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Exceptional points in perturbed dielectric spheres: A resonant-state expansion study
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Exceptional points (EPs) in open optical systems are rigorously studied using the resonant-state expansion
(RSE). A spherical resonator, specifically a homogeneous dielectric sphere in a vacuum, perturbed by two
pointlike defects which break the spherical symmetry and bring the optical modes to EPs, is used as a worked
example. The RSE is a nonperturbative approach encoding the information about an open optical system in
matrix form in a rigorous way, and thus offering a suitable tool for studying its EPs. These are simultaneous
degeneracies of the eigenvalues and corresponding eigenfunctions of the system, which are rigorously described
by the RSE and illustrated for perturbed whispering-gallery modes (WGMs). An exceptional arc, which is a
line of adjacent EPs, is obtained analytically for perturbed dipolar WGMs. Perturbation of high-quality WGMs
with large angular momentum and their EPs are found by reducing the RSE equation to a two-state problem by
means of an orthogonal transformation of a large RSE matrix. WGM pairs have opposite chirality in spherically
symmetric systems and equal chirality at EPs. This chirality at EPs can be observed in circular dichroism
measurements, as it manifested itself in a squared-Lorentzian part of the optical spectra, which we demonstrate
here analytically and numerically in the Purcell enhancement factor for the perturbed dipolar WGMs.

DOI: 10.1103/PhysRevA.110.033518

I. INTRODUCTION

An exceptional point (EP), originally named by Kato
(1966) [1], is a simultaneous degeneracy of the eigenvalues
and the corresponding eigenfunctions of a system. An EP of
N th order has N degenerate eigenvalues and eigenfunctions.
EPs are a typical feature of open systems, which are char-
acterized by the presence of gain and/or loss of energy and
information, and can be described by non-Hermitian matrices
which have generally complex eigenvalues [2].

Matrices allow a mathematically rigorous and simulta-
neously the most straightforward investigation of EPs as a
special case of their eigenvalues and eigenvectors. To give
a mathematical example of an EP, we introduce the 2 × 2
symmetric matrix

M =
(

a b
b d

)
, (1)

where a, b, and d are complex numbers. The matrix M has the
eigenvalues

λ = a + d

2
± 1

2

√
(a − d )2 + 4b2. (2)
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To find a point where the eigenvalues are degenerate, we let
the square-root term in Eq. (2) vanish. This gives the degener-
acy condition

b = ± i(a − d )

2
. (3)

If b �= 0 and Eq. (3) is satisfied, a, b, and d are the matrix
elements of M at an EP. If Eq. (3) is satisfied but b = 0, the de-
generacy is called a diabolic point (DP) which is a degeneracy
of eigenvalues but not eigenvectors. DPs are equivalent to any
degeneracies in a Hermitian system, but in a non-Hermitian
system they are only the degeneracies that arise due to sym-
metry, and they generally do not have the characteristic shape
of an EP. This characteristic shape along with other features of
EPs can be demonstrated, for example, by setting the matrix
elements of Eq. (1) to a = 0, b = ic, and d = 1 where c is
a real variable. Using Eq. (2), the eigenvalues of this example
matrix around a second-order EP at c = 1

2 are plotted in Fig. 1.
Figure 1 shows the characteristic shape of the eigenvalues

in the proximity of an EP. This shape is due to the fact that
eigenvalues vary nonlinearly with respect to the parameters,
and are instead proportional to the square root of the varied
parameter in a second-order EP’s proximity. More generally,
eigenvalues are proportional to the N th root of the parameter
in the proximity of an N th-order EP [3]. Furthermore, the
eigenvalues have an infinite derivative with respect to the
varied parameter when precisely at the EP [2].

It has been suggested that the extra sensitivity near an EP
could be exploited in sensing applications [4–7], however,
it has been shown that while the eigenvalues are nonlinear
near an EP, the quantum-limited signal to noise ratio is linear,
and there is no enhanced sensor precision for an EP sen-
sor compared with a DP sensor [8–10]. On the other hand,
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FIG. 1. Eigenvalues of Eq. (1), where a = 0, b = ic, and d = 1,
varied against parameter c, taking a value of c = 1

2 at an EP.

response functions in the proximity of an EP are a topic of
recent research [11,12], and their potential features are yet to
be fully understood, so enhanced precision at an EP is still
an open question [13–18]. In spite of this, EPs have already
been involved in sensing [15,19], and new applications for
EP sensors have been proposed [20–24], due to the sensitive
splitting of degenerate eigenfrequencies [4]. There are also
other features of EPs that can be exploited such as an en-
hanced spontaneous emission rate which is often attributed
to the self-orthogonality of eigenfunctions at an EP [25,26].
Spontaneous emission at an EP has a squared-Lorentzian line
shape [27,28] which is useful for increasing the linewidth of
a laser [29]. Contrary to suggestions by [26–28], different
eigenfunctions at an EP are still orthogonal [2] but they are
considered parallel at the same time [8].

EPs can occur in any system that can be described by a non-
Hermitian matrix and, therefore, can be met in different fields
of physics. For example, the critical damping of a classical
harmonic oscillator occurs at an EP [30]. In quantum mechan-
ics, a transformation of a pair of conjugate resonant states
(RSs) into a bound-antibound pair occurs at an EP [31,32].
Hydrogen atoms in crossed electric and magnetic fields [33],
graphene metamaterials [34], and elastodynamic metamate-
rials [35] have been shown to feature EPs. EPs can also be
used in topological metasurfaces [36]. Furthermore, EPs have
been studied in non-Hermitian extensions of quantum field
theories [37], the standard model of particle physics [38], and
in evolutionary game theory where a non-Hermitian matrix
featuring an EP has been used to describe changes in strategy
in rock-paper-scissors games [39].

A common way to look at EPs is by using parity-time (PT)
symmetric Hamiltonians which describe open systems with
equal gain and loss. These effective Hamiltonians have real
eigenvalues [40] which is known as pseudo-Hermiticity [41].
An EP occurs at the point of broken PT symmetry where
the eigenvalues cease to be real [42,43]. In contrast to these
studies, the system considered in this paper has (radiative)
loss but no gain so it is not PT symmetric. Passive systems,
such as this, can be an advantage in sensing applications [35]
since loss is inherent to the system, but gain is created actively.

Systems with gain thus often require large, complicated, and
expensive external components [44–47].

This work focuses on the EPs of whispering-gallery modes
(WGMs) in a dielectric microsphere perturbed by pointlike
defects (perturbers). WGMs are high-quality RSs of a micro-
sphere formed due the total internal reflection. However, they
are only a small part of the whole set of the RSs forming the
electromagnetic spectrum of such an open optical system. In
a spherically symmetric case, the RSs have either a transverse
electric (TE) or transverse magnetic (TM) polarization [48],
and the modes of a given angular momentum number l are
2l + 1 degenerate at a DP. Such degenerate modes with equal
wave number are usually counted by the magnetic quantum
number m [49]. A perturbation that breaks the spherical sym-
metry results in some of the states no longer being degenerate
at a DP, and the variation of the eigenwave numbers by the
perturbation is generally different for different eigenstates.
However, at specific parameters of the perturbation, the wave
numbers for some modes become degenerate again at an
EP [50,51] rather than a DP. This kind of EP is the focus of
this work.

The aim of this work is to rigorously investigate EPs for
perturbed WGMs and to develop a stronger mathematical
framework for their study. This is made possible by using
the resonant-state expansion (RSE), a method which maps
Maxwell’s equations onto a linear matrix eigenvalue prob-
lem [52] and thus allows direct access to the study of EPs.
WGMs were chosen because they are the fundamental modes
of the system and have generally high-quality factor, however,
they are only used to illustrate the underlying properties of
open systems at EPs and to demonstrate that the RSE is a
powerful tool for their study. This paper begins with find-
ing the states of the unperturbed system and then uses the
RSE to treat perturbations in a form of pointlike defects. The
parameter space of this perturbation is explored for locating
EPs, illustrating their features, such as the chirality of the
RSs and the non-Lorentzian optical spectrum at an EP, and
demonstrating at the same time that the majority of the RS
wave numbers are unaffected by these perturbations.

An article on a similar system by Wiersig [50], that has
also looked at EPs in an optical system without PT sym-
metry, treats WGMs in an optical microdisk (rather than a
microsphere) perturbed by nanoparticles. This study shows
that a perturbation that breaks the rotational symmetry of
a microdisk can also break the standing-wave nature of de-
generate pairs of WGMs. At an EP, the WGMs eigenvectors
become parallel and the corresponding waves propagate in
the same direction. One result of that study is a two-mode
approximation leading to an effective Hamiltonian that phe-
nomenologically treats the chiral states and EPs. We note,
however, that the matrix formulation introduced in the present
paper and used for the study of EPs is rigorously derived
from the RSE. Some conclusions of Wiersig’s study, namely,
the chirality of EPs and the 2 × 2 matrix approximation of a
second-order EP, are reproduced in Sec. VI.

Optical microdisks and microspheres are promising candi-
dates for applications in modern sensing due to the presence
of WGMs [53]. An extra sensitivity of WGMs comes from
their high-quality factors and low-mode volume leading also
to a strong Purcell enhancement [54]. As a result, the light-
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matter coupling of a WGM is strong, and the sensor can
be made highly responsive [7]. WGM sensing is advan-
tageous because glass microspheres are easy to fabricate,
although liquid microdroplets are also a promising candi-
date due to their near perfect spherical symmetry [55–57].
WGM sensors have been used for protein [58], DNA [59],
single-molecule [60,61], single-virus [62,63], and single-
nanoparticle [63,64] detections. All of these can be treated as
pointlike defects perturbing the WGMs.

The paper is organized as follows. The electric fields and
wave numbers of the optical modes of a homogeneous sphere
are calculated in Sec. II. Section III introduces pointlike de-
fects to the system with Sec. III A summarizing the RSE,
Sec. III B discussing the truncation of the RSE matrix, and
Sec. III C looking at the case of only two pointlike defects.
EPs of perturbed WGMs, with l = 1 (corresponding to a
3 × 3 and reducible to a 2 × 2 matrix problem), along with
the contribution of nearby modes are discussed in Sec. IV.
The spectral properties of the system in a two-mode approxi-
mation are studied in Sec. V, using the Purcell factor of l = 1
WGMs for illustration. Section VI A discusses a WGM EP,
with l = 20 (corresponding to a 41 × 41 matrix problem),
investigating its eigenfunctions and chirality. Section VI B
uses an orthogonal transformation to represent an EP of the
same system by a smaller matrix, equivalent to the original
formulation.

