additionally, we introduce an

approach to selecting latent codes; previous methods utilised the entire set of latent

codes, potentially diminishing the ability to reconstruct a complete shape. We further

incorporate a self-attention layer to concentrate on regions of interest. Finally, we

introduce a classifier for reconstructed shapes as an auxiliary task, which helps enhance

the reconstruction task, as well reconstructed shapes are more recognisable.

We also present a new evaluation metric for assessing 3D shapes. Current metrics tend

to be representation-specific, but converting an objects into a unified representation

can cause corruption and noise. Moreover, metrics that directly measure 3D shape

differences are often inconsistent with human perception, as some small changes of

geometry can be highly visible, whereas larger but smoother geometry changes can be

hardly noticeable. Therefore, our proposed method is based on rendering 3D shapes
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to 2D images, along with 2D-image based measures, which creates an unbiased model

across all representations. We also use a systematic approach to rendering images

that covers shapes with equally distributed views and a diverse range of rendering

styles. We introduce Mask-SSIM (Structural Similarity Index Measure), an extended

version of SSIM in which the foreground is separated from the background, making it

insensitive to the rendering canvas size, which is helpful in our reconstruction task.

Finally, we tackle non-rigid shapes, which pose a greater challenge than rigid shapes

due to the potentially large deformation space. We have successfully reached the goal

of achieving a canonical form for non-rigid shapes by carefully isolating the underlying

deformations through a deep neural network. The benefit of attaining this canonical

form is that it significantly enhances our ability to reconstruct and analyse these non-

rigid shapes in a more generalised and systematic way.

1.2.2 Goals

The aim of this thesis is to address 3D challenges and identify viable solutions to 3D

reconstruction and related techniques that bridge gaps in the research field. Our con-

tributions specifically address three primary tasks: The first task considers volumetric

shape reconstructions from single-view depth images. Furthermore, We identify the

need for a unified, more perceptually meaningful metric for 3D geometry, which can

cope with variations in the 3D representations, where comparisons can assist in recog-

nising similarities in real-world scenarios. We demonstrate that recent contributions

are ineffective in this regard. Moreover, we find that existing 3D reconstruction re-

search predominantly focuses on the reconstruction of rigid shapes due to difficulties

in handling non-rigid deformations. Consequently, the last contribution aims to invest-

igate canonical forms, i.e., bringing shapes back to their standardised poses.

In this thesis, we present novel contributions across three related tasks. First, we focus

on recovering volumetric shapes from single depth images, employing a cascaded ap-
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proach that enables the model to outperform state-of-the-art (SOTA) models. Second,

we propose a unified evaluation metric function, using a 2D metric that combines ren-

dering of 3D shapes from different views with different styles to evaluate 3D geometry.

We demonstrate that this model is capable of identifying the differences between ob-

jects. Along with a neural network based learning approach, our 2D image based

metric achieves better correlation with human perception in terms of 3D shape quality.

Finally, we convert a depth image of an object into its canonical form, normalising its

pose and deformation to facilitate the reconstruction of a complete 3D shape.

1.2.3 Organisation

This thesis consists of six chapters, commencing with the Introduction (Chapter 1),

which provides a general overview. Chapter 2 summarises the SOTA models. We ex-

plore diverse approaches to 3D shape reconstruction, spanning methods that leverage

a single image as input, techniques focusing on 2.5D shape recovery, and point cloud

completion strategies. We also delve into the signed distance field (SDF) and recent

contributions to evaluation metric enhancement, elucidating the relationship between

representation and the presented metrics. Moreover, we explore 3D reconstruction pa-

pers that employ 2D supervision, showcasing the most recent contributions in this do-

main, wherein the model is optimised through reconstructions with lower-dimensional

inputs. Finally, we review contemporary work on canonical forms.

Chapters 3, 4 and 5 introduce our three primary contributions, all of which focus on

solving and investigating 3D reconstruction and related tasks, specifically in the areas

of reconstruction, evaluation, and deformation. We strive in this thesis to reconstruct

plausible shapes. Starting with Chapter 3, we propose a novel cascade model for re-

constructing shapes in three stages, beginning with the depth image and progressively

enhancing the reconstruction. In Chapter 4, to address the challenges associated with

evaluating geometries, we introduce an innovative model, which streamlines compar-

isons, by adopting a systematic method by capturing images to disentangle the shapes
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representation. Moreover, we utilise diverse styles and shader types to ensure a more

generalised evaluation process. In addition, we employ a deep learning model to ac-

curately determine the score of these representations. Chapter 5 delves into the task of

finding canonical forms, exploring the deformation of non-rigid shapes. With a depth

image as input, this approach leads to a canonical pose, and it can be further extended

to enable the reconstruction of a complete shape from this pose.

Chapter 6 concludes our research, summarising the efforts undertaken in this thesis and

outlining potential avenues for future work to expand upon this research.

1.3 Contributions

In this thesis, we endeavoured to reconstruct shapes from single depth images, success-

fully achieving our first contribution. To assess these shapes accurately, it is imperative

to employ an evaluation metric that is congruent with human perception and capable

of unifying diverse shape representations; this necessity led to the introduction of our

second contribution. Furthermore, depth images may encompass non-rigid shapes, in-

troducing additional complexity. To address this and estimate the complete shape for

deformable objects, we introduced our third contribution that learns to turn (incom-

plete) deformable objects to their canonical form, thereby enhancing the robustness

and applicability of our methodology.

In this section, we summarise our proposed solutions to problems posed by 3D recon-

struction. The contributions are summarised below.

3D Reconstruction from Single Depth Images

We introduce a novel model for reconstructing a volumetric shape from a voxelised

depth image. The key contributions of this chapter are as follows:
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• We propose a cascade architecture consisting of multiple encoder-decoder blocks

with additional skip links, which provides better 3D reconstruction than a single

encoder-decoder.

• We incorporate a self-attention layer to refine the 3D shapes, mimicking the

human ability to focus on a region of interest in volumetric space.

• We introduce a novel dynamic latent space in which the model has the ability to

select only relevant latent codes to estimate 3D shapes. This provides a strong

approach to sparse regularisation that enhances the robustness of the network.

• A classifier network is introduced as an auxiliary task to provide additional guid-

ance to the reconstruction model.

Rendering based 3D Shape Evaluation

The contributions of this chapter are as follows:

• We propose an image-based method of measuring the shape distortion of 3D

shapes. We further combine a variety of rendering styles and 2D image quality

measures along with a neural network based learning approach for improved

subjective 3D quality prediction.

• To ensure more stable performance when shapes are rendered to different canvas

sizes and accurately detect the similarities despite image resolution, we extend

SSIM to only focus on the foreground region. This method is referred to as

Mask-SSIM, which is proved effective for our task.

• Experiments on public datasets demonstrate that our method achieves reliable

predictions of subjective quality scores, outperforming existing techniques.
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Learning to Generate Canonical Forms for Single Depth

Images

The contributions of this work are as follows:

• We propose Canonical pose model, an end-to-end 2D network designed for the

canonical pose prediction of a single depth image. It comprises three compon-

ents, Local Features Extractor (LFE), Multi-Scale Features Extractor (MSFE)

and Deformation prediction component.

• We propose parallel encoders and a single decoder block that extract features at

different scales and use a fusing decoder to decode multi-scale, high-dimensional

features.

• The extensive experimental results on TOSCA [19] and human [113] datasets

demonstrate that our model outperforms the existing state-of-the-art methods

and has competitive inference time. Moreover, our model is also capable of

preserving high quality geometric information while deforming shapes across

different types of objects, such as humans and animals.

1.4 Research Question

The central inquiry of this thesis revolves around the challenge of reconstructing and

analysing 3D shapes from single depth images. This investigation is motivated by

the need to improve the accuracy and utility of depth images in various applications,

including computer vision, augmented reality, and robotics. The general research ques-

tion that guides this thesis is:
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How can we effectively reconstruct, evaluate, and deform three-dimensional

shapes from single depth images to achieve a comprehensive understand-

ing and manipulation of the captured objects in digital form?

This thesis contributes to the field through three distinct but interconnected avenues:

Contribution 1: 3D Reconstruction from Single Depth Images. The first contribu-

tion addresses the challenge of reconstructing a complete and accurate 3D shape from

a single voxelised depth image.

Contribution 2: Rendering based 3D Shape Evaluation. The second contribution

focuses on assessing the fidelity of the reconstructed shapes by evaluating the distor-

tion introduced during the reconstruction process. This involves developing metrics

and methods to quantify and analyse the deviation of the reconstructed shape from its

original form.

Contribution 3: Learning to Generate Canonical Forms for Single Depth Images.

The final contribution explores the depth images of deformable shapes, by reconstruct-

ing the default pose depth images.

Each of these contributions addresses a critical aspect of the problem space, collect-

ively advancing our ability to manipulate and understand 3D shapes.

1.5 Research Aim and Objectives

The general aim of this research is to enhance the methodologies for reconstructing,

evaluating, and deforming 3D shapes from single depth images. This aim is pursued

with the intent to address existing limitations in shape analysis and manipulation, par-

ticularly for applications that require high fidelity and functional flexibility in the rep-
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resentation of 3D objects. To achieve this aim, the research is structured around three

key objectives, each corresponding to the thesis contributions previously outlined.

1.5.1 Objective 1: To Develop a Model for Complete Shape Recon-

struction

• Innovate a voxelisation-based approach to transform single depth images into

comprehensive 3D shapes, capturing the complete geometry of objects with high

accuracy.

• Implement models that optimise the reconstruction process, minimising data loss

and maximising geometric fidelity.

1.5.2 Objective 2: To Evaluate and Quantify Shape Distortion

• Develop a framework for quantitatively assessing the distortion in shapes, com-

paring them against their referenced shapes.

• Create metrics and tools that facilitate the objective evaluation of shape fidelity.

1.5.3 Objective 3: To Achieve Realistic Shape Deformation for Non-

Rigid Bodies

• Explore methodologies for deforming shapes depth image of non-rigid bodies,

aiming to represent their default and transformed poses with high realism.

• Develop models that allow for the efficient reconstruction of non-rigid shapes.
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1.6 Challenges

The pursuit of reconstructing 3D shapes from single depth images, evaluating distor-

tion shapes, and deforming depth images encompasses a range of technical and theor-

etical challenges. These obstacles are intrinsic to the complexity of the tasks at hand

and the current limitations of existing methodologies. Addressing these challenges is

fundamental to advancing the field and achieving the objectives outlined in this thesis.

The primary challenges encountered in this research are detailed below.

1.6.1 Challenge 1: Incomplete Data and Occlusions

• Single depth images provide a limited view of an object, leading to incomplete

data capture and occlusions. Overcoming this challenge requires innovative ap-

proaches to infer the missing information and accurately reconstruct the full 3D

shape of the object.

1.6.2 Challenge 2: High Computational Complexity

• The processes of voxelisation, shape evaluation, and depth images deformation,

demand significant computational resources. Optimising models to balance ac-

curacy and computational efficiency is a critical challenge.

1.6.3 Challenge 3: Realistic Deformation of Non-Rigid Bodies

• Reconstructing realistic deformation for non-rigid bodies from single depth im-

ages poses significant difficulties, particularly in maintaining depth distance con-

sistency.
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1.7 Summary

In this thesis, We have initiated an academic study focused on the field of 3D recon-

struction, a field that is rich with both opportunities for advancement and inherent chal-

lenges to overcome. Across six chapters, we present our innovative approaches to the

key problem, shedding new light on the recovery of 3D shapes from lower-dimensional

sources. Our work includes the development of a cascaded model to refine reconstruc-

tion, the introduction of a unified evaluation metric and techniques for handling non-

rigid shape deformations. From outlining the current SOTA models to delving into

recent contributions and detailing our novel solutions, our study advances the field of

3D reconstruction and sets the stage for further research. The conclusion summarises

our achievements and discusses future prospects in this field of study.
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Chapter 2

Literature Review

2.1 Overview

Deep Learning (DL), a specialised branch of the broader machine learning discip-

line, is fundamentally involved in crafting algorithms known as artificial neural net-

works. These algorithms are inspired by the complex structure and functions of the

human brain and have the capability to model high-level abstractions of data. DL

has found applications across a diverse array of fields. In the medical domain, it is

instrumental in imaging techniques for detecting and classifying various cancers and

diseases [94, 152], while in the automotive industry, it is employed for obstacle de-

tection in self-driving cars [116] [114]. The technology extends to natural language

processing, where DL-based neural machine translation enables instantaneous trans-

lation between various languages and English [43], and even speech recognition via

models like DeepSpeech, allowing recognition of languages such as Slovak, English,

and Mandarin [115].

The field of computer vision also harnesses DL, utilising the Convolution Neural Net-

work (CNN) for tasks like facial recognition, image segmentation, and processing both

online and offline videos, establishing CNN as a pivotal component in vision-based

models [73]. Furthermore, pioneers like Dan Claudiu Ciresan have leveraged GPUs,

such as NVIDIA GTX 280, for training learning-based models, leading to innovations

like nine-layer CNNs [33].
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Figure 2.1: Bunny in different representations.

When it comes to 3D object reconstruction, the scientific community grapples with

intricate open problems. Current practices often rely on datasets derived from easily

accessible 2D images, such as those captured by camera phones. However, since our

physical world is inherently three-dimensional, this reliance on 2D representation can

lead to significant loss of critical information. Unlike 2D, 3D shapes possess multiple

representations, contributing to a unique research challenge, as no single function can

process these varied forms. The same shape might have disparate representations,

such as point clouds, triangular meshes, parametric surfaces, or voxels, as depicted

in Figure 2.1. This diversity in representation leads to complications when assessing

accuracy and conducting comparisons.

In this literature review, we have organised our exploration based on the input types

to reconstruction 3D shapes, starting with 2D and 2.5D representations and progress-

ing to complete 3D models. Our examination will provide insights into the methods

used to convert these varying inputs into coherent 3D shapes. Following this, we will

discuss the essential evaluation metrics that assess the quality and accuracy of these

reconstructions. Lastly, we will shed light on the concept of canonical form, a specific

aspect of 3D modelling. Our aim is to offer a clear and accessible overview of the cur-

rent research and practices in 3D reconstruction, sorting the literature based on input,

to guide both researchers and practitioners in the field.
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2.2 3D Reconstruction and Completion

2.2.1 2D Image as Input

In recent literature, several methods have been developed in the filed of 3D object

reconstruction from 2D images. Hane et al. [53] presented the hierarchical surface pre-

diction (HSP) approach. While it performed on par with uniform prediction baselines

at coarse resolutions, its edges were noticeable at finer resolutions, offering slightly

more accurate and detailed results. A common approach in this area is the employment

of deep learning architectures to disentangle shape from pose and lighting from single

images, as detailed in [55, 97, 98]. While these methods showed improvements over

2D-supervised methods, especially when making use of shading cues, they exhibited

consistent limitations when models were restricted to silhouettes alone. The role of sil-

houette losses in 3D reconstruction was a central objective in [109]. Though silhouette

losses provided variable results, improving outputs in certain scenarios and deterior-

ating them in others, leveraging shading cues in a standard white light setup yielded

an advantage. The work also pointed out the benefit of using multiple views for each

object but did not explore depth information. Further elaborating on the variability of

silhouette losses, the work [150] acknowledged both the potential improvements and

challenges that can emerge when employing them. Shading cues continued to play an

important role in refining outputs, especially under varied lighting conditions. Com-

paratively analysing learning mechanisms, Yan et al. [153] discussed three methods.

The research suggested that projection loss had a slight edge over other methods in

terms of generalisation, particularly when multiple categories were incorporated into

the learning process. The findings of [155] echoed the consistent observation of sil-

houette losses’ dual nature. Their method, while adept at detailing, showed limitations

when silhouettes were the sole input. In essence, the previous literature points to a

modest progression in 3D object reconstruction from 2D images. Shading cues and

deep learning architectures emerge as common tools, with silhouette losses presenting
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both opportunities and challenges. Also Zhang et al. [168] used 2.5D sketches for

reconstructing 3D objects in the Generalisable Reconstruction (GenRe) model, which

has three learnable steps. The first component of the model is a depth estimator, in

which the input is a single image to an encoder-decoder model where both have four

convolution layers (ResNet-18 [54]). In addition, for each layer between the encoder-

decoder, there is a skip connection (so with a U-Net [120]). The local features extracted

in the encoder layer are stacked in the decoder layer, and the output is a depth image.

The depth image is projected as voxels (used at the end in the model) and as a partial

spherical map. Second, a spherical map in-painting network uses the partial spher-

ical map to output the projected voxels. The model also has the same structure as the

first network, yet the decoder has 3D convolution layers. Finally, the voxel refinement

network also consists of an encoder-decoder network; however, the input channels are

128 × 128 × 128 × 2, with the last dimension representing the number of inputs (i.e.

both the projected voxels from the depth image and in-painting spherical map). In

another approach using 2.5D, as proposed by Wu et al. [146], ShapeHD consists of

two cascade models capable of recovering realistic-looking 3D shapes in which the

output is penalised regarding the appearance only (unrealistic or realistic). First, in the

encoder-decoder based 2.5D estimator model, both networks (encoder and decoder)

consist of four layers: for the encoder, convolution layers are used, and for the de-

coder, transposed convolution layers are used. The model takes a single image and

outputs silhouette, depth and surface normal images. After that, the shape is recovered

by using the encoder-decoder model where 2.5D images are used as the input, but the

encoder is a 2D convolution layer consisting of four layers, and the decoder consists of

3D convolution layers, mapping a 200-D latent code vector to a 128 × 128 × 128 3D

shape (voxel grid). Finally, an adversarial model is used (Generative Adversarial Net-

work, or GAN [45]) in which the generator is first trained to estimate a 3D object, and

the discriminator is trained on distinguishing real ones from fake (synthesised ones),

enabling the discriminator to learn to identify real appearance, which can be used as

“naturalness loss” in the final stage.
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Other works [36, 46] offer methods that aim at converting 2D images into 3D models.

The importance of these approaches is to leverage information from a collection of 2D

images during training, utilising point features to refine and maintain the topology of

the original shape. These papers stress on the complexities emerging from the absence

of direct 3D supervision where they utilised differential renderers.

Taking it a step further, Hu et al. [57] also focused on the idea of recovering 3D shapes

using just a single image. The novelty lies in how consistency in the methods enhances

the local parts’ reconstruction quality. However, [60] contributes a topologically-

aware deformation field approach, built upon the SDF-SRN network (Signed Distance

Function-Scene Representation Network) architecture introduced by [81], which tends

to surpass a modified version of SDF-SRN, even though, with the caveat of requiring

more than a single image.

There has been an evident push towards minimising the dependency on multi-view

images for 3D reconstruction, as indicated by [64] and [170]. Lin et al.’s work [81]

stands out for its singular employment of an implicit SDF (Signed Distance Function)

representation under single-view supervision. Furthermore, Huang et al. [60] lever-

aged the single-view, multi-category learning of an implicit shape representation using

SDF, shedding light on the versatility of the approach across various categories. Lastly,

Zheng et al. [172] offer a method entrenched in a generalised deep implicit surface net-

work, showcasing the method’s adeptness across 240 diverse shapes per category. The

approach’s expansive potential is evident in its ability to convert images into 3D shapes.

Nonetheless, challenges persist, specifically those rooted in training instability and the

inherent multi-modal nature of certain categories.

Recent advances in 3D shape reconstruction have illuminated the path towards captur-

ing intricate structural details, albeit with certain limitations. Li et al. [74] developed a

method leveraging a network to predict a combined Signed Distance Function (SDF),

primarily aimed at minimising reconstruction loss. Their approach is particularly adept

at discerning complex structural details, such as chair slats. However, it presupposes
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that surface details predominantly extend over largely flat surfaces, a limitation fur-

ther exacerbated by the exclusive application of Laplacian loss to the frontal surface,

potentially restricting its broader applicability.

Following Li et al.’s approach, Lin et al. [81] introduced a method that similarly

grapples with the challenges of detailing surface nuances, albeit mitigated slightly by

a weighted sampling technique intended to enhance the recovery of slender structures.

