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A Terramechanics-based Dynamic Model for
Motion Control of Unmanned Tracked Vehicles
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Huiyan Chen and Amir KhajepouMember, IEEE

Abstract—EXxisting terramechanics-based dynamic models for
tracked vehicles (TRVs) are widely used in dynamics analysis.
However, these models are incompatible with model-based con-
troller design due to their high complexity and computational
costs. This study presents a novel and simpli ed terramechanics-
based dynamic model for TRVs that can be used in optimization-
based real-time motion controller design. To this end, we
approximated the track-ground interactions with an averaged
term of the track-ground shear stresses to make the model
computationally ef cient and linearizable. By introducing the
concepts of slip ratio and slip angle in the eld of wheeled
vehicles, the terramechanics-based dynamic model was nally
simplied into a compact and practical single-track dynamic
model reducing the demand for precise slip ratio measurements.
The single-track model enables us to design an ef cient motion
control scheme by considering lateral and longitudinal dynamics
separately. Finally, the proposed dynamic model was veri ed
and validated under various road conditions using a real TRV.
Additionally, the performance of different models was compared
in simulation as an example to demonstrate that the proposed
model outperforms the existing ones in TRV path-following tasks.

Index Terms—Autonomous vehicles, motion control, dynamic
model, model predictive control

I. INTRODUCTION

[71-[10], but they face signi cant challenges when applied
to TRVs. The primary obstacle in designing an ef cient and
effective model-based controller for TRVs is the absence
of a ready-made control-applicable vehicle-ground interaction
model [11], [12], comparable to the magic formula [13] or the
UniTire model [14] used for WVs. Typically, modeling the
track-ground interaction involves using numerical integration
techniques to calculate driving and resistance forces on the
track-ground contacting area based on the terramechanics the-
ory [15]. Although lots of experimental data [16] has validated
the accuracy of this approach, the numerical integration model
is computationally expensive and impractical for model-based
control methods, such as model predictive control (MPC), for
the gradient of the model is dif cult to calculate. Consequently,
the terramechanics-based dynamic model is seldom used in
real-time control. As an alternative, the kinematic model [17]-
[19] and empirical model [20] are commonly used in motion
control of TRVs due to their simplicity. However, the short-
comings of the both models are obvious. The kinematic model
struggles to deal with dynamics-related constraints which are
crucial for driving safety, especially in high-speed or off-road
scenarios. As for empirical models, they do not accurately
re ect the real mechanisms of turning [21]. Moreover, some
parameters do not have speci ¢ physical meaning and must

Tracked vehicles (TRVs) are widely used in agriculturgye optained through real car tests. Therefore, an effective
construction, mining, military, and disaster relief 0peratlon@ym:m“C model that balances accuracy and complexity is
[1]-{4]. Due to their superior ground adaptability [5], [6],yrgently needed for the motion control of TRVs.

TRVs typically operate on rough terrain to perform heavy-duty | this paper, we aim to develop a simpli ed but accurate
tasks. However, they are noisy and challenging to operate, iQ?ﬁgIe-track dynamic model for TRVs, suitable for model-

posing heavy physical and mental burdens on human drivesgsed control methods, akin to the bicycle model for WVs
With advancements in autonomous driving technology, 82 [23]. TRVs change the torques on both sides of tracks
demand for unmanned TRVs has emerged, which is not only aiter their heading and velocity simultaneously, resulting in
for safety concerns but also to deal with the Iabpr Shorta%-strong dynamic coupling between lateral and longitudinal
In response, this paper proposes a novel dynamic model gfibctions [24]. Consequently, the dynamics of TRVs differ
an autonomouscontrol scheme for TRVs to achieve op'umagigni cantly from those of WVs, although certain commonal-

motion control performance.

ities can be found to enable us to simplify the dynamic model

Dynamic model-based motion planning and control methods TRys into a single-track one. As previously mentioned,

have proven effective in the eld of wheeled vehicles (WVSjerramechanics-based dynamic models are accurate and well-

_ _ _ _ validated but complex; therefore, we are considering if we
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Typically terramechanics-based dynamic analysis ideally
simpli es the track-ground pressure as uniformly distributed

3?21], which is counterfactual to experimental results — the

track-ground pressure is concentrated underneath the road
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Il. RELATED WORK

To summarize relevant prior work and illustrate its short-
comings, related work will be discussed from two aspects:
modeling and controlling.

A. Modeling of TRVs

Existing literature for TRV motion modeling is primarily
based on four types of models: kinematic models [17]-[19],
pure friction models [5], [29], empirical models [20] and the
terramechanics-based models [21], [30], [31].