II. ELECTROMAGNETIC MODES OF
A HOMOGENEOUS SPHERE

In order to calculate the wave numbers and electric fields
of the RSs of a microsphere, we first analytically solve
Maxwell’s equations following the approach in [48], using
Gaussian units and the speed of light in a vacuum equal
to 1. The basis system, which is further used in the RSE, is
an uncharged nonmagnetic homogeneous dielectric sphere of
radius R, surrounded by vacuum, with magnetic permeability
1 and the electric permittivity given by

ε(r) =
{

ε for r � R,

1 for r > R,
(4)

where r is the position vector and r = |r| is the radial position.
The refractive index of the microsphere is therefore nr = √

ε.
Assuming the time-dependent factor of the fields is e−ikt ,

Faraday’s and Ampere’s laws take the form

∇ × E = ikH, ∇ × H = −ikε(r)E, (5)

respectively, where E is the electric field, H is the magnetic
field, and k is the RS wave number in vacuum which is
complex in finite optical systems. By combining Maxwell’s
Eq. (5), we obtain Maxwell’s wave equation for the electric
field

∇ × ∇ × E(r) = k2ε(r)E (r). (6)

Using the spherical symmetry, Eq. (6) is solved by separat-
ing variables in spherical coordinates with r = (r, θ, ϕ) and
introducing a scalar function

f (r) = Rl (r)Ylm(θ, ϕ), (7)

where θ is the polar angle, ϕ is the azimuthal angle, and
Ylm(θ, ϕ) are the real-valued spherical harmonics

Ylm(θ, ϕ) =
√

2l + 1

2

(l − |m|)!
(l + |m|)!P|m|

l (cos θ )χm(ϕ) (8)

with P|m|
l (cos θ ) being the associated Legendre polynomials

and

χm(ϕ) =

⎧⎪⎪⎨
⎪⎪⎩

π− 1
2 sin(mϕ) for m < 0,

(2π )−
1
2 for m = 0,

π− 1
2 cos(mϕ) for m > 0.

(9)

The radial functions, for the RSs satisfying the outgoing
boundary conditions, take the form

Rl (r) =
⎧⎨
⎩

jl (nr kr)
jl (nr kR) for r � R,

h(1)
l (kr)

h(1)
l (kR)

for r > R,
(10)

where jl (z) and h(1)
l (z) are the spherical Bessel function and

the Hankel function of the first kind, respectively.
As found in Appendix A, the solutions of Eq. (6) in spher-

ical coordinates for the electric fields of the RSs are given by

ETE(r) = ATE
l Rl (r)

⎛
⎜⎜⎝

0
1

sin θ
∂
∂ϕ

Ylm(θ, ϕ)

− ∂
∂θ

Ylm(θ, ϕ)

⎞
⎟⎟⎠ (11)

in TE polarization and

ETM(r) = ATM
l

ε(r)kr

⎛
⎜⎜⎝

l (l + 1)Rl (r)Ylm(θ, ϕ)

∂
∂r rRl (r) ∂

∂θ
Ylm(θ, ϕ)

∂
∂r

rRl (r)
sin θ

∂
∂ϕ

Ylm(θ, ϕ)

⎞
⎟⎟⎠ (12)

in TM polarization, with the normalization factors [48]

ATE
l =

√
1

l (l + 1)R3
(
n2

r − 1
) ,

ATM
l = nrATE

l

([
jl−1(nrkR)

jl (nrkR)
− l

nrkR

]2

+ l (l + 1)

k2R2

)− 1
2

.

(13)

By imposing Maxwell’s boundary conditions, we obtain
the secular equation [65]

β
J ′

l (nrkR)

Jl (nrkR)
= H ′

l (kR)

Hl (kR)
, (14)

where β = nr for TE polarization and β = n−1
r for TM

polarization, Jl (z) = z jl (z), Hl (z) = zh(1)
l (z), and the prime

denotes the derivative with respect to the argument. Solving
Eq. (14) numerically gives the wave numbers k of the RSs of
the dielectric microsphere.

Figures 2 and 3 show the numerical solutions to Eq. (14)
for both TE and TM polarizations, with Fig. 2 using the
parameters l = 1 and nr = 4, and Fig. 3 using the parame-
ters l = 20 and nr = 2. Note that Fig. 3 reproduces Fig. 1
in [49]. The refractive index nr = 4 was chosen for small l to
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FIG. 2. Wave numbers of the TE (blue circles) and TM (red
squares) 2l + 1 degenerate modes of a homogeneous dielectric
sphere with refractive index nr = 4, surrounded by vacuum, for
angular momentum number l = 1.

ensure the system would exhibit WGMs because the quality
factor and number of WGMs increase with both l and nr .
The Re k < 0 domain of the spectrum is not shown because
it is a mirror image of the Re k > 0 domain with respect
to the imaginary axis, due to the fact that optical modes in
any finite system are paired. Namely, for every RS with the
wave number k (with Re k �= 0) and electric field E, there is
always a conjugate RS with the wave number −k∗ and electric
field E∗.

In the spectra in Figs. 2 and 3, the TE and TM modes
alternate as Re k increases or decreases. The WGMs are the
modes with a small imaginary component of k and the real
component |Re k| < kc where kc = l/R is the critical wave
number of the total internal reflection. The l = 1 fundamental
mode and the eight l = 20 modes in Fig. 3(c) are WGMs.
The modes with |Re k| > kc that are not leaky modes (LMs)
are called Fabry-Pérot modes (FPMs) of which there are a
countable infinite number. LMs are the modes with a rather
large imaginary component of k. For any l � 1, there are l
TE and l − 1 TM LMs (each with 2l + 1 degeneracy). This
is shown clearly for l = 20, as there are 10 distinct LMs
of each polarization, with each mode having a pair in the
negative real domain except for the TM LM having Re k = 0.
The number of LMs is less clear for l = 1 because of a TM
mode with wave number kR = 1.039 − 0.501i which is the
Brewster-peak mode considered to be a hybrid LM-FPM [49].

The physical interpretations of these optical modes are
based on their reflections from the spherical surface [49].
LMs, sometimes called external resonances [66], are such
named because their electromagnetic field is distributed
mostly outside the sphere and, therefore, these modes have
large radiative losses. FPMs are due to reflections between
two opposite sides of the sphere surface, similar to a parallel-
mirror Fabry-Pérot resonator [67]. WGMs form by imperfect
total internal reflection at the curved inner surface of the
sphere [68]. These waves thus travel in great circles along the
sphere surface, hence, why their propagation can be clockwise
(CW) or counterclockwise (CCW).

Excluding the case of m = 0, WGMs in spheres exist in
pairs with one CW and the other CCW. This is when m < 0
and m > 0, respectively, due to the often used [69] azimuthal
function eimϕ as a phasor in the complex plane. Here, chirality
is the property of how much a mode is CW or CCW prop-
agating. Replacing the usual eimϕ with the real trigonometric
functions χm(ϕ) in Eq. (9) means that the chirality is no longer
given simply by the sign of m, but rather a combination of
the functions χm(ϕ) with positive and negative m, for the
same |m|. Spherically symmetric systems always have equal
chirality contributions from CW and CCW propagation. Intro-
ducing a perturbation that breaks the spherical symmetry can
lead to a chirality imbalance of the WGMs. Since eigenfunc-
tions become equal (up to a factor of i) at an EP, it has been
suggested that a pair of usually opposite chirality modes may
have equal chirality at an EP [50]. This will be analyzed and
discussed in depth in Secs. V and VI.

III. HOMOGENEOUS SPHERE PERTURBED
BY POINTLIKE DEFECTS

In order to break the spherical symmetry, and thus reveal
an EP, we introduce a finite number of pointlike defects inside
and/or outside the sphere. The perturbation of the permittivity
due to these pointlike defects is given by

�ε(r) =
∑

j

α jδ(r − r j ), (15)

where α j is the strength of the jth perturber which is qual-
itatively the product of its electric permittivity and volume,
r j is the position vector of the jth perturber, and δ(r) is the
three-dimensional Dirac delta function.

A. Resonant-state expansion

To solve this perturbation problem, we use the RSE [52],
which is a rigorous nonperturbative method for open optical
systems, that maps Maxwell’s equations onto a linear matrix
eigenvalue problem and is capable of treating perturbations
of arbitrary strength and shape. In simplified versions, it is
also suitable for treating the case of degenerate states, and
perturbation theory corrections to first, second [48], or higher
orders can also be extracted.

We remark that the RSE has also been applied to nonrel-
ativistic [70] and relativistic open quantum systems, wherein
one solves Schrödinger’s or Dirac’s wave equation with out-
going wave boundary conditions in an analogous way to
solving Maxwell’s equations. The RSE therefore provides a
rigorous description of EPs in those systems as well, however,
most of these results remain unpublished to date.

With an entirely internal perturbation, an RSE matrix with
a complete basis of optical modes yields an exact solution
for the perturbed system. However, outside the basis system,
the resonant states are lacking completeness due to the open
nature of the system. As a result, the RSE does not presently
work for external perturbations, even if all optical modes are
included in the basis. Nevertheless, the RSE equation can be
used in the same form for any external perturbations as soon
as the corrections to the RS wave numbers are limited to first
order in the perturbation strength or perturbation volume. In
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FIG. 3. Wave numbers of the TE (blue circles) and TM (red squares) 2l + 1 degenerate modes of a homogeneous dielectric sphere with
refractive index nr = 2, surrounded by vacuum, for angular momentum number l = 20. (a) All types of optical modes, (b) LMs, (c) WGMs
(using a log10 scale for the imaginary part), and (d) FPMs. Reproduction of Fig. 1 in [49].

fact, the RSE was shown to be correct to first order for volume
and/or boundary perturbations [71] or even for perturbations
of the medium surrounding the optical system, although ho-
mogeneous medium perturbations can be treated rigorously
by the RSE in any order [72]. For nondegenerate modes, using
the RSE in first order implies a single-mode approximation,
neglecting any off-diagonal elements of the perturbation ma-
trix. For a subset of degenerate modes, all the matrix elements
of the perturbation within such a subset must be kept as all of
them contribute in first order. This is exactly the case treated in
this work, in which the optical modes of the dielectric spheres
found in Sec. II are used as a basis for the RSE. Section IV
considers both internal and external perturbations of the basis
sphere, for l = 1 (3 degenerate modes), Sec. V considers only
internal perturbations for l = 1, and Sec. VI considers only
external perturbations for l = 20 (41 degenerate modes).

The RSE matrix equation has the form [52]

∑
n′

Hnn′Cn′ν = 1

κν

Cnν, (16)

where n is the matrix index counting the unperturbed modes,
ν is the index that counts the perturbed modes, Cnν is a square
matrix whose columns are the eigenvectors, and κν is the
wave number of the perturbed state ν. The RSE matrix in the
eigenvalue problem (16) is given by

Hnn′ = δnn′

kn
+ Vnn′√

kn
√

kn′
, (17)

where δnn′ is the Kronecker delta and

Vnn′ =
∫

dr En(r) · �ε(r)En′ (r) (18)

is the perturbation matrix, with En being the electric field of
mode n. It should be noted that Eq. (17) is missing a factor
of 1

2 in the second term compared to [48,52] which is ac-
counted for by ATE

l in Eq. (13) losing a factor of
√

2 compared
to [48].