Yet, this method shares the fundamental challenge of adequately recovering details on

heavily curved surfaces. Patino et al. [106] and Remelli et al. [118] both advocate for

weighted sampling strategies to mitigate some of these challenges, suggesting the in-

tegration of view parameter inference and symmetry priors as innovative solutions to

prevailing issues in the field.

In contrast, Shan et al. [126] critique the inherent limitations of current 3D reconstruc-

tion techniques, particularly in accurately capturing geometric details in areas with

“overhangs”, offering a counterpoint that underscores the potential of alternative con-

temporary methods that perform well in 3D mesh and keypoint reconstruction.

Xu et al. [151] propose a novel approach through a bi-level optimisation framework

that optimises object pose and shape concurrently, demonstrating superior accuracy

and a reduction in artefacts, such as self-intersections. This underscores the potential

benefits of leveraging features from neighbouring vertices in 3D reconstruction tasks,

setting a new benchmark for future research in the domain.

2.2.1.1 Transformer-based Methods

Other methods suggest using the transformer layer to tackle 3D reconstruction, thanks

to its strong learning capabilities exploiting attention mechanisms. For example, Shi

et al. [127] proposed a new method called 3D-RETR for end-to-end 3D reconstruction

using Transformers. The method involves using a pretrained Transformer to extract

visual features from 2D input images, followed by another Transformer network to
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extract voxel features, and finally a CNN (Convolutional Neural Network) Decoder

to reconstruct objects. The model is capable of recovering 3D reconstruction from a

single view or multiple views.

Recent advancements in 3D shape reconstruction have increasingly leveraged trans-

former models due to their proficiency in capturing long-range dependencies. Li et al.

[77] introduced a novel approach employing a Vision Transformer (ViT) encoder to

extract regional features from 2D images, coupled with a voxel decoder for generat-

ing 3D voxels. This method has shown effectiveness in processing both synthetic and

real-world images, underscoring the model’s versatility and its ability to learn nuanced

feature representations. Similarly, Maxim et al. [91] utilised a ViT for volumetric

shape reconstruction from a single image, focusing on estimating occupancy prob-

abilities, which signifies a converging interest in transformer-based solutions for 3D

reconstruction tasks.

Peng and his team [107] proposed a hybrid model that combines a transformer encoder

with a 3D CNN to exploit both long-range and spatial interactions effectively, introdu-

cing a 3D feature fusion mechanism to integrate data comprehensively. This approach

indicates a promising direction for enhancing model performance through architectural

synergy.

On a different note, Mazur et al. [92] explored the dimensionality reduction of high-

dimensional point clouds before processing with a CNN, followed by an inverse projec-

tion to recover the structure. This method offers an innovative perspective on managing

computational complexity and data representation.

While these approaches demonstrate significant potential, the reliance on transformers

raises questions about computational efficiency and the applicability to real-time sys-

tems. Furthermore, the varying methodologies underscore the need for standardised

benchmarks to facilitate direct comparisons across models. Future research should

consider these aspects, aiming to refine the balance between accuracy, efficiency, and

generalisability in 3D shape reconstruction technologies.
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Kurenkov et al. [68] proposed DeformNet, which investigates reconstruction through

deformation. The authors first suggest retrieving the closest shape from the dataset to

the given input image. Furthermore, both the image and the retrieved shape are used as

input for the encoder-decoder network. The image is then inserted into a 2D encoder,

and the 3D shape is inserted into a 3D encoder, where the latent codes for both are

stacked together as the input given to the decoder. The output is a vector containing the

offsets of the control points in the Free-Form Deformation (FFD) representation [124].

In the last stage, the shape points are sampled on the surface of the retrieved shape to

generate a point cloud representation, and coordinates are applied to the shape by using

FFD, so the final output shape is deformed and matches the query image (Fig. 2.3).

2.2.2 2.5D as Input

Wu et al. [145] proposed adding 2.5D in the pipeline before recovering the 3D shape.

The model (MarrNet) consists of three phases. The first phase, estimating 2.5D by

using 2D as input (256 × 256 resolution), uses an encoder and a decoder architecture.

The encoder contains four convolution hidden layers and a fully connected layer, and

the decoder contains four convolution layers; the output contains silhouette map im-

ages, surface normal maps and depth image. After that, because the previous phase

only outputs silhouette, normal and depth images, the model is trained on synthetic

data to ignore unwanted features like textures and lighting. The model also leverage

an encoder-decoder network where the encoder consists of five convolution layers and

a two-layer MLP (Multi-Layer Perceptron), and the output is a 200-D latent vector.

The decoder consists of five 3D convolution layers that output a 128 × 128 × 128

voxel-based occupancy map. In the third and final phase (namely reprojection con-

sistency),the authors introduce two loss functions: depth reprojection loss and surface

normal reprojection loss. Those functions help refine the 3D shape compared to the

input (2.5D input). They first trained the model on synthetic data, and after that they

fine tuned the model on realistic appearance shapes (compared to 2.5D); however, the
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Figure 2.2: Column 1 shows the input images. The columns 2 and 3 present the es-

timated normals and depth information. Unrealistic output results are obtained

without fine-tuning (column 4), whereas columns 5 and 6 present results after

fine-tuning (enforcing the output to be closer to the input image), but the recon-

struction quality is limited. Columns 7 and 8 are the results after fine-tuning with

the decoder fixed. These results are similar to the synthetic appearance more than

the input [145].

output may overfit the images, leading to poor reconstruction, so the authors proposed

to fix the decoder. Although fixing the decoder makes the output maintain the shape,

the limitation in this model is similar to the scenario before fine-tuning, namely the

model predicts shapes similar to those in the synthetic dataset and fail to match the

detailed realistic appearances as specified by the input images, as shown in Fig. 2.2.

Yang et al. [154] reconstructed 3D objects using 2.5D input. The model contains an

encoder-decoder network in which the encoder accepts a 2.5D image and compresses

the features to a 2000-D latent vector, and the decoder takes the latent code and re-

constructs the 3D shape into a 256 × 256 × 256 upsampled usin a U-Net. [120] ar-
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Figure 2.3: Overview of the DeformNet model [68].

chitecture. After that, the original input is concatenated with the reconstructed shape

and the ground truth shape, and both shapes are then introduced to a discriminator to

generate a loss value. To show an acceptable result, a threshold is used to eliminate

unwanted voxels in the volume space; furthermore, the threshold varies for each class.

The model could still be unstable during training with the discriminator collapsed.

Another depth-based approach was proposed by Malik et al. [90] where they present

a model to estimate a 3D hand from a single depth image. The input is voxelised

to 88 × 88 × 88 resolution. The model consists of three steps. First, a network is

trained to predict the hand pose (represented as a “joints heatmap”) at lower resolution

44×44×44 grid, and then concatenate the input and output as input for the estimation

network. Second, the model uses a CNN to reconstruct the voxelised shape of size

64× 64× 64. However, as described in the paper, the output cannot preserve the hand

topology, so as a result, another network is further trained to predict the hand surface.

Finally, the outputs (mesh shape and voxelised shape) are combined as input for the fi-

nal network to register the shape which consist of Fully convolution layers. The output

resolution is 64×64×64. The model operates on weak supervision, where another net-

work is used to generate depth images. The model achieves an improvement of 10%

compared with existing methods, but the number of parameters is still high. On the

other hand, Yao et al. [157] propose another method that initially predicts a 2.5D depth

image, followed by a symmetric reflection, and finally a back view of the shape. The
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Figure 2.4: Some examples of predicted symmetric planes [157].

model employs an encoder-decoder with skip links to recover the 3D surface. Where

the novelty is on leveraging symmetric information. Specifically, Symmetry detection

is trained separately. The model is trained on the ShapeNet dataset [24]. Although

many shapes are symmetrical, this does not apply to all shapes. Consequently, the

model forces a plane of symmetry, treating the shape from that perspective, which may

introduce distortions (see Fig. 2.4).

Chen et al. [26] suggest a new approach to 3D reconstruction called Multiresolution

Deep Implicit Functions (MDIF), which is a hierarchical representation that can cap-

ture fine geometry details while also being able to perform global operations such as

shape completion. MDIF is unique in that it can represent different levels of detail by

leveraging both autoencoder and a single decoder with latent parameterised. Further-

more, The authors propose a dropout layer for latent code to enhance the reconstruction

details.

2.2.2.1 Transformer-based Methods

In their study, Chen et al. [27] put forward a method based on transformers for gener-

ating 3D point clouds. They employ a pre-learned canonical space to break down point

clouds of a particular category into sequences that align semantically. These sequences

are subsequently quantised. This data then serves to develop a context-sensitive code-

book composition, facilitating point cloud generation and completion from a depth

image.
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In this thesis, a new method for robustly reconstructing 3D shapes from a single depth

image is developed, where various techniques such as selective latent code, self atten-

tion, cascaded architecture and multi-task learning are exploited to improve the model

(see Chapter 3 for more details).

2.2.3 Point Cloud Completion

As directly reconstructed 3D point clouds from captured data are often incomplete due

to occlusion and sensor range limit, some research works aim to produce complete 3D

shapes given partial point clouds as input.

Zhang et al. [164] proposed to generate full 3D shapes in an unsupervised manner.

Given a pre-trained GAN for complete shape generation, the method tries to optimise

the latent code for the GAN such that it produces a complete shape that matches the

partial input. To achieve this, the generated complete shape goes through a degrad-

ation function to retain partial points that match the input based on k-nearest neigh-

bours, and both Chamfer Distance and Feature Distance are used to measure the dif-

ferences between the degraded and the input shapes, which in turn optimises the latent

code through gradient descent. The method can achieve similar performance as su-

pervised approaches. Hu et al. [56] leveraged a generator to complete shapes where

the model renders multi-view depth images and pools across all outputs. Wang et

al. [135] proposed to use a GAN model to reconstruct coarse shapes, followed by re-

finement to match the ground truth while Huang et al. [59] completed shapes implicitly

by generating latent vectors of depth shapes. However, both Wang et al. [135], Huang

et al. [59]suffer from geometric inconsistency. Wen et al. [140] addressed the issue

by adding folding-block and skip attention where the features’ locations are matched

against the input.

In the work [104] they implemented parallel models for complete and incomplete

shapes where the models share weights during training to preserve geometric con-
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sistency. However, the models may not work well for unseen objects. ForkNet [137]

addresses this issue, and the model consists of three parallel generators with shared

latent features. Two branches reconstruct the SDF (Signed Distance Field) represent-

ation and complete the surface respectively, while the third branch concatenates fea-

tures from both previous reconstruction branches to semantically complete the volume

scene. Alliegro et al. [15] develop a contrastive model, where they utilise pretrained

encoders to capture semantic information and geometry features. The model naturally

completes the missing parts.

Zhang et al. [169] claim existing point completion techniques cannot reconstruct fine

details on objects due to the heavy task on a single model. They divide the task to

three stages starting from completing the shape with a dense point cloud yet with less

accurate locations.

They then trim and refine the point cloud in other stages based on the symmetric in-

formation. However, the model only works well when the shapes are symmetric which

is not always the case. on the other hand, Wen et al. [139] suggest another refinement

model in a cycle manner, where the learning network learns to complete the incomplete

input, while also trying to make the target shape incomplete. They believe learning the

other direction at the same time yields important features. Wen et al. [141] proposed to

deform the point cloud points gradually, where they use gated recurrent units (GRUs)

to capture previous point mapping and suggest new deformation.

Another work done by Cai et al. [22] proposed a model that aims to enhance point

cloud completion in an unsupervised manner by learning a latent code for both partial

and complete shapes. This is achieved by mapping the latent code for the occluded

shape to the complete shape latent code. The model applies constraints to regularise the

latent space. However, the method still has limitations for reconstructing fine-grained

structures of objects such as those with complex geometric textures.

Yin et al. [159] also utilised latent code for completion; however, their work focuses

on concatenating multi-scale shape features. The translator network in their method is
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a generative adversarial network (GAN), which enables cross-domain translation and

preserves the shape features for a natural shape. The network is trained in two steps:

training the autoencoder to produce over-complete latent codes for the input shapes,

followed by training the translator using the over-complete latent codes to perform

cross-domain shape transformation.

Park et al. [105] also leveraged latent code. They suggested using an SDF (Signed Dis-

tance Function), where the input is a latent code concatenated with 3D point locations

to elevate a high dimensional representation. At first, the model optimises the weights

and the latent code to generate plausible SDF values while during inference, the model

optimises latent code to generate an appropriate SDF. Instead of representing a shape’s

surface as a mere boundary or occupancy field, DeepSDF depicts it as a continuous

volumetric field. In this representation, the value at any given point indicates its dis-

tance to the closest surface point, while its sign determines whether the point lies inside

or outside the shape. A standout feature of DeepSDF compared to previous models is

its ability to represent a wide range of shapes while maintaining a compact model size.

It also excels at handling complex structures, fully enclosed surfaces, and provides ac-

curate surface normals for a given shape. Chen et al. [25] also presented an innovative

method called the 3-Pole Signed Distance Function (3PSDF) for learning surfaces that

have varying topologies. The paper demonstrates that while the 3PSDF offers more

robust results than the 2-way counterpart, it entails a more complex learning curve

necessitating richer feature inputs and an extended training duration. Nonetheless, a

potential challenge with the 3PSDF is its reliance on the synchronisation of results

from two branches; any misalignment could lead to undesired artefacts or holes in the

surface.

The studies [32, 88] delve into the comparison of two prevalent learning approaches

tailored for 3D shape reconstruction. Both papers emphasise the inherent limitations

faced by the current implicit methodologies, especially when dealing with entities that

defy simple classification, such as the human form with its varied shapes and articula-
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tions. Another significant observation shared by these papers pertains to the drawbacks

of using a vectorised latent representation. This format lacks the nuances of 3D struc-

ture, culminating in results that seem more skewed towards prototype classifications

than offering a smooth regression.

On a somewhat divergent note, Mittal et al. [95] introduced a method that focuses on

generating 3D shapes from textual descriptions. Specifically, the model exhibits the

capability to generate shapes that not only resonate with the input descriptions but also

maintain a consistent global structure even when the details provided are fragment-

ary. Furthermore, in the field of 3D super-resolution tasks, the proposed methodology

stands out by consistently reconstructing intricate details and outpacing other estab-

lished methods.

Lastly, Stutz et al. [129] offer insights into 3D shape reconstruction and generation,

specifically using implicit functions in the feature space. The findings from this paper

bear some resemblance to [95]. Both models demonstrate a promising ability to gen-

erate realistic 3D shapes that align with the given descriptions, ensuring consistency

and coherence even with partial inputs. In benchmark tests, the methodology exhib-

its superiority over other learning-based baselines by offering detailed reconstructions.

But, as with most models, its efficacy diminishes when it encounters shapes that are

significant outliers from its training set.

2.2.3.1 Transformer-based Methods

Recent methods for 3D shape reconstruction and point cloud completion have lever-

aged transformer-based models to enhance accuracy and detail in generated shapes.

Liu et al. [89] introduced a novel approach combining transformers with a strategy

that fuses neighbourhood features, employing both global feature selection and local

k-nearest neighbour techniques. Their method is distinguished by a genetic hierarch-

ical point generation module that iteratively refines point structures through a dynamic

transformer, emphasising the inheritance of shape features.
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Lin et al. [82] proposed a framework utilising a Point Cloud Transformer, incorporating

an encoder-decoder architecture to first learn spatial features from partial point clouds

and then reconstruct the full 3D shape. Their model, enhanced with a multi-head at-

tention mechanism, excels in generating detailed, high-resolution shapes, showcasing

the potential of transformers in managing complex spatial data.

Wen et al. [142] presented the PMP-Net++, a model aimed at not only completing

shapes but also improving point cloud resolution. Inspired by the Earth Mover Distance

concept, their network predicts a distinct moving path for each point, optimising the

overall structure through a feature-enhancing transformer that includes an innovative

Recurrent Path Aggregation (RPA) component for merging current and past feature

data, ensuring high-quality shape completion.

Lastly, Zhang et al. [166] advanced the field with their Skeleton-Detail Transformer

network, adept at leveraging both local and global features. Their approach integrates

cross-attention and self-attention layers to effectively correlate local patterns with the

overall shape structure, alongside a selective attention mechanism designed to bal-

ance memory efficiency with computational performance. This model exemplifies the

cutting-edge techniques in utilising attention mechanisms to refine point cloud com-

pletion.

Collectively, these studies underscore a paradigm shift towards integrating transformer

models with traditional geometric processing techniques, aiming to reconcile local de-

tail enhancement with global shape comprehension. The progressive evolution from

[89]’s genetic hierarchical approach to [166]’s selective attention mechanism reflects a

concerted effort to optimise transformer-based models for the nuanced demands of 3D

shape reconstruction, marking a significant stride in the pursuit of more accurate and

detailed digital representations of complex shapes.

Our work focuses on 3D reconstruction from depth images as input, which unavoidably

involves completing a large part of the surface due to (self-)occlusion. Although the

problem setting is different from general point cloud completion, some ideas of these
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methods can be useful.

2.2.4 Neural Radiance Field based Methods

In recent literature, there has been a concerted effort toward enhancing 3D computer

vision capabilities, particularly in the manipulation, reconstruction, and synthesis of

3D objects from limited data inputs. A review of the emerging research indicates a

strategic move toward the use of neural rendering techniques, especially Neural Radi-

ance Fields (NeRFs).

The framework introduced in [87] represents a step forward in enabling the flexible

change of camera viewpoints from a single RGB image. By employing a conditional

diffusion model that utilises geometric priors and is trained on a synthetic dataset,

this approach facilitates the generation of new images under specified camera trans-

formations. Remarkably, despite its reliance on synthetic data for training, the model

exhibits strong generalisation capabilities across both out-of-distribution datasets and

real-world images.

In addressing the challenge of generating novel viewpoints from sparse inputs, the

work [99] proposes a novel optimisation process for neural radiance fields. This method

focuses on regularising the geometry and appearance of rendered scenes, demonstrat-

ing an improvement over existing techniques. The approach is particularly noteworthy

for its methodological clarity in addressing sparse input scenarios, presenting a viable

solution for enhancing scene geometry and appearance.

Building on the concept of neural scene representation from a single image, the work [117]

presents a method that leverages a geometric scaffold to guide the reconstruction of the

radiance field. This approach distinguishes itself by its ability to disentangle shape and

appearance effectively, enabling the rendering of new views with geometric consist-

ency. This technique demonstrates adaptability to images beyond the training domain,

including realistic renderings and actual photographs.
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Further exploration into object generation as locally defined NeRFs is presented in

[131]. This study introduces the concept of augmenting objects with affine transforma-

tions to facilitate part-based editing operations. By enforcing a hard assignment of rays

to parts, the model ensures that modifications to one part do not impact the appearance

of others, enhancing the editability of 3D objects without compromising fidelity.

Lastly, Yuan et al. [160] delved into NeRF geometry editing through a method that

extracts a triangle mesh representation, which can be modified using traditional 3D

deformation algorithms. This approach extends edits from the mesh to the volume,

maintaining a mapping between ray queries in the deformed and original NeRF. The

introduction of box abstractions and semantic labels further refines the editing process,

providing users with intuitive and meaningful interaction mechanisms.

2.3 Evaluation Metrics

The task of assessing the visual quality of shapes has grown in importance as 3D mod-

els find use in diverse contexts. The process of reconstruction or completion of shapes

can affect the quality, making it crucial to quantify this effect. Traditionally, subjective

assessments by human observers have been the benchmark. However, this approach

can be resource-intensive and time-consuming. Consequently, objective visual qual-

ity assessments have emerged, employing automated metrics designed to simulate a

human visual judgement. These approaches can be classified into two categories: Full-

Reference (FR) methods where a reference object is available as the ground truth and

No-Reference (NR) methods where there are no object to compare to.

2.3.1 Full-Reference Methods

As mentioned before, most evaluation metrics are designed for specific representations,

such as point clouds, meshes, etc. Evaluation metrics for point cloud completion tasks
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involve both the ground truth complete point cloud and the generated point cloud to

measure their similarity. This typically involves measuring the distance between each

point in the two point clouds, and often the accuracy of the completion is judged on

the amount of points shared in the two point clouds.

