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Abstract: The rapidly increasing photovoltaic (PV) tech-
nology is one of the key renewable energies expected to
mitigate the impact of climate change and the energy crisis,
which has been widely installed in the past few years.
However, the variability of PV power generation creates
different negative impacts on the electric grid systems, and
a resilient and predictable PV power generation is crucial to
stabilize and secure grid operation and promote large-scale
PV power integration. This article proposed machine learning-
based short-term PV power generation forecasting techniques
by using XGBoost, SARIMA, and long short-term memory net-
work (LSTM) algorithms. The experimental results demon-
strated that the proposed resilient LSTM solution can accu-
rately predict (around 90% R? and 0.028 root mean squared
error) PV power generation with minimum input data.

Keywords: PV generation, solar panel, machine learning,
SARIMA, XGBoost, LSTM, Resilient

1 Introduction

The use of renewable energies, including wind, water, and
solar energy, plays a significant role in mitigating the
energy crisis and archiving net-zero emissions. Among
these renewable energies, solar energy is the most stable
and efficient renewable energy to generate electricity [1].
According to the United Nations Development Programme
(UNDP), solar energy resource has a worldwide potential of
1,600 to 49,800 exajoules (4.4 x 10™ to 1.4 x 10’6 KWh) per
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year [2]. Considering the huge potential and advantages of
solar energy, solar photovoltaic (PV) panels have been
widely used and the worldwide annual installation capa-
city reached about 512 GW in 2018 [3]. In 2021, at least 175
GW PV panels were put into use worldwide, which made
the total PV installed capacity reach at least 942 GW [3]. A
science study in 2017 estimated that 1,845 GW of PV systems
could generate around 2,646 TWh (Terawatt-hour) of elec-
tricity all around the world by 2030 [4].

In smart production, considerable attention has been
dedicated to the meticulous study of smart grids, encom-
passing facets such as energy prediction and cybersecurity
[5]. In particular, many electricity storage systems like PV
systems have been used to support electricity in individual
houses and autonomous devices also design active genera-
tors [1,6]. Implementing a photovoltaic (PV) renewable
system within a microgrid offers significant potential for
enhancing current energy consumption patterns. Utilizing
solar energy, such a system can supplement traditional
fossil fuel-based power sources, thereby reducing reliance
on nonrenewable resources and lowering carbon emis-
sions. In addition, PV systems can contribute to greater
energy independence and resilience, especially in remote
or off-grid areas, by providing a reliable and sustainable
source of electricity. This integration fosters a more sus-
tainable and environmentally friendly energy landscape
while promoting economic savings.

However, the fluctuating and uncertain output in a
PV system is always an issue and the concern of research
[7,8]. To address the growing challenges of PV panel integra-
tion into smart grids, such as intermittency, accurate PV
electricity generation estimation is essential and robust
methods must be developed to ensure grid stability and effi-
ciency [8].

Depending on the predicting time span, PV panel gen-
eration prediction can be divided into short-term fore-
casting (under one day ahead), medium-term forecasting
(1 week to 1 month ahead), and long-term forecasting
(1 month to 1 year ahead) [9]. Short-term PV generation
forecasting can be used in optimal storage capacity and
power smoothing; medium-term PV generation forecasting
helps in power system management and scheduling; long-
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term PV generation forecasting provides references for grid

devices distribution and electricity transmission [9].

As one of the solutions, deep learning has shown excel-
lent performance in solving renewable energy difficulties
compared to machine learning because of the complexity
and massive data in smart grid [10,11], especially solar
energy’s randomness and intermittency problems [5]. As
a part of the EU Project SUSTAINABLE [12], in Evora in
Portugal, a very short-term solar energy forecasting system
has been deployed via gradient boosting algorithm to
establish an automating smart grid [12,13]. The main con-
tributions of this work can be summarized as follows:

(1) Utilizing the Pearson correlation model and XGBoost
algorithm to clarify the importance of various features
exited in the PV generation prediction model.