As well as the wave numbers, the electric fields are also
changed by the perturbation. These perturbed electric fields,
which are the eigenfunctions of the perturbed Maxwell’s
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equations, are expanded into the states of the basis system [52]

Eν (r) = √
κν

∑
n

1√
kn

CnνEn(r). (19)

This eigenfunction expansion is fundamental to the derivation
of the RSE and is why it is so named. The eigenvectors of the
RSE matrix equation satisfy the orthonormality relation [73]∑

n

CnνCnν ′ = δνν ′ . (20)

It should be noted that while the eigenvectors of a Hermitian
matrix are normalized using the square modulus, and their
orthogonality relation contains the complex conjugate of one
of the eigenvectors, this is not the case for non-Hermitian
matrices [as it is clear from Eq. (20)] which are the primary
consideration of this paper.

To bring the RSE from the general case to one that treats
a basis system with pointlike defects, we substitute Eq. (15)
into (18) to get the perturbation matrix

Vnn′ =
∑

j

α jEn(r j, θ j, ϕ j ) · En′ (r j, θ j, ϕ j ), (21)

where r j , θ j , and ϕ j are the radial, polar, and azimuthal posi-
tions of the jth perturber, respectively. In Secs. IV–VI, using
Eq. (4) as the basis system and Eq. (15) as the perturbation, the
matrix Hnn′ is diagonalized to find the perturbed wave num-
bers κν , which are the reciprocal of the eigenvalues of Hnn′ ,
and the expansion coefficients Cnν which are the elements of
the eigenvector blocks and contribute to the perturbed electric
fields Eν via Eq. (19). The RSE matrix is symmetric due to
the lack of conjugation in Eq. (18). However, if instead of the
real azimuthal functions in Eq. (9), the complex functions eimϕ

are used, Eq. (18) requires a conjugation of the angular part
of En(r). This thus leads to a nonsymmetric matrix which is
equally valid but can complicate analysis and is thus avoided
in this work.

While this paper focuses on dielectric spheres perturbed
by pointlike defects, other geometries and dimensionalities
can be rigorously described by the RSE, as demonstrated
in [48,72,74–77]. We expect that the approach used here to
study EPs can be applied to other complicated systems by
changing the basis states and/or perturbation.

B. Resonant-state expansion matrix truncation

Since there are a countable infinite number of the modes
of an optical system, and the RSE matrix index n counts all
them, Hnn′ is an infinite matrix. While matrices of this size can
be treated analytically in a handful of cases, many problems
have only numerical solutions which require matrices of finite
size. So, in practice, a basis with a finite number of modes is
normally used for the RSE. Usually, the size of the basis is
determined by the required accuracy of the RSE calculation;
in this way one keeps the method numerically exact [74].

An essential technique for truncating the RSE matrix to
finite size exploits the fact that optical modes with very
different values of |kn| do not interact as much as closer
ones. This is due to the second-order Rayleigh-Schrödinger
perturbation theory corrections being inversely proportional

to the wave-number difference [48]. As soon as only first-
order corrections to the RS wave numbers are of interest,
the exclusion of all nondegenerate modes from the basis is
justified, although nearby modes can still be included and
their effect is investigated in Sec. IV. In a basis consisting
of only degenerate modes of a spherical system, all having the
same wave number, the index n labeling the basis RSs within
such a degenerate block of matrix Hnn′ can be identified as the
magnetic quantum number m.

Further truncation can be achieved when all of the per-
turbers are on the same plane. This allows all perturbers to
be considered on the equatorial plane θ j = π/2 where the
inner products of the electric fields of some modes vanish.
With all perturbers on one plane, modes with equal l , same
polarization, and different m values of opposite parity be-
come orthogonal. A significant consequence of this is that
each degenerate block of matrix Hnn′ is further split into two
independent blocks, one for even-m and the other for odd-
m modes which can be solved separately. Furthermore, TE
electric fields with m = 0 and even l vanish in this case. The
proofs for these statements are provided in Appendix B.

C. Two pointlike defects

Mathematically, Hnn′ can feature EPs due to being non-
Hermitian. In fact, the eigenwave numbers of the unperturbed
system kn are complex. They contribute not only to the di-
agonal part of Hnn′ , according to Eq. (17), but also to Rl (r),
making them, and consequently the perturbation matrix Vnn′ ,
complex [see Eqs. (10) and (21)]. However, in TE polariza-
tion, at least two perturbers are required for the system to
exhibit an EP. If there is only one perturber, the radial function
can be factored out of the matrix (21) leaving a Hermitian
matrix multiplied by a complex factor, and Hermitian matri-
ces by no means can feature EPs. The same is also true for
multiple perturbers all sharing the same radial position since
the angular part of the basis RS wave function is real [see
Eq. (11)].

Sections IV–VI of this work consider only the two-
perturber case, with j = 1, 2 in Eq. (15). For degenerate basis
modes, changing both α1 and α2 while maintaining their ratio
α = α2/α1 simply scales the eigenvalues and eigenvectors, so
only the ratio matters for locating an EP. Due to the spherical
symmetry, the absolute azimuthal position of the perturber ϕ j

is not significant, but the angle between the two perturbers
�ϕ = ϕ2 − ϕ1 is. The polar angles of the perturbers θ j and
their difference are not free parameters because two points
can always be considered to be on the same plane and, conse-
quently, the parity selection rules in Appendix B can always
be used in this case. The free parameters that are used for
searching for EPs are thus α, r1, r2, and �ϕ.

IV. DIPOLAR MODES

With two perturbers, j = 1, 2, we consider only the l = 1
triply degenerate fundamental TE mode (the WGM) of the
sphere with nr = 4, shown in Fig. 2, which has the unper-
turbed wave number k0R = 0.754 − 0.024i. The full RSE
matrix Hnn′ is then reduced to a 3 × 3 matrix. We can trun-
cate this matrix further to 2 × 2 by considering only m = ±1
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states, owing to the parity selection rules derived in Ap-
pendix B and summarized in Sec. III B. Then the EP condition
can be treated entirely analytically, resulting in simple explicit
expressions.

In fact, the truncation of the RSE matrix to this size allows
us to use the degeneracy condition (3),

H11 − H22 ± 2iH12 = 0, (22)

where the indices n = 1 and 2 denote the modes with m =
−1 and 1, respectively. Equation (22) is solved explicitly in
Appendix C leading to the following EP condition:

e±2i�ϕ = −α
R2

1(r2)

R2
1(r1)

, (23)

where α = α2/α1 and �ϕ = ϕ2 − ϕ1. To calculate the param-
eters that result in an EP degeneracy, this complex equation is
split into its magnitude

α =
∣∣∣∣R1(r2)

R1(r1)

∣∣∣∣
2

(24)

and phase

�ϕ = arg
R1(r2)

R1(r1)
± π

2
(25)

for any given values of r1 and r2. Note that the ± sign in
Eq. (23) arises from the mirror symmetry of the perturbed
system, making the phases �ϕ and −�ϕ indistinguishable.
We therefore choose the positive sign in e±2i�ϕ without loss
of generality. The ± sign in Eq. (25) is of different nature,
which has nothing to do with the mirror symmetry of the
system but is rather related to the fact that the coupled modes
with m = −1 and 1 have the difference �m = 2 in the mag-
netic quantum number. This results in the rotational symmetry
(with the rotation angle of π ) of the EP diagram in Fig. 4(c)
(see below for a detailed discussion). Note also that if α1 and
α2 have opposite signs, so that α < 0, the left-hand side of
Eq. (24) gets an extra factor of −1, and a phase of π/2 is
added to Eq. (25).

Omitting the index ν for brevity, this paper uses a scaled
dimensionless wave number

K = κ − k0

α1
R4 (26)

such that it is zero at the unperturbed wave number (κ = k0)
and scaled by perturbation strength. In fact, for a single per-
turber, K does not depend on the perturber strength α1 in
first order. For two perturbers, K depends only on the ratio
α (again, to first order in α1 and α2). In general, there are two
values of K which are different and coalesce only at EPs or
DPs. As derived in Appendix C, the value of K = KEP for an
EP is given by

KEP = k0R4

α1

⎧⎨
⎩
[

1 + 3
(
ATE

1

)2
8π

α1R2
1(r1)(1 − e2i�ϕ )

]−1

− 1

⎫⎬
⎭,

(27)

FIG. 4. Solutions of Eq. (22), the condition where the eigenval-
ues of Hnn′ (with an m = ±1 two-mode TE basis of the fundamental
WGM in Fig. 2) are degenerate, in the parameter space of the system
(dielectric microsphere with nr = 4, surrounded by vacuum, with
two perturbers). Black dots denote the parameters of DPs. The radial
position of the first perturber is fixed at r1/R = 0.95. (a) Parameters
satisfying Eq. (22): α, r2/R, and �ϕ/π with the latter represented by
color shown in the range �ϕ/π = 0.477 to �ϕ/π = 1.477. Inset
plots the modulus of the squared radial function |R2

1(r)| in the
left axis and its phase argR2

1(r)/π in the right axis against radial
position. Black cross denotes the parameters of the EP shown in
Fig. 5. (b) KEP for the same degeneracies as (a) with color rep-
resenting the same range of �ϕ/π . (c) Positions of the second
perturber r2/R and ϕ2 = �ϕ that lead to EPs in polar coordinates
(with ϕ1 = 0 and θ1 = θ2 = π/2) with the corresponding α shown
by color. Black thick hollow circle shows the surface at r = R of the
microsphere.
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which in first order can be approximated as

KEP ≈ −k0R4 3
(
ATE

1

)2
8π

R2
1(r1)(1 − e2i�ϕ ) (28)

and is clearly independent of α1, α2, and r2. Here, for instance,
the parameters α and r2 were varied to achieve an EP for the
given r1 and �ϕ. Note that KEP given by Eqs. (27) or (28)
takes the same values if a phase pπ , where p is any integer,
is added to �ϕ. Furthermore, KEP given by Eqs. (27) or (28)
reaches DPs at �ϕ = pπ/2, returning exactly to the unper-
turbed values (K = 0) at �ϕ = pπ , where p is an integer.

With the radial position of the first perturber fixed at
r1/R = 0.95, the parameters α, r2, and �ϕ, satisfying the
conditions (24) and (25) for EPs, are plotted in Fig. 4(a),
with the corresponding KEP values from Eq. (27) plotted in
Fig. 4(b). Due to the periodicity in �ϕ of the expression in
Eq. (27), Fig. 4(b) shows all possible values of KEP, although
other parameters at EPs, such as r2, are not periodic functions
of �ϕ [see Fig. 4(c)]. While KEP is independent of α1 to first
order, as explained above, it takes rather small values. This
is due to a small factor 3(ATE

1 )2R3/(8π ) ≈ 0.004 in Eq. (27),
resulting from the rather high refractive index of the sphere.
The set of EPs shown in Fig. 4(a) is then extended to large
r2 and α in polar coordinates in Fig. 4(c). Multiple adjacent
EPs in a line are called an exceptional arc (EA) [78]; EPs and
EAs are, respectively, zero- and one-dimensional objects [79].
Figure 4 therefore shows an example of an EA. This EA takes
the form of a bilateral spiral in the parameter space and an
ellipse in the complex k space. It has been suggested that EPs
of N th order require 2N − 2 parameters to be simultaneously
adjusted [80]. The treatment of Eq. (23) as a phasor in the
complex plane, alongside Figs. 4(a) and 4(c), supports this for
the case of second-order EPs.

