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Artificial Intelligence Enabled Microgrid Power
Generation Prediction

Xueyi Wang, Shancang Li, Muddesar Iqbal

Abstract—The rapidly increasing photovoltaic technology is one of the key renewable energies expected to mitigate the impact of
climate change and the energy crisis, which has been widely installed in the past few years. However, the variability of PV power
generation creates different negative impacts on the electric grid systems and a resilient and predictable PV power generation is crucial
to stabilize and secure grid operation and promote large-scale PV power integration. This paper proposed machine learning based
short-term PV power generation forecasting techniques by using XGBoost, SARIMA, and LSTM algorithms. The experimental results
demonstrated that the proposed resilient LSTM solution can accurately predict (around 90% R2 and 0.028 RMSE) PV power
generation with minimum input data.

Index Terms—PV generation, Solar panel, Machine learning, SARIMA, XGBoost, LSTM, Resilient

✦

1 INTRODUCTION

The use of renewable energies, including wind, water,
and solar energy, plays a significant role in mitigating
the energy crisis and archiving net-zero emissions. Among
these renewable energies, solar energy is the most stable
and efficient renewable energy to generate electricity [1].
According to the United Nations Development Programme
(UNDP), solar energy resource has a worldwide potential
of 1,600 to 49,800 exajoules (4.4 × 1014 to 1.4 × 1016kWh)
per year [2]. Considering the huge potential and advantages
of solar energy, solar photovoltaic (PV) panels have been
widely used and the worldwide annual installation capacity
reached about 512 gigawatts (GW) in 2018 [3]. In 2021, at
least 175 GW PV panels were put into use worldwide, which
made the total PV installed capacity reach at least 942 GW
[3]. A science study in 2017 estimated that 1845 GW of PV
systems could generate around 2646 TWh (Terawatt-hour)
of electricity all around the world by 2030 [4].

In smart production, considerable attention has been
dedicated to the meticulous study of smart grids, encom-
passing facets such as energy prediction and cybersecurity.
[5]. In particular, many electricity storage systems like PV
systems have been used to support electricity in individual
houses and autonomous devices also design active genera-
tors [1], [6]. Implementing a photovoltaic (PV) renewable
system within a microgrid offers significant potential for
enhancing current energy consumption patterns. Utilizing
solar energy, such a system can supplement traditional
fossil fuel-based power sources, thereby reducing reliance
on non-renewable resources and lowering carbon emissions.
Additionally, PV systems can contribute to greater energy
independence and resilience, especially in remote or off-
grid areas, by providing a reliable and sustainable source
of electricity. This integration fosters a more sustainable and
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environmentally friendly energy landscape while promot-
ing economic savings.

However, the fluctuating and uncertain output in a PV
system is always an issue and the concern of research [7],
[8]. Facing the situation that the usage of PV panels sharply
increasing and intermittency problems of PV generation in
smart grid, an effective and resilient method estimating the
electricity generation of the PV panel needs to be researched
and developed eagerly [8].

Depending on the predicting time span, PV panel gen-
eration prediction can be divided into short-term forecast-
ing (under one day ahead), medium-term forecasting (1
week to 1 month ahead), and long-term forecasting (one
month to one year ahead) [9]. Short-term PV generation
forecasting can be used in optimal storage capacity and
power smoothing; medium-term PV generation forecasting
helps in power system management and scheduling; long-
term PV generation forecasting provides references for grid
devices distribution and electricity transmission [9].

As one of the solutions, deep learning has shown ex-
cellent performance in solving renewable energy difficulties
compared to machine learning because of the complexity
and massive data in smart grid [10], [11], especially solar
energy’s randomness and intermittency problems [5]. As a
part of the EU Project SuSTAINABLE [12], in Évora in Por-
tugal, a very short-term solar energy forecasting system has
been deployed via gradient boosting algorithm to establish
an automating smart grid [12], [13]. The main contributions
of this work can be summarised as follows:

1) Utilizing the Pearson Correlation model and XGBoost
algorithm to clarify the importance of various features ex-
ited in the PV generation prediction model.

