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Summary  

Adaptively learning from encountered visual information is a fundamental skill that can 

translate into changes at both the behavioural level and at the subjective, conscious 

experience level. However, the conditions needed for such visual perceptual learning (VPL) 

to take place are not well understood. It has been proposed that VPL can occur even when 

the visual information driving the learning is removed from awareness – a finding with 

implications about the scope of unconscious processing and the function(s) of 

consciousness. This thesis seeks, first, to re-evaluate the claim that VPL can occur from 

unconscious information. In Chapter 1, I provide an overview of the literature on VPL and 

the challenges of studying effects from unconscious visual information. Chapters 2 and 3 

detail novel experimental work attempting to drive two different kinds of VPL with 

unconscious information in different paradigms: two-tone image disambiguation (Chapter 2) 

and contrast discrimination learning (Chapter 3). The learning conditions in both chapters 

are contrasted with carefully selected control conditions. In both chapters, there was 

Bayesian evidence that learning occurred under some experimental circumstances, but 

crucially, there was no differential advantage of the learning compared to the control 

conditions. This pattern suggests that the observed learning effects could not be attributed 

exclusively to the training on unconscious stimuli. Each chapter includes considerations 

about measurements of awareness and/or learning. Chapter 4 specifically turns towards the 

issue of measuring (lack of) consciousness, to explore how changes in a widely used 

subjective measurement, the Perceptual Awareness Scale, relate to changes in task 

performance. Collating and re-analysing data from Chapters 2 and 3, alongside datasets from 

11 published articles, the results highlighted substantial heterogeneity across studies in the 

relationship between PAS and task performance. Altogether, as discussed in Chapter 5, these 

results challenge previous conclusions of VPL from unconscious information, and provide 

rich explorations of whether and how different experimental design choices impact 

conclusions about awareness and learning.   
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1 Chapter 1 

1.1 General introduction 

The human visual system has the remarkable ability to tune itself to the information it is 

exposed to, with such changes often being maintained for a long time. These long-term 

changes in subjective experience and performance that occur adaptively based on demands 

from the environment (Gibson, 1969; Sagi, 2011) have been defined as visual perceptual 

learning (VPL). While VPL can be and has been intuitively linked to the development of visual 

skills in childhood (Adolph & Kretch, 2015; Chapters 16-19 in Gibson, 1969; Goldstone, 

1998), there are many real-life examples of adults learning new highly-specific skills with 

training: assessing woven fabrics from tactile information (Civille & Dus, 1990), evaluating 

chest x-rays for disease (E. M. Kok et al., 2012), detecting dangerous items in airport security 

scans (McCarley et al., 2004; Sowden et al., 2000). More than that, learning can be induced 

even in fundamental visual skills in the laboratory through extensive practice (e.g., Bao et al., 

2010; Fine & Jacobs, 2002; Furmanski et al., 2004; Furmanski & Engel, 2000; Schwiedrzik et 

al., 2009, 2011; Sowden et al., 2002; Watanabe & Sasaki, 2015), recognized already more 

than a century ago as “the progressive mastery of certain simple percepts” (Judd & Cowling, 

1907, p. 349). 

What sets VPL apart from other types of learning, like procedural learning (of motion 

sequences, like driving or walking), associative learning (between a stimulus and a 

response), or declarative learning (of factual information, like important dates in history) is 

that VPL is inextricably intertwined with conscious experience. This has been recognized 

early on, for example by Judd and Cowling (1907) who proposed that: 

whenever a change appears in conscious experience as a result of practice, the 

elements of the experience are sure to undergo a rearrangement of such a character 

that they will be more easily discovered than a relatively static experience which is 

undergoing no marked development. (p. 350) 

Later conceptualizations built upon the same ideas that place changes in awareness at the 

very core of VPL, with Gibson (1969) describing that (V)PL “has a phenomenal aspect, the 

awareness of events presently occurring in the organism’s immediate surroundings. It has 

also a responsive aspect; it entails discriminative, selective responses to the stimuli in the 
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immediate environment” (p. 3). In other words, to develop VPL it is not sufficient to 

memorize a category label, or that a certain sensory input is labelled in a specific way and to 

respond in a specific way associated with the input; the input must also “feel like something 

else” (Nagel, 1974) after training, as opposed to before.  

Anecdotally, this statement is non-controversial and readily supported by everyday examples 

in both vision and other sensory modalities: for instance, those that do not play the piano 

look at the keyboard and only see black and white pieces, while piano players see the notes 

and are able to differentiate between keys only by looking at them. Similarly, those who 

drink coffee would be able to tell the difference between their favourite brand and a 

different one, while to a non-coffee drinker both cups would likely taste all the same. 

Scientifically though, the relationship between PL and awareness has not been explored in 

depth. Most of the literature focused on the ways in which VPL can exert influence over 

conscious experience, in a flexible manner tuned to task-specific requirements. Four types of 

effects were proposed (Goldstone, 1998): differentiation, unitization, attentional weighting, 

and stimulus imprinting. Below I briefly present each type. 

 

1.2 Differential effects of perceptual learning on conscious experience 

Differentiation effects refer to the gained ability to discriminate between stimuli, or to 

identify new dimensions of the stimulus, that were previously indiscriminable or 

unidentifiable – with effects spanning from simple stimuli differing in low-level visual 

properties, such as luminance contrast or orientation, to features or entire complex object 

categories such as faces. Consequently, classic psychophysical studies on VPL such as 

detecting which of two consecutive intervals contained a grating of a specific orientation and 

spatial frequency and which was blank (e.g., Fiorentini & Berardi, 1980), or sharpening of 

vernier acuity (a decrease of the smallest identifiable degree of misalignment between two 

lines; McKee & Westheimer, 1978; Poggio et al., 1992), would fall under this category (for 

reviews, see Goldstone, 1998; Lu & Dosher, 2022). Similarly, learning to break down an 

initially homogeneous category of complex stimuli (e.g., mushrooms) into functionally 

distinct subcategories (e.g., poisonous vs. edible) can also be viewed as differentiation.  
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Conversely, VPL can also lead to unitization, or the creation of ‘functional units’ (Goldstone, 

1998) from individual parts previously analysed separately. Holistic processing of familiar 

faces is a prime example of unitization (Markant & Scott, 2018): a strong relationship was 

found between familiarity with a face and processing the face holistically over analysing 

each part separately (DeGutis et al., 2014). Unitization can also occur for other categories of 

stimuli, like novel complex objects (Liang et al., 2020). The emergence of complex visual 

categories with well-defined meanings is complemented (or perhaps, supported) by 

experience-induced unitization in more basic tasks such as learning to detect edges and 

contours or figure-ground segregation – which was found both across development and in 

adults (Bhatt & Quinn, 2011; Quinn & Bhatt, 2005, 2006; for a review, see Wagemans et al., 

2012).  

Attentional weighting refers to learning how to allocate attention, based on previous 

experience with what aspects of the input predicted correct categorization (Goldstone, 

1998; Goldstone & Byrge, 2015; Ransom, 2020). Learning to redirect attention can manifest 

in sampling different locations after learning compared to before; there is evidence that 

experts with a category exhibit drastically different patterns of eye moments when looking 

at an object in their category of expertise, compared to novices or categories outside their 

expertise (e.g., Brams et al., 2019; Gegenfurtner et al., 2011; Heisz & Shore, 2008). It is 

worth noting though that attentional weighting is closely linked to unitization and 

differentiation (Prettyman, 2019): the re-parsing of the input in larger (unitization) or smaller 

(differentiation) units must co-occur with how attention is allocated to these units, 

otherwise such re-parsing is not beneficial. However, whether they develop simultaneously, 

sequentially, or independent from one another is not yet understood. 

Finally, stimulus imprinting refers to the development of new specific detectors for whole or 

parts of stimuli (Goldstone, 1998), and has been likened to unsupervised learning, in the 

sense that categories or relevant patterns can be identified and stored without the need for 

explicit labels (Goldstone & Byrge, 2015). This type of learning is readily exemplified by two-

tone, or Mooney, images (hereafter referred to as two-tone images), like the well-known 

Dalmatian or the image in Figure 1 in Chapter 2. These images are obtained artificially from 

manipulating images of real-life scenes or objects (Figure 2), and look like meaningless black-

and-white patches to untrained observers who did not see the original, unedited template 



4 
 

image (hereafter referred to as template or greyscale, although these images need not be in 

greyscale). After exposure to the corresponding template, two-tone images can be perceived 

as depicting the content of the corresponding template – an effect hereafter called 

disambiguation. Compared to the other types of VPL discussed, stimulus imprinting can 

require substantially less practice than learning in other tasks – in the case of two-tones, it 

can be induced by as little as one exposure to the template image, or in the case of highly-

trained categories like faces it can reliably occur spontaneously (Schwiedrzik et al., 2018). 

Nevertheless, this effect still satisfies the criteria of VPL: disambiguation is substantially 

facilitated by exposure to the templates (Ludmer et al., 2011) - but not entirely dependent 

on it, as it can occur spontaneously in untrained images or through exposure to image 

content labels (e.g., Samaha et al., 2018); it can still be observed in the same images long 

after the initial exposure (Ludmer et al., 2011); and it alters phenomenology rather than 

solely driving a stimulus-response association. 

 

1.3 VPL without stimulus awareness? 

Fewer studies though have investigated the opposite relationship, namely how awareness 

might contribute to and whether it is necessary for VPL. As discussed in Chapter 3 (section 

3.1), addressing this question is important towards better understanding what cognitive 

processes might require awareness. Consequently, it might also be relevant towards 

different theories of consciousness. An overview of different theories of consciousness 

relevant to VPL, along with a discussion of whether unconscious VPL would be consistent 

with different theoretical predictions, is covered in Chapter 3 (sections 3.1 and 3.5). A full 

review of different theories of consciousness is outside the scope of this chapter, but can be 

found in other sources (e.g., Seth & Bayne, 2022). 

This question is different from whether unconscious stimuli can influence behaviour in a 

masked priming context. VPL effects are thought to be different than masked priming, with a 

key difference being that with priming, the influence on the subsequent stimuli has been 

shown to be transient, while VPL is conceptualized as more sustained, longer-term learning. 

Lin and colleagues demonstrated this distinction in a learning paradigm which combined 

‘easy’ trials (presented for over 200ms and allowing higher accuracy, around 8% of trials) 
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and ‘hard’ trials (presented for 16.7ms and only allowing lower accuracy). Both types of 

trials had the same structure, namely a square or a diamond followed by a mask. Indeed, in 

the blocks which contained an equal number of easy and hard trials, there was an increase 

in accuracy in the hard trials. This advantage started to decay immediately after the easy 

trials were removed (i.e., in subsequent blocks with only hard trials) and performance 

returned to baseline after around 10-15 trials. A general improvement throughout the task 

was also found. In comparison, a control condition which trained only with hard trials also 

showed a slower, sustained improvement throughout the task, albeit smaller than when 

easy trials were present. The authors further suggested that, since the learning and priming 

rates were not found to correlate, the two processes might rely on different underlying 

plasticity mechanisms (Lin et al., 2017). 

The same distinction between masked priming and learning can be applied to stimulus 

imprinting as well, where comparably fewer trials are needed. For example, in a study using 

two-tone images, Chang and colleagues (2016) displayed blocks of multiple greyscale images 

interleaved with blocks of multiple two-tone images (similar to the experiments I conducted 

in Chapter 2) and found no advantage on performance in two-tone images when the 

corresponding greyscales were displayed as temporally close as the paradigm allowed (over 

4.5s). This finding suggests that on that multi-second timescale, any possible response 

priming from the masked greyscale had decayed. It can be further argued that response 

priming does not explain two-tone disambiguation effects outside of this context either, 

when the greyscale images are visible and presented in a way clearly associated with the 

two-tones. In a blocked design with 10 two-tones in the pre-post disambiguation stages 

separated by a long period (60+ seconds) of disambiguation (Teufel et al., 2015), 

participants’ ability to judge if a two-tone contained a person or not increased.   

In any case, the question of ‘VPL without awareness’ can be viewed from multiple angles, 

based on what stimulus dimension(s) participants are not supposed to be aware of:  

1. full awareness of the stimulus and all its low level properties, but not knowing the 

correct label or the relationship between stimuli; this includes the seminal work from 

Seitz, Watanabe, and colleagues on task-irrelevant VPL (TIPL) in dynamic random-dot 

displays (DRDs, Watanabe et al., 2001), because the long stimulus presentation times 

(500ms) meant that participants were aware of the DRDs and that the dots were 
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moving, just that the percent of coherent motion was below the threshold for 

identifying the motion as coherent. 

2. no awareness of the target dimension but, at least in theory, possible awareness of 

some other dimensions of the stimuli, like whether something was presented or not 

(Axelrod & Rees, 2014; Chang et al., 2016; Nishina et al., 2007; Schwiedrzik et al., 

2009, 2011; Seitz et al., 2005); 

3. no awareness of the entire stimulus, as in not being able to detect that a stimulus 

was presented at all (Experiment 2 in Seitz et al., 2009). 

Because the conceptualization of ‘(un)awareness’ that I adopt in the thesis involves attempts 

to remove at least some low-level properties from awareness, the subsequent discussion will 

target literature from the 2nd and 3rd categories above. It will also only target experiments 

where during training, participants were exposed exclusively to unconscious trials, bar for 

attention checks/catch trials. This is because it would otherwise be difficult to establish if 

any learning effect was driven by the conscious or unconscious trials.  

The findings in most studies which meet these criteria indeed seem to support that learning 

can occur when the target dimension or the whole stimulus is not perceived, in a variety of 

tasks. Seitz and colleagues (2009, Experiment 2) compared orientation discrimination 

performance before and after participants trained for 20 days on oriented gratings rendered 

unconscious by continuous flash suppression (CFS). In CFS, the stimuli to be rendered 

unconscious are presented to only one eye, while the input to the other eye is a strong mask 

usually comprised from complex geometric patterns ('Mondrians', see Figure 2 in Seitz et al., 

2009, for a visualization). Due to the mismatch between inputs, what is usually consciously 

experienced is the mask, rather than the stimuli – hence why CFS has been described as 

related to binocular rivalry (Tsuchiya & Koch, 2005). The gratings were presented in noise, 

with the signal-to-noise ratio (SNR) either varying (pre-post sessions) or fixed at a specific 

value (training sessions). The training itself consisted of passively looking at a screen while 

gratings-in-CFS at the chosen SNR appeared occasionally, either with a specific orientation 

(trained gratings, 160 trials per training session) or a different orientation (control gratings, 

160 trials). All trials containing a grating, either trained or control, were presented to the 

same eye (trained eye) – a second set of trials involved presenting a blank screen to the 

other eye (untrained eye). The presentation of the unconscious trained gratings was paired 
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during training with the delivery of a drop of water, which was rewarding to the participants 

because they were asked to not eat or drink for 5h before each session. An increase in 

orientation discrimination accuracy from before to after training was found, only for 

orientations paired with a reward during training and only for the trained eye. Interestingly, 

the learning manifested only for the SNR yielding the lowest accuracies before training, and 

not the SNR used in training, which was already at ceiling before training – thus suggesting 

that orientation processing as a whole improved in the trained eye, rather than processing 

of the specific trained stimulus. In a different study on task-irrelevant perceptual learning 

(TIPL), participants were repeatedly exposed to gratings-in-noise stimuli at different 

locations in the periphery, while doing an attention-demanding rapid series visual 

presentation (RSVP) task (Nishina et al., 2007). The RSVP task required participants to pay 

attention to a continuous stream of characters (letters, and two numbers), and indicate at 

the end of the trial which numbers were presented. The stream was presented in the 

periphery as well, not overlapped with the gratings, and participants were required to 

maintain fixation in the centre of the screen. The contrast of the gratings was chosen to yield 

chance orientation discrimination pre-training, on average across participants. Performance 

improved pre-post training for the orientation paired with a target, and there was also an 

effect of proximity with the target. The findings were interpreted as showing that repeated 

exposure to unattended, initially indiscriminable gratings can lead to improvements when 

presented simultaneously with task-relevant stimuli. Another similar TIPL paradigm also 

found a reduction in the thresholds of psychometric functions for detecting gratings of 

different contrasts from pre- to post-training on a subthreshold grating, which was 

modulated by whether the gratings were paired during training with a high-reward or low-

reward target (Pascucci et al., 2015). Nevertheless, I will discuss in Chapter 5 (section 5.2) a 

different perspective on these results (in the context of the specific methodological choices 

of the studies and of findings from the present thesis), that contests the interpretation that 

they were exclusively driven by the unconscious stimuli. Other findings, discussed in detail in 

Chapters 2 and 3, also argued support for VPL from masked visual stimuli, including Mooney 

image disambiguation from masked templates (Chang et al., 2016), and increases in 

discrimination sensitivity and PAS from initially-indiscriminable shapes (Schwiedrzik et al., 

2009, 2011).  
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Nevertheless, some exceptions were reported. In an attentional blink (AB) paradigm (Seitz et 

al., 2005), DRDs with 5% motion coherence were presented peripherally and were task-

irrelevant, while participants completed a RSVP task with letters and numbers. The setup of 

the AB task manipulates the stimulus onset asynchrony (SOA) between two targets (T1 and 

T2) in the RSVP stream, so that when T2 appears after a certain SOA after an identified T1, 

participants are less likely to consciously experience T2. For comparison, a Non-AB condition 

was introduced, where the SOA between T1 and T2 was sufficiently large to enable 

conscious experience of both targets. Seitz and colleagues (2005) found that in the Non-AB 

condition where participants were aware of both the DRDs and the T2 target but only 

attended the target, motion coherence detection in the trained direction improved across 10 

training sessions. In the AB condition, where both the DRDs and T2 targets were reportedly 

unconscious, there was no improvement in motion coherence detection. One caveat 

however is that both awareness and attention were absent in the experimental AB 

condition, making it impossible to distinguish between needing awareness of or attention to 

the stimuli. Similar results of no learning were obtained in a study on holistic face processing 

(Axelrod & Rees, 2014, Experiment 2). Participants saw two composite face stimuli in each 

trial, where the eye region was always visible, while the visibility of the rest of the face was 

manipulated using CFS. The eyes could be aligned with the face thus enabling holistic 

processing, or slightly shifted thus reducing holistic processing. If holistic processing was 

present, it would be expected that judgments about the eyes area alone would be slower 

and less accurate because of the influence of the rest of the face. The training consisted of 

repeated exposure to the same composite stimuli where the visible eyes were aligned with 

the invisible faces and both could be the same or different, while participants judged if the 

eyes alone were the same or different. If the unconscious training strengthened holistic 

processing, then an effect should be observed on the aligned stimuli only. Participants’ 

accuracy in discriminating if the two faces under CFS were the same or different (while the 

eyes stayed the same) was not significantly different from 0, neither before nor after training 

– suggesting that participants were not initially aware of the faces and the training did not 

change this. Moreover, while some general training effect was observed, there was no 

significant difference between the aligned and shifted conditions – suggesting that the 

improvement could not have come from the unconscious faces. In other studies, the 

learning effect was influenced by the presence of ‘easy’ trials (i.e., at stimulus parameters 
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likely to be accurate) and/or feedback (Lin et al., 2017; Liu et al., 2012). For example, Liu and 

colleagues (2012) showed that the contrast necessary for reaching 65% accuracy did not 

decrease with training (i.e., no VPL occurred) when the training included no feedback and 

consisted exclusively of trials at contrasts yielding 65% accuracy in a staircase – but it did 

decrease when a substantial proportion (i.e., half) of the trials were at ‘easy’ contrasts 

(yielding 85% accuracy). However, it is questionable whether the stimuli were unconscious in 

the beginning of the training, since neither study had the goal of starting the training with 

unconscious stimuli. 

 

1.4 Methodological considerations in studying unconscious learning 

One considerable complication in the investigation of any effect of unconscious information 

on cognitive processes or decision making (or, in the case of this thesis, VPL) is that it 

requires demonstrating that in a specific condition or set of trials, participants had no 

conscious awareness of the target stimulus or stimulus feature. Attempting to do this though 

is far from straightforward, and is riddled with methodological, theoretical and 

measurement challenges (e.g., Balsdon & Azzopardi, 2015; Meyen et al., 2022; Michel, 2022; 

Reingold & Merikle, 1988; Sandberg et al., 2010; Sandberg & Overgaard, 2015; Skóra et al., 

2021; Szczepanowski et al., 2013; Timmermans & Cleeremans, 2015; Vadillo et al., 2016; 

Wierzchoń et al., 2019; Zher-Wen & Yu, 2023). At prima facie, one issue might seem to stem 

from the plurality of measurements in the field, noted already 35 years ago by Reingold & 

Merikle (1988) in relation to different types of objective task performance (i.e., tasks or 

measurements where there is a correct answer that the researcher has access to, such as 

whether a stimulus was presented or not). With an extensive list of choices, it is plausible 

that each measurement might tap into slightly different aspects of consciousness, and their 

conclusions might not be compatible.  

To assess if participants consciously experienced a stimulus, a non-exhaustive list of possible 

approaches includes asking participants:  

o if they saw the stimulus or not in a given trial (seen/not seen paradigms, e.g., 

Overgaard et al., 2006; Sidis, 1898), 
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o how clearly they experienced the (whole, or specific features of) stimuli, on a 3 or 4-

point scale between ‘No experience’ and ‘A clear experience’ (the PAS introduced by 

Ramsøy & Overgaard, 2004), 

o to pick the correct answer about a stimulus feature from an array of options 

(discrimination or identification; e.g., Schwiedrzik et al., 2009, 2011),  

o to respond in which part of the trial the stimulus was more visible (interval forced-

choice or IFC detection, e.g., preprint from Amerio et al., 2023; Peters & Lau, 2015); 

o to indicate how much confidence they had (confidence ratings, CR, e.g., Balsdon & 

Azzopardi, 2015; Lau & Passingham, 2006), or  

o how much money they would bet (post-decision wagering, PDW; e.g., Persaud et al., 

2007), or 

o how warm they feel (feeling-of-warmth scale, FoW; e.g., Wierzchoń et al., 2012, 

2014) towards their answers on other questions about the stimulus.  

A full review of the pitfalls and advantages of each measure is outside the scope of this 

discussion. It is worth noting though that most studies investigating unconscious effects rely 

on a dissociation between an index of awareness such as the ones mentioned above (which 

should show no awareness) and the index of performance hypothesised to be influenced by 

the unconscious stimuli (Merikle et al., 2001; Reingold & Merikle, 1988). This approach is 

somewhat different than the unconscious learning studies discussed in the previous section 

(1.3) and in Chapter 3, which have a pre-post design; in Schwiedrzik and colleagues’ studies 

(2009; 2011) the index of awareness was the same as the index of learning (d-prime), while 

in the others (e.g., Chang et al., 2016; Nishina et al., 2007; Pascucci et al., 2015; Seitz et al., 

2009) the index of learning was the pre-post training difference and awareness was assessed 

or inferred separately. Nevertheless, I will summarize what each method of measuring 

awareness mentioned above involves, and some important issues to consider.  

One simple but controversial approach to measuring consciousness of a stimulus is to 

directly ask participants to introspect and answer if they saw the stimulus or not. If they 

claim they did not, but their performance on judging some dimension of the stimulus is 

above chance, then the interpretation would be that this judgment may not require 

consciousness. Sidis (1898) reported such a result in three experiments (“Class C-E”) with 

the task to identify the letter or number presented on 10 cards. Despite sitting sufficiently 
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far from the cards to claim that the characters were ‘mere blurred dots’ (p. 169), participants 

correctly identified the characters in 23%-35% of trials (percentages inferred from the 

reported number of correct answers divided by the number of total trials), thus higher than 

the chance level (which, at most, was 10% when participants were told the available options 

in Class E). This finding was interpreted as showing “a secondary subwaking self that 

perceives things which the primary waking self is unable to get at” (p. 171), which is alluding 

at the modern terminology of ‘unconscious perception’. However, one important issue with 

this approach (as well as other dichotomous subjective measures) is that it assumes that all 

conscious experiences can be captured within the dichotomy of either experienced or not 

experienced (also referred to as all-or-nothing, see Chapter 4 for details). If that assumption 

is incorrect, then the answers (and subsequent conclusions) are contaminated by noise from 

experiences with intermediary levels of clarity. One measurement comparison indeed found 

this pattern, although it was not assessed statistically: objective accuracy was higher in trials 

labelled as ‘not seen’ than labelled as 'No Experience’ on the PAS, and respectively lower in 

trials labelled as 'seen’ than labelled as ‘A clear experience’ (Overgaard et al., 2006). By 

comparison, using a measure which allows intermediate answers between ‘not seen’ and 

‘seen’ would still be able to detect in theory if conscious contents were all-or-nothing, 

because answers would cluster around the range ends. Another related limitation, shared 

with other subjective measures like the PAS or CR, is the criterion problem (e.g., Michel, 

2022; Timmermans & Cleeremans, 2015) – namely that participants might not base their 

subjective answers on the same information, or on the information the experimenter 

assumes they will. In other words, participants failing to report a stimulus as seen might not 

necessarily mean they did not see it, but that e.g., they adopted a very conservative 

criterion, or they preferred pressing a specific button over another etc. Both limitations thus 

make it difficult to pinpoint what seen/not seen questions capture. 

The PAS is discussed in detail throughout Chapter 4 (in particular in sections 4.1 and 4.4). To 

provide an overview, it was proposed as a direct measure of the clarity of experience 

(Ramsøy & Overgaard, 2004), thus having a seemingly clear link with the concept of interest, 

namely consciousness. Its graded structure (usually 3 or 4-point range varying between “No 

experience” and “A clear experience”) was argued to be more appropriate for capturing the 

nuances of conscious experience than binary seen/not seen measures, and also more 
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directly linked to consciousness than CRs (see paragraph on CRs below). Despite these 

suggested advantages, the use and validity of the PAS has been questioned (e.g., Irvine, 

2012; Michel, 2019, 2022) – for example because the original (and some subsequent, e.g., 

the “Almost clear experience” level in Sandberg & Overgaard, 2015) scale descriptions still 

mentioned confidence-related concepts like guessing in the scale description (e.g., “No 

experience” was defined as “No impression of the stimulus. All answers are seen as mere 

guesses”, Ramsøy & Overgaard, 2004, p. 12). As mentioned above, PAS is also affected by 

the criterion problem. 

CR asks participants to make judgments about how confident they were in their answers on 

an objective task, from guessing (or no confidence) to fully confident (for an overview, see 

Norman & Price, 2015). CRs have been an extensively used measurement in consciousness 

research, although how the task is phrased and implemented has been variable, e.g., 4-point 

scales (Balsdon & Azzopardi, 2015; Sandberg et al., 2010; Wierzchoń et al., 2014), 

dichotomous guess/know options (Dienes & Seth, 2010a; Lau & Passingham, 2006). Because 

the judgment focuses on the decision rather than on the perception of the stimulus, CRs are 

metacognitive (‘thinking about cognition’) judgments. On the one hand, this focus has been 

criticized for being too dissimilar from the concept of awareness it purportedly measures: in 

the paper proposing the PAS, Ramsøy and Overgaard, (2004) argued that to them “there is 

little or no validity in the claim of equality between certainty of one’s report and the level of 

conscious awareness of a perceptual process” (p. 8). On the other hand, not relying on 

introspection about subjective experience can be seen as advantageous in cases where 

participants might have low introspection skills (Sandberg et al., 2010). 

With PDW, participants are given an initial account of a certain monetary value (real, 

imaginary, or tokens), and told that on each trial, they must bet a certain amount on their 

objective answer, amount that they would lose if they were wrong or gain if they were 

correct – under the assumption or instruction that participants want to maximize gains 

(Persaud et al., 2007; Wierzchoń et al., 2012). The amount they would bet on an answer is 

then taken to indicate their awareness – and therefore, if their bets did not maximize gains 

but their performance was above-chance, then this would signal that they performed the 

task without awareness. While PDW has been used primarily to assess implicit knowledge in 

tasks such as artificial grammar learning (e.g., Dienes & Seth, 2010a; Persaud et al., 2007), it 
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also produced interesting results when stimulus awareness was targeted instead: for 

example, a patient with cortical blindness in the right hemifield was just as likely to bet low 

as to bet high following correct answers in a visual discrimination task (Persaud et al., 2007). 

This finding falls within the classical definition of ‘blindsight’, which refers to cases where 

patients with primary visual cortex damage can nevertheless make correct judgments about 

visual stimuli presented in their ‘blind’ field, whilst denying they consciously experienced the 

stimuli (Sanders et al., 1974). Because PDW does not directly require introspection about the 

stimulus or the decision, it was argued to be a more intuitive measure of awareness, and like 

CRs, circumvent the issue of some participants having poor introspective skills (Koch & 

Preuschoff, 2007; Persaud et al., 2007). However, PDW was criticized for being susceptible to 

risk aversion confounds (Dienes & Seth, 2010a), it was found to have less tight links with task 

accuracy than CR and PAS (Sandberg et al., 2010), and it was argued to target metacognitive 

judgements similar to CR rather than awareness (Overgaard & Sandberg, 2012) – thus 

suggesting that it might tap into different processes. 

Finally, the FoW scale also involves a 4-point rating, with participants being asked to judge 

how warm they felt toward the answer on an objective measure (1 – “cold”, 2 – “chilly”, 3 – 

“warm”, 4 – “hot”; Wierzchoń et al., 2012). This approach is rooted in the classic use of FOW 

judgments in intuition judgments, under the interpretation that the warmer the ratings the 

closer participants thought they were to the solution (Metcalfe, 1986). Wierzchoń and 

colleagues (2012) argued that FOW was a suitable measure of awareness because its target, 

the ‘experience of accuracy-related feeling’ (Wierzchoń et al., 2012, p. 1144) could arguably 

capture possible partial awareness of the stimulus or task-relevant knowledge that the 

participants might not be able to verbally describe. However, FOW has not been extensively 

used as an awareness measure, nor has its links been explored in detail (at a theoretical 

level, with conceptualizations of consciousness, and at an empirical level, with objective 

measurements of consciousness), so it is difficult to interpret it in relation to the wider 

literature. 

Another way to establish if participants were aware of a stimulus is to assess their objective 

ability to make a stimulus-related judgment. A popular method is to ask participants to 

select an answer from a series of alternatives, in a discrimination task (e.g., whether a 

stimulus was a square or a diamond or if a natural scene image contained an animal or not). 
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Then, one could calculate d-prime (a bias-free measure of sensitivity stemming from signal 

detection theory) and compare it to 0 (Axelrod & Rees, 2014; Schwiedrzik et al., 2009, 2011) 

or take accuracy percentages and compare them to chance (Bacon-Macé et al., 2005). The 

interpretation would be that if participants were conscious of the stimuli, then their 

performance would be higher than chance or null sensitivity – in other words, it assumes 

that consciousness of the stimuli is a prerequisite for better-than-chance performance. 

Because they do not rely on subjective reports by definition and thus avoid the issues 

discussed above, objective measures could be seen as preferable (Irvine, 2012). However, 

others (e.g., Lau, 2007) disagree with the theoretical stance that task performance should be 

interpreted as consciousness, on the grounds that very simple systems (i.e., photodiodes) 

can have d-prime above 0 while arguably not being conscious of the dimensions they 

measure (i.e., light). Practical issues with favouring objective methods are discussed 

elsewhere in the thesis (section 4.1).   

Another approach uses a n-IFC paradigm in combination with a subjective measure. In IFC 

paradigms, each trial consists of n intervals that are identical bar for the key task-related 

difference(s). For example, in Peters and Lau’s (2015) 2IFC paradigm, the first interval 

showed a masked grating while the second interval only showed the mask. Participants 

responded if the grating in each interval was oriented to the left or to the right, and either 

on which orientation judgment they would bet (Experiments 1 and 2), or in which interval 

the grating was more visible (control experiment; results discussed in Chapter 5, section 

5.3). A similar task involved judging if a line was misaligned to the left or the right of a 

control line, with one interval containing no misalignment (Amerio et al., 2023, preprint); 

the subjective question asked which misalignment was more visible. Here, the consciousness 

judgment still relies on introspection, so answers are still subject to the limitation of 

participants’ introspective abilities – however, because one of the two intervals does not 

provide any task-related information, this approach arguably cannot be criticized for being 

contaminated by participants’ criterion differences (or biases).  