(2) A comparative study on time-series algorithms, using
previously observed PV generation time-series data and
weather data like solar irradiation and air temperature.
High-performance and resilient short-term PV fore-
casting frameworks were studied, which require the
minimum amount of data.

2 Related works

As a part of smart production of the concept Industry
4.0, the smart grid has been meticulously studied recently
[5]. Previously, soft computing and AI have been used for
energy storage and management [14-16]. In reports
[11,17,18], researchers studied the scenarios of various
deep learning algorithms in smart grids. Deep learning
algorithms help energy forecasting, security detection, and
optimization for smart grid operation management, high
resiliency facing contingency, and customer requests [11].
The solar PV system is one of the main renewable
energy resources in the smart grid, and many works
have been presented in the mathematical and system
models in PV panel generation. Ma et al. demonstrated
and compared several PV mathematical and equivalent cir-
cuit models, depending on the PV panel’s physical structure:
an ideal model based on Shockley theory; R; one-diode
model (4 - p model); R; and R, one-diode model; two-diode
model [19]. Binayak proposed a PV generation prediction
mathematical model based on solar irradiance and ambient
temperature [20]. Martin also mentioned in his work that
the temperature and irradiance decide DC power generation
[6]. However, Kim used all known weather data, like irra-
diance, ambient temperature, wind speed, and relative
humidity as input to predict the PV power generation [7].
From the research works on PV generation forecasting,
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there are mainly three different types of approaching methods:
(1) machine learning approaches utilize multi-variable weather
data (2) statistical time series methods based on uni-variable
data (3) physical models use Numerical Weather Prediction
(NWP) or satellite images to predict PV generation [21,22].

For the reports focusing on the prediction of PV elec-
tricity generation using multi-variable weather data via
machine learning methods, most works used the ANN algo-
rithms model to predict PV electricity generation [22].
Stanley and his team presented a short-term prediction
[23], which is predicting 20 min ahead using the MLP model
and has 82 to 95% PV generation prediction accuracy. In
[24], four different models were used to conduct short-term
prediction of PV power generation, including multilayer per-
ceptron (MLP), Elman recurrent neural network (ENN), radial
basis function neural network (RBF), and time delayed neural
network (TDNN). The MLP model performance on short-term
prediction on PV electricity generation has 0.62 error, which
predicts 2866973.48 Wh (Watt-hour) electricity and the true
value is 2,849,201 Wh [24].

In [25], EMD and SVM methods were used to analyze
PV power generation. The SVM is a supervised machine
learning model which is good at generalized linear classi-
fication. In the report, the author summarized that ANN
and SVM are the two mainly used prediction methods.
What is most important is that this report mentioned
that the daily temperature is one of the important weather
factors that affect the PV panel electricity output.

Some of the reports used time-series algorithms to pre-
dict PV generation. Kardakos and his team [26] utilized the
seasonal ARIMA time-series algorithm to predict short-
term PV generation and improved it by applying solar
radiation derived from the numerical weather prediction
(NWP) model to the SARIMA’s output. In [27], Malvoni et al.
tried to predict one day ahead PV generation via the time-
series algorithm group least square support vector machine
(GLSSVM) combined with least square vector machines (LS-
SVM) and group method of data handling (GMDH) algo-
rithms dealing with multiple weather data. In [22], the
author proved that ARIMA has better performance than
ANN models in short-term PV generation prediction. In
another study [21], the author compared SARIMA, SARIMAX,
modified SARIMA, and ANN algorithm performances on
short-term PV generation prediction.

There are a few reports focusing on building a pure
physical predicting model. In [28], Sun et al. described a
method that took instant photos around PV panels to detect
the cloud movement that can infect PV electricity output
and then used a convolutional neural network (CNN) to
predict the PV electricity generation based on analyzing
sky images.
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There are many other reports focusing on the missing
data processing in PV generation prediction. In Taeyoung
Kim’s report [29], they tried four different missing data
imputation methods: LI, MI, KNN imputation, and multi-
variate imputation by chain equations (MICE). They claimed
that using the KNN imputation method to handle missing
data situations has the best performance, especially when
the dataset missing over 20% data rates.