Kinematic models are simple and adaptable, which could
handle most well-de ned scenarios; thus, these models are
widely used in both small low-speed TRVs [6], [32] and large
high-speed TRVs [18], [19]. However, kinematic models may
fail when the dynamics-related information dominates control
performance. For example, adhesion constraints and actuator
constraints are crucial for safely following a desired path with
curves at a high speed. In addition, kinematic model-based
control methods are generally require a parameter estimation

wheels on rm ground. The rmer the ground is, the more?!9orithm [18]. For instance, Zhao et al. [17] propose a
concentrated the pressure becomes [25]. As illustrated Kipematics-aware MPC algorithm that estimates six linear slip
Fig. 1, the track-ground pressures of TRVs are similar Rprameters with an extended Kalman lter (EKF). Besides,
tire-ground pressure on rm ground but more dispersed dinematic controllers usually comblne ywth a §|mpll _ed lower
soft soil. Inspired by [26]-[28], we developed atrack-grounﬁomfoner to generate the desired klpematlc variable. The
contact model for rm ground that avoids integrals, making {u@lity of the lower controller would in uence the overall
more practical in real-time controller design. In our model, thYStém performance signi cantly. Despite these disadvantages,
track-ground pressure is assumed to be concentrated in a siig|kinematic model remains the most widely used model for
area undemeath the road wheels; thus, it is reasonable to fdion control of TRVs among existing models.

the states of the center point to approximate the states of théure friction models assume turning resistance coef cient
entire area. This approximation avoids the complex integratiéh @ constant, which is applicable for small TRVs on hard
while maintaining accuracy, which makes terramechanicgurface but not for large TRVs on deformable soil. Therefore,

based theory practically tractable in optimization-based regpirical models are employed to address this issue. For

time control for path-following. example, the Nikitin empirical formula [20] describes the
The main contributions of this work are presented below!€lationship between the turning resistance coef cient and the

turning radius. This formula is one of the most widely used

1) We develop a novel and simpli ed single-track dynamig,ogels for estimating turning resistance [33], [34]. However,
model for TRVs on rm ground, suitable for model-ihe Nikitin empirical formula also fails to depict the lateral
based control techniques in real-time. This model egg|acity, because it assumes the offset of the turning center
ables the application of terramechanics-based methqds;erg. That is, there is no lateral velocity on the center of

in the real-time control of TRVSs. gravity (CoG). Additionally, it assumes the turning resistance
2) We propose a coordinated control scheme for TRVgqef cient is independent of vehicle velocity, which is incor-
longitudinal and lateral motion control, which satis esyq¢t.

path-tracking performance with low computational com- ginay terramechanics theory is based on the track-ground
plexity. _ interaction mechanism and can calculate track-ground forces
3) We V‘?”fy the propose_zd dynamic model through real'(_:%rccurately. As a result, the terramechanics theory is popular
expenment; and _valldate the .prop_osed _path-followu]g TRV dynamics analysis [16], [21], [30], [31]; however,
controller via multibody dynamics simulations. this model is incompatible with online model-based control
This paper is organized as follows. Section Il analyzesdgorithms such as MPC or linear quadratic regulator (LQR).
related work and points out the shortcomings of existinferramechanics-based theories rely on shear stress-shear dis-
works. Section Ill presents the proposed TRV dynamic modglacement relationship [35]-[37] to make accurate analysis for
Section IV describes the control scheme of longitudinal antRV performance evaluation, rather than for path-following
lateral dynamics and the MPC algorithm formulations. Sectiaontrol tasks. The use of tracks not only disperses the wheel-
V discusses the real vehicle experiment results of model veriground pressure and generates higher adhesion forces, but also
cation, and simulation results in path-following tasks. Finallynakes the interaction between vehicle and ground extremely
the conclusions and scope for future works are summarizedciomplex [38]. Integration is embedded in the terramechanics-
Section VI. based models to obtain highly accurate models which are

\ i \\ ........

& 7KH DVVXPSWLRQ RU K U H
6RIW VRLOOQLIRUP GLVWRELER®WW G H

Fig. 1. Comparision of wheel/track-ground pressure on different soils.
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over-complicated for online control methods. Therefore, déeedback control method, only three of them are veri ed with
spite their high accuracy, the terramechanics-based modelsraad cars. Furthermore, all the three articles are veri ed using
rarely used for path-following controller design. small TRVs and model-free control algorithms like PID and
In summary, existing models for TRVs are either oveffuzzy control. Therefore, the real performance of the state error
simpli ed or too complex to be applied to optimization-basefieedback control method on large TRVs has not been well
real-time control. Therefore, it is necessary to propose vari ed. Optimization-based tracking control, especially the
simpli ed but accurate dynamic model for path tracking oMPC algorithm, has considerable real car applications on both
TRVS. small TRVs and large TRVs. However, most works veri ed
with real cars are based on the kinematic model. In these
B. Motion Control of TRVs cases, the_ sprocket speeds on both sides are virtual control
variables, implemented by the lower controller such as a motor
A brief survey on existing motion control algorithm forcontroller. The disadvantages of kinematic models have been
TRVs is provided as a supplement. As is shown in Table discussed in the section II-A. Thus, the analysis of existing
existing motion control algorithms for autonomous TRVS Cagelated works supports our view that a simpli ed but accurate