Given how different these judgments are, it is unclear to what extent they rely on the same 

underlying mechanisms or on the same concept of consciousness. For example, Overgaard 

and Sandberg (2012) argued that measures relying on introspection about conscious 

experience (such as the PAS) might differ substantially from other metacognitive judgments, 
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like CR or PDW. In the same vein, Overgaard et al. (2006) also argued that dichotomous 

seen/not seen answers are fundamentally different than those on a measure with 

intermediary options (like the PAS). Anticipating the discussion in Chapter 5, it might not be 

possible to know if they all measure equivalent aspects of consciousness, even if biases and 

alternative explanations could be accounted for. Nevertheless, one avenue would be to 

attempt systematic comparisons of different measures, to evaluate first the presence and 

extent of any possible differences in results and conclusions about awareness. 

Some studies systematically manipulated and compared different measurements, primarily 

subjective measures, in the same paradigm and stimuli (Sandberg et al., 2010; 

Szczepanowski et al., 2013; Wierzchoń et al., 2014), and provided incipient evidence that 

the best-performing subjective measures (a detailed discussion of what ‘best-performing’ 

might mean is included in Chapter 4) differ with experimental design (such as whether it is 

presented before or after an objective measure) and stimulus type (emotive vs neutral 

faces). Other studies found that making more conservative the criterion for ‘not seen’, either 

through changing the post-hoc labelling if the stimuli in a trial were consciously experienced 

(Balsdon & Azzopardi, 2015), or changing participants’ answer criterion through instructions 

(Jannati & Di Lollo, 2012), changed the conclusions about whether it is possible for 

awareness to differ between stimulus parameters that yield the same task performance (a 

pattern called ‘relative blindsight’, Lau & Passingham, 2006). Relative blindsight was found 

when trials where participants answered that they had low confidence in their shape 

discrimination answer were rated as ‘not seen’ (criterion less conservative), but not when 

these trials were rated as ‘seen’ (criterion more conservative; Balsdon & Azzopardi, 2015). 

Similarly, it was found when participants were instructed to only answer ‘seen’ when they 

‘actually’ saw the stimulus but not when they were instructed to answer ‘seen’ when they 

‘thought’ they saw the stimulus (Jannati & Di Lollo, 2012). Alternatively, one may not need 

to ask participants anything, and instead use indirect physiological and brain imaging indices 

of awareness (no-report paradigms, Tsuchiya et al., 2015). 

However, this plurality of approaches is less a cause and more a symptom of an equally vast 

landscape of differences in how awareness is understood and what characteristics it is 

believed to have, at a theoretical level. Using any measure, and by extension assessing how 

well a measure captures the measurand (i.e., quantity to be measured), can only be justified 
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in the context of specific a-priori assumptions about the measurand (Skóra et al., 2021). To 

exemplify, a theoretical position that the subjective nature of consciousness can only be 

accurately reflected in introspection would entail designing experiments where lack of 

awareness is defined as lack of some subjective dimension of experience (subjective 

measures). This position would be followed by further stances about what aspect of 

subjective reports capture experience, such as clarity of experience, blanket seen/not seen 

judgments, metacognitive confidence. Conversely, another theoretical position is that 

introspection is unreliable and prone to criterion shifts that cannot be evaluated nor 

controlled for in statistical analyses (Irvine, 2012). In turn, this view would entail designing 

experiments where lack of awareness is defined as participants not performing better than 

chance in making judgments about some dimension of the stimulus where a ground-truth 

answer exists (objective measures). Here as well the theoretical position is followed by 

further taking a stance about what the target judgment should be, such as whether it is 

sufficient to be insensitive to the task-relevant feature (e.g., chance shape discrimination 

when stimuli are squares or diamonds) or whether there should be no sensitivity to any 

aspects of the stimulus (i.e., chance detection). 

A more fundamental assumption, adopted throughout the thesis and in empirical work using 

any kind of reports to assess consciousness, is that awareness of a stimulus always entails 

reportability. Whether this is the case has been contested in a theoretical distinction 

between phenomenal (P) and access (A) consciousness, which entails that it is possible that 

not all conscious experience is available for report (P-without-A, Block, 1995), or in other 

words that phenomenological experience is richer than the contents available for report. 

This conceptual distinction has implications for different theories of consciousness: for 

example, Block (1995) argued that the Global Workspace theory (covered in section 3.1) 

conceptualizes consciousness in terms of access only, while the Recurrent Processing theory 

(also covered in section 3.1) was argued to target phenomenology (M. A. Cohen & Dennett, 

2011). One notable difficulty for establishing if P-without-A is possible is measuring that 

phenomenological experience did occur during the stimulus presentation in cases where all 

reports (be them subjective and objective) would indicate that it did not. For this reason, the 

debate of whether phenomenology is richer than reportability could be seen as intractable 

because P-without-A is unfalsifiable (M. A. Cohen & Dennett, 2011; Knotts et al., 2019; 
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Kouider et al., 2010).  Indeed, it is not clear whether P-without-A is possible, and whether it 

is supported by empirical evidence (Amir et al., 2023) or not (review by Overgaard, 2018). 

For example, Overgaard (2018) reviewed different results claiming to be consistent with the 

existence of P-without-A, such as Sperling’s finding that while participants reported 

subjectively seeing all letters in a briefly-presented array, they could only recall (or access) 

very few unless specifically retro-cued (Sperling, 1960). Overgaard further argued that in all 

cases, there might be plausible alternative explanations that do not rely on P-without-A; for 

example, in the case of Sperling’s finding, that the subjective claim of having seen all the 

letters might be based on weak or partial representations that become stronger with retro-

cueing – although different definitions of ‘access’ might allow the possibility of P-without-A.  

Yet, Amir and colleagues (2023) recently claimed that they showed that such dissociation 

can be demonstrated empirically. The authors conducted a hearing experiment in which pink 

noise stimuli were simultaneously played alongside other sounds, with the sounds 

decreasing in intensity gradually until fully removed. Conditional on participants responding 

that they did not hear anything when the noise alone was presented, the noise was then 

also turned off, and they responded again on whether they noticed a change. All trials were 

followed by a 2AFC discrimination task between noise stimuli. The authors argued that this 

design provides a comparison between ‘A-trials’ when participants could experience and 

report on the noise throughout the trial, ‘P-trials’ where they could not report on it but 

could detect a change, and ‘no-consciousness trials’ where no change was detected. The 

authors found that P-trials did occur, albeit rarely (around 12% of trials), and that 

discrimination accuracy was substantially higher than chance; for comparison, accuracy was 

at chance in the no-consciousness trials. Despite this pattern being interpreted as 

demonstrating P-without-A, it is still subject to the same considerations discussed above 

with introspection, since both questions used to delimit P-trials asked participants to 

introspect (albeit generally about their experience, rather than the stimuli in particular). 

Moreover, such general reports about experience (“did you notice a change?”) might still be 

seen as requiring access to the stimuli in order to determine that a change was present. 

More research would therefore be needed to establish if the assumption of awareness 

entailing reportability is challenged by these findings. 
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Another view relevant to the assumption of awareness entailing reportability that I take 

throughout the thesis (and consequently, to the possibility of P-without-A) comes from the 

Partial Awareness Hypothesis (Kouider et al., 2010). In line with previous criticism of the 

evidence for P-without-A, Kouider and colleagues proposed that rather than being conscious 

of more than we can report, there are different levels at which information is represented 

and accessible. Where such representation is fragmented (i.e., only conscious access to 

these fragments is possible), the missing fragments are filled in to give the illusion of rich 

phenomenology. Consequently, under this interpretation, P-without-A is not possible and 

“the impression of richness is not basic and primary, but is actually a late construct” (Kouider 

et al., 2010, p. 302). However, the authors further speculate that it might be possible to 

observe inability to verbally report on stimuli that were consciously experienced. Some 

reasons for this could be not finding the appropriate words to verbalize the experience, or 

because participants might have had awareness during the stimulus presentation but might 

have lost the ability to verbalize it by the time they had to. Conversely, tasks that Kouider 

and colleagues call ‘non-verbal’ (i.e., detection, discrimination, similarity judgments) should 

not show the same caveat. While it is unclear whether report scales like the PAS present this 

limitation, the speculated distinction underlines further the importance of collecting 

multiple measurements of awareness – approach taken throughout the thesis. 

Therefore, given the plurality of definitions, operationalizations, and measurements in the 

current research landscape, it seems wise to empirically test questions such as whether 

different measurement and experimental design choices might influence conclusions about 

what processes or judgments do not require stimulus awareness, or how different 

measurements might relate to each other. 

 

1.5 Thesis and methodology overview  

The first two experimental chapters are focused on evaluating in more depth previous 

findings that perceptual learning can occur from visual information not consciously 

experienced. To summarize, the novelty of the presented work lies in the expanded and 

improved methodology of conceptually re-testing claims about unconscious visual 

perceptual learning, as well as in large-scale testing claims about a widely used subjective 
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measure of awareness (the PAS) in relation to objective measures. Therefore, these 

methodological changes are present in both the experimental design, and the measurement 

and analysis of consciousness and learning. Keeping methodological considerations central 

in re-assessing unconscious VPL acknowledges the issues discussed in section 1.4.  

Chapter 2 targets a finding claiming that the disambiguation of two-tone images (described 

in 1.2) can be elicited from template images that participants had no conscious recognition 

of (Chang et al., 2016). Two experiments were conducted to re-evaluate this claim, using two 

measurements of accuracy, while addressing important design and analysis limitations of the 

original study. In both experiments, participants were presented with two-tone images, 

before and after exposure to natural scenes that were either visually congruent (i.e., the 

original template) or incongruent (i.e., different images of the same categories) with the 

two-tones. The likelihood of consciously experiencing the content of the natural scene 

images was experimentally manipulated, and awareness was measured using both an 

objective (image identification) and a subjective (PAS) measure. Disambiguation of the two-

tone images was also measured using both an objective (the same image identification task) 

and a subjective (meaningfulness ratings) measure. The goal of collecting multiple measures 

was to assess the impact that different criteria for categorizing conscious and unconscious 

events may have on conclusions related to the role of unconscious information on learning – 

for this purpose, the same analyses of two-tone disambiguation were repeated across 

different ways to judge ‘unconsciousness’ of the templates (subjective alone, objective 

alone, or a combination of these measures and experimental SOA manipulation). Results 

from Bayesian statistics, which allowed quantifying the evidence for the null hypothesis, 

found that generally there was evidence against an advantage of exposure to visually 

congruent templates when the images were not consciously perceived. While one of the two 

experiments showed evidence of an increase in both subjective and objective markers of 

two-tone disambiguation, this effect did not rely on the exact mapping between the two-

tone and template images.  

However, two-tone disambiguation is a special instance of VPL, with fast learning resulting in 

robust high-level image recognition – so it could be the case that the relationship between 

learning and awareness in this task might be equally special, compared to typical VPL effects 

that require extended practice. Therefore, in Chapter 3 I focus on a different kind of VPL 
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effect, namely contrast discrimination. Previous research (Schwiedrzik et al., 2009, 2011) 

suggested that simple shapes (diamonds/squares) which participants cannot discriminate 

above chance before training can nevertheless break into consciousness as a consequence of 

the training. At the same time, it was suggested that only a low number of trials (100-200) 

was necessary for this shift from unconscious to conscious (i.e., chance to above-chance 

discrimination) to occur (Schwiedrzik et al., 2009). I expand upon this finding by comparing 

psychometric functions (PFs) for contrast detection and discrimination of metacontrast-

masked simple stimuli (left or right pointing arrows), as well as subjective clarity on the PAS, 

before and after a 1000-trial training session (Learning group) or no training (Control group).  

PF measurements were conducted in the first session through a combination of the method 

of limits (MoL) and method of constant stimuli (MoC), as detailed in Appendix 5, and only 

through MoC in the final session. The MoL technique estimates the threshold based on two 

types of trial sets: ascending and descending (Ehrenstein & Ehrenstein, 1999). Both sets 

involve gradual changes, at pre-defined steps, to the visibility of a stimulus: ascending sets 

begin with an invisible stimulus whose visibility increases until participants report that they 

saw it, while descending sets begin with a visible stimulus whose visibility decreases until 

participants report that they did not see it. The threshold estimate is given by the average of 

all the intensities at which participants’ answers changed, pooled across types of trial sets – 

since systematic differences were observed between thresholds based on ascending and 

descending trials only (Pollack, 1968). While this method has the advantage of ease, it 

assumes that the true threshold lies between the estimates from the two different types of 

trial sets – assumption challenged by the argument that possible differences could be seen 

as indicating a meaningful perceptual phenomenon rather than as artifacts (Hock & Schöner, 

2010). To benefit from this ease of implementation whilst mindful of the issue with how to 

interpret the threshold estimate output, the MoL was used only as a pre-test for 

determining a suitable range of contrasts for each participant, which was subsequently used 

in the MoC procedure. 

The MoC procedure, described in detail in section 3.2.3, involved displaying the same 

number of trials for each contrast level from a specified list, in a randomized manner 

(Ehrenstein & Ehrenstein, 1999). The MoC approach has the benefit of allowing the analysis 

of the raw data at each intensity level in addition to PF comparisons – which can be useful 
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for measurement comparisons (as in Chapter 4), especially when there is high granularity of 

levels with many trials in each (as in Chapter 3). The MoC approach can also keep 

participants (especially inexperienced observers) more motivated, since some of the trials 

are easy. However, they require a large number of trials, some at intensity levels that are 

either clearly visible or clearly invisible, so not as informative towards the aim of finding the 

threshold (Ehrenstein & Ehrenstein, 1999) – therefore this approach is likely not as efficient 

as other methods of deriving PFs. The efficiency can be increased through pre-testing each 

participant, as Ehrenstein and Ehrenstein (1999) suggest, to determine an individual range of 

intensities around the threshold. This approach is followed in Chapter 3, by using the MoL as 

a pre-test.  

Other approaches exist, in which there is no fixed number of trials at each intensity level. For 

example, staircases are an adaptation of the MoL (Ehrenstein & Ehrenstein, 1999), in which 

the intensity of a trial is influenced by answers in the previous trials. For instance, a simple 

staircase might present a series of stimuli with descending intensity in a row until a 

participant changes their answer to ‘not seen’, after which the direction is swapped to 

ascending and the next trial has a higher intensity (other variations of the procedure exist, 

where direction changes are also influenced by how many prior trials were answered with 

‘not seen’). The threshold estimate is then given by the average of the intensities at which 

the response changes. While staircases could be more efficient than MoC, they are not 

appropriate for experiments where the data underlying the PFs is important too, because 

each intensity will have been presented for a different number of trials. 

For the Learning group in Chapter 3, the training contrast was chosen from the pre-training 

discrimination PF to yield under 60% accuracy (more in-depth justification for this value can 

be found in section 3.2.3). The planned comparisons focused on detection and 

discrimination inflection points, defined as the stimulus characteristic (here, contrast level) 

at which the PF is the most variable (Strasburger, 2001). This point need not be the halfway 

point of the curve, which can be referred to as threshold (i.e., 75% accuracy in a task where 

performance can only plausibly range between chance at 50% and ceiling at 100% minus the 

lapse rate) – hence why I refer to it as ‘inflection point’ in Chapter 3 analyses. Indeed, the 

specific function that was fitted (Weibull) has its inflection point at ~81% when the guess 

rate is fixed at 50% and lapse rate at 1% (Kingdom & Prins, 2016, Chapter 4, Box 4.5). The 



22 
 

findings were that both performance (lower inflection points for both detection and 

discrimination PFs) and subjective experience (higher mean PAS) increased between Pre and 

Post sessions, indicating that learning occurred. However, there was Bayesian evidence 

against any differences in PFs between the Learning and Control groups, hence suggesting 

that the learning could not have been due to repeated exposure to stimuli that were not 

reliably discriminated initially. 

Conducting the research in these two chapters highlighted considerations about how 

consciousness is measured, and prompted me to consider how different measures might 

relate to each other. In Chapter 4, I focus directly on assessing the relationship between 

objective measures of awareness and the PAS, as well as which experimental design factors, 

if any, influence this relationship. I collated datasets from 13 studies, either openly available 

on the Open Science Foundation repository or shared privately by authors, in addition to 

data from Chapters 2 and 3. The data spanned a variety of tasks, stimuli, masking methods, 

and research questions, with the common points that all collected trial-by-trial a version of 

the PAS and an objective performance measure. The goals were two-fold: to verify the 

degree to which trials rated with PAS1 (“No Experience”) yielded, overall, chance 

performance in the objective task, and evaluate how well changes in PAS ratings mapped 

onto changes in objective accuracy. These two questions were chosen because they map 

onto two dimensions identified in the literature as important metrics about the PAS: 

exhaustiveness and respectively sensitivity, which have to some extent been linked to 

different facets of validity. The analyses highlighted substantial heterogeneity across 

experiments in whether subjective ratings of ‘No Experience’ entailed also chance 

performance, with most experiments failing to meet this criterion. They also highlighted that 

while strong links between the PAS and accuracy were present and, at the group level, the 

evidence was not consistent with the explanation that awareness is all-or-nothing, there was 

again substantial heterogeneity between participants and across samples. Moreover, I 

question the soundness of attempting to ‘validate’ the PAS against objective measures, and 

discuss the often-implicit assumptions behind this rationale.  

Neither empirical chapter restricted participation to only experienced observers – indeed, in 

Chapter 2, participants were selected partially on the basis that they had not participated 

before in other experiments using this stimulus set. This approach is markedly different from 
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other experiments (primarily in psychophysics) that employ a so-called ‘small-n design’ 

(Smith & Little, 2018), in which a small number of observers (often 5 or fewer, typically 

experienced) complete a large number of trials – with each observer providing an internal 

replication of the results. The authors argued that results from small-n experiments are not 

inherently less reliable than those from large-n experiments; instead, they are reliable 

because small-n experiments tend to employ well-defined measurement methods (i.e., PFs) 

rooted in strong theories that allow precise predictions (as opposed to ordinal predictions 

such as ‘accuracy in condition X will be higher than in condition Y’). While I agree that such 

elements can be important for increasing the reliability of findings, a few reasons motivated 

not employing small-n designs. Firstly, Smith and Little (2018) specifically mention that 

perceptual learning is not typically the main phenomenon of interest in small-n designs, but 

characterizing the limits of the target system is – the latter aim being more suitable for being 

studied in already-trained systems (i.e., experienced observers). Secondly and more 

importantly, consciousness science is arguably not yet in a position to have similarly strong 

measurements and theories – hence why it might not benefit as much from a small-n 

approach.  

Nevertheless, elements of this approach were introduced where it was possible to do so. In 

both empirical chapters, participants completed training and quizzing on how to use the 

introspective PAS measure, to reduce any possible individual differences in the biases (or 

criterion) of interpreting and using the measure – although it is worth noting that it is 

difficult to test whether any differences in the use of PAS reflect noise or stable individual 

differences. Chapter 3 took a psychophysical approach to the question asked by Schwiedrzik 

and colleagues (2009; 2011), and also included a high number of trials in the MoC task. 

Compensating a smaller number of participants with more trials per participant was not 

possible in Chapter 2, given the small, fixed stimulus set. Other aspects, such as frequent 

attention checks and rigorous exclusion criteria, were also introduced to increase the quality 

and reliability of the data. 

Throughout the thesis, I use Bayesian tests and the resulting Bayes Factors (BFs) to answer 

the target questions. In the case of the tests used, the strength of the evidence for a specific 

hypothesis in comparison to another based on the existing data is given by the posterior 

odds, which is the product of the prior odds (i.e., the odds of each hypothesis prior to 
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conducting the research) multiplied by the BF (Tendeiro et al., 2024). If the prior odds are 

assumed to be equal, as assumed throughout the thesis, then BFs are equal to the posterior 

odds – hence the use of the terminology ‘BF’ rather than ‘posterior odds’. This level of 

specificity, which p-values do not allow, is essential for cases where support for the null 

hypothesis is particularly relevant, for example demonstrating that performance was not 

different between training conditions or from before to after training  (or from chance level, 

as some objective measures of awareness require).  

To anticipate the discussion in 2.2.6.1, BFs provide a continuum of evidence with only one 

value having a predetermined interpretation: BFs of 1 being interpreted as inconclusive 

(meaning that the data supports as much the null hypothesis as it does the alternative 

hypothesis). Conventional cutoffs do exist, for example BFs between 3 and 10 taken to 

indicate ‘moderate’ (Lee & Wagenmakers, 2014, as cited in Quintana & Williams, 2018), or 

‘substantial’ (Wetzels et al., 2011) evidence. These are acknowledged though to provide a 

label for convenience only - and ultimately, changes in the label used bear no consequence 

to the level of evidence. It might also be reasonable to adopt different conceptual cutoffs in 

different scenarios (Tendeiro et al., 2024); for example, in Chapter 2 where the existence of 

the learning effect was questioned because of limitations to the original study (section 

2.1.1), a higher standard of evidence (BF > 6) was sought than the conventional level (BF > 3) 

used in Chapters 3 and 4. Despite this interpretation, it is important to note that BFs are not 

indices of effect sizes in themselves, and therefore they do not inform about how large the 

differences between groups are (Tendeiro et al., 2024). However, BFs do require defining an 

a-priori expected distribution of effect sizes (later referred to simply as ‘prior’) which is 

factored into the resulting BFs. Therefore, BFs can be interpreted as strength of the evidence 

in the context of the expected effect size distribution and under the assumption of equal 

prior odds. 

BFs are also conceptually different from p-values, because p-values do not factor in prior 

knowledge, and the size of the p-value cannot be used to infer strength of evidence: as 

Dienes (2014) discusses, a high p-value cannot be interpreted as ‘very non-significant’, just 

as a low p-value cannot be interpreted as ‘very significant’. Therefore, no direct mapping 

exists between the two values – and although BFs were found to covary with p-values, they 

were also found to indicate only ‘anecdotal’ evidence (between 1-3) in 70% of cases where 



25 
 

p-values were significant between 0.01 and 0.05 (Wetzels et al., 2011). This pattern 

highlights the difficulty of interpreting p-values through a Bayesian lens – and because of 

this, such attempt is primarily avoided in this thesis. Where a direct comparison is sought 

with p-values (section 2.7.2), the robustness of the approximation is assessed across 

different prior effect size distributions. 
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2 Chapter 2 

 

2.1 Introduction 

2.1.1 General overview  

Sensory information is noisy and rarely suffices to uniquely specify representations of the 

world around us. One way to reduce this ambiguity is for the human visual system to 

combine sensory information with predictions based on prior knowledge of the environment 

(de Lange et al., 2018; Samaha et al., 2018; Series & Seitz, 2013; Teufel & Fletcher, 2020; 

Teufel & Nanay, 2017). This notion has been studied in the context of natural scene statistics, 

where priors are thought to specify long-lasting, global, and context-independent statistical 

regularities of the environment (Brunswik & Kamiya, 1953; Geisler, 2008). The prior 

knowledge underlying these perceptual phenomena is thought to be implemented as 

constraints on bottom-up information processing (Teufel & Fletcher, 2020). Recent evidence, 

however, also highlights the importance of a different type of prior knowledge, which acts 

on perceptual processing via top-down modulation. Specifically, several psychophysical (e.g., 

Christensen et al., 2015; Lupyan, 2017; Neri, 2014; Teufel et al., 2018) and neuroimaging 

(e.g., González-García et al., 2018; P. Kok et al., 2012) studies in humans indicate how 

predictions that are based on high-level, context-dependent expectations shape early 

information-processing in a local, fast, and flexible manner.   

One example of the influence of context-dependent prior knowledge is provided by two-

tone images (1.2). Without relevant prior knowledge, these stimuli are experienced as 

Figure 1. Example of a two-tone image. 
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collections of meaningless, black-and-white patches (Figure 1). However, once an observer 

has acquired appropriate prior knowledge, the patches are perceptually organised into 

meaningful representations of objects. In many studies, prior knowledge is provided in the 

form of the original undegraded picture, here called template or greyscale image, from 

which the two-tone image was derived (Figure 2). This effect, although very sudden, can 

result in a robust, long-lasting change in visual experience that can be observed much later 

after exposure (Ludmer et al., 2011) – i.e. an example of perceptual learning (Gibson, 1969) 

through an ‘Eureka effect’ (e.g., Ahissar & Hochstein, 1997, 2004).  

Recently, Chang et al., (2016) suggested that such disambiguation can be achieved even 

from very brief, masked greyscale images that participants had no conscious awareness of 

seeing (Chang et al., 2016). To briefly summarize the study by Chang et al. (2016), subjective 

identification (referred to as “recognition”, i.e., perceived ability to discern what is depicted 

in the image) and objective identification of two-tone images were assessed before and after 

exposure to greyscale images that were backward masked to disrupt conscious processing. 

Following each masked greyscale image, participants indicated whether they could identify 

its content (yes or no answer), with these responses post-hoc used to label the greyscales as 

conscious/unconscious. As expected, consciously perceived greyscale images led to 

increased subjective and objective identification rates of two-tone images from Pre- to Post-

Exposure. Surprisingly, even when observers reported not being able to identify the 

greyscale image, their objective performance in identifying two-tone images still improved 

from Pre- to Post-Exposure, beyond what was observed for two-tone images for which the 

corresponding greyscale image was never presented (catch two-tones trials). More 

surprisingly, subjective identification of the content did not improve, suggesting it was not 

affected by unconscious priors. These findings were interpreted as evidence that 

unconscious processing of a greyscale image suffices to build up prior knowledge that can 

subsequently guide perceptual organisation of the associated two-tone image, leading to 

improved performance. Additionally, the data suggest different effects of unconscious prior 

knowledge on objective performance and subjective experience. Given how surprising these 

findings are, a re-assessment of the conclusions is warranted. Firstly, the conclusions from 

Chang and colleagues (2016) are evaluated within the context of the recent literature 



28 
 

pertaining to similar concepts. Several limitations in the original study are then addressed, 

and how the current work intends to re-evaluate this claim.  

 

2.1.2 Learning from unconscious information? 

The field of consciousness research is marked by a high heterogeneity of approaches (1.4) 

and, therefore, drawing conclusions across studies remains a tentative process. However, 

focusing on the few studies that are most closely related to the target question, recent 

evidence suggests that the processing of images made unconscious by masking is limited 

and would be insufficient to support semantic priming or the learning of statistical 

regularities. For example, Stein et al. (2020) failed to replicate Van den Bussche et al. 

(2009)’s finding, that forward- and backward-masked drawings of animals and objects 

primed correct categorization of animal/object words from the same category but different 

identity (e.g., a masked drawing of a bear facilitated answering ‘animal’ when presented 

with the word ‘dog’). This replication failure occurred despite using the same stimuli and 

task as the original authors, with more than double the sample size. Moreover, the authors 

reported that employing continuous flash suppression (CFS) to render images unconscious 

did not result in an effect either, despite CFS being thought to allow higher-level processing 

than sandwich-masking (Breitmeyer, 2015) – casting doubt on the robustness or true effect 

size of the effect originally reported by Van den Bussche and colleagues. Finally, another 

similar study showed that when the prime and target had the same identity, backward-

masked pictures did not prime basic category (e.g., bear) answers (Koivisto & Rientamo, 

2016). Koivisto and Rientamo (2016) did find weak priming for superordinate answers (e.g., 

‘animal’). However, this small effect may have been driven by a subset of trials that were 

incorrectly labelled as ‘unconscious’. This is not unlikely, since participants had above-chance 

prime discrimination sensitivity (d-prime) in the superordinate condition (but not in the 

basic category condition). Altogether, these findings suggest that briefly presented, masked 

images do not activate sufficient object category information to facilitate the processing of 

subsequent category-relevant words or pictures.  

Other relevant research refers to longer-term learning effects, where an increase in accuracy 

results from repeated exposure to a type of stimuli over time. This literature typically relies 

on simpler stimuli such as geometrical shapes or letters, rather than images of natural 
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scenes or objects. Recent findings from this field also underline that at least some forms of 

this learning require conscious processing. For example, encoding statistical contingencies 

about the stimulus location in a masked cueing task requires stimulus awareness (Travers et 

al., 2018). Likewise, when measuring (un)consciousness of the stimuli with a sensitive task 

and valid statistical methods (i.e., not inferring evidence for absence of awareness from 

absence of evidence), awareness of a visual stimulus appears necessary both for encoding 

the relationship between the stimulus and its rewarding or punitive value (failed replication 

of Pessiglione et al., 2008 by Skora et al., 2021; Skora & Scott, 2022), and for triggering a 

preferential response when the relationship was consolidated consciously (Skora & Scott, 

2022).  

From the above studies, it seems that masking not only prevents conscious access to visual 

information, but also disrupts high-level processing of this information. In that context, could 

Chang et al.’s finding be taken to suggest that one-shot learning takes place without high-

level processing of the greyscale image? Indeed, one could speculate that the greyscale 

image leaves some raw visual traces, that would be stored for a few minutes, and retrieved 

only when cued by a consciously presented, visually related image (the two-tone presented 

post-exposure). Whether this mechanism is plausible or not is, for now, difficult to assess. 

Furthermore, the mechanisms of backward masking, and its role in consciousness, are still 

debated and may well be stimulus and task-dependent. Therefore, previous evidence is not 

sufficient to exclude the possibility that backward-masked natural images can still facilitate 

future object identification. Conversely, a failure to reproduce this finding would align with 

the recent literature suggesting that unconscious processing of complex images is limited 

and does not influence subsequent high-level image subjective identification and 

categorization. Hence, it seems important to provide further evidence that deals with some 

of the methodological challenges that hamper interpretation of existing findings. 
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Figure 2. Example of a greyscale image, corresponding to the two-tone in Figure 1. 

Photograph sourced from the personal archive of Halchin A. 

 

2.1.3 Limitations of the original study 

Because of some of their design choices, the results reported by Chang and colleagues 

(2016) can be difficult to interpret, as acknowledged by the authors. The original study did 

not directly manipulate conscious processing of the greyscale images. Rather, in a pilot 

titration study, they manipulated the duration between onset of the greyscale image and 

onset of the mask (thereafter referred to as stimulus onset asynchrony, SOA), and asked 

observers to answer, after each masked greyscale, a yes/no question of whether they felt 

able to identify the content of the image (Appendix 3). A duration that yielded, on average, 

equal numbers of ‘yes’ and ‘no’ answers in this pilot study was chosen for the main 

experiment. Subsequently, the same yes/no question was asked during the main 

experiment, with trials retrospectively divided into “conscious” (“yes” responses) or 

“unconscious” greyscale images (“no” responses), to test for disambiguation effects. 

However, this yes/no categorization is likely not sufficiently nuanced, and some participants 

may well have responded “No” following images they identified the content of but with low 

confidence.  

This leads to two related issues. First, any disambiguation effect could be due to these 

“partially conscious” trials, and therefore would not constitute clear evidence for perceptual 

learning from unconscious information. Secondly and more importantly, one cannot be 

certain that any genuine perceptual disambiguation occurred. Indeed, one cannot exclude 
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that participants may have used these “low confidence - No” contents (alongside all the 

“yes” ones) to guess answers to the subsequent two-tone images presented at the post-

exposure stage, despite the black and white patches remaining meaningless to them. 

Although participants would use test and catch greyscale images equally when doing so, this 

strategy would lead to increased accuracy from pre- to post-exposure for their test condition 

only, not their catch condition. This is because, in the catch condition, the greyscale images 

were fully unrelated images, and therefore not matching any of the two-tone categories. 

Therefore, using “partially conscious” contents from catch greyscale images to guess 

answers at the post-exposure stage would lead to chance performance, while using this 

same strategy on test greyscale images would lead to above chance performance. In Chang 

and colleagues’ analyses, this differential boost in accuracy would be indistinguishable from 

genuine perceptual disambiguation. Participants’ guessing would also explain why 

identification accuracy, but not subjective recognition, increased pre- to post-exposure, 

compared to the catch trials. 

It therefore cannot be ruled out that the key effect – higher correct identification after 

unconscious corresponding greyscale images compared to catch trials – might be based 

exclusively on miscategorised trials. The caveat of conscious information potentially being 

labelled as unconscious is a fundamental issue for consciousness studies more broadly 

(Peters & Lau, 2015), and is related (as discussed in Chapter 1) to substantial discrepancies 

across researchers in their definitions and preferred measurements of consciousness 

(Eriksson et al., 2020; Francken et al., 2022; Peters et al., 2017), and consequently, the 

researchers’ conservativeness in their criteria for labelling phenomena as unconscious 

(Balsdon & Clifford, 2018; Holender, 1986; Vadillo et al., 2016). However, here it is 

pronounced because the observers’ yes/no answers to the masked greyscale images were 

not complemented by an objective performance measure. 