3 Methodology

3.1 System model

To have a better understanding of the PV electricity gen-
eration process, figuring out the PV system structure and
setting up configurations of PV panels are very important.

Sandia National Laboratories, which operates under
the U.S. Department of Energy has published one of the
related mathematical models is: the Plane of Array (POA)
Model [30], which figures out the mathematical relation
between the solar energy that PV panels absorbed, and
the solar radiation is necessary. POA represents the PV
panel surface and the irradiance cast on POA can be calcu-
lated by equation (1) [30].

Epop = Ep + Eg + Ey, @

in which three main components of the POA irradiance, Ej,
is the POA beam component, E; is the POA ground reflect
component, E; is POA sky diffuse component [30]. The
overall solar irradiance reflected on the solar panel is
the summation of the irradiance from direct sun irradi-
ance, irradiance reflected from the ground, and irradiance
diffused from the sky.

Moreover, the POA beam component is decided by
Direct Normal Irradiance and the angle between the sun
rays and the PV panel, which is determined by not only the
solar azimuth, and zenith angles, but also the tilt, azimuth
angles of the PV panel [31], in which DNI denotes direct
normal irradiance, AOI denotes angle of incidence.

Ej, = DNI - cos(AOI). 2

POA formula’s second component ground reflected
irradiance can be calculated as the following equation.
The main affected variables include global horizontal irra-
diance GHI, the ground surface reflectivity, which is also
called ground albedo p, and the tilt angle of the PV panel
mentioned in the PV structure section 6 [32]. Here, p
denotes albedo, which is highly dependent on the ground
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color and material. When the surface is dark, p = 0; when
the surface is bright white, p = 1 [33].

1 - cos(67)

3
) (©)]

E,=GHI-p-

Sky diffuse irradiance has several different theory
models, like isotropic sky diffuse model [34], Hay and
Davies Sky Diffuse Model [35], Reindl Sky Diffuse Model
[36], and Perez Sky Diffuse Model [37]. This report used
the simple isotropic model to demonstrate sky dif-
fuse [34,38].

1 + cos(67)

4
) @

E;=DHI-
Also, the ground horizontal irradiance (GHI) could be
calculated by the diffuse horizontal irradiance (DHI), direct
normal irradiance (DNI), and solar zenith angles 6, fol-
lowing the equation (5) [39]. In [40], the author mentioned
that the DHI value is around 10-20% of GHI value on a
sunny day, however, when encountering a cloudy day,
the DHI value is almost equal to the GHI value.

GHI = DHI + DNI - cos(6). (5)

As a result, the irradiance reflected on the PV panel in
total could be calculated by putting equations (2), (3), (4)
into equation (1)

Epor = Ep + Eg + Eg

: 1 - cos(fr)
=DNI - cos(AOI) + GHI - p — ®)
+ oy 10560

in which the DNI can be derived from an absolute cavity
radiometer; POA can be obtained by a pyranometer; AOI is
mainly determined by solar azimuth 6,, solar zenith 8,
and surface tilt angle 07. The albedo parameter p as men-
tioned before, denotes the reflectivity of the ground sur-
face [31-33]. In practice, parameters 6, and 6 are related
to the sun’s position which is changed by date (time-related
features). The tilt angle of the surface of PV panel 0y will
be dynamic as well if it is a solar tracking rack rather than
a steady PV panel.

To provide an intuitive feeling of three components:
beam, ground reflect, and sky diffuse, the numeric values
were provided to understand each component’s contributions
to the POA model. The daily average global, beam, and diffuse
irradiance component measurements in Kimberly, Idaho are
413, 481, and 132 W/m 2, respectively [41]. In another research
[42], the author provided DNI, GHI, and DHI measurement
values in Doha, Qatar, which are 200.4, 225.2, and 94.7 W/m?2,
respectively, among half-year records.
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To sum up, despite solar irradiance related weather
factors DNI and DHI, there are some time-related features
(64, 07), some weather-related features (cloud cover, tem-
perature), and other external environment features (p, 0r)
that existed in the PV generation model.