be roughly divided into three categories: state error feedbagnamic model for path tracking of TRVs is urgently needed.
control, geometry-based control, and optimization-based con-

trol. I1l. TRACKED VEHICLE DYNAMIC MODEL
TABLE | As mentioned previously, the proposed dynamic model for
PATH TRACKING ALGORITHM OF TRVS COMPARISON TRVs is suitable for rm ground, where the track—ground

normal force concentrates in a limited area underneath the road
wheel; therefore, some equivalent simpli cation can made to

Categories Algorithm Application Veri cation avoid the numerical integral process.
PID [39]-[42]
SMC [43] Small TRVs [39], - i
Fuzzy control  [40], [41], [43], 48], E&:}al &%r] [40], A. Track grou'nd Interactl.on .
State error  [44]-[46] [46], [50] Simulation [39] 1) Full Vehicle DynamicsThe TRV's whole dynamics are
feedback Adaptive control Large TRVs [49], ! i i icti i i
control a7 (2] 45, [47], (21 143] [48], [49], shown in Fig. 2, consisting of the longitudinal, lateral, and

Linear feedback Sea mining TRV [44] [42] 1441, [47], - yaw dynamics in the vehicle body coordinates o y under

control [48], [49], Unspecied [51] o0 02l giopal ground coordinateX O Y. Thexw 0w Yu

[501-[52] coordinates are xed on the track underneath the wheel center
Geometry- gtu;sl sugugrgfﬂq Small TRV [53], [54]Real car [53] éthehz%olr.ned part in Fig. ﬁ). The shaded area surrounded by a
based control y alg Large TRVs Simulation [54] ashed line represents the pressure area.

[54]

Small TRVs [55], [57]

Large TRV [59], [s0]Re@! car [57],

Optimization- LQR [55] S . 59]-[61]
ea mining TRVs [56L.. -

based controlMPC [56]-[61] . imulation [56],
Agriculture TRVs [58] [55], [58]

Unspeci ed [61]

Among the algorithms investigated, state error feedback +
control and optimization-based control are widely used for the s
path tracking of TRVs. The state error feedback control is often
used in the early stages of the autonomous driving technology,
due to its low computational complexity and minimal require-
ments for vehicle models. However, these models are not goo
at handling multiple constraints on multiple states, which i
important to driving safety. As a type of optimization-base
control algorithm, MPC achieves the optimal cost over a nit@ig > jiustration of dynamics for dual-track TRVs.
horizon by comprehensively considering control objectives,
predictive states, and constraints. Despite its effectiveness inn Fig. 2, R and Os represent the radius of the instant
tracking control, MPC requires an accuracy model to ensungning trajectory and the instant turning center, respectively.
the control performance, but the model cannot be overy. is the projection ofOs on thex-axis, andsy is the distance
complex to maintain real-time performance. Thus, the balanbetweenO. and the center of gravity (CoG). is the yaw
between the model complexity and accuracy is critical. Fangle betweerX -axis andx-axis, is the chassis slip angle,
MPC of TRV, the main issue is the lack of a ready-madend is the yaw rate.B is track center distance. and
model that meets MPC requirements. b are track-ground contact length and width, respectivgly.

The above conclusions is supported by the statistics on tkethe distance between road wheel centers and the vehicle's
algorithms in Table I. Among 14 articles using the state err@oG with subscripts as thei road wheelf is the driving
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resistance. The resultant longitudinal and lateral forEgs
and F, act on the CoG of the vehicle. For TRVs, lateral 3UHVVXUH 3UHVVXUH 2XU
shear forces on both tracks impede vehicle turning, and XQLIRUPO\ G LFRAQUFHEQ(W/IHEBW H G/ IGR.S/QWLU L E
the corresponding in uence acts on the CoG, resulting in a
resistance moment,. Similarly, longitudinal shear forces
promote vehicle turning and obtain a driving momewnt.
The force applied on the track belaW road wheelF; with
an opposite direction of the track-ground shear velogity
is decomposed into longitudinal forcg,{; ) and lateral force
(Fyi). s the angle between axjgr andvi. S is the length
of the normal pressure zone in the longitudinal direction, and
its side view is shown in Fig. 3 (b).