 

2.1.4 Overview of the proposed research 

Here it was aimed to use a more detailed evaluation of conscious processing to re-assess the 

notion that prior visual information can be acquired and can operate outside of awareness. 

Using a conceptually similar method as Chang and colleagues (2016), the current work 
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tested whether the visual system can organise two-tone images into meaningful percepts 

after masked greyscale image exposure. Like in the original study, disambiguation was 

measured using both objective and subjective measures. The key proposed changes are to: 

(i) experimentally manipulate the extent to which perception of greyscale images is 

conscious, (ii) use a 4-point subjective greyscale visibility scale, followed by (iii) an objective 

greyscale identification measure, in order to (iv) provide a more nuanced way to categorise 

trials into conscious or unconscious, and (v) use a catch condition that attempts to control 

for guessing. Furthermore, this experiment was repeated using two different objective 

measures of two-tone identification, and disambiguation (or its absence) was assessed using 

Bayesian statistics.  

2.1.4.1 Manipulating greyscale image visibility 

To experimentally manipulate conscious processing, a backward masking paradigm with two 

different SOAs (e.g., Faivre et al., 2019) was used. The choice of short and long SOAs was 

aimed at producing weak (e.g., Faivre et al., 2019) and robust awareness respectively and 

was validated in a pilot experiment (see Pilot 2, 2.4.2). 

2.1.4.2 Measuring greyscale image subjective and objective visibility 

Instead of a yes/no response, a four-point assessment of participants’ subjective experience 

was collected - the Perceptual Awareness Scale (PAS, Figure 3B in Ramsøy & Overgaard, 

2004) - which asked participants to describe the clearness of their perceptual experience 

from (1) “no experience” to (4) “a clear experience”. Objective identification of the masked 

greyscale images was assessed using two different methods: free-naming (Experiment 1, 

Figure 3) and a 5-alternative-forced-choice task (Experiment 2).  

2.1.4.3 Categorising trials based on greyscale image visibility 

Collecting subjective and objective measures, along with direct manipulations of awareness, 

allowed examining whether conclusions about learning change based on the criteria used 

for labelling phenomena as conscious or unconscious. Analyses were run on trials classified 

according to specific combinations of SOA condition, PAS answers, and identification 

accuracy (Figure 5). The data from two-tone trials, separately for catch and test conditions, 

was divided into four categories, based on whether the greyscale image was categorised as 
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fully Unconscious (U), Mostly Unconscious (MU), Mostly Conscious (MC) and fully Conscious 

(C). These categories and the rationale for them are detailed in the analysis plan and 

summarised below: 

• U: Trials associated with greyscale images that were rated with PAS of 1 (“no 

experience”) and incorrectly identified in the Short SOA condition 

• MU: Trials associated with greyscale images that were rated with PAS of 1 or 2 (“a 

brief glimpse”) and incorrectly identified in the Short SOA condition 

• MC: Trials associated with greyscale images that were rated with PAS of 2 or higher 

and correctly identified in the Long SOA condition  

• C: Trials associated with greyscale images that were rated as PAS 3 and 4 and 

correctly identified in the Long SOA condition 

At the core of this classification is the assumption that subjective and objective measures of 

consciousness converge and complement each other. Although blindsight was argued to take 

place in some circumstances, leading to a PAS rating of 1 but correct identification, the 

evidence in healthy observers has been challenged (Peters & Lau, 2015; Rajananda et al., 

2020), and the pilot data (2.4) described below show that very few trials fall into this 

category, which would more readily be explained as participant lapses or lucky guesses 

rather than a substantial pattern to account for.  

In addition, analyses were repeated on trials classified using SOA, PAS, and accuracy 

separately, to contrast conclusions across approaches and allow comparisons with previous 

research. Tackling this question is important because, in previous literature, all three indices 

have been used on their own to identify the presence or absence of consciousness – PAS 

e.g., Koivisto et al. (2013), identification accuracy e.g., Koivisto & Rientamo (2016), SOA e.g., 

Dehaene et al. (2001) – and whether these approaches lead to consistent conclusions is 

currently not known. 

2.1.4.4. Measuring perceptual disambiguation of two-tone images 

Disambiguation was defined as increases in mean accuracy and meaningfulness ratings, from 

Pre- to Post-Exposure (Figure 4), that are larger in the test condition compared to the catch 

condition. These comparisons were run within each of the categories described above. The 

catch condition consisted of two-tone and greyscale image pairs that represent the same 
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content but come from different images (e.g., two dissimilar images of a peacock). This catch 

condition did not prevent the guessing strategy, but rather equalise the accuracy benefit 

between the catch and test conditions. Therefore, a differential effect between the catch 

and control conditions for both objective and subjective measures would be evidence for an 

improved ability to see the original object amongst the black and white patches following 

exposure to the greyscale image.  

 

2.2 Experiment 1 – Methods  

2.2.1 Participants  

91 participants were recruited, in two batches (60, then 31). Only individuals from the 

general population who were self-declared native English speakers, did not participate in 

studies using these stimuli before, and without a history of photosensitivity, were recruited 

from Cardiff University’s participant panel, in exchange for payment or course credits. 33 

participants were excluded from all analyses for failing one or more attention checks 

(explained in 2.2.6.3; 11 had accuracies in the visible attention checks under 88%, 27 rated 

too many visible attention checks with PAS ratings under 3, 6 rated too many blank attention 

checks with PAS above 1, 6 rated with PAS1 more than half of the Long SOA trials). The final 

sample was n = 58 (age range 18-22, mean = 19.4, SD = 1.1, 9 males, 46 females, 3 other 

gender identities). All but 2 of the included participants declared normal or corrected-to-

normal vision.  

 

2.2.2 Stimuli  

The stimulus set consisted of 23 greyscale template images and their corresponding two-

tones images, each representing animals or human beings. An in-depth description of how 

the stimuli were obtained can be found in Teufel et al. (2015). Duplicates were removed to 

ensure each content is unique. One additional pair of two-tone and greyscale was 

introduced to achieve equal block lengths but was removed from all analyses. Each template 

had an associated ‘catch’ greyscale, showing a different image of the same content – i.e., if 

the original template showed a peacock, the catch greyscale would be a different image of a 

peacock (Figure 3). Another 10 greyscale images were introduced, one at the experiment 
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instruction stage, and the remaining nine as attention checks (clearly visible images that 

serve the purpose of excluding inattentive participants from analyses). These 10 novel 

images, along with the semantically related but visually different catch greyscale images 

were sourced from personal archive or copyright-free images on pexels.com and edited 

using Microsoft Office PowerPoint (cropped, and for catch image contrast decreased by 

40%). Masks were obtained through phase scrambling the test and catch greyscale images, 

so each image was associated with its own mask. All images were 3cm x 3cm, sustaining 

approximately 5x5 degrees of visual angle from the distance of 34cm away from the screen, 

where participants were instructed to sit (although head position was not restricted). 

Matching the low-level properties (such as root-mean-square contrast, luminance, edge 

density, and spatial frequency) between the Catch and Test templates was not attempted, 

and there was moderate evidence against systematic differences between image pairs, for all 

properties considered (Appendix 2). 

 

2.2.3 Materials  

The experiment was created using PsychoPy3 Builder (Peirce et al., 2019), conducted on the 

online platform Pavlovia using PsychoJS JavaScript code via Google Chrome, and displayed 

on iiyama monitors with a diagonal of 21.5-inch, 26.9 cm monitor height, a resolution of 

1920x1080, a refresh rate of 60Hz, a contrast set to 80%, and brightness set to its maximum. 

Two subjective discrete scales were used. First, to assess subjective meaningfulness of the 

two-tone images, a scale from 1 (not meaningful at all) to 4 (very meaningful) was used, 

with the question ‘How meaningful is this image to you?’. Second, to assess the conscious 

experience after masked greyscale images, an edited version of the Perceptual Awareness 

Scale (PAS; Ramsøy & Overgaard, 2004; Sandberg et al., 2010) was used, with the following 

steps: (1) No experience, (2) A brief glimpse, (3) An almost clear experience, and (4) A clear 

experience. The instructions related to the scale were slightly modified to focus on the 

clarity of the experience, rather than confidence in the answer (see Appendix 1). Responses 

were collected using the keyboard.  
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2.2.4 Design 

Each two-tone was presented twice, once before and once after participants viewed either 

the corresponding greyscale (test condition), or a catch greyscale (catch condition), as 

illustrated in Figure 3. The experiment settings constrained the participants to provide an 

answer for the PAS and meaningfulness ratings, but not the free-naming object 

identification. The experiment alternated series of two-tone and exposure trials, so that the 

Pre-Exposure, Exposure and Post-Exposure stages for each image belonged to three 

consecutive blocks. An illustrative outline of the experiment is included in Appendix 2. 

2.2.4.1 Pre-/Post-Exposure stages  

Trials in the Pre- and Post-Exposure stages had the same structure (Figure 4A), the only 

difference being whether they occurred before or after the Exposure stage (Figure 4B). In 

these trials (Figure 4A), observers viewed two-tone images for 2000ms, allowing conscious 

perception. After each two-tone image, they were asked to rate its meaningfulness and to 

complete the object identification task, by typing in a box what they thought the image 

depicted.  

 

Pre  Exposure

Catch
trials

Exposure 
Short  or  Long SOA

Post  Exposure

Main 
trials

 

Figure 3. Overview of the experimental design in Experiments 1 and 2. Each square panel 

represents a trial, as detailed in Figure 4. In the Exposure stage, each greyscale image was 
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seen in only one of the two masking conditions (Short or Long SOA). For the catch trials in 

the Exposure stage, a different greyscale image featuring the same object was presented. 

Each participant saw a particular two-tone associated with either the corresponding, or the 

catch greyscale (but never both). 

 

500ms

Blank screen

1000ms

FixationA. Pre/Post 
Exposure 

stage: 
two-tone 

trials

B. Exposure 
stage: 

greyscale
trials

500ms

Blank screen

1000ms

Fixation

100ms

Blank screen

200ms

Fixation

2000ms

Two-tone

until 
response

Meaning rating

How meaningful is this 
image to you?

1 (not meaningful at all)
2

3
4 (very meaningful)

Identification

What did the
image depict?

100ms

Blank screen

200ms

Fixation

17ms

Greyscale

Short (17ms) 
/ Long  

(1000ms)

Blank screen

2000ms

Mask

until 
response

PAS

Report the degree of 
clearness of experience

1 (no experience at all)
2 (a brief glimpse)

3 (an almost clear 
experience) 

4 (a clear experience)

until 
response

Identification

What did the
image depict?

until 
response

 
Figure 4. Structure of a trial in the Pre- and Post-Exposure stages (A) and Exposure stage (B) 

in Experiment 1. A. Each two-tone was followed by a prompt to rate the meaningfulness of 

the image from 1 (not meaningful at all) to 4 (very meaningful), and to type in a brief 

description of the content of the image. Each two-tone trial was presented before (Pre) and 

after (Post) Exposure to a greyscale image. B. In the Exposure stage, greyscale images were 

presented for approx. 17ms (16.7), followed by a blank screen and a noise mask for 2000ms. 

The blank screen had either a short or a long duration. Then, participants rated on the 

Perceptual Awareness Scale (PAS) how clear they experienced the greyscale image on a scale 

from 1 (no experience at all) to 4 (a clear experience). Next, they completed the same 

identification task presented during the two-tone trials. 

 

2.2.4.2 SOA manipulation 

Each participant completed two conditions in the Exposure stage: Short SOA and Long SOA. 

Both conditions (Figure 4B) started with a 16.7ms display of a greyscale image presented in 

the centre of the screen. In the Short SOA condition, the image was followed by a 16.7ms 
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blank screen, and a mask for 2000ms. In the Long SOA condition, the image was followed by 

a 1000ms blank screen, and a mask for 2000ms. Although this means a longer delay 

between the image and the response in the Long SOA condition, Pilot 2 (2.4.2) shows that 

this long SOA consistently led to greater clarity than the short SOA.  

Some reports exist that at durations comparable to the Short SOA, participants still showed 

evidence of having processed the gist of the scene. For example, previous studies reported: 

high d-prime (above 3) for judging if the content of a 30ms image followed by a mask was 

congruent or not with that of a subsequent target image (Schyns & Oliva, 1994), ceiling 

accuracy in category judgments for images presented unmasked for ~26ms (Rousselet et al., 

2005), or above-chance accuracy even when masked (~18ms SOA, 6ms image plus 12ms 

blank, Bacon-Macé et al., 2005). However, one difficulty in comparing the chosen durations 

with the gist literature is that the visibility or awareness of the images was not assessed in 

the above-cited studies, so the reported performance could reflect unconscious processing. 

Moreover, the judgments in these studies (congruency, releasing a button when the picture 

contained a target scene as in Rousselet et al., 2005, or animals in general as in Bacon-Macé 

et al., 2005) are different compared to the task in both Experiments 1 and 2. When free-

naming descriptions were required (similar to Experiment 1), a 27ms display only yielded 

vague gist impressions of animate objects (Fei-Fei et al., 2007) – which in the current task 

would not be sufficient to attract ratings of ‘correct’. 

2.2.4.3 Template and catch images 

Each two-tone image was followed either by its original template image (test condition) or a 

catch greyscale (control condition). The catch greyscale represented the same object as the 

two-tone but came from a different image. The catch Exposure trials had the same structure 

as the test Exposure trials.  

2.2.4.4 Attention checks 

To ensure only attentive participants who were compliant with the use of the PAS were 

included in the analyses, two types of attention checks were also included, with stimuli 

either clearly visible or absent. For the “clearly visible” attention checks, a greyscale image 

not associated with any two-tone was presented for 1000ms, followed by a blank screen for 

1000ms, and a mask for another 2000ms. For the “absent” attention checks, a blank screen 

was presented instead of the greyscale image. Both types of checks were interleaved with 
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the rest of the trials in the Exposure stage, and participants completed the PAS and 

identification questions after each attention check. Each block of greyscale images contained 

3 clearly visible checks, and between 1-4 absent attention checks, with a total of 9 clearly 

visible and 6 absent trials. While both checks ensured that participants could use the PAS 

accurately, the clearly visible checks had the additional role of attracting correct responses in 

the identification task, hence why having more of them allowed closer monitoring of the 

accuracy. Participants were made aware of the presence of attention checks, and the 

uncertainty on the number of attention checks per block was aimed to keep participants 

engaged throughout the task by making sure they could not predict how many checks there 

were in a block.  

2.2.4.5 Image and trial randomisation 

For each observer, each two-tone image was allocated in a counterbalanced way to one of 

the 4 possible conditions (2 SOA durations x 2 trial types): Short-Catch, Short-Main, Long-

Catch, and Long-Main. Blocks of two-tone or greyscale images alternated (see Appendix 2), 

and trial order was randomised across and within blocks.  

 

2.2.5 Procedure  

The experimental session started with a short training, illustrating the disambiguation effect, 

and exposure trials with clearly visible greyscale images. Participants were specifically 

instructed to not leave the free-naming identification box empty even if they did not know 

the content of the greyscale, and to answer the PAS based on their perception of the 

contents of the images rather than confidence in the correctness of the answer. Participants 

were not directly instructed regarding the level of specificity they should categorize the 

images. However, the instructions stage showed an example image and an example answer 

(“a deer”), which set the expectation that their answers should be more specific than broad 

superordinate categories. They had unlimited time during training to study the PAS and the 

descriptions of each level of awareness and completed an 8-question quiz with feedback to 

verify their understanding of the scale, before they started the experiment (Appendix 1). 

Participants were given feedback after each quiz trial and had to repeat the PAS training if 

they answered incorrectly on more than 1 question. Each experimental session lasted 
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approximately 25min. At the end of the experiment, participants were asked to type their 

feedback in a free-response box, and afterwards were debriefed.  

 

2.2.6 Planned analysis protocol and data exclusion 

2.2.6.1 Analyses software and statistical choices  

Meaningfulness ratings, PAS scores, and accuracy ratings were analysed separately. All data 

analyses were conducted in RStudio v2021.09.1-372 with R version 4.2.1 (R Core Team, 

2021), using the following packages: tidyverse v2.0.0 (Wickham & RStudio, 2023), data.table 

v1.14.2 (Dowle et al., 2021), here v1.0.1 (Müller & Bryan, 2020), gghalves v0.1.4 

(Tiedemann, 2022), R.utils v2.12.0 (Bengtsson, 2022a). All tests used the BayesFactor 

v0.9.12-4.4 package (Morey et al., 2022; Rouder et al., 2009), to assess the strength of the 

evidence in favour of the null hypotheses. This is especially important for deciding when 

participants were not able to use the information presented, which cannot be inferred only 

from failing to reject the null hypothesis using frequentist statistics (Dienes, 2015, 2016; 

Vadillo et al., 2016). A BF of 6 (or 1/6), taken to indicate moderate evidence (Lee & 

Wagenmakers, 2014, as cited in Quintana & Williams, 2018), was chosen (as justified in 

Chapter 1, section 1.5). It is worth noting though that the strength of the BF evidence is a 

continuum, without specific thresholds (although BF = 1 signals that the evidence is 

inconclusive), and that different levels might be considered adequate for different 

experiments. The BayesFactor package uses a pre-specified Jeffreys uninformative prior on 

the variance of the population (Rouder et al., 2009), and assumes that the distribution of the 

standardized effect size follows a Cauchy distribution centred on zero. Following simulations 

for effect sizes under different prior scales (see Effect size section 2.2.6.2), a wide scale for 

the prior distribution of effect sizes (r = 1) was chosen, rather than the default r = √2/2, 

because it yielded higher probability of finding evidence for the null if the true effect size 

was 0 without substantially reducing the probability of finding evidence for the alternative if 

the effect size was above 0. Moreover, a one-sided prior was chosen, by modifying the prior 

to be above 0, as only a positive increase (Post Minus Pre, or Test Minus Catch) would be 

interpreted as support for disambiguation. The simulations indicated that at n= 60, a one-

sided prior under r = 1 has minimal impact on false positives and power if the true effect size 
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was 0, but substantially increases power while reducing the false negative rate for a true 

effect size of at least 0.30. 

2.2.6.2 Effect size and prior distribution estimation 

Calculating a Cohen’s d value for within-subjects designs can be difficult, as the multiple 

approaches used in the literature yield substantially different results (Westfall, 2016). For 

example, using the t-statistic for the comparison between “Grey Not Recognized” and 

pooled catch trials (page 7, t = 2.076, p = 0.0492, n= 24), two different effect sizes were 

obtained: dz = 0.42 (J. Cohen, 1988; Lakens, 2013), and dt = 0.6 through naïve conversion 

from the t statistic (Dunlap et al., 1996), which is likely inflated due to correlation within the 

variables. Applying the traditional formula for Cohen’s d (which is for between-subjects 

designs) on points extracted from Figure 4B in Chang et al. (see Appendix 3 for details about 

their experimental design) yields d = 0.14.  

Furthermore, any estimate of an effect size from Chang et al. (2016) would be only 

marginally useful, given the substantial differences in experimental design and stimulus set. 

Therefore, to estimate what would be the smallest effect size reliably detectable in the 

present paradigm, simulations of Bayesian paired t-tests were ran, for different 

combinations of effect sizes, participant numbers, and prior scales, using the BayesFactor 

package, along the following parameters:  

1. a “medium” scale (default r = √2/2) or a “wide” scale (r = 1); 

2. N = 60, 92, 120, 150, 300; 

3. Two-sided prior (-r to +r) or one-sided prior (+r), to assess how power and false 

positives would change if the tests for H1e/f and H2e/f are directional; 

4. Possible effect sizes (ES) of 0, 0.14, 0.3, 0.35, 0.42, 0.5, 0.6, 0.707, and 1.  

For each combination, 50000 simulations where ran, where an N number of datapoints from 

a normal distribution with mean = 0 and SD = 1, and a normal distribution with mean = ES 

and SD = 1 were selected. Bayesian paired t-tests were then ran, with a two-sided or one-

sided prior and an R scale, and the percentage of simulations was computed in each 

combination that resulted in evidence for the Null and the Alternative hypothesis. The code 

is modified from Lakens (2016).  
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Under a true effect size of 0 and a one-sided “wide” prior at an n of 60, 87% of simulations 

resulted in BFnull > 3, and 71% resulted in BFnull > 6, with BFalt > 3 in less than 1% of cases. 

Conversely, under a true effect size of 0.5 with the rest of the parameters equal, 63.7% of 

simulations resulted in BFalt > 3, 52.3% in BFalt > 6, with 1.4% resulted in BFnull > 6 (5.49% 

BFnull > 3). These parameters deemed the analyses sufficiently powered to detect at least 

weak evidence for effect sizes of 0.5 and 0. 

2.2.6.3 Trial rejection 

If a frame drop (e.g., logged duration of 0) was logged in the timestamps from the Pavlovia 

output for a given greyscale during the Exposure stage, the associated two-tones were 

removed. Potential intermediate values between 0 and the target stimulus duration of 

16.67ms (e.g., 10ms) were attributed to error of logging rather than different stimulus 

durations and were included. Indeed, while a high percentage of experimental trials had 

logged durations under half a frame (i.e., under 8.4ms), comparing the distribution of 

accuracy and PAS answers in these trials found no differences that would indicate dropped 

frames (i.e., higher proportion of wrong answers or PAS ratings of 1). Under this condition, 

no trials were removed. 

2.2.6.4 Accuracy coding 

Each free-naming answer to the identification prompt in the Exposure and two-tone trials 

was manually validated by two evaluators (A.H., and a Rater 2). Evaluators were blind to 

whether trials were in the test or catch conditions. Similarly to previous approaches (Samaha 

et al., 2018), answers were judged as correct if they fully or partially referred to the object, 

rather than the background of the images. The very brief exposure to the greyscale images 

may not allow the identification of visual details required to differentiate between visually 

similar categories (e.g., a hyena and a cheetah). Therefore, answers that also referred to 

visually similar objects were considered correct. Spelling errors (e.g., ‘hayena’) and plural 

forms (e.g., ‘hyenas’) of correct words were labelled as correct. Answers that were not 

empty but did not refer to the content of the images, such as ‘I don’t know’, or were too 

broad and non-descriptive (e.g., “animal”) were counted as incorrect. Pairs of images for 

which participants did not provide any answer (e.g., left the identification box blank) either 

Pre-, during, or Post-Exposure, were removed. All boxes for the image-absent attention 

checks, including boxes that were left empty, were by default rated as ‘correct’ for 
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convenience, as accuracy in these answers is not analysed and failing these attention checks 

relies exclusively on the PAS. Inter-rater agreement was very high (96.6% for the post-

exclusions final dataset). The remaining cases were discussed between raters until an 

agreement was reached. 

2.2.6.5 Participant rejection 

Participants were excluded if they:  

1. Failed to reach 88% accuracy (8/9 correct answers) in the clearly-visible attention 

checks;  

2. Answered with PAS 1 or 2 in more than 1/9 clearly-visible attention checks, or PAS 

above 1 in more than 1/ 6 absent attention checks; 

3. Used PAS 3 or 4 in more than half of the trials in the Short SOA condition, or PAS 1 in 

more than half of the trials in the Long SOA condition.  

2.2.6.6 Trial classification based on consciousness of greyscale image  

Data from Pre- and Post-Exposure stages were divided based on the SOA manipulation, PAS 

ratings and identification accuracy during the Exposure stage (Figure 5). In addition to using 

each criterion alone, they were combined to allow high confidence in the judgments about 

whether participants had no or partial conscious experience of the stimuli. Four categories 

were defined, from least (Unconscious/U) to most (Conscious/C) likely that the greyscale 

images were consciously experienced. On this gradient, Unconscious and Conscious were 

the most conservative, because they required extreme PAS answers of presence/absence of 

subjective experience in addition to expected accuracy responses. It is acknowledged that 

the Unconscious category might have erroneously excluded trials where participants might 

have guessed correctly by chance despite indicating no awareness otherwise, or conversely 

for the Conscious category trials where participants might have lapsed despite having 

awareness of the content. However, although these exclusions might have reduced the 

number of trials that contributed to the analyses in these two categories, they did not 

introduce any confounds in the analyses. Including trials with greyscale images rated as 

either PAS 1 or 2 (A Brief Glimpse) (e.g., Koivisto et al., 2013) made the Mostly Unconscious 

category less conservative than the Unconscious category because it assumed that even if 

participants had some awareness to detect that something was presented (and hence report 

a brief glimpse than no experience), they had no awareness for the purpose of the 
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identification task (see also Michel, 2022 for a detailed argument in favour of this approach). 

Similarly, the Mostly Conscious category was less conservative than the Conscious category 

because of a broader definition of ‘conscious’ which includes PAS 2. Catch trials were divided 

by the same criteria. 

 

PAS = 1
Accuracy = 0
Short SOA

No awareness of  
the templates

PAS = 1 or 2
Accuracy = 0
Short SOA

PAS >= 2
Accuracy = 1

Long SOA

PAS = 3 or 4
Accuracy = 1

Long SOA

U MU MC C

Full awareness of  
the templates

 

Figure 5. Representation of the different categories (U to C) in which the data were 

separated, and the criteria that describe each category. The axis at the bottom illustrates 

expectations about the degree of conscious perception of the images in each category. 

 

2.2.6.7 Planned statistical analyses 

Seven hypotheses were tested. H1-H4 followed the format introduced in Table 1. For 

comparison, the analyses were extended to trials categorised based solely on PAS rating 

(PAS=1), SOA (Short SOA), or identification accuracy (Incorrectly identified). Two additional 

tests were contingent on observing evidence for the null hypotheses in the Unconscious and 

Mostly Unconscious categories – in this case, to test if there was any evidence for 

disambiguation regardless of the Exposure condition in the U and MU categories, changes in 

accuracy and meaningfulness would be evaluated Pre to Post-Exposure, on trials pooled 

across the Catch and Test conditions.  
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Table 1. Main and null hypotheses, and corresponding analyses fully detailed for Hypothesis 

1 contrasting condition U between catch and test trials. The ‘a’ and ‘b’ notations refer to the 

experimental and null hypothesis, respectively. The same approach applied to H2-4 with 

respect to MU-C. The analyses refer to measures of the two-tones only.  

 

 

  

 Main hypothesis  Null hypothesis  Measure Analysis Purpose 

H1 
a/b 

The change in 
accuracy following 
exposure to 
greyscale images 
falling in the U 
category is higher in 
the test trials than 
in the catch trials 

The change in accuracy 
following exposure to 
greyscale images 
falling in the U 
category is not higher 
in the test trials than in 
the catch trials 

Accuracy 

Bayes 
paired 
t-test 
 

Test for 
objective 
disambiguation 
from exposure 
to fully 
unconscious 
greyscale 
images 

H1 
c/d 

The change in 
meaningfulness 
ratings following 
exposure to 
greyscale images 
falling in the U 
category is higher in 
the test trials than 
in the catch trials 

The change in 
meaningfulness 
ratings following 
exposure to greyscale 
images falling in the U 
category is not higher 
in the test trials than in 
the catch trials 

Meaningfulness 
rating 

Bayes 
paired 
t-test 
 

Test for 
subjective 
disambiguation 
from exposure 
to fully 
unconscious 
greyscale 
images 
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2.3 Experiment 2 – Methods 

Experiment 2 aimed to replicate Experiment 1, using a 5-alternative-forced-choice task 

instead of free-naming at the two-tone image identification stage. This method removed all 

requirements for an experimenter to rate participants’ response, which was a potential 

source of variability. However, correct answers were more likely to be due to chance (chance 

accuracy of 20%), making the categorisation between the proposed four consciousness 

categories less straightforward. It was also expected that changes in accuracy from Pre to 

Post-Exposure would be higher than in Experiment 1, since seeing the correct basic-level 

category label for a two-tone image, either alone or among distractors, can provide cues for 

disambiguation (Samaha et al., 2018). Nevertheless, the same would be true following 

exposure to the catch trials, hence not affecting the validity of the analyses. Unless 

otherwise mentioned, the same details outlined above applied. 

While the two methods of collecting accuracy were distinct, it was expected that the overall 

pattern of results between Experiments 1 and 2 to be the same – i.e., if a differential effect 

was observed between test and catch images that were unconscious (Level U) in Experiment 

1, the same result was expected in Experiment 2. Having a secondary method of testing 

accuracy allowed testing the robustness of the effect. Nevertheless, observing an effect in 

one experiment but not the other would not invalidate the results of either study, but would 

be interpreted as failure to generalize the findings and would highlight the impact that 

methodological choices have on studying consciousness. 

 

2.3.1 Participants 

A new sample of 60 participants who did not complete Experiment 1 were recruited, 

following the same protocol in Experiment 1. 12 participants were excluded from all analyses 

for failing one or more attention checks (5 had accuracies in the visible attention checks 

under 88%, 7 rated too many visible attention checks with PAS ratings under 3, and 4 rated 

too many blank attention checks with PAS above 1). The final sample was n = 48 (age range 

18-32, mean = 20.8, SD = 3.65, 11 males, 34 females, 3 other identities). All participants had 

normal or corrected-to-normal vision. No trials were removed because of frame drops. 
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2.3.2 Materials 

To assess participants’ identification of the content of both two-tone and greyscale images, a 

list of 33 correct descriptions of maximum three words (one for each two-tone/greyscale 

image pair, and 9 attention checks), and a list of 137 plausible but incorrect distractor words 

(33x4 distractors plus 5 choices for the blank trials), were used. The distractors were 

matched between themselves and with the correct answers subjectively for visual similarity, 

and for frequency, as determined by online searches in the British National Corpus Online 

Services (British National Corpus Consortium, 2007). The list of words was manually collated 

and validated. To ensure appropriate frequency matching, some descriptors were used as 

distractors for more than one image, but correct answers were not repeated.  

 

2.3.3 Design  

Instead of free-naming, an alternative-forced-choice task appeared, showing the correct 

answer and 4 distractors. The order of the five options was randomized on each trial. 

2.3.3.1 Accuracy 

Accuracy was automatically computed from participants’ answers, and no answer validation 

was necessary. 

 

2.4 Pilot experiments 

2.4.1 Pilot 1 – Disambiguation effect after conscious images 

Pilot 1 was conducted as a positive control, to assess that this paradigm can result in a 

disambiguation effect when the corresponding greyscale images are presented consciously, 

for 2 seconds and unmasked. While Chang et. al (2016) showed that greyscale images can 

lead to disambiguation after a single 16.7ms exposure, it was important to ascertain that any 

potential failure to replicate the effect is not due to the present stimulus set and paradigm 

not being able to lead to disambiguation at all. 22 participants were recruited from Cardiff 

University’s participant pool and tested in a group setting. Two participants were excluded 

due to technical issues, final n = 20 (19 females, mean age 20.17). 24 two-tone/greyscale 

image pairs were used: half of the two-tones were followed by the corresponding greyscale, 

and the remaining half by catch greyscale images showing different pictures of semantically 
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related scenes, i.e., attracting the same name but visually as distant as possible. One image 

was included to achieve equal two-tone block lengths but was then removed. Participants 

saw blocks of 8 image pairs, with the Pre- and Post-Exposure stages interleaved (same as in 

the main experiment, as described in Figure 3 and Figure 4). To reduce the chance 

identification level and in-lieu of attention checks in the main experiments, in each block 

were introduced 3 additional greyscale images with no associated two-tones. After each 

two-tone, participants rated the meaningfulness of each image, and completed a free-

naming identification test. Greyscale trials were followed only by the identification test.  

For each participant, the change from Pre to Post-Exposure for accuracy and meaningfulness 

was computed, and Bayesian paired t-tests were used to assess whether the changes were 

higher in the main trials than catch trials (see Figure 6 for all values). For main trials, there 

was very strong evidence for an increase from Pre- to Post-Exposure for identification 

accuracy and meaningfulness ratings. For catch trials, there was strong evidence for an 

increase in identification accuracy but not in meaningfulness ratings, as expected if the 

change in accuracy is mainly driven by guessing based on recently viewed pictures rather 

than a genuine perceptual disambiguation. When comparing the mean changes Pre-Post in 

the test and catch trials, there was very strong evidence for higher identification accuracy 

and meaningfulness ratings, comparable across the objective and subjective measures. 

Altogether, this pattern of results suggests that access to the original template images for 2s 

provided true perceptual disambiguation.  
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Figure 6. Distribution of mean accuracy (panels A and B) and meaningfulness ratings (panels 

D and E) Pre- and Post-Exposure to test and catch trials in Pilot 1. Solid black line represents 

means of each condition. Panels C and F show the distribution of the changes in the two 

measures between Pre- and Post- Exposure to test and catch trials. Boxplots show median 

and IQR, with whiskers representing the minimum, respectively maximum value in the data -

/+ 1.5*IQR. Bayes Factor (BF) values are displayed for each comparison, obtained from 

Bayesian paired t-tests. 