2) A comparative study on time-series algorithms, using
previously observed PV generation time-series data and
weather data like solar irradiation and air temperature.
High-performance and resilient short-term PV forecasting
frameworks were studied, which require the minimum
amount of data.
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2 RELATED WORKS

As a part of smart production of the concept Industry
4.0, the smart grid has been meticulously studied recently
[5]. Previously, soft computing and AI have been used for
energy storage and management [14], [15], [16]. In reports
[11], [17], [18], researchers studied the scenarios of various
deep learning algorithms in smart grids. Deep learning
algorithms help energy forecasting, security detection, and
optimization for smart grid operation management, high
resiliency facing contingency, and customer requests [11].

The solar PV system, as one of the main renewable
energy resources in the smart grid, many works have been
presented in the mathematical and system models in PV
panel generation. Ma et al. demonstrated and compared
several PV mathematical and equivalent circuit models,
depending on the PV panel’s physical structure: an ideal
model based on Shockley theory; Rs one-diode model (4−p
model); Rs and Rp one-diode model; two-diode model [19].
Binayak proposed a PV generation prediction mathematical
model based on solar irradiance and ambient temperature
[20]. Aranzazu also mentioned in his work that the tem-
perature and irradiance decide DC power generation [6].
However, Kim used all known weather data, like irradiance,
ambient temperature, wind speed, and relative humidity
as input to predict the PV power generation [7]. From
the research works on PV generation forecasting, there are
mainly three different types of approaching methods: 1)
Machine learning approaches utilize multi-variable weather
data 2) Statistical time series methods based on uni-variable
data 3) Physical models use Numerical Weather Prediction
(NWP) or satellite images to predict PV generation [21], [22].

For the reports focusing on the prediction of PV elec-
tricity generation using multi-variable weather data via
machine learning methods, most works used the ANN
algorithms model to predict PV electricity generation [22].
Stanley and his team presented a short-term prediction [23],
which is predicting 20 minutes ahead using the MLP model
and has 82% to 95% PV generation prediction accuracy.
In [24], four different models were used to conduct short-
term prediction of PV power generation, including Multi-
layer Perceptron (MLP), Elman Recurrent Neural Network
(ENN), Radial Basis Function neural network (RBF), and
Time Delayed Neural Network (TDNN). The MLP model
performance on short-term prediction on PV electricity gen-
eration has 0.62 error, which predicts 2866973.48 Wh (Watt-
hour) electricity and the true value is 2,849,201Wh [24].

In [25], EMD and SVM methods were used to analyze
PV power generation. The SVM is a supervised machine
learning model which is good at generalized linear classifi-
cation. In the report, the author summarized that ANN and
SVM are the two mainly used prediction methods. What is
most important is that this report mentioned that the daily
temperature is one of the important weather factors that
affect the PV panel electricity output.

Some of the reports used time-series algorithms to pre-
dict PV generation. Kardakos and his team [26] utilized the
seasonal ARIMA time-series algorithm to predict short-term
PV generation and improved it by applying solar radiation
derived from the Numerical Weather Prediction (NWP)
model to the SARIMA’s output. In [27], Maria Malvoni tried

to predict one day ahead PV generation via the time-series
algorithm Group Least Square Support Vector Machine
(GLSSVM) combined with Least Square Vector Machines
(LS-SVM) and Group Method of Data Handling (GMDH)
algorithms dealing with multiple weather data. In [22], the
author proved that ARIMA has better performance than
ANN models in short-term PV generation prediction. In an-
other study [21], the author compared SARIMA, SARIMAX,
modified SARIMA, and ANN algorithm performances on
short-term PV generation prediction.

There are a few reports focusing on building a pure phys-
ical predicting model. In [28], Sun described a method that
took instant photos around PV panels to detect the cloud
movement that can infect PV electricity output and then
used a Convolutional Neural Network (CNN) to predict the
PV electricity generation based on analyzing sky images.

There are many other reports focusing on the missing
data processing in PV generation prediction. In Taeyoung
Kim’s report [29], they tried four different missing data im-
putation methods: LI, MI, KNN imputation, and Multivari-
ate Imputation by Chain Equations (MICE). They claimed
that using the KNN imputation method to handle missing
data situations has the best performance, especially when
the dataset missing over 20% data rates.