In Fig. 4(a), for the chosen r1, the angle between perturbers
is close to π/2 for internal perturbations since the WGMs,
having a high-quality factor, are described by an almost real
wave function. While the argument of the angular function
argR2

1(r), plotted in the inset of Fig. 4(a), is close to 0 for
small radii, Eq. (23) also has a factor of −1, resulting in
�ϕ ≈ π/2 for EPs inside the sphere. On the other hand, the
perturber strength ratio at EPs diverges for smaller r2. This
is because α in Eq. (24) is inversely proportional (in the
case of varied r2) to the radial function |R2

1(r)|, also plotted
in the inset of Fig. 4(a), which is small at small values of
the radial position. The radial function also has a maximum
at r/R = 0.69 which causes the minimum of α at around
the same radius of the second perturber in Fig. 4(a). With
the second perturber outside the sphere, �ϕ becomes much
more sensitive to r2 and α because the imaginary part of the
wave functions of the WGMs gradually increases outside the
sphere. Beyond this, the WGM wave function exponentially
grows at large distances from the open optical system [81],
due to the complexity of the RS wave numbers. Because of the
periodicity of Eq. (25), for a given �ϕ, the presented solution
generates an infinite number of possible EPs with the same
wave number at different values of r2 and α. However, the fact
that this solution is valid only in first order imposes a restric-
tion for its use for very large values of α. Figure 4(c) shows
this resultant bilateral spiral of second-perturber positions that

FIG. 5. Dimensionless wave numbers K of perturbed RSs cal-
culated from Hnn′ , with l = 1, against r2/R, for a microsphere with
nr = 4 and two perturbers. (a) For the cyan solid lines, Hnn′ has the
mode basis of a triply degenerate TE WGM only accounting for
m = ±1. For the red dotted and black dashed lines, Hnn′ has the
mode basis of a triply degenerate TE WGM and its closest triply
degenerate TM FPM, both triplets with m = 0, ±1. Red dotted (black
dashed) lines have perturber strengths α1R−3 = 0.004 and α2R−3 =
0.003 107 (α1R−3 = 0.1 and α2R−3 = 0.0777). Cyan solid lines are
the K values of the 2 × 2 matrix which are equal for either factor of
perturber strength, to first order. Other perturbation parameters are
fixed at r1/R = 0.95 and �ϕ = 1.547. (b) As the cyan solid lines
and black dashed lines in (a) but with the 6 × 6 matrix including the
l = 1 TM mode (black dashed lines) fine tuned to restore the EP by
changing the angle between perturbers to �ϕ = 1.5494.

satisfy the degeneracy condition. Not all of the degeneracies
plotted are EPs; since H12 vanishes at �ϕ = pπ/2, where p is
any integer, these points are DPs, due to the symmetry of the
system not being sufficiently broken by the perturbation. The
DP locations are derived in Appendix C and shown by black
circles in Fig. 4.

Looking closer at an example of one of these EPs inside
the sphere [the black cross in Fig. 4(a)], the RSE matrix is
diagonalized numerically to find the nearby perturbed wave
numbers. K values for the two perturbed RSs are plotted
in Fig. 5 against a varied radial position of the second per-
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turber around an EP. The other perturbation parameters are
fixed at α1R−3 = 0.004, α2R−3 = 0.003 107, �ϕ = 1.547,
and r1/R = 0.95. At the EP, r2/R = 0.818. The characteristic
shape of an EP, which was demonstrated in Fig. 1, is present
in Fig. 5(a).

To show how accurate approximating the RSE to a basis
with only degenerate modes is, we now include in the basis the
closest modes to the earlier selected fundamental TE WGM.
This is a dipolar triply degenerate TM FPM at kR = 1.053 −
0.072i as shown by Fig. 2. By including TM modes, the m = 0
states are no longer orthogonal with all other modes, so m =
0,±1 is the required basis for each polarization. The resulting
6 × 6 RSE matrix is diagonalized with the same parameters as
the 2 × 2 matrix, demonstrating little visual difference in the
plotted wave numbers between the two models (compare cyan
solid and red dotted lines). To compare different perturbation
strengths of the system, the same matrices are diagonalized
again but with both α1 and α2 multiplied by 25. It is worth
noting that while other modes contribute (including those with
different l) in second and higher orders, for these perturbation
strengths, they are much less significant than the closest mode
due to the larger difference in wave number.

Comparing the two perturbation strengths which differ by
the factor of 25, it is clear that the different size matrices are
in closer agreement when the perturbation is weaker because
stronger perturbations have greater effect on the modes and
second-order perturbation theory terms become more signifi-
cant. The consequence of this is that truncation to a basis of
only degenerate modes is accurate only for weak perturbation
strengths since it is a first-order approximation. Further modes
not included in this calculation have a similar effect on the EP
when considered in the truncated basis, although the effect is
smaller as the difference in wave number between the modes
increases. This article is dealing with small matrices for illus-
trative purposes but many resonant states (often up to order
103) should be accounted for in an accurate calculation for
strong perturbations. Note that Refs. [48,49,52,65,72,75,82]
provide a convergence analysis for the RSE treating various
spherical and nonspherical systems using the modes of a di-
electric sphere as a basis.

While the EP is lost after accounting for more modes, it
can be easily restored by fine tuning the parameters again. In
fact, while second-order EPs are found by fine tuning two
parameters, only one parameter needs to be fine tuned to
restore the EP in this case. To demonstrate this, we take the
matrix including in its basis the l = 1 fundamental TM modes
and adjust �ϕ by −0.0024 [compared to the value for the
2 × 2 matrix, calculated via Eq. (25)] to �ϕ = 1.5494. The K
values for this 6 × 6 fine-tuned matrix are plotted in Fig. 5(b)
which shows that the EP has been restored but slightly shifted
in K .

V. SQUARED-LORENTZIAN SPECTRUM NEAR
EXCEPTIONAL POINTS

Using the basis of the TE dipolar RSs considered in
Sec. IV, we now focus on the optical spectrum of the sys-
tem, in order to see how the normal Lorentzian line shape
is modified when the system approaches an EP, developing
an additional squared-Lorentzian component [27,28,83]. We

focus here on a simple but experimentally relevant spectral
function, the Purcell factor (PF), which is a measure of local
density of states of the optical system for a given polar-
ization of the electric field, and is therefore comparable to
a measurable microphotoluminescence [84]. Note, however,
that the often studied Petermann factor which characterizes
the behavior of non-Hermitian systems near EPs [85] is not
analyzed here.

According to the exact theory of the Purcell effect [54], the
PF is given by

F (q) = 3π

q

∑
n

Im
1

Vnkn(kn − q)
, (29)

where
1

Vn
= [e · En(rd )]2 (30)

is the inverse mode volume, rd = (rd , θd , ϕd ) is the position
of a pointlike emitter (not to be confused with the pointlike
perturbers treated in this work), e is the unit vector of its
polarization, which is chosen below in the z direction, and q
is the real light wave number of the emitter. Clearly, all the
RSs of the system contribute to its PF as individual complex
Lorentzian lines. Truncating the infinite sum in Eq. (29) and
keeping only the contribution of the dipolar WGMs, we obtain

F (q) = 3π

q
sin2 θd Im

[
R̃2(rd )

k0
f (q, ϕd )

]
, (31)

where the function

f (q, ϕ) = 1

k0 − q
(32)

is purely Lorentzian and independent of ϕ for the unperturbed,
i.e., spherically symmetric, system. In fact, in this case (and
also in the perturbed system), the m = 0 state does not con-
tribute. The m = −1 and 1 unperturbed modes, denoted below
(as in Sec. IV) with the indices n = 1 and 2, respectively, have
the wave numbers k1 = k2 = k0 and the electric fields

E1(r) = R̃(r)

⎛
⎜⎝

0

cos ϕ

− cos θ sin ϕ

⎞
⎟⎠ (33)

and

E2(r) = R̃(r)

⎛
⎜⎝

0

− sin ϕ

− cos θ cos ϕ

⎞
⎟⎠, (34)

in accordance with Eq. (11), where

R̃(r) =
√

3

4π
ATE

1 R1(r). (35)

Therefore, the sum of their inverse mode volumes is given by

1

V1
+ 1

V2
= sin2 θdR̃2(rd ). (36)

For the perturbed RSs, calculated in the two-state basis,

Eν (r) =
√

κν

k0
[C1νE1(r) + C2νE2(r)], (37)
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in accordance with Eq. (19), so that

f (q, ϕ) =
∑
ν=±

(C1ν cos ϕ − C2ν sin ϕ)2

κν − q
(38)

is a sum of two complex Lorentzian functions. To evaluate this
expression in general and near an EP, we solve the 2 × 2 RSE
matrix eigenvalue problem,(

H11 H12

H12 H22

)(
C1ν

C2ν

)
= 1

κν

(
C1ν

C2ν

)
, (39)

determining the eigenvalues

1

κν

= H11 + H22 + ν�

2
(40)

and the properly normalized eigenvectors(
C1ν

C2ν

)
= Nν

(
1

H22−H11+ν�
2H12

)
(41)

of the two perturbed RSs ν = ±, where

� =
√

(H22 − H11)2 + 4H2
12 (42)

and

Nν =
√

2H2
12

�[� + ν(H22 − H11)]
(43)

are the normalization constants. This is the exact solution of
the truncated 2 × 2 RSE matrix problem, so that the use of the
eigenvalues κν and the expansion coefficients C1ν and C2ν in
Eq. (38) determines the spectrum for any sufficiently small
perturbation for which the truncation works well. Keeping
only the WGMs in the sum is in turn well justified by their
dominant contribution to the spectrum [54].

Now focusing on the spectral properties near the EP, we
take the limit � → 0, expanding all the expressions (depend-
ing on �) in powers of � and keeping terms to first order
in �. In this approximation, Eq. (42) coincides with the EP
condition (22):

H22 − H11

2H12
= ±i (44)

(in fact, corrections are proportional to �2), the eigenvectors
simplify to (

C1ν

C2ν

)
=
√

∓ν
iH12

�

(
1 ± νi �

4H12

±i + ν �
4H12

)
(45)

and the eigenvalues to

κν = κ̄ − ν
κ̄

2�

2
, where κ̄ = 2

H11 + H22
, (46)

giving the value κ+ = κ− = κ̄ at the EP. Substituting
Eqs. (45) and (46) into (38), we arrive after simple algebra
at

f (q, ϕ) = 1

κ̄ − q
∓ iH12e∓2iϕ κ̄

2

(κ̄ − q)2
, (47)

where in addition to the Lorentzian term having the same
form as in Eq. (32), a new, squared-Lorenzian term appears,

which strongly depends on the angular position of the emitter,
thus emphasizing on the strong chirality of the modes at the
EP. This term is, however, rather small as it has a factor of
H12, proportional to the strengths of the perturbers, so it is a
first-order correction to the Lorentzian spectrum. Note also
that Eq. (47) is valid in the vicinity of the EP for which
|�/H12| 	 1.