 

 

2.4.2 Pilots 2 and 3 – Demonstration of experimental manipulation and trial categorisation 

To demonstrate that the planned experimental designs resulted in the expected distribution 

of datapoints across the four consciousness categories, a set of pilot data was collected for 

Experiments 1 and 2. The participant recruitment process and experimental design were the 

same as presented above, apart from catch trials which featured fully unrelated images and 

6 catch trials per participant rather than 12. Participants were recruited from both Cardiff 

University’s participant pool (n = 18 for Pilot 2, n = 16 for Pilot 3) and Prolific (n = 14 for Pilot 

2, n = 19 for Pilot 3). The same participant exclusion criteria outlined above were followed, 

leaving n = 24 for Pilot 2 and n = 21 for Pilot 3 after pooling across the two samples, since 
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they produced similar data. 7 participants were removed for technical errors, 10 for failing at 

least one attention check, and 5 for failing to report at least a glimpse of an experience (PAS 

2 or above) in more than half the trials in the long SOA condition. Trials were divided in the 

four consciousness categories described above. For both Pilot 2 (Figure 7A) and 3 (Figure 

7B), the experimental manipulation resulted in suitable distributions of experiences across 

the four data bins, allowing testing the hypotheses. 
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Figure 7. Distribution of trials in each of the four data bins, in A. Pilot 2, and B. Pilot 3. The 

experimental manipulation resulted in the expected pattern of trials, also showing that 

participants used the PAS accordingly. 

 

 

2.5 Experiment 1 results – planned analyses 

2.5.1 Combined measurements classification 

Table 2 details the results of each Bayesian t-test, in relation to the relevant hypotheses. As 

shown, there was weak evidence against the hypothesis that accuracy increases more in Test 

than Catch trials, both under strict (Unconscious category) and less strict (Mostly 

Unconscious) definitions of ‘unconscious’. The same pattern was obtained for 

meaningfulness ratings, however here the evidence against the alternative hypothesis was 

strong. 
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2.5.2 Results-contingent tests for Pre-Post Exposure 

Given that there was evidence for the null hypotheses (H1b/H1d/H2b/H2d), the 

comparisons between Pre- and Post-Exposure for trials pooled across Test and Catch were 

conducted. For accuracy, there was evidence against an increase from Pre- to Post-Exposure, 

moderate in the U condition (BFnull = 7.79) and weak in the MU condition (BFnull = 3.18 ± 

0.01%). For meaningfulness, there was weak evidence against an increase in the U condition 

(BFnull = 4.38), but moderate evidence for an increase in the MU condition (BFalt = 5.96). 

Altogether these results suggest that identification accuracy was not impacted by exposure 

to the templates/greyscales, irrespective of how strict the criteria for ‘unawareness’ were. 

However, counting ‘Brief Glimpses’ as ‘unawareness’ resulted in an increase in subjective 

meaningfulness but not accuracy.  

 

2.5.3 PAS-only classification 

Next, Test and Catch trials for two-tones whose corresponding greyscale images were rated 

as PAS 1 or “No experience” were compared. There was inconclusive evidence for an 

increase in accuracy, but moderate evidence against an increase in meaningfulness (Table 2). 

 

2.5.4 SOA-only classification 

For trials in the Short SOA category, there was weak, respectively strong evidence that 

accuracy and meaningfulness did not increase in the Test, compared to Catch trials (Table 2). 

 

2.5.5 Accuracy-only classification 

Finally, for two-tones whose corresponding greyscale images were incorrectly identified, 

again there was inconclusive evidence against an increase in accuracy, but strong evidence 

against an increase in meaningfulness in the Test, compared to Catch trials (Table 2). 
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Table 2. Results from the planned analyses in Experiment 1. ‘Change’ refers to Post minus 

Pre scores. + and blue text = moderate evidence for the alternative, ++ and blue text = strong 

evidence for the alternative. * and orange text = moderate evidence for the null, ** and 

orange text = strong evidence for the null. Text with colour only and no label indicate weak 

BFs. No label and black text mark inconclusive BFs. All errors were under 0.2%. 

 Hypothesis Measurement Mean 
(SD) 
change – 
Test 

Mean 
(SD) 
change – 
Catch 

Type BF Hypothesis 
supported 

Combined 
measurements 
classification 
 

H1a/b - U Accuracy 0.01 
(0.216) 

-0.019 
(0.128) 

Null 4.03 Weak – H1b 

H2a/b - MU Accuracy 0.025 
(0.124) 

-0.001 
(0.127) 

Null 2.94 Weak – H2b 

H3a/b – 
MC 

Accuracy 0.172 
(0.25) 

0.074 
(0.185) 

Alt 2.05 Inconclusive 

H4a/b – C Accuracy 0.199 
(0.369) 

0.064 
(0.14) 

Alt 1.63 Inconclusive 

H1c/d - U Meaningfulness 0.007 
(0.439) 

0.072 
(0.465) 

Null 14.5** H1d 

H2c/d - MU Meaningfulness 0.066 
(0.388) 

0.117 
(0.39) 

Null 14.9** H2d 

H3c/d – MC  Meaningfulness 0.299 
(0.595) 

0.088 
(0.356) 

Alt 3.05 Weak – H3c 

H4c/d – C  Meaningfulness 0.409 
(0.615) 

0.163 
(0.382) 

Alt 1.29 Inconclusive 

PAS-only 
classification 

H5a/b – 
PAS1 

Accuracy 0.029 
(0.175) 

-0.026 
(0.12) 

Alt 1.08 Inconclusive 

H5c/d – 
PAS1 

Meaningfulness 0.058 
(0.406) 

0.049 
(0.457) 

Null 8.39* H5d 

SOA-only 
classification 

H6a/b – 
Short 

Accuracy 0.026 
(0.136) 

0.003 
(0.116) 

Null 3.5 Weak – H6b 

H6c/d – 
Short 

Meaningfulness 0.08 
(0.382) 

0.121 
(0.338) 

Null 14.2** H6d 

Accuracy-only 
classification 

H7a/b – 
Incorrect  

Accuracy 0.038 
(0.11) 

-0.002 
(0.121) 

Null 1.11 Inconclusive 

H7c/d – 
Incorrect 

Meaningfulness 0.068 
(0.304) 

0.094 
(0.352) 

Null 13** H7d 

 



53 
 

2.6 Experiment 2 results – planned analyses 

2.6.1 Combined measurements classification 

Table 3 and Figure 9 detail the results of each Bayesian t-test, in relation to the relevant 

hypotheses. As shown, for the key tests (U and MU), there was moderate to strong evidence 

against the hypothesis that accuracy increases beyond catch trials, neither under the 

strictest definition of ‘unconscious’ (Unconscious category) nor under a less strict definition 

in the Mostly Unconscious category. 

 

2.6.2 Results-contingent tests for Pre-Post Exposure 

Given that there was evidence for the null hypotheses (H1b, H1d, H2b, H2d), the comparison 

between Pre and Post for trials pooled across Test and Catch was conducted. For accuracy, 

there was weak evidence for an increase in both the Unconscious condition (BFalt = 5.08) and 

the Mostly Unconscious condition (BFalt = 3.63). For meaningfulness ratings, there was 

strong to extremely strong evidence for an increase in both the Unconscious condition (BFalt 

= 44.4) and the Mostly Unconscious condition (BFalt = 810).  

 

2.6.3 PAS-only classification 

Next, Test and Catch trials for two-tones whose corresponding greyscale images were rated 

as PAS 1 or “No experience” were compared. There was strong evidence that accuracy and 

meaningfulness did not increase in the Test, compared to Catch trials (Table 3). 

 

2.6.4 SOA-only classification 

For trials in the Short SOA category, there was moderate, respectively strong evidence that 

accuracy and meaningfulness did not increase in the Test, compared to Catch trials (Table 3). 

 

2.6.5 Accuracy-only classification 

Finally, for two-tones whose corresponding greyscale images were incorrectly identified, 

there was strong evidence that accuracy and meaningfulness did not increase in the Test, 

compared to Catch trials (Table 3). 
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Table 3. Results from the planned analyses in Experiment 2. The same notation convention 

applies as in Table 2. All errors were under 0.2%. 

 Hypothesis Measurement Mean (SD) 
change – 
Test 

Mean (SD) 
change – 
Catch 

Type BF Hypothesis 
supported 

Combined 
measurements 
classification 

H1a/b - U Accuracy 0.1 (0.343) 0.107 
(0.44) 

Null 8.17* H1b 

H2a/b - MU Accuracy 0.06 
(0.249) 

0.093 
(0.322) 

Null 13** H2b 

H3a/b – MC Accuracy 0.113 
(0.457) 

-0.023 
(0.309) 

Alt 1.26 Inconclusive 

H4a/b – C Accuracy 0.046 
(0.554) 

0.062 
(0.46) 

Null 8.24* H4b 

H1c/d - U Meaningfulness 0.226 
(0.475) 

 0.501 
(0.828) 

Null 22.6** H1d 

H2c/d - MU Meaningfulness 0.174 
(0.342) 

0.223 
(0.447) 

Null 13.9** H2d 

H3c/d – MC  Meaningfulness 0.407 
(0.576) 

0.06 (0.48) Alt 21.4++ H3c 

H4c/d – C  Meaningfulness 0.583 
(0.881) 

0.044 
(0.57) 

Alt 4.68 Weak – H4c 

PAS-only 
classification 

H5a/b – 
PAS1 

Accuracy 0.077 
(0.298) 

0.1 (0.373) Null 10.4** H5b 

H5c/d – 
PAS1 

Meaningfulness 0.176 
(0.438) 

0.329 
(0.806) 

Null 18.07** H5d 

SOA-only 
classification 

H6a/b – 
Short 

Accuracy 0.63 
(0.199) 

0.047 
(0.258) 

Null 6.54* H6b 

H6c/d – 
Short 

Meaningfulness 0.149 
(0.275) 

0.158 
(0.301) 

Null 10.14** H6d 

Accuracy-only 
classification 

H7a/b – 
Incorrect  

Accuracy 0.025 
(0.215) 

0.063 
(0.247) 

Null 15.2** H7b 

H7c/d – 
Incorrect 

Meaningfulness 0.159 
(0.26) 

0.209 
(0.39) 

Null 15.1** H7d 
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Experiment 1

 

Figure 8. Experiment 1 results, for all classifications, for accuracy (Panel A) and meaningfulness ratings (Panel B). Each dot is a participant’s change in means 

between Pre- and Post-Exposure (Post minus Pre). The dashed line marks 0 (no change). The subscript next to each BF marks whether the evidence favoured the 

alternative hypothesis (“alt”, Test higher than Catch) or the null (“null”, Test not higher than Catch). 
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Figure 9. Experiment 2 results, for all classifications, for accuracy (Panel A) and meaningfulness ratings (Panel B). The same details apply as in Figure 8.  
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2.7 Exploratory analyses 

2.7.1 Condition-dependent Pre-Post Exposure changes  

As explained above, a related question is whether there was evidence of disambiguation 

(Pre-Post) at all in the two unconscious conditions (U and MU). This question was addressed 

in 2.5.2 and 2.6.2, with trials from Test and Catch trials pooled together. However, the weak 

evidence against a difference between the Test and Catch trials in Experiment 1 (2.5.1, Table 

2) might be seen as not fully justifying pooling them together. Therefore, the Pre-Post 

comparisons in 2.5.2 were repeated without pooling, i.e., separately for the Test and Catch 

trials. These analyses were not needed for Experiment 2, since there the evidence against a 

difference in the Unconscious/Mostly Unconscious conditions was stronger. The same 

parameters applied as in previous tests (‘wide’ r-scale, one-tailed). These analyses map onto 

Figure 8, comparing each distribution to 0 (dashed line). Results from all comparisons are 

included in Table 4. The evidence favours the null hypothesis that in neither condition the 

increase in accuracy was different from 0, under the strictest definition of ‘unawareness’ 

(Unconscious condition), however the evidence was less conclusive for the Mostly 

Unconscious Test condition. For Meaningfulness ratings, the evidence was again less 

conclusive, but it overall favoured the null, except for the Catch condition. 

 

Table 4. Results from exploratory analyses on changes between Pre- and Post-Exposure in 

Experiments 1 and 2. Only the MC and C conditions are included in Experiment 2, because 

the strong evidence for the null in both measures did not justify condition-dependent 

analyses. The same notation convention as before applies. 

  Test Catch 

 Accuracy Meaningfulness Accuracy Meaningfulness 

Experiment 
1 

Unconscious 
BFnull = 6.77 * BFnull = 8.21 ±0.12% * BFnull = 17.4 

** 
BFnull = 2.92 
±0.03% 

Mostly 
Unconscious 

BFnull = 1.66 BFnull = 2.45 BFnull = 10.2 
±0.05% ** 

BFalt = 2.25 

Mostly 
Conscious 

BFalt = 6.03 × 
103 ++ 

BFalt = 83.7 ++ BFalt = 10.9 ++ BFnull = 1.01 

Conscious BFalt = 16.4++ BFalt = 95 ++ BFalt = 5.51 BFalt = 3.87 

Experiment 
2 

Mostly 
Conscious 

BFnull = 1.15 BFalt = 3.07 × 103 ++ BFnull = 12.6** BFnull = 3.85 

Conscious BFnull = 4.82 BFalt = 65.1 ++ BFnull = 3.58 BFnull = 4.96 
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The same comparisons were repeated for the Mostly Conscious and Conscious conditions in 

Experiments 1 and 2, to assess if there is evidence that conscious exposure leads to 

disambiguation. In 2.5.1 and 2.6.1, the evidence weakly or inconsistently supported a 

difference between Test and Catch, thus again not justifying pooling. As shown in Table 4, 

the evidence supports the hypothesis of an increase from Pre to Post Exposure, in both 

markers of disambiguation, when participants reported awareness of the images during 

Exposure, but only in Experiment 1. 

 

2.7.2 Bayes factors for the effect from Chang et al. (2016) 

As explained before (2.2.6.2), Chang and colleague’s (2016) key result comes from the 

significant difference in comparing disambiguation in Test and Catch trials. For identification 

accuracy, the reported test result was t = 2.076, p = 0.0492, n= 24 (page 7), however for 

subjective recognition, the test statistic was not reported. To assess what the Bayes Factor 

for the identification accuracy comparison would have been, the t value and n were entered 

into the ttest.tstat function in the BayesFactor package (Morey et al., 2022), which allows 

estimating the BF from the test statistic of paired t-tests. Because it was not specified by 

Chang and colleagues if this test was one or two-tailed, and to assess the robustness of the 

conclusion under different scales of the prior, 4 tests were computed, none of which 

indicated any robust evidence for the alternative hypothesis: one-tailed “medium” (BFalt = 

2.55), one-tailed “wide” (BFalt = 2.07), two-tailed "medium” (BFalt = 1.32), two-tailed "wide” 

(BFalt = 1.06). Therefore, these analyses indicate that at best, the evidence for this effect is 

inconclusive; in other words, the evidence from Chang and colleague (2016) does not 

support the conclusion that two-tone identification accuracy was different following 

exposure to unconscious templates than following exposure to a blank screen.  

 

2.7.3 Condition-independent Pre-Post Exposure changes in single measurement classifications 

In some (Experiment 1, 2.5.4) or all (Experiment 2, 2.6.3-2.6.5) the single measurement 

classification analyses, there was evidence against higher increases in the Test condition 

compared to Catch. While the evidence was weak or inconclusive in accuracy comparisons in 

Experiment 1, altogether these results suggest that regardless of how ‘unconscious’ is 
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defined, there seems to be no added benefit of exposure to the corresponding template 

image. However, it could still be the case that there was disambiguation from Pre to Post-

Exposure. To test for this possibility, mirroring the planned results-contingent analyses (2.5.2 

and 2.6.2), Test and Catch trials were pooled together and assessed for an increase from Pre 

to Post-Exposure, separately for accuracy and meaningfulness, for all three single 

measurement classifications. Results are included in Table 5. 

Altogether, these results suggest that using a single measurement for assessing unawareness 

in this design can lead to substantially inconsistent findings about whether there is an 

increase in disambiguation (i.e., Pre to Post-Exposure). Moreover, how disambiguation is 

defined (at the subjective or objective level) and how objective accuracy is tested (MCQs or 

Free Naming) can further lead to discrepancies in conclusions.  

 

Table 5. Pre-Post Exposure comparisons, pooled across Test and Catch trials, for the single-

index classifications of unawareness. The same notation convention as in Table 2 applies. 

 Experiment 1 Experiment 2 

Accuracy Meaningfulness Accuracy Meaningfulness 

Incorrect 
only 

BFalt = 1.61 BFalt = 3.3 BFnull = 1.43 BFalt = 3.87 × 103 ++ 

PAS1 only  BFnull = 7.51* BFnull = 3.4 BFalt = 3.38 BFalt = 14.2++ 

Short 
SOA only 

BFnull = 2.94 BFalt = 15.6++ BFalt = 2.85 BFalt = 1.28 × 103 ++ 

 

 

2.7.4 Enhanced exclusions criteria 

One exclusion criterion the preregistered protocol did not anticipate is how to handle means 

in each data bin based on only one or few images. Such values can be seen as unreliable and 

could add noise to the distributions. To explore whether the key results in 2.5.1 and 2.6.1 (U 

and MU conditions) would be robust when these participants were removed, the main Test-

Catch comparisons in both Experiments 1 and 2 were recomputed, excluding from each 

comparison participants based on whether their means in either the Test or the Catch trials 

were based on fewer than 2, 3 or 4 trials. The BFs for each comparison can be found in Table 

6. As observed, in Experiment 1 there is no evidence for a higher increase in Test compared 
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to Catch, regardless of how the trials are parsed. Moreover, for the key analyses that initially 

yielded inconclusive BFs (Experiment 1 Accuracy, U and MU conditions, Figure 8), increasing 

the number of trials per mean generally strengthened the evidence for the null hypothesis. 

This analysis lends further credibility to the explanation that altogether in this dataset the 

evidence favours the null hypothesis, although the low number of images introduces 

variability in the strength of the evidence. Figure 10 shows the same distributions as 

Experiment 1 and 2 U and MU conditions, with symbols indicating in which of the analyses 

below participants were included.  

 

Table 6. Results from Test vs Catch comparisons for U and MU conditions, analogue to 

Tables 2 and 3, manipulating the reliability of each mean per participant. Experiment 2 MU 

2+ trials BFs are the same as in Table 3, because all means were based on at least 2 trials. 

The same notation convention as in Table 2 applies. All errors were under 0.2%. 

Experiment Measurement Condition 2+ trials 3+ trials 4+ trials 

Experiment 
1 

Accuracy 
Unconscious BFnull = 1.22 BFnull = 2.61 BFnull = 9.72 * 

Mostly 
Unconscious 

BFnull = 3.89 BFnull = 3.85 BFnull = 7.94 * 

Meaningfulness 
Unconscious BFnull = 10.7 ** BFnull = 13.1 ** BFnull = 8.72 * 

Mostly 
Unconscious 

BFnull = 14.8 ** BFnull = 14.6 ** BFnull = 17.4 ** 

Experiment 
2 

Accuracy 
Unconscious BFnull = 7.44 * BFnull = 5.12 BFnull = 7.22 * 

Mostly 
Unconscious 

BFnull = 13 ** BFnull = 7.77 * BFnull = 10.3 ** 

Meaningfulness 
Unconscious BFnull = 15.7 ** BFnull = 11.3 ** BFnull = 8.05 * 

Mostly 
Unconscious 

BFnull = 13.9 ** BFnull = 11 ** BFnull = 18.5 ** 
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Figure 10. Re-plotting of datapoints from the key conditions in Figures 8 and 9, indicating the number of trials each mean was based on. The 
scales were adjusted between figures to maximize visibility. 
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2.8 Discussion  

In this set of experiments, participants were exposed to complex natural images 

(templates/greyscales) with different levels of visibility. Before and after exposure to these 

images, participants were exposed to two-tone stimuli that were either directly derived from 

the images (Test trials), or that only depicted the same content as the images (Catch trials) – 

usually, two-tone stimuli can only be perceived as meaningful (i.e., disambiguated) after 

exposure to the template natural images. The main goal of the experiments was to reassess 

the finding that disambiguation of two-tone stimuli can follow exposure to template images 

that participants had no awareness of (Chang et al., 2016). A secondary goal was to assess 

the extent to which different criteria for post-hoc selecting ‘unconscious’ trials impact 

conclusions about the presence of an effect.  

The study did not replicate the finding from Chang et al. (2016) that identification accuracy 

increased beyond the Catch condition, following exposure to ‘unconscious’ 

template/greyscale images. In both Experiments 1 (2.5.1) and 2 (2.6.1), using two definitions 

of ‘unawareness’ (a strict Unconscious condition, and a more liberal Mostly Unconscious 

condition), there was no evidence for a higher increase in the Test, compared to Catch 

group. Instead, the evidence favoured the null hypothesis, albeit weakly in Experiment 1. 

These findings are complemented by the exploratory analysis (2.7.2), which found that the 

BF for the key identification comparison in Chang and colleagues’ study also does not show 

robust evidence for a difference, despite a p-value below the cutoff point of 0.05. For the 

subjective marker of disambiguation, the findings from meaningfulness ratings are 

consistent with the pattern reported by Chang and colleagues: strong Bayesian evidence 

against the hypothesis that increases in the Test condition were higher than in Catch, again 

in both Experiments 1 and 2 and across two definitions of ‘unawareness’. Altogether, these 

results converge towards the conclusion that there is no added benefit of exposure to the 

corresponding templates when there is no awareness of the images during the Exposure 

stage (under a classification based on multiple indices).  

Regarding the secondary goal of comparing awareness labelling criteria, there was again no 

evidence for a higher increase in Test compared to Catch following exposure to unconscious 

grey-scale images, in either Experiments, measurements, or any of the three classifications 

used to defined (based on Exposure stage SOA only, PAS only, or Accuracy only; sections 
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2.5.3-2.5.5 and 2.6.3-2.6.5). For most tests (all comparisons in Experiment 2 and 

Meaningfulness tests in Experiment 1), the evidence moderately or strongly favoured the 

null hypothesis of no higher increase. For Experiment 1 accuracy, there was only weak 

evidence for the null in the SOA-only classification, the other comparisons remaining 

inconclusive. It could be argued that the reason why the PAS-only and Accuracy-only 

conditions produced inconclusive results for Accuracy in Experiment 1 was because of noise 

in the data. The SOA-based classification was the only condition that did not rely on trial 

selection based on participants’ responses, so each mean per participant was based on the 

highest number of trials possible, thus reducing the noise around the mean. This explanation 

does not apply for meaningfulness ratings, where there was strong evidence for the null in 

all three classifications despite being based on the same trials as the accuracy tests; 

however, it could be that one measure is generally noisier than the other. Altogether, these 

findings suggest that, while overall there is no criterion of ‘unawareness’ under which there 

is evidence of an advantage of Test compared to Catch, experimental design choices 

(measurement, criterion) can still impact the strength of the evidence.  

Interestingly, there was also no consistent evidence for an advantage of Test images 

compared to Catch in the conscious conditions. In Experiment 1, the evidence only weakly 

favoured an advantage for both measures (Figure 8). In Experiment 2, the evidence was 

mixed, with both support for the null (Conscious condition, accuracy) and for an increase 

(Mostly Conscious condition, meaningfulness, Figure 9). Follow-up analyses (2.7.1) found a 

disambiguation effect (Pre- vs Post-Exposure) in the conscious conditions in Experiment 1 (all 

but one comparison), but only in Meaningfulness Test trials in Experiment 2. Moreover, 

while the pattern of findings seems consistent within studies, they substantially differ 

between studies - suggesting that the disambiguation effect might not be robust, and 

highlighting that different experimental design choices could lead to different conclusions.  

As for whether there was Pre-Post Exposure disambiguation at all when pooling across Test 

and Catch (2.5.2 and 2.6.2), the evidence is more mixed. In line with the expected 

differences (2.3), the method for probing identification accuracy impacted the results: when 

there was no exposure to the labels in Experiment 1 (2.5.2), the evidence favoured the null 

hypothesis of no increase in accuracy above 0, in either unawareness conditions, however in 

Experiment 2 there was evidence for an increase above 0. For meaningfulness, there was 
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extremely strong evidence for an increase in Experiment 2 in both unawareness conditions, 

and moderate evidence for an increase only in the Mostly Unconscious condition in 

Experiment 1. Follow-up exploratory analyses for Experiment 1 (2.7.1) showed that even 

when testing Pre-Post disambiguation separately for the Test and Catch conditions, there 

was evidence that no disambiguation occurred in either measure when using the strictest 

definition of ‘unawareness’. Moreover, the only evidence for an increase was weak, only in 

the Catch condition, under a less strict definition of ‘unawareness’, and only in the subjective 

marker of disambiguation. Thus, this not consistent with Chang and colleague’s findings, and 

suggests counterintuitively that exposure to a catch grayscale led to better subjective 

disambiguation than the relevant template. In any case, a few things could explain the 

increases from Pre to Post-Exposure in the absence of a difference between conditions. A 

first theoretically possible explanation is spontaneous disambiguation, i.e., simply from 

viewing the two-tone image a second time. Secondly, it could be that unconscious Test and 

Catch images both evoked the correct two-tone category, and that this semantic priming 

contributed to a genuine perceptual disambiguation of the Post-Exposure two-tone images. 

It is also inevitable that two different images of the same category share some visual 

features (e.g., stripes for a zebra), that may be sufficient to induce a perceptual 

disambiguation even when unconscious. In the Chang et al.’s Catch condition, these two 

image-based factors were absent and could therefore not contribute to genuine 

disambiguation, however in the current study’s design they could. Therefore, the current 

design of these experiments does not allow disentangling between possible explanations for 

the increases between Pre- and Post-Exposure, in the U and MU categories in Experiment 2. 

Another possible explanation, relevant to Experiment 2 only, is that participants had access 

to additional ‘hints’ about the image content through the labels, which could have led to 

disambiguation (consistent with Samaha et al., 2018). Indeed, this would explain why the 

Pre-Post increases were observed primarily in Experiment 2 compared to Experiment 1. 

While it is not fully warranted therefore to conclude that information from unconscious 

template/greyscale images played no role in disambiguation, it is unlikely that this increase 

was due to any unconscious image contribution. First, a Pre-Post increase was observed 

primarily in Experiment 2, despite the image exposure being the same as in Experiment 1. As 

mentioned above, it is thus plausible that the increase was due to exposure to the labels in 
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the MCQ options, which was the only difference in design with Experiment 1. Secondly, it 

would be difficult to interpret Pre-Post increases in Meaningfulness alone (Experiment 1 MU 

condition, section 2.5.2) as reflecting real disambiguation in the absence of an increase in 

identification accuracy, since they could be due to perceived demand bias, with participants 

recognizing they had seen the two-tone before and rating it as more meaningful on the 

second presentation. Moreover, observing it only in the MU condition (PAS at least ‘brief 

glimpse’, Short SOA, incorrect identification of the template content) and not the U 

condition (PAS only ‘no experience’, same other criteria as MU) might also be because 

participants having at least a brief glimpse of the template content might have been enough 

to lead to a subjective feeling of meaningfulness. This explanation would be aligned with 

previous evidence - albeit from objective tasks – that performance was higher when 

participants reported ‘brief glimpses’ compared to ‘no experience’ (e.g., Overgaard et al., 

2004; Ramsøy & Overgaard, 2004; Sandberg et al., 2010).  

The study does have limitations. One design limitation, mentioned above and explored in 

additional analyses (2.7.4), is the low number of images in the experimental set – 

consequently the low number of trials that each mean per participant is based on. This 

possible issue is more pronounced in the combined measurements than in the single 

measurement classifications, since each trial had to pass multiple exclusion criteria. The 

exploratory analyses lend some support for this interpretation - progressively strengthening 

the exclusion criteria (by only including means based on a certain number of trials) also 

strengthens the evidence for the null in the critical U and MU conditions. However, this 

limitation does not affect the validity of the analyses, because the low number of images 

was compensated for with a higher number of participants. Nevertheless, future work 

following these findings could benefit from having a higher number of two-tone and 

template image pairs, that had undergone similarly extensive piloting and refinement as the 

current stimulus set (Teufel et al., 2015). Finally, both methods of judging two-tone 

recognition have limitations: the subjectivity of rating Free Naming answers in Experiment 1, 

and introducing exposure to the correct labels in Experiment 2, that can contribute to 

disambiguation. While both aspects affected in a similar way Test and Catch conditions in 

each respective experiment, these considerations do complicate the interpretation of the 

Pre-Post changes. A different approach that future research could use is a grid-test, where 
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participants are asked to select from a list of pre-defined locations on the image where 

different elements might be (e.g., the eyes in a face image, Ludmer et al., 2011). This 

technique would fully bypass the issue of subjectivity in Experiment 1, and introduce only 

minimal and non-descriptive ‘hints’ about the content. However, it would not be suitable for 

assessing identification of masked, briefly-presented templates, thus introducing a 

substantial task difference between the Exposure stage and the rest of Pre-Post stages. 

Another future direction, to disentangle between spontaneous and category exposure-

related disambiguation, would be to conduct a follow-up experiment, in which half of two-

tone images would be associated with the Catch greyscales (the current Catch condition in 

both experiments), and the other half would not be associated with any images during the 

Exposure stage (i.e., no images would be presented). In this experiment, firstly, it would be 

expected to find the same pattern of Pre-Post changes in the Catch trials Experiment 2, and 

the catch trials in the follow-up experiment, across all categories, since the experimental 

conditions would be virtually identical. Furthermore, observing a difference between 

conditions in the follow-up experiment would be evidence that semantic information, 

exposure to the labels, or the category-specific low-level visual information contributed to 

the Pre-Post disambiguation observed in Experiment 2. Alternatively, observing evidence 

against a difference between conditions would be evidence that the Pre-Post effect in 

Experiment 2 was fully driven by spontaneous disambiguation, while conscious exposure to 

the labels, unconscious semantic information and category-specific visual information played 

no role.  

Nevertheless, the present experiments highlight a few conclusions. Regarding unconscious 

one-shot learning, when controlling for key confounds and making more conservative the 

criteria for ‘unawareness’, the evidence does not support previously published conclusions. 

Regarding methods of studying unconscious effects, these results suggest that the chosen 

objective measure can impact conclusions. The choice of criteria for ‘unawareness’ can also, 

in some circumstances, lead to different conclusions (e.g., that the results are inconclusive, 

or that they support the null) – although here they were mostly robust. To allow better 

comparison across findings, future work would benefit from systematically comparing 

conclusions about specific research questions from a wider variety of experimental 

approaches.   
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Chapter 3 

 

3.1 Introduction 

Successful adjustment to environmental conditions is a cornerstone of survival. To achieve 

this, the brain allows information that it previously encountered to shape the processing of 

new inputs. As explained in Chapter 1, this susceptibility to the influence of past inputs has 

been thoroughly observed in the sensory domain, with one example being perceptual 

learning, or the long-term changes in subjective experience and performance that occur 

adaptively based on demands from the environment (Gibson, 1969; Sagi, 2011). Such effects 

have been reliably induced in the laboratory through extensive practice on a task, 

demonstrating the existence of complex neural plasticity in the adult brain. In the visual 

domain, visual perceptual learning (VPL) has been observed in a variety of tasks, from 

detection and discrimination of high-level stimuli such as faces from noise, to more low-level 

visual features such as orientation and luminance contrast (for reviews, see Fine & Jacobs, 

2002; Watanabe & Sasaki, 2015).  

Nevertheless, the neural mechanisms and the necessary conditions of learning are yet to be 

fully mapped. A series of studies (Schwiedrzik et al., 2009, 2011) proposed that VPL can 

develop from stimuli that are initially below the threshold of objective discrimination. In 

their experiments, Schwiedrzik and colleagues first exposed participants to multiple trials in 

which a simple shape (square or diamond) flashed on the screen for 10ms, between 

(Schwiedrzik et al., 2009) or only followed (Schwiedrzik et al., 2011) by a mask. The interval 

between the stimulus onset and the subsequent mask onset (stimulus onset asynchrony, or 

SOA) was systematically manipulated, to find the SOA which yielded a sensitivity (i.e., d-

prime) not significantly different from 0 in discriminating between shapes. Subjective 

awareness, as measured by the Perceptual Awareness Scale (PAS; Ramsøy & Overgaard, 

2004) was also collected. Then, participants completed 5 training sessions (3000 trials in 

total) only on the chosen SOA, during which the same two measures (Schwiedrzik et al., 

2011) or the discrimination measure only (Schwiedrzik et al., 2009) were collected. Both 

papers reported that d-prime sensitivity, as well as mean PAS ratings at the chosen SOA 

increased from before to after training. Moreover, this transition to d-primes significantly 
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above 0 was reported to occur in the first 100-200 trials of the first training session 

(Schwiedrzik et al., 2009). This finding led the authors to conclude that the initially 

indiscriminable stimuli broke into awareness with practice, and that this effect occurred very 

early in the training.  