3 METHODOLOGY

3.1 System Model
To have a better understanding of the PV electricity gen-
eration process, figuring out the PV system structure and
setting up configurations of PV panels are very important.

Sandia National Laboratories, which operates under the
U.S. Department of Energy has published one of the related
mathematical models is: the Plane of Array (POA) Model
[30], which figures out the mathematical relation between
the solar energy that PV panels absorbed, and the solar
radiation is necessary. POA represents the PV panel surface
and the irradiance cast on POA can be calculated by Eq. (1)
[30].

EPOA = Eb + Eg + Ed (1)

in which three main components of the POA irradiance, Eb

is the POA beam component, Eg is the POA ground reflect
component, Ed is POA sky diffuse component [30]. The
overall solar irradiance reflected on the solar panel is the
summation of the irradiance from direct sun irradiance, ir-
radiance reflected from the ground, and irradiance diffused
from the sky.

Moreover, the POA beam component is decided by Di-
rect Normal Irradiance and the angle between the sun rays
and the PV panel, which is determined by not only the solar
azimuth, and zenith angles, but also the tilt, azimuth angles
of the PV panel [31], in which DNI denotes Direct Normal
Irradiance, AOI denotes Angle of Incidence.

Eb = DNI · cos(AOI) (2)

POA formula’s second component ground reflected irra-
diance can be calculated as the following equation. The main
affected variables include global horizontal irradiance GHI,
the ground surface reflectivity, which is also called ground
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albedo ρ, and the tilt angle of the PV panel mentioned in the
PV structure section θT [32]. Here, ρ denotes albedo, which
is highly dependent on the ground color and material. When
the surface is dark, ρ ≈ 0; when the surface is bright white,
ρ ≈ 1 [33].

Eg = GHI · ρ · 1− cos(θT )

2
(3)

Sky diffuse irradiance has several different theory mod-
els, like Isotropic Sky Diffuse Model [34], Hay and Davies
Sky Diffuse Model [35], Reindl Sky Diffuse Model [36], and
Perez Sky Diffuse Model [37]. This report used the simple
Isotropic Model to demonstrate sky diffuse [38] [34].

Ed =DHI · 1 + cos(θT )

2
(4)

Also, the Ground Horizontal Irradiance (GHI) could
be calculated by the Diffuse Horizontal Irradiance (DHI),
Direct Normal Irradiance (DNI), and solar zenith angles θZ
following the Eq. (5) [39]. In [40], the author mentioned that
the DHI value is around 10-20% of GHI value on a sunny
day, however, when encountering a cloudy day, the DHI
value is almost equal to the GHI value.

GHI = DHI +DNI · cos(θZ) (5)

As a result, the irradiance reflected on the PV panel in
total could be calculated by putting Eqs. (2), (3), (4) into Eq.
(1)

EPOA =Eb + Eg + Ed

=DNI · cos(AOI) +GHI · ρ · 1− cos(θT )

2

+DHI · 1 + cos(θT )

2

(6)

in which the DNI can be derived from an absolute cavity
radiometer; POA can be obtained by a pyranometer; AOI
is mainly determined by solar azimuth θA, solar zenith
θZ , and surface tilt angle θT . The albedo parameter ρ as
mentioned before, denotes the reflectivity of the ground
surface [31], [32], [33]. In practice, parameters θA, and θZ
are related to the sun’s position which is changed by date
(time-related features). The tilt angle of the surface of PV
panel θT will be dynamic as well if it is a solar tracking rack
rather than a steady PV panel.

To provide an intuitive feeling of three components:
beam, ground reflect, and sky diffuse, the numeric values
were provided to understand each component’s contribu-
tions to the POA model. The daily average global, beam,
and diffuse irradiance component measurements in Kim-
berly, Idaho are 413, 481, and 132 W/m2, respectively [41].
In another research [42], the author provided DNI, GHI,
and DHI measurement values in Doha, Qatar, which are
200.4, 225.2, and 94.7 W/m2, respectively, among half-year
records.