To see more clearly the chirality of the modes at the EP,
we write the explicit form of the perturbed fields to first order
in �:

Eν (r) =
√

∓ν
iH12

�

κ̄

k0
R̃(r)

⎡
⎣(1 − ν

κ̄�

4

)
e∓iϕ

⎛
⎝ 0

1
∓i cos θ

⎞
⎠

±νi
�

4H12
e±iϕ

⎛
⎝ 0

1
±i cos θ

⎞
⎠
⎤
⎦. (48)

While both modes are almost fully chiral with the degenerate
chirality owing to the dominant and divergent CW term (pro-
portional to e−iϕ), if we choose the upper sign in Eq. (48), this
is likely to be a small effect in any observable since the major
contribution comes from an interference of the divergent CW
and the vanishing CCW term (proportional to eiϕ), leading
to a finite Lorentzian part of the spectrum with no phase
dependence, as is clear from Eq. (47).

We show in Fig. 6 the optical spectra for the Purcell factor
of this system and the effect EPs have on them, using Eqs. (29)
and (38), the latter being equivalent to Eq. (47) at EPs. The
emitter position is chosen to be rd/R = 1, θd = π/2, and both
ϕd = π/8 and ϕd = π/4 are considered separately in the left
and right panels, respectively. Figures 6(a) and 6(b) plot F (q)
for (i) the unperturbed system, (ii) the EP shown in Fig. 5 with
α1R−3 = 0.1 and α2R−3 = 0.0777, (iii) the EP in Fig. 5 for
the same α = 0.777 but with α1R−3 = 4 and α2R−3 = 3.107,
and (iv) away from the EP at α1R−3 = 4 and α2R−3 = 10.
These plots demonstrate that the Lorentzian originating from
the basis system dominates for weak perturbations where the
truncation approximation described in Sec. IV is valid. Ob-
servation of the double Lorentzian for nondegenerate modes
requires a stronger perturbation, which may go beyond first-
order limits. However, these plots show that even with a strong
perturbation, the EP exhibits only one peak in the spectrum
due to the degeneracy of the eigenstates.

Since the non-Lorentzian part of the spectrum is small, we
introduce a differential PF defined as

�F (q) = F (q) − Im
B

κ̄ − q
, (49)

with the appropriate constant B, as follows from Eqs. (31) and
(47). In the differential PF Eq. (49), the Lorentzian part is
removed, making it equivalent at an EP to the second, squared-
Lorentzian term in Eq. (47). These non-Lorentzian spectra are
plotted in Figs. 6(c) and 6(d) with the same parameters as
before. The unperturbed system has an entirely Lorentzian
spectrum so its �F (q) vanishes. The amplitudes of the
squared Lorentzians at EPs are proportional to perturbation
strength [see Eq. (47)] so the spectra with strong perturba-
tions are scaled down for visibility. These squared Lorentzians
have almost the same shape and are shifted in frequency
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FIG. 6. Purcell factor F (q) and the non-Lorentzian part of the Purcell factor �F (q) as functions of light emitter wave number qR for a
microsphere of refractive index nr = 4 with two perturbers, calculated for the perturbed fundamental TE WGM with l = 1. The perturbation
parameters are r1/R = 0.95, r2/R = 0.818, and �ϕ = 1.547, with α = 0.777 at EPs. Emitter is placed at rd/R = 1, θd = π/2, and ϕd = π/8
for the left panels and ϕd = π/4 for the right panels. (a), (b) PF F (q) calculated using Eq. (38) at an EP with α1R−3 = 0.1 and α2R−3 = 0.0777
[cyan (light gray) solid line], at an EP with α1R−3 = 4 and α2R−3 = 3.107 [magenta (dark gray) solid line], away from the EP with α1R−3 = 4
and α2R−3 = 10 (green dashed line), and for the unperturbed system (black dotted line). (c), (d) As (a) and (b) but instead plotting only the
differential Purcell factor �F (q). The actual results for the green dashed and magenta (dark gray) solid lines can be obtained by multiplying
by factors of 4 × 10−4 and 0.02, respectively. (e), (f) Differential PF for the EP with α1R−3 = 0.1 and α′

2R−3 = 0.0777 (cyan solid line) and
for small variations from α′

2 away from the EP (colored dashed lines). (g), (h) Differential PF for the unperturbed system α1 = α2 = 0 (black
dotted line) and at small variations away from the DP (colored dashed lines).
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with respect to each other owing to the perturbation-induced
frequency shift of the modes. The non-Lorentzian spectrum
away from the EP has a minimum at one of its Lorentzian
peaks and a maximum at the other. Meanwhile, the EPs’ non-
Lorentzians have a minimum-maximum pair centered around
their single Lorentzian peaks, in accordance with Eq. (47). It
is notable that �F (q) near an EP resembles the change in cir-
cular dichroism (the absorption difference between modes of
opposite chirality) observed for �-shaped plasmonic nanoan-
tennas studied in [86]. This is because the chirality of each
mode is sensitive to perturbations in an EP’s vicinity (see [50]
and Sec. VI A below). While the squared-Lorentzian emission
spectrum may be unresolvable at small perturbations due to
the dominating spectrum of the basis system, measuring the
circular dichroism [86] may provide a way to spectrally ob-
serve EPs in this system.

Spectra in the vicinity of an EP (within |�/H12| 	 1)
show similar features to the spectrum at the EP (which can
never be exactly reached). To show this, we plot the non-
Lorentzian part of the spectrum, at the EP with α1R−3 = 0.1
and α2R−3 = 0.0777, alongside small variations from it in
Figs. 6(e) and 6(f). We call α′

2 the value of α2 at the EP and
make small variations of α2 from α′

2. We then compare this
to the same deviations from the unperturbed DP plotted in
Figs. 6(g) and 6(h). Clearly, around EPs, the non-Lorentzian
line shape turns out to be very sensitive to the parameters of
the system and the emitter position, whereas it stays the same
with small deviations from a DP.

VI. WHISPERING-GALLERY MODES WITH HIGH
ANGULAR MOMENTUM

A. Twenty-mode basis

Again with two perturbers, j = 1, 2, we now focus on a
perturbation of the fundamental WGM of the sphere with
nr = 2 shown in Fig. 3(c). This mode has the wave number
k0R = 12.334 049 42 − 2.27 × 10−6i and angular momentum
l = 20, so it is 41-fold degenerate. Using the same trunca-
tion approximation as in Sec. IV, we therefore start with a
basis of 41 degenerate states. Owing to the selection rules in
Appendix B, the 41 × 41 RSE matrix is truncated further to a
20 × 20 matrix by excluding the odd m and m = 0 states from
the basis. Still, Eq. (3) cannot be used to find degeneracies
here before a transformation to a 2 × 2 matrix is applied in
Sec. VI B. In this section, ν accordingly takes integer values
from 1 to 20.

The 20 × 20 RSE matrix is numerically diagonalized to
find the perturbed wave numbers and expansion coefficients.
The normalized perturbed wave numbers K [defined by
Eq. (26)] are shown in Fig. 7 as functions of the perturber
strength ratio α. Note that the two perturbers are now placed
outside the sphere to make the system more suitable for a
potential experimental verification. It is clear that only two
states, which we label by ν = 1, 2, are affected by the pertur-
bation as their wave numbers change with a variation of the
perturbation parameter and show the characteristic shape of
an EP at α = 1.6, �ϕ = 1.199 605, r1/R = 1.5, and r2/R =
1.5542. We therefore from here onwards call them affected
states. The other 18 states have the wave number K = 0

FIG. 7. Scaled dimensionless wave numbers K around an EP
for a microsphere with refractive index nr = 2, angular momentum
l = 20, and two perturbers, calculated using a 20 × 20 matrix Hmm′

(cyan solid lines), 2 × 2 matrix H2×2
νν′ (black dotted lines), and the

diagonal 18 × 18 matrix k−1
0 δν̄ν̄′ (red dashed lines) against the per-

turber strength ratio α, with σ ′ = α′ = 10 used for the orthogonal
transformation. The other parameters are fixed at r1/R = 1.5, r2/R =
1.5542, and �ϕ = 1.199 605. The actual values of K are obtained by
multiplying the shown numbers by 10−4 as indicated.

(corresponding to κν>2 = k0), independent of the perturbation
parameters and are called here unaffected states, although
their wave functions do depend on the perturbation, as dis-
cussed below. More generally, using the selection rule in
Appendix B, it can be seen from Eq. (11) that for N perturbers,
there are 2N affected modes in TE polarization for even l ,
half of them for even m and half for odd m. This is supported
by Fig. 7 where we can see that there is only one (even
m) affected state for α = 0 which is the case for a single
perturber.

A transition from weak to strong coupling occurs at an
EP which is also the point of critical coupling [87]. The EP
in Fig. 7 is replotted now in Fig. 8(b) instead varying the
parameter r2/R and fixing α = 1.6, r1/R = 1.5, and �ϕ =
1.199 605. The strong (weak) coupling regime is shown in
Figs. 8(a) (8(c)) by adding (subtracting) 10−3 to (from) �ϕ.
These figures clearly demonstrate the characteristics of the
real and imaginary parts in the strong and weak coupling
regimes. These are an avoided crossing of the real part and
crossing of the imaginary part of the eigenvalues (here the RS
wave numbers) in the strong coupling, and vice versa in the
weak coupling. Approaching the EP from the strong coupling
regime, the Rabi splitting strictly vanishes at the EP and the
linear crossing of the imaginary part of the wave number
also gains the characteristic (square-root) shape of the EP as
shown by Fig. 8(b). Small Rabi splitting is thus an indication
of proximity to a degeneracy in this system. Whether or not
the system then becomes weakly coupled distinguishes an EP
from a DP.

Now considering the wave functions of the perturbed
WGMs, the expansion coefficients obtained from the diago-
nalization of the RSE matrix are used in Eq. (19) along with
the TE electric fields from Eq. (11). The perturbed electric
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FIG. 8. As Fig. 7 but for a 20 × 20 matrix only, varying r2,
and fixing α = 1.6, r1/R = 1.5, and �ϕ, with (a) �ϕ = 1.200 605
(strong coupling), (b) �ϕ = 1.199 605 (EP), and (c) �ϕ =
1.198 605 (weak coupling). The actual values of K are obtained by
multiplying the shown numbers by 10−5 as indicated.

fields are found by a summation over even m from m = −20
to 20 excluding m = 0. The modulus of these fields on the
sphere surface r = R are color plotted in Fig. 9, as well as in
Figs. 11–13 in Appendix D. In these plots, ϕ is represented
intuitively by the polar angle but θ is represented by the radial

coordinate ρ(θ ) = θ . As a result, the center of these diagrams
is the south pole and the outer circle is the north pole of the
sphere; this distortion should be considered when interpreting
these graphs.