3.2 Predictive framework

The PV generation forecasting process will follow the steps
in the flow chart. After obtaining the original PV genera-
tion data and related weather data, two datasets will first
be preprocessed to get rid of the missing and wrong data
and aligned by their timestamps afterward. Then, the pro-
cessed time, PV generation data, and weather data will be
fed into the XGBoost model to decide on the most impor-
tant and effective input features for the proposed resilient
model. Finally, SARIMA and long short-term memory net-
work (LSTM) algorithms are used predict PV generation in
the short term, comparing models’ performance under dif-
ferent input features. The predictive framework flowchart
is illustrated in Figure 1.

3.3 XGBoost model

CART tree algorithm, which is short for classical classifica-
tion and regression tree, is the title for both trees:
Classification tree (the prediction results are types) and
regression tree (the prediction results are numeral).
CART tree is a nonparametric decision tree algorithm
[43]. CART algorithm first puts the input dataset in the
root node, splits sub-nodes from the root node according
to the attribute, and decides the best homogeneity for the

Gradient
Boosted Trees
Algorithm

Weather Data

Suissasoud
-31d ejeq

History PV
Generation
Records

Time-Series
Algorithms

Figure 1: PV power generation prediction framework flowchart.
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threshold; the splitting process keeps going until a pure
subset or meets the maximum node depth. The final
node called leaf node is the one who holds the decision
[8,43]. This whole iteration process will provide the relative
best-fit model.

The eXtreme gradient boosting (XGBoost) is a super-
vised, improved gradient-boosted trees algorithm, which is
integrated by many CART trees. The XGBoost’s regularized
objective function L(¢) includes training loss and regular-
ization term [44].

L@ = 2100 *+ 290 @

The differentiable convex training loss (L) measures
the predictive ability of the model by comparing the dif-
ference between prediction value J and measurement
value Y. f, denotes independent tree structure and leaf
weights.

Regularization term (Q) refers to the part that controls
the model complexity that prevents the model from over-
fitting, which can be demonstrated as follows [44,45]:

o(f) = 3 - MW +y- T, ®
where Q defines the complexity of the tree f; A determines
the strength of the regularization; y is a penalise nodes
constant, when it is greater than 1; and T denotes the
number of leaves in the tree.

The XGBoost algorithm optimizes the function by keep
adding new trees to simulate the residuals from the last
prediction rather than using methods in Euclidean space
[43,44]. The purpose of the model is to find f, value to
optimise the objective function by searching the smallest
score [44]. In dataset D = (x;y;), (x; denotes examples,

XGBoost

PV
Generation
Feature
Importance
SARIMA
(p,d,q) (P,D,Q,m)
PV
LSTM ® Generation

Prediction
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and y, denotes features), the objective function L® can be
presented as as follows [43,44]:

L(D,f,) = 2100990 + £ ) + Q(f); 9
i=1

where Y7’ refers to the prediction value on pth iteration
of ith instance [44].

To simplify the objective function, the constant terms
Yiel(3, 3P could be removed [44]. By applying one of
the common training loss functions mean squared error
(MSE) and regularization term Q(f, ), the objective function

can be simplified as follows [43]:
1L G

L(P) = Z
25 H + 2

+y-T. (10)
After the process of second-order approximation, this objec-
tive equation (9) sums the first and second input gradient
statistics g; and h; up together as G; and H; and then calcu-
lates the score according to the formula, which indicates the
quality of the tree structure [43].

This article used the XGBoost model purely for time-
series PV data predicting, which separates the various time
factors (like months, weeks, days, and hours) from PV gen-
eration data and stores them in a tree. Finally, predict
future PV generation based on the summarized time fea-
tures relationship.