To sum up, despite solar irradiance related weather
factors DNI, and DHI, there are some time-related features
(θA, θZ ), some weather-related features (cloud cover, tem-
perature), and other external environment features (ρ, θT )
that existed in the PV generation model.

3.2 Predictive Framework

The PV generation forecasting process in this paper will
follow the steps in the flow chart. After obtaining the
original PV generation data and related weather data. Two
datasets will first be pre-processed to get rid of the missing
and wrong data and aligned by their timestamps afterward.
Then, the processed time, PV generation data, and weather
data will be fed into the XGBoost model to decide on the
most important and effective input features for the proposed
resilient model. Lastly, use SARIMA and LSTM algorithms
to predict PV generation in the short term, comparing
models’ performance under different input features. The
predictive framework flowchart is illustrated in Figure 1.

3.3 XGBoost Model

CART tree algorithm, which is short for classical classifica-
tion and regression tree, is the title for both trees: Classifi-
cation Tree (the prediction results are types) and regression
Tree (the prediction results are numeral). CART tree is a non-
parametric decision tree algorithm [43]. CART algorithm
first puts the input dataset in the root node; then splits
sub-nodes from the root node according to the attribute,
and decides the best homogeneity for the threshold; the
splitting process keeps going until a pure subset or meets
the maximum node depth, the final node called leaf node is
the one who holds the decision [8], [43]. This whole iteration
process will provide the relative best-fit model.

The eXtreme Gradient Boosting (XGBoost) is a super-
vised, improved gradient-boosted trees algorithm, which is
integrated by many CART trees. The XGBoost’s regularized
objective function L(ϕ) includes training loss and regular-
ization term [44].

L(ϕ) =
∑
i

L(ŷi, yi) +
∑
k

Ω(fk) (7)

The differentiable convex training loss (L) measures the
predictive ability of the model by comparing the differ-
ence between prediction value ŷi and measurement value
yi. Where fk denotes independent tree structure and leaf
weights.

Regularization term (Ω) refers to the part that controls
the model complexity that prevents the model from overfit-
ting, which can be demonstrated as [44], [45].

Ω(f) =
1

2
· λ · ||w||2 + γ · T (8)

in which Ω defines the complexity of the tree f ; λ deter-
mines the strength of the regularisation; γ is a penalise
nodes constant, when it is greater than 1; T denotes the
number of leaves in the tree.

XGBoost algorithm optimises the function by keep
adding new trees to simulate the residuals from the last
prediction rather than using methods in Euclidean space
[43], [44]. The purpose of the model is to find fp value to
optimise the objective function by searching the smallest
score [44]. In dataset D = (xi, yi), (xi denotes examples,
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Fig. 1. PV Power Generation Prediction Framework Flowchart

yi denotes features), the objective function L(p) can be
presented as [43], [44].

L(D, fp) =

n∑
i=1

l(yi, ŷ
(p−1)
i + ft(xi)) + Ω(fp) (9)

in which ŷ
(p)
i refers to the prediction value on p-th iteration

of i-th instance [44].
To simplify the objective function, the constant terms∑n

i=1 l(yi, ŷ
(p−1)) could be removed [44]. By applying one

of the common training loss functions mean squared error
(MSE) and regularisation term Ω(fp), the objective function
can be simplified as follows [43]

L(p) = −1

2

T∑
j=1

G2
j

Hj + λ
+ γ · T (10)

After the process of second-order approximation, this objec-
tive Eq. (9) sums the first and second input gradient statistics
gi and hi up together as Gj and Hj ; then calculates the score
according to the formula, which indicates the quality of the
tree structure [43].

This paper used the XGBoost model purely for time-
series PV data predicting, which separates the various time
factors (like months, weeks, days, and hours) from PV
generation data and stores them in a tree. At last, predict fu-
ture PV generation based on the summarised time features
relationship.