Earth-mover distance (EMD) is the measure of the dissimilarity between two sets of

data. It can be used to compare images, text documents, and even high-dimensional

datasets. The metric measures the minimum amount of work needed to convert one set

to the other set, where work is defined as the amount of “earth” that needs to be moved.

This concept is flexible, with applications in areas like assessing point cloud similarity.

While determining the EMD between two point clouds requires matching based on the

Euclidean distance between points, this condition for a strict one-to-one match tends

to be computationally taxing. Nevertheless, EMD consistently detects shifts in the

distribution. As a result, the optimal solution for the transportation issue mainly relies

on the overall pattern, ignoring local details [40].

The Chamfer Distance (CD) is a measurement used for assessing the similarity between

two point clouds. It evaluates the degree of dissimilarity between two point sets by tak-

ing into account the distance between point in one set and its nearest neighbour in the

other set. CD has been employed in numerous applications, including 3D point cloud

registration [16, 75] and object recognition [58, 41, 86]. In addition, it requires low

computation time and is highly robust to noise and outliers. However, as it is not

invariant to scale, rotation, or translation, it is often computed after applying certain

transformation methods. The Chamfer Distance offers a reliable means of quantifying

the degree of difference between two point clouds.

When applied to 3D reconstruction, cross entropy is a popular evaluation metric for

voxel-based representations. It measures the difference between two probability distri-

butions, and is often used with models that predict occupancy in a voxel representation.

Cross entropy is useful for comparing the accuracy of different deep learning models

trained using different datasets and architectures for 3D reconstruction tasks. This
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metric can also be used to evaluate the performance of 3D vision algorithms such as

semantic segmentation or 3D object detection.

Lavoué et al. [71] developed a method to compare the quality of two 3D meshes,

even if they are structured differently. They based their approach on a 2D image qual-

ity method called SSIM (Structural Similarity) and looked at curvature differences in

local areas of the two meshes being compared. To make the method more efficient

and reliable, they looked at these differences at multiple scales. Each scale focuses

on a specific neighbourhood size used to calculate curvature. Wang et al. [134] also

proposed a new objective metric for 3D shape quality assessment. The metric predicts

the difference between a reference shape and a noisy mesh using a local roughness

measure derived from Gaussian curvature. It accounts for visual masking and psycho-

metric saturation effects. The global roughness is ascertained by taking normalised

surface integrals of this local measure. The perceptual gap between the two meshes is

subsequently assessed by determining the difference between these integrals.

Bian et al. [17] suggested a way to measure the minor visual changes between 3D mesh

models that have a similar structure. It is based on the theory of strain field energy,

which is used to describe the deformation of elastomer objects. The perceptual distance

is defined as the weighted average strain energy (ASE) over all triangles, normalised

by the total area of the triangular faces. This distance should be independent of both

the size of the model and the number of triangles.

Abouelaziz et al. [12] proposed a metric for full reference mesh visual quality assess-

ment. The proposed objective metric utilises the Kullback-Leibler (KL) divergence

of dihedral angles extracted from a given statistical distribution to estimate perceptual

distances between the reference and noisy meshes.

Nouri et al. [101] suggested a full-reference evalution metric for the quality assess-

ment of 3D meshes which is viewpoint-independent. It relies on utilising a multi-scale

visual saliency map to extract features of a 3D mesh. A roughness map is also used to

capture the visual masking effect, and four comparison functions are used to capture
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the structure’s differences.

Chetouani et al. [28] proposed a 3D mesh quality measure based on the fusion of

selected features, which are extracted from the original mesh and its distorted one.

The values are used as inputs to a regression tool via a support vector machine for

regression. The objective is to find a function that fits the target with a certain deviation

and kernel function.

Nouri et al. [103] introduced a quality measurement method for 3D meshes based

on visual importance. Each point on a 3D mesh is given a significance level. The

method looks at structural attributes of the original and altered meshes. The key idea

is that changing the visual importance of a 3D mesh reduces its visual quality. The

method uses multiple levels of visual importance maps and a texture map to understand

visual effects. To gather structural details of a 3D mesh, the average, variability, and

relationship of importance levels are calculated.

Yildiz et al. [158] suggested using machine learning to assess the visual quality of

3D grids. They create a 28-element feature vector from geometric properties, which

includes the average, spread, peakness, and asymmetry of each vertex-based property

distribution. These properties encompass curvature, shape indicators, bend intensity,

and surface unevenness. Finally, a modified Euclidean distance is employed as a met-

ric, aiming to optimise the probability.

Ilyass et al. [62] introduced a measurable quality standard for assessing the visible

quality of 3D grids. It utilises a pre-trained convolutional neural network (VGG-16

[128]) to derive features from the altered mesh and its original version. Indices from

recognised mesh visual quality metrics are combined with these features, producing a

comprehensive feature vector. This vector is then utilised in a support vector regres-

sion (SVR) to determine the final quality rating. The 3D structure is depicted as 2D

snapshots, broken down into smaller sections which are standardised and provided to

the VGG-16 [128] system.
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Chetouani et al. [29] suggested a deep learning technique for estimating the quality of

altered point clouds. This method involves extracting patches, calculating patch-based

distances, and predicting patch quality using a CNN model. Features are derived from

randomly chosen patches from both the original and modified point clouds and are

used to train a CNN model. Patch Quality Indexes (PQIs) are determined from both

perspectives: from the original to the altered and the other way around. These are then

averaged or combined to produce the Global Quality Index (GQI).

Lin et al. [85] introduced an approach for objective quality evaluation of 3D meshes

by leveraging curvature characteristics to gauge the visual discrepancies between the

original and altered meshes. Both meshes have their Gaussian and mean curvatures

computed, which are then connected using correlation methods to determine the cor-

relation coefficient. A Support Vector Regression model unites these two features to

produce a final quality rating.

The field of 3D shape quality assessment has seen various methodologies being pro-

posed over the years. The work [12] advocated for a statistical model-based ap-

proach, emphasising its correlation capabilities. For similar objectives, leveraging

the strain field theory, was also pursued by others like [17, 28]. While these stud-

ies have demonstrated promising correlations with human judgements, constraints in

experimental models, especially around pronounced edges, were flagged as areas of

caution [28, 101]. Comparative evaluations, as carried out by[62], further highlighted

the need for comprehensive datasets and methodological clarity. Interestingly, works

by [134, 158] both accentuated model limitations, urging careful consideration during

assessments [134, 158].

Majority of existing methods are designed for specific shape representations. Although

it is possible to convert other representations to the desired one, the conversion process

could introduce additional loss of information. In this thesis, we developed a new, rep-

resentation neutral full-reference method by rendering 3D shapes (both reference and

distorted/reconstructed ones) to 2D images using various views and rendering styles,
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motivated by the fact that perceptual quality of 3D shapes is largely based on when they

are viewed by human subjects. We further develop a neural network based approach to

combine image-based metrics to produce a final score more closely related to human

perceptual quality (see Chapter 4 for more details).

2.3.2 No-Reference Methods

Some other methods consider the case where no reference is available.

Abouelaziz et al. [6] introduce a no-reference objective approach for assessing the

visual quality of 3D meshes, working exclusively with noisy meshes. This method

fuses features from a pre-trained convolutional neural network (specifically, VGG)

with manually crafted features drawn from the 3D mesh, including curvature and the

dihedral angle. These features are then depicted using Gamma statistical distributions.

In the concluding step, a General Regression Neural Network (GRNN) is deployed to

forecast the quality score.

In their work, Abouelaziz et al. [8] developed a no-reference technique that utilises

a general regression neural network (GRNN) trained on mean curvature - a crucial

perceptual attribute for depicting the visual of a 3D mesh. Notably, the method only

operates on the altered mesh, bypassing the need for a reference mesh. Initially, the

system isolates the curvature attribute for its perceptual relevance. Subsequently, it em-

ploys the GRNN to learn from this feature, aiming to accurately estimate the objective

quality score in the latter phase.

Abouelaziz et al. [11] put forward a model tailored for blind 3D mesh visual qual-

ity evaluation. The system leans heavily on feature learning, specifically focusing on

statistics related to dihedral angles. Additionally, support vector regression (SVR) is

used in tandem with key functionalities of the human visual system (HVS), emphas-

ising aspects like visual masking and saturation effects. Drawing from these extracted

features, the proposed approach is trained and subsequently forecasts the quality score.
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Nouri et al. [102] proposed a view-independent 3D Blind Mesh Quality Assessment

Index (BMQI) to assess the visual quality of 3D distorted meshes without the need of

a reference content. To do this, both visual saliency and roughness maps are used to

quantify the structural deformation. A feature vector is constructed for each superfacet

with 4 attributes: saliency and roughness at each vertex, and the sum of saliency and

roughness inside each superfacet.

Zhang et al. [171] introduced a no-reference quality evaluation metric tailored for

colored 3D models, which can be represented as either point clouds or meshes. The

approach leans on 3D natural scene statistics (3D-NSS) and entropy to isolate features

sensitive to quality. These identified features are subsequently translated into visual

quality ratings via support vector regression (SVR).

Abouelaziz et al. [9] proposed a no-reference method to predict the perceived mesh

quality without reference or knowledge of distortion type. The method involves ex-

tracting dihedral angles as surface roughness indexes, applying visual masking mod-

ulation based on characteristics of human visual system, fitting dihedral angles using

the Gamma model, and using support vector regression to predict the quality score.

In their study, Abouelaziz and associates [7] presented a method tailored for assessing

the visual quality of meshes without needing a reference, harnessing the power of deep

learning. The initial step involves computing mesh saliency, followed by rendering

views from the 3D model. These views are segmented into patches, which are then

processed based on a saliency threshold. For feature extraction, the method taps into

three renowned pre-trained deep convolutional neural networks: VGG [128], AlexNet

[67], and ResNet [54]. The features derived from these networks are integrated into

a comprehensive feature depiction through Compact Multi-linear Pooling (CMP). The

concluding phase employs a regression component to determine the quality score.

In their work, Abouelaziz et al. [5] introduce a no-reference convolutional neural net-

work (CNN) framework, dubbed SCNN-BMQA, tailored for blind mesh quality as-

sessment. This approach harnesses a CNN in tandem with 3D visual saliency to gauge
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the visual quality of altered 3D meshes. The procedure involves generating 2D projec-

tions from the 3D mesh and its allied 3D saliency map. Subsequently, these projections

are segmented into petite patches, which are sifted based on their saliency magnitude.

The curated patches then serve as the input for the CNN model, which predicts a sim-

ilarity rating.

Abouelaziz et al. [10] put forth a approach for blind mesh visual quality evaluation

leveraging deep learning. Key features such as mean curvature and dihedral angles

are derived from the deformed meshes. These features are then transformed into 2D

patches and channeled to a convolutional neural network (CNN) for learning. Sub-

sequent to this, a multilayer perceptron (MLP) is introduced to condense the derived

representation into a singular output node. This structure enables the prediction of the

quality score without the necessity of a reference mesh.

Abouelaziz et al. [3] proposed a CNN framework to predict the quality of 3D meshes

without having access to the reference. The 3D mesh saliency is used to obtain 2D

projections, which are split into small patches. The relevant ones are selected with a

fixed threshold. These selected patches are then fed to the network and the quality

score is given by averaging the scores over the patches.

Abouelaziz et al. [2] put forward an approach for blind mesh visual quality evaluation

harnessing a graph convolutional network. In this approach, 3D mesh data is trans-

muted into a graph form, utilising the adjacency matrix and manually crafted features

as inputs for the network. The culmination of the network’s process, the max-pooling

layer, delivers the definitive feature representation. This is then fed to a Softmax layer,

which discerns and predicts the quality score category, all without necessitating a ref-

erence mesh.

Lin et al. [84] presented a new approach for no-reference 3D mesh quality assessment

that analyses concave, convex and structural features. Shape index, curvedness, vertex

scatter and the distribution of topology area are extracted to construct a feature vector.

Random forest regression is then used to estimate a quality from the feature space to
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quality space.

Lin et al.[83] introduced a new Blind Mesh Quality Assessment technique, lever-

aging both Graph Spectral Entropy and Spatial attributes. The signal from Gaussian

curvature is transformed into the graph spectral domain. Within this domain, features

indicative of smoothness and information entropy are extracted to assess distortion

levels. Additionally, the method gleans both convex/concave and structural attributes.

These extracted features are then amalgamated and trained using random forest regres-

sion, culminating in the creation of a model capable of predicting quality.

In [30], a two-step procedure is used to evaluate point cloud (PC) quality without a

reference. Local patches are first extracted with geometric distance, local curvature and

luminance values, and then a deep neural network learns a mapping to the extracted

features from ground truth. The network characterises the PC through attributes like

mean curvature, geometric distance and grey-level. Stacked patches form a new patch

which is used by the CNN model to estimate the quality of the distorted PC.

Alcouffe et al. [13] presented blind mesh quality measures which can be used to as-

sess the quality of a 3D reconstructed model. The metrics include a local roughness

measure, which is the distance between a point and its best fitting plane, and a mean

curvature measure, which is the least squares fitting of a quadric equation to a vertex’s

k-ring neighbourhood.

Abouelaziz et al. [4] introduced an objective, blind technique to evaluate the visual

quality of 3D meshes. Central to this method is the use of pre-trained deep convolu-

tional neural networks, with the quality assessment relying solely on the information

extracted from the altered mesh. To gather this data, 2D visualisations of the 3D mesh

and its aligned saliency map are produced. These renderings are then segmented into

uniformly-sized, salient patches. These curated patches serve as inputs to three distinct

pre-trained deep convolutional neural networks, namely VGG [128], AlexNet [67], and

ResNet [54]. Following fine-tuning, each network independently computes a quality

score. These individual scores are then amalgamated through a weighted sum, result-
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ing in the final comprehensive quality score.

Abouelaziz et al. [1] introduced a deep learning approach grounded in graph theory

for assessing the visual quality of meshes. The given distorted mesh undergoes a trans-

formation into a graph, characterised by its adjacency matrix. From this representation,

a compilation of geometric and perceptual attributes is derived and catalogued within

a feature matrix. This matrix is then channelled into a graph convolutional network

(GCN) structured with two convolutional strata and a max-pooling layer. Leveraging a

softmax-based classifier, the system predicts the quality based on a node classification

challenge. Five predetermined categories, mirroring the validated ground truth scores,

are utilised for classification: very bad, bad, medium, good, and excellent quality.

No-reference methods are generally more challenging for reliable quality measure

compared with full-reference scenarios. Since our thesis aims to use objective quality

measure for evaluating 3D reconstruction where ground truth is available, we focus on

full-reference methods.

2.4 Canonical forms

Many tasks including 3D reconstruction and shape retrieval benefit from putting de-

formable shapes into some standardised poses (such as T-pose for human bodies),

which are referred to as canonical forms. For example, shape retrieval is an import-

ant task that aims to find similar shapes to the query. Many methods work well on

rigid bodies where all shapes have fixed pose. However, these methods may work

poorly on non-rigid shapes, where the same shape can have different poses. Without

a standardised pose (canonical form), determining correspondence between points on

two non-rigid shapes can be ambiguous, as the geometric distances caused by pose dif-

ference are often much larger than those of different instances. Also, Machine learning

algorithms, especially those based on deep learning, require consistent data represent-

ation for effective training, such as learning-based 3D reconstruction. Different poses
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can be seen as “noise” or “variations” that can affect the learning process if not stand-

ardised through canonical forms. To solve that, a canonical forms standardises the

shapes to a fixed pose. In this section we will review canonical form for non-rigid

shapes techniques.

Lian et al. [80] presented a feature-preserved canonical form for non-rigid 3D water-

tight meshes. The idea is to naturally deform the original models against correspond-

ing initial canonical forms calculated by Multidimensional Scaling (MDS). Objects

are segmented into near-rigid subparts, and then, original subparts are transformed via

rotations and translations to poses corresponding to their MDS canonical forms. Op-

timal alignments and boundaries between subparts are obtained by solving nonlinear

minimisation problems.

Pickup et al. [111] introduced a method to compute a canonical form with linear time

complexity. This technique leverages Euclidean distances between pairs from a select

subset of vertices. Notably, its accuracy parallels methods using global geodesic dis-

tances, yet it operates faster, facilitating the processing of higher-resolution meshes or

more meshes within a specified time frame. The vertex subset selection hinges on their

conformal factors, which amplify along the mesh protrusions. While determining the

distances, the method aims to maximise the distances between the selected vertices and

concurrently endeavors to maintain the original edge lengths of the mesh.

Lian et al. [79] presented an image-based method to address the 3D shape matching

problem. A canonical form is calculated for each object using MDS (multi-dimensional

scaling) and PCA (principal component analysis), and represented by 66 depth-buffer

images captured on the vertices of a unit geodesic sphere. Each image is described as

a word histogram obtained by vector quantisation of the image’s salient local features,

and a multi-view shape matching scheme is used to measure the dissimilarity between

two models.

In [136], an intrinsic embedding technique, called the contour canonical form, is presen-

ted to express an isometry-invariant shape representation. Feature points are located
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on the shape surface and their canonical mapping positions are calculated, which are

globally optimised under geodesic constraints. Geodesic contours around each feature

point are decomposed and placed at new positions, resulting in the contour canonical

form.

Pickup et al. [112] discussed a method for estimating the canonical pose of an object.

Starting with the extraction of the mesh’s skeleton, the method is about contracting

the mesh to a zero-volume skeletal shape using Laplacian smoothing, converting it to

a 1D curve skeleton, refining it by merging junctions and repositioning the joints for

better centering. Next, they compute geodesic distances between all the joints and then

perform multidimensional scaling. Finally, they deform the mesh so that it matches the

transformation of its assigned bone from the original to the canonical skeletons, while

preserving the mesh’s connectivity.

Zeng et al. [162] This paper proposes a novel multi-feature fusion method for non-rigid

3D model retrieval. It begins with computing the canonical form and generating pro-

jective depth images. Multiple pooling fusion methods are then used in the multi-view

convolutional neural network to reduce information loss and extract more effective

multi-view features, while wave kernel signature is computed to construct the multi-

energy shape distribution and 3D shape feature. Finally, kernel canonical correlation

analysis is used to fuse the multi-view feature and 3D shape feature.

In the work by Jribi et al. [65], the paper presented a novel approach for the extrac-

tion of a canonical form of 3D objects with different, non-rigid inelastic deformations.

This is accomplished by defining each point on the two dimensional differential man-

ifold by the length of the geodesic curves between it and three reference points. The

corresponding novel points are then defined to have the same Euclidean distances as

the original geodesic distances. The extracted canonical form can then be used for

comparison and recognition purposes.

Haj et al. [51] presented a 3D non-rigid shape retrieval method based on canonical

shape analysis. It transforms the problem of non-rigid shape retrieval into a rigid one
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using multi-dimensional scaling and random walks on graphs. The local commute

time distance is used to preserve shape details by segmenting the non-rigid shape into

local partitions. A global constrained problem is formulated with biharmonic functions

between local salient features. This produces canonical forms that are invariant to

shape poses, which can then be treated as rigid shapes and used for non-rigid object

retrieval.

Haj et al. [50] proposed to leverage the feature space for acquiring a condensed repres-

entation of points within a limited-dimensional Euclidean domain. The deformation of

the mesh is directed by the local weighted commute time. For crafting canonical forms

that remain unchanged to the pose of 3D figures, the mesh is divided into localised

zones through a Voronoi diagram. Following this, geodesic distances are determined

using the heat methodology. To culminate, a stipulation is interposed between varying

partitions, facilitating the merger of local canonical forms to yield the ultimate canon-

ical configuration.