According to Newton's second law, the TRV's dynamic
model can be formulated as

1 X

WE oWt Foo + Fyi (1a)
i=1
1 X R L
Vx = Vy + a Fx;i + Fx;i (1b)
i=1 ! 2
1 X X
=1, 2 Fa  Fu LiFg + 1iFy

i=1 i=1
(1c) S )LUP V

where superscriptd.’ and ‘R' denote the left and right sides,

n is the I.Otal number of WheeI§ on one side,is the vehicle Fig. 3. Longitudinal shear stress distribution with (a) uniformly distributed

mass,l, is the moment of inertia. and (b) concentrated distributed normal pressure distribution assumption.
2) Track-ground Interaction:Janosi-Hanamoto's equation

(Eg. 2) [35] is employed as the shear stress-shear displacement

model due to its concise form and broad applicability. Our experimental results (Fig. 10) show that the track-
_ ground pressure concentrates in a small area underneath the
=(c+ptan') 1 e K (2) road wheels on rm but deformable ground. Fig. 3 (b) il-

lustrates the shear stress distribution when the track-ground
where is the shear stres is the shear deformation pressure is concentrated in a small area. This nding allows
parameter, and andp are the cohesion and normal pressureas to signi cantly simplify the terramechanics-based dynamic
respectively. When the soil is non-cohesive, the Eq. (2) cafodels for TRVs. On the one hand, only a small pressure

be rewritten as area needs to be integrated, thus it is reasonable to assume
=p 1 elX (3) that the vehicle states remain steady for a short period. This

allows us to extend traditional terramechanics-based methods

with  the coef cient of shear. to a generalized situation rather than only steady-state turning.

Fig. 3 (a) shows the distribution of longitudinal shear stre€3n the other hand, integration can be avoided by using an
x when considering uniform track-ground pressure. Points approximate alternation. Speci callg,, in Fig. 2 is the center
andB are the front end of the track-ground contact area andgaint of the pressure area. Thus, its velocity is the average
certain point xed on the track, respectively.represents the velocity of the points in the pressure area while keeping the
distance between poinés andB. When the vehicle drives for- shear time ofo, as the average time. Therefore, pomt
ward, pointB moves backward relative to the vehicle startingossesses the average shear displacement of all the points in
from point A, and the track shears the soil with a velocity ofhe pressure area. Then, the average shear displacement can be
vt during this process, where supersctitenotes track. The used to calculate the shear force over the entire region without
process takes timg = % r and! present the sprocket pitchintegration. The velocity of the poimt, relative to the ground
circle radius and speed, respectively. The shear displacemianthe body coordinate system can be obtained as following:
j = vtt'. vy, represents the longitudinal velocity of CoG.

In traditional terramechanics-based methods for TRV dynamic vf(;i = Vi W (4a)
a_nalysis, track-ground pressure is considered to bg uniformly Vi = g (4b)
distributed. When calculating the shear displacenjenthe —

shear velocity! is generally assumed to be unchanged. That vi= v o+ Vyi (4c)

is, the vehicle states remain unchanged for a long time. Thus,
this method [21] can only handle the steady-state turningherevy; andvy; are the velocity of thé" wheel center inx
scenario. andy directions, and their combined velocityvs. The shear
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time t! and shear displacementof our simpli ed model can

be obtained: s
6= o (5)
s 2
S Vyi 2 Vyi W
iyt = 2y + o TP 6
li=viti=3 rw rw )

where t! is the average shear time of all elements in the
pressure ared® in Fig. 3 (b) andj; is the average shear
displacement. It should be noted that we do not know the exact
value of S, but it remains constant when the road conditions
are unchanged. Fortunately, it is unnecessary to calculate the
exact value ofS becauseS and shear deformation parameteEi 4
K will form a new paramete€; in Eq. (9a), which can be g%
obtained experimentally.

3) Introducing Slip Ratio and Slip AngleReferring to the  Equations (1)-(9) provide a dynamic model for TRVs based
concept of tire slip angle in the WVs' dynamic model, let then the terramechanics theory. By introducing slip angkend
slip angle and slip ratio of the track under each road wheeklip ratio , we nd the proposed track-ground model and

In uence of longitudinal slip on lateral shear stress wipen= 1.

be the tire model of the wheeled vehicle, especially the UniTire
; Vi 7 model [14], share some consistency in form. This indicates
an i = K (7a) a certain commonality in the interaction between ground and
W Vi vehicle.
= —— (7b)
qu;i
. S . Si - i
ji= 2 251+ j)2+(tan )21+ ;)2 (70) B. Single-track Dynamic Model

2 The dual-track model must consider the states of all the
According to terramechanics theory [16], [21] and Eq. (3)vheels, which for a TRV typically means at least eight wheels
the average shear stress and its component in longitudinal &imdultaneously. The slip ratio measure relies on accurate
lateral direction under thé" road wheel can be obtained aslongitudinal velocity, but this is dif cult to obtain for TRVs.
h cys | Based on our experience, the yaw rate measured by the inertial
i=p 1 e ¥ (82) measurement unit (IMU) is more accurate, as vibration has a
limited effect on rotation states measurement. Thus, we can