Figures 9(a) and 9(b) show the affected states in the vicin-
ity of the EP, where they are almost identical, demonstrating
the degeneracy of the eigenfunctions. The small difference
between the nearly degenerate eigenfunctions arises from
the fact that we cannot exactly reach an EP in the parame-
ter space. Figures 9(c) and 9(d) show the states at �ϕ = 2
changed to be away from the parameters of the EP (for which
�ϕ = 1.199 605), and Figs. 9(e) and 9(f) show the states with
α = 3 changed to be away from the parameters of the EP (for
which α = 1.6). The eigenfunctions with altered �ϕ have a
similar pattern to each other and to the same states at the EP
but they appear rotated and are no longer degenerate. The
eigenfunctions with altered α have a much larger change in
parameter and thus are much further away from the EP; the
electric fields become much stronger at one perturber than
the other, although the electric field at the other perturber
is still nonzero. This electric field maximum is enhanced
from max |Eν | ≈ 0.5 at the DP and for nondegenerate af-
fected states to max |Eν | ≈ 2.25 close to the EP. The closer
the system is to an EP, the greater the enhancement of the
eigenfunctions, as discussed in Sec. V [see Eq. (48)]. The
difference between the maxima in Figs. 9(a) and 9(b) is small,
and the observation of enhanced emission or chirality will be
sufficient to detect the EP. Away from the EP, the maximum
value of |E1(r)| for the first mode occurs at the position of
one perturber; conversely, the maximum of |E2(r)| for the
second mode occurs at the position of the other perturber
[see Figs. 9(e) and 9(f)]. The electric field close to an EP
thus has a significantly different shape compared to the same
state far away from the EP because it has maxima at the
positions of both defects instead of just one. Figures 11–13
in Appendix D show the electric fields of the unaffected
modes at the parameters of the EP. Because the degeneracy
of the unaffected states is for them a DP, not an EP, all their
eigenfunctions are different. Eν>2(r j ) = 0 at both perturber
positions for all of the unaffected states which supports the
fact that their eigenvalues are not affected by the perturbation.
This is because the perturbation matrix only depends on the
electric fields at the perturber positions (see Sec. VI B below
for a more rigorous discussion).

Another feature of WGMs made analyzable by the RSE
is chirality. To investigate the chirality while retaining the
symmetric formalism of the RSE, the real azimuthal func-
tion χm(ϕ) given by Eq. (9) is expanded into the complex
azimuthal functions eimϕ . This change of the basis functions
transforms the expansion coefficients of the RSE in the fol-
lowing way:

∑
m=±|m|

C̃mν

eimϕ

√
2π

=
∑

m=±|m|
Cmνχm(ϕ). (50)

Note that as we only consider degenerate modes of the same
polarization, the general RSE index n is replaced here and
below with azimuthal quantum number m. From Eq. (50)
we find explicitly the transformed expansion coefficients
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FIG. 9. Modulus of perturbed l = 20 electric fields at the sphere surface as a function of azimuthal and polar angles for ν = 1 (left panels)
and ν = 2 (right panels). θ is shown by the radial axis and ϕ by the polar angle. Brighter colors represent a stronger field. Red hollow circles
show the angular position of the perturbers. (a), (b) show the wave functions at the EP with �ϕ = 1.199 605 and α = 1.6. (c), (d) show the
wave functions away from the EP for �ϕ = 2 and α = 1.6. (e), (f) show the wave functions away from the EP for �ϕ = 1.199 605 and α = 3.
The perturber radii are r1/R = 1.5 and r2/R = 1.554 20 for all panels.
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FIG. 10. Modulus of RSE expansion coefficients C̃mν , for l = 20, nr = 2, and two perturbers, against m. Blue crosses show eigenstates
at the given parameters of the EP, which are α = 1.6, �ϕ = 1.199 605, r1/R = 1.5, and r2/R = 1.554 20, red pluses show eigenstates with
the perturber strength ratio changed to α = 3, and green dots show eigenstates with the angle between the perturbers changed to �ϕ = 2.
(a)–(d) Show the expansion coefficients for states ν = 1, 2, 3, and 4, respectively.

of the RSE,

C̃±|m|,ν = 1√
2

(C+|m|,ν ± iC−|m|,ν ), (51)

which are also not normalized by Eq. (20) but instead by∑
m C̃−m,νC̃m,ν ′ = δνν ′ . The sign of m is changed in one of the

eigenvectors compared with Eq. (20) which is equivalent to
the partial conjugation required in the non-symmetric formal-
ism of the RSE [32,49].

The modulus of the coefficients C̃mν is then plotted against
m in Fig. 10 for the affected states (ν = 1, 2) and two of the
unaffected states (ν = 3, 4). The coefficients are taken at the
given parameters of the EP and also away from the EP by
separately changing the strength ratio and angle between the
perturbers to α = 3 and �ϕ = 2, respectively, while keeping
all other parameters the same. While the eigenvalues of the
unaffected states are unchanged by variations of the pertur-
bation parameters, the corresponding expansion coefficients
C̃mν (or Cmν) do change. This is because a variation of the
parameters will alter the affected states (both their wave num-
bers and wave functions), and since all the eigenvectors of

the RSE matrix are orthogonal [73], the wave functions of the
unaffected states change.

Figure 10 shows that the dominant coefficient of the degen-
erate affected states is much larger than the other coefficients.
This implies an imbalance towards negative m which is a CW
chirality. This means that light has a preferred angular prop-
agation direction in this system. They have similar expansion
coefficients at the parameters of the EP due to the degeneracy
of eigenstates. However, they are not precisely equal because
it is impossible to exactly reach any single point (including
an EP), and eigenstates are more sensitive to the parameters
than eigenvalues. This sensitivity is owing to the fact that the
expansion coefficients are inversely proportional to the square
root of the wave-number splitting [see Eq. (48)]. The expan-
sion coefficients near an EP [Figs. 10(a) and 10(b)] are shown
to be enhanced a few times compared to the unaffected states
in Figs. 10(c) and 10(d), due to being in the vicinity of but not
exactly at an EP. Eigenstates at an EP always differ by at least
a factor of i and therefore have a phase difference of π/2. The
demonstrated chirality supports the idea of two WGMs ex-
actly at an EP being both CW (or CCW). Chirality imbalance
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is not that strong for the unaffected states or with the affected
states that are not in the proximity of an EP. EPs for WGMs
thus enhance chirality and the magnitudes of their electric
fields, which is relevant for light absorption applications [88].
It may also be possible to utilize the enhanced sensitivity of an
EP in chiral sensing applications [15,89,90], although Sec. V
shows that the emission spectrum has limited sensitivity. The
chirality imbalance for a microsphere is in agreement with the
phenomenological analysis by Wiersig [50] for a microdisk
with two perturbers.

B. Orthogonal transformation to two-mode basis

Since the wave numbers of only two modes (ν = 1 and 2)
are affected by the perturbation, while those of the remaining
18 modes are unaffected, the 20 × 20 RSE matrix problem
can be effectively reduced to a 2 × 2 matrix problem, simi-
lar to that treated in Secs. IV and V. One can do this in a
mathematically rigorous way by making an orthogonal trans-
formation of the initial RSE matrix Hmm′ .

To develop this orthogonal transformation we consider the
20 × 20 RSE matrix problem (16) in the form∑

m′
Hmm′ (σ )Cm′ν (σ ) = 1

κν (σ )
Cmν (σ ), (52)

where σ denotes one of the free parameters of the perturbation
(such as α j or r j), or their combination. Let us denote the
unaffected states with index ν̄ (ν̄ = ν for 3 � ν � 20). At the
perturber positions r j , their electric fields vanish, which can
be written as

Eν̄ (r j ) =
∑

m

Cmν̄ (σ )Em(r j ) = 0, (53)

using the general expansion (19) and the fact that κν̄ (σ ) = k0,
where k0 is the unperturbed wave number. The latter has
been demonstrated numerically in Sec. VI A but can also
be proven mathematically. In fact, it follows from Eq. (53)
that

∑
m′ Vmm′Cm′ ν̄ = 0, using the explicit form of the matrix

elements, Eq. (21). Then, omitting the argument σ for brevity,
we obtain from Eq. (52)

∑
m′

Hmm′Cm′ ν̄ = 1

k0

(
Cmν̄ +

∑
m′

Vmm′Cm′ ν̄

)
= 1

k0
Cmν̄ , (54)

that results in κν̄ = k0.
Note that Eq. (53) is a scalar equation. In fact, on the equa-

torial plane, the electric field has only the θ component in TE
polarization for l and m of the same parity [see Eq. (11) and
Appendix B] which is the case treated here. Since j only takes
the values 1 or 2, for each state ν̄, Eq. (53) presents a set of two
simultaneous homogeneous linear algebraic equations with
constant coefficients Em(r j ) determining 20 variables Cmν̄ (σ ).
This pair of algebraic equations is exactly the same for all ν̄

and therefore has 18 linearly independent solutions (labeled
by ν̄) which can be chosen orthogonal to each other. By an
orthogonal transformation (or matrix rotation), they can be
transformed to any other orthogonal combination. Since there
are two affected states, and the RSE matrix equation imposes a
mutual orthogonality [Eq. (20)] of its eigenvectors, the orthog-
onal vectors Cmν̄ (σ ) are uniquely determined (up to a factor

of −1) in such a way that all the unaffected states are not
only orthogonal to each other but also to the affected modes,
for the given σ . However, if σ is changed to σ ′, the affected
modes change according to the change of the perturbation.
This also changes the orthogonal combinations Cmν̄ (σ ′) of the
unaffected states. These eigenvectors Cmν̄ (σ ′) satisfy the same
Eq. (53), namely, ∑

m

Cmν̄ (σ ′)Em(r j ) = 0, (55)

as explained below, but at the same time are orthogonal to the
affected states for the new value σ ′.

In the above discussion and in Eq. (55), we have assumed
that the coefficients Em(r j ) in the algebraic equations do not
change when going from σ to σ ′. This is true if the varied
parameters of the system include α, r1, and r2, but not ϕ2 − ϕ1.
In fact, Em(r j ) do not depend on α j and all have the same
radial factor for a given radial position of the perturber r j ,
according to Eq. (11). This common factor, which is depen-
dent on r j , can be removed from Eq. (53), meaning the 18
unaffected eigenfunctions vanish at r j regardless of the values
of r j . The same is not true, however, if the angular position of
the perturber ϕ j changes, as is clear from the same Eq. (11).
Further, if the basis system includes TM RSs, only α can
be used for the change from σ to σ ′ because of the radial
dependence in Eq. (12).