To summarise, canonical forms can be an important component to handle non-rigid

shapes in various tasks. Existing methods are largely based on hand-crafted features

and traditional methods, which have limited capabilities. In this thesis, we consider

developing a deep learning method to standadise 3D deformable shapes (see Chapter 5,

which provides a basis for allowing 3D reconstruction methods to be generalised to

effectively process deformable objects.
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Chapter 3

3D Reconstruction from Single Depth

Images

3.1 Introduction

Many tasks of modern technology, such as robotic vision and obstacle avoidance, rely

heavily on 3D reconstruction for which depth images are a common source of data.

Until recently, capturing depth information was challenging, but with the availability

of low-cost depth cameras, depth images can now be quite easily obtained, allowing

datasets to be created [63] that make possible novel applications such as virtual real-

ity (VR) [76]. However, estimating the full 3D shape from a depth image, which

only represents one viewpoint, is still challenging. Since a depth image only contains

partial information about the shape due to unavoidable self-occlusion, a single depth

image may not be sufficiently descriptive to fully reconstruct a shape, causing holes

and spurious surfaces in the reconstruction. Ideally a system should be able to cope

with such difficult or unusual viewpoints. The alternative, capturing sufficient depth

maps to form complete 3D data, is not feasible for many real-world applications due

to the increase in cost and time. For example, in indoor scene modelling, capturing

complete furniture would be near-impossible due to substantial occlusion, and even

capturing multiple depth images adds complexity to the problem requiring registration

of depth images.
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Figure 3.1: The generator turns an input volume from a depth image to a high-

resolution 3D volumetric output.

Our work in this chapter focuses on reconstructing a 3D shape from a single depth

image using a 3D convolution neural network (CNN). The CNN approach shows im-

pressive results compared to other non-learning-based models [133, 31, 100] where

the bounding ray cone or voxel hashing are used. Non-learning models usually require

multiple viewpoints of the shape, while the learning models can learn from existing full

shapes to reconstruct complete shapes from single depth images [52, 154], or single

RGB images [143, 167, 144].

In this chapter, we present a model capable of producing a complete shape from a single

depth image. Given a 2.5D depth image as input, the model can learn to reconstruct a

high resolution shape. As shown in Figures 3.1 and 3.2, an end-to-end learning model

containing a sequence of multiple encoder-decoders with global and local skip links

is trained to complete the volumetric shape, where the later stages take both the input

and outputs from previous stages to further improve completion. We also introduce

a self-attention layer that helps refine the 3D shapes, mimicking the human ability

to focus on a region of interest in the volumetric space. In addition, if a 3D shape

is missing certain features (e.g., due to occlusion), self-attention aids in improving

its details by exploiting clues from non-local regions. Such non-local information is
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useful as only partial single-view depth is given. For example, the geometry of one

table leg gives a useful clue for reconstructing the other table legs. We further introduce

a dynamic latent space where the model has the ability to select only relevant codes

to estimate 3D shapes. As we will later demonstrate, this strategy provides a strong

sparse regularisation that improves the robustness. Furthermore, we extend the shape

completion to a multi-task setting, where the generated shape is further classified into

one of the object categories, as shown in Figure 3.3. As properly completed shapes are

easier to classify, these two tasks help with each other, contributing to improved shape

completion results.

Our contributions are:

• We propose a cascade architecture consisting of multiple encoder-decoder blocks

with additional skip links, which provides better 3D reconstruction than a single

encoder-decoder.

• We incorporate a self-attention layer to refine the 3D shapes, mimicking human

ability to focus on a region of interest in the volumetric space.

• We introduce a dynamic latent space where the model has the ability to select

only relevant latent codes to estimate 3D shape. This provides a strong sparse

regularisation that enhances the robustness of the network.

• A classifier network is introduced as an auxiliary task to provide additional guid-

ance to the reconstruction model.

Extensive experiments show that our method outperforms state-of-the-art methods.

3.2 Methodology

The model addresses the problem of reconstructing a 3D shape from a single depth im-

age where the 3D space is voxelised. The voxel representation provides flexibility for

topological change, which is required when turning the depth image into a complete
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Figure 3.2: The discriminator takes the concatenation of the original single view

volume and either the ground truth or the reconstructed shape as its input. We

also introduce a 3D self-attention layer to the discriminator to improve the gener-

ated shape.
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Figure 3.3: The classifier that classifies the type of the shape helps the generator to

produce shapes with proper structure and details to improve the chance of correct

classification.
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Figure 3.4: The n-dimensional latent code is first processed by two fully connec-

ted layers to predict an n-dimensional weight vector. Then the top K codes are

selected according to the weight vector and values in the remaining dimensions

are set to zero, leading to a sparsified latent space.

3D shape. A cascade approach was adopted in which shape estimation was enhanced

at each stage of the model. In addition, instead of passing the entire latent vector, we

suggest a selection process to dynamically select appropriate latent codes. Further-

more, self-attention has the ability to find links between features; the self-attention

layer works globally on the whole space while convolution works on the local region

with the volume occupancy represented by 1 for occupied and 0 for unoccupied.

Our model takes 643 voxels representing the input depth image and reconstructs the

3D shape sampled to 2563 voxels to retain more details.

3.2.1 Dynamic Latent Code Selection

In a typical encoder-decoder architecture, the latent space is fixed l ∈ Rn, where n

is the latent dimension. However, for a given shape, not all the latent dimensions

are relevant. Responses from such irrelevant dimensions may have negative impact
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Figure 3.5: Network architecture of our 3D self-attention layer.

on the reconstruction quality. To address this, as shown in Figure 3.4, we introduce

a selection process such that only selected latent dimensions are retained, with the

remaining components in the latent code set to zero. Specifically, the model first learns

to predict the weight for each latent dimension, collectively as a latent weight vector

w ∈ (0, 1)n, denoted as w = ω(l), where ω(·) is the weight prediction network, and in

practice, it is achieved by passing the latent code l through two fully connected (FC)

layers each with n units, and ReLU and sigmoid activation functions are used after the

two FC layers respectively. This makes the output w to be in the range (0, 1) for each

dimension. Then, we use the predicted weights to determine which latent components

should be retained, namely, only those with the weights in the top K weights (where

K is a hyper-parameter) are kept. Then the i-th component of the output latent code l̃

satisfies:

l̃i = li · 1(wi ∈ WK), (3.1)

where 1(·) is 1 if the predicate is true, and 0 otherwise. WK is the set containing the

top K weights. This approach achieves two effects. On the one hand, by suppressing

low-weight (i.e., recognised as unimportant) components, this avoids their negative

impacts. On the other hand, the network strives to reconstruct high-quality complete

3D shapes with at most K latent components, essentially serving as a strong sparse

regularisation, that helps improve the robustness of the network. Note that while se-

lecting K latent components, we maintain their positions in the latent space, rather
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than removing zero components. This makes the follow-up FC layers more efficient to

learn.

3.2.2 3D Self-Attention Layer

Self-attention has been shown to be effective in the GAN framework for improving

image generation [163] and due to the nature of the input (depth image), the shapes

are missing significant information. A limitation of convolution is that it can capture

only local features, and so convolution tends to distort the shapes while attempting to

recover non-local features. From this prospective, we introduced a self-attention layer.

The self-attention mechanism focuses attention on the most important global features,

which helps to reduce distortion in the reconstruction. In the context of 3D shape

reconstruction from depth images, the self-attention mechanism can analyse the input

depth image as a set of local regions. By doing so, it identifies which features are most

relevant for accurately reconstructing the 3D shape. This process involves computing

attention scores that reflect the importance of each part of the depth image in relation to

the rest.The self-attention GAN (SAGAN) incorporates a self-attention mechanism for

both the generator and the discriminator. However, in our 3D reconstruction setting,

self-attention can only be applied to feature maps with relatively lower resolution (e.g.

around 163) since the relationships between any pair of locations need to be considered.

As we will later show, incorporating such a 3D self-attention (3DSA) layer in the

generator is unable to capture meaningful non-local relationships and actually leads to

worse performance. We therefore only consider incorporating the 3DSA layer in the

discriminator network.

βj,i =
exp f(x̃i)

Tg(x̃j)∑Ñ
i=1 exp f(x̃i)Tg(x̃j)

, (3.2)

which shows the contribution of the jth location from the feature map at the ith loca-

tion, where f(x̃) and g(x̃) are two different 1 × 1 × 1 convolutions. β is then used as
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weights to combine feature maps h(x̃), also obtained through 1 × 1 × 1 convolution,

and then the final output of the 3DSA layer is obtained through another 1 × 1 × 1

convolution v(·).

oi = v

(
N∑
i=1

βj,ih(xi)

)
, h(xi) = Whxi, v(xi) = Wvxi (3.3)

Where o is the ouput of attention layer , o = (o1, o2, ..., on) and γ is a hyper-parameter.

yi = γoi + xi (3.4)

3.2.3 Network Architecture

3DCascade-GAN consists of two components: the generator and discriminator. Fig-

ures 3.1, 3.2 and 3.3 show the complete network architecture where Figure 3.1 is the

multistage encoder-decoder (generator), Figure 3.3 is the classifier and Figure 3.2 is

the discriminator.

Generator. The generator is multistage (three stages), and each stage is an identical

encoder-decoder-like network (except the last stage where we add two up-sampling

layers). The encoder contains four 3D CNN layers starting with an input that is 643

in size (the depth view of the shape); the kernel size for each layer of 4 × 4 × 4,

and 1 × 1 × 1 strides. Each layer uses a leaky ReLU activation function, and after

each convolution layer, a max pooling layer with a kernel size of 2 × 2 × 2 follows

2 × 2 × 2 strides; the size of the feature maps for each layer is 64, 128, 256 and

512, respectively, followed by a fully connected layer to map the higher abstraction

of the shape and generate a 1000-dimensional latent code. Before the decoder runs, a

selector layer processes the latent vector to select the top K codes, where K is set to

100 (for different K values, see the Dynamic Latent Code and the ablation sections).

Another fully connected layer is then introduced which generates a 512-dimensional
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Figure 3.6: Visual comparison of completed single categories on same view

samples.

feature map. The decoder consists of four layers of transpose convolution with each

layer followed by a ReLU. Skip links are used between the encoder and decoder where

feature maps are concatenated; skip links enhance the shape details, as the latent code

appears to preserve the general structure of shape without any fine details. No max

pooling is used in the decoder; however, a kernel size of 4× 4× 4 and 2× 2× 2 strides

is used, and each layer is followed by a ReLU except for the last layer where we used

sigmoid. Note, the third stage has extra up-sampling layers so as to reconstruct to 643.

We concatenate both the output and the original input at the feature channel to form

643 × 2, which will be the input for stage two. The process is also repeated for stage

three, where the input is a concatenation of stage one and stage two and the input size

is 643 × 3. We found that the model tends to rely heavily on stage three and two, and

consequently the output at stage one was very fragmented and not useful. To address

this issue, we added global skip links between the encoder in stage one and the decoder

in stage three.

Discriminator. The discriminator is useful to ensure the completion of the partial input
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Input view 2 3D-RecGAN++ Our Method Ground TruthSnowFlakeNetSeedFormerInput view 1

Figure 3.7: Visual comparison of completed Multi categories on same view

samples.

Figure 3.8: Visualisation of self-attention maps where the layer attends to features

relating to shapes.
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Input Stage1 Stage2 Stage3 Ground Truth

Figure 3.9: Visualisation of cascade stages.

shape. The input for the discriminator is either a fake pair (2.5D and the recovered

shape) or a real pair (2.5D and ground truth). Again, the component contains seven 3D

convolution layers. Each layer has a kernel size of 4× 4× 4 and strides of 2× 2× 2.

At the end of each layer, a ReLU activation function is used; however, the last layer

consists of a sigmoid to generate a semantic representation of the shapes. Finally, we

applied the strategy of [154] by outputting the mean of a vector feature rather than a

scalar in order to stabilise training because the discriminator cannot discriminate high

dimension data (the input concatenated with either ground truth or the reconstructed

shape) and the model usually collapses at an early stage. Our 3DSA layer is introduced

to capture non-local relationships.

Classifier. The classifier network consists of 7 CNN layers each with kernel size of

4×4×4 and 1×1×1 strides. Each layer is followed by max pooling layers with kernel

size of 2× 2× 2 follows 2× 2× 2. For the activation function, we use Leaky ReLU.

The resulting output is reshaped to form a 4 element vector representing the categories

{chair, bench, table, couch}, followed by a softmax layer to reconstruct the one-hot

vector. It was not necessary to use the full 2563 resolution as input to the classifier, and

so we applied max pooling to reduce the input dimensions to 643.
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3.2.4 Loss Function

The model has three loss functions: reconstruction loss, GAN loss and classifier loss,

and the GAN has generator and discriminator losses.

Reconstruction Loss. As in [154], modified binary cross entropy (BCE) [18] is used

rather than mean square error (MSE), to avoid a non-convex problem:

LBCE = − 1

N

N∑
i=1

[−ȳi log(yi)− α(1− ȳi) log(1− yi)]. (3.5)

When using the standard BCE equation the empty space will dominate the generated

volume, which encourages the model to classify occupied grid cells as empty voxels,

resulting in estimation errors. Thus, α is introduced in Eq. 3.5 to represent the cost

weight of the terms. ȳi represents the ith voxel in the ground truth and yi represents

the ith voxel in the reconstructed shape where N is the number of voxels in the space.

GAN Loss. LG (Eq. 3.6) is the loss for generating fake shapes, while LD (Eq. 3.7)

is the discriminator loss used by WGAN-GP [47]. y represents the generated shape

from input x (2.5D) and ȳ is the ground truth for the complete shape. In order to tackle

the vanishing gradient problem, WGAN-GP adds a penalty term (with weight λ) to

encourage the gradient norm of the discriminator to be close to 1; ŷ is a perturbed

version of y.

LG = −E[D(y|x)]. (3.6)

LD = E[D(y|x)]− E[D(ȳ|x)] + λE[(∥∇ŷD(ŷ|x)∥2 − 1)2].

Classifier Loss. We use log loss. M represents the number of classes. y is a binary

indicator for whether class label c is the correct classification for observation o. p is

the predicted probability that observation o is of class c.
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LClassifier = −
M∑
c=1

[yo,c log(po,c )]. (3.7)

Combined generator loss. As the generator has two objectives, a weight is applied to

balance both losses during optimisation as follows:

Lweighted = γLBCE + (1− γ)LG + ζLClassifier. (3.8)

Lweighted is minimised when training the generator, and LD is minimised when training

the discriminator.

3.2.5 Experiments

3.2.5.1 Training Details

The model was trained for 20 epochs with a batch size of 3. [47] suggested a learning

rate of 0.0001 for the generator and 0.00005 for the discriminator, but we increased the

learning rate to 0.0001 for the discriminator, as the model showed better stability with

our dynamic latent code and self-attention. For the optimizer, Adam [66] was used

with β1 = 0.9, β2 = 0.999, and ϵ = 10−8. We set the WGAN-GP gradient penalty to

λ = 10 and α = 0.35 for modified binary cross entropy. Finally, we set the weighted

loss parameter γ = 0.8 and ζ = 0.01. The networks were trained on Nvidia GTX

1080ti and Nvidia P100, and it took on average 4.5 days to train a model.

3.2.5.2 Dataset

In our experiments, we used datasets provided by [154], for which the author had gen-

erated depth views from ShapeNet datasets. In total, 272 CAD models were used. For

training 220 CAD used, testing 40 CAD used and validation 12 CAD used. All models

in the dataset were voxelised to a 2563 grid. Datasets were split into two sets: same

view (all input depth images captured in one direction, 125 different views) and cross
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Figure 3.10: Comparison of applying self-attention to the discriminator (left) and

generator (right). A more meaningful self-attention map and shape are obtained

when incorporating self-attention in the discriminator.

view (depth images from multiple views, 216 different views).For training, only the

same view depth images were generated,while for testing and validation both same

view and cross view sets generated. In total, there are 26000 training samples. The

same view test consists of 4500 samples and 8000 cross view test samples. The valida-

tion set contains 1500 samples for same view and 2500 for cross view. Four categories

have training sets (chair, table, bench, couch) while the rest are used for testing as

unseen objects (plane, car, monitor, faucet, guitar, firearm). All samples have been

voxlized.

3.3 Evaluation

To compare our work with other state-of-the-art methods, we evaluated our model

using intersection over union (IoU). IoU was applied on a per voxel basis to the ground

truth and recovered shape. The second evaluation metric was mean value cross-entropy

(CE). As discussed in [154], Chamfer distance and earth mover distance are infeasible

for high-resolution voxel sets due to the high computational cost.

Comparison to prior work. To evaluate the performance of the model in reconstruct-

ing a 3D shape from a single-depth view, we compared it to three recent works on
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Input view 2 3D- RecGAN++ Our Method Ground TruthSnowFlakeNetSeedFormerInput view 1

Figure 3.11: Qualitative results of single category reconstruction on testing data-

sets with cross viewing angles.

Input view 2 3D- RecGAN++ Our Method Ground TruthSeedFormer SnowFlakeNetInput view 1

Figure 3.12: Qualitative results of Multi-categories reconstruction on testing data-

sets with cross viewing angles.

reconstructing a 3D shape from a single-depth image. (1) The 3D-EPN model presen-

ted by [34] completed the shape by leveraging semantic features; the resolution of

the reconstructed shape was 323. The model then used a retrieval approach to collect

similar shapes for shape reconstruction.
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Input view 2 3D- RecGAN++ Our Method Ground TruthSeedFormer SnowFlakeNetInput view 1

Figure 3.13: Qualitative results of Multi-categories reconstruction on testing data-

sets with same viewing angles.

(2) Varley [132] addressed the issue of robot grasp planning; the model reconstructed a

3D shape from 2.5D images that were captured using a depth camera. The model resol-

ution was 403 voxels. (3) SnowflakesNet [149] processes a point cloud representation,

and the model predicts a complete shape from an incomplete point cloud. We process

the output by voxelising the output points to 2563 resolution for quantitative compar-

ison. (4) SeedFormer [173] also uses a point cloud representation where the input is an

incomplete point cloud and the prediction is a complete shape. We process the output

by voxelising the output points to 2563 resolution for quantitative comparison. (5) 3D

RecGAN++ [154] reconstructed a 3D shape from a 2.5D image with a resolution of

643 and up sampled to 2563. For methods based on implicit representations, neither

[105] or [44] provided the code for 3D completion, so we trained the model of [93] on

our datasets, but it failed to learn the representation.

For the qualitative comparison, we show results of 3D RecGAN++ [154], SnowFlakeNet

[148] and SeedFormer [173], as these models are state-of-the-art and have the same re-
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Figure 3.14: Qualitative results of Multi-categories reconstruction on testing data-

sets with cross viewing angles.

covered shape resolution as our model. Note, in the qualitative results for [149] and

[173] we show point cloud representations to avoid the potential distortions caused by

discretisation.

3.3.1 Results

Seen shape category experimental results. The model was trained on 4 different

datasets (chair, table, bench, and couch). A single category means each one was trained

separately with the same settings as mentioned. On the other hand, Multi-categories

means the model was trained on all the 4 datasets (chair, table, bench, and couch).

The IoU and CE results for single categories, same view are displayed in Table 3.1.