3.4 Seasonal ARIMA Model
Auto-regressive Integrated Moving Average (ARIMA) is
one of the effective univariate time series algorithms. As an
extended version, Seasonal Autoregressive Integrated Mov-
ing Average (SARIMA) algorithm supports both autore-
gressive and moving average functions [46], which means
SARIMA would identify seasonal changing input data and
make better predictions compared to ARIMA. Seasonal
changing data refers to the training data value changes due
to seasonal factors. Accordingly, we use the SARIMA model
to train and predict the PV generation value. The SARIMA
model can be formed as SARIMA((p, d, q), (P,D,Q,m))
in which (p, d, q) represents the non-seasonal feature from

the data; (P,D,Q,m) represents the seasonal feature. In
more detail, p represents trend auto-regression order; d
represents trend difference order; q moving average order;
P represents seasonal auto-regressive order; D represents
seasonal difference order; Q represents seasonal moving
average order; m represents the number of time steps for a
seasonal period [46]. The SARIMA model can be formulated
into Eq. (11)

yt =c+

p∑
n=1

ϕnyt−n +

q∑
n=1

θnϵt−n +

P∑
n=1

ηnyt−mn

+

Q∑
n=1

ωnϵt−mn + ϵt

(11)

where yt denotes the value of the time series at time t, ϕ
denotes the coefficients of the auto-regressive, θ denotes
coefficients of the auto regressive forecast errors; ϵ denotes
the moving average forecast error; η denotes coefficients of
seasonal forecast errors; ω denotes coefficients of seasonal
auto regressive. The enumeration function was used to
list all (p, d, q) and (P,D,Q,m) combinations to look for
the best model fit, which is judged by the lowest Akaike
Information Criterion (AIC) value [47].

3.5 Long Short-Term Memory Network (LSTM)

LSTM is one type of the RNN (Recurrent Neural Net-
work) especially overcome exploding and vanishing gra-
dient problems during long-term dependencies, which has
recurrent neurons to process the input data through the
activation and formulate an output to the next neuron [48].
The LSTM is good at solving the sequence problems because
of the feedforward network from the last training [49],
which no longer suffers from Simple Recurrent Networks
[50]. A typical vanilla LSTM model architecture can be
demonstrated as multiple memory blocks shown in Figure.
2 [48], [51].

In this special memory block, there are three essential
multiplicative units: input gate, output gate, and forget gate,
which always use sigmoid as their non-linear activation
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Fig. 2. LSTM memory block demonstration

function [48]. This memory block first takes previous mem-
ory ct−1, output ht−1, and input signal Xt as input to feed
through input gate [48], [52], [53], [54].

it = σ(WxiXt +Whiht−1 +Wcict−1 + bi) (12)

Secondly in forget gate, the memory block decides what
information will be forgotten based on the input signal Xt,
memory ct−1 and output ht−1 from the previous block [48],
[52], [53], [54].

ft = σ(WxfXt +Whfht−1 +Wcfct−1 + bf ) (13)

Third step is generating output combining input signal
Xt, memory ct−1, and output ht−1 from last iteration [48],
[52], [53], [54].

ot = σ(WxoXt +Whoht−1 +Wcoct + bo) (14)

This memory block iteration will carry on when more
input data has been fed through the LSTM model. LSTM
networks there would be another loop in the model, which
will provide the feedback value as an input vector from an
output of the network to the input of the network [48].

4 EVALUATION

4.1 Data Preparation

The quality of the input dataset may affect the training
model’s performance and accuracy [55], which means two
data pre-processing steps: data cleaning and filtering miss-
ing data are necessary [56]. After the data pre-processing
steps, the data normalised step is required to reduce the
noise and normalise the dataset.

In this work, for the XGBoost, SARIMA, and LSTM
algorithms, 1 year London area’s PV electricity generation
record from Sheffield open-source PV live data (London
area) and weather data were from MIDAS UK open weather
data 1. The data were from Heathrow station, and both
of the datasets (PV and weather) start from 2020/01/01
to 2020/12/27, recording in every 60 minutes. Due to the
synchronisation failure, and misoperations, there are some

1. catalogue.ceda.ac.uk/uuid/dbd451271eb04662beade68da43546e1

repeated data or vacant data. In the data pre-processing
step, we removed the repeat data according to the date and
time, then left the vacant records (NaN) as noise. As a result,
the PV generation dataset has in total of 8657 records after
the pre-processing step.