As derived below, the orthogonal transformation of the
whole RSE matrix is

Hνν ′ (σ, σ ′) =
∑
mm′

Cmν (σ ′)Hmm′ (σ )Cm′ν ′ (σ ′) (56)

=
(
H2×2

νν ′ (σ, σ ′) 0̂

0̂ 1
k0

δν̄ν̄ ′

)
, (57)

where H2×2
νν ′ is the 2 × 2 matrix transformed from the ν = 1, 2

modes, 0̂ are null matrices, and δν̄ν̄ ′ is an 18 × 18 identity ma-
trix. Owing to the 0̂ blocks, Hνν ′ can be clearly truncated into
independent 2 × 2 matrix H2×2

νν ′ and diagonal matrix k−1
0 δν̄ν̄ ′ .

To prove the block-diagonal form (57) of the transformed
RSE matrix Hνν ′ (σ, σ ′), we use Eqs. (17) and (21) in (56)
which yields

Hνν ′ (σ, σ ′) = 1

k0

∑
mm′

Cmν (σ ′)δmm′Cm′ν ′ (σ ′)

+ 1

k0

∑
j

∑
mm′

α jCmν (σ ′)Em(r j )Cm′ν ′ (σ ′)Em′ (r j ).

(58)

Now, using the orthonormality (20) in the first term and
Eq. (55) in the second term, we obtain

Hνν ′ (σ, σ ′) = δνν ′

k0
, (59)

if ν or ν ′ or both ν and ν ′ belong to the unaffected states (i.e.,
ν = ν̄ or ν ′ = ν̄ ′), which yields the block diagonalization in
Eq. (57).

One can also find a link between the RSE coefficients
Cmν̄ (σ ) and Cmν̄ (σ ′) for the unaffected states at different
values σ and σ ′ of the generalized parameter of the system.
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To do so, one can write the above mentioned linear transfor-
mation as

Cmν̄ (σ ) =
∑
ν̄ ′

Cmν̄ ′ (σ ′)Uν̄ν̄ ′ , (60)

where

Uν̄ν̄ ′ =
∑

m

Cmν̄ (σ )Cmν̄ ′ (σ ′) (61)

is an orthogonal matrix,∑
ν̄1

Uν̄ν̄1Uν̄ ′ ν̄1 =
∑
ν̄1

Uν̄1 ν̄Uν̄1 ν̄ ′ = δν̄ν̄ ′ . (62)

The above properties follow directly from the orthonormality
relation (20) used at σ and σ ′. In particular, one can obtain
the transformation matrix (61) by multiplying Eq. (60) with
Cmν̄1 (σ ′), summing over m, and using the orthonormality (20).
A similar procedure results in the orthogonality condition (62)
and in the inverse transformation, taking the form

Cmν̄ (σ ′) =
∑
ν̄ ′

Cmν̄ ′ (σ )Uν̄ ′ν̄ . (63)

The diagonal block of the unaffected states in Eq. (57) can
then be derived as

Hν̄ν̄ ′ (σ, σ ′) =
∑
mm′

Cmν̄ (σ ′)Hmm′ (σ )Cm′ ν̄ ′ (σ ′)

=
∑
mm′

∑
ν̄1

Cmν̄ (σ ′)Hmm′ (σ )Cm′ ν̄1 (σ )Uν̄1ν̄ ′

= 1

k0

∑
m

∑
ν̄1

Cmν̄ (σ ′)Cmν̄1 (σ )Uν̄1 ν̄ ′

= 1

k0

∑
ν̄1

Uν̄1 ν̄Uν̄1 ν̄ ′ = 1

k0
δν̄ν̄ ′ , (64)

where in the second line we have used Eq. (63) and in the third
line Eq. (52) for ν = ν̄, recalling that all κν̄ (σ ) = k0.

To validate this transformation numerically, the matrix
H2×2

νν ′ is calculated using Eq. (56) and truncated according to
Eq. (57), then numerically diagonalized. Its eigenvalues, along
with that of k−1

0 δν̄ν̄ ′ , are compared with the eigenvalues of
Hmm′ (σ ). The K values for these matrices are plotted against
the perturber strength ratio α with σ ′ = α′ = 10 in Fig. 7,
with the same parameters used for each matrix. Numerically,
we see agreement to a precision of at least 7 decimal places
between the eigenvalues of Hmm′ and Hνν ′ , and a complete
separation between the blocks H2×2

νν ′ and k−1
0 δν̄ν̄ ′ within the

presented range.
Equation (57) describes the affected system, including

the EP, in a rigorous and elegant way. A two-mode ap-
proximation used to describe EPs from the perturbation of
double-degenerate WGMs in a microdisk was postulated by
Wiersig [50], whereas matrix H2×2

νν ′ is a rigorously derived
equivalent for the spherical case, despite the modes being
initially 2l + 1 degenerate. While this transformation is only
demonstrated for the case of two affected modes, it is also
applicable to a system with more affected states, e.g., due to
more perturbers modifying the system. Conditions for EPs
of order N are often obtained from N × N matrices, which

are usually introduced phenomenologically (see, for exam-
ple, [91–93] dealing with third-order EPs). The RSE encodes
the information about the system in matrix form in a rigorous
way and therefore is, to our knowledge, the most suitable tool
presently available for studying EPs. The RSE usually deals
with large matrices, however, orthogonal transformations sim-
ilar to the one introduced in this section can reduce the large
matrix describing the system to an N × N matrix suitable for
studying N th-order EPs.

VII. CONCLUSIONS

Using the resonant-state expansion (RSE), we have rig-
orously investigated exceptional points (EPs) in a spherical
optical resonator perturbed by two pointlike defects. We ex-
ploited the significant advantage of the RSE compared to other
approaches in that it exactly maps Maxwell’s equations onto
a linear matrix eigenvalue problem, therefore facilitating the
study of EPs in optical systems in terms of suitable matrices
describing them. For weak perturbations, infinite matrices are
efficiently truncated to minimal sizes appropriate for the study
of the EP phenomenon.

We have considered dipolar whispering-gallery modes
(WGMs), corresponding to the lowest angular momentum
(l = 1), as well as high-quality WGMs with large angular
momentum (l = 20) in a dielectric microsphere surrounded
by vacuum and perturbed by two pointlike defects break-
ing the symmetry, such as nanoparticles or large molecules,
placed inside or outside the resonator. Reducing the RSE
basis to 2l + 1 degenerate TE-polarized fundamental WGMs
and using parity selection rules, the RSE equation is natu-
rally truncated for l = 1 and 20, respectively, to 2 × 2 and
20 × 20 matrix problems, the latter being further reducible
to an effective 2 × 2 matrix problem by applying a rigorous
orthogonal transformation. Varying the parameters of these
systems, we have demonstrated existence of EPs and even
exceptional arcs which are continuous lines of EPs in the
parameter space. Moreover, using the RSE formalism allowed
us to develop an exact analytic solution, valid in first order in
the perturbation strength, and an explicit analytic criterion for
EPs and exceptional arcs in this realistic physical system.

We used the eigenfunction expansion central to the RSE to
find the perturbed electric fields of the optical modes. We have
shown in particular that for high l , the two coalescent modes
are divergent in the vicinity of EPs and have distinct maxima
at the positions of the perturbers. At the same time, all other
states from the same degenerate group have electric fields that
strictly vanish at the perturber positions which results in their
wave numbers being unaffected by the perturbation.

We furthermore demonstrated explicitly that the resonant
states coalescent at EPs have the maximum optical chirality
that manifests itself in the form of a chiral squared-Lorentzian
optical response, which we have calculated analytically for
the l = 1 states in the Purcell enhancement spectra. While this
squared-Lorentzian part is only a first-order correction to the
normal Lorentzian spectrum, owing to its chirality, it can be
effectively measured in circular dichroism.

We have demonstrated that the RSE is a powerful tool to
study EPs in an optical system as it encodes the information
about the system in matrix form in a rigorous way. The idea
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of the orthogonal transformation presented in this work is the
separation of the optical modes affected by the perturbation
from the unaffected ones in a large basis of degenerate states.
This can be further developed for a study of higher-order EPs,
for example, in systems perturbed by N pointlike perturbers.
We expect that in this case a similar orthogonal transformation
would reduce the RSE equation to an N × N matrix problem
suitable for studying N th-order EPs.
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APPENDIX A: DERIVATION OF THE ELECTRIC FIELDS
OF THE RESONANT STATES OF

A HOMOGENEOUS SPHERE

For a homogeneous sphere with a permittivity described by
Eq. (4), Maxwell’s wave equation for the electric field has the
following solution [48,94]:

E(r) =

⎧⎪⎨
⎪⎩

−r × ∇ f for TE everywhere,

− 1
εk ∇ × (r × ∇ f ) for TM with r � R,

− 1
k ∇ × (r × ∇ f ) for TM with r > R,

(A1)

where the scalar function f (r) satisfies the Helmholtz equa-
tion

∇2 f + k2ε f = 0 for r � R,

∇2 f + k2 f = 0 for r > R. (A2)

The proof for Eq. (A1) is as follows. Substituting the TE
solution E = −r × ∇ f into the left-hand side of Eq. (6) and
applying the triple vector product rule, we get

−∇× (∇ × (r×∇ f )) = ∇× (3∇ f − r∇2 f )

= 3∇×∇ f − (∇2 f )∇×r + r × ∇∇2 f

= r×∇∇2 f , (A3)

using the facts that ∇ · r = 3, ∇ × ∇ = 0, and ∇ × r = 0.
Substituting Eq. (A2) into (A3) yields the right-hand side of
Eq. (6) for inside or outside the sphere. For TM polarization,
we obtain the same wave equation (with a steplike permittiv-
ity) for the magnetic field H,

∇ × ∇ × H(r) = k2ε(r)H(r) (A4)

(valid in the regions of constant permittivity), which is derived
similarly to Eq. (6). It is satisfied for the same form of the
solutions, H = −r × ∇ f . This magnetic field can then be
substituted into Ampere’s law in Eq. (5), giving the TM part
of Eq. (A1).

Maxwell’s equations (Ampere’s and Faraday’s laws) also
have static solutions, i.e., with k = 0, given by E = −∇ f with
H = 0 for longitudinal electric polarization and by H = −∇ f
with E = 0 for longitudinal magnetic polarization [65,73].
However, owing to the truncation of the basis used in this
work, they are not considered in the present calculation.