Table 3.2 show IoU and CE results for Multi categories same view. Table 3.3 present
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Table 3.1: IoU and Cross entropy evaluation metric for Single categories,

same view, comparing 3D-EPN [34], Varley [132], SnowFlakeNet [149] , Seed-

Former [173], 3D-RecGAN++ [154] (denoted as Yang in the table) and our

3DCascade-GAN.
IoU Bench Chair Couch Table

3D-EPN 0.423 0.488 0.631 0.508

Varley 0.227 0.317 0.544 0.233

SnowFlakeNet 0.562 0.631 0.745 0.659

SeedFormer 0.553 0.618 0.740 0.656

Yang 0.580 0.647 0.753 0.679

Ours 0.641 0.701 0.809 0.698

CE Bench Chair Couch Table

3D-EPN 0.087 0.105 0.144 0.101

Varley 0.111 0.157 0.195 0.191

SnowFlakeNet 0.037 0.063 0.068 0.043

SeedFormer 0.038 0.065 0.069 0.044

Yang 0.034 0.060 0.066 0.040

Ours 0.030 0.053 0.063 0.038

single categories cross view using IoU and CE respectively and Table 3.4 cross view

for Multi categories. After training, we find the best threshold between [0.1, 0.9] with

a step of 0.05 on a validation dataset using only the IoU criterion. After finding the

best threshold to represent the model, we applied it on the test dataset as suggested

by [154]. In the quantitative results, both IoU and CE demonstrated that our model out-

performed the state-of-the-art model, and qualitatively it can be seen that our method

recovered 3D shapes at high resolution with accurate details. For the qualitative res-

ults for single categories in same view testing datasets, see Figure 3.6, where artifacts

appear in the results of 3D RecGAN++ such as incorrect structure/geometry and Multi
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Table 3.2: IoU and Cross entropy evaluation metric for Multi categories, same

view.
IoU Bench Chair Couch Table

3D-EPN 0.428 0.484 0.634 0.506

Varley [132] 0.234 0.317 0.543 0.236

SnowFlakeNet 0.548 0.624 0.736 0.633

SeedFormer 0.542 0.613 0.727 0.628

3D-RecGAN++ 0.581 0.640 0.745 0.667

3DCascade-GAN 0.624 0.669 0.773 0.682

CE Bench Chair Couch Table

3D-EPN 0.087 0.107 0.138 0.102

Varley [132] 0.103 0.132 0.197 0.170

SnowFlakeNet 0.035 0.053 0.064 0.043

SeedFormer 0.036 0.054 0.066 0.045

3D-RecGAN++ 0.030 0.051 0.063 0.039

3DCascade-GAN 0.028 0.049 0.060 0.037

categorises also in same view datasets in Figure 3.7. For single categories and cross

view, Figures3.11. 3.12 show multi- category results in cross view datasets. Figure 3.8

visualises self-attention maps when completing some shapes, which clearly capture

global structures. The intermediate results after each of the three stages are shown in

Figure 3.9.

Unseen shape category experimental results. Lastly, we conduct experiments on

six more categories where the model is trained on chair, bench, couch, table and then

tested on car, faucet, firearm, guitar, monitor, plane for both same view and cross view

datasets. The IoU and CE results for cross-view results are shown in Table 3.5 and same

view results in Table 3.6. Figure 3.13 shows visualisation for the same view dataset and

figure 3.14 shows cross view visualisation. Our method performs consistently better
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Table 3.3: IoU and Cross entropy evaluation metric for Single categories, cross

view .
IoU Bench Chair Couch Table

3D-EPN 0.408 0.446 0.572 0.482

Varley [132] 0.185 0.278 0.475 0.187

SnowFlakeNet 0.508 0.578 0.628 0.603

SeedFormer 0.503 0.563 0.627 0.601

3D-RecGAN++ 0.531 0.594 0.646 0.618

3DCascade-GAN 0.585 0.628 0.680 0.647

CE Bench Chair Couch Table

3D-EPN 0.086 0.112 0.163 0.103

Varley [132] 0.108 0.171 0.210 0.186

SnowFlakeNet 0.045 0.079 0.118 0.055

SeedFormer 0.046 0.080 0.120 0.056

3D-RecGAN++ 0.041 0.074 0.111 0.053

3DCascade-GAN 0.038 0.070 0.109 0.051

than state-of-the-art methods in all categories, and both same-view and cross-view

cases.

3.3.2 Ablation Studies

In this section, we describe three ablation studies: dynamic latent code, second self-

attention layer and classifier. For comparison, we choose the chair datasets for our ab-

lation experiments as these samples show more complex structure compared to bench,

table and couch.

Dynamic latent code. We conducted an experiment where the dynamic layer was

disabled and a fixed 2000 code size was used; the result was worse compared to the
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Table 3.4: IoU evaluation metric for Multi categories, cross view.
IoU Bench Chair Couch Table

3D-EPN 0.415 0.452 0.531 0.477

Varley [132] 0.201 0.283 0.480 0.199

SnowFlakeNet 0.534 0.586 0.631 0.612

SeedFormer 0.532 0.583 0.629 0.609

3D-RecGAN++ 0.540 0.594 0.643 0.621

3DCascade-GAN 0.574 0.620 0.673 0.633

CE Bench Chair Couch Table

3D-EPN 0.091 0.115 0.147 0.111

Varley [132] 0.105 0.143 0.207 0.174

SnowFlakeNet 0.039 0.068 0.095 0.050

SeedFormer 0.040 0.069 0.097 0.052

3D-RecGAN++ 0.038 0.061 0.091 0.048

3DCascade-GAN 0.036 0.058 0.089 0.047

dynamic layer, as shown in Table 3.7. Also, three different experiments with three

different K values: 50, 100 and 150 conducted. We found that the result was worse

when K = 50; however, performance with both K = 100 and 150 had the same

result. We also observe the model behavior when k approaches n (K = 600, K =

900), and the results show the performance drops gradually. Using the dynamic latent

code encoder tends to optimize the latent codes where most values are set to zero, and

these codes vary based on input shape. Furthermore, to show effectiveness of dynamic

latent code, we trained the model with/without each components, the results shown in

Table 3.8.

Self-attention. We tried using self-attention in both the networks (i.e. the encoder-

decoder and discriminator), as shown in Figure 3.10, and tried using it on different

layers to achieve the optimum results. The trials revealed that adding self-attention
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Table 3.5: IoU and cross entropy evaluation metric for multi-category training

and applied to unseen object categories, cross view, comparing 3D-EPN, Var-

ley [132], SnowFlakeNet [149] (denoted Snow) , SeedFormer [173] (denoted

Seed), 3D-RecGAN++ (denoted Yang) and our 3DCascade-GAN.
IoU car faucet firearm guitar monitor plane

3D-EPN 0.446 0.439 0.324 0.359 0.448 0.309

Varley 0.489 0.260 0.274 0.255 0.334 0.283

Snow 0.534 0.510 0.409 0.437 0.549 0.384

Seed 0.527 0.507 0.407 0.435 0.546 0.383

Yang 0.553 0.529 0.416 0.449 0.555 0.390

Ours 0.564 0.537 0.425 0.455 0.560 0.394

CE car faucet firearm guitar monitor plane

3D-EPN 0.160 0.086 0.033 0.036 0.127 0.065

Varley 0.171 0.123 0.028 0.030 0.136 0.043

Snow 0.103 0.060 0.018 0.016 0.078 0.033

Seed 0.105 0.061 0.018 0.017 0.079 0.034

Yang 0.100 0.055 0.014 0.015 0.074 0.031

Ours 0.098 0.054 0.013 0.013 0.074 0.031

to the encoder-decoder did not improve the results; in fact, the self-attention maps

obtained when adding the self-attention layer to the generator network did not capture

global structures well, and lead to poor reconstruction results. On the other hand,

adding our self-attention layer to the discriminator effectively increased its capability

to differentiate between real and fake 3D shapes, and eventually helped improve the

capability of the generator to produce improved reconstruction.

Classifier. For the classifier, we compared the full version of the model (including

cascade, dynamic latent code, self-attention and classifier) against a model without

a classifier. As shown in Table 3.9, there are slight differences in that the classifier
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Table 3.6: IoU and cross entropy evaluation metric for multi-category training

and applied to unseen object categories, same view, comparing 3D-EPN, Var-

ley [132], SnowFlakeNet [149] (denoted Snow) , SeedFormer [173] (denoted

Seed), 3D-RecGAN++ and our 3DCascade-GAN.
IoU car faucet firearm guitar monitor plane

3D-EPN 0.450 0.442 0.339 0.351 0.444 0.314

Varley 0.484 0.260 0.280 0.255 0.341 0.295

Snow 0.548 0.526 0.412 0.438 0.554 0.371

Seed 0.545 0.524 0.409 0.435 0.553 0.367

Yang 0.555 0.536 0.426 0.442 0.562 0.394

Ours 0.559 0.541 0.430 0.455 0.569 0.395

CE car faucet firearm guitar monitor plane

3D-EPN 0.170 0.088 0.036 0.036 0.123 0.066

Varley 0.173 0.122 0.029 0.030 0.130 0.042

Snow 0.104 0.056 0.018 0.017 0.069 0.033

Seed 0.105 0.058 0.019 0.018 0.068 0.034

Yang 0.102 0.053 0.016 0.014 0.067 0.031

Ours 0.101 0.053 0.016 0.013 0.065 0.031

enhances the shapes, and this improvement is consistent.

3.4 Conclusion

In this chapter, we proposed an end-to-end model for 3D reconstruction from a single

depth image. We introduced a 3D self-attention layer to attend to the non-local fea-

tures, helping to connect the recovered views with the known view of the 3D shape.

We also demonstrate introducing a dynamic latent code as an aid to optimizing the

encoder, reducing the effective size of the latent space which enhanced the results.
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Table 3.7: Ablation study on Dynamic latent code, we compare fixed latent code

with different variation of dynamic code.

Chair-IoU Chair-CE

Fixed latent code: 2000 0.649 0.059

n = 1000, K = 50 0.645 0.061

n = 1000, K = 100 0.701 0.053

n = 1000, K = 150 0.700 0.053

n = 1000, K = 600 0.698 0.057

n = 1000, K = 900 0.656 0.059

Table 3.8: Ablation study on Dynamic latent code and self-attention.
Chair-IoU Chair-CE

3D-Cascade-GAN 0.701 0.053

without Dynamic layer 0.663 0.054

without self-attention 0.692 0.053

without self-attention & dynamic 0.654 0.054

These additions helped stabilise adversarial learning which leads to better estimation

as demonstrated on different shape categories, both qualitatively and quantitatively.

We further added multi-stage networks to sequentially refine 3D shapes. Furthermore,

incorporating the classifier network showed improvement to the reconstructed shapes.

Our method produces shapes with improved structure/geometry, outperforming state-

of-the-art methods.
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Table 3.9: Ablation study on Classifier.
Bench Chair Couch Table

with classifier 0.624 0.669 0.773 0.682

without classifier 0.622 0.667 0.771 0.681

3.5 Limitations

The proposed model consist of the stages which require higher power consumption.The

model introduces a dynamic selection layer to eliminate unwanted codes. However, it

still requires a set of latent codes to choose from, which in turn demands space.

3.6 Summary

In this work, we presented a 3D reconstruction model from a single depth image. The

model is based on a cascade architecture that utilises voxelisation for flexibility and

a dynamic latent code selection process for selecting appropriate latent codes. Fur-

thermore, we incorporated a 3D self-attention layer to capture global information. For

evaluation, we tested the model on a variety of 3D shapes and showed that it can gen-

erate detailed 3D shapes from depth images with good accuracy.
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Chapter 4

Rendering based 3D Shape Evaluation

4.1 Introduction

Our living world is 3D, and so analysis and processing of 3D shapes are fundamental

techniques for a variety of application domains, ranging from design and manufactur-

ing, robotic navigation to virtual and augmented reality (VR/AR). 3D shapes have a

wide range of applications, from grasping [35, 38, 156] to reconstruction [49, 42]. In

many applications, measuring the distortion of 3D shapes is required. For example,

when 3D objects are manufactured, the produced shapes have unavoidable deviations

compared with the original designs, and it is therefore useful to quantify the deviations

based on users’ subjective perception. Another example is when 3D data is streamed

in VR/AR applications, distortions could be introduced due to data compression with

limited bandwidth, and measuring the distortion of the shapes is not only useful for

distortion control, but can also help guide how to better allocate the limited bandwidth.

Furthermore, bokeh (the effect of an out-of-focus background when shooting an object)

is another example of a depth image evaluation application. For good results, bokeh

requires accurate depth image segmentation, and due to the blurring-like effect, depth

image evaluation is necessary [161]. Within the context of the thesis, it is important

to evaluate the distortion of 3D reconstruction, ideally in consistency with human per-

ception, where human perception refers to the process by which humans interpret and

make sense of sensory information received from the environment.
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As most 3D reconstruction test sets contain ground truth shapes, in this work, we focus

on full-reference shape distortion measures, which tend to be more reliable. Given a

pair of 3D shapes, one original and one distorted, the task we address in this chapter

is to predict a similarity score, that is ideally close to human subjective judgement.

Traditional methods tend to directly measure errors on 3D shapes. However, such

measures are often inconsistent with human judgement. For example, a distorted shape

might represent only a minor geometric change, yet this alteration can be perceptually

significant. Observing that human eyes essentially perceive 2D views of 3D shapes,

whether in the real world or in the virtual settings,

We propose to measure 3D shape distortion based on their 2D renderings. To give a

sufficient coverage, we start by rendering the shapes to multiple views. We specific-

ally choose centres of dodecahedron faces as camera locations for capturing the shape

views and placing a directional light. Perceptual quality of 2D views can also be in-

fluenced by rendering styles, as different aspects of 3D shapes would be emphasised

with different renderings. For example, even for a relatively small dent on a surface,

the local geometric normal may change significantly. Rendering with metal styles can

highlight subtle changes on shape areas that cause specular highlights to look differ-

ent, whereas rim type of rendering is more sensitive to edges (see Figure 4.3 for some

examples of rendering styles.

We therefore propose to use combinations of different rendering styles (different shad-

ing and material properties) to better capture the visual distortion of 3D shapes. Next,

we extract distortion measures using a 2D method, such as structural similarity index

measure (SSIM) [138] and mean squared error. To avoid the influence of empty space

for image distortion measure when rendering shapes, we further propose a modified

SSIM that only accounts for the foreground regions (called Mask-SSIM). These fea-

tures are combined using a neural network based approach to predict the subjective

distortion measure.

The contributions of this work are as follows:
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12 X 

Figure 4.1: A list of rendered views of Armadillo using dodecahedron faces, each

face consisting of a directional light and a camera both pointing to the centre of

the dodecahedron. .

• We propose an image-based method to measure perceptual distortion of 3D

shapes. We further combine a variety of rendering styles and 2D image distortion

measures, along with a neural network based learning approach for improved 3D

subjective distortion prediction.

• In order to ensure more stable performance when shapes are rendered to different

canvas sizes, we extend SSIM to only focus on the foreground region, referred

to Mask-SSIM, which is effective for our task.

• Experiments on public datasets demonstrate that our method achieves good pre-

diction for subjective distortion scores, outperforming existing techniques.
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Flat Shading Smooth Shading

Figure 4.2: We use two types of shading (i.e., flat and smooth) for more generalised

distortion measure.

4.2 Methodology

We first describe how the 3D shapes are rendered using different views, styles and

shaders. Next, we will discuss Mask-SSIM, which is a metric that is agnostic to which

3D representation is used. Finally, we list a collection of different 2D measures used

as the basis to build the machine learning based model for final distortion prediction.

4.2.1 Rendering Setup

We use centres of the faces of a regular dodecahedron as camera locations for shape

rendering. The dodecahedron is one of the five Platonic solids; it ensures that the

cameras are equally spaced, providing a good coverage for the entire shape. The target

shape is placed in the centre of the dodecahedron with all 12 cameras facing it. For

simplicity, we normalised all shape sizes during the rendering process. Each camera is

paired with a directional light, as shown in Figure 4.1. Our rendering setup was built in

Blender as it offers automation through the Python binding library; however, a similar

environment could be built in any appropriate application.
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clay metal anistropic
 

metal carpaint toonceramic lighbulb

normal

rim light ceramic dark pearl

Figure 4.3: Some of the styles used in the experiments. As can be seen, different

rendering styles tend to highlight different aspects of the shape characteristics..

shape features matrix score

fully connected layer drop out Batch Norm

Figure 4.4: Our network architecture for learning to predict shape distortion

score. It consists of batch normalisation and dropout and fully connected lay-

ers, and we utilise residual blocks between layers..
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4.2.2 Rendering Styles

We utilise two different kinds of shading for each different style. To begin with, a

flat shading was utilised; this uses the normal of each triangle to render the triangle,

so the triangulation details are clearly visible. In addition to that, we utilise smooth

shading, which effectively blurs the boundary between triangular faces so that they

appear smooth. See Figure 4.2 for an example. We make use of the predefined Blender

textures and colours in addition to importing some additional ones, which brings in a

total number of 30 styles: flat & clay muddy, smooth & metal lead, basic 1, basic 2,

basic dark, basic side, brown, ceramic dark, ceramic lightbulb, normal+y, check rim

dark, check rim light, clay brown, metal shiny, orange-blue, pearl, reflection check

horizontal, reflection check vertical, resin, skin, toon, clay muddy, clay studio, dark

grey, jade, matt blue, matt brown, metal anisotropic, metal car paint, metal lead. An

example of the generated samples can be seen in Figure 4.3. Note those styles were

predefined in blender or are widely used.

The process proceeds as follows: first, we identify the shape and place it within the

geometry of the dodecahedron. Second, we decide which kind of shading to use (flat

or smooth). We render each style from a total of twelve distinct angles (the geometric

faces of a dodecahedron), starting with the shape that serves as a reference and moving

on to the distorted versions of that shape. The datasets have been normalised so that

all of the shapes are the same size [0-1].

4.2.3 Mask-SSIM

SSIM can identify the differences between the targets, by measuring luminance, con-

trast and structure. It is later extended in a multi-scale manner, such as MSSIM and

DSSIM. However, the function does not provide consistent results for targets when the

same 3D shape is rendered to canvas of different resolutions. This is because back-

ground left blank is always consistent with background of another shape, leading to
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high SSIM scores. Therefore, the similarity scores varies according to image resolu-

tion of the rendering canvas (see Table 4.5).

In our approach, we first separate the target shape from the background. Assume we

have two images, A and B. To create the mask, we match each pixel inside image A

to the pixel at the same location in image B. If both pixels are inside the target shape,

a value of 1 is given for the position in the mask; otherwise, the mask is set to 0.

Figure 4.5 shows the proposed algorithm.

The operation by definition is pixel-wise. However, since the SSIM calculation is

based on windows, we also implement Mask-SSIM Window, which only considers a

pixel to be included if the entire neighbourhood window is included. These models

(Mask-SSIM and Mask-SSIM window) produce robust results with varying canvas

resolutions.

The quantitative comparisons are shown in Table 4.5. Specifically, Mask-SSIM is

implemented on top of SSIM when generating the SSIM map as follows:

C = SSIM(A,B) (4.1)

where SSIM(·) returns the SSIM map of A and B, denoted as C. Let Amask and

Bmask be the foreground masks of images A and B:

MaskAB = AmaskBmask (4.2)

MaskAB identifies the agreement between the two masks, where 1 means pixels at a

position in both images are foreground, and 0 otherwise.

MaskSSIM(A,B) =
1

N

n∑
i=1

CiMaskAB,i (4.3)

MaskSSIM describes how Mask-SSIM works. Ci represents pixels at the ith loca-

tion. We multiply pixel Ci by Maskab,i to limit the operation w.r.t. Ai and Bi where

MaskAB,i is a binary pixel value [0, 1].
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n is the number of pixels in the image, and N =
∑n

i=1 MaskAB,i is the number of

selected pixels.

4.2.4 Selected Features

We select various 2D/3D distortion measures and features. For 2D, we use SSIM

[138] where SSIM is a metric used to assess the perceptual quality of digital images

and videos by comparing their structural information, luminance, and contrast. FSIM

[165] is a metric for evaluating image quality by comparing the similarity of local fea-

tures between a reference and a test image. Root mean square error (RMSE) measures

the difference between the distorted and original shapes. Canny edge detector [23]

is an algorithm used to identify the edges in images by detecting areas with strong

gradients, using a multi-stage process involving noise reduction, gradient calculation,

non-maximum suppression, and edge tracking by hysteresis. SRE [69] is a metric

used to evaluate the quality of reconstructed signals or images by comparing the ori-

ginal signal with the error introduced during the reconstruction process. Our modified

Mask-SSIM or its variants is also included. Different variants of Mask-SSIM are ex-

plained in Section 4.3.2. We also implemented 3D measures, Chamfer distance and

Hausdorff distance [61] for comparison.

4.2.5 Network Architecture

The learning task is to find a relationship between the results of the individual measures

and map them to the final distortion prediction, which can be thought of as bridging the

gap between evaluation metrics and human judgements. After calculating the values

of the Mask-SSIM, we combine these values with the scores from other algorithms to

create the input matrix for our neural network model.

