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Abstract
Objective: This study was undertaken to validate a set of candidate biomarkers 
of seizure susceptibility in a retrospective, multisite case–control study, and to 
determine the robustness of these biomarkers derived from routinely collected 
electroencephalography (EEG) within a large cohort (both epilepsy and common 
alternative conditions such as nonepileptic attack disorder).
Methods: The database consisted of 814 EEG recordings from 648 subjects, col-
lected from eight National Health Service sites across the UK. Clinically non-
contributory EEG recordings were identified by an experienced clinical scientist 
(N = 281; 152 alternative conditions, 129 epilepsy). Eight computational markers 
(spectral [n = 2], network-based [n = 4], and model-based [n = 2]) were calculated 
within each recording. Ensemble-based classifiers were developed using a two-
tier cross-validation approach. We used standard regression methods to assess 
whether potential confounding variables (e.g., age, gender, treatment status, co-
morbidity) impacted model performance.
Results: We found levels of balanced accuracy of 68% across the cohort with 
clinically noncontributory normal EEGs (sensitivity =61%, specificity =75%, 
positive predictive value =55%, negative predictive value =79%, diagnostic odds 
ratio =4.64, area under receiver operated characteristics curve =.72). Group level 
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1   |   INTRODUCTION

Epilepsy affects >50 million people worldwide, with es-
timates suggesting approximately 2.4 million new cases 
worldwide per year.1 Epilepsy remains a clinical diagno-
sis, based on expert analysis of likelihood of further sei-
zures, a decision that considers multiple factors including 
a person's medical history and results from routine di-
agnostic tests such as the scalp electroencephalography 
(EEG). However, the sensitivity of routine EEG in the 
identification of persons with epilepsy remains low, rely-
ing on expert identification of interictal epileptiform dis-
charges (IEDs).2,3 The overall specificity of routine EEG 
is broadly estimated to fall within a range of 78%–98%, 
but individual studies often report wide confidence inter-
vals (CIs).2,3 Additionally, it is currently recommended 
that EEGs lacking IEDs (herein termed “noncontribu-
tory EEGs”) should not be used in isolation to exclude 
a diagnosis of epilepsy (see e.g. NICE guidelines 20174). 
As a result, delay in both the diagnosis of epilepsy and its 
differentials is common, driving research into identifica-
tion of biomarkers of epilepsy, using routine EEG as a 
substrate. Computational approaches to interrogate rou-
tine EEG have attracted much interest recently. Typically, 
these have focused on automatic identification of IED, 
and/or computation of whole-brain networks by analy-
sis of resting-state EEG, that is, those portions of EEG in 
which no epileptiform features are present.5–7 Automatic 
identification of IED is both sensitive to EEG artifacts and 
limited in its performance by the levels of identification 
achieved by the trained expert. Recently, AI approaches 
such as SCORE-AI have been proposed for the analysis of 
routine EEGs, with a particular focus on the identification 
of (diagnostic) abnormalities.8,9

In contrast, approaches that do not require the pres-
ence of IED offer the potential to improve sensitivity of 
routine EEG in a complementary fashion to present clin-
ical practice. Here, the focus is on features that are not 

currently considered clinically informative. For example, 
computational analysis of resting-state EEG has consis-
tently revealed differences in whole-brain network mea-
sures at the group level. These differences, confirmed by 
meta-analysis, have been shown in case–control studies 
in both generalized and focal epilepsies when compared 
to healthy participants.6,10 Although constituting phase 
1 level evidence, it is unclear whether these findings are 
translatable to patient cohorts typical of those seen in 
clinical practice. Few studies have assessed group level 
changes in resting-state or clinically noncontributory 
EEG between persons with epilepsy and persons with an 
alternative condition (e.g., syncope or nonepileptic attack 
disorder [NEAD]) who may also be referred for an EEG 

analysis found no evidence suggesting any of the potential confounding variables 
significantly impacted the overall performance.
Significance: These results provide evidence that the set of biomarkers could 
provide additional value to clinical decision-making, providing the foundation 
for a decision support tool that could reduce diagnostic delay and misdiagnosis 
rates. Future work should therefore assess the change in diagnostic yield and 
time to diagnosis when utilizing these biomarkers in carefully designed prospec-
tive studies.
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Key points

•	 Analysis of resting-state EEG has revealed 
group level differences between people with ep-
ilepsy and those with an alternative condition.