These claims are worth exploring further. Since publication, these papers (Schwiedrzik et al., 

2009, 2011) cumulated over 130 citations (57, respectively 74, Google Scholar, 4/12/2023), 

with relevance for different fields in consciousness research. Specifically, the findings have 

been discussed in the light of multiple theories of consciousness (ToCs), due to their 

implications for what the role(s) or function(s) of awareness might be. Schwiedrzik and 

colleagues’ findings are frequently cited as consistent with theories that posit that 

consciousness is something that we learn to do, by the proponents of these theories (the 

‘radical plasticity thesis’ as in Timmermans et al., (2012); the self-organizing 

metarepresentational account – SOMA – as in Cleeremans et al., 2020), as well as others 

(e.g., Siedlecka et al. 2020). For instance, Timmermans et al. (2012) suggest that 

“metacognition […] is an active, trained construction process”, which they link with 

Schwiedrzik et al. (2009)’s findings, taken to “support the idea that one can train people to 

gain conscious access to their own representations” (p. 1418). In the same vein, Cleeremans 

et al., (2020) recently proposed that “consciousness should be viewed as a process that 

results from continuously operating unconscious learning and plasticity mechanisms” (p. 

112), and Schwiedrzik et al. (2009) findings are cited in support to the central claim that 

“perception is continuously shaped by learned priors” (p. 115). Although Schwiedrzik and 

colleagues’ findings have been used to illustrate the general idea underlying these theories 

(i.e., that training can result in gaining awareness of visual stimuli that were previously not 

consciously experienced), it remains unclear whether these theories necessarily and 

specifically predict these findings, and what the implications would be for these theories 

should they not be observed.  

On the other hand, other ToCs predict that learning can only occur if the stimuli to learn 

from are consciously experienced (Baars & Franklin, 2007; Kugele & Franklin, 2021; Lamme, 

2006, 2010, 2014; Meuwese et al., 2013). Under the recurrent processing theory (RPT), 

Lamme and colleagues argue that “[t]he function of conscious vision may be to add a final 

layer to our interpretation of the world, to solve relatively “new” visual problems, and to 
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enable visual learning" (Lamme, 2014, p. 1), implying that unconscious visual stimuli cannot 

enable visual learning. Similarly, the global workspace theory (GWT), suggests that only once 

information is consciously experienced in the GW can it be further distributed to brain areas 

for complex cognitive processing, including memory, inner speech, and ‘almost all kinds of 

learning’ (Baars, 2005, p. 47). Baars, Franklin, and colleagues further proposed the Learning 

Intelligent Distribution Agent (LIDA, Baars & Franklin, 2007; Kugele & Franklin, 2021; 

Ramamurthy et al., 2006) as a model of GWT, and the Conscious Learning Hypothesis that 

“all significant learning is evoked by conscious contents, but the learning process itself and its 

outcomes may be unconscious” (Baars & Franklin, 2007, p. 957), with PL being one of the 

four types of learning under this hypothesis. Albeit disagreeing on the underlying brain 

mechanisms, both lines of reasoning would therefore predict no behavioural effects of 

learning from unconscious stimuli – prediction challenged by Schwiedrzik and colleagues’ 

findings, as indeed acknowledged but not addressed by Lamme (2014). Altogether, while 

Schwiedrzik and colleagues’ findings cannot ultimately help discern between ToCs, they have 

ramifications for the study of consciousness and the current complex theoretical landscape. 

The present study aimed to expand upon Schwiedrzik and colleagues’ findings, and retest 

the claim that objective and subjective sensitivity to visual information change due to 

prolonged practice. Instead of comparing individual SOA levels, this paradigm models, under 

metacontrast masking, each participant’s contrast discrimination and detection 

psychometric functions (PFs). PAS ratings were also collected throughout all sessions. The 

reasons to manipulate contrast instead of SOA are two-fold: first, to circumvent the issue of 

individual differences in the link between SOA and performance in metacontrast masking 

(i.e., type A showing a linear function of accuracy increasing with SOAs, or type B showing a 

U-shaped function, Albrecht et al., 2010), which could introduce difficulties in analysing and 

interpreting the results. Secondly, there is converging evidence from human and animal 

studies that training-induced improvements occur in both contrast detection (Bao et al., 

2010; Furmanski et al., 2004; Sowden et al., 2002; Yu et al., 2016) and discrimination (Hua et 

al., 2010; Scholes et al., 2021), albeit from paradigms with different stimuli. For example, 

Sowden and colleagues (2002) conducted a 2 interval-forced-choice task (2IFC), in which a 

grating was presented in only one of two consecutive time intervals, over 10000 trials. The 

gratings had fixed orientation, were not masked, and the contrast level was fixed at the 
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value that generated 70.7% accuracy in a pre-training session for each participant (hence 

above values that would be considered reliably unconscious). The ability to correctly detect 

in which interval the gratings appeared improved over training, to an average of ~79% 

accuracy.  

In the current study, a contrast level yielding under 60% discrimination accuracy (Day 1) was 

chosen for each participant. Participants in the Learning group then trained for one session 

of 1000 trials at the chosen contrast (Day 2). A separate Control group did not complete this 

training. In Day 3, all participants completed the PF measurements again. If extended 

practice on a stimulus unlikely to be consciously experienced leads to VPL, as suggested by 

Schwiedrzik and colleagues, then shifts in the PFs towards lower contrast levels would be 

expected - meaning that the same contrast level would generate higher performance in Day 

3 compared to Day 1. Increases in mean PAS would also be expected, with both effects being 

larger for the Learning group than the Control group.  

As mentioned above, the current paradigm also includes a detection measure, besides 

discrimination. While it is not uncommon to use discrimination either as index for learning 

(e.g., Furmanski et al., 2004; Hua et al., 2010; Scholes et al., 2021) or awareness (e.g., 

Nishina et al., 2007; Schlaghecken et al., 2008), detection has also been used for both 

purposes (learning index e.g., Bao et al., 2010; Furmanski et al., 2004; Sowden et al., 2002; 

Yu et al., 2016, awareness index: e.g., Balsdon & Azzopardi, 2015; Heeks & Azzopardi, 2015). 

The relationship between detection and discrimination in masking paradigms is not well-

explored, although many consciousness researchers reported in a survey to believe that 

discrimination thresholds are lower than detection thresholds while also believing that this 

pattern has not be convincingly demonstrated in the literature (Peters & Lau, 2015). 

However, Schwiedrzik and colleagues (2009; 2011) used the same measure, discrimination 

d-prime, both to assess unawareness and to measure learning – besides PAS as solely an 

index of learning. This approach limits the generalizability of the effect to paradigms that use 

detection as an index of awareness. It also limits the conclusions that can be drawn about a 

learning effect to discrimination only. Therefore, despite not factoring detection into the 

selection of the stimulus parameters for training, it is still beneficial to collect it, for two 

reasons. First, it allows assessing if there are any differences pre-training in discrimination 

and detection (i.e., if conclusions drawn about initial ‘unconsciousness’ of the stimuli based 
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on discrimination would align with those based on detection). Secondly, it allows testing 

whether training on a discrimination task with a stimulus below the discrimination threshold 

would produce comparable learning outcomes in a detection measure, or whether the 

conclusions about learning are indeed limited to discrimination only. 

Four planned analyses were therefore conducted, answering each of the following 

questions: 

• Q1P. Does discrimination sensitivity increase more in the Learning group compared 

to the Control group? 

• Q2P. Does detection sensitivity increase more in the Learning group compared to the 

Control group? 

• Q3P. Does subjective visibility improve more in the Learning group compared to the 

Control group? 

• Q4P. Is there a difference between discrimination and detection sensitivity, before 

and after training? 

The differences in experimental designs between the present study and Schwiedrzik and 

colleagues’ might limit the comparability of the findings. To minimise these differences, 

exploratory analyses aligned to the one they performed were conducted, on d-prime values 

(Q1E-Q2E). Given that d-prime are standardized measures and hence task-independent, the 

changes in d-prime in the present study were compared to the changes in d-prime over a 

comparable number of trials from Schwiedrzik and colleagues’ studies (Q3E, 3.4.4). 

 

3.2 Methods  

3.2.1 Participants  

51 participants, naïve to the purpose of the experiment, were recruited from Cardiff 

University School of Psychology in exchange of course credit or payment. All participants had 

normal or corrected-to-normal vision. Due to the fast-paced presentation of the stimuli in 

the experiment which could appear flicker-like for some individuals, participants who had a 

history with photosensitivity and/or epilepsy were not eligible. Participants were informed 

that participation in Days 2 (if in the Learning group) and 3 was contingent on their accurate 
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performance on Day 1, and that they could also earn a bonus of £2/session for good 

performance. In practice, all participants that completed the experiment received the 

bonuses. 2 participants were excluded for non-completion. 9 participants completed only 

Day 1 because at least one of their bootstrapping tests (n = 1000, parametric if goodness-of-

fit p-value was over 0.05, non-parametric if below or equal 0.05, Kingdom & Prins, 2016) 

resulted in a failed fit with a pattern best explained by a constant function (i.e., inflection 

point tending towards infinite), meaning that no inflection point confidence interval could be 

computed. Data from 1 participant was excluded after completion because the 

bootstrapping failed during preprocessing, suggesting that the initial CI estimate was not 

reliable. 

 

3.2.2 Materials 

The experiment was run in a laboratory setting, and was displayed on a Dell P2213 monitor 

with a diagonal of 22 inch, a resolution of 1680x1050, and a refresh rate of 60Hz. Brightness 

and contrast were set to 75. The computer had an integrated graphics card (Intel HD 

Graphics 4600), 8-bit depth and standard dynamic range. Participants were seated at 44cm 

away from the screen, and head movements were restricted by a chin and forehead rest. 

The experiment was custom written and run in MATLAB 2019b, using the Psychophysics 

Toolbox extensions, version 3.0.18 (Brainard, 1997; Pelli, 1997). Stimuli images were created 

using Microsoft PowerPoint and consisted of pairs of arrows pointing to the left (“<<”), 

subtending 3.5cm by 2cm, or 4.55 x 2.60 degrees of visual angle (DVA). The right-pointing 

equivalent and the mask (Figure 11) were obtained through custom MATLAB (MATLAB, 

2021) code from the left-arrow image. The metacontrast mask consisted of a frame of 16 

overlapped pairs of arrows at maximum contrast (Figure 11), subtending 10.4cm x 5.9cm, or 

13.5 x 7.67 DVA. The PAS (Ramsøy & Overgaard, 2004) was used, with four steps: (1) No 

experience, (2) A brief glimpse, (3) An almost clear experience, and (4) A clear experience 

(Sandberg et al., 2010). The description of the scale was modified from its original form, to 

remove mentions of confidence and focus strictly on the clarity of the experience (see 

Chapter 2 for a similar approach). The full description of the scale as well as the quiz items 

used in training can be found in Appendix 4. The contrast levels were defined in relation to 

the range of grey shades possible to display on the monitor, such that 256 = white, 128 
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background grey, and 0 = black. Here, the contrast levels are reported as indices, with 0 

meaning no contrast (blank). The monitor was not gamma corrected. A lookup table for the 

associated cd/m2 values is available in Appendix 5.  

 

 

Figure 11. Time sequence of a trial, common across all sessions. The ratio of stimuli to screen 

size is larger than in the experiment for illustration purposes. The arrows contrast varied 

across trials and participants. The Detection question was only present in Days 1 and 3. 

 

3.2.3 Design and procedure 

The experiment took place over three days. Day 1 began with a presentation of the stimuli 

and task, a self-paced study period of the PAS, and then a short quiz verifying participants’ 

understanding of the different scale levels. The quiz repeated until they reached 7/8 (87%) 

correct. The quiz was followed by a practice run consisting of 14 trials (4 blank, 10 fully 

visible arrows), where participants had trial by trial feedback for both detection and 

discrimination. Then, participants completed 14 blocks of the method of limits (MoL), to 

quickly determine their optimal range of contrasts (13 levels) spanning from chance to 

ceiling (more details in Appendix 5). Due to an error, 1 participant completed only 6 MoL 

trial blocks (3 ascending, 3 descending). The number of MoL blocks was chosen so as to be 

sufficiently high to give a good estimate of the range while not substantially lengthening the 

experiment, with the number of blocks being comparable to other studies (e.g., 12 in Hock & 

Schöner, 2010). The range of contrasts included in the MoC task had maximum granularity, 

meaning that intermediary levels were not possible – which was important to maximize the 

chances of having data at the training contrast, and hence allow comparisons outside of the 
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PFs. Such comparisons allow drawing parallels with other studies that do not use PFs (e.g., 

Schwiedrzik et al., 2009). The size of the range was chosen keeping in mind that non-

experienced observers might have lower consistency in their answers; hence, using a more 

restricted range would increase the risk of not capturing the critical information for deriving 

the PFs. Then, they completed a method of constant stimuli (MoC) task, where 36 trials at 

each of the 13 levels were shuffled and presented among 60 blank trials (total of 528 

trials/participant). The relatively high number of trials per contrast level was again chosen so 

that there was sufficient data for subsequent analyses on individual contrast levels 

(performance as well as PAS answers). The MoC task was split across 6 blocks separated by 

self-paced breaks up to 1 minute. No feedback was given. The same trial specifications as in 

Figure 11 applied. Reaction times were not logged. A buffer of 200ms was introduced 

between the answer on each task and the onset of the next screen. At the end of Day 1, PFs 

were plotted on the detection and discrimination data. Based on the discrimination PF only, 

the standard error of the inflection point was calculated, using bootstrapping (see details in 

3.2.1 and Kingdom & Prins, 2016). Then, another PF was fitted, with the same parameters 

but a modified inflection point (initial inflection point contrast minus SE), from which was 

selected the highest contrast value that yielded under 60% accuracy. The rationale was to 

maximize the intensity of the stimulus that could be presented without reliable 

discrimination performance (for a similar labelling of under 60% performance as 'failed 

perception', see Karni & Sagi, 1993). Discrimination was chosen as an index of awareness for 

consistency with the previous studies (Schwiedrzik et al., 2009; 2011). However, for one 

participant, the detection PF was used, because while the discrimination and detection PFs 

were near-identical, a CI could only be computed for the detection PF. They were 

subsequently removed from PF-based analyses (Q1P, Q2P, Q4P – see section 3.3.1 for 

details). For participants in the Learning group, a value predicting 95% accuracy was also 

chosen, to be used in the visible attention checks in Day 2.  

On Day 2, participants in the Learning group completed 1180 trials (1000 experimental, 40 

visible attention checks, 40 blank attention checks, 100 blank), distributed over 10 blocks 

separated by self-paced breaks up to 1 minute. The trial structure was identical to that on 

Day 1, except that the detection question was removed (Figure 11). The attention checks 

also included a 500ms ISI between the arrows and the mask. At the end of each block 
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participants were told the percent discrimination accuracy in the experimental trials of the 

blocks they have just completed. Incorrect answers to visible attention checks were followed 

by a short reminder to pay more attention; no similar feedback was given for PAS answers. 

Participants in the Control group did not complete any session on Day 2. In Day 3, all 

participants completed the MoC task, with the same parameters as in Day 1. The sessions in 

Days 1 and 2 lasted around 75 minutes, while Day 3 lasted around 40 minutes. 

 

3.2.4 Data cleaning and analysis 

All preprocessing and statistical analyses were conducted in RStudio v2021.9.1.372 (RStudio 

Team, 2021) using R v4.2.1 (R Core Team, 2021) and the following packages: BayesFactor 

v0.9.12-4.4 (Morey et al., 2022), tidyverse v2.0.0 (Wickham et al., 2019; Wickham & RStudio, 

2023), data.table v1.14.2 (Dowle et al., 2021), gghalves v0.1.4 (Tiedemann, 2022). 

Additionally, the ‘dprime’ function in the package psycho v0.6.1 (Makowski, 2018) was used. 

Trials with frame gains (n = 14) were removed from all analyses. Fitting of the PFs was 

conducted in MATLAB v2021a (MATLAB, 2021) using the Palamedes toolbox v1.10.9 (Prins & 

Kingdom, 2018). Given that the x-axis was linear and 0 meant absence of stimulus, Weibull 

functions were fitted, with a fixed guess rate (0.5) and lapse rate (0.01), and free parameters 

for inflection point and slope, for each participant and Days (1 and 3).  

To account for possible biased answers in the detection question, the raw detection scores 

at each contrast level were adjusted, using the following formula:  

 

Equation 1. 

propHitsUnbiased = 
(𝑛𝑢𝑚𝐻𝑖𝑡𝑠/(𝑛𝑢𝑚𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑇𝑟𝑖𝑎𝑙𝑠)+(1−(𝑛𝑢𝑚𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚𝑠/(𝑛𝑢𝑚𝐵𝑙𝑎𝑛𝑘))

2
 

 

to obtain an unbiased proportion of Hits at each contrast level. This proportion was then 

multiplied by the total number of trials at each contrast level. All detection PFs were 

computed on these estimates. 
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The analyses consisted of Bayesian equivalents of within and between-subjects t-tests (Q1P-

Q4P) and correlation (Q4P). Details about the BayesFactor package are included in Chapter 2 

(2.2.6). All tests used a prior with the scale of 1 (‘wide’ label for t-tests, ‘ultrawide’ label for 

ANOVA), meaning that for t-tests the expected differences between compared groups (i.e., 

effect size) were up to 1. A directional prior was also included, to specifically test for 

whether performance was better in the Learning compared to Control, and Day 3 compared 

to Day 1. This directional prior could be negative in the case of inflection points (i.e., 

decreases from Pre-Post meaning improved performance), or positive in the case of mean 

PAS. The directionality of each analysis is specified in each section. 

Analyses are split into quality checks, planned analyses (question number followed by a P) 

which are the most relevant for this experiment’s design and which target the key questions 

in the introduction, and exploratory analyses (question number followed by an E), focusing 

on links with previous literature or additional questions worth exploring that were not 

planned for. For Q1P and Q2P, improvements are defined as reductions in the PF inflection 

points, and conversely increases in accuracy. For Q3P, improvement is defined as an increase 

in mean PAS.  

 

3.3 Results – planned analyses 

All BF errors (i.e., error of the underlying BF estimation, indicating that the real value is 

between BF ± error, Doorn et al., 2019) were under 0.01%, unless otherwise specified. Table 

7 contains mean and SDs for each variable, group, and session. Values are rounded to three 

significant digits.  

3.3.1 Quality checks and exclusions 

The chosen exclusion criteria (EC) were: 

1. 90%+ of visible attention checks (Day 2) discriminated correctly; 

2. 90%+ of visible attention checks (Day 2) answered with PAS2 or above; 

3. 70% of blank attention checks (Day 2) answered with PAS1; 

4. 70% of blank normal trials (all days) answered with PAS1; 

5. No bootstrapping tests finding scenarios best explained by a constant function, for 

any of the four PFs (discrimination/detection, Day 1/ Day 3). 
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EC1 is justified because the contrast was calibrated from the Day 1 PF to yield accuracy close 

to ceiling. EC2 was on par with EC1 following the assumption that awareness influences both 

accuracy and PAS ratings, so it is expected that high awareness as indicated by accuracy 

should also entail at least PAS 2 (“Brief Glimpse”) responses, if participants used the PAS as 

intended. The cutoff of 70% of blank trials answered with PAS 1 in ECs 3 and 4 is justified by 

the reliable findings that the proportion of stimulus-absent trials answered with PAS 1 is 

much lower than ceiling but at least 70% (Chapter 4 Q3, 4.3.3). While it is unclear why such 

ratings occur, setting the criterion on par with the visible checks at 90%+ would therefore be 

potentially unachievable. No participants failed EC1. Two participants failed EC2 (answered 

only 87.5% visible checks with PAS2+), and two other failed EC3, so all four were excluded 

from all analyses. Nine participants in total failed EC4 (9 in Days 1 and 3, 4 in Day 2), so they 

were removed from PAS analyses only (Q3P). 11 participants failed EC5 (7 in the Learning 

group, 4 in the Control group). They were removed only from the analyses involving PF 

metrics (Q1P, Q2P, Q4P, Q4E). 

The discrimination and detection PFs were also compared between the Learning and Control 

groups at Day 1, using Bayesian independent t-tests with a two-sided prior. There was 

moderate evidence against a difference in inflection points (discrimination BFnull = 3.55 ± 

0.01%, detection BFnull = 3.69 ± 0.01%) and slope (discrimination BFnull = 3.7 ± 0.01%, 

detection BFnull = 1.71 ± 0.01%), therefore suggesting that the groups did not differ prior to 

the experimental manipulation.  

 

Table 7. Descriptive statistics for the planned analyses Q1P-Q3P, namely inflection points 

and accuracy at the chosen contrast from the discrimination and detection PFs, and mean 

PAS across all trials, in Day 1 and Day 3, for both groups. 

  Inflection point Accuracy from PF PAS rating 
(all trials)   Discrimination Detection Discrimination Detection 

  Mean SD Mean SD Mean SD Mean SD Mean SD 

Learning 
Day 1 14.9 5.63 16.3 5.22 0.554 0.020 0.553 0.028 1.57 0.27 
Day 3 12.5 4.66 14.1 5.17 0.588 0.074 0.567 0.060 1.70 0.33 

 

Control 
Day 1 15.1 3.52 16.3 3.28 0.560 0.010 0.559 0.036 1.50 0.16 
Day 3 12.8 2.78 14.2 2.47 0.609 0.071 0.594 0.065 1.73 0.30 
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Table 8. Descriptive statistics for the exploratory analyses Q1E-Q2E, namely discrimination 

and detection sensitivity (d-prime) and mean PAS at the chosen contrast. 

  d-prime PAS ratings chosen contrast 

  Discrimination Detection 
  Mean SD Mean SD Mean SD 
Learning  Day 1 0.270 0.383 0.155 0.337 1.07 0.078 

Day 3 0.646 0.653 0.550 0.578 1.13 0.126 
        
Control  Day 1 0.153 0.508 0.297 0.468 1.125 0.086 

Day 3 0.375 0.943 0.484 0.595 1.19 0.189 



79 
 

                                                                                                                                                                                                                                                                                              

   

   

   

               

     

 
 
  
 
 
 
  
 
 
  
 
 
 
 
 

              

                                                                                                                                                                                                                                                                    

 

 

 

 

          

                   

 
 
 
 
  
 
 

              

                                                                                                                                                                                                                                                                                                                  

 

 

 

 

          

                   

 
 
 
 
  
 
 

             

                                                                                                                                                                                                                                                                                                                                          

   

   

   

   

   

               

     

 
 
 
 
  
 
 
 
 
 

        

                                                                                                                                                                                                                                                                                                            

  

  

  

  

          

                   

  
  
 
 
  
 
 
  
 
  
  
 
 
  
 
  
 
 

             

                                                                                                                                                                                                                                                                                              

  

 

 

               

     

  
  
 
 
  
 
 
  
 
  
  
 
 
 
 
 
 

         
                                                                                                                                                                                                                            

  

  

  

  

          

                   

  
  
 
 
  
 
 
  
 
  
  
 
 
  
 
  
 
 

              

                                                                                                                                                                                                                                                                                              

     

    

    

    

               

     

 
 
  
 
 
 
  
 
 
  
 
 
 
 
 

         

Figure 12. Results from Q1P (Panels A-D), Q2P
(Panels E-H), and Q3P (Panels I-K). The bold

black lines and dots in panels A, B, E, F, I, and
J denote the mean of each group. Panels C, D,

G, H, and K show the Day 3 minus Day 1
differences for each group, and the dotted

horizontal lines mark no improvements. For
inflection point changes (Panels A-C and E-G),

lower scores mean higher improvements. For
the rest of the measures (Panels D and H-K),

higher scores mean higher improvements.
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3.3.2 Q1P. Does discrimination PF shift more in the Learning group compared to the Control 

group? 

To answer this question, discrimination inflection points in Days 1 and 3 were first compared, 

for the Learning and Control groups separately (Figure 12A & Figure 12B). Means and SDs 

can be found in Table 7. There was extremely strong evidence for a reduction in both the 

Learning and Control groups, showing that improvement occurred. However, when 

comparing the reduction across groups (Day 3 minus Day 1, Figure 12C), there was evidence 

against these reductions being larger in the Learning compared to the Control groups. A 

similar pattern was observed for PF accuracy at the chosen contrast (i.e., accuracy on the PF 

at the chosen contrast), albeit with stronger evidence in the Catch condition (BFalt = 5.74), 

compared to Test (BFalt = 1.48), and moderate evidence against a higher increase in the 

Learning group compared to Control (Figure 12D).  

 

3.3.3 Q2P. Does detection PF shift more in the Learning group compared to the Control 

group? 

The same analyses as for Q1P were repeated for detection. There was evidence for a 

reduction in both the Learning group (Figure 12E), and the Control group (Figure 12F), but 

evidence against these reductions being larger in the Learning compared to the Control 

groups (error ± 0.01%, Figure 12G). For PF accuracy at the chosen contrast, again evidence 

favoured more an increase in the Control group (BFalt = 5.79) than the Learning group (BFnull 

= 1.88), with moderate evidence against a higher increase in the Learning group compared 

to Control (Figure 12H). 

 

3.3.4 Q3P. Does subjective visibility improve more in the Learning group compared to the 

Control group? 

There was at least moderate evidence for an increase in mean PAS (mean across all 

contrasts) in Days 1 and 3 in both the Learning (Figure 12I), and the Control group (Figure 

12J). As in Q1P and Q2P, there was moderate evidence against the hypothesis that mean PAS 

increased more in the Learning group compared to Control (Figure 12K).  
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3.3.5 Q4P. Is there a difference between discrimination and detection sensitivity, before and 

after training? 

One important question is whether discrimination and detection PFs differed before training. 

Since the training contrast was chosen based on discrimination only, a difference between 

measures would suggest that should detection have been chosen as an index of awareness, 

conclusions about learning might have been different. Because no differences were expected 

nor found (3.3.1) before training between the two groups, data from the Learning and 

Control groups was collated. A Bayesian paired, two-sided t-test comparing Discrimination 

and Detection inflection points in Day 1 found evidence for a difference (BFalt = 3.79), with 

the Detection inflection points higher than Discrimination (Figure 13). However, comparing 

the accuracies at the trained contrast from PFs in Day 1 showed moderate evidence for the 

null (BFnull = 6.55 ±0.07%). A two-way ANOVA with Measure and Day as predictors on 

inflection point values and participant as random effects found evidence for both main 

effects (Day: BFalt = 2.92 × 105 ± 0.22%, Measure: BFalt = 17.3 ± 0.36%), but no interaction 

(BFnull = 6.4 ± 0.51%), consistent with the conclusion that the training did not impact the two 

measures differently. 

 

Figure 13. Scatter plot showing the relationship between discrimination and detection 

inflection points for each group, in Day 1 (Panel A) and Day 3 (Panel B). The black line marks 

the unity line.  
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3.3.6 Interim conclusions  

To summarize the findings from the planned analyses, there was evidence of no higher 

increases in the Learning group compared to Control, in none of the three measures tested 

(discrimination, detection, and subjective experience as indexed by mean PAS), neither for 

inflection points nor accuracy at the chosen contrast from the PFs. At the chosen contrast, 

the evidence for performance increases was present in the Control group but inconclusive in 

the Learning group. This pattern therefore suggests that while learning occurred between 

Days 1 and 3, it was not driven by the training in Day 2. Furthermore, while there were 

differences between detection and discrimination PFs before training, they were not present 

at the lower end of the functions, thus highlighting that using detection instead of 

discrimination would have led to similar conclusions about awareness. 

 

3.4 Results – exploratory analyses 

The exploratory analyses focused on changes in d-prime discrimination and detection 

sensitivity and mean PAS at the chosen contrast (Q1E), whether there is an increase in 

discrimination accuracy and mean PAS during the training in Day 2 for the Learning group 

(Q2E), and how the changes in d-prime in the current experiment compare with changes 

reported in previous studies (Q3E). 

3.4.1 Quality checks and exclusions 

No PF-based exclusions were applied for any of the tests here (except in Q4E), because only 

the raw data is analysed rather than model parameters, however the attention-check based 

exclusions were applied. For 12 participants, the chosen contrast was lower than the tested 

range, and therefore they were not included in analyses of trials at the chosen contrast 

(Q1E, most analyses in Q2E). The same participants removed from Q3P for failing EC4 were 

removed from PAS analyses only in Q1E and Q2E. For consistency, the same ‘ultrawide’ prior 

scale was used in the ANOVA (Q2E, Q4E).  

3.4.2 Q1E. Are there any changes in d-prime and mean PAS at the chosen contrast? 

Sensitivity (d-prime) and mean PAS only in the trials at the chosen contrast (Table 8) were 

considered, mirroring the post-hoc tests in Schwiedrzik et al., (2009). For the Learning group, 

there was at least weak evidence for an increase from Day 1 to Day 3 in all three measures: 
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discrimination d-prime (BFalt = 2.56), detection d-prime (BFalt = 3.17), and mean PAS (BFalt = 

2.72). For the Control group, the evidence was inconclusive: discrimination (BFnull = 1.63), 

detection (BFnull = 1.34), and mean PAS (BFnull = 1.06). Testing for higher increases in the 

Learning group than Control also yielded inconclusive support for the null for discrimination 

(Figure 14A) and detection (Figure 14B), but moderate evidence against a difference in mean 

PAS (Figure 14C). Altogether, these mixed results highlight qualitative differences in patterns 

of findings between PF-based analyses and d-prime analyses. 

 

Figure 14. Changes (Day 3 minus Day 1) in mean d-prime (panels A and B) and mean PAS 

(panel C) for each group, and each measurement. 

 

3.4.3 Q2E. Is there an increase in discrimination accuracy and mean PAS throughout the 

training session in the Learning group? 

This question was deemed as exploratory because it does not directly relate to the 

comparisons between groups necessary to test the main hypotheses. However, given the 

overall, albeit weak, support for increases in d-prime between Days 1 and 3 in the Learning 

group (Q1E), one question to explore further is when during training this change might have 

occurred. Discrimination d-prime (Figure 15A) and mean PAS (Figure 15C) were computed 

for each of the 10 blocks (100 trials each), followed by Bayesian equivalents of analyses-of-

variance (ANOVA), with block as predictor. There was extremely strong evidence against an 

effect of Block on d-prime, BFnull = 2.21 x 103 or mean PAS, BFnull = 1.30 x 103. Including 

participants as random effects weakened the evidence for the null but did not change the 

pattern (BFnull > 100 for both analyses).  
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The next tests assessed whether there was an increase in performance from Block 1 to Block 

10, and found evidence for the null (i.e., no increase) in both measures (Table 9). For better 

visualization of the d-prime and PAS progression throughout the experiment, means from 

Days 1-3 were computed for the subsample of the Learning group where the trained 

contrast was included in the measured range (d-prime, Figure 15B; mean PAS, Figure 15D) 

from Days 1-3. For this subgroup, as shown in Table 9, there was evidence for an increase 

from Day 1 to Block 1 in Day 2 but evidence against an increase between Block 10 and Day 3. 

These findings thus strongly suggest that the training did not impact either subjective or 

objective awareness of the arrows, and any increases were due to practice in Day 1. 

 

Table 9. Results for Q3E. + and blue text = moderate evidence for the alternative, ++ and blue 

text = strong evidence for the alternative. * and orange text = moderate evidence for the 

null, ** and orange text = strong evidence for the null. Text with colour only and no label 

indicate weak BFs. No label and black text mark inconclusive BFs. 