We start building using bottom-up strategies, where we add layer and evaluate until,

this process becomes repetitive and we found the accuracy not increasing.
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Figure 4.5: Illustration of Mask-SSIM operation. We classify back-

ground/foreground pixel w.r.t. to both A and B. Left shows both original masks A

and B before classification. Right shows the output after classification w.r.t. both

A and B. For example, looking to the resulted mask we see pixel at Result[4,1] is

classified as background however in Mask A is not, in this situation clearly there

is some distortion between the two shapes in the 3D space.

The model starts with batch normalisation and a dropout layer, followed by fully con-

nected layers. Each layer has a ReLU activation function, except for the final layer

which has a sigmoid activation function. We utilise the mean squared error as the loss

function (see the model shown in Figure 4.4).

To compare different distortion metrics, since they are often in different ranges like

SSIM range is [0,1] while MSE is zero to infinity, instead of directly comparing val-

ues of user voting and prediction, we use Pearson correlation to fit the functions into a

[-1,1] domain, the Pearson correlation coefficient ranges from -1 to +1. A value close
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to -1 indicates a strong negative correlation, meaning that as one variable increases,

the other decreases. Conversely, a value close to +1 signifies a strong positive correl-

ation, where both variables move in the same direction. In addition, the number of

features is still high and some may not be helpful in learning the model. So we further

utilise Sequential Forward Search (SFS) to select important features. It incrementally

adds new features to the selection, and at every stage, a greedy approach is used to

choose the feature that leads to be best performance among all choices, based on its

performance on the training set. The selected features are then used when applying the

model to the unseen test set. Although SFS can often be too expensive to be used in the

deep learning setting, our deep network is small and can be trained efficiently, so this

strategy is still reasonably efficient, Table 4.1 shows the selected features for Dataset

[70] on dwarf shape, we found that the model only needs 7 features to reach optimum

results for our model and Figure 4.6 shows the mapping between selected features and

accuracy.

4.2.6 Experiments

4.2.6.1 Training Details

The model was trained for 250 epochs and batch size of three. The learning rate was

set to 0.0001. The stochastic gradient decent was used as the optimiser. The model

was trained on an NVIDIA GTX 1080ti GPU. The rendering of a shape in a specific

style and view takes 22 milliseconds.

4.2.6.2 Datasets

Three datasets are used in the experiments which include both distorted shapes and

subjective scores: [72], [70] and [48].
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Algorithm 4.1 Sequential Forward Search (SFS)
Input A list of features: F = {f1, f2, · · · , fd}

Output A list of selected features: SelF

SelF = {}

repeat:

fnext = ∅

cnext = corr(SelF ); corr(·) computes the correlation on the

training set when trained with the given set of features

for f = f1 . . . fd:

if f /∈ SelF then

cf = corr(SelF ∪ {f})

if cf > cnext then

fnext = f

cnext = cf

if fnext ̸= ∅ then SelF = SelF ∪ {fnext}

until fnext = ∅

For [72], 12 students from the Swiss Federal Institute of Technology and the Univer-

sity Claude Bernard of Lyon participated in a study where they evaluated 3D objects

by interacting with them (rotation, scaling, translation) from a comfortable distance.

Initially, participants were shown the original models alongside distorted versions, in-

cluding the extreme cases of noise and smoothing, to set a reference for each object’s

distortion level. Specifically, they were instructed to note the most distorted version

they observed. Then, they reviewed 66 objects, each displayed for 20 seconds, and

rated the distortion on a scale from 0 (no distortion, identical to the original) to 10

(extremely distorted). The order of these objects was randomised for each participant

to eliminate any bias from the order of presentation.

For [70], for each of the four models (Armadillo, Dyno, Lion Head, and Bimba) in

the study, observers were presented with six altered versions of the original object.
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They were tasked with rating each version based on its visual similarity to the ori-

ginal, on a scale from four (identical) to zero (most degraded). These objects were

displayed for approximately three minutes, during which participants could interact

with them through rotation, scaling, and translation. Notably, all six degraded versions

were shown simultaneously on the same screen, eliminating the need for establishing

a baseline for comparison. Consequently, participants naturally assigned a "0" to the

most degraded version and a "4" to the version that most closely resembled the original.

For [48], the authors created and reviewed a broad range of distortions, selecting a sub-

set that represented various levels of visual quality (Excellent, Good, Fair, and Poor)

to include in the database.

The four shapes in dataset [72] are {Armadillo, Rockerarm, Venus, Dyno}. The five

shapes in dataset [48] are {Dwarf, Hulk, Squirrel, Statue, Sports Car}. The shapes in

dataset [70] are {Armadillo, Dyno, Lion, Bimba}. Several types of distortions are used

in Dataset [72]: 1. smoothing with a different number of iterations; 2. simplification

(removal of vertices) with different percentages; 3. uniform quantisation using differ-

ent bit sizes; 4. JPEG texture compression; and 5. sub-sampling to reduce the texture

size. As we only examine geometric distortion here, we eliminate textural (2D) distor-

tion. The sports car shape could not be included in our experiments as we identified

some issues in loading the geometry (files missing). As a result, each dataset contains

4 usable shapes. Although this may sound quite small, considering the range of distor-

tions, and time consumption for collecting user subjective ratings, collecting such data

is onerous, and we are not aware of larger datasets of this kind being available.

A total of 12 distortion types are used in [72]. The dataset [70] only applies noise

to the shape surface with six different levels of noise for each shape. The work [48]

applies two types of distortion with different levels. The first is noise addition, which

was done by altering the location of vertices on different levels. The second is Taubin

smoothing [130] distortion. A total of 21 distorted shapes were generated for each

shape.
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Figure 4.6: SFS result on dwarf in Dataset [48], where it shows using the 7 selected

features has the highest performance.

4.3 Evaluation

To evaluate our model’s results, we use Pearson correlation.We calculate the correla-

tion between the Mean Opinion Score (MOS) and each method because the methods

we used for comparison all have either low sensitivity or varying value ranges , as a

result to unify it we used Pearson correlation.

To evaluate our model’s performance, we compare it to five methods: (1) the Point

SSIM Model [14]; this method leverages geometry, vector value and curvature to calcu-

late the similarity; and (2) the Density-Aware Chamfer Distance [147] (DCD) Model;

this approach is derived from the Chamfer distance and focuses on distribution quality.

Two other metrics are traditional and widely used methods (3) MSE (Mean Squared
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Table 4.1: Selected features using SFS when Dwarf is used as the test shape, Data-

set [48].
selected features

Mask SSIM window ceramic lightbulb flat

Mask SSIM metal anisotropic smooth

Mask SSIM matt blue smooth

Mask SSIM brown flat

No mask metal lead smooth

Mask SSIM clay studio smooth

Mask SSIM metal anisotropic flat

Table 4.2: Cross-validation correlation results on Dataset [72]. Our and Our* refer to

our results with all features and selected features. Note the setup for MS-SSIM is a flat

shader and ceramic lightbulb style, similar to typical rendering styles in previous work.

Note, this number represents Pearson correlation.

chamfer Hausdorff PointSSIM DCD MSE PSNR MS-SSIM Our Our*

armadillo 0.13 0.13 0.20 0.12 0.19 0.17 0.20 0.41 0.54

dyno 0.02 0.47 0.67 0.16 0.17 0.19 0.34 0.52 0.54

rockerarm 0.08 0.27 0.15 0.23 0.19 0.18 0.17 0.36 0.62

venus 0.25 0.13 0.62 0.40 0.21 0.20 0.24 0.36 0.65

average 0.12 0.25 0.41 0.23 0.19 0.19 0.23 0.41 0.58

Error), and (4) PSNR (Peak Signal-to-Noise Ratio). Finally, we also compare with an

image-based baseline which applies (5) MS-SSIM (multi Scale-SSIM) to 12 rendered

views.
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Table 4.3: Cross-validation correlation results on Dataset [48]. Our and Our* refer to

our results with all features and selected features. Note the setup for MS-SSIM is a flat

shader and ceramic lightbulb style. Note, this number represents Pearson correlation.

chamfer Hausdorff PointSSIM DCD MSE PSNR MS-SSIM Our Our*

dwarf 0 0.16 0.62 0.19 0.32 0.31 0.34 0.75 0.93

hulk 0.35 0.45 0.65 0.56 0.35 0.35 0.46 0.80 0.87

squirrel 0.31 0.22 0.17 0.34 0.26 0.25 0.36 0.43 0.63

statue 0.05 0.52 0.92 0.61 0.31 0.29 0.38 0.92 0.93

average 0.17 0.33 0.59 0.43 0.31 0.30 0.38 0.72 0.84

Table 4.4: Cross-validation correlation results on Dataset [70]. Our and Our* refer to

our results with all features and selected features. Note the setup for MS-SSIM is a flat

shader and ceramic lightbulb style. Note, this number represents Pearson correlation.

chamfer Hausdorff PointSSIM DCD MSE PSNR MS-SSIM Our Our*

Armadillo 0.13 0.13 0.26 0.09 0.12 0.11 0.31 0.40 0.51

Dyno 0.02 0.47 0.41 0.19 0.26 0.10 0.42 0.55 0.63

Lion 0.19 0.32 0.32 0.21 0.18 0.21 0.47 0.58 0.64

Bimba 0.12 0.24 0.22 0.11 0.15 0.17 0.28 0.59 0.63

average 0.11 0.29 0.30 0.15 0.17 0.14 0.37 0.53 0.60

4.3.1 Results

Our model was trained on three different datasets, as stated above. The results of the

training for Lavoué. et al.’s dataset [72] are shown in Table 4.2, we achieve the best

result in 3 out of 4 shapes, furthermore in average we outperformed other models.

The results for Dataset [48] are shown in Table 4.3 we outperformed other models

in all 5 shapes, and the results for Dataset [70] are reported in Table 4.4, our model

outperformed other models in all 4 shapes. For all datasets, a leave-one-shape-out



4.3 Evaluation 82

cross-validation method was used to show model generalisation capabilities, as the

datasets’ sizes are relatively small, and we treat each shape in turn as the test shape with

the remaining shapes as the training set. As the tables show, our approach outperforms

compared state-of-the-art methods with a large margin. Our method with SFS features

are consistently better than our method without feature selection. As the table shows

Pearson correlation between each method scores and subject scores, the result proves

that, styles can enhance model estimation.

4.3.2 Ablation Studies

We conduct three ablation studies, first on the batch-norm to show its necessity, fol-

lowed by different versions of MaskSSIM, and finally cross-dataset feature selection.

Batch-norm layer. The batch-norm is introduced first in the model to normalise input

data, we choose Dataset [72] for the experiments. The network shows worse results

without the batch-norm layer, as shown in the comparison in Table 4.6.

We also tested different versions of Mask-SSIM. Four versions of Mask-SSIM: [Mask-

SSIM - Mask-SSIM Window - Mask-SSIM Negative -Mask-SSIM Merge] are implemen-

ted. As described above, Mask-SSIM calculates the score for the foreground pixels and

omits the background pixels. After calculating the pixel score for one image, we repeat

the operation with the other image. Finally, we average the scores. In this ablation, we

examine a different approach that utilises pixels at boundaries and spatial relations.

Mask-SSIM window. As discussed, we only consider pixels as in the foreground

where all pixels in the neighbouring window (3× 3) are foreground pixels.

Mask-SSIM negative is a pixel-wise operation that is similar to the original (Mask-

SSIM). However if this operation encounters a pixel that is considered part of the fore-

ground in the first image but not in the second image, it penalises the score by adding

-1. The result was worse than Mask-SSIM.
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Mask-SSIM merge. The operation tries to find a smooth middle line between Mask-

SSIM and Mask-SSIM negative as the result so we take the average of both values.

Overall, MaskSSIM achieves best performance, and so is used in our model, for com-

parison see table 4.7.

4.3.3 Cross-Dataset Evaluation with Feature Selection

Our method relies on neural networks and feature selection to achieve the best per-

formance. Although leave-one-shape-out testing ensures training/test separation, fea-

ture selection has to be performed for each training/test split. To further evaluate the

generalisability of our method, we perfrom cross-dataset evaluation, where the whole

dataset [48] is used for training (including SFS feature selection), and the trained model

is then applied to the two other datasets [70] and [72]. The selected features are shown

in Table 4.9 and the performance is reported in Table 4.8. We compare the cross-

dataset performance with within-dataset performance (cross validation including SFS)

and PointSSIM which is the best performing previous method. As can be seen, the

model in the cross-dataset setting achieves slightly worse correlation: for the dataset

[70], the average correlation drops from 0.60 to 0.58, but still much higher than exist-

ing method PointSSIM (0.30). Similar observations can also be made for the dataset

[72]. This demonstrates that our learned model can be generalised to independent data-

sets with different types of distortions while still achieving good performance. Such

models are also more efficient to deploy as only the selected rendering styles need to

be generated during testing.

4.4 Conclusion

In this paper, we presented an image-based method to evaluate 3D shape distortion.

Shapes are rendered from 12 views, along with a range of rendering styles. A deep
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learning based approach is then used to learn to predict distortion measures more

closely related to subjective evaluation. Experiments on three datasets demonstrate

that our method outperforms existing methods by a large margin. Our cross-dataset

evaluation further demonstrates the generalisability of our learning based model.

4.5 Limitations

The dataset used in this study primarily considers convex shapes, which may not ac-

curately represent real-life scenarios. Moreover, the established distortion metric data-

sets include only a limited range of shapes. Additionally, the method is still time-

consuming compared to other techniques mentioned.

4.6 Summary

In this study, we introduced a deep learning approach for 3D shape distortion assess-

ment using images rendered from multiple views and styles. Our method, tested on

three datasets, consistently outperformed traditional techniques and exhibited notable

generalisability across different datasets.
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Table 4.5: Comparisons of original SSIM and Mask-SSIM for resolutions of 500×

500 and 1000 × 1000 canvas sizes. The experiment is based on the dwarf shape

with various distortions, rendered using metal anisotropic material and smooth

shading.
500 resolution 500 resolution

Distorted shapes Mask-SSIM original SSIM

dwarf quantization 8 bit 0.29 0.86

dwarf quantization 9 bit 0.52 0.90

dwarf quantization 10 bit 0.79 0.96

dwarf quantization 11 bit 0.92 0.98

dwarf Simplification 0.80 0.53 0.90

dwarf Simplification 0.92 0.46 0.89

dwarf Simplification 0.975 0.27 0.85

dwarf Simplification 0.987 0.27 0.85

dwarf Smoothing 15 iteration 0.72 0.94

dwarf Smoothing 25 iteration 0.64 0.92

dwarf Smoothing 40 iteration 0.57 0.91

dwarf Smoothing 50 iteration 0.53 0.90

1000 resolution 1000 resolution

Distorted shapes Mask-SSIM original SSIM

dwarf quantization 8 bit 0.29 0.97

dwarf quantization 9 bit 0.52 0.99

dwarf quantization 10 bit 0.79 0.99

dwarf quantization 11 bit 0.92 0.99

dwarf Simplification 0.80 0.53 0.98

dwarf Simplification 0.92 0.46 0.98

dwarf Simplification 0.975 0.27 0.97

dwarf Simplification 0.987 0.27 0.97

dwarf Smoothing 15 iteration 0.72 0.99

dwarf Smoothing 25 iteration 0.64 0.99

dwarf Smoothing 40 iteration 0.57 0.99

dwarf Smoothing 50 iteration 0.53 0.99
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Table 4.6: An Ablation study on batch-norm layer using the selected features only.

Note, this number represents Pearson correlation.
without batch-norm with batch-norm

armadillo 0.42 0.54

dyno 0.52 0.54

rockerarm 0.56 0.62

venus 0.62 0.65

average 0.53 0.58

Table 4.7: Comparison of different variants of MaskSSIM on the dataset [72]

with cross-validation correlation results. Note, this number represents Pearson

correlation.

Mask-SSIM Mask-SSIM window Mask-SSIM negative Mask-SSIM merge

armadillo 0.28 0.28 0.18 0.23

dyno 0.44 0.43 0.35 0.39

rockerarm 0.24 0.24 0.20 0.22

venus 0.37 0.37 0.29 0.34

average 0.33 0.33 0.25 0.29
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Table 4.8: Cross-dataset correlation results. The model trained on Dataset [48]

with SFS feature selection, and then tested on Datasets [70] and [72]. We compare

the performance with same dataset leave-one-shape-out testing results (including

feature selection), and the previous best performing model PointSSIM. Note, this

number represents Pearson correlation.
Dataset [70] within-dataset cross-dataset PointSSIM

Armadillo 0.51 0.43 0.26

Dyno 0.63 0.61 0.41

Lion 0.64 0.59 0.32

Bimba 0.63 0.62 0.22

average 0.60 0.58 0.30

Dataset [72] within-dataset cross-dataset PointSSIM

armadillo 0.54 0.53 0.20

dyno 0.54 0.51 0.67

rockerarm 0.62 0.62 0.15

venus 0.65 0.55 0.62

average 0.58 0.55 0.41

Table 4.9: Selected features using SFS for cross dataset evaluation where features

are selected based on Dataset [48].
selected features

Mask SSIM car paint flat

Mask SSIM matt blue smooth

Mask SSIM brown flat

No mask resin smooth

Mask SSIM clay studio smooth

Mask SSIM metal anisotropic flat

No mask SSIM check rim light smooth
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Chapter 5

Learning to Generate Canonical

Forms for Single Depth Images

5.1 Introduction

3D reconstruction aims to turn 2D input such as images into 3D shapes. Most 3D

reconstruction methods are designed for rigid shapes (including the method introduced

in Chapter 3). But for non-rigid objects that can bend or twist, like living creatures or

flexible materials, it gets tricky. These objects can have a large range of deformation,

making them hard to handle especially for reconstruction tasks, as significant training

examples are required to cover the deformation space. To make the problem more

manageable, an effective approach is to bring non-rigid shapes back to a default or

standardised pose. This default pose is called the canonical form. Using this form can

help simplify and improve various geometric processing tasks, from shape retrieval to

shape reconstruction.

Canonical form refers to a normalised representation of a deformable shape such that

various instances of similar objects are represented in a unified pose which removes

the non-rigid deformation. This uniform representation aids in reducing variability

[21], ensuring consistency, and simplifying subsequent computational processes [51].

The canonical form is commonly used in retrieval tasks, enabling us to search for

and identify similar 3D models regardless of their deformations. However, current
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canonical form methods often prioritise discriminating between shapes but fail to retain

good quality of shape appearance. These approaches typically rely on either Euclidean

distance [111] [80] or geodesic distance [37] which can distort the deformed shapes.

Alternatively, some works suggest other approaches like mapping the deformed shape

to a template to preserve shape appearance [80]. However, these methods all assume

that the input is a complete deformed shape, so cannot be applied to cases with depth

image input.

In this study, we consider the problem of turning a deformable shape as a single-view

depth image to its canonical form. This is a more challenging task as the input is

no longer a complete shape. It is also a useful processing step for deformable shape

reconstruction, as once turned into its canonical form, shapes are aligned and existing

single view reconstruction methods for rigid objects can be applied.

To address this challenging task, we introduce a learning-based model that turns a

single depth image to a default pose. Given a 2D depth image and its corresponding

mask, our model aims to produce a depth image that corresponds to the input shape in

a canonical pose. Figure 5.1 displays an overview of the model, which begins with an

encoder-decoder that produces high-dimensional local features. Additionally, we in-

troduce parallel encoders utilising sparse convolution to detect varying neighbours,

thereby fusing multi-scale features that contribute to preserving shape appearance.

These fused features serve as a basis to generate high-dimensional attributes. Ulti-

mately, we utilise an encoder-decoder model to reconstruct the canonical pose depth

image.