•	 We validated an existing set of eight biomark-
ers (spectral-, network-, and model-based) in a 
representative population of clinically nonin-
formative EEGs (N = 281).

•	 Statistical classifiers trained on these nonin-
formative EEGs showed better-than-chance 
performance: sensitivity of 61% and diagnostic 
odds ratio of 4.64 by RUSboost.

•	 The study findings demonstrate the potential 
added value of computational biomarkers from 
EEG for people with suspected epilepsy and 
seizures.

•	 By offering decision support in clinically non-
informative EEG, these methods might in the 
future contribute to reduced diagnostic delay 
and misdiagnosis rates.
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following a seizurelike event. However, those that did have 
also confirmed the presence of identifiable group level 
differences, demonstrating the potential of computational 
biomarkers both in the presence of identifiable IED and in 
noncontributory EEGs.11 It is also unclear how group level 
effects translate to the individual level. For example, the 
group level differences observed in Larsson and Kostov12 
were shown to offer very limited predictive capacity at 
the individual level.5,13 A further limitation in the studies 
described above is that typically they were performed on 
data obtained from a small number of diagnostic centers.

Addressing these challenges, we developed a robust 
classification pipeline to validate a set of candidate bio-
markers in a way that is relevant to clinical practice. To 
this end, we performed a retrospective, multisite case–con-
trol study. Our study includes people ultimately diagnosed 
with epilepsy, as well as those ultimately diagnosed with 
common alternatives including syncope and NEAD. To 
maximize robustness and increase its clinical applicabil-
ity, we leveraged a two-tier cross-validation approach, and 
made no exclusions based on comorbidity (including neu-
rological), medication (including antiseizure medications 
or medications with known effects on the EEG), or time 
since first, or most recent, seizure or seizurelike event.

2   |   MATERIALS AND METHODS

2.1  |  Study design and participants

Eight sites within the National Health Service (NHS) 
participated in this study (Figure  1). Inclusion and 

exclusion criteria may be found at clinicaltrials.gov 
(identifier: NCT05384782). In summary, inclusion re-
quirements were as follows: adult; suspected of having 
had a seizure or epilepsy; one or more EEGs recorded 
as part of the diagnostic process with a minimum of 19 
channels, applied to the 10–20 international system of 
electrode placement; and a final diagnosis of epilepsy 
or a common alternative condition (e.g., syncope, non-
epileptic attack disorder) determined by a clinical expert 
(e.g., neurologist), which has remained stable for at least 
1 year. To minimize selection bias, participants who met 
the inclusion criteria were included in backward chron-
ological order. An initial target total of 100 participants 
was set for each participating site. NHS sites supplied 
EEG traces alongside metadata detailing patient sex, 
age, comorbidities, medication status, EEG result (nor-
mal, abnormal but not diagnostic, or diagnostic of epi-
lepsy), and final diagnosis (Table 1).

EEGs that were reported by the consultant neurophys-
iologist of each participating site as “normal” or “abnor-
mal” (but without diagnostic features) were included in 
this study. For classification purposes, an abnormal EEG 
included EEGs that contained abnormal features that 
were not specific for epilepsy, and that therefore did not 
contribute to the ultimately confirmed diagnosis. An ex-
ample of such an EEG could include incidental findings 
of nonspecific abnormalities such as those that may be 
of a vascular, pharmacological, structural, or metabolic 
pathophysiological origin. Due to the inherent heteroge-
neity introduced by the presence or absence of EEG ab-
normalities, individual classifiers will be developed for 
the normal and the abnormal clinically noncontributory 