 Day 1 vs Day 2 Block 1 
(subgroup) 

Day 2 Block 1 vs Block 10 Day 2 Block 10 vs Day 3 
(subgroup) 

d-prime BFalt = 15.7 ++ BFnull = 4.28 ± 0.07% * BFnull = 7.41 * 

Mean PAS BFalt = 4.06 + BFnull = 4.95 ± 0.01% * BFnull = 7.49 * 
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Figure 15. Discrimination sensitivity d-prime (Panels A and B) and mean PAS (Panels C and D) 

for each block and participant in the training session (Learning group only). Black central 

rectangles and error bars show the mean of d-prime/means ± 1SD in each block. Panels B 

and D show values for the subsample of participants from the Learning group with trials at 

the trained contrast in Days 1 and 3.  

 

3.4.4 Q3E. Does the change in discrimination d-prime at the trained contrast differ from the 

change in d-prime in Schwiedrzik and colleagues’ experiments, for a comparable number of 

trials? 

One possible explanation for the improvements in Q1P and Q3P, indirectly supported by 

findings from Q2E, is that they were driven by learning during the measurement session in 

Day 1, which included both sub-threshold and above-threshold contrasts. If this explanation 

would also apply for Schwiedrzik and colleagues’ studies, then their result should show a 

similar increase in d-prime over a comparable number of trials (up to 1000) as from Day 1 to 

Day 3 in the current study. Since Schwiedrzik et al. (2011) do not report SD/SEM values for 
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the mean d-prime at the trained SOA before training or after each session, nor block-by-

block descriptive statistics, only the findings from Schwiedrzik et al. (2009) were considered.  

Each training session in Schwiedrzik et al. (2009) – equivalent to Day 2 – had 6 blocks of 100 

trials, however block-by-block d-prime values were only reported for the first training 

session. Mean d-prime at the trained SOA, as averaged over all trials in the first threshold 

measurement session, was reported as 0.067 (SD = 0.335, extracted from SEM in Figure 3A 

from Schwiedrzik and colleagues, 2009, using WebPlotDigitizer from Rohatgi, 2015), and not 

significantly different from chance. Mean d-prime in Block 6 (i.e., final block of the first 

session) was 0.59 (SD = 0.38) for the full sample.  

50000 simulations were conducted. In each simulation, 8 datapoints (the number of 

participants in Schwiedrzik et al., 2009) were selected at random from two distributions of d-

primes with the means and SD corresponding to the ‘Pre-Training’ and respectively Block 6 

in Schwiedrzik et al. (2009). A difference score was calculated for each of the 8 ‘participants’ 

by subtracting ‘Pre-training’ from ‘Block 6’. These difference scores were entered into a 

Bayesian independent-sample two-tailed t-test with a ‘wide’ prior, against the d-prime 

difference scores in the current experiment (i.e., Day 3 minus Day 1), separately for the 

Learning and Control conditions. It was not possible to compare d-prime changes after 1000 

trials in their experiment (i.e., 4th block of the 2nd session), because the d-prime was not 

reported. Consequently, an additional test was run against the difference scores between 

Block 6 in the current task (from Day 2) and Day 1, for the Learning group only.  

The distributions of BFs obtained are illustrated in Figure 16A. Only 0.1% of analyses showed 

at least BF > 3 for a difference between the present experiment’s data and the simulated 

data. Conversely, 31.6% found BF > 3 against a difference between Learning and the 

simulated data (13.5% compared to Control). Comparing to the increase between Day 1 and 

Block 6 in Day 2 yielded a similar pattern to the Control group. To explore whether the high 

percentage of inconclusive analyses is given by the small sample size in Schwiedrzik et al. 

(2009), the simulations were repeated, this time sampling the same number of included 

datasets as in the present experiment (12 in each condition). Distributions and percentages 

are illustrated in Figure 16B. Increasing the sample size in the simulated data strengthened 

the conclusion of no difference between the improvements in d-prime sensitivity obtained 

in the Learning group and those observed by Schwiedrzik et al. (2009), however it did not 



87 
 

substantially affect the pattern of comparisons with the Control group. Altogether, while 

most comparisons are inconclusive, for all comparisons the probability of finding evidence 

against a difference is substantially higher than finding evidence for a difference.  

Figure 16. Distribution of BF from Bayesian independent samples t-tests between mean 

differences (Day 1 compared to Day 3 for Learning and Control, and Day 1 compared to block 

6 in Day 2 for Learning only) in the present experiment, and simulated data points based on 

descriptive statistics in Schwiedrzik et al., (2009). Panel A shows comparisons to 8 simulated 

data points, and Panel B for an equal number of data points as the current groups (n = 12). 

Because less than 1% of analyses showed BF above 3, the distributions only show values until 

BF = 3.5. Horizontal dashed lines mark the interval of BF deemed inconclusive, between 1/3 

and 3. BFs lower than 1/3 indicate moderate evidence for the null hypothesis (no difference 

between mean differences). 

 

3.4.5 Q4E. Is there a change in performance within the first measurement session?  

One indirect way to assess if completing the threshold measurement session in Day 1 drove 

the observed improvements is to test for changes in performance throughout the MoC 

session, for example by comparing ‘windows’ or segments of the task. Another way to test 

for Day 1 increases could also be to compare the mean stopping contrast from the MoL with 

the PF inflection point from the MoC. However, this latter approach has the limitation of the 

two indices likely not being conceptually comparable, given the differences in the methods 
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of obtaining them (for example, PAS answers were considered as part of the stopping rule in 

MoL, Appendix 5) – although there is evidence that the two thresholds can converge, under 

a PF model other than the Weibull model used here (Herrick, 1973). Indeed, the mean 

stopping contrast in MoL tended to be lower than the MoC-based PF inflection point – which 

would be more consistent with an explanation that the two points might index different 

levels of performance rather than that the thresholds increased in the span of the session.  

In any case, observing such increases in performance within Day 1 would be consistent with 

the explanation that the learning was driven by practice during this session. However, not 

observing them does not necessarily challenge this explanation, because a few factors could 

explain a lack of increase. First, segmenting the session for analyses purposes (as the first 

alternative above would involve) means that the performance estimates are based on fewer 

trials, thus introducing the possibility of higher variability which in turn could mask small 

increases. Here, only 6 trials were presented at each stimulus contrast in each block of the 

MoC task. Secondly, it could be the case that any possible improvements are latent and 

hence not observable immediately after practice. This possibility was supported by empirical 

evidence (further discussed in section 3.5) from other visual learning tasks - such as 

Stickgold and colleagues who found that thresholds (defined as SOA yielding 80% 

performance in a line discrimination task) did not improve in re-tests conducted in the same 

day 3-12h later, but did improve overnight when the sessions were separated by sleep 

(Stickgold et al., 2000). 

Given the limitation with the comparison between MoL and MoC, only the comparison 

across MoC blocks was further explored. The discrimination data from the MoC task in Day 1 

was analysed block-by-block, using the same PF model and parameters as in Q1P. The focus 

on PFs rather than d-primes was justified in the context of the planned analyses specifically 

targeting PFs. Because there was support for the null hypothesis of no difference between 

the Test and Catch conditions in discrimination thresholds (section 3.3.1), the data was 

pooled together across conditions. A Bayesian ANOVA found very strong evidence against an 

effect of block number, BFnull = 2.2 x 102. Planned pairwise comparisons (one-tailed paired t-

tests with a ‘wide’ prior) targeting the early stages of learning (100-200 trials) also found 

strong evidence for the null, when comparing block 1 with blocks 2 (BFnull = 18.9 ± 0.07%) 

and 3 (BFnull = 17.8 ± 0.17%). Altogether, these results do not show support for 
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improvements during Day 1 – although it is important to consider, when interpreting them, 

the caveats discussed above in relation to latent consolidation and possible noise in the 

parameter estimates. 
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3.5 Discussion 

This study, using a paradigm manipulating contrast rather than SOA, expanded upon the 

previous claim (Schwiedrzik et al., 2009, 2011) that repeated exposure to a stimulus 

individually calibrated to likely not be consciously perceived leads to an improvement in 

objective discrimination and clarity of subjective experience. The planned analyses 

replicated the results reported by Schwiedrzik and colleagues, and found strong Bayesian 

evidence in the Learning group that performance improved from before to after training, in 

both measures they collected (discrimination, Q1P, PAS, Q3P) and an additional objective 

measure (detection, Q2P). Crucially though, the same improvements were observed in the 

Control group who did not complete the training. In some cases (accuracy from the PF at the 

trained contrast), evidence for an increase from Day 1 to Day 3 was present in the Control 

group but not the Learning group – although this is possibly explained by the slightly lower 

number of included participants in the Learning group than in the Control group. In any case, 

for all comparisons, there was evidence against the hypothesis that the improvements were 

larger in the Learning group than the Control.  

Further checks for any improvements during the training session in the Learning group found 

that performance improved between Day 1 and the first block of training in Day 2 but not 

throughout the rest of Day 2, or between Day 2 and Day 3 (Q2E). However, between-group 

comparisons of d-prime sensitivity at the trained contrast (Q1E) yielded mostly inconclusive 

results, suggesting that more data would be needed. The inconclusive d-prime but not PF-

related findings might also be explained by PFs being more robust against spurious variations 

in sensitivity at each individual contrast level. Nevertheless, these findings have a few 

interesting implications. First, as Schwiedrzik and colleagues also reported, perception 

improves with training, with this conclusion unaffected by the choice of measurement of 

learning (objective vs subjective). Secondly, I deem unlikely that such improvement is due to 

repeated exposure to sub-threshold stimuli.  

What could explain the improvements from Day 1 to Day 3, if not the training in Day 2? Two 

possible mutually non-exclusive factors are apparent. First, the effects could be due to 

practice during the Day 1 PF measurement sessions, consistent with the outcome of Q2E 

showing no improvement took place during the training session. This is not improbable, 

given the high number of trials collected here for accurate estimations of the PF (468). The 
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explanation is consistent with previous findings of PL where the Pre-Post measurement 

sessions also used a high number of trials (640 in Schwiedrzik et al., 2009, 720 in Schwiedrzik 

et al., 2011, 864 in Nishina et al., 2007, around 800 trials in Karni & Sagi, 1993). Conversely, 

no improvements were reported at the trained parameter nor the control condition (no 

training) when only 160 above-threshold trials were displayed (Watanabe et al., 2001). 

Where improvements were not observed despite using a comparably high number of visible 

measurement trials (720 in Seitz et al., 2005), this outcome could be due to experimental 

design choices; Seitz and colleagues (2005) collected two pre-training measurements 

sessions, with the second considered as ‘Pre’ despite large baseline changes between the 

two ‘Pre’ sessions being mentioned. Therefore, it is also likely that comparisons between the 

first ‘Pre’ session and the ‘Post’ would have showed improvements. Altogether, this 

evidence suggests that the improvements observed in the present study, and likely in the 

previous attempts to demonstrate VPL from unconscious stimuli, were driven by the 

extended practice during the measurement sessions before training. The exact mechanism 

of this effect would need to be further explored. Nevertheless, if this explanation is correct, 

then both unconscious and conscious trials might have contributed to the improvements in 

the present study and in the previous literature. This is because the MoC approach involves 

presenting stimuli with different visibilities, including fully visible, so only some of these 

trials were ‘unconscious’. Therefore, none of the experimental designs could disentangle 

between contributions. It can be speculated though that since most of the trials pre-training 

tend to be at least somewhat visible, especially in MoC paradigms, the contribution of 

objectively-unconscious trials is likely minimal. In any case, the conundrum for unconscious 

learning studies might therefore be that the measurement itself might be affecting the 

phenomenon of interest. Unfortunately, it is not straightforward to design a psychophysical 

experiment with a number of trials low enough to not produce learning but high enough to 

produce accurate PF measurements. While other methods to estimate PF parameters such 

as QUEST+ (Watson, 2017) would require 64-128 trials, there is no guarantee that this 

number is sufficiently low. Indeed, Hussain et al. (2009) found that 105 trials of unmasked 

training on textures of different contrasts was sufficient to generate an improvement in a 

discrimination task compared to a control group who received no training. 
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The second possible, albeit more speculative, explanation involves the sleep between 

sessions. In the current paradigm, all experimental sessions occurred on consecutive days, 

presumably separated by sleep for all participants. The literature mostly supports an effect 

of sleep on VPL (reviewed by Walker & Stickgold, 2004) – for instance, effects of sleep were 

reported for contrast discrimination (Mednick et al., 2008), and line texture discrimination 

(Karni et al., 1994; Karni & Sagi, 1993; Stickgold et al., 2000), but not for noise texture 

discrimination (Hussain et al., 2009). Karni and Sagi (1993) further reported that while there 

were substantial decreases in the SOAs yielding 80% discrimination accuracy in the 24h 

period following training with mostly visible stimuli (600 trials at SOAs yielding 80% accuracy 

plus around 200 trials of accuracy under 60%), there was no improvement in the first 6-8 

hours post-practice. These findings, together with others (e.g., Stickgold et al., 2000), 

therefore suggested a latent, sleep-dependent consolidation period characterized by fast 

performance gains – explanation consistent with the present findings (Q1E and Q2E) that 

discrimination sensitivity increased between Day 1 and the first training block in Day 2 

(separated by sleep) but not within either Day 1 (Q4E) or Day 2. However, it is not fully 

consistent with Schwiedrzik et al.’s (2009) findings from their Day 1 (which consisted of both 

pre-training and the first training session, hence not separated by sleep). There, 

performance at the trained contrast was not different from 0 in either pre-training nor the 

first block of the training session, but improvements were reported within the first training 

session. As for why improvements did not occur in the current study between Day 2 and Day 

3, which were also separated by sleep, one possible explanation is that in order to trigger 

latent consolidation, stimuli might need to enter awareness during training. Nevertheless, 

the effect of sleep on VPL is far from well-understood, and likely dependent on the specific 

task. Future work could aim to map further the time course of the latent consolidation for 

each paradigm and parameter of interest, and either model the expected improvement and 

adjusting the training parameters, or beginning the training after the consolidation plateau.  

It is important to consider the broader implications of these findings for the consciousness 

literature. Since there was no added benefit of the training, the current results do not seem 

consistent with a key prediction from Cleeremans and colleagues’ radical plasticity 

thesis/SOMA that learning should occur from stimuli initially not consciously experienced. 

Nevertheless, as discussed above, it could be the case that some learning occurred from 
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unconscious trials. It might also be the case that with more training, there would have been 

an effect – however, in theory, there is no upper limit for how long this training would need 

to be. This consideration challenges the falsifiability of this SOMA prediction, and adds to 

the difficulty in empirically supporting this theory (Cleeremans et al., 2020). On the other 

hand, the current results could be interpreted as more consistent with the common 

prediction from GWT and RPT, that learning at a behavioural level cannot occur in the 

absence of awareness. Even so, the two theories propose different underlying neural 

mechanisms for awareness (for a review of ToCs, see Seth & Bayne, 2022). GWT suggests 

that information breaks into awareness when local processing (e.g., within early visual areas) 

is sufficiently strengthened by local recurrencies to be ‘broadcasted’ to a global neuronal 

workspace (GNW) comprised by areas such as the prefrontal cortex – a process called 

ignition (e.g., Dehaene et al., 2006). With regards to VPL, GNWT would then predict that 

even if a stimulus activates local recurrent processing, it cannot induce learning without the 

global ignition, however it does not specify where the locus of the learning might be. 

Lamme’s RP account (Lamme, 2006) argues that the local recurrent processing itself is 

sufficient for both learning and awareness, without the need of a global ignition. Because 

the differences are at a brain rather than behavioural level, one limitation of the current 

results is that they cannot be used to disentangle between these two theories. More broadly 

though, neither the current nor Schwiedrzik and colleagues’ work was directly, a priori 

aimed at testing predictions from any ToCs, so apparent agreement or disagreement with 

any predictions does not allow strong conclusions about the viability of any ToC.  

In any case, a finding that unconscious (i.e., sub-threshold) stimuli cannot drive learning 

could have implications for ToCs that target the neural correlates of consciousness, when 

considering the brain mechanisms possibly supporting contrast VPL. While these 

mechanisms are yet to be fully mapped, there is converging evidence from both human and 

animal studies that the locus of the learning is at the very early visual processing stages. For 

example, Hua et al. (2010) trained cats to discriminate whether a grating of a near but 

above-threshold contrast presented monocularly was oriented to the left or right. They 

found that both behavioural performance and contrast sensitivity in the primary visual 

cortex (V1) cells associated with the trained eye increased with training, and only partially 

transferred to the untrained eye. In human fMRI studies, increases in contrast detection and 
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discrimination performance were accompanied by increases in brain activity for the trained 

stimulus, as indexed indirectly by the blood oxygen-level-dependent (BOLD) signal, in V1 

(Furmanski et al., 2004) and even earlier, in the lateral geniculate nucleus or LGN (Yu et al., 

2016 – although no effects were reported in V1, possibly due to task differences). In any 

case, before investigating the possible link between the neural correlates of consciousness 

and those of VPL, more experimental work is needed to first understand how each process is 

supported by the brain.  

Nevertheless, VPL remains a plausible candidate role for awareness, and provides a rich 

methodology for further research that can be used to shed light on why awareness might be 

necessary for learning.  

  



95 
 

Chapter 4 

4.1 Introduction 

“any argument for why subjective reports seem a sine qua non for consciousness 

research is not an argument for any subjective reporting being precise or 

trustworthy” (Overgaard & Sandberg, 2021, p. 2) 

When the Perceptual Awareness Scale (PAS) was first introduced by Ramsøy and Overgaard 

(2004), possibly universal properties of awareness were hinted at. In their experiments, 

which stemmed from the aim to align consciousness research methodology with the view 

that awareness is graded rather than all-or-nothing, participants reported the degree of 

clearness of experience for each feature (shape, colour, position) of basic shapes. Crucially, 

they were told they could classify the clarity of their experiences in how many categories 

they wanted, using whichever labels, and only being given as suggestion the start and end 

points of the range (“no image at all” to “a clear image”). All five participants converged to 

using a 4-level scale, with the same two additional intermediate points: “a brief glimpse”, 

and “almost clear image”, besides the suggested start and end points. Strictly referring to 

the contents of awareness rather than the overall levels of consciousness (e.g., wakefulness, 

sleep etc.), the authors argued that using dichotomous a seen/not seen task cannot 

sufficiently characterize awareness. This is because they failed to find evidence for higher-

than-chance accuracy in identifying the stimulus shape in trials rated with “No Experience” 

on their PAS, but not in a “not seen” condition (“No Experience” plus “Brief glimpse” trials). 

The authors further argued that a dichotomous approach may lead to erroneously 

concluding that there is above chance performance without awareness in some tasks, thus 

implying the need to re-evaluate previous findings from the light of a graded awareness 

scale. Besides these conclusions, Ramsøy & Overgaard's (2004) findings are logically 

consistent with two other hypotheses: that the clarity of awareness is indeed graded rather 

than all-or-nothing, and that awareness can be summarized for each and all individuals in 

the same broad degrees of clarity – although the number of distinct degrees might differ 

across samples and stimuli (Overgaard & Sandberg, 2021). These ideas, if supported, would 

have substantial implications for both theoretical and empirical consciousness research. For 

example, the hypothesis of awareness being graded can be seen as inconsistent with the 

Global Neuronal Workspace Theory (Dehaene et al., 2006). It is also inconsistent with 
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evidence that it is all-or-nothing, such as the findings from Sergent and Dehaene (2004) that 

during an attentional blink task participants’ subjective-visibility answers clustered around 

the start and end of a continuous scale regardless of the visibility manipulations. Del Cul and 

colleagues (2007) found similar results in a masking paradigm. Conversely, the existence of 

discriminable universal awareness levels would further motivate the pursuit of new research 

questions, like comparing brain activity associated with different levels of awareness (e.g., 

Eiserbeck et al., 2022). 

The PAS has now become a popular measure in consciousness research, with the original 

paper amassing over 300 citations (Springer article page, 26/11/2023) and prompting direct 

recommendations in the literature to use the scale (Prochazkova et al., 2022). This is despite 

there being, to my knowledge, no attempts at replicating the scale validation on a larger 

sample, even though in the original research (Ramsøy & Overgaard, 2004), only 3 out of 5 

participants tested came up with the four clarity levels. Two participants started with 

additional ratings that were dropped because of underspecified definitions, and Overgaard 

et al. (2004) also reported that two out of seven participants were fully excluded for 

inconsistent use of their own categories. Even if it is assumed that the four-level 

classification of clarity generalizes to a large sample, and before considering further 

implications that this classification might have, a more fundamental question is how well the 

PAS relates to existing measures that have been used as indices of awareness. Two criteria 

are frequently mentioned when assessing PAS, both in relation to objective measures, as in 

those where a correct answer exists, such as detection or discrimination (Andersen et al., 

2019; Sandberg et al., 2010; Szczepanowski et al., 2013; Wierzchoń et al., 2014). The first is 

how well changes in objective measures correlate with changes in subjective experience, 

hereafter referred to as ‘sensitivity’. The second is whether trials identified as ‘No 

Experience’ show chance performance, hereafter referred to as ‘exhaustiveness’. Andersen 

and colleagues (2019, p. 60) summarize these two criteria in relation to the PAS: 

For a scale to be exhaustive, the scale must provide evidence that when participants 

claim to have no experience and no knowledge about what was shown (Table 1: No 

Experience), their performance should not be different from chance-level 

performance. For a scale to be sensitive, the scale must provide points such that 

when participants claim to have some degree of experience and knowledge (Table 1: 
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Weak Glimpse, Almost Clear Experience and Clear Experience), their performance 

should correlate with the clarity of the experience and amount of knowledge 

reported. 

Finding evidence for the ‘exhaustiveness’ or ‘sensitivity’ of PAS from its relationships to 

performance is often interpreted as evidence for the fitness of the PAS as a valid measure of 

awareness. For example, using the same operational definition of exhaustiveness (i.e., 

chance performance at PAS1), Sandberg and colleagues extended its interpretation: ‘it is 

unclear which measure is most exhaustive, that is, which method reveals the most conscious 

processing’ (p. 1071). However, doing so places the onus on objective measures to be the 

benchmark or ‘gold standard’ for assessing awareness, and suggests they are intrinsically 

more reliable or less prone to bias than subjective measures. This assumption is rooted in 

complex theoretical and methodological considerations, which will be returned to in the 

discussion (4.4). Nevertheless, one can assess the previous evidence (i.e., analyses results) 

associated with exhaustiveness (chance performance at PAS1) and sensitivity (correlations 

between PAS and performance) without implying agreement with the assumption of task 

performance as the benchmark, or with the interpretation of the two labels in relation to 

validity. This is simply because both the PAS and task performances are claimed to test the 

same concept (awareness); an equally reasonable approach would be to systematically 

compare PAS with other trial-by-trial subjective measures like CR, although this approach 

would still require asking participants to make an objective judgment. Therefore, for the rest 

of the chapter, the two labels will be used strictly for distinguishing the two lines of analysis. 

Under this interpretation, the evidence seems to support PAS sensitivity. One early study 

(Sandberg et al., 2010) found that PAS correlated better with performance than other 

subjective measures described in Chapter 1, such as confidence ratings (CR) and post-

decisional wagering (PDW) in a backward masking experiment. Wierzchoń et al. (2014) also 

reported that PAS was better correlated with verbal identification of backward-masked faces 

than CR, PDW, and feeling-of-warmth (FOW), although this advantage was only present in 

very narrow circumstances (trials with stimulus durations over 48ms and with the objective 

measure presented before the subjective measure). Siedlecka and colleagues (2020) also 

found that variations in PAS were closely following variations in objective accuracy. However, 

PAS might prove the most sensitive measure only in certain circumstances; for instance, for 
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stimuli such as fearful faces, CR rather than PAS showed the best correlation with 

performance (Szczepanowski et al., 2013). While this is a promising start, currently there are 

no large-scale assessments of PAS sensitivity across experimental paradigms, which is 

arguably necessary for better understanding what this measure targets. 

The evidence for above-chance performance at PAS1 is more mixed. Some features, like 

stimulus position (e.g., all six experiments in Jimenez et al., 2019; Overgaard et al., 2004), 

were found to result in above-chance performance in PAS1 trials. The same was found for 

shape discrimination by Sandberg et al. (2010) when pooled across all stimulus durations, 

albeit the difference with chance level was small, and accuracy at each stimulus duration 

varied substantially and non-linearly. Yet, they concluded that PAS was the most exhaustive 

of the three measures tested since the other measures yielded higher accuracies at their 

lowest levels. Other studies also reported no significant differences between performance in 

trials rated with PAS1 and chance, for different features of the stimuli such as shape 

(Overgaard et al., 2004; Ramsøy & Overgaard, 2004), colour (Overgaard et al., 2004), or 

whether the target digit was odd or even (Andersen et al., 2019). The caveat of the examples 

above though is that they used frequentist statistics, thus conflating absence of evidence 

with evidence of absence. In typical frequentist analyses, a p-value under 0.05 alone does 

not allow concluding that there is no evidence of a difference. To achieve this conclusion, 

different approaches like Bayesian analyses are required – an argument discussed in detail 

by Dienes (2015). It is therefore not yet known if the previous evidence that PAS is 

exhaustive allows drawing this conclusion. Moreover, the divergent findings from different 

experimental designs warrant further investigation of which circumstances, if any, PAS does 

not show exhaustiveness in. Another way to test if participants’ PAS1 (“No experience”) 

ratings indicate that they are not able to make correct judgments about the stimulus more 

often than chance is arguably to investigate cases where chance performance is guaranteed, 

namely in catch trials where nothing is presented. It would therefore be expected that 

almost all their answers on the PAS would be 1, with some small variation due to lapses or 

incorrect button presses. However, some initial evidence from previous papers (e.g., Jimenez 

et al., 2018) reported that more than 20% of trials had ratings higher than 1. Before 

attempting to infer what could have caused such answers, it would be informative to assess 

if this pattern is present consistently and to what extent it might vary across samples. 
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Nevertheless, even if PAS is found to have exhaustiveness and sensitivity, what would be the 

added benefit of using it over the objective measures it is compared against? Without clear 

advantages over objective measures, or a way to assess the inherent bias present in any 

behavioural response (unlike, for example, d-prime in signal detection theory) it was 

proposed that “the PAS is neither new, exhaustive, unbiased, nor natural” (Irvine, 2012, p. 

645). While previous studies that conduct such comparisons do not explicitly address this 

question, one limitation of objective measures that the PAS addresses is that they cannot be 

used to assess awareness trial-by-trial, and can therefore only be used for conclusions at the 

condition level. An experimental design employing objective awareness measures must 

therefore a priori define conditions expected to result, for each participant, in null sensitivity 

(or chance accuracy). This approach is not compatible with all research questions nor an 

easy feat, since the optimal stimulus parameters for rendering stimuli at null sensitivity 

would differ with task, stimuli, task difficulty, consciousness manipulation methods, 

participants (Albrecht et al., 2010), and practice with a task (Chapter 3 of this thesis, 

Schwiedrzik et al., 2009, 2011). Having a reliable trial-by-trial measure of awareness should 

in principle benefit the field by helping narrow down only cases (i.e., trials) where awareness 

is absent, and also allowing the study of new research avenues, such as the fluctuations in 

conscious experience and brain activity when the stimulus parameters are held constant 

(e.g., the liminal prime paradigm, Lamy et al., 2015). Therefore, it seems justified to assess if 

this measure can be the PAS or not.  

The current work draws on data from tasks where both PAS and objective measures were 

collected trial-by-trial on the same stimuli. The aim was to test if previous findings about PAS 

meeting the criteria for exhaustiveness and sensitivity, based on comparisons with objective 

measures, are robust across experiments with different experimental designs and stimuli. 

This approach allowed capitalizing on the availability of data from ‘unconscious perception’ 

paradigms, which aim to test a dissociation between a trial-by-trial measure of awareness 

(like the PAS or a binary seen/not seen task) and a measure of processing. 23 experiments 

were identified, across 15 studies (including Exposure Stage data from Experiment 2 in 

Chapter 2 and data from Chapter 3 in this thesis), with data either publicly available or 

shared by the authors. This allowed addressing the following questions, each corresponding 

to a planned analysis: 
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Exhaustiveness 

1. Do trials that fit a definition of ‘subjective unawareness’ based on the PAS (i.e., PAS = 1 

or “No Experience”) also show chance objective performance? 

2. What experimental design choices, if any, influence exhaustiveness? 

3. When performance can only be at chance, in stimulus-absent catch trials, what 

proportion of trials are rated as ‘subjectively unaware’? 

Sensitivity 

4. How strongly do PAS ratings predict accuracy? 

5. Is the change in performance across PAS ratings gradual, or all-or-nothing?  

 

Below is a brief overview of the experimental design and results of each of the studies 

included (see Table 10 for a comparative summary), except data from this thesis for which 

full descriptions of methods and findings can be found in earlier chapters. Only relevant 

experiments, conditions, and findings linked to the current analyses will be referred to.  

Andersen et al. (2019) investigated the effect of expectations on objective performance and 

subjective experience of masked numbers. On each trial, participants saw a suprathreshold 

cue consisting of 2, 4, or 8 digits simultaneously presented, one of which was the target digit 

later in the trial. After a delay of 1000ms, the target digit was presented for a variable 

duration, and was immediately followed by a noise mask consisting of random lines. 

Participants indicated if the masked target digit was even or odd, and completed a 4-level 

PAS. They concluded that the PAS was exhaustive because the accuracy in PAS1 trials was 

around chance, for all but the longest target duration (70.6ms where it was around 70%) - 

although no statistical comparisons to chance were reported.  

Derda et al. (2019) presented participants with backward-masked digits with a duration of 

50ms and coloured in either red or blue. On each trial, participants completed either a low-

level task (i.e., report the colour of the digit) or a high-level task (i.e., report if the digit is 

higher or lower than 5), and then a 4-level PAS. They found that across all regression models 

tested, PAS was a significant predictor of accuracy (reported in Supplementary Materials S2), 

and also that accuracy at PAS1 was higher in the high-level condition compared to low-level. 
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Jimenez et al. (2018) investigated the linearity of the relationship between PAS and accuracy 

in two tasks requiring different levels of processing. In each trial, participants saw one of the 

4 possible stimuli (6, 9, I, H) in one of the corners of the screen. Then, a mask was presented 

for a variable duration, followed by a 4-alternative forced choice (4AFC) task to either 

choose which corner the stimulus appeared in (low-level) or the identity of the stimulus 

(high-level), and finally a 4-level PAS. They found that mean accuracy increased linearly with 

PAS ratings for both detection and identification, supporting earlier claims of linearity. 

Although no statistical comparisons to chance were reported, mean accuracy for PAS1 trials 

was reported to be exactly at or slightly under chance level for the high-level task, but higher 

than chance for the low-level task. 

Jimenez et al. (2019) studied, across 6 experiments, the effects of varying stimulus duration 

and task type on PAS ratings and accuracy. In half of the experiments, participants 

responded with the location of a backward-masked square located in one of the four corners 

of the screen, as well as a 4-level PAS. In the other half, participants saw the letter I or H, 

again in one of the four corners, and had to respond with the location, PAS, and letter 

identity. They found that letter identification was not significantly different from chance in 

trials rated with PAS1. However, this occurred only for the lowest two stimulus durations, 

suggesting an interaction between stimulus duration and level of processing, and the 

conclusion of no difference was based on frequentist statistics. On the other hand, location 

detection accuracy in PAS1 trials in all experiments was above chance.  

Jimenez et al. (2021) showed participants line drawings of animals and objects presented for 

variable durations, followed by a line mask for variable durations. Then, participants 

responded with either the colour (red/blue, low level task) or the category (animal/object, 

high-level task), and a 4-level PAS. They reported evidence for a linear increase in accuracy 

across PAS ratings in both the low- and high-level task, thus suggesting a close mapping 

between the two measures.  

Jimenez et al., (2023) tested, across three masked priming tasks, whether global shapes can 

be processed in the absence of awareness. The primes were Navon figures, in which a ‘local’ 

shape (e.g., triangle) is repeated and arranged in a way that generates a ‘global’ shape (e.g., 

a square). If spatial integration and global shape processing are possible in the absence of 

awareness, then briefly flashing a Navon figure followed by a mask should shorten response 
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times to a subsequent target shape when the target shape is the same as the global prime 

shape. The effectiveness of the mask was manipulated by changing the ISI and mask 

durations. Combinations of ISI and mask durations were tested between-subjects in different 

experiments, each with three different tasks: single task block (2AFC on target shape), dual 

task block (2AFC on target shape, 4-level PAS for prime), and a prime visibility block where 

only the masked primes were presented, followed by a 2AFC on prime shape and 4-level 

PAS. Only the prime visibility block at each SOA was included in the current analysis.  