= I . . . .
xi T g (8b)  calculate the overall slip velocity using the measured yaw rate:
tan : .
i T g (8c) VRt = IR 1E 1 B ea (10)
whereC; is coef cieBt with C; = S=(2K ). Parametes can where, mea iS %/aw rate measured by IMU. And the average
I e ees—— . . i ,ave
be formulated as = 2+ (tan )2. Then, considering the shear velocityy * can be
average pressure area under a single road wheel, the track- _ ViR ytL
. t,ave — X X
ground force can be obtained as e e (11)
h i . . . .
F=F. 1 e = (92) By substitute the shear velocity vy in Eq. 7 with the
o average one’ 2, the lateral forces on thg" wheel can be
i written as:
Fxi = *IFi (9b) 2 r 3
S Cq v)%, + (v; ave)2
tan | i T tae
Fyi = “Fi (9¢c) Fyi = 4 Vyii —FL 21 e vk g
S Vii + V)t(; ave 2
Fig. 4 illustrates the effect of longitudinal slip ratio on lateral ' (12a)
shear stress. Slip ratio and slip angle are assumed to 2 Cl’ V2 (E )
be proportional to demonstrate the in uence aflt can be R _ Vyi £R 21 R —é%g
. . . . 0= e —— 1% X X
seen that when the slip ratio is relatively small, i.e., when the ** V2 4 yuae 2 0
yii X

turning radius is relatively large, neglectinghas a limited
impact on model accuracy. However, when the turning radius
is small, neglecting results in a lateral shear stress that isvhere,vk = vy % mea @ndvR = vy + % mea-

larger than the actual value. Related research [62], and ouinspired by the bicycle model for wheeled vehicles, we sim-
experimental results show the turning radius is less than 5 aplded the dual-track model to a single-track model (Fig. 5). In
10 meters when = 10% and = 5% on rural dirt roads, this model, we assume an imaginary full-weight track located
respectively. Thus, the slip ratio should be considered forin the center of the TRV. Generally, the torque difference
TRVs to ensure the performance during sharp turns. between the tracks on both sides drives the vehicle to turn.

(12b)
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However, there is no such torque difference in single-track It should be noted that a single-tracked TRV does not exist
model. Thus, an imaginary driving momekit; is applied on in the real world, as it cannot perform turning maneuvers;
the single-track model to drive the vehicle to turn. however, it is reasonable to simplify the model of TRVs into
a single-tracked one because the single-track model captures
the most essential vehicle-ground dynamic features. Although
the inputM; cannot be applied on a single-tracked TRV by
the single-tracked TRV itself in the reality, we can calculate
the required input using the single-track model and implement
it using a dual-track TRV in dynamic control.

Considering vehicle position states, the following equations
can be derived:

= (16c¢)
X-=vxcos() wvysin() (16d)
Fig. 5. Single-track tracked vehicle model. Y. = v, sin(' )+ vy COS( ) (16e)
The imaginary track should exhibit similar dynamics to the g i - ' T
y dening = [vy XY ] as the state vector, the
?hoeuf)gagﬁg(ryn}?gceli J;‘nu%et?gr:gﬁ;?ééogge of tewheel in turning driving moment; as the manipulated variable, and
> y =[w 'X Y ] as the outputs of the system, the Eq.
. ¢t vz ( v§ @ )2 (16) can be linearized at operation point in the state-space
EMe - g Wi p o §q g T representation as:
V2 + Vt o tae 2 Fii
ﬁ3 == AT+ B M (17a)
C \ + (v
FZF\;’i e : V)};I+v! ave g y- = C~, (17b)
Fz;i i
where,™ = o¥ =Y VYoMi=M; M. Matrix A, B
(13) andC denote state, input-to-state and state-to-output matrix,
According the following limit equation: respectively. o _ .
. . By using Euler's approximation, Eg. (17) can be discretized
fim Fzi f(x X) + FZi Fix+ x)= f(x) (14) at sample timdg, and the discrete-time state-space equation
x! 0 Fyzy Fzi can be obtained as follows:
The F)¥® can be approximated as Equation(15), when T(k+1)= AgTy(k) + BgM(k) (18a)
(C vt a"'3) is small compared wittvy, that is, when the w(k) = Cq~(k) (18b)

turn radlus is not over small. It should be noted that a similar
simpli cation is also made in the bicycle model for WvsWwhereAq = Ats+1,Bg=BtsandCq= C.
but the average shear veIoch;? ave of TRVs is bigger than

the experimental results section.
p Although the full dynamic model is theoretically more

2 ' ;3 accurate and has more degrees of freedom than the single-
t; ave . . . .
Eme Vi Eoo41 e ¢ i (x™) o track model, it is not easy to employ in real-world motion
v tave 2 “! control of TRVSs.