F I G U R E  1   Cohort profile and analysis pipeline. (A) Cohort profile. Final analysis was carried out on the first available 
electroencephalogram (EEG) of each participant that was clinically noncontributory. (B) Flow diagram summarizing analysis steps. UCLH, 
University College London Hospitals.
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cohorts separately. Where more than one EEG was sub-
mitted per patient, only the first relevant noncontributory 
EEG was used for each cohort (this means that subjects 
with a clinically normal EEG as well as a nonspecific ab-
normal EEG would have those respective EEGs included 
in the relevant model arms). In the (anticipated to be rare) 
case of a dual diagnosis of epilepsy and NEAD (or another 
common alternative or comorbidity), the subject was in-
cluded in the epilepsy cohort.

2.2  |  EEG preprocessing

Scalp EEG data were imported into MATLAB (R2021b). 
The same 19 clinical EEG channels (Appendix S1) were 
chosen for all participants across all sites, whereas any 
other channels were discarded. Recordings were notch 
filtered at 50 Hz and bandpass filtered from .53 to 70 Hz 
using a 4th order Butterworth zero-phase filter and reref-
erenced to average. Bad channels were interpolated using 
the Fieldtrip Toolbox.14 Epochs were rejected if the power 
within a channel was smaller than 10−5 of the median 
power across channels, or if it contained z-scored values 
> 10. If 33% of the epochs were impacted by such artifacts, 
a different 20-min window was selected if present, and 
otherwise the EEG was excluded.

2.3  |  Candidate markers

Published resting-state biomarkers of EEG were reviewed in 
the literature making use of Google Scholar and PubMed. 
We searched for papers that had reported areas under re-
ceiver operating characteristic curve (AUROCs) for statis-
tical models classifying epilepsy from resting-state EEG/
magnetoencephalography and used these AUROC values as 

the a priori effect size. A total of six papers were identified, 
with AUROC values ranging from .43 to .99.15–20 Following 
the method of Riley et al.,21 we found seven estimates for the 
maximal number of markers. Of these seven estimates, six 
suggested a maximum of eight markers and one suggested 
a maximum of seven markers. Hence, we proceeded to se-
lect the first eight markers from an ordered list of candidate 
markers (ordered by individual effect size).5

2.3.1  |  Frequency-based markers

Two frequency-based markers were calculated. The peak-
alpha frequency was calculated by averaging the power 
spectrum of the occipital electrodes (O1 and O2) and cal-
culating the frequency corresponding to the peak of the 
spectrum in the 8–13-Hz range.20,22,23 High alpha power 
was determined by calculating the 10.5–13.5-Hz relative 
power (averaged across channels after bipolar-referencing 
of the frontal and temporal channels).18

2.3.2  |  Network-based markers

The low-alpha band (6–9 Hz) phase-locking value (PLV) 
was computed between pairs of electrodes, and four graph 
theoretical markers were calculated from these weighted 
undirected networks.24,25 These markers were mean de-
gree, degree variance, average weighted clustering coeffi-
cient, and characteristic path length.26

2.3.3  |  Model-based markers

The final two markers are derived from the phenom-
enological multiscaled oscillator model of the EEG.13,15 

Characteristic Abnormal EEG Normal EEG Total

Age, mean (SD; 
range), years

50.5 (20.1; 18–91) 38.2 (14.4; 18–91) 42.0 (17.4; 18–91)

Sex, n (%)

Female 58 (65.2) 102 (53.1) 160 (56.9)

Male 31 (34.8) 89 (46.4) 120 (42.7)

Other 0 (0) 1 (.5) 1 (.4)

ASM treatment status, n (%)

Yes 40 (44.9) 70 (36.5) 110 (39.1)

No 49 (55.1) 122 (63.5) 171 (60.9)

Presence of comorbidity, n (%)

Yes 64 (71.9) 123 (64.1) 187 (66.5)

No 25 (28.1) 69 (35.9) 94 (33.5)

Abbreviations: ASM, antiseizure medication; EEG, electroencephalogram.