In Sand and Nilsson's (2017) experiment, participants viewed a prime word (‘red’ or ‘blue’) 

for 6ms, followed by a blank screen, a mask, and a coloured target square. The prime could 

either be congruent (i.e., the word ‘red’ predicting a red square target) or incongruent with 

the target. Participants reported the colour of the target, and then completed a ‘prime 

assessment grid’, where they picked one of the six squares corresponding to a combination 

of the objective answers (red/blue) and a 3-level PAS. Accuracy in PAS1 trials was reported as 

52%, and Bayesian evidence weakly supported the null hypothesis that sensitivity (d-prime) 

in PAS1 trials was not different from 0. 

Siedlecka et al. (2020) investigated whether providing feedback on an objective task 

influenced subjective awareness. Participants saw a centrally presented Gabor patch, in a 

contrast calibrated individually to yield 70% accuracy. Then, they were asked to choose if the 

patch was left or right-oriented, and to complete a 4-level PAS. Feedback for the left-right 

answer was provided only in the Feedback condition. They reported that accuracy for trials 

rated with PAS1 was higher than chance, and that PAS predicted accuracy similarly across 

both feedback conditions.  

Skewes et al. (2021) investigated whether providing incorrect feedback changed participants’ 

accuracy and subjective experience in a masking task. The present analyses included only 

the True Feedback condition. Each trial presented two Gabor patches, one with an 

orientation of 0 (i.e., vertical) and one with an orientation between 0-45deg, chosen for 

each participant to be discriminable on 65% of trials. Participants reported which side of the 

fixation cross (left or right) the tilted Gabor appeared on, and then completed a 4-level PAS 

and confidence ratings (CR). The order of the PAS and CR questions was randomised.  
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Stein and Peelen (2021) conducted a series of studies using upright and inverted faces, and 

different objective and subjective measurements of awareness, as well as methods of 

manipulating awareness. In Experiment 2 (data from the backward masking with discreet 4-

level PAS paradigm only), participants saw an upright or inverted face displayed for a 

variable duration to the left or right of a central fixation cross, followed by 3 noise masks. 

They then reported the location of the face and completed the PAS. In Experiment 3, the 

stimuli and masks were identical to Experiment 2, but they varied the display time and 

interstimulus interval (ISI) between the faces and masks. Each trial was followed by three 

questions: the PAS, a left-right localization task, and an upright-inverted discrimination task, 

with the order of the questions pseudo-counterbalanced. PAS data was dichotomized and 

transformed in detection d-prime. The current analyses included only the upright-inverted 

discrimination accuracy.  

Thiruvasagam and Srinivasan (2021) focused on whether the gradedness of PAS answers 

changes if the task requires attending to global or local features. Participants viewed a 

centrally presented masked Navon figure for variable durations between masks of 250ms 

each. Navon figures consist of a global shape (e.g., the letter S) composed from smaller 

shapes (e.g., the letter H). After every trial, participants were asked to report the letter they 

saw, either at global or local level depending on the block, and they completed a 4-level PAS.  
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Table 10. Summary overview of the included experiments, referring to included participants, conditions, and measurements only. 

Study Measurements  Stimuli Stimulus 
duration(s) 

Mask duration(s) Awareness 
manipulation 

Feedback Chance 
level 

Task 
type 

N 
participants 

Andersen et al., 
2019 

2AFC digit as odd/even, 4-level 
PAS 

Single 
digits 

11.8ms, 23.5ms, 
35.3ms, 47.1ms, 
58.8ms, 70.6ms 

352.9ms Backward 
masking 

No 0.5 High 
level 

n = 58 (Exp 
1: 29, Exp 2: 
29) 

Derda et al., 2019 2AFC digit higher/lower than 5, 
or colour (red/blue), 4-level 
PAS 

Single 
digits 

50ms 250ms Backward 
masking 

No 0.5 Both n = 41  

Jimenez et al., 2018 4AFC location detection or 
identification of letter or 
number stimuli, 4-level PAS 

Letters or 
digits 

13.3ms, 26.7ms, 
40ms, 106.7ms 

667ms, 680ms, 
693ms 

Backward 
masking 

No 0.25 Both n = 16 

Jimenez et al., 2019 
– Study 1 (Exp 1-3) 

Exp 1-6: 4AFC location, 4-level 
PAS 

Squares 13.3ms, 26.7ms, 
40ms  

26.7ms Backward 
masking 

No 0.25 Low-
level 

n = 24 (Exp 
1 and 5), n = 
23 (Exp 2 
and 4), 
n = 21 (Exp 
3 and 6) 

Jimenez et al., 2019 
– Study 2 (Exp 4-6) 

Exp 4-6 only: 2AFC of letter 
identity (I/H) 

Letters 26.7ms, 53.3ms, 
80ms 

0.5 High-
level 

Jimenez et al., 2021 2AFC of colour (red/blue) or 
category (animal/object) of 
line drawings, 4-level PAS 

Line 
drawings 

13.3ms, 26.7ms, 
40ms, 53.3ms, 
66.7ms 

640ms, 666.7ms, 
653.3ms, 680ms, 
693.3 

Backward 
masking 

No 0.5 Both n = 26 

Sand & Nilsson, 
2007 

2AFC prime word identification 
(“red”/”blue”), 3-level PAS 

Words 6.25ms 143.75ms Backward 
masking 

No 0.5 High 
level 

n = 66 

Siedlecka et al., 
2020 

2AFC direction of grating 
(left/right), 4-level PAS 

Gratings 33.3ms No mask Short stimuli 1 
condition 

0.5 Low 
level 

n = 37 

Skewes et al., 2021 2AFC side of the screen 
(left/right) that showed a tilted 
grating, 4-level PAS 

Gratings 33.3ms 600ms Backward 
masking 

Yes 0.5 Low 
level 

n = 31, True 
Feedback 
condition 

Stein & Peelen, 
2021 – Exp 2 

2AFC of face as 
inverted/upright, 4-level PAS 

Faces 10ms, 20ms, 
30ms 

300ms (3 masks x 
100ms) 

Backward 
masking 

No 0.5 High 
level 

n = 24, 
Masking 
and 
discrete 
PAS 
condition 

Stein & Peelen, 
2021 - Exp 3 

2AFC of face as 
inverted/upright, 4-level PAS 

Faces 8.33ms, 8.33ms 
+ 8.33ms ISI, 

300ms (3 masks x 
100ms) 

Backward 
masking 

No 0.5 High 
level 

n = 94 
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16.7ms, 25ms, 
33.3ms + 
8.33ms ISI 

Thiruvasagam & 
Srinivasan, 2021 

2AFC of letter identity, 4-level 
PAS 

Letters 16.7ms, 33.3ms, 
50ms, 66.7ms 
83.3ms, 100ms, 
116.7ms, 

250ms Sandwich 
masking 

No 0.5 High 
level 

n = 22 (after 
exclusions) 

Halchin - Chapter 2 5AFC natural scene 
recognition, 4-level PAS 

Images 16.7ms, 1000ms 2000ms Backward 
masking 

No 0.2 High 
level 

n = 48 (after 
exclusions) 

Halchin - Chapter 3 2AFC of arrow direction (left-
right), 4-level PAS 

Pair of 
arrows 

16.7ms, 16ms + 
500ms ISI (in 
catch trials) 

200ms Metacontrast 
masking 

1 session, 
blockwise 

0.5 Low 
level 

n = 35 (after 
exclusions) 

Jimenez et al., 2023 2AFC square or diamond, 4-
level PAS 

Simple 
shapes 

40ms Forward mask: 
100ms; Exp 1-3 
backward mask: 
40ms, 53ms, 
67ms  

Sandwich 
masking (Exp 1-
3); Forward 
masking (Exp 4) 

No 0.5 Low 
level 

n = 80 (20 
each) 
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4.2 Methods 

4.2.1 Inclusion criteria and statistical choices 

The inclusion criteria for the papers were:  

1. Presence of a discrete measure of perceptual clarity (e.g., PAS, as opposed to 

confidence, wagering etc.) and at least one discrete objective measurement, 

collected trial-by-trial for the same stimuli.  

2. The objective measure not having an ‘I don’t know’ option and having a true correct 

answer (i.e., not a perceptual-based judgment), to allow comparison to chance 

performance. 

For studies where more than one objective measurement was collected in each trial 

(detection/discrimination in Days 1 and 3 in Chapter 3, localization/identification in 

Experiment 3 in Stein and Peelen, 2021, localization/identification in Study 2 in Jimenez et 

al., 2019), only the discrimination/identification measure was included. This was done to 

avoid having multiple datapoints in the sample coming from the same trial (and thus being 

non-independent), and discrimination was chosen for all studies for consistency. 

After exclusions, 327647 trials from 646 participants across 23 experiments and 15 studies 

remained, that were included in the analyses. Each dataset was pre-processed using custom 

R code, to achieve a similar format. All data pre-processing and analyses were conducted in 

R v4.2.1 (R Core Team, 2021) and RStudio v2021.09.1.372 (RStudio Team, 2021). The 

following packages were used: tidyverse v2.0.0 (Wickham et al., 2019), here v1.0.1 (Müller & 

Bryan, 2020), gghalves v0.1.4 (Tiedemann, 2022), readxl v1.4.2 (Wickham & Bryan, 2023), 

R.matlab v3.7.0 (Bengtsson, 2022b), scales v1.2.0 (Wickham et al., 2023), and BayesFactor 

v.0.9.12-4.4 (Morey et al., 2022). For one dataset, additional pre-processing was conducted 

using custom-written MATLAB code in MATLAB R2021a (MATLAB, 2021). All analyses were 

two-tailed, and assumed the prior odds to be the same for the null and alternative 

hypothesis, and therefore the BF is the same as the posterior odds. The prior for the effect 

size was set to ‘medium’ across all tests: for the Bayesian t-tests, this means 
√2

2
 (r = 0.707), 

while for the general linear models, this means 
√2

 
 (r = 0.354). 
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Where necessary, stimulus-absent catch trials (but not visible catch trials) or control 

conditions were removed. Stimulus-absent catch trials were analysed separately. To better 

understand what the columns coded for, the analysis files and additional explanatory 

documents (where available) were used, and/or correspondence with the authors. 

Generally, the same exclusion criteria that each author reported in the papers were applied. 

However, the criteria were changed where it was considered reasonable to do so– for 

example where participants were excluded from the original analyses because of issues with 

brain imaging data but the behavioural data was unaffected, or where issues were 

discovered with the authors’ exclusion process. For Chapter 2 Experiment 2, the same 

exclusion criteria applied as in the main analyses (all based on answers in the visible/blank 

attention checks). For Chapter 3, only participants who failed attention checks in Day 2 were 

removed (based on EC2 and 3, section 3.3.1), as there were no clearly visible/clearly absent 

attention checks in Days 1 and 3. Links to the open data, where available, can be found in 

Appendix 6. BF errors were under 0.01% unless otherwise specified. Stimulus Duration and 

Mask Duration were re-calculated, where necessary, as multiples of the reported monitor 

rate, and were treated as continuous. 

 

4.2.2 Data labelling procedure 

Tasks were labelled as low-level if they relied on the stimulus appearance (e.g., colour, 

grating orientation etc.), and high-level if they relied on processing stimulus category or 

identity (e.g., whether a target digit was above or below 5, even or odd, etc.). This is in line 

with the conceptualization of low vs high-level tasks in the included studies that investigated 

both (Derda et al., 2019; Jimenez et al., 2018, 2019, 2021). 

 

4.3 Analyses and results 

4.3.1 Q1. Subjective vs objective ‘unconscious’ 

To assess the exhaustiveness of PAS, as in whether subjectively ‘unconscious’ trials (rated 

with PAS1) had chance accuracy, for each study the mean accuracy was computed for each 

participant. Means were then compared to the corresponding chance level using a Bayesian 

equivalent of a one-sample, two-tailed t-test. Participants whose means were based on 
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fewer than 10 trials (i.e., where the participant had fewer than 10 trials rated with PAS1) 

were excluded. Participants whose accuracy averages were 3 SDs above or below the mean 

were excluded (n = 7, all were 3 SDs above). For tasks where the chance level differed from 

0.5 (e.g., 25% in 4AFC), each mean was rescaled and centred on 0.5 – which had no effect on 

BFs.  

There was moderate evidence against a difference between chance level and objective 

performance in ‘subjectively unconscious’ trials in only 3 out of 15 studies (Table 11 and 

Figure 17). In 7 out of 15 studies, there was at least moderate evidence for a difference, 

suggesting that performance was higher than chance. 5 studies fell within the weak to 

inconclusive area (BFs < 3). Including the removed outliers did not influence the pattern of 

results for 13 out of 15 studies. In the remaining two, the BF were initially inconclusive, but 

after including the outliers they indicated moderate evidence for a difference. Taken 

together, the analysis highlights that trials labelled with PAS1, or ‘subjectively unconscious’, 

often do not show chance objective performance. 
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Figure 17. Distribution of accuracy values in trials rated with PAS1 (“No Experience”) in each 

study, after exclusions. The dotted lines mark chance level in each task (not rescaled). The 

black dots represent the mean of means. The following labelling convention was used: * = 

moderate evidence for the null (BF = 3-10), ** = strong evidence for the null (BF > 10), + = 

moderate evidence for the alternative, ++ = strong evidence for the alternative. No label 

means an inconclusive BF. Exact values are mentioned in Table 11. 

 

4.3.2 Q2. Factors influencing accuracy in trials rated subjectively unconscious 

The results from Q1 suggest that there is substantial variability across studies in 

performance in PAS1 trials, and only occasionally is performance at chance (i.e., exhaustive). 

As discussed in the introduction (4.1), divergent findings about performance in PAS1 trials 

are also present in the broader literature. What experimental design factors, if any, might 

influence performance in these trials? To address this question, means for each included 

participant in each combination of factors were computed: Stimulus Duration, Mask 

Duration, and Task Type (high-level or low-level). Means based on fewer than 10 trials per 

participant per factor combination were excluded. Factor combinations represented by only 

one participant were also excluded. The masking method, whether feedback was provided, 

and the interstimulus interval (ISI) were not modelled, because in all cases, 75% or more of 

data belonged to one of the possible categories (backward masking, no ISI, respectively no 

feedback) – thus data was pooled across different levels of these factors. For studies that 

included sandwich masking, only the duration of the backward mask was included, for 

consistency with the rest of the papers. The analysis was split by Task Type to avoid non-

independent data points from studies where both the low and high-level tasks were 

conducted within-participants, and also to avoid testing for a three-way interaction, which 

would be difficult to interpret. Nevertheless, some non-independence remains, given that in 

some studies each participant could have had data at more than one stimulus/mask 

duration. Appendix 6 shows that when these studies are removed and only independent 

datapoints remain, the regression lines and BFs are consistent with the models based on the 

full dataset in Figure 18. 
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For each Task Type, Stimulus and Mask Duration were entered in a Bayesian general linear 

model. Figure 18 shows the mean accuracies for each task type and predictor. For High-Level 

tasks, there was strong evidence for a main effect of Stimulus Duration, BFalt = 3.81 x 104, 

moderate evidence against a main effect of Mask Duration, BFnull = 8.52, and inconclusive 

evidence against an interaction, BFnull = 1.95. The model including only Stimulus Duration 

was the strongest, and it was preferred over the full model by a factor of 37.1. The main 

effect was followed up with a Bayesian equivalent of R2 in Stan as proposed by Gelman et al. 

(2019). This test found that Stimulus Duration for High-level tasks accounted for 3.42% of 

the variance in accuracy at PAS1, as indicated by the mean of the posterior distribution of R2 

values (SD 1.21%). This was consistent with the adjusted R2 of a linear regression (3.19%). 

The full model explained 3.72% of the variance (SD 1.27%, frequentist R2 3.085%). 

For Low-Level tasks, there was moderate evidence against a main effect of Stimulus Duration 

(BFnull = 6.59) and interaction (BFnull = 3.63), but inconclusive evidence against a main effect 

of Mask Duration (BFnull = 2.32). The evidence against the full model was BFnull = 46.8. 

Altogether, these findings suggest there is little influence of timing parameters on the 

accuracy of PAS1 trials in Low-Level tasks. 

 

4.3.3 Q3. PAS answer distribution in stimulus-absent catch trials 

8 out of 15 studies included stimulus-absent catch trials. Frequency distributions of answers 

are shown in Figure 19. An additional visualization with the percentages of trials answered 

with each PAS rating by each participant can be found in Figure S2, Appendix 6. On average, 

participants responded with PAS1 in 84.9% (SD = 9.33%) of trials, with the second most 

frequent answers being PAS2. Mean PAS in each study varied between 1.06 and 1.39. Across 

all studies, participants answered with PAS1 in at least 70%, and at most 97.2%, of stimulus-

absent trials. These results suggest that while most stimulus-absent trials are labelled as 

expected with ‘No Experience’, on average the figure does not approach 100%. The highest 

proportion of PAS1 answers, registered in data from Chapter 2, cannot be explained by the 

strict exclusion criteria – while 4 out of the 12 excluded participants met the exclusion 

criterion of too many answers of PAS above 1 in blank trials, 2 also met other criteria which 

warranted exclusion anyway. Including the remaining 2 participants would have added only 

6 PAS > 1 trials to the distribution, thus having minimal impact. The consistency of this 
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pattern across studies with different tasks and paradigms highlights that the relatively high 

frequency of PAS2+ answers is not an idiosyncrasy of particular studies.  

 

Table 11. Accuracy in PAS1 trials and Bayesian R2 variance explained for each study. + and 

blue text = moderate evidence for the alternative, ++ and blue text = strong evidence for the 

alternative. * and orange text = moderate evidence for the null, ** and blue text = strong 

evidence for the null. Text with colour only and no label indicate weak BFs. No label and 

black text marks inconclusive BFs. The error percentages were under 0.2% for all models.  

Study 
Accuracy in PAS1 trials 

Bayesian R2 - PAS and 
accuracy 

Mean 
accuracy (SD) 

Direction BF 

Derda et al., 2019 0.588 (0.064) 

BFalt 
 

2.9 x 107 ++ 58.9% 

Stein & Peelen, 2021 - 
Experiment 2 

0.67 (0.111) 1.25 x 105 ++ 54% 

Jimenez et al., 2019 - Study 
1 

0.35 (0.133) 1.25 x 104 ++ 40.4% 

Halchin – Chapter 3 0.557 (0.059) 7.78 x 103 ++ 64.1% 

Siedlecka et al., 2020 0.596 (0.109) 1.10 x 103 ++ 38.9% 

Thiruvasagam & Srinivasan, 
2021 

0.539 (0.054) 14.6 ++ 79.1% 

Jimenez et al., 2018 0.298 (0.061) 8.19 + 84.1% 

Jimenez et al., 2023 0.527 (0.083) 2.99 41.1% 

Andersen et al., 2019 0.52 (0.059) 2.97  75.9% 

Jimenez et al., 2021 0.544 (0.094) 2.28 64% 

Jimenez et al., 2019 - Study 
2 

0.519 (0.060) 

BFnull 

1.15 39.4% 

Skewes et al., 2021 0.528 (0.113) 2.52 60.4% 

Halchin – Chapter 2 0.213 (0.142) 3.77 * 77.1% 

Sand & Nilsson, 2007 0.50 (0.054) 7.18 * 79.4% 

Stein & Peelen, 2021 - 
Experiment 3 

0.502 (0.042) 8.06 * 74.4% 
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Figure 18. Distribution of accuracy values in trials rated with PAS1 (“No Experience”), for each trial type and predictor, and the corresponding regression lines. 

Each black dot represents the mean for the specific contrast level. The ribbon around each line shows the 95% confidence interval. The dotted line marks the 

chance level.
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Figure 19. Relative frequency of PAS answers at each level, for each study, in stimulus-absent 

trials. The dashed line indicates the average across all studies. 

 

4.3.4 Q4. How strongly do PAS ratings predict accuracy? 

Next, the relationship between overall PAS ratings and accuracy was assessed. As previously 

discussed, if PAS met the criteria for sensitivity, then it would be expected to observe that 

increases in PAS are strongly linked with increases in accuracy at each level. For this purpose, 

a Bayesian general linear model with numeric PAS ratings and Study as fixed effects (prior = 

“medium”) was computed. Again, means based on fewer than 10 trials per participant at 

each PAS rating were removed. Figure 20 illustrates mean accuracy at each PAS level, for 

each participant in each study. For consistency, only studies with a 4-level PAS were 

included. For tasks where the chance level differed from 0.5 (e.g., 25% in 4AFC), each mean 

was rescaled and centred on 0.5. For the purpose of the analysis and to increase the 

comparability of the results with other studies, the model was assumed to be linear and no 

logarithmic transformations were performed. Visual inspection of the data (Figure 20) also 

suggests that at the group level many datasets showed linear patterns. These choices are in 
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line with previous literature assuming or testing for linearity (Jimenez et al., 2018, 2019, 

2021; Schwiedrzik et al., 2009, 2011). Where non-linear models were used in previous 

literature (e.g., Sandberg et al., 2011; Thiruvasagam & Srinivasan, 2021), both PAS and 

accuracy were modelled with psychometric curves with stimulus duration on the x-axis. 

Here, this was both not possible for all datasets (because they did not always include 

multiple stimulus durations), nor answering exactly the question of interest. It remains a 

possibility though that the relationships are not linear and so a linear model might not 

explain the data well – that case would be reflected in low indices of variance explained. To 

anticipate the section below, Q5 further aims to assess if individual participants’ answers 

show linearity. Finally, PAS was not treated or modelled as ordinal, again with the purpose of 

facilitating comparisons with previous literature where the PAS was not assumed to be 

ordinal – e.g., direct mention of the assumption of PAS being an interval scale (Sandberg & 

Overgaard, 2015), ‘mean PAS’ being computed/reported/referred to (e.g., Overgaard & 

Sandberg, 2021; Sandberg et al., 2011; Schwiedrzik et al., 2009, 2011). Whether this 

assumption is challenged or not would require further research. 

There was extremely strong evidence for both main effects (PAS: BFalt = 1.66 x 10331, ± 0.01%; 

Study: BFalt = 1.18 x 1011), and an interaction, BFalt = 4.40 x 1046. The strongest model was 

the model with both predictors but no interaction, BFalt = 1.28 x 10378 ± 1.57%), which was 

preferred over the full model (main predictors and interaction) by a factor of over 108. 

Adding Participant as a random effect left the pattern unchanged, except that the strongest 

model was the full model. Overall, PAS rating explained 54.7% of variance (SD = 1.33%, 

frequentist adjusted R2 = 54.8%). The predictor Study explained around 5% of the variance: 

Bayesian R2 = 5.34% (SD = 0.97%, adjusted R2 = 4.14%). The BFs for the effect of PAS rating 

on accuracy (not rescaled) from regressions on each study are displayed in Figure 20. R2 

values are included in Table 11. In these models, the only known source of non-

independence came from the two studies in Jimenez et al. (2019), which used the same 

participants, albeit in different tasks. Removing both studies left the pattern unchanged. 

Overall, these results highlight that a linear model explains moderately well the link between 

PAS and accuracy, thus suggesting that at the group level accuracy increases linearly with 

increasing PAS. However, the degree to which changes in the subjective measure follow the 

ones in the objective measure differs considerably across studies.  
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Figure 20. Distribution of mean accuracies at each PAS level for each participant. The black 

dots represent the grand means, and the dashed horizontal lines represent the overall 

accuracy across PAS ratings. 

 

4.3.5 Q5. Is the change in PAS ratings gradual, or all-or-nothing?  

The next question was whether changes in PAS are gradual or all-or-nothing, using mean 

accuracies for each participant and PAS level (i.e., data from Q4, not rescaled). Only 

participants who had data in all the PAS levels measured in each study were included, hence 

the lower number of datapoints in Figure 21 and the lower BFs in Table 12, compared to 

Figure 20. Data from Chapter 2 was not included in any analysis, given that no participants 
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had enough trials rated with PAS3 to allow inclusion, so only one comparison could be run 

(PAS1 vs PAS2).  

Two types of comparisons were conducted. The first analysis compared group-wise accuracy 

scores at each PAS level in each study, with Bayesian paired t-tests (i.e., PAS1 vs PAS2, PAS2 

vs PAS3, and PAS3 vs PAS4). Under the assumptions that accuracy is a good indicator of 

perceptual experience and that all participants used the scale in the same way, if awareness 

was all-or-nothing, then it would be expected that only one of these comparisons was 

supported by evidence. Conversely, if evidence supported the hypothesis of a difference for 

more than one comparison, then one interpretation would be that the shift was not all-or-

nothing. However, another interpretation could be that participants do not use the scale in 

the same way, and that for each participant only one shift occurred, albeit at different 

locations along the PAS. Such a pattern, consistent with an all-or-nothing explanation, would 

be masked by a seeming graduality in group analyses. Hence, for the second analysis, 

linearity scores were computed for each participant, by identifying the (sign-independent) 

largest differences between two steps of the PAS (Dmax), and dividing the sum of the other 

two scores (Dsum) by Dmax. This method allows summarizing the pattern at the participant 

level in a single value, and comparing scores in each study to 0 in Bayesian one-sample t-

tests. If the increase was gradual, then the differences between PAS1-PAS2, PAS2-PAS3, and 

PAS3-PAS4 (if available) would be similar, so the linearity score would be close to 2 (or 1, for 

three-level scale in Sand & Nilsson, 2017). Conversely, if there was only one substantial 

increase and minimal changes in the other two steps, the score would be close to 0. 

Linearity scores can also be negative if either the Dmax or the Dsum are negative, suggesting 

that participants’ performance decreased between PAS levels. Plausible explanations for 

these negative values could be noise in the data or participants misunderstanding the 

instructions (i.e., treating PAS as an index of confidence and using higher ratings to indicate 

that, for example, they had an ‘almost clear’ lack of experience of the stimuli). It could also 

be the case though that there was a mismatch between the stimuli and what the 

participants thought they saw. 

The full results for both comparisons can be seen in Table 12. For the first comparisons 

(group-wise), in 13 out of 14 (92.9%) included studies there was at least moderate evidence 

for a difference between PAS1 and PAS2 compared to the null hypothesis, as well as 
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between PAS2 compared to PAS3. Finally, for PAS3 compared to PAS4, there was at least 

moderate evidence of a difference for 9 out of 13 (69.2%) studies that used a 4-level scale. 

These patterns might therefore seem to be consistent with the explanation that changes in 

subjective experience as indexed by the PAS occurred in a gradual manner.  

To further assess if this conclusion is consistent at the participant level, linearity scores were 

compared. 4.5% participants had a negative D score. In 11 out of 14 studies (78.6%) there 

was at least moderate evidence that the linearity scores differed from 0 – in the remaining 

three, the evidence was inconclusive, likely because of the very low number of participants 

that passed the inclusion criteria (Figure 21). However, there were also substantial individual 

differences both within and across studies, with some participants’ scores being around 0 

(consistent with all-or-nothing), while others being towards ceiling (consistent with linear 

increases), even in the same sample. These findings highlight that group-based conclusions 

are not fully aligned with individual-level patterns. 
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Figure 21. Linearity scores for each participant in each study. The dashed line marks 0 (an 

‘all-or-nothing’ pattern), and limits for fully linear patterns (1 for 3-level PAS versions, 2 for 

4-level versions).  

 

 

Table 12. Individual comparisons between PAS ratings, in each study. The same notation 

convention as in Table 11 applies. All error terms under 0.2%. 

  

 Study BF PAS1 vs PAS2 BF PAS2 vs PAS3 BF PAS3 vs PAS4 BF linearity score vs 0 

1 Andersen et al., 
2019 

BFalt = 8.52 * 108 ++ BFalt = 1.38 * 1019 ++ BFalt = 2.18 * 105 

++ 

BFalt = 1.79 * 1011 ++ 

2 Derda et al., 2019 BFalt = 8.77 * 103 ++ BFalt = 6.95 * 103 ++ BFalt = 65.8 ++ BFalt = 4.94 * 105 ++ 

3 Halchin – Chapter 3 BFalt = 2.80 * 106 ++ BFalt = 1.06 * 102 ++ BFnull = 3.48 * BFalt = 2.17 

4 Jimenez et al., 2018 BFalt = 4.37 * 105 ++ BFalt = 3.25 * 106 ++ BFalt = 66.6 ++ BFalt = 4.72 * 105 ++ 

5 Jimenez et al., 2019 
- Study 1 

BFalt = 1.04 * 103 ++ BFalt = 17.5 ++ BFalt = 4.31 + BFalt = 23.3 ++ 

6 Jimenez et al., 2019 
- Study 2 

BFnull = 1.52 BFalt = 1.69 BFalt = 1.31 BFnull = 1.50 

7 Jimenez et al., 2021 BFalt = 2.56 * 102 ++ BFalt = 3.66 * 103 ++ BFalt = 15.9 ++ BFalt = 7.5 * 102 ++ 

8 Jimenez et al., 2023 BFalt = 1.17 * 102 ++ BFalt = 66.2++ BFalt = 9.45 + BFalt = 28.2 ++ 

9 Sand & Nilsson, 
2017 

BFalt = 3.24 * 1012 

++ 
BFalt = 1.05 * 1019 ++ NA BFalt = 2.31 * 1013 ++ 

10 Siedlecka et al., 
2020 

BFalt = 11.7 ++ BFalt = 1.68 * 102 ++ BFnull = 1.66 BFalt = 2.60 

11 Skewes et al., 2021 BFalt = 20.2 ++ BFalt = 5.63 * 102 ++ BFalt = 1.54 * 103 

++ 
BFalt = 2.48 * 103 ++ 

12 Stein & Peelen, 
2021 - Experiment 2 

BFalt = 17.9 ++ BFalt = 3.12 + BFnull = 1.28 BFalt = 6.19 + 

13 Stein & Peelen, 
2021 - Experiment 3 

BFalt = 4.52 * 109 ++ BFalt = 4.04 * 1015 ++ BFalt = 1.57 * 106 

++ 
BFalt = 1.14 * 1013 ++ 

14 Thiruvasagam & 
Srinivasan, 2021 

BFalt = 10.2 * 104 ++ BFalt = 1.4 * 106 ++ BFalt = 52.6 ++ BFalt = 9.36 * 105 ++ 
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4.4 Discussion 

Many research questions in the scientific study of consciousness require quantifying 

participants’ conscious experience in specific instances, which is usually achieved through 

objective tasks such as making a judgement about a stimulus feature, or subjective tasks 

rooted in introspection. However, how these measures relate to each other and what they 

might inform about consciousness is not well-understood. This chapter investigated in more 

depth how a widely used subjective measure of awareness (the PAS) is linked to another 

metric argued to vary with awareness (performance in objective tasks), focussing on two 

dimensions: exhaustiveness (Q1-Q3) and sensitivity (Q4-Q5).  

Regarding exhaustiveness, the same approach previously used in the literature was followed 

(e.g., Andersen et al., 2019; Sandberg et al., 2010). It was found (Q1) that in 7/15 studies 

there was at least moderate evidence favouring the hypothesis that participants’ objective 

accuracy was above-chance when they reported no subjective experience (PAS1). Only three 

studies showed moderate evidence for the null, with the rest remaining either weak or 

inconclusive. Therefore, under the criterion previously set, these findings indicate that it 

would be misleading for a researcher to assume a priori that PAS will be exhaustive in their 

task. Further analyses into what factors might influence exhaustiveness (Q2) showed that 

stimulus duration influenced accuracy in PAS1 trials only in tasks requiring high-level 

judgments (such as whether a digit is odd or even), where the lower the stimulus duration 

the lower the accuracy, and evidence favoured it as predictor over the next strongest model 

by an order of magnitude. However, both stimulus duration and the full model only 

explained under 4% of the variance in accuracy, therefore suggesting that the overall 

contribution of the timing parameters is very small, and consequently that most of the 

variance is driven by currently unknown factors. A possible complication arises from the 

argument that maybe participants had more conservative response strategies in their PAS 

answers in studies where evidence for above-chance performance was found – so the ‘No 

Experience’ trial bins were contaminated by trials with weak awareness that still enabled 

above-chance performance. However, as discussed in Chapter 1, such possibility is present in 

all subjective reports, not only the PAS. Also, as Wierzchoń et al., (2014) discuss, even if 

participants were risk-averse and used the ‘No Experience’ answer too frequently as a 

response strategy, this could not be inferred from comparisons with an objective measure, 
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since it is not possible to estimate what the appropriate frequency of such answers would be 

if participants did not use any strategies.  