The PV generation data itself is recorded in Megawatts,
and hourly generation records can reach up to thousands
of megawatts, sometimes even more than 5 thousand
Megawatts. However, at night, due to lack of solar irradi-
ance, the PV generation equals 0 mostly. The large period-
ical difference in the dataset will not benefit the learning
process, which means that the data normalisation process is
necessary as well. MinMaxScaler function was used to scale
all the PV generation data under [0,1] scale. The weather
data air temperature are stored in the degree Celsius; the
global solar irradiance mount is stored in KJ/m2.

The Pearson correlation coefficient model was used to
analyse the associations behind the feature data. It is a
normalisation evaluation method of the covariance of two
features, which reviews the strength and direction of linear
correlation between them [57]. On the one hand, the various
weather data were studied including time-related features’
correlations with PV electricity generation, which can be
illustrated in figure 3.

Fig. 3. Heatmap of PV Generation Features Correlation

Analysing the correlation between features from the
dataset, we can see that pure time features like hours, date,
and month do not have much correlation with hourly PV
generation because their correlation values with PV gener-
ation are close to 0. However, previous records of global
irradiance and air temperature have a very high correlation
to the next hour’s PV generation, which means they could
be the main features that contribute to the prediction model.

On the other hand, the correlation between history PV
generation (24 hours before) and current PV generation was
also studied. Because the POA model is very complex and
contains various times, weather, and other features we can-
not easily have access to all of them. In contrast, the previous
PV generation data are the accurate value simulated by all
the factors. The correlation heatmap between history and
current PV generation value is shown in Figure 4. Where
P 24 refers to PV generation from 24 hours ago, P 0 refers
to the PV generation in the future one hour, which needs to
be predicted.

From Figure 4, P 1 to P 3 (previous 3 hours) and P 21
to P 24 (yesterday 3 hours after) PV generation has a high
correlation (above 0.6) to the future one-hour PV generation
prediction. The other hours of PV generation also have some
associations with the future PV generation data.
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Fig. 4. Heatmap of PV Generation Features Correlation

To sum up, we used a total of 8752 records (from
2020/01/01 0:00 to 2020/12/21 23:00) to train the XGBoost
model. The dataset is developed in 6 columns: Month,
Date, Time, Air Temperature, Global Irradiance, and PV
Generation. By applying different feature combinations to
the algorithms to receive a high-performance model that
requires minimum data. The testing dataset will be from 6
days of records (from 2020/12/22 0:00 to 2020/12/27 23:00).

4.2 XGBoost

In order to find the ideal prediction model, this work
first used the XGBoost model to verify and analyse the
hypothesis we concluded from the first Pearson correlation
model that solar irradiance and air temperature are the core
features to predict short-term PV generation. The XGBoost
model predicts future PV generation based on the previous
1-hour weather data and the time data without the data
normalisation process to keep the original data features.
As a result, PV generation prediction uses megawatts as its
measurement unit. PV generation data’s relationships in the
XGBoost model among different features can be illustrated
in Figure 5.

Fig. 5. XGBoost time features analysis in PV generation data

XGBoost feature importances function utilises F score
that indicates each feature’s percentage weight over the
weights of all features. As figure 5 shows, in XGBoost solar
irradiance has over 50% importance and air temperature has
around 30% importance for this dataset.

For the hyperparameter optimization part, we still used
the grid search method to automatically test the best fit of
parameters for the XGBoost model. The XGBoost prediction
model fit is shown in figure 6, which is an XGBoost one-
hour ahead prediction model using previous hours, solar
irradiance, and air temperature as the training dataset.

Fig. 6. XGBoost PV generation prediction

From the figure, we can see that the XGBoost model only
using previous one-hour solar irradiance, air temperature,
and hours time data shows low prediction accuracy on the
summit PV generation of the day. The average R2 score is
around 0.7; the RMSE value is around 467 (megawatts). This
model’s performance is not very well for just using previous
weather data and time data as its input. As a result, we
decided to use previous PV generation data as input instead
of using previous solar irradiance and air temperature.
Because previous weather data are more related to previous
PV generation instead of PV generation in the future. Also,
previous PV generation is always accurate and more related
to the predicting panel (containing more complex features)
comparing to the local weather data.