T A B L E  1   Metadata of the participants 
included in the study.
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For both markers, an individual's low-alpha PLV net-
work and alpha power are used to parameterize a model 
that simulates EEG in which each electrode is described 
as a system of coupled oscillators (locally coupled ac-
cording to each channel's alpha power and scaled with 
a value called "local coupling"), and electrodes are con-
nected according to the PLV weights (scaled by some 
value called "global coupling"). The first marker, criti-
cal coupling, is the theoretical value of global coupling 
that causes the oscillators to synchronize (i.e., a simu-
lated seizure). The second marker, local coupling, is the 
theoretical value of local coupling (for a single simu-
lated EEG electrode) that causes synchronization. The 
marker corresponds to the maximum value across the 
19 channels (representing the single most "ictogenic" 
node in the model).

2.3.4  |  Marker calculation

All markers were implemented in MATLAB (R2021b) 
using built-in MATLAB functions and toolboxes (e.g., 
the signal-processing toolbox), the brain connectivity 
toolbox, and previously published scripts for model-
based markers.13,26 To minimize the effect of artifacts 
or nonspecific abnormalities, EEG data were segmented 
into 20-s epochs and the eight markers were calculated 
for each epoch. The median value for each marker 
across all 20-s epochs was subsequently used for further 
analysis. Within each recording, 20 min of EEG was se-
lected. The chosen starting time was sampled from the 
distribution of starting times of all routine EEGs within 
the study (Appendix S1).

2.4  |  Confounder model

Markers were adjusted for effects of confounders such as 
age, comorbidities, antiseizure medications (ASM), and 
sex. To do so, we constructed a generalized linear model 
of the form:

where y is a given marker; Age is participant age; Sex, 
Comorbidity, ASM, and Group each have a value equal to 
1 if the participant is respectively male, has comorbid disor-
ders (e.g., dementia, stroke), is being treated with ASM, and 
has epilepsy or have value zero otherwise; � i, i ∈ {�, … , �} 
are the parameters of the model; and � is the participant-
specific residuals. Prior to linear modeling, the relevant vari-
ables were transformed using a monotonic function (e.g., log 

transform) to better approximate normality in the residuals. 
Note that during hold-out cross-validation, confounder cor-
rection was applied to both training and hold-out sets using 
linear models fitted to the training set (i.e., the � i estimated 
from the training set were used for adjusting the markers in 
the test/hold-out set):

2.5  |  Statistical model

Statistical models were developed using a two-tiered (or 
nested) cross-validation scheme (Figure  2). Data were 
partitioned using nested 10-fold cross-validation, and a 
suite of statistical models were trained using MATLAB's 
Classification Learner application (Figure  2). Each in-
dividual is part of an independent hold-out fold (of size 
10%; used to assess the performance of the final model) 
exactly once; in the remaining nine folds, the individual 
is part of development sets (of size 90%; approximately 
81% of the original size of the entire dataset). A devel-
opment set is then split into 10 further folds, with one 
internal test set (10% of the development data; approxi-
mately 1% of the original dataset) for cross-validation 
(the remaining 90% of the development data are used for 
training). In total, 30 different statistical models were 
assessed during cross-validation (regression-based, 
decision trees, discriminant analysis, support vector 
machines, ensemble classifiers, k-nearest neighbors 
methods, and neural networks; see Appendix  S1). For 
each training fold, principal component analysis (PCA) 
was performed on the training set (with the aim of fea-
ture reduction), and the PCA weights (i.e., hyperparam-
eter) from the training set were subsequently applied to 
the internal hold-out set. A full description of the hyper-
parameters for model training is given in Appendix S1. 
Ultimately, the model with the highest mean cross-
validated balanced accuracy was then selected, and 
its performance was assessed with the independent 
hold-out folds. In other words, the model is trained 10 
times on the development sets (with 10-fold internal 
cross-validation) and then tested on the 10 correspond-
ing independent hold-out sets. Model performance was 
characterized using a set of well-established outcome 
metrics including balanced accuracy, AUROC, and Brier 
score (Appendix  S1). Potential relationships between 
confounders and overall performance were tested with 
Fisher exact test (95% significance) and the Kruskal–
Wallis test (95% significance), using Bonferroni correc-
tion for multiple comparisons. Effect sizes for individual 
candidate biomarkers were explored using violin plots. 
The study followed the TRIPOD reporting guideline (re-
porting guidelines from the equator network).