3.4 Seasonal ARIMA model

Autoregressive integrated moving average (ARIMA) is one
of the effective univariate time series algorithms. As
an extended version, seasonal autoregressive integrated
moving average (SARIMA) algorithm supports both autore-
gressive and moving average functions [46], which means
SARIMA would identify seasonal changing input data and
make better predictions compared to ARIMA. Seasonal chan-
ging data refer to the training data value changes due to
seasonal factors. Accordingly, we use the SARIMA model
to train and predict the PV generation value. The SARIMA
model can be formed as SARIMA((p, d, q), (P, D, Q, m))
in which (p, d, q) represents the nonseasonal feature from
the data; (P, D, Q, m) represents the seasonal feature. In
more detail, p represents trend auto-regression order; d
represents trend difference order; ¢ moving average order;
P represents seasonal auto-regressive order; D represents
seasonal difference order; Q represents seasonal moving
average order; and m represents the number of time steps
for a seasonal period [46]. The SARIMA model can be formu-
lated as equation (11)
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0
+ D OnE-mn * &
n=1

where ), denotes the value of the time series at time ¢, ¢
denotes the coefficients of the auto-regressive, 6 denotes
coefficients of the auto regressive forecast errors; € denotes
the moving average forecast error; n denotes coefficients of
seasonal forecast errors; and w denotes coefficients of sea-
sonal auto regressive. The enumeration function was used
to list all (p, d, q) and (P, D, Q, m) combinations to look for
the best model fit, which is judged by the lowest Akaike
information criterion (AIC) value [47].

3.5 Long short-term memory
network (LSTM)

LSTM is one type of the RNN (recurrent neural network)
especially overcome exploding and vanishing gradient pro-
blems during long-term dependencies, which has recur-
rent neurons to process the input data through the activa-
tion and formulate an output to the next neuron [48]. The
LSTM is good at solving the sequence problems because of the
feedforward network from the last training [49], which no
longer suffers from Simple Recurrent Networks [50]. A typical
vanilla LSTM model architecture can be demonstrated as
multiple memory blocks shown in Figure 2 [48,51].

In this special memory block, there are three essential
multiplicative units: input gate, output gate, and forget
gate, which always use sigmoid as their nonlinear activa-
tion function [48]. This memory block first takes previous
memory cg.j, output h,-;, and input signal X; as input
to feed through input gate [48,52-54].

ir = o(WuX; + Whilte-1 + WiCe-1 + by).

Output from
t ) current block
@

Memory from
current block

(12)

Memory from
previous block

= )
X) +

(tanh)
output gate e

LO'_] L(II_] tanh CCI_]

Figure 2: LSTM memory block demonstration.
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Second, in forget gate, the memory block decides what
information will be forgotten based on the input signal X;,
memory ¢.;, and output h,-; from the previous block
[48,52-54].

fi = o(WieXy + Wighe-1 + Wepc1 + by). 13)

Third step is generating output combining input signal
X;, memory ¢;, and output h,; from last iteration
[48,52-54].

0r = G(WyoX; + Wholte-1 + WoCr + by). (14)

This memory block iteration will carry on when more
input data has been fed through the LSTM model. LSTM
networks there would be another loop in the model, which
will provide the feedback value as an input vector from an
output of the network to the input of the network [48].

4 Evaluation

4.1 Data preparation

The quality of the input dataset may affect the training
model’s performance and accuracy [55], which means
two data preprocessing steps: data cleaning and filtering
missing data are necessary [56]. After the data preproces-
sing steps, the data normalized step is required to reduce
the noise and normalize the dataset.

In this work, for the XGBoost, SARIMA, and LSTM algo-
rithms, 1 year London area’s PV electricity generation record
from Sheffield open-source PV live data (London area) and
weather data were from MIDAS UK open weather data’. The
data were from the Heathrow station, and both of the data-
sets (PV and weather) start from 2020/01/01 to 2020/12/27,
recording in every 60 min. Due to the synchronization failure
and misoperations, there are some repeated data or vacant
data. In the data preprocessing step, we removed the repeat
data according to the date and time, and then left the vacant
records (NaN) as noise. As a result, the PV generation dataset
has in total of 8657 records after the preprocessing step.