2.0+
i . (15) Firstly, the full dynamic model is more computationally

aqggnplex. The full dynamic model for an 8-wheeled TRV needs
to do 32 times exponential operations per iteration, while the
single-track model only requires 8 times. Running the full

Based on the above derivation, a more compact single-tr
model for TRVs is formulated as

e v s }g x Vi g e S (16a) dynamic model one million times on an Intel Core i7-12800H
~ X 4 - i computer takes around 0.526 seconds, whereas the single-track
0 . _ model takes only 0.146 seconds.
M¢ mg Wi e S (16b)  Secondly, the full dynamic model relies on an accurate
E 4, i=1 i slip ratio on both sides to ensure its performance. However,
q —— accurate estimating the slip ratio is challenging. It requires a
where, | = v§- + vt %€ “ M, is the driving moment, high-precision IMU and complex estimation methods, and is

which promotes vehlcle turnlng and can be used to calculatkso affected by terrain undulations. The slip ratio is generally
the sprocket torques which are the nal control outputs. Thusalculated by comparing the vehicle velocity and track speed;
this model enables us to divide the sprocket torques into thewever, this method introduce errors on uneven terrain, even
velocity sustain and turning parts so that the TRV dynamiegith an accurate IMU. As shown in Fig. 6, when the vehicle

can be decoupled into longitudinal and lateral directions. drives a distance in blue, the track travels a longer distance
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in red, but slip actually does not happen. Fortunately, thehere,iq is the gear ratio of reducefiong and Ty are
single-track model replaces the need for an accurate dlipve motor torque required for vehicle longitudinal travel and
ratio measurement with an average sifif*® in Eq. (10-11), turning, respectively.

reducing the requirements on the measurement system and

mitigating the problem. The average slip calculated by ya@ nNonlinear MPC Problem Formulation

rate is more reliable because the yaw rate is less affected by

vibration. Additionally, the average slip uses the differential

of track speed on both sides rather than the track speed itself,

so that mitigates the effects of terrain undulations.

OQO
Fig. 8. Path-following for TRVs.
7UDFN GLVWDQFH _ _ o
9HKLFOH GLVWDOEH VR The nonlinear MPC [63]—[65] is employed in this study to
ful Il the TRV path following tasks. The controller should
Fig. 6. Effect of terrain undulations on slip ratio. allow the unmanned TRV to track the desired path and yaw

angle while keeping the vehicle states within the constraints.
Thirdly, the off-road environment TRVs travel on are ofteThe single-track dynamic tracking model is nonlinear but can
uneven, and road pro les are generally unmodeled or unmdze linearized at the current state. Fig. 8 shows the reference
sured. MPC does not perform well with unmodeled distugnd prediction in path-following for TRVs. The vehicle's
bances. Therefore, it is wise to ignore longitudinal dynamidsngitudinal velocity is assumed to be constant during the
in MPC and instead use a high-frequency feedback controllprediction horizon as in [66]. Thus, the quadratic programming
In summary, compared to the full dynamic model, thproblem can be formulated as following:
single-track model bene ts from lower computational com-
plexity, reduced measurement demands, and less sensitivity X

to terrain roughness, making it more practical for real-worl@inm, kya(kit)  yeer (Kit)kg + kMe(kit)  Me(k  Lt)ki
applications. k=1 (20)
Subject to
IV. CONTROLLERDESIGN FORTRACKED VEHICLES (k+1)= Agq (K)+ BgM¢(k); k=0;1;2 ‘N 1

A. Longitudinal and Lateral Coordinated Control Scheme Yq(k)= Ca (k); k=0;1;2, ;N 1N

For TRVs, the longitudinal and lateral dynamics are COl@(O).: I(\;I) Y
pled. In this section, a longitudinal and lateral coordinated t™n t(K) M max

. —— Mtmin Mi(k) Mi(k 1) Memax
control scheme is proposed, as shown in Fig. 7. where, My max and Memin are the limits of the turning

\ resistance. M max and M min denote the limits of turning
7JUDFNHG 9HKLF  resistance rate. In the cost function, the rst term ensures the
ORWRUl  goal of path-following, and the other term penalizes the change
l of the driving momenM; to avoid sharp turning. In addition,
& the Q andR are the positive semide nite weight matrices for
4 “HpY the path following and the control effort, respectively.