(1)
y=��+�� ⋅���+�� ⋅���+�� ⋅�����������

+�
 ⋅���+�� ⋅
��	�+�,

(2)yadj = y − �� ⋅ ��� − �� ⋅ ��� − �� ⋅ ����������� − �� ⋅ ��
.
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2.6  |  Evaluating model performance

To evaluate the model performance, we contrasted it with 
the performances of a naïve classifier, permutation-based 
models, and a confounder-only model. The naïve classi-
fier corresponds to taking the majority class as the final 
classification for each subject. In the permutation-based 
testing, we used 100 permutations without replacement 
of the labels before cross-validation. This effectively pro-
vides a null model, by assessing the maximal performance 
of the machine learning framework when it is applied 
to these permuted datasets. This effectively establishes 
a lower bound for what could be achieved by "chance" 
alone. Finally, the confounder-only model utilizes the 
same machine learning framework, but now the features 
correspond to the confounder data (age, sex, ASM status, 
and comorbidity status). This effectively provides a base-
line for what potential added performance could be de-
rived from the EEG biomarkers.

3   |   RESULTS

A total of 814 EEG files from 648 individual patients 
were considered, having been collected as described in 
Section 2. All metadata were analyzed by an experienced 
clinical scientist (L.E.S.). A total of 367 were excluded from 
the present analysis either because they had no noncon-
tributory EEGs, there were critically missing metadata, or 
the EEG was provided in an unreadable data format (see 
also Figure 1). The first recorded noncontributory EEGs 

from 281 participants were analyzed for model develop-
ment and validation. Of these, 89 subjects (31.7%) were 
reported by the consultant neurophysiologist as nonspe-
cifically abnormal and 192 (68.2%) as normal. Of the 281 
subjects, 129 (45.9%) were ultimately diagnosed with epi-
lepsy (nine generalized, 106 focal, and 14 unclassified—
either unknown or information not available), and 152 
(54.1%) were ultimately diagnosed with an alternative 
condition. Full details on age, gender, comorbidity, and 
treatment status are summarized in Table 1.

For the 197 subjects with a normal noncontributory 
EEG, the random undersampling boosting (RUB) model 
achieved the highest level of mean balanced accuracy 
(65.1%, SD = 3.0%) during 10-fold cross-validation in the 
training phase.27 The PCA approach reduced the feature 
space to four principal components (mean explained 
variance = 96.8%, SD = .12%). The final RUB model 
(with four principal components) achieved balanced ac-
curacy of 67.9% on the independent test set (Figure 3), 
AUROC of .72, and a diagnostic odds ratio of 4.64 (95% 
CI = 2.47–8.71). An extensive set of performance met-
rics, including AUROC, recall, F1 score, Brier score, 
and a confusion matrix, was calculated (Figure S2); an 
additional analysis with the mean AUROC as the per-
formance metric during cross-validation similarly iden-
tified the RUB model with four principal components as 
optimal (.69, SD = .024).

For the 93 subjects with an abnormal noncontribu-
tory EEGs, the subspace discriminant model achieved 
the highest level of mean balanced accuracy (58.2%, 
SD = 4.6%) during 10-fold cross-validation in the training 

F I G U R E  2   Two-tier cross-validation. Flow diagram depicts the two-tier cross-validation scheme for model development. Each 
individual electroencephalogram is part of a hold-out set exactly once. A suite of statistical models is explored to find a model with optimal 
performance in terms of balanced accuracy during the training phase. Then this model is tested against the independent hold-out sets. 
Balanced accuracy is reported for the cross-validated development set and the final hold-out test set. Full details on the modeling steps are 
given in Appendix S1. PCA, principal component analysis.
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phase. The PCA approach did not reduce the feature space 
to lower dimensionality. The final subspace discriminant 
model achieved balanced accuracy of 61.2% on the inde-
pendent test set (Figure 4), AUROC of .65, and a diagnos-
tic odds ratio of 2.48 (95% CI = .94–6.51; see Figure S2 for 
an extensive list of performance metrics).