The PV generation data itself are recorded in Megawatts,
and hourly generation records can reach up to thousands of
megawatts, sometimes even more than 5,000 MW. However, at
night, due to lack of solar irradiance, the PV generation equals
0 mostly. The large periodical difference in the dataset will not
benefit the learning process, which means that the data nor-
malization process is necessary as well. MinMaxScaler function

1 catalogue.ceda.ac.uk/uuid/dbd451271eb04662beade68da43546el
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was used to scale all the PV generation data under [0,1] scale.
The weather data air temperature are stored in the degree
Celsius; the global solar irradiance mount is stored in kj/m?

The Pearson correlation coefficient model was used to
analyze the associations behind the feature data. It is a
normalization evaluation method of the covariance of
two features, which reviews the strength and direction of
linear correlation between them [57]. On the one hand, the
various weather data were studied including time-related
features’ correlations with PV electricity generation, which
can be illustrated in Figure 3.

By analyzing the correlation between features from the
dataset, we can see that pure time features like hours, date,
and month do not have much correlation with hourly PV
generation because their correlation values with PV genera-
tion are close to 0. However, previous records of global
irradiance and air temperature have a very high correlation
to the next hour’s PV generation, which means they could be
the main features that contribute to the prediction model.

On the other hand, the correlation between history PV
generation (24 h before) and current PV generation was
also studied. Because the POA model is very complex and
contains various times, weather, and other features, we
cannot easily have access to all of them. In contrast, the
previous PV generation data are the accurate value simu-
lated by all the factors. The correlation heatmap between
history and current PV generation value is shown in Figure
4, where P_24 refers to PV generation from 24 h ago, and
P_0 refers to the PV generation in the future 1 h, which
needs to be predicted.

From Figure 4, P_1 to P_3 (previous 3 h) and P_21 to
P_24 (yesterday 3 h after) PV generation have a high corre-
lation (above 0.6) to the future 1 h PV generation predic-
tion. The other hours of PV generation also have some
associations with the future PV generation data.

To sum up, we used a total of 8752 records (from 2020/
01/01 0:00 to 2020/12/21 23:00) to train the XGBoost model.
The dataset is developed in six columns: month, date, time,
air temperature, global irradiance, and PV generation. By
applying different feature combinations to the algorithms to
receive a high-performance model that requires minimum
data. The testing dataset will be from 6 days of records (from
2020/12/22 0:00 to 2020/12/27 23:00).

4.2 XGBoost

To find the ideal prediction model, this work first used the
XGBoost model to verify and analyze the hypothesis we
concluded from the first Pearson correlation model that
solar irradiance and air temperature are the core features
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Figure 3: Heatmap of PV generation features correlation.
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Figure 4: Heatmap of PV generation features correlation.

to predict short-term PV generation. The XGBoost model
predicts future PV generation based on the previous 1 h
weather data and the time data without the data normal-
ization process to keep the original data features. As a
result, PV generation prediction uses megawatts as its mea-
surement unit. PV generation data’s relationships in the
XGBoost model among different features can be illustrated
in Figure 5.

XGBoost feature importances function utilizes F score
that indicates each feature’s percentage weight over the
weights of all features. As Figure 5 shows, in XGBoost, solar
irradiance has over 50% importance and air temperature
has around 30% importance for this dataset.
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For the hyperparameter optimization part, we still used
the grid search method to automatically test the best fit of
parameters for the XGBoost model. The XGBoost prediction
model fit is shown in Figure 6, which is an XGBoost 1 h
ahead prediction model using previous hours, solar irradi-
ance, and air temperature as the training dataset.

From the figure, we can see that the XGBoost model
only using previous one-hour solar irradiance, air tem-
perature, and hours time data shows low prediction accu-
racy on the summit PV generation of the day. The average
R? score is around 0.7; the root mean squared error (RMSE)
value is around 467 (MW). This model’s performance is not
very well for just using previous weather data and time
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Figure 5: XGBoost time features analysis in PV generation data.

data as its input. As a result, we decided to use previous PV
generation data as input instead of using previous solar
irradiance and air temperature. Because previous weather
data are more related to previous PV generation instead of
PV generation in the future. Also, previous PV generation is
always accurate and more related to the predicting panel
(containing more complex features) compared to the local
weather data.