Timing parameters played an even smaller role in the variance in accuracy at PAS1 in low-

level tasks. Here, the evidence favoured the null hypothesis over all the models, moderately 

for stimulus duration and interaction, and weakly for mask duration. These findings are at 

odds with those of Sandberg et al., (2010), who reported that in their shape identification 

task, stimulus duration had a substantial and non-linear influence on accuracy at PAS1. 

Nevertheless, while no recommendations of design choices can be made for improving PAS 

exhaustiveness, one interesting pattern can be observed though in Figure 18: in low-level 

tasks, all tested stimulus durations yielded above-chance mean accuracies, while for high-

level tasks durations up to around 40ms seemed to generate means close to chance. This 

observation likely explains why the only three studies that showed moderate evidence for 

the null in Q1 used high-level tasks (discrimination of face orientation, Stein & Peelen, 2021, 

Experiment 3; discrimination of words, Sand & Nilsson, 2017; identifying the content of 

natural scene images, Chapter 2 in this thesis) and primarily short stimuli durations. 

However, there was also high heterogeneity in accuracies at each stimulus duration, 

tentatively suggesting that other factors that were not tested in the current study could 

affect this pattern further. For instance, possible influences of specific stimulus categories 

(e.g., faces, arrows, letters, numbers etc.) and tasks (e.g., odd/even, left/right, 

upright/inverted etc.) were not tested here, because of too high heterogeneity in the 

available data. More available data, or experiments that systematically vary these factors, 

would be needed to further understand what might have driven the variance. 

As for sensitivity (Q4-Q5), a clearer pattern emerged. There was extremely strong evidence 

that increases in PAS are accompanied by increases in accuracy (Q4), for all studies included. 

Interestingly though, the degree of variance in accuracy explained by PAS ranged 

substantially (from 39% to 84%) with studies in the lowest half of this range tending to be 

low-level tasks (4 out of 7 studies with lowest variance explained). More data would be 

needed though to assess whether task types influence the mapping between PAS and 

accuracy. In any case, this result is not unequivocal about whether such changes occur in a 

graded or all-or-nothing manner. When analysed at a group level, there was evidence that 

accuracy changed substantially both between PAS1 – PAS2, and PAS2 – PAS3, in 93% of the 
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included studies (Q5). However, at the individual level, linearity scores computed for each 

participant found substantial differences between participants’ pattern of change, with most 

participants falling in-between the scores associated with all-or-nothing and gradedness 

(Figure 21). Each study also varied in terms of the range and spread of these scores. 

Whether these patterns can be attributed to true individual differences in awareness 

changes or other causes would require further research beyond group analyses. 

Nevertheless, these findings raise complications for attempting to answer whether 

awareness is graded or all-or-nothing. From a qualitative approach, the individual-level 

patterns were not consistent with either explanation, but this conclusion would be difficult 

to verify quantitatively, because there are no clear cutoffs for what would constitute either 

graded or all-or-nothing. Consequently, it is difficult to interpret these findings from the 

perspective of different theories of awareness, or how they might fit with previous findings 

from group analyses regarding gradedness. 

As anticipated in 4.1, tackling different aspects of the relationship between PAS and 

objective measures can be seen as seeping into the discussion of whether PAS is a valid 

measure of awareness (Skóra et al., 2021; also referred to as the problem of 'coordination', 

Michel, 2019). The concepts used here and in the previous literature might seem to map 

somewhat onto formally identified aspects of validity (e.g., Adcock & Collier, 2001; Heale & 

Twycross, 2015). Sensitivity could be seen as criterion validity, or how well a specific 

measure relates to an existing benchmark measure of the same concept – more specifically 

convergent validity when expecting a high correlation. Exhaustiveness could be seen as 

content validity, or whether the measure comprehensively covers the target concept – in 

other words, if it can identify all cases of conscious perception. A different aspect of PAS 

validity, namely construct validity or whether the measurement outcome (i.e., PAS rating) 

allows drawing inferences about the target concept (i.e., clarity of experience), has also been 

discussed and criticized (Irvine, 2012, 2013). However, it is difficult to extend conclusions 

about exhaustiveness and sensitivity (in a statistical analysis sense, as described above in 

section 4.1 by Andersen and colleagues, 2019) to conclusions about validity. As Skóra and 

colleagues (2021) highlight, attempts to assess PAS validity are accompanied by assumptions 

rooted in theoretical positions about the target concept, and therefore conclusions about 

validity can only be drawn if one accepts these assumptions.  
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Whether studying the relationship between PAS and objective measures can inform about 

PAS validity therefore depends on whether one accepts objective measures as the 

benchmark for awareness – which comes with its own complications. Firstly, it is debatable 

whether objective measures provide a good index (i.e., whether they target aspects of 

awareness sufficiently similar with those of PAS) to assess validity against. Sandberg and 

Overgaard (2015) recognize that this is an assumption that they accept because the field 

does not yet have the methods or knowledge to contradict it. Secondly, it assumes that 

above-chance performance in trials labelled with PAS1 (‘No Experience’) can only be due to 

stimulus awareness – therefore not considering that it might be due to unconscious 

processing, in blindsight-like effects. Blindsight-like effects rely on the existence of a 

dissociation in which the measure of processing is above-chance whilst the measure of 

awareness indicates that participants did not consciously perceive the stimuli (although see 

Reingold & Merikle, 1988, for an alternative to this dissociation, requiring only relative 

differences between the two measures). These stances are mutually exclusive: one cannot 

interpret above-chance performance in PAS1 trials as both a benchmark for awareness and 

an index of unconscious processing. Taking the latter stance would allow interpreting the 

results in Q1 (above-chance performance in PAS1 trials in almost half of the included 

studies) as showing, in fact, strong evidence for unconscious perception. However, it would 

also entail accepting that none of the previous conclusions about PAS content validity drawn 

from failures to find above-chance performance are valid, because such results can only be 

interpreted as failures to find unconscious processing. Finally, as discussed in Chapter 1, 

equating objective performance with awareness also implies that the only explanation for 

chance performance is lack of awareness, and by extension that it is not possible to have 

awareness of a stimulus and still perform at chance. In other words, it assumes that it is not 

possible to have phenomenal consciousness without access consciousness (P-without-A), an 

assumption contested by both theoretical (e.g., Block, 1995) and empirical (Amir et al., 

2023) work.  

Ultimately, it might not even be possible to explain if above-chance performance is due to 

low exhaustiveness or unconscious processing, a caveat that Sandberg and colleagues (2010) 

also recognize. To circumvent the problem of relying on objective measures to test content 

validity/exhaustiveness, one could manipulate factors argued to influence the quality of 
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experience, such as stimulus duration or SOA. This approach would require making strong 

assumptions a priori that selected parameters would result in an ‘unconscious’ condition, 

which may or may not be justified given the specific experimental design. Then, one could 

compare the distribution of PAS answers in such condition with that of catch trials where 

nothing is presented, and infer no subjective awareness should no difference be observed. I 

emphasize here, as shown in Q3 (section 4.3.3) and Figure 19, that it should not be assumed 

that 100% of stimulus-absent catch trials would be rated with PAS1, and that the frequency 

is consistently lower, on average around 85%. The factors that might drive PAS2+ answers in 

stimulus-absent trials are diverse, and could be experience-independent participant 

mistakes (i.e., accidental button presses, incorrect understanding of instructions). 

Speculatively, they might also be experience-dependent: it could be argued that participants 

might have experienced internally generated illusions in line with their prior expectations 

about the stimuli (e.g., Chalk et al., 2010), thus leading to PAS2+ answers. However, these 

factors do not invalidate the suggested comparison, because they do not capture awareness 

of a presented stimulus. Nevertheless, such comparison might not be suitable for all 

research questions and would need to first be examined empirically. 

One important consideration that this study does not address though is whether the 

variability in phrasings and/or number of levels in the PAS affects the ratings independently 

of the task. This is because almost all the datasets in this analysis used a 4-point scale, that 

starts at 1 (as opposed to 0, e.g., Peremen & Lamy, 2014), and refer to the whole stimulus 

rather than the task-relevant features. However, these choices are not always the case in the 

literature; regarding the 4-scale PAS, some studies adopt a 3-point (e.g., Eklund & Wiens, 

2018; Sand & Nilsson, 2017) or even continuous (e.g., Stein & Peelen, 2021, Experiment 2; 

Wierzchoń et al., 2019) version of the scale. Regarding the latter choice, making the whole 

stimulus the target of the clarity judgment is a departure from the original study (Ramsøy & 

Overgaard, 2004), which specifically targeted features (shape, colour, position). This choice 

is implicitly or explicitly linked to a theoretical stance on what should constitute a criterion 

for ‘lack of awareness’: no awareness of the task-relevant features only (as argued by 

Breitmeyer, 2015; Dienes & Seth, 2010b), or no awareness of the whole stimulus. Again, 

whether such choices result in substantial differences in ratings is an empirical question that, 

to my knowledge, has not been addressed so far. Therefore, this would be a worthwhile next 
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step, since loosely justified changes in an existing scale can be deemed ‘questionable 

measurement practices’ (Flake & Fried, 2020).  

Altogether, PAS has proven useful in prompting literature-wide considerations about how 

researchers evaluate awareness, and how the concept of ‘perceptual clarity’ may differ from 

confidence or other meta-cognitive judgments. However, it remains unclear how looking at 

the relationship with objective measures might inform about the suitability of the PAS as an 

awareness measure, or whether this question can be answered with the current available 

methods. Some steps forward would be to continue to design experiments where PAS is 

collected alongside other measurements, and to continue to make experimental data and 

code publicly available, with the long-term goal of facilitating understanding of how 

perceptual clarity judgments relate to other types of judgments and to the theories and 

conceptualizations of awareness. 
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5 Chapter 5 

5.1 General summary  

This thesis had three aims: firstly, to reassess, using improved experimental designs and 

Bayesian statistical analyses, previous findings of VPL from visual information that 

participants had no awareness of. Secondly, to evaluate how different experimental factors, 

in particular those related to measurement, influence conclusions about learning. Finally, to 

assess the relationship between objective task performance and answers on the Perceptual 

Awareness Scale, a popular measurement of clarity of subjective experience.  

To summarize the main results, in Chapter 2, the findings of improvements from Pre to Post-

Exposure (2.5.2) in the Unconscious and Mostly Unconscious conditions were observed only 

in Experiment 2, where participants were intractably exposed to the correct answer of what 

the image depicted, in the MCQ paradigm. No such effect was consistently observed in 

Experiment 1, where identification was collected through free-naming, so the only source of 

information about the two-tone content was from the images. In Chapter 3, the findings of 

improvements from Day 1 to Day 3 in all three measurements tested (discrimination, 

detection, and PAS) extended both to the condition that trained on sub-threshold contrasts 

and to the condition that did not complete the training, highlighting that the training could 

not have been the source of the improvements. In Chapter 4, the evidence highlighted that 

the criterion of exhaustiveness (chance performance in trials rated with PAS = 1, or “No 

Experience”) was not met in a large percentage of the studies in the sample. On the other 

hand, the criterion of sensitivity was met, as all studies showed strong evidence that PAS 

ratings increase with task performance. 

 

5.2 VPL without stimulus awareness? 

The findings from both Chapters 2 and 3 converge to the broader conclusion that there is no 

evidence for a learning effect following exposure to unconscious stimuli that can only be 

explained by the exposure. This broader conclusion is complemented by the previous results 

claiming VPL from unconscious stimuli, presented in Chapter 1 (1.3), arguably not being 

equivocal either. Seitz et al. (2009, Experiment 2) concluded that participants were not 

aware of the orientation stimuli during training based on a separate session, conducted after 
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the end of the experimental sessions. In this awareness test session, participants were asked 

to make an orientation response only if they detected the gratings presented under CFS; 

unawareness was concluded based on the findings that in most trials participants made no 

answers (implying they did not detect the stimuli) and when they did answer, their accuracy 

was not different from chance. However, the design and analysis of the awareness test do 

not warrant the conclusion that participants had no awareness during training. First, lack of 

awareness was inferred from a frequentist non-significant result and no tests for assessing 

evidence for the null were reported, so it is possible that the evidence was insensitive to 

whether there was a difference from chance – especially since participants did not provide 

answers in the majority of trials (around 80%). Secondly, the awareness test introduced a 

task compared to training (where there was no task) and removed the rewards, thus creating 

fundamentally different conditions – it could be that participants’ low objective performance 

in the awareness test stemmed from them not being motivated or incentivised to do the 

task, thus leading to the incorrect conclusion that they lacked awareness during training. A 

second awareness test, which found the same non-significant result, was conducted with 

rewards but in a different group of participants who did not undergo training. This second 

test is again an unsuitable benchmark: in addition to the same analysis fallacy as the first 

test, inferring awareness in one group of participants based on a different group of 

participants is problematic, because it assumes that the effectiveness of CFS is the same 

across groups. However, CFS effectiveness was found to be affected by individual differences 

(Blake et al., 2019), and the small sample sizes (n = 8 for the awareness test, n = 4 for 

Experiment 2) in Seitz et al. (2009) makes the study’s conclusions more susceptible to 

possible heterogeneity from individual differences.  

Nishina et al. (2007) also concluded that participants had no awareness of the gratings-in-

noise during the training. However, in both Experiments 1 and 2, the contrast of the gratings 

was the same for all participants, picked from a psychometric function fit on means across 

participants in a pilot experiment. This approach means that some participants in the small 

sample (n = 7 in Experiment 1, n = 9 in Experiment 2) had above-chance accuracy – and 

therefore, in line with their criterion of unawareness based on discrimination accuracy, they 

were aware of the gratings. This detail was directly mentioned by the authors, that in both 

experiments most but not all participants had chance performance at the trained contrast. 
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Even if the learning effect is not explained by awareness during training, it is not necessarily 

explained by the training either. In Experiment 1, the training contrast was 12% and yielded 

on average chance performance. The lowest contrast included in the pre-post training 

measurements was 15%, which had slightly above-chance performance pre-training. 

However, in the only condition where a learning effect was found, there was no 

improvement at the 15% level (based on supplementary figure 2, contrast-specific 

comparisons were not reported), but there was an improvement at all the other contrast 

levels that already yielded performances much higher than chance before training. In 

Experiment 2, the training contrast was also the lowest contrast tested pre- and post-

training, at 15%. A similar pattern of findings was reported there (supplementary figure 4): 

of the three conditions where a learning effect was found, in only one performance at 15% 

was higher in post-training; in the other two, performance was either the same, or lower in 

post-training. Altogether, this pattern does not seem consistent with the explanation that 

the learning stemmed from the unconscious stimuli during training, because robust 

increases at the trained parameter would have been expected. The findings from Pascucci 

and colleagues (2015), from a very similar TIPL paradigm to Nishina et al., (2007) which 

trained participants with gratings of subthreshold contrast (12%), showed the same pattern 

in the graphs: a pre-post training general reduction in contrast PF threshold of identifying 

which of two intervals contained a grating, but small or no changes at the lowest value 

tested (10% contrast). However, the authors did not report specific comparisons for accuracy 

at the trained contrast with specific evidence for the null, so it is not possible to empirically 

assess if this interpretation is correct. Nevertheless, applying the definitions of VPL and 

awareness discussed in Chapter 1 and being mindful of statistical concerns, there seems to 

be no reliable evidence in the current literature of a VPL effect led unambiguously by stimuli 

that participants claimed they lack awareness of, regardless of the complexity of the task.  

Following up on the discussion in Chapter 3 (section 3.5), one possible criticism of this 

conclusion and any null finding against unconscious VPL is simply that the training was not 

sufficiently long. If the masked templates/greyscale images in Chapter 2 were presented – 

albeit masked – more than once, or if the training in Chapter 3 would have involved more 

than 1000 trials, then one can speculate that, in theory, learning might have occurred. While 

I agree with this theoretical possibility, the issue is intractable. What is the upper limit of the 
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number of unconscious exposures by which it can be concluded that learning requires 

consciousness? For both study designs, one could draw comparisons with training protocols 

where the training is conducted on perceived stimuli, but this approach would not be 

conclusive either – if unconscious learning does not occur over a number of trials that 

generate learning when consciously experienced, at most it would allow the conclusion that 

unconscious learning does not occur on the same timeline as learning from consciously 

experienced stimuli. This conclusion cannot be drawn from the current work, but it could be 

a promising avenue for future research.  

 

5.3 Measuring ‘unawareness’ of visual information  

One focal point addressed throughout the thesis is whether the choice of index used to 

delimit trials/conditions where participants had no awareness influences conclusions about 

the absence of awareness, and possible effects of the unconscious information. 

The evidence discussed in the thesis suggests that while generally consistent, different 

indices of unawareness do not always lead to the same conclusions about the presence of a 

learning effect. In Chapter 2, for the measure of subjective meaningfulness, there was no 

advantage of exposure to congruent templates regardless of how unawareness was defined 

during the exposure stage (based on the SOA alone, PAS alone, identification accuracy alone, 

or combinations of these factors with different degrees of conservativeness), in neither 

Experiment 1 nor 2 (sections 2.5.1 and 2.6.1). Although most comparisons also indicated 

that there was no advantage in identification accuracy either, solely indexing based on 

incorrect answers or PAS = 1 (“No Experience” of the content) in fact yielded inconclusive 

results, but only in one of the two methods of probing identification accuracy. Table 5 

(section 2.7.3) provides further examples of discrepancies in conclusions. Inconclusive 

results entail that the data presents patterns that are not inconsistent with the explanation 

that a difference could be present – which is fundamentally a different conclusion from 

support for the null hypothesis. Two broader points become apparent. The first is the 

importance of using statistical analyses that allow quantifying the evidence for the null, such 

as Bayes Factors – under typical frequentist analyses, it would have been impossible both to 

disentangle these patterns, and more generally to conclude the absence of an advantage. 
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The second is that the landscape seems more complicated: whether different definitions of 

‘unconscious’ lead to the same conclusions about the target effect (i.e., ‘unconscious’ 

learning) might thus depends on experimental design factors such as the operationalization 

of the target effect (i.e., subjective or objective indices of learning) and how it is measured 

(i.e., free-naming or MCQs). To some extent, this conclusion echoes findings from Chapter 4 

as well, if one chooses to interpret above-chance task performance in PAS1 trials as evidence 

of unconscious processing. There (Q1, section 4.3.1), the same index of unawareness 

(namely PAS1) was associated with vastly different task performances across different 

studies (and consequently, different stimuli, tasks, etc.), with evidence spanning all possible 

conclusions (inconclusive, chance performance, above-chance performance). Moreover, 

experimental design factors like stimulus duration and task type influenced the accuracy of 

these trials (Q2, section 4.3.2). Altogether, the emergent pattern is that generalizability of 

findings can be very poor across experimental designs, regardless of whether the same 

indices of awareness are used. In turn, the use of experimental findings to guide the 

development of theories of consciousness or to map the boundaries of ‘unconscious’ 

processing becomes severely limited.  

In any case, if different definitions of unawareness can lead to different conclusions about 

target effects, then one possible explanation could be that each definition might capture 

different ‘types’ (or facets) of unawareness, which might not be compatible. In Chapter 2, 

only qualitative comparisons between definitions were possible, because all indices were on 

different scales: there is no way to determine if participants’ conscious experience was the 

same when they answered “No Experience” of the content on the PAS as when they 

responded incorrectly or were exposed to the images in the Short SOA condition. Looking at 

the overlap in the distribution of trials could be one aspect to consider, but as shown by pilot 

data (Figure 7, consistent with the main experiments as well, figure not included), the 

overlap in trials is very variable across indices. However, this question was addressed in 

Chapter 3. There (Q4P, section 3.3.5), no difference was found between discrimination and 

detection performances at the trained contrast (i.e., yielding under 60% discrimination 

accuracy), suggesting by extension that discrimination unawareness (inability to reliably 

discriminate the direction of arrows) is the same as detection unawareness (inability to 

reliably respond if arrows were displayed at all). This pattern would correspond to a failure 
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of finding classical ‘blindsight’ in healthy individuals (other null findings: Balsdon & 

Azzopardi, 2015; Peters & Lau, 2015; Rajananda et al., 2020), usually operationalized as 

above-chance performance on discrimination of some stimulus feature without detection of 

stimulus presence. Interestingly though, the evidence also suggested that detection 

inflection points (i.e., contrast level yielding ~81% accuracy) were indeed higher than 

discrimination inflection points, for most participants (Chapter 3, Figure 13) – thus 

suggesting that at certain contrasts, participants’ ability to respond correctly if the arrows 

pointed to the left or the right was better than their ability to respond correctly if the arrows 

were presented. More research would be needed though to understand what gave rise to 

the discrepancy in the current experiment, and at what contrast level the two indices might 

start to diverge in this task. Moreover, whether this pattern is indicative of blindsight (or 

‘Perception > Awareness’ in Peters & Lau, 2015) is debatable. On the one hand, this finding 

might seem at odds with results from Peters and Lau (2015, control experiment), who found 

an almost-exact mapping between discrimination accuracy (identifying left/right orientation 

of gratings in a 2IFC task) and detection accuracy (percentage of trials in which participants 

said that the target-present interval contained the more visible stimulus). However, such 

conclusion would not be justified, given the substantial differences in task and the small, 

heterogeneous sample size (n = 3, with one participant displaying a pattern consistent with 

that in Chapter 3). On the other hand, Peters and Lau (2015) also found the same 

dissociation (higher discrimination performance relative to subjective detection, but not 

around the chance level), only when detection was inferred from betting (taken to indicate 

confidence, Experiments 1 and 2). While they did not attribute this result to ‘Perception > 

Awareness’ but rather differential noise between the discrimination and detection 

judgments in the 2IFC task, the mixed results across experimental designs further speak to 

the challenge of generalizing conclusions about perception without awareness. 

 

5.4 Conclusions and future directions 

The work conducted in this thesis demonstrated the importance of intentionally examining 

questions about unconscious learning from multiple methodological angles. It also 

demonstrated the importance of designing appropriate control conditions when studying 

unconscious learning, and highlighted new difficulties in the use of a popular measure of 
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subjective awareness. As discussed throughout this thesis, the plurality of methods in 

consciousness research raises substantial difficulties in comparing results across experiments 

and identifying patterns among results. Natural next steps for future research would 

therefore be to exercise caution in interpreting relevant findings about the target effect from 

paradigms with different experimental designs, and to continue to systematically investigate 

in which conditions, if any, unconscious learning exists.  

One final consideration must be given to open scientific practices (e.g., preregistration, 

sharing data and research materials) and consciousness research. While engaging with open 

practices is not in itself an indicator of research quality (Devezer & Penders, 2023), it has 

become apparent that it has substantial scientific benefits, such as allowing higher scrutiny 

of research findings or allowing researchers to assess other aspects of the data that might be 

of interest to them but were not addressed in the published papers (Nosek et al., 2012). The 

process of obtaining Stage 1 In-Principle Acceptance for the research in Chapter 2 required 

me to engage with such practices myself, which ultimately improved the quality of the 

research. Moreover, the analyses and conclusions in Chapter 4, raising concerns and 

challenges about a popular subjective measure of awareness, would not have been possible 

without consciousness researchers valuing open practices and engaging with the substantial 

additional effort required by preparing and sharing materials (e.g., ensuring participant 

anonymity, compliance with data sharing policies, good structure and legibility of the shared 

materials) – effort currently not well-incentivised. Neither would have been the rectification 

of inconsistencies in published work, detected during the re-analysis for Chapter 4 

(Andersen et al., 2023; Thiruvasagam & Srinivasan, 2023). More widespread adaptation of 

data and code sharing would therefore continue to enable future attempts to systematically 

compare results, and to assess the potential impact of different methodological choices on 

conclusions about consciousness. Because of these reasons, I argue that these practices 

would not only continue to be beneficial for consciousness research, but they should 

become standard practice. The hope is that, by adopting these approaches, there will be a 

broader wealth of publicly available data for systematic comparisons, which would, in turn, 

facilitate robust new insights in the study of the unconscious.  
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Appendices 

Appendix 1 – PAS training (Chapter 2) 

Modified description of the PAS used in all 4 experiments in Chapter 2 (Pilots 2 and 3, 

Experiments 1 and 2). The changes in the description of the scale were prompted by 

previous concerns that the scale might measure confidence instead of clarity of experience 

(Irvine, 2012).  

 

1 (no experience) = I did not see the content of the image at all. 

2 (a brief glimpse) = I had a feeling of seeing the content, but I did not know what it was. 

3 (an almost clear experience) = I had seen the content of the image almost clearly. 

4 (a clear experience) = I had clearly seen the content of the image. 

 

 

Items on the PAS quiz:  

Level Description Correct PAS Answer 

I had no impression of the content of the image. 1 

I could not see the content presented. 1 

I only had a feeling of seeing the content of the image.  2 

I had a weak glimpse of the content of the image. 2 

I saw the content mostly but not completely clearly. 3 

I saw the content of the image with weak clarity.  3 

I saw the content non-ambiguously. 4 

I very clearly saw the content of the image. 4 
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Appendix 2 – Image details (Chapter 2) 
 

Outline of the experiment design 

Block no. Image type Block contents 

Block 1 Two-tone Two-tone 1-8, randomized 

Block 2 Greyscale Greyscale 1-8 + attention checks, randomized 

Block 3 Two-tone Two-tone 1-8 + two-tone 9-16, randomized 

Block 4 Greyscale Greyscale 9-16 + attention checks, randomized 

Block 5 Two-tone Two-tone 9-16 + Two-tone 17-24, randomized 

Block 6 Greyscale Greyscale 17-24 + attention checks, randomized 

Block 7 Two-tone Two-tone 17-24, randomized 

 

The outline above includes the 24th pair of two-tone and greyscale images, which was added 

only to achieve equal block lengths, as it did not come from the validated stimulus set. This 

image was removed from the analyses, hence 23 pairs remained.  

 

Low-level image properties and PAS  

Additional quality checks of participants’ use of the PAS tested whether participants’ PAS 

answers were influenced by RMS contrast, luminance, edge density, and spatial frequency of 

the templates in Pilots 2 and 3. The results from separate Bayesian ANOVAs with default 

priors, PAS as categorical predictor, and low-level property as dependent variable, are 

included in the table below. Overall, these results suggest no relationship between PAS 

ratings and low-level image properties. 

Property Pilot 2 Free Naming BF (+ error) Pilot 3 (MCQ) BF (+ error) 

RMS contrast BFnull = 9.46 ± 0.59% BFnull = 1.42 ± 0.51% 

Luminance BFnull = 11.1 ± 0.6% BFnull = 1.63 ± 0.52% 

Edge density BFnull = 26.8 ± 0.62% BFnull = 1.89 ± 0.54% 

1/f slope BFnull = 8.57 ± 0.59% BFnull = 24.7 ± 0.64% 
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Appendix 3 – Summary of Chang et al. (2016) experimental design (Chapter 2) 
 

As illustrated in Chang et al. (2016), page 2, Figure 1, each two-tone was followed by a 

prompt to respond Yes or No to the question ‘Can you recognize and name the object in the 

image?’ (p.3). Each set of four two-tones was repeated twice per block and each block was 

repeated twice; the second block was followed by a free-naming identification task for the 

two-tone images only, in which all two-tones were presented again, followed by a free-

naming identification task. The stimulus onset asynchrony (SOA) was calculated as 67ms, 

from the beginning of the greyscale stimulus until the beginning of the mask. This was 

followed by a noise mask for 1933ms and a prompt to respond to the same question 

presented in the two-tone trials. Each greyscale trial was presented twice before participants 

were asked to verbally name the two-tones Post-Exposure.  
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Appendix 4 – PAS training (Chapter 3) 
 

Table with PAS quiz items. The items were randomized for each participant. 

Scale Description Correct PAS answer 

I had no impression of the arrows. 1 

I could not see the arrows presented. 1 

I have only a feeling that the arrows were presented.  2 

I had a weak glimpse of the arrows. 2 

I saw some arrows better than others.  3 

I saw the arrows with weak clarity.  3 

I saw the arrows non-ambiguously. 4 

I very clearly saw the arrows. 4 
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Appendix 5 – Psychophysics methodology details (Chapter 3) 

Method of limits – procedure details 

In half of the blocks the arrows’ contrast progressively increased, and in the other half 

progressively decreased. The increasing blocks stopped when participants responded that 

they started to perceive the arrows, which was defined as both PAS above 1 and correct 

direction discrimination. Conversely, the decreasing blocks stopped when participants 

reported not seeing the arrows anymore, which was defined as PAS of 1 and an incorrect 

response. If a participant answered with PAS 1 but had correct discrimination, or other 

unexpected combinations (e.g., incorrect discrimination and PAS above 1), the block paused 

and they were asked to briefly justify their responses verbally, and the experimenter decided 

if the block would finish or continue. This was done to ensure their answers reflected their 

perception, rather than lapses or lucky guesses. The trials progressed in steps of 4 

intensities. The first block of each kind started from the lowest visibility that could be 

presented, respectively close to maximum visibility. For the subsequent blocks of each kind, 

the starting contrast was 8 levels before the stopping contrast in the first block of each type, 

to minimize likely redundant trials. At the end of the blocks, the average of all stopping 

contrasts was taken, and a range between ± 6 from the mean was generated, to be used in 

the MoC. 

 

Lookup table between the contrast level indices used and their corresponding values in cd/m2  

 

Contrast index cd/m2 
0 (background) 34.08 

1 33.44 

2 32.85 

3 32.18 

4 31.58 

5 30.91 

6 30.37 

7 29.68 

8 29.16 

9 28.48 

10 27.95 

11 27.38 

12 26.78 
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13 26.19 

14 25.72 

15 25.17 

16 24.72 

17 24.16 

18 23.62 

19 23.17 

20 22.64 

21 22.19 

22 21.73 

23 21.23 

24 20.84 

25 20.32 

26 19.84 

27 19.45 

28 18.97 

29 18.52 

30 18.11 

31 17.71 

32 17.29 

33 16.88 

34 16.5 

35 16.08 

36 15.66 

37 15.28 

38 14.92 

39 14.59 

40 14.25 

41 13.96 

42 13.61 

43 13.23 

44 12.88 

45 12.53 

46 12.23 

47 11.9 

48 11.58 

128 (black) 0.15 
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Appendix 6 – Chapter 4 
 

Links to open data and other supporting materials for the included studies 

Andersen et al., 2019 - https://osf.io/ecxsj/ 

Derda et al., 2019 - https://osf.io/63tbu/  

Jimenez et al., 2023 - https://osf.io/stcdh/?view_only=af3fe6f2ca8941a1b894b7a83fbd2234  

Sand & Nilsson, 2017 - https://osf.io/fsu43/  

Siedlecka et al., 2020 - 

https://osf.io/b4qk7/?view_only=f66822a713924b9e8fbb7973a69f43ac  

Skewes et al., 2021 - https://osf.io/cfk43/ 

Stein & Peelen, 2021 - https://osf.io/sn8cr/ NB: trial-by-trial PAS data was kindly provided 

privately by T. Stein. 

Thiruvasagam & Srinivasan, 2021 - https://osf.io/k5nf9/  

Data for Jimenez et al., (2018, 2019, 2021) was kindly provided privately by M. Jimenez.  

https://osf.io/ecxsj/
https://osf.io/63tbu/
https://osf.io/stcdh/?view_only=af3fe6f2ca8941a1b894b7a83fbd2234
https://osf.io/fsu43/
https://osf.io/b4qk7/?view_only=f66822a713924b9e8fbb7973a69f43ac
https://osf.io/cfk43/
https://osf.io/sn8cr/
https://osf.io/k5nf9/
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Figure S1. Q2 follow-up (Chapter 4) 

Studies from Figure 18 that contain only one stimulus (or mask) duration only, with the black 

lines representing the regression lines. For comparison, the dark blue lines with grey ribbon 

are the regression lines (and SE) from Figure 18, on the full sample. BFs are included in the 

table below. As observed, removing the studies with non-independent data resulted in 

models that overlap with the SEs and overall comparable BFs, suggesting therefore that 

including datasets with non-independencies did not affect the overall pattern in Q2.  
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 Low Level tasks High Level tasks 

Stimulus duration BFnull = 6.27 BFalt = 1.63 * 105 ± 0.01% 

Mask duration BFnull = 10.9 BFalt = 1.17 

Figure S2. Q3 additional visualization 

It is worth noting that Jimenez et al. (2023) excluded and replaced 24 participants for 

answering with PAS4 in more than 10% of blank trials. 

 

Figure S2. Distribution of the percentages of stimulus-absent catch trials answered with each 

of the PAS levels, for each participant. Panels represent PAS levels. No data is shown in Panel 

4 for Sand & Nilsson (2017) because their PAS had three levels only. 
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