At the level of the individual markers, several of 
the overall observed trends within the noncontributory 
EEGs were concordant with the findings from the orig-
inal development studies using boxplots. In particular, 
there was an observed trend for increased mean degree, 
degree variance, and average clustering coefficient, and 
decreased characteristic path length and critical coupling 
(see Figures S3–S6). The discordant cases were further 
investigated. We found no association between misclas-
sification and age, gender, ASM status, the presence of 
comorbidity, or specific clinical site (Appendix S1).

To assess how model performance contrasts with naïve 
or chance-driven approaches (e.g., finite sample-size 

effects), we compared model performance for the normal 
noncontributory EEGs against three different indepen-
dent methods: (1) naïve classification (majority class), (2) 
permutation-based testing (n = 100), and (3) confounder-
only model. For the naïve classification, standard accu-
racy was 54.1% overall (majority: nonepilepsy), 66.0% 
in the clinically normal cohort and 28.0% in the abnor-
mal cohort due to the inverted imbalances, and 50% 
throughout when balanced accuracy was the primary 
outcome metric. For the permutation-based testing, we 
found a mean balanced accuracy of 50.5% for the nor-
mal noncontributory cohort (range = 43.5%–58.8%; see 
also Figure  5). Finally, the confounder-model reached 
balanced accuracy of 57.6% for a quadratic support vec-
tor machine (SVM) model. When using the AUROC as 
the primary outcome metric during model development, 
we found mean AUROC of .50 (range = .40–.60) for the 
permutation-based tests and .44 for a cubic SVM model 
using confounders only.

F I G U R E  3   Random undersampling boosting (RUB) likelihood 
scores for normal clinically noncontributory EEGs. Violin plots 
display the likelihood scores from the RUB model across the 
epilepsy (blue) and alternative condition (orange) groups for 
subjects whose EEGs were considered clinically normal but 
noncontributory. Individual values for each EEG (subject) are 
displayed with a swarm plot (darker blue and orange). Mean 
(diamond) and 95% confidence intervals are displayed within each 
violin plot (black).

F I G U R E  4   Subspace discriminant likelihood scores for 
abnormal clinically noncontributory electroencephalograms 
(EEGs). Violin plots display the likelihood scores from the subspace 
discriminant model across the epilepsy (blue) and alternative 
condition (orange) groups for subjects whose EEGs were 
considered clinically abnormal but noncontributory. Individual 
values for each EEG (subject) are displayed with a swarm plot 
(darker blue and orange). Mean (diamond) and 95% confidence 
intervals are displayed within each violin plot (black).



8  |      TAIT et al.

4   |   DISCUSSION

In this retrospective, multisite case–control study, clini-
cally noncontributory EEG recordings were interrogated 
using a set of candidate biomarkers and a statistical 
model developed for classification. The models were 
cross-validated and tested on noncontributory EEGs from 
a cohort of 129 subjects with epilepsy and 152 subjects 
originally suspected of having epilepsy but ultimately 
receiving a diagnosis for an alternative condition. The 
models achieved increased performance in comparison 
to existing similar studies, contrasting favorably with the 
clinical yield for routine EEG recordings of this nature.2,7 
Additionally, because the classifiers were tested on the 
first available noncontributory EEG recording for each 
subject without requiring clinical marking, the developed 
statistical models could potentially reduce diagnostic 
delay without increasing clinical workload.