4.3 SARIMA

To confirm the correlation between history and current PV
generation, we utilized the time-series algorithm SARIMA
to predict the current generation value using the previous
generation value analyzed by date and time. The auto-
regression part of the SARIMA model measures the

DE GRUYTER

dependency by past observations, which will use the pre-
vious 8,700 data records as the training dataset. Also, from
observation of the PV generation value, the value repeats
in a similar tendency loop for 24 h of solar movement,
which means the PV generation value can be set in a
24 h (24 records) seasonal period in a SARIMA model.
The test data will be 6 days starting from 2020/12/22 to
2020/12/27.

Our goal is to find the best-fit value for SARIMA
(p,d, q)(P,D,Q, m) to optimize the interest metric. We
used the hyperparameter optimization method, Grid Search,
to generate and test different combinations of variables p, d, g,
and then evaluate the model accuracy by comparing their AIC
value. AIC value is a common model selection theory, which
will gradually minimize the mean squared error of prediction
to find the best fit [58]. Normally, the lower AIC value is
considered to be a better model fit.

After the grid search process, the best hyperpara-
meters that fit the SARIMA model are (1,1,1)(1,1,1, 24)
with the lowest AIC score of 262.36. The SARIMA short-
term PV prediction can be illustrated in Figure 7.

The SARIMA model’s coefficients are listed in Table 1,
where ar.L1 and ma.L1 rows denote autoregressive (AR)
and moving average (MA) coefficients for the nonseasonal
component of the model, respectively. Similarly, “ar.S.L24”
and “ma.S.L24” denote the AR and MA coefficients, respec-
tively, the seasonal component of the model, where the
seasonality is specified as 24 h. The sigma2 (sigma square)
column denotes the variance of residual values; the coef
column denotes weights of each feature; the std err column
denotes standard error. The significance of each coefficient
is assessed using the z-test, with the associated p-values

3500

2500
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& 2000
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L

—— True value
- Predict value

Figure 6: XGBoost PV generation prediction.
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Figure 7: SARIMA PV generation prediction.

provided in the “P > |z’ column. A p-value less than the
conventional threshold of 0.05 indicates that the corre-
sponding coefficient is statistically significant, suggesting
that it has a significant association with the predicted PV
generation.

As Figure 7 shows, the SARIMA model has relatively
high accuracy and confidence (average mean absolute
error [MAE], is around 0.0097, average RMSE is around
0.0196) on short-term PV generation predicting. The grey
shadow in the figure is the confidence bounds of the pre-
diction model, which refers to the uncertainty of each step
of prediction. However, we can still see that there are
imprecise predictions during the end of the day and the
summit generation in a day.

4.4 LSTM

The LSTM model was first used to conduct one-step ahead
PV generation prediction as a comparison group with the
SARIMA model. We set the look-back window as 24 (last
1-day records) so that the LSTM algorithm will take pre-
vious 1-day records to predict the value. The LSTM model
contains 50 neurons, mean square error as loss function,
and the adam optimizer. LSTM model’s average score (R?)
is around 0.96, and average RMSE is around 0.2. The best
LSTM one-step ahead model we conduct can be illustrated
in Figure 8.

LSTM 1 h ahead short-term prediction using 24 h history
records has a relatively good performance, even though
sometimes it is still limited in predicting the summit PV

Time

Table 1: SARIMA model summary on PV generation prediction

coef std err z P> |z
ar.L1 0.4708 0.012 38.169 0.000
ma.L1 0.1012 0.013 7.847 0.000
ar.S.L.24 0.1128 0.008 14.574 0.000
ma.S.L24 -0.8901 0.004 -217.983 0.000
sigma2 0.0599 0.001 116.467 0.000

generation value of the day and some other turning points.
Then, to find a resilient and high-performance model, we
also added the weather data (solar irradiance and air tem-
perature) and tested other look-back window sizes on the
LSTM model to reduce the input feature amount. Different
input feature combinations’ requirements and performance
are listed in Table 1.

4.5 Result comparison

We researched the time-series PV generation algorithms
SARIMA and LSTM, which use previous PV generation
data to predict future generations. We used four common
evaluation methods R? score (R%), MAE, MSE, and RMSE.