Our contributions are:

• We propose Canonical pose model, an end-to-end 2D network designed for the

canonical pose reconstruction of single-view depth images. It comprises three

components, Local Features Extractor (LFE), Multi-Scale Features Extractor

(MSFE) and reconstruction component.
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Encoder [dilation=3]

Encoder [dilation=2]

Encoder [dilation=1]

Local Feature  Extractor Reconstruction

Multi-Scale Features  Extractor

DecoderFuser

YLFE [YLFE , X][Xd , Xm] = X [YLFE , X , YMSFE]

YMSFE

YReconstruction = [Yd ,Ym]

Figure 5.1: Overview of the model, which comprises three components. Initially,

the model processes the input to extract local features. Subsequently, it uses both

the original input and the extracted features for multi-scale feature extraction.

Finally, a reconstruction component reconstructs the depth image of the canonical

pose shape based on the outputs from both previous components.

• We propose parallel encoders and a single decoder block that extract features at

different scales and use a fusing decoder to decode multi-scale, high-dimensional

features.

• The extensive experimental results on TOSCA [19] and human [113] datasets

demonstrate that our model outperforms the existing state-of-the-art methods

and has competitive inference time. Moreover, our model is also capable of

preserving high quality shape details while deforming shapes across different

types of forms, such as humans and animals.

5.2 Methodology

The canonical form involves addressing deformation by eliminating it. The input, a

depth image, encompasses values ranging from 0 to 1. We anticipate that the model
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Local Feature  Extractor

YLFE [ YLFE , X ][Xd , Xm] = X

Down-sample Block [DB] Up-sample Block [UB]

DBDB UB UB UB UB UB

Convolution LeakyReLU MaxPool Transposed-Convolution ReLU

DB

Figure 5.2: The Local Feature Extractor (LFE) takes the single-view depth image

Xd and the corresponding mask Xm as input. It is composed of an encoder and

a decoder. The encoder has three down-sample blocks, with each block featuring

a convolution layer, ReLU, and max pooling. In contrast, the decoder encom-

passes five up-sample blocks, each having a transposed convolution and ReLU.

The model takes a depth and its mask as input and produces a local feature out-

put, of the same input size, denoted as YLFE .

will transform this depth image to align with a canonical form. This model consists

of three distinct components. Initially, the first component interprets the depth image

to derive high-dimensional local features, subsequently integrating this original depth

with the extracted local features. Thereafter, the model leverages parallel-encoders in

conjunction with a fusing decoder to generate multi-scale dimensional features. At

the end of this process, these multi-scale features are concatenated with local features,

serving as skip links for the last component as well as grouping local features with

multi-scale features, which aid in reconstructing the depth into its canonical form.



5.2 Methodology 92

5.2.1 Local Feature Extractor

Given an input depth image Xd and mask Xm, where Xd,m = {xd,m
i ∈ R500×500},

the LFE component processes both to generate local features. The component con-

sists of N down-sample blocks and K up-sample blocks, where N = 3 and K = 5.

For the down-sample blocks, each block consists of a convolution with a kernel size

of 5 × 5 and strides of 1 × 1. We use LeakyReLU as the activation function, and

a Maxpool layer is employed for spatial reduction. For the up-sample blocks, the

transpose-convolutions utilise three different kernel sizes: [5, 3, 2], which are applied

in the order [5, 3, 5, 2, 2]. LeakyReLU is also utilised for each of these up-sample

blocks. The output features, denoted as YLFE in Eq. 5.1, are concatenated with the

original input Xd,m as an extra channel. The network is shown in Figure 5.2.

YLFE = LFE(Xd, Xm) (5.1)

LFE attaches local features to the original depth image and its mask, so each pixel is

associated with both a local feature and a mask value. Consequently, in Section 5.2.3,

the reconstruction component has access to both the local features and the original

input depth image.

5.2.2 Multi-Scale Feature Extractor

The Multi-scale Feature Extractor (MSFE) described in Eq. 5.2 comprises three paral-

lel encoders Edilation1, Edilation2 and Edilation3.

YMSFE = MSFE(Xd, Xm, YLFE) (5.2)

z1 = Edilation1(X
d, Xm, YLFE) (5.3)

z2 = Edilation2(X
d, Xm, YLFE) (5.4)

z3 = Edilation3(X
d, Xm, YLFE) (5.5)
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Encoder [dilation=3]

Encoder [dilation=2]

Encoder [dilation=1] Multi-Scale Features  Extractor

DecoderFuser

[YLFE , X] YMSFE

Down-sample Block [DB]

Up-sample Block [UB]

Fully Connected

1600

1600

1600

500

MLP

MLP MLP

DB DB DB

DB DB DB

DB DB DB

UB UB UB UB4800

Convolution Transposed-ConvolutionReLUAvgPool

Figure 5.3: The model takes as input the original depth Xd, its mask Xm where

[Xd, Xm] = X , and the local feature output YLFE . It features three encoders, each

having a distinct dilation rate, with each encoder made up of down-sample blocks.

Following the encoders, the latent codes are concatenated and passed through a

fuser for inter-mapping. The subsequent decoder consists of up-sample blocks,

culminating in the reconstructed multi-scale features, denoted as YMSFE .

Each encoder captures a different spatial neighbourhood size owing to the inherent

nature of convolutions with distinct dilation values. Specifically, the three encoders

possess dilation values of 1, 2, and 3 (Eq. 5.3, 5.4 and 5.5) in their convolution lay-

ers.We could not add more than 3 encoders as computation consumption exceeds GPU

limits, also 1,2,3 variation is the natural way to expand as no previous work we found

is suitable to rely on. Each encoder is equipped with three convolution layers followed

by a LeakyReLU activation function and an Avgpool. Every encoder outputs a lat-

ent code of size 16000 (z1 = 1600 , z2 = 1600 and z3 = 1600). We found that

trying less than 1600 for latent code actually reduce the reconstruction results. When

concatenated, this results in a latent code with a length of 48000.

These parallel encoders handle pixels from different scales, thereby yielding multi-

scale features. To fuse these multi-scale features, we utilise a single decoder, as de-
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Reconstruction

Down-sample Block [DB] Up-sample Block [UB]

DBDB UB UB UB UB UB

Convolution LeakyReLU MaxPool Transposed-Convolution ReLU

[YLFE , X , YMSFE] YReconstruction = [Yd , Ym]DB

Figure 5.4: The reconstruction component leverages the original input X , the

LFE output YLFE , and the MSFE output YMSFE . The model uses these inputs to

determine the canonical form YReconstruction which consists of canonical form depth

image Y d and its mask Y m. The network is similar to LFE network, containing

down-sample and up-sample blocks.

scribed in Eq. 5.6.

YMSFE = Dfuser(z1, z2, z3) (5.6)

As an initial step, the 48000-d latent codes are processed through two MLP layers to

identify inter-code relationships, ultimately generating 500 latent codes. Subsequently,

six transpose-convolutions are applied. Following each convolution, a ReLU activation

function is employed. The kernel sizes designated for these convolution layers are

[3,3,6,2,2,2,3]. The output YMSFE has the spatial resolution aligned with the original

input size. This design enables the association of multi-scale features with each input

pixel. The overview of MSE is shown in figure 5.3.
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5.2.3 Reconstruction component

Deformation involves transforming a shape from any pose to a default pose. In terms

of an image, this means shifting the pixels to recreate a canonical pose. However, con-

ventional convolution cannot adequately attend to long dependencies. As a solution,

we generate both local and multi-scales features of the same size as the input image,

allowing the reconstruction component Eq. 5.7 to access both feature types for each

pixel.

Similar to LFE component, the reconstruction component incorporates four channels:

the original input and its mask, local feature data generated by the LFE component,

and multi-scale features produced by MSFE. Note combining features from different

stages of the model help reduce vanishing gradient. The reconstruction component

comprises N down-sample blocks and K up-sample blocks, where N = 3 and K = 5.

Each down-sample block consists of a convolution layer, followed by a LeakyReLU

and a Maxpool layer, with kernels of size 5 and stride 1. On the other hand, each

up-sample block features a transpose-convolution and a ReLU layer, utilising kernels

of sizes [5,3,5,2,2]. The final output from the reconstruction component YReconstruction

is a reconstructed depth image alongside a reconstructed mask. The overview of re-

construction component is shown in figure 5.4.

YReconstruction = reconstruction(Xd, Xm, YLFE, YMSFE) (5.7)

5.2.4 Loss Function

The model employs two loss functions: depth loss and mask loss.

Depth Loss. We utilise the Mean Squared Error for the depth loss. However, we have

modified this loss to focus on the foreground region.
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LDepth =
1

N

N∑
i=1

ŷmym(ŷd − yd)
2

Here, ŷm and ym denote the predicted mask and the ground truth mask, respectively.

Likewise, ŷd and yd represent the predicted depth and the ground truth depth, respect-

ively. By leveraging the intersection of the masks, we can exclude the background

from the depth image, thereby reducing false positive predictions.

Mask Loss. For depth image reconstruction, we desire the model to concentrate on the

target shape. Consequently, we aim for the model to learn the canonical form mask.

LMask =
1

N

N∑
i=1

(ŷm − ym)
2

Combined Loss. Since the model has two objectives, we introduce coefficients α and

β to balance the training.

Lweighted = αLDepth + βLMask

5.3 Experiments

5.3.1 Training Details

The model was trained for 800 epochs. In the initial phase, specifically for the first

100 epochs, we prioritise mask learning. As mentioned in Eq. 5.8, depth images are

sensitive to the intersection of masks; therefore, we set α = 10 and β = 1000. In the

subsequent 200 epochs, we leaned more towards the depth objective, setting both α

and β to 1000. For the remaining epochs, we allow the model to focus primarily on the

depth objective by setting α = 1000 and β = 100. The learning rate is set to 0.001,

and we employ the Adam optimiser [66].
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5.3.2 Dataset

We conducted our experiments on three datasets, all of which contain non-rigid shapes.

Specifically, the dataset from [113] features real human data. This dataset was con-

structed using the Civilian American and European Surface Anthropometry Resource

(CAESAR) [119], wherein point clouds were fit to templates. In total, it comprises 40

subjects, equally split with 20 males and 20 females. Each subject is represented in 10

different poses.

The second dataset, also from [113], is a synthetic human dataset. It was created in a

parameterised manner using 3D modelling software to control the shape and generate

poses. This dataset contains 300 shapes, distributed among 15 subjects: 5 males, 5

females, and 5 children. Each subject has 20 poses.

While the aforementioned datasets focus on humans, real-life scenarios present a vari-

ety of non-human, non-rigid subjects. As such, we also chose the TOSCA dataset [19],

which includes both humans and animals. In total, the dataset has 80 objects. Due

to the varied nature of animals, the numbers of poses differ across objects: two males

with 7 and 20 poses respectively; one female with 12 poses; one cat with 11 poses; one

dog with 9 poses; one wolf with 3 poses; a horse with 8 poses; a centaur with 6 poses;

and one gorilla with 4 poses.

For all datasets, the generation process is as follows: Each shape within the datasets is

centred, after which we render an image of size 500 × 500. However, for the TOSCA

dataset [19], the sizes of the shapes vary across classes, such as horses and cats. To

address this, we scale the shapes to a fixed size (bounding box). We utilised blender

for the dataset generation as we can bind python code to automate the process.
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5.4 Evaluation

For canonical form results, the evaluation measure is typically based on retrieval res-

ults [110]. As previous works [110] [20], we utilised The Clock Matching and Bag-

of-Features (CM-BOF) [78]. For retrieval results extraction. The framework starts by

computing a descriptor for a given 3D shape. Initially, we centralise the mesh, nor-

malise its scale, and employ a combination of principal component analysis (PCA)

and rectilinearity for orientation normalisation. Following this, 66 depth images of the

mesh are rendered from viewpoints situated at the vertices of a geometric figure resem-

bling a soccer ball. Subsequently, SIFT features are extracted from these depth images.

Using the bag-of-words method, we generate a histogram descriptor of length 1000 for

each image of the shape. The degree of similarity between two shapes is determined

by aggregating the similarities of their corresponding views.

The retrieval task involves ranking the shapes. For each shape in the dataset, we rank

the remaining shapes in relation to it. Once ranked, we employ evaluation metrics

to assess the retrieval outcomes. From the literature, we adopt four evaluation met-

rics: Nearest Neighbor (NN) where the 1-NN algorithm identifies the single nearest

neighbour of a query point based on a distance metric (such as Euclidean distance)

and assigns the category of this nearest neighbour to the query point. , First Tier (FT)

refers to a metric that measures the precision at the first rank or the top-n results of

the retrieval, assessing how many of the most relevant (or similar) items are correctly

identified and ranked by the algorithm at the very top of its output list. Second Tier

(ST) , While first tier focuses on the precision of the top-ranked results, second tier

typically extends this evaluation to a broader set of top results, and Discounted Cu-

mulative Gain (DCG) where DCG is a measure used to evaluate the effectiveness of

ranking algorithms.

Comparison to prior work. To the best of our knowledge, there exists no learning-

based canonical form model specifically tailored for non-rigid shapes. Consequently,

all referenced works herein are non learning-based models.
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The majority of the methods mentioned in the literature leverage the Multidimensional

Scaling (MDS) technique [37]. Hence, MDS-based results are also included in our

comparisons. MDS takes a distance as an input and calculates a Euclidean space em-

bedding to retain that distance. For instance, Fast-MDS [39] projects geodesic dis-

tances into a Euclidean space, one dimension at a time. After determining geodesic

distances across all vertex pairs, two vertices that are furthest apart in Euclidean space

are selected for every dimension. Subsequently, the remaining vertices are projected

onto the line formed by these two vertices.

Alternatively, Non Metric MDS emphasises preserving the ordering of distances rather

than their exact values. It employs a stress function that incorporates both the geodesic

and Euclidean distances of vertices, further optimised with a function emphasising

dissimilarity.

Another method, Least Squares MDS [37], employs the SMACOF (Scaling by Major-

ising a Convex Function) algorithm. This iterative approach considers both geodesic

and Euclidean distances. The Accelerated MDS method [125] was designed to of-

fer a more efficient approximation of the pairwise geodesic distance maps, reducing

computational burdens.

Furthermore, Constrained MDS [122] capitalises on the exact correspondence between

an original shape and its Landmark MDS embedding. Through vertex adjustments and

the utilisation of deformation regularisation energy, a detail-rich pose can be realised

using MDS.

The Global Point Signatures (GPS) technique computes the embedding of a mesh.

Initially, the mesh’s discrete Laplace-Beltrami operator is computed using cotangent

weights. The foremost smallest eigenvalues are then determined. Given the invariant

nature of the Laplace-Beltrami operator’s eigenspaces to metric-preserving deforma-

tions, the GPS embedding provides a pose-invariant representation of the mesh.

The skeleton based method [112] suggests that a skeleton is derived from a mesh to
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Table 5.1: Retrieval results for Synthetic human dataset.
NN FT ST DCG

Classic MDS 0.10 0.22 0.39 0.54

Fast MDS 0.14 0.20 0.35 0.53

Non-metric MDS 0.09 0.24 0.41 0.55

Least Square MDS 0.01 0.13 0.31 0.45

Constrained MDS 0.04 0.14 0.25 0.46

GPS 0.40 0.20 0.32 0.56

Mesh Unfolding 0.04 0.18 0.34 0.49

Skeleton-based 0.01 0.14 0.32 0.46

Our 0.51 0.32 0.41 0.63

produce a canonical form. Following this, the Multidimensional SMACOF is utilised

on the skeleton, positioning it into a standard pose.

Lastly, the Detail-preserving Mesh Unfolding method [123] is based on finite elements

and omits the use of geodesics. This method, combining springs and finite elements,

delivers superior outcomes concerning element inversions and retrieval performance.

5.4.1 Results

Our model trained on two datasets and tested on three as stated earlier in Section 5.3.2.

For the synthetic human dataset [113], the results are shown in Table 5.1. The model

is trained using a cross validation method where we do cross validation across the

subjects and poses as poses are similar across the whole subjects. Specifically, the

subjects and poses are split into groups. Every time, shapes belonging to a chosen

group of subjects and a chosen group of poses are used as the test set, while we only

use shapes not containing any of these subjects or any of these poses as the training set.

This process ensures strict separation of training and test sets during cross validation.
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Table 5.2: Retrieval results for real human dataset, trained on synthetic human

dataset and tested on real human dataset.
NN FT ST DCG

Classic MDS 0.01 0.03 0.07 0.28

Fast MDS 0.00 0.02 0.04 0.27

Non-metric MDS 0.02 0.04 0.08 0.30

Least Square MDS 0.00 0.00 0.01 0.26

Constrained MDS 0.00 0.01 0.03 0.27

GPS 0.07 0.06 0.12 0.33

Mesh Unfolding 0.00 0.01 0.03 0.28

Skeleton-based 0.01 0.01 0.02 0.27

Our 0.04 0.023 0.051 0.23

Table 5.3: Retrieval results for TOSCA dataset.
NN FT ST DCG

Classic MDS 0.74 0.54 0.80 0.80

Fast MDS 0.73 0.52 0.77 0.77

Non-metric MDS 0.76 0.67 0.87 0.85

Least Square MDS 0.79 0.63 0.86 0.84

Constrained MDS 0.88 0.71 0.89 0.89

GPS 0.71 0.52 0.72 0.76

Mesh Unfolding 0.88 0.65 0.86 0.85

Skeleton-based 0.78 0.62 0.85 0.84

Our 0.91 0.76 0.80 0.89

The same protocol is applied to other experiments as well.

For the real human dataset [113], the results are shown in Table 5.2. As stated earlier,

due to the nature of the dataset there are no T-poses (ground truth pose), so as a result
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Input Depth Input Mask Output Depth Output Mask GT Depth GT Mask Our Mesh Skeleton-based Mesh

Figure 5.5: Some canonical form results on the synthetic dataset. The meshes are

extracted from the output depth images.

we trained the model on the synthetic dataset and then tested on the real human dataset.

Lastly, for the TOSCA dataset [19] the results are shown in Table 5.3. In the quantit-

ative results, our model outperforms the state-of-the-art models, except for real human

results, our result was the second on the NN metric, probably due to the domain gap.

All the methods performed quite poorly on this dataset, indicating the difficulties for

this task. For the qualitative results, for synthetic human dataset [113], the results are

shown in Figure 5.5, and for real human dataset [113], the results are shown in Figure

5.6. For the TOSCA dataset [19] the results are shown in Figure 5.7.
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Table 5.4: Ablation study on LFE and MSFE on TOSCA dataset.
NN FT ST DCG

Complete 0.91 0.76 0.80 0.89

without LFE 0.88 0.62 0.76 0.84

without MSFE 0.72 0.48 0.61 0.73

5.4.2 Ablation Studies

In this section, we conduct two ablation studies using the TOSCA dataset, chosen due

to its varied content.

LFE. Training the model without the LFE component resulted in lower performance

compared to the full model, as shown in Figure 5.9. Results are presented in Table 5.4.

MSFE. Without the MSFE component, the model’s performance was worse compared

to the complete model (Table 5.4). As observed in Figure 5.8, for classes like dog

or cat (which do not have hand or T-pose features), the model could reconstruct the

canonical pose. However, for shapes with outstretched hands and legs, such as centaur

or human, the results often missed those body parts.

5.5 Conclusion

In conclusion, our research presents a novel learning-based approach that transforms

a single depth image into a standard pose. Utilising both a depth image and its asso-

ciated mask, our model is able to estimate the canonical form even for unseen poses.

As illustrated in Figure 5.1, the model’s foundation is an encoder-decoder structure

designed to yield intricate features. We innovatively incorporate parallel encoders with

sparse convolution, allowing the capture of diverse neighbours and subsequently mix-

ing multi-scale features crucial for maintaining shape integrity. These amalgamated
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features act as the foundational layer to produce detailed characteristics. Conclusively,

the encoder-decoder architecture is harnessed to approximate the depth image in its

canonical form.

5.6 Limitations

The model exhibits sub-optimal performance on real human datasets, and the variety of

objects currently supported is limited. Additionally, the model primarily deals with 2D

depth images, making it suitable for 3D reconstruction and single-view applications,

but not directly applicable to complete 3D shapes. Transitioning from 3D shapes to

these 2D images could result in a loss of certain shape details. Consequently, the

output might not faithfully represent all aspects of the 3D shape in its canonical pose.