To solve Eq. (A2), we introduce the angular part of the
Laplacian,

L(θ, ϕ) = 1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2
, (A5)

so that Eq. (A2) becomes[
∂

∂r
r2 ∂

∂r
+ L(θ, ϕ) + k2n2

r r2

]
f (r) = 0 for r � R,

[
∂

∂r
r2 ∂

∂r
+ L(θ, ϕ) + k2r2

]
f (r) = 0 for r > R. (A6)

The spherical harmonics Ylm(θ, ϕ) are eigenfunctions of the
operator L(θ, ϕ) with the corresponding eigenvalues l (l + 1).
They satisfy the equation [94,95]

[L(θ, ϕ) + l (l + 1)]Ylm(θ, ϕ) = 0, (A7)

independent of r. This, together with the orthogonality of
the spherical harmonics, allows us to separate the vari-
ables in Eq. (A2), representing the wave function as f (r) =
Rl (r)Ylm(θ, ϕ), where the radial part Rl (r) satisfies the radial
equations[

∂

∂r
r2 ∂

∂r
+ k2n2

r r2 − l (l + 1)

]
Rl (r) = 0 for r � R,

[
∂

∂r
r2 ∂

∂r
+ k2r2 − l (l + 1)

]
Rl (r) = 0 for r > R,

(A8)

having a general solution

Rl (r) =
{

A1 jl (nrkr) + A2h(1)
l (nrkr) for r � R,

A3h(1)
l (kr) + A4h(2)

l (kr) for r > R,
(A9)

where h(2)
l (z) is the spherical Hankel function of the second

kind and A1,2,3,4 are some constants. The function h(1)
l (nrkr)

is diverging at r → 0, which makes it an unphysical solution
inside the sphere, thus A2 = 0. Imposing outgoing boundary
conditions results in A4 = 0 since h(2)

l (kr) is the solution rep-
resenting an incoming wave [65]. The ratio A1/A3 is found by
imposing Maxwell’s boundary conditions and each constant
is then found from the proper normalization of the RSs [96].
Equation (10) is Eq. (A9) normalized this way.

Finally, we substitute f (r) = Rl (r)Ylm(θ, ϕ) into Eq. (A1)
which gives the electric fields [48] in Eqs. (11) and (12).

APPENDIX B: PARITY SELECTION RULES
FOR THE PERTURBATION MATRIX ELEMENTS

In the case of all perturbers located in the same plane,
the electric fields of unperturbed modes with equal l , same
polarization, and a different parity of m are orthogonal. The
proof is as follows.

Every component of the electric field vectors in Eqs. (11)
and (12) has a factor of an associated Legendre polynomial as
a function of cos θ or its derivative with respect to θ . Since
all perturbers share the same plane, without loss of generality,
one can choose the coordinate system in such a way that this
is the equatorial plane. With θ = π/2, the Legendre functions
and their derivatives become P|m|

l (0) and ∂P|m|
l (0)/∂θ , respec-

tively. These polynomials follow the rule

Pm
l (0) ∝ cos

(π

2
(l + m)

)
(B1)

and are thus vanishing for odd l + m which happens when l
and m have opposite parity. To get a similar expression for
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∂P|m|
l (0)/∂θ , we find the θ derivative [97]

dPm
l (cos θ )

dθ
= − l cos θPm

l (cos θ ) − (l + m)Pm
l−1(cos θ )

sin θ
(B2)

and let θ = π/2 to get

dPm
l (0)

dθ
= (l + m)Pm

l−1(0). (B3)

Substituting Eq. (B1) into (B3), we get the equivalent expres-
sion for the derivative

dPm
l (0)

dθ
∝ cos

(π

2
(l + m − 1)

)
(B4)

which vanishes for odd l + m − 1 and thus when l and m have
the same parity.

Focusing on the Legendre function part of Eqs. (11)
and (12), taking the scalar product of two of these fields with
the same position and polarization, but different m, gives

Em(r) · Em′ (r) = ξ1(r, ϕ)P|m|
l (cos θ )P|m′|

l (cos θ )

+ ξ2(r, ϕ)
P|m|

l (cos θ )P|m′ |
l (cos θ )

sin2 θ

+ ξ3(r, ϕ)
∂P|m|

l (cos θ )

∂θ

∂P|m′|
l (cos θ )

∂θ
,

(B5)

where the functions ξ1,2,3(r, ϕ) are independent of θ . P|m|
l (0)

vanishes when l and m have opposite parity, and ∂P|m|
l (0)/∂θ

vanishes when l and m have the same parity. As a result, all
terms in Eq. (B5), evaluated at θ = π/2, vanish when m and
m′ have opposite parity and the states have equal l and the
same polarization. This rule no longer holds if the perturbers
cannot be considered to be all in the same plane.

Further truncation of the even states can be achieved by
neglecting the vanishing fields. On the equatorial plane, the
TE electric field is vanishing when m = 0 and l is even.
Looking at Eq. (11), this is because ∂χ0/∂ϕ = 0 makes the
θ component vanish; since l and m are of the same parity,
∂P0

l /∂θ = 0, making the ϕ component vanish; and the radial
component is always vanishing in Eq. (11). This is not the case
for the TM modes because of their nonzero radial component.

APPENDIX C: MATRIX ELEMENTS AND EP CONDITION
FOR DIPOLAR MODES

To find the explicit form of the RSE matrix elements, we
find the inner products of the TE electric fields in Eq. (11)
for degenerate modes with m = ±1 and θ j = π/2 with j =
1, 2 labeling the perturbers. Since P±1

1 (cos θ ) ∝ sin θ , the
azimuthal component of the electric field, which takes the
θ derivative of the Legendre function at θ = θ j = π/2, van-
ishes. Using Eq. (17), where the indices n = 1 and 2 denote
the modes with m = −1 and 1, respectively, the RSE matrix
elements in Eq. (22) take the form

H11 = 1

k0
+ 1

k0

2∑
j=1

α jR̃2(r j ) cos2 ϕ j,

H22 = 1

k0
+ 1

k0

2∑
j=1

α jR̃2(r j ) sin2 ϕ j,

H12 = − 1

k0

2∑
j=1

α jR̃2(r j ) cos ϕ j sin ϕ j = H21, (C1)

where

R̃(r) =
√

3

4π
ATE

1 R1(r), (C2)

and R1(r) and ATE
1 are given, respectively, by Eqs. (10)

and (13) for l = 1.
Substituting Eq. (C1) into the degeneracy condition (22)

and using the facts that

k0(H11 − H22) = α1R̃2(r1) cos(2ϕ1) + α2R̃2(r2) cos(2ϕ2)
(C3)

and

−2k0H12 = α1R̃2(r1) sin(2ϕ1) + α2R̃2(r2) sin(2ϕ2), (C4)

we find

e±2i(ϕ1−ϕ2 ) = −α1

α2

R̃2(r1)

R̃2(r2)
. (C5)

With α = α2/α1, �ϕ = ϕ2 − ϕ1, and Eq. (C2) we get
Eq. (23).

We also use Eq. (C1) to derive the scaled dimensionless
wave number K at EPs. The degenerate eigenvalue 1/κ at an
EP is the mean of diagonal elements of the 2 × 2 matrix, given
by the first term in Eq. (2). For this RSE matrix, explicitly,

1

κ

= 1

k0

⎛
⎝1 + 1

2

2∑
j=1

α jR̃2(r j )

⎞
⎠, (C6)

valid at the EPs and also at the DPs contained within the EA.
Using Eq. (C5), we can write the perturbed wave number as

κ = k0

[
1 + 1

2
α1R̃2(r1)(1 − e±2i�ϕ )

]−1

(C7)

which is substituted into Eq. (26) to obtain Eq. (27).
The EA in Fig. 4 contains a countable number of DPs

where H12 = 0. Combining Eqs. (C4) and (C5), this DP con-
dition can be written as

tan(2ϕ1) = tan(2ϕ2), (C8)

provided that α1R̃2(r1) �= 0, so we find that ϕ2 = ϕ1 + pπ/2,
where p is any integer, at these DPs.

APPENDIX D: EIGENFUNCTIONS OF THE
UNAFFECTED MODES

Figures 11–13 show the perturbed sphere-surface electric
fields |E ν̄ (R, θ, ϕ)| at the parameters of the EP in Sec. VI A of
the 18 unaffected WGMs, which are solutions of the 20 × 20
RSE matrix problem, with their eigenvalues unaffected by the
perturbation.
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FIG. 11. As Fig. 9(a) but with (a), (b), (c), (d), (e), and (f) showing the wave functions of states ν = 3, 4, 5, 6, 7, and 8, respectively.

Since the unaffected eigenfunctions are degenerate at a
DP (not an EP), they make up 18 orthogonal electric fields.
A DP does not enhance electric fields like an EP so these
fields, which are normalized according to Eq. (20), have much

weaker maxima than the affected states at an EP. The most
significant feature of the unaffected eigenfunctions is that
they vanish at the perturber positions r j , as it is clear from
Figs. 11–13.
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FIG. 12. As Fig. 9(a) but with (a), (b), (c), (d), (e), and (f) showing the wave functions of states ν = 9, 10, 11, 12, 13, and 14, respectively.
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FIG. 13. As Fig. 9(a) but with (a), (b), (c), (d), (e), and (f) showing the wave functions of states ν = 15, 16, 17, 18, 19, and 20, respectively.
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and Ş. Özdemir, Nat. Commun. 13, 599 (2022).
[89] R. Sarma, L. Ge, J. Wiersig, and H. Cao, Phys. Rev. Lett. 114,

053903 (2015).
[90] S. Wang, B. Hou, W. Lu, Y. Chen, Z. Zhang, and C. T. Chan,

Nat. Commun. 10, 832 (2019).
[91] M. Am-Shallem, R. Kosloff, and N. Moiseyev, New J. Phys. 17,

113036 (2015).
[92] Y. Wu, P. Zhou, T. Li, W. Wan, and Y. Zou, Opt. Express 29,

6080 (2021).
[93] Z. Li, X. Li, and X. Zhong, arXiv:2201.03768.
[94] J. A. Stratton, Electromagnetic Theory, Vol. 33 (Wiley, Hobo-

ken, New Jersey, 2007).
[95] G. B. Arfken and H. J. Weber, Mathematical Methods for Physi-

cists (Academic, New York, 1999).
[96] E. A. Muljarov and T. Weiss, Opt. Lett. 43, 1978 (2018).
[97] M. Abramowitz and I. A. Stegun, Handbook of

Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, 9th ed. (Dover, New York, 1964),
p. 334.

033518-24

https://doi.org/10.1103/PhysRevA.98.022127
https://doi.org/10.1103/PhysRevResearch.5.013209
https://doi.org/10.1103/PhysRevB.107.L081401
https://doi.org/10.1103/PhysRevA.98.033820
https://doi.org/10.1103/PhysRevA.85.023835
https://doi.org/10.1103/PhysRevA.89.053832
https://doi.org/10.1103/PhysRevB.101.155128
https://doi.org/10.1103/PhysRevB.103.155112
https://doi.org/10.1126/science.aap9859
https://arxiv.org/abs/2207.12092
https://doi.org/10.1103/PhysRevLett.127.186601
https://doi.org/10.1103/PhysRevA.100.063811
https://doi.org/10.1103/PhysRevA.106.063509
https://doi.org/10.1103/PhysRevLett.124.123902
https://doi.org/10.1038/s41467-020-16373-8
https://doi.org/10.1021/acsnano.1c09796
https://doi.org/10.1103/RevModPhys.87.61
https://doi.org/10.1038/s41467-022-27990-w
https://doi.org/10.1103/PhysRevLett.114.053903
https://doi.org/10.1038/s41467-019-08826-6
https://doi.org/10.1088/1367-2630/17/11/113036
https://doi.org/10.1364/OE.418644
https://arxiv.org/abs/2201.03768
https://doi.org/10.1364/OL.43.001978