V. RESULTS AND ANALYSIS

Fig. 7. Longitudinal and lateral coordinated control scheme. This section demonstrates the effectiveness of the proposed
) o ) . model and path-following strategy using simulation and real-
In this scheme, the driving momem, for turning iS car eyperiments. The precision of the single-track model
calculated through an MPC controller, and the driving forcg yerjed through real car experimental results in steady-
required to follow the longitudinal reference veloCityet IS giate turning situations. Subsequently, the control strategy in

fullled by a PID controller. yrer is the lateral reference. The, 16,5 scenarios is evaluated using MATLAB/Simulink and
torques of the motors on both sidds, andTg, are calculated co-simulation with multibody dynamic software.

as control inputs for the dual-motor drive TRVs as Eq. (19).

T = Tiong t (19a) A Real car model veri cation

4B The proposed dynamic model was veri ed on an electric-
Mr (19b) powered TRV under different road conditions. As shown in

Tr = Tiongi *+ B - ) ) )
Ig Fig. 9 (a), the TRV is driven by independent motors on both
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sides, which can provide feedback on the speeds and torques.ground. To measure the track-ground pressure, a pressure
The vehicle is equipped with differential global positioningensor was buried about 5 cm underground ,allowing the tracks
system (GPS) and an IMU to collect real-time vehicle trajete roll over it at a constant speed, as Fig. 9 shows. The
tory and pose information. More than 100 groups of steadiepth of 5 cm was chosen to avoid tracks crushing the sensor
turning data are collected in a farm area in Hebei provincehile ensuring sensitive measurement. After the measurements
China, across various road types, including sand-grave roadre taken, the time series of pressure signals were converted
rm dirt road, and cement road for model validation, as Figto space series via the constant vehicle velocity. Fig. 10
9 (a)-(c) shown respectively. There was no precipitation for ahows the experimental qualitative results of the track-ground
least one week before data collection. The detailed parameterassure, indicating a multi-peak shape of the track-ground

of the test TRV are listed in Table Il.

%UDNH ORWRU

6LGH JHDUER]
WUDQVPLVVL7Q

FP

6RLO Pressure sensor

H

pressure with the peak occurs just below the center of the road
wheel. The experimental results support our assumption that
the track-ground pressure is mainly concentrated in a limited
area beneath the road wheels.

Fig. 10. Track-ground pressure experimental results.

The single-track model was validated in a steady-state
turning process, where the vehicle velocity and yaw rate
remain constant. The detailed collecting and validating process
can be divided into 4 stages:

Test site selection: We chose a place where the soil has
uniform properties and the terrain is at;

Data collection: Constant sprocket speed commands on
both sides were issued by a remote controller, enabling
the test TRV to perform a steady-state turn. Vehicle

Fig. 9. (a) Transmission system in one side, (b) sand-gravel road, (c) rm dirt ~ States at various_ stee_ring degr_ees, speeds and directions
road, (d) cement road of the real vehicle experiment, (e) pressure measurement were collected, including position, sprocket speeds, and

setup.
TABLE I
TEST RELATED PARAMETERS
Parameter  Value/unit Description
m 9660kg Vehicle mass
B 2:464m Track center distance
L 2:707m Length of track contact ground
b 0:365m Width of track contact ground
r 0:2654m Sprocket pitch circle radius
n 4 Number of road wheel in single side
P 75kw Rated power of single-side drive motor
Pmax 110kw Maximum power of single-side drive motor
Terr 10Nm Torque feedback error
Perr 15cm GPS positioning error
I; 15800kgm?  Moment of inertia (estimated)

torques, velocity, and acceleration information;

Data preprocess: Only continuous data with constant
velocity and steering degree were selected. We then tted
the path of each piece of data with a circle and tagged
the data with the circle's radius. Subsequently, the mean
value of the vehicle state for each piece of data was
calculated;

Model validation: Finally, the proposed single-track
model in Eq. (16) was validated using the mean value
of each piece of data. The results are shown in Fig. 11
and 12.

We use the steady-state turning process to validate the
model for two main reasons. Firstly, the validation focused
on the interaction between the TRV and the ground. The
primary difference between the proposed dynamic model
and the existing TRV control models is the application of

An essential step in the model derivation is the assumptitime terramechanics theory. The steady-state turning process
that the normal pressure between the track and the grounetiisures that the veri cation of track-ground interaction is not
mainly concentrated in a limited area under the road wheels affected by changes in vehicle state. Secondly, Due to the
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Fig. 11. Model veri cation on sand-gravel road at (a) and (d) 3 km/h, (b) and (e) 10 km/h, (c) and (f) 15km/h.