5.7 Summary

In this work, we presented our method and experiments on depth image reconstruction.

We introduced three components: a Local Feature Extractor to capture local features, a

Multi-Scale Feature Extractor to capture features across different scales, and a recon-

struction component specifically for reconstructing depth images. During evaluation,

we tested the model on three distinct datasets comprising various objects and demon-

strated favourable results compared to other methods.
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Input Depth Input Mask Output Depth Output Mask  Our Mesh Skeleton-based Mesh

Figure 5.6: Some canonical form results on real dataset. The model is first trained

on synthetic human dataset and then tested on real human dataset. There are no

ground truth available (T-pose). our meshes are extracted from the output depth

images.
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Input Depth Input Mask Output Depth Output Mask GT Depth GT Mask Our Mesh Skeleton-based Mesh

Figure 5.7: Some canonical form results on the TOSCA dataset. The meshes are

extracted from the output depth images.
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Input Depth Input Mask Output Depth Output Mask GT Depth GT Mask

Figure 5.8: Ablation results for MSFE show that: without MSFE, the model is

unable to estimate long dependencies.
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Input Depth Input Mask Output Depth Output Mask GT Depth GT Mask

Figure 5.9: Ablation results for LFE.
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Chapter 6

Conclusion

Overview

This thesis undertakes an in-depth exploration of tasks related to three-dimensional

(3D) reconstruction. Our comprehensive investigation spans multiple elements of this

domain, starting with the full reconstruction of rigid shapes from depth images. This

is followed by an examination of appropriate evaluation methods for assessing the

reconstructed shapes, ensuring a fair and valid appraisal of the outcomes. Finally, we

delve into the aspect of disentangling deformations in the context of non-rigid shape

reconstruction, thereby offering a holistic perspective on 3D shape reconstruction.

The comprehensive investigation undertaken within this research is encapsulated in

Section 6.1, providing a summary of our methodology, results, and insights. Sub-

sequent sections from 6.2 to 6.4 offer a detailed review of the key findings from each

chapter, emphasising our contributions to the field of 3D reconstruction.

In conclusion, Section 6.5 envisages future directions for this research, indicating the

prospective avenues to further enhance our understanding and capability in this area. It

provides a road map for subsequent investigations, thereby ensuring continuity in our

academic exploration of 3D reconstruction tasks.
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6.1 Summary

This research presents innovative models and techniques aimed at addressing the chal-

lenges of 3D reconstruction from a single depth image. We navigate issues with oc-

cluded views and complex object representations by deploying a self-attention mech-

anism, a dynamic latent code selection, and a cascaded sequential encoder-decoder

configuration. These enhancements ensure the efficient and effective reconstruction of

shapes.

Furthermore, we introduce a unified representation that mitigates the issues of distor-

tion that can arise when converting between different 3D representations like meshes,

point clouds, voxels, or implicit forms like Signed Distance Fields or Unsigned Dis-

tance Fields. Our unique approach employs a Regular dodecahedron for rendering,

where each face serves as a camera and light source point, ensuring a uniform cover-

age of the shape. We further refine the accuracy of our model with the mask-SSIM

(Structural Similarity Index), a variety of metrics, and forward feature selection, aim-

ing to align closely with human perception.

Finally, we then tackle the issue of non-rigid shapes, particularly their susceptibility

to deformation. We propose a model that disentangles deformation by transforming

depth images into a canonical form and fusing differentially distorted features for more

detailed reconstructions. Our results in generating a canonical form surpass those of

previous studies, reinforcing the effectiveness of our approach.

6.2 3D Reconstruction from Single Depth Images

Chapter 3 probes the complexities associated with reconstructing volumetric entities

from a single depth image, an endeavour that presents substantial challenges, particu-

larly when dealing with occluded views. This chapter outlines our novel model, which
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successfully mitigates these hurdles by employing a self-attention mechanism to focus

on global spatial features.

In the context of this complex task, we introduced a classifier to aid the model in finding

boundaries between categories. This classification mechanism plays an important role

in improving the overall reconstruction process, leading to more accurate and distinct

object forms.

In a further enhancement, we developed a mechanism for dynamic latent code selec-

tion. This mechanism enhances efficiency by ensuring that the reconstruction pro-

cess utilises only the crucial codes, thereby eliminating redundancy and enhancing the

model’s performance.

Moreover, the chapter presents our approach of adopting a sequential encoder-decoder

configuration in a cascade format to decompose the reconstruction process into man-

ageable stages. This sequential and layered approach to reconstruction helps make

the completion more manageable and easier to learn, thus improving the task’s overall

comprehensibility and effectiveness.

The performance of the proposed model was evaluated under a variety of conditions to

measure its robustness and versatility. Firstly, the model was subjected to tests within

a single category scenarios, thereby examining its ability to handle specific instances

of volumetric reconstruction.

Following this, we extended the testing environment to multi-category contexts, provid-

ing a more complex, real-world-like environment. This helped assess the model’s ca-

pacity to handle greater variety and complexity, which is integral to its applicability in

diverse practical situations.

In an additional and critical round of evaluation, we trained the model on certain pre-

defined categories and then tested it on categories that had been previously unseen

during the training phase. This experiment was aimed at understanding the model’s

adaptability and generalisability. These tests confirmed our model’s efficacy in dealing
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with novel scenarios, further establishing its superior performance over state-of-the-art

models.

6.3 Rendering based 3D Shape Evaluation

The complexity of three-dimensional (3D) reconstruction tasks necessitates an ap-

proach that can deal with a variety of representations, including meshes, point clouds,

voxels, or implicit representations like Signed Distance Fields (SDF) or Unsigned Dis-

tance Fields (UDF). However, each of these representations requires its own specific

evaluation metric tailored to the inherent characteristics of the representation. Fur-

thermore, attempts to convert these representations into a unified form may result in

distortion, potentially compromising the integrity of the original data.

To address mentioned issue, In chapter 4 we propose a novel unified representation that

obviates the need for multiple evaluation metrics and mitigates the risk of distortion.

Our method based on rendering the shape using an Regular dodecahedron where each

face is used as a position of a camera and source of light while the target is centred in

the middle of the dodecahedron, which being a Platonic solid, offers uniform coverage

of the shape, providing a more holistic and unbiased representation.

We render 12 images that encompass the entire shape, applying various styles and

shaders to simulate different scenarios. Subsequently, we employ the mask-SSIM

(Structural Similarity Index) to differentiate between each reconstructed shape and the

ground truth. Mask-SSIM is a modified version of the SSIM that is masked to separate

the background from the foreground, thus offering a more focused comparison.

We further refine our evaluation by generating a variety of metric results and integrating

them to form the input for our neural network model. The objective is to derive a

score that aligns closely with human perception, thereby enhancing the relevance and

practical utility of the model.
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Our approach also incorporates sequential forward feature selection to determine which

features have the most significant impact on the results. This allows us to effectively

utilise the model, focusing on the most influential attributes and discarding redundant

ones.

The model underwent extensive testing and training using three diverse datasets, where

it consistently demonstrated superior performance. In addition to internal cross-validation

within each dataset, we conducted cross-dataset validation, selecting features based on

one dataset and then training and testing another dataset using those features. This

approach further validated the robustness and versatility of our model, reinforcing its

potential for practical applications in 3D reconstruction tasks.

6.4 Learning to Generate Canonical Forms for Single

Depth Images

Chapter 3 of this thesis addresses the prominent research topic of 3D reconstruction

from a single depth image. While this field of research has seen considerable advance-

ments, the main focus has typically been on rigid shapes. Non-rigid shapes, charac-

terised by their susceptibility to deformation, present unique challenges that limit a

model’s ability to accurately reconstruct the complete shape.

To bridge this research gap, Chapter 5 introduces our novel model designed to disen-

tangle the deformation inherent in non-rigid shapes. Our approach involves deforming

a depth image into a canonical form, using various distillation to encompass a broader

global spatial structure. A range of features are then fused, creating a more detailed

feature vector, thereby enhancing the precision of the canonical form reconstruction.

In a further advancement, we propose a supplementary model aimed at completing

the shape after the disentanglement process. Notably, our results in generating a ca-

nonical form surpassed those of previous studies, demonstrating the superiority of our



6.5 Future Work 114

approach.

To ensure the robustness and generalizability of our model, we conducted extensive

cross-validation. Additionally, to mimic real-world scenarios, we adopted a ‘leave-

one-out’ strategy for deformations and subjects. This approach involved training the

model on all but three deformation and five subjects, which was then used as a test

case. Such an experimental design enabled us to more accurately evaluate our model’s

performance under unseen conditions, thereby reinforcing its potential for practical

application in the field of 3D reconstruction tasks.

6.5 Future Work

6.5.1 3D Reconstruction from Depth Images

The advancements made in Chapter 3 provide a solid foundation for future research in

3D reconstruction from a single depth image. Based on the findings and developments

in this thesis, the following areas have been identified as promising avenues for future

work:

1. Enhancing Self-Attention Mechanisms: The self-attention mechanism used in

this study proved to be an effective strategy for addressing global spatial features.

Future work could consider enhancing this mechanism with adaptive attention

strategies, allowing the model to better account for the variety and complexity of

features in different object categories.

2. Optimising Latent Code Selection: The dynamic latent code selection mech-

anism used in this study improved computational efficiency and results, but fu-

ture studies could focus on further optimisations. This could involve developing

methods to dynamically adapt the number of the latent codes based on the com-

plexity of the object being reconstructed.
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3. Expanding the Sequential Encoder-Decoder Framework: The sequential encoder-

decoder configuration was pivotal in our model’s success. Future research could

explore variations of this architecture, such as incorporating recurrent or trans-

former structures, to further enhance performance.

4. Dealing with Occlusions: Despite considerable progress made in handling oc-

cluded views, this remains a challenging aspect of 3D reconstruction.Future

studies might explore generation capabilities to offer multiple solutions.

Each of these potential areas of research could yield significant contributions to the

field of 3D reconstruction and could enhance our understanding and capabilities in

tackling complex 3D tasks.

6.5.2 Rendering based 3D Shape Evaluation

Building on the innovations of our research, several areas for future work emerge.

These include:

1. Extend Unified Representation: The unified representation proposed in our

study proved effectiveness; however we could extend experiments to support

implicit representation (SDF and UDF), as the current implementation does not

support Implicit representation.

2. Improved Rendering Techniques: We utilised a dodecahedron-based method

to determine the viewpoint for rendering process to derive the uniform represent-

ation. Exploration of alternative rendering styles and shaders or another platonic

shape could potentially yield more accurate or efficient results.

These potential directions promise to advance the state of the art in 3D reconstruction,

bringing us closer to practical, efficient, and accurate methods for complex 3D tasks.
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6.5.3 Learning to Generate Canonical Forms for Single Depth Im-

ages

The findings and advancements of our research in the area of 3D reconstruction from

a single depth image, particularly in the context of non-rigid shapes, pave the way for

various future endeavours. Some of the potential directions for future work include:

1. Extending the non-rigid classes: While our approach effectively disentangles

the deformation inherent in non-rigid shapes, the dataset encompasses only a

few classes. Future work could explore extending the dataset to include a wider

variety of shapes.

2. Improving the Canonical Form Generation: Our model excels at estimating

the canonical pose, which is a pose chosen during training. In the future, we

could enhance it to automatically estimate a suitable pose as the canonical form,

reducing the burden of applying the technique.

3. Enhancing the Shape Completion Model: We have proposed a learning-based

model for canonical pose estimation using depth images. A potential future work

would be to incorporate shape completion to reconstruct non-rigid 3D shapes

from depth images.

These future directions offer exciting prospects for the further advancement of 3D

reconstruction, particularly in the context of non-rigid shapes, and have the potential

to make a significant impact in both academia and industry.



117

Bibliography

[1] Ilyass Abouelaziz, Aladine Chetouani, Mohammed El Hassouni, and Hocine
Cherifi. No-reference mesh visual quality assessment using graph-based deep
learning. In 2021 IEEE 23rd International Workshop on Multimedia Signal

Processing (MMSP), pages 1–6. IEEE, 2021.

[2] Ilyass Abouelaziz, Aladine Chetouani, Mohammed El Hassouni, Hocine
Cherifi, and Longin Jan Latecki. Learning graph convolutional network for
blind mesh visual quality assessment. IEEE Access, 9:108200–108211, 2021.

[3] Ilyass Abouelaziz, Aladine Chetouani, Mohammed El Hassouni, Longin Jan
Latecki, and Hocine Cherifi. Convolutional neural network for blind mesh visual
quality assessment using 3d visual saliency. In 2018 25th IEEE International

Conference on Image Processing (ICIP), pages 3533–3537. IEEE, 2018.

[4] Ilyass Abouelaziz, Aladine Chetouani, Mohammed El Hassouni, Longin Jan
Latecki, and Hocine Cherifi. Mesh visual quality based on the combination of
convolutional neural networks. In 2019 Ninth International Conference on Im-

age Processing Theory, Tools and Applications (IPTA), pages 1–5. IEEE, 2019.

[5] Ilyass Abouelaziz, Aladine Chetouani, Mohammed El Hassouni, Longin Jan
Latecki, and Hocine Cherifi. 3D visual saliency and convolutional neural net-
work for blind mesh quality assessment. Neural Computing and Applications,
32(21):16589–16603, 2020.

[6] Ilyass Abouelaziz, Aladine Chetouani, Mohammed El Hassouni, Longin Jan
Latecki, and Hocine Cherifi. Combination of handcrafted and deep learning-
based features for 3D mesh quality assessment. In 2020 IEEE International

Conference on Image Processing (ICIP), pages 171–175. IEEE, 2020.



Bibliography 118

[7] Ilyass Abouelaziz, Aladine Chetouani, Mohammed El Hassouni, Longin Jan
Latecki, and Hocine Cherifi. No-reference mesh visual quality assessment via
ensemble of convolutional neural networks and compact multi-linear pooling.
Pattern Recognition, 100:107174, 2020.

[8] Ilyass Abouelaziz, Mohammed El Hassouni, and Hocine Cherifi. A curvature
based method for blind mesh visual quality assessment using a general regres-
sion neural network. In 2016 12th International Conference on Signal-Image

Technology & Internet-Based Systems (SITIS), pages 793–797. IEEE, 2016.

[9] Ilyass Abouelaziz, Mohammed El Hassouni, and Hocine Cherifi. No-reference
3D mesh quality assessment based on dihedral angles model and support vec-
tor regression. In Image and Signal Processing: 7th International Conference,

ICISP 2016, Trois-Rivières, QC, Canada, May 30-June 1, 2016, Proceedings 7,
pages 369–377. Springer, 2016.

[10] Ilyass Abouelaziz, Mohammed El Hassouni, and Hocine Cherifi. A convolu-
tional neural network framework for blind mesh visual quality assessment. In
2017 IEEE International Conference on Image Processing (ICIP), pages 755–
759. IEEE, 2017.

[11] Ilyass Abouelaziz, Mohammed El Hassouni, and Hocine Cherifi. Blind 3D mesh
visual quality assessment using support vector regression. Multimedia Tools and

Applications, 77:24365–24386, 2018.

[12] Ilyass Abouelaziz, Mounir Omari, Mohammed El Hassouni, and Hocine Cherifi.
Reduced reference 3D mesh quality assessment based on statistical models. In
2015 11th International Conference on Signal-Image Technology & Internet-

Based Systems (SITIS), pages 170–177. IEEE, 2015.

[13] Rémy Alcouffe, Simone Gasparini, Geraldine Morin, and Sylvie Chambon.
Blind quality of a 3D reconstructed mesh. In 2022 IEEE International Con-

ference on Image Processing (ICIP), pages 3406–3410. IEEE, 2022.

[14] Evangelos Alexiou and Touradj Ebrahimi. Towards a point cloud structural
similarity metric. In 2020 IEEE International Conference on Multimedia &

Expo Workshops (ICMEW), pages 1–6. IEEE, 2020.



Bibliography 119

[15] Antonio Alliegro, Diego Valsesia, Giulia Fracastoro, Enrico Magli, and Tatiana
Tommasi. Denoise and contrast for category agnostic shape completion. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Re-

cognition, pages 4629–4638, 2021.

[16] Dominik Bauer, Timothy Patten, and Markus Vincze. Reagent: Point cloud re-
gistration using imitation and reinforcement learning. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
14586–14594, 2021.

[17] Zhe Bian, Shi-Min Hu, and Ralph R Martin. Evaluation for small visual differ-
ence between conforming meshes on strain field. Journal of Computer Science

and Technology, 24(1):65–75, 2009.

[18] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Gener-
ative and discriminative voxel modeling with convolutional neural networks.
arXiv:1608.04236, 2016.

[19] Alexander M Bronstein, Michael M Bronstein, and Ron Kimmel. Numerical

geometry of non-rigid shapes. Springer Science & Business Media, 2008.

[20] AM Bronstein, MM Bronstein, U Castellani, B Falcidieno, A Fusiello, Afzal
Godil, LJ Guibas, I Kokkinos, Zhouhui Lian, M Ovsjanikov, et al. SHREC
2010: robust large-scale shape retrieval benchmark. Proc. 3DOR, 5(4):1–8,
2010.

[21] B Bustos, H Tabia, JP Vandeborre, and R Veltkamp. Coulomb shapes: Using
electrostatic forces for deformation-invariant shape representation. In Proceed-

ings of the 7th eurographics workshop on 3D Object Retrieval, pages 9–15,
2014.

[22] Yingjie Cai, Kwan-Yee Lin, Chao Zhang, Qiang Wang, Xiaogang Wang, and
Hongsheng Li. Learning a structured latent space for unsupervised point cloud
completion. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 5543–5553, 2022.

[23] John Canny. A computational approach to edge detection. IEEE Transactions

on pattern analysis and machine intelligence, PAMI-8(6):679–698, 1986.



Bibliography 120

[24] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qix-
ing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,
et al. ShapeNet: An information-rich 3D model repository. arXiv preprint

arXiv:1512.03012, 2015.

[25] Weikai Chen, Cheng Lin, Weiyang Li, and Bo Yang. 3PSDF: Three-pole signed
distance function for learning surfaces with arbitrary topologies. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 18522–18531, 2022.

[26] Zhang Chen, Yinda Zhang, Kyle Genova, Sean Fanello, Sofien Bouaziz, Chris-
tian Häne, Ruofei Du, Cem Keskin, Thomas Funkhouser, and Danhang Tang.
Multiresolution deep implicit functions for 3D shape representation. In Pro-

ceedings of the IEEE/CVF International Conference on Computer Vision, pages
13087–13096, 2021.

[27] An-Chieh Cheng, Xueting Li, Sifei Liu, Min Sun, and Ming-Hsuan Yang.
Autoregressive 3D shape generation via canonical mapping. In Computer

Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–

27, 2022, Proceedings, Part III, pages 89–104. Springer, 2022.

[28] Aladine Chetouani. Three-dimensional mesh quality metric with reference
based on a support vector regression model. Journal of Electronic Imaging,
27(4):043048–043048, 2018.

[29] Aladine Chetouani, Maurice Quach, Giuseppe Valenzise, and Frédéric Dufaux.
Convolutional neural network for 3D point cloud quality assessment with ref-
erence. In 2021 IEEE 23rd International Workshop on Multimedia Signal Pro-

cessing (MMSP), pages 1–6. IEEE, 2021.

[30] Aladine Chetouani, Maurice Quach, Giuseppe Valenzise, and Frédéric Dufaux.
Deep learning-based quality assessment of 3D point clouds without reference.
In 2021 IEEE International Conference on Multimedia & Expo Workshops

(ICMEW), pages 1–6. IEEE, 2021.

[31] G.K. Cheung, T. Kanade, J.Y. Bouguet, and M. Holler. A real time system for
robust 3D voxel reconstruction of human motions. In IEEE CVPR, volume 2,
pages 714–720, 2000.



Bibliography 121

[32] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. Implicit functions in
feature space for 3D shape reconstruction and completion. In Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition, pages
6970–6981, 2020.
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