The cohort of people enrolled in the study, who were 
ultimately diagnosed by a clinical expert either with epi-
lepsy or with an alternative diagnosis, represent the vari-
ability of subjects expected in standard clinical practice in 
a way that single-site studies using healthy participants 
for control data cannot. Furthermore, in current clinical 
practice, given that a contributory EEG (e.g., one with 
the presence of IEDs) can support a diagnosis of epilepsy, 
additional information gleaned from a digital biomarker 
is unlikely to alter clinical decision-making or clinical 
management; in this instance, the presence of IEDs will 
take precedence. Therefore, the true value in digital bio-
markers of whole-brain networks lies in their ability to 

discriminate EEGs from persons with and without epi-
lepsy when applied to noncontributory EEGs. Hence, to 
determine the potential added value of this set of candi-
date biomarkers, we assessed their performance only in 
first EEGs that were noncontributory. The routine clinical 
analysis of these recordings did not contribute one way or 
the other to a diagnosis at the time they were collected. 
This is a key differentiator of this study from other stud-
ies into candidate biomarkers for epilepsy, which typically 
include EEGs both containing IEDs and those without, 
or used high-density EEG.5,7,28,29 The approach presented 
here allows the potential added value of using biomarkers 
in addition to current standard clinical practice to be as-
sessed. It is important to emphasize that the performance 
metrics (e.g., sensitivity or balanced accuracy) consider 
the model as a standalone test (which is not representative 
of clinical decision-making of epilepsy), rather than as a 
potential complementary test that could be utilized when 
the EEG is considered clinically noninformative. In line 
with this, we emphasize that the presented cross-validated 
results present historic or retrospective confidence in the 
biomarker model. Their ultimate utility within the clini-
cal pathway requires a number of additional clinical val-
idation steps. For example, to assess the added value of 
clinical decision support, a continuous risk score should 
be well calibrated, for example, using Platt scaling (see 
Figure  S7). The results presented suggest that an exist-
ing set of candidate biomarkers that was evidenced on 
primarily phase 1 evidence, contained generalizable pre-
dictive power in a retrospective phase 2 setting. It is im-
portant to consider how the observed results compare to 
"null models" (e.g., due to finite sample-size effects); using 
independent methods (including a confounder-only and 
permutation-based testing where labels are randomly 
shuffled prior to model training), we find that the iden-
tified model outperforms these methods by a significant 
margin, providing further confidence in its robustness.

The presence of nonspecific abnormalities led to 
significantly decreased performance across the perfor-
mance metrics, whereas other potential confounding vari-
ables (age, sex, comorbidity, medication status, clinical 
site) did not specifically contribute to discordant cases. 
Interestingly, the overall decrease was primarily caused by 
decreased specificity, with similar sensitivities, although 
the modest sample size and class imbalance should be 
considered (e.g., a naïve majority classifier could achieve 
similar performance in terms of standard accuracy, but 
not balanced accuracy). Our results may indicate that the 
nonspecific abnormalities mediate the average properties 
of these biomarkers over the entirety of the EEG record-
ing rather than having a pronounced, isolated effect at 
small sections of the EEGs. This finding suggests that the 
abnormal model might benefit from including additional 

F I G U R E  5   Comparing permutation-based models to random 
undersampling boosting (RUB) performance. Estimated density 
(using kernel density estimation; Gaussian width = 1.2) of 100 
permutation-based models assessed by balanced accuracy, with the 
individual values in a rug plot on the horizontal axis. RUB model 
performance is displayed as a single red dot.
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nonlinear, event-driven biomarkers as well as further stud-
ies that aim to specifically disambiguate the effect of local 
abnormalities on background properties. The size of the 
datasets prohibited further analysis of, for example, the re-
lationship between type of abnormality and impact on the 
background features, or whether there are certain differ-
ential conditions that are more strongly impacted by this.