4.3 SARIMA

To confirm the correlation between history and current PV
generation, we utilized the time-series algorithm SARIMA
to predict the current generation value using the previous
generation value analysed by date and time. The auto-
regression part of the SARIMA model measures the de-
pendency by past observations, which will use the previ-
ous 8700 data records as the training dataset. Also, from
observation of the PV generation value, the value repeats
in a similar tendency loop for 24 hours of solar movement,
which means the PV generation value can be set in a 24-hour
(24 records) seasonal period in a SARIMA model. The test
data will be 6 days starting from 2020/12/22 to 2020/12/27.

Our goal is to find the best-fit value for SARIMA
(p, d, q)(P,D,Q,m) to optimize the interest metric. We used
the hyperparameter optimization method, Grid Search, to
generate and test different combinations of variables p, d,
q, and then evaluate the model accuracy by comparing
their Akaike Information Criterion (AIC) value. AIC value
is a common model selection theory, which will gradually
minimize the mean squared error of prediction to find the
best fit [58]. Normally, the lower AIC value is considered to
be a better model fit.

After the grid search process, the best hyperparameters
that fit the SARIMA model are (1, 1, 1)(1, 1, 1, 24) with the
lowest AIC score of 262.36. The SARIMA short-term PV
prediction can be illustrated in Figure 7.

The SARIMA model’s coefficients summary table is
listed in Table 1:

in which ar.L1 and ma.L1 rows denote autoregressive
(AR) and moving average (MA) coefficients for the non-
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coef std err z P > |z|
ar.L1 0.4708 0.012 38.169 0.000
ma.L1 0.1012 0.013 7.847 0.000
ar.S.L24 0.1128 0.008 14.574 0.000
ma.S.L24 -0.8901 0.004 -217.983 0.000
sigma2 0.0599 0.001 116.467 0.000

TABLE 1
SARIMA model summary on PV generation prediction

seasonal component of the model, respectively. Similarly,
”ar.S.L24” and ”ma.S.L24” denote the AR and MA coef-
ficients for the seasonal component of the model, where
the seasonality is specified as 24 hours. The sigma2 (sigma
square) column denotes the variance of residual values; the
coef column denotes weights of each feature; the std err
column denotes standard error. The significance of each
coefficient is assessed using the z-test, with the associated
p-values provided in the ”P > |z|” column. A p-value less
than the conventional threshold of 0.05 indicates that the
corresponding coefficient is statistically significant, suggest-
ing that it has a significant association with the predicted
PV generation.

Fig. 7. SARIMA PV generation prediction

As Figure 7 shows, the SARIMA model has relatively
high accuracy and confidence (average MAE is around
0.0097, average RMSE is around 0.0196) on short-term PV
generation predicting. The grey shadow in the figure is the
confidence bounds of the prediction model, which refers to
the uncertainty of each step of prediction. However, we still
can see there are imprecise predictions during the end of the
day and the summit generation in a day.

4.4 LSTM

The LSTM model was first used to conduct one-step ahead
PV generation prediction as a comparison group with the
SARIMA model. We set the look-back window as 24 (last 1-
day records) so that the LSTM algorithm will take previous
1-day records to predict the value. The LSTM model con-
tains 50 neurons; mean square error as loss function; and the
adam optimizer. LSTM model’s average score (R2) is around
0.96, average RMSE is around 0.2. The best LSTM one-step
ahead model we conduct can be illustrated in Figure 8:

LSTM one hour ahead short-term prediction using 24
hours history records has a relatively good performance,
even though sometimes it is still limited in predicting

Fig. 8. LSTM PV generation prediction

the summit PV generation value of the day and some
other turning points. Then, to find a resilient and high-
performance model, we also added the weather data (solar
irradiance and air temperature) and tested other look-back
window sizes on the LSTM model to reduce the input
feature amount. Different input feature combinations’ re-
quirements and performance are listed in table 1.

4.5 Result Comparison

We researched the time-series PV generation algorithms
SARIMA and LSTM, which use previous PV generation data
to predict future generations. We used 4 common evaluation
methods R square score (R2), mean absolute error (MAE),
mean square error (MSE), and root mean squared error
(RMSE).