R? score, which also means coefficient of determina-
tion, describes the accuracy of dependent variable changes
according to the prediction of independent variables. In
other words, it explains how well the data fit the model
and R? = 1 represents the perfect fit. y, denotes the true
value of the dataset, y; denotes the predicted value, and y;
denotes the mean value.
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MAE represents the average of absolute residuals

between the prediction and true value, which can be cal-
culated as follows:

R2=1 (15)

1 R
Ryae = EZD{ =il (16)
i
MSE measures the average square errors between pre-
dicted and true values. Compared to MAE, it measures the
variance of residuals rather than the average of residuals.
It can be calculated as follows:
1 .
Ryge = EZ(yi - y)2 17
i
RMSE is the square root of the MSE value, which mea-
sures the standard deviation of residuals and can be calcu-
lated as follows:

1 .
Rpvse = ;Z(y’ - y)%.
i

In the algorithm results comparison table, * denotes
the dataset with normalization; ‘denotes to the dataset
with weather data (solar irradiance and air temperature).

(18)

Table 2: Comparison between XGBoost, SARIMA, and LSTM models

80 100 120 140

samples

The number after LSTM denotes the look-back number. For
example, LSTM* 5 refers to the LSTM model utilizing the
normalization dataset and weather data, using the pre-
vious 5 h of PV generation data as a look-back window.
For each of the models, we used an average score among
20 times model fitting (Table 2).

From the comparison, we can see that the LSTM model
using 24 history PV generation records and weather data does
have excellent performance (average R? score can reach
0.9563, and average RMSE is around 0.0195). However, var-
ious input features reduce the resilience and robustness of
the model. When there are not that much PV generation data
available or some of them are not accurate because of cyber
attacks, the model will not perform or make an accurate
prediction in that circumstance. Instead, we studied various
LSTM models that require minimum input data to guarantee
the model’s resilience. In the table, LSTM models only use the
previous two records and three records of PV generation data
as input and have relatively high performance (with an
average R? score of around 0.90 and an average RMSE score
is around 0.026).

However, when previous solar irradiance, air tem-
perature, or other weather data are available combined
with previous PV generation data, using multivariables

SARIMA* LSTM*24 LSTM*3 LSTM*2 LSTM* 24 LSTM* 3 LSTM* 2
R? 0.9501 0.9563 0.9103 0.9179 0.9502 0.9022 0.8923
Ryiae 0.0097 0.0097 0.0155 0.0145 0.0103 0.0160 0.0185
Ruise 0.0003 0.0003 0.0006 0.0006 0.0003 0.0007 0.0008
Rrumse 0.0196 0.0183 0.0262 0.0251 0.0195 0.0278 0.0287
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LSTM algorithms will have a slightly better performance in
short-term prediction (by comparing LSTM* models with
LSTM* models).

5 Conclusion

This research proposed resilient machine learning models
for short-term photovoltaic (PV) power generation fore-
casting using XGBoost, SARIMA, and LSTM algorithms.
The LSTM model leveraging 24 h of historical PV data
and weather information exhibited excellent performance,
with an average R? of 0.9563 and RMSE of 0.0183.

To enhance prediction resilience, LSTM models requir-
ing only 2-3 h of prior PV generation records were inves-
tigated. Though slightly underperforming the 24 h model,
they achieved competitive average R? scores of around
0.90 and RMSE values of approximately 0.026. When sup-
plemented with weather data, these multi-variable LSTM
models marginally improved. The time-series SARIMA
model relying solely on historical PV data also demon-
strated high accuracy (R? of 0.9501) and resilience.

The proposed models offer flexibility to choose the
appropriate input feature based on available data, resili-
ence, and accuracy requirements. The 24 h LSTM model
can maximize accuracy given abundant historical data,
while the minimal input LSTM models prioritize resilience
over marginal performance losses when data are limited
or cyberattacks are a concern. Overall, this work advances
reliable, resilient PV forecasting to facilitate renewable
energy integration.
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