Given the nature of the considered clinical cohort, this 
study has several limitations. First, all EEG recordings 
were collected from subjects aged 18 years and older and 
therefore may not generalize to pediatric settings. Second, 
correcting for potential confounders with a basic regres-
sion model does not necessarily eliminate their full impact 
on either EEG features or comparisons. Third, although 
this is to the best of our knowledge the largest study of 
its size (i.e., cross-validated, multisite, clinically noncon-
tributory EEG recordings), both statistical models were 
developed in unbalanced datasets with relatively modest 
sample sizes, in particular for the smallest class. Various 
other valid performance metrics could have been used 
during cross-validation (e.g., AUROC). Furthermore, the 
confounder model only considered ASM and comorbidi-
ties as binary classes rather than multiple classes (e.g., type 
of comorbidity) or continuous (e.g., drug load). Fourth, 
the separation between a subject's diagnosis categoriza-
tion as “epilepsy” or “alternative” does not map directly 
onto clinical decision-making where the working diagno-
sis will ultimately be a specific condition or diagnosis (i.e., 
broad screening rather than a specific final diagnosis). 
Fifth, some participants had missing data, for example, as 
a consequence of certain sites being unable to provide in-
formation relating to ASM status. In these cases, we chose 
not to alter scores with the confounder model, because 
this has the potential to introduce bias. We conducted a 
post hoc analysis of the performance of the model on a 
site-by-site basis. We did not find any significant differ-
ences between sites (see Error Analysis in Appendix S1). 
This suggests that missing data are not likely to have a 
major impact on our findings. Finally, there are a number 
of sources of potential variation that were not controlled 
for. These include lack of standardized criteria across clin-
ical sites (both in terms of EEG reading as well as in di-
agnostic decision-making), influence of recording time, 
subject alertness levels, and the inclusion of activation 
methods (e.g., intermittent photic stimulation, hyperven-
tilation). These factors were not explicitly controlled for in 
this study, to maximize generalizability and applicability 
of our findings to the clinical setting, where EEG protocols 
have inherent variability based on local procedures and 
practice. Nevertheless, these factors may have impacted 
key features within the EEG.

There are several important steps required to further 
assess the potential of these types of classification models. 

First, the models should be extended to account for the 
observed decrease in performance in the presence of non-
specific abnormalities, by using large datasets and ideally 
longer recordings to study the dynamic impact between 
these abnormalities and background features. Second, 
the models should be tested and verified against a large, 
independent retrospective dataset from at least one new 
clinical site. In addition, future studies could explore the 
difference between the real-world heterogeneity as in the 
current study and a standardized protocol (expert group 
examining the EEG and making the diagnostic decision 
according to a set of standardized criteria). The intrasu-
bject variability of the biomarkers should be explored in 
a larger subset of participants with subsequent EEG re-
cordings, with a more sophisticated set of statistical mod-
els (e.g., to quantify subject-specific natural variation). 
This would also allow for a more explicit exploration of 
diagnostic delay as a clinical parameter of interest on a 
subject-specific basis. Next, the applicability of these 
markers to multiple classes could be tested and validated. 
Instead of separating subjects by ultimate diagnosis (epi-
lepsy or alternative condition), these models should test 
and refine the biomarkers for a specific diagnosis or syn-
drome, such as NEAD or temporal lobe epilepsy.30 The 
methodology could also explicitly consider the preference 
of clinicians in their intended use and context, for exam-
ple, by prioritizing specificity over sensitivity during the 
development of the algorithms. Another study should 
specifically consider the specific variability and variance 
found across clinical sites and within cohorts, including 
EEG durations (including longitudinal), activation pro-
cedures, comorbidity, and presence of (epileptiform) ab-
normalities. Finally, it would be particularly interesting to 
assess their performance at tertiary centers where people 
with suspected refractory epilepsy are investigated for po-
tential surgery.

We have developed statistical models that may offer 
improved diagnostic yield for epilepsy in a complemen-
tary fashion. This was achieved using a set of digital 
biomarkers derived from what would currently be con-
sidered clinically noncontributory EEG recordings. A 
promising direction for clinical translation could be the 
early identification of people with epilepsy after initial 
noncontributory EEGs for prolonged EEG monitoring, 
thereby reducing periods of watchful waiting and di-
agnostic delay. Future prospective and longitudinal 
studies are crucial to assess the overall utility of these 
digital markers for the purpose of diagnostic decision 
support.
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