R2 score, which also means coefficient of determination,
describes the accuracy of dependent variable changes ac-
cording to the prediction of independent variables. In other
words, it explains how well the data fit the model and where
R2 = 1 represents the perfect fit. Where yi denotes the true
value of the dataset, ŷi denotes the predicted value, and yi
denotes the mean value.

R2 = 1−
∑

i(yi − ŷi)
2∑

i(yi − yi)
2

(15)

MAE represents the average of absolute residuals be-
tween the prediction and true value, which can be calculated
as:

RMAE =
1

n

∑
i

|yi − ŷi| (16)

MSE measures the average square errors between pre-
dicted and true values. Compared to MAE, it measures the
variance of residuals rather than the average of residuals. It
can be calculated as:

RMSE =
1

n

∑
i

(yi − ŷi)
2 (17)

RMSE is the square root of the MSE value, which
measures the standard deviation of residuals and can be
calculated as:
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TABLE 2
Comparison Between XGBoost, SARIMA, and LSTM Models

SARIMA* LSTM*‘24 LSTM*‘3 LSTM*‘2 LSTM* 24 LSTM* 3 LSTM* 2

R2 0.9501 0.9563 0.9103 0.9179 0.9502 0.9022 0.8923
RMAE 0.0097 0.0097 0.0155 0.0145 0.0103 0.0160 0.0185
RMSE 0.0003 0.0003 0.0006 0.0006 0.0003 0.0007 0.0008
RRMSE 0.0196 0.0183 0.0262 0.0251 0.0195 0.0278 0.0287

RRMSE =

√
1

n

∑
i

(yi − ŷi)2 (18)

In the algorithm results comparison table, * denotes the
dataset with normalization; ‘ denotes to the dataset with
weather data (solar irradiance and air temperature). The
number after LSTM denotes the look-back number. For
example, LSTM*‘ 5 refers to the LSTM model utilizing the
normalization dataset and weather data, using the previous
5 hours of PV generation data as a look-back window. For
each of the models, we used an average score among 20
times model fitting.

From the comparison, we can see that the LSTM model
using 24 history PV generation records and weather data
does have excellent performance (average R2 score can
reach 0.9563, and average RMSE is around 0.0195). How-
ever, various input features reduce the resilience and ro-
bustness of the model. When there are not that much PV
generation data available or some of them are not accurate
because of cyber attacks, the model will not perform or
make an accurate prediction in that circumstance. Instead,
we studied various LSTM models that require minimum
input data to guarantee the model’s resilience. In the table,
LSTM models only use the previous 2 records and 3 records
of PV generation data as input and have relatively high
performance (with an average R2 score of around 0.90 and
an average RMSE score is around 0.026).

However, when previous solar irradiance, air temper-
ature, or other weather data are available combined with
previous PV generation data, using multi-variables LSTM
algorithms will have a slightly better performance in short-
term prediction (by comparing LSTM*’ models with LSTM*
models).

5 CONCLUSION

This research proposed resilient machine learning models
for short-term photovoltaic (PV) power generation forecast-
ing using XGBoost, SARIMA, and LSTM algorithms. The
LSTM model leveraging 24 hours of historical PV data and
weather information exhibited excellent performance, with
an average R2 of 0.9563 and RMSE of 0.0183.

To enhance prediction resilience, LSTM models requiring
only 2-3 hours of prior PV generation records were investi-
gated. Though slightly underperforming the 24-hour model,
they achieved competitive average R2 scores of around 0.90
and RMSE values of approximately 0.026. When supple-
mented with weather data, these multi-variable LSTM mod-
els marginally improved. The time-series SARIMA model

relying solely on historical PV data also demonstrated high
accuracy (R2 of 0.9501) and resilience.

The proposed models offer flexibility to choose the ap-
propriate input feature based on available data, resilience,
and accuracy requirements. The 24-hour LSTM model can
maximize accuracy given abundant historical data, while
the minimal input LSTM models prioritize resilience over
marginal performance losses when data is limited or cyber-
attacks are a concern. Overall, this work advances reliable,
resilient PV forecasting to facilitate renewable energy inte-
gration.
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