10 10 the IMU system which is mounted on the body. Additionally,
O Experimental ©  Experimental the lateral velocity is small at a low longitudinal velocity, and
5 +  Model without slip 4 #«  Model without slip .
T & Model with slip = o Model with slip the lateral velocity megsured_by !MU may not be accurate
Z w* gg *ue Z I @ enough due to the vehicle's vibration. Similar problems may
4| & Soe s3 . %% also arise in the validation process of WV models on a rough
° §‘ road. Despite the noisy lateral velocity, the model outputs still
3 2 show a suf cient trend with the experimental results at higher
2 4 6 810 1520 4 6 8 10 15 20 yg|ocity, as the centrifugal force impedes the free swing of the
(@) R [m] (b) R [m]

body. In the second aspect, how does the simpli cation, such
as weight transfer between two tracks and approximation in
Eq. (13-15), in uence the accuracy of the model? The impact
of the simpli cation start to emerge around a turning radius
of 10 meters, and the error &fl, increases as the turning
radius reduces. Fortunately, the error is around 10% when the
limitations of test conditions and equipment, measuring thignit of the experimental TRV is reached, which is acceptable
instantaneous accurate states is not feasible. However, ustgcontrol algorithm with robust. In the third aspect, our
the average value from the steady-state turning process hedgerimental results show that the longitudinal slip cannot
reduce the effect of the noise. be ignored for TRVs. If we assum&?'® to be zero in Eq.

As shown in Fig. 11, the experimental results and modgl6), that is, ignoring the longitudinal slip, the error b,
outputs of lateral acceleration and turning resistance momeRteeds 60%, which is 6 times the error when considering the
on the sand-gravel road at different velocities are compargghgitudinal slip. The mean absolute error (MAE) comparison
The lateral acceleration collected was calculated from IMbF the models with or without considering slip ratio is shown
data usingyy = vy , and the turning resistance momenin Table Ill. The MAE decreases as vehicle speed increases
was calculated from the motors' torque feedback. The modgécause higher velocity results in higher centrifugal force,
outputs are calculated by the proposed model Eq. (16), apflich impedes the free swing of the body. While similar
the inputs of lateral velocity, and yaw rate are measured performance in lateral acceleration estimation is achieved, the
by the IMU system. The verication will be discussed INMAE of the turning resistance moment estimated by the model
three aspects. In the rst aspect, the model outputs considerigghsidering the slip ratio is around 25% of that of the model
longitudinal slip mostly agree with the experimental results ifot considering the slip.
different velocities on the sand-gravel road. However, model
outputs of lateral acceleration at 3 km/h (Fig. 11 a) show poorFig. 12 demonstrates that our model is ef cient on different
consistency with experimental results. The main reason is tisail types. Metal tracks and metal tracks embedded with rubber
the lateral velocity input to the model should be the laterake used in Fig. 12 (a) and Fig. 12 (b), respectively. Due to
velocity of the unsprung part; however, we use the data fratime limited data, we plotted points of different velocities on

Fig. 12. Model veri cation on (a) rm soil road at 1.80-14.65 km/h and (b)
cement road at 2.99-11.99 km/h.
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TABLE Il can easily reach its limit since the pure slip model neglects the
THE MAE COMPARISON OF MODELS ON SANBGRAVEL ROAD. shear displacement-shear displacement relationship. Therefore,
State Todel Ih Tokmih 15Kmih the_pure slip model does not apply t_o general off-rogd sce-
— narios, but the proposed terramechanics-based dynamic model
with slip 1819 1830 1559 . "
M [Nm] . works well in such conditions.
without slip 7002 8828 6038
with sli 0631 0.379  0.361
v g siP 3 so
without slip  0.582 0.324 0.258 * & Experimental o T
2 & % Pue GSJDMUEPD %
Il * o & Proposed model —_ * x .
b7 & £ O  Experimental
. . € 1 g Z 25 & Pure GSJmbdepp
the same gure, and only the turning resistance moment = - Proposed model
. . . . = % = $ P

veri ed. Our experimental results indicate that while latere™ o §§ o ©,
acceleration could be signi cantly affected by vehicle velocity © ¢ ¢
the turning resistance moment is not. Additionally, since later ~ * 10t 1 107 00 5 108 10 107
velocity having a limited effect on the turning resistanc (@R [m] (DR [m]

moment, it is ignored in the validation. As Fig. 12 shows,
the model still maintains good tting accuracy under differengig' 14. (a) lateral acceleration and (b) turning resistance moment estimated
y

.. the proposed model and pure friction model on sand-gravel road at 15
road conditions. Kkm/h.

B. Comparing with existing control models The empirical model, such as the Nikitin empirical formula,

Existing control models for TRVs can be roughly categds@n be treated as an improved pure slip model. In the Nikitin
rized into three types: kinematic models, pure friction model§MPpirical formula, the friction coef cient changes along with
and empirical models. Among them, the kinematic model {§€ turning radius, as Eq. (21) shows.
the most widely used control model for TRVs, although it fails max
to impose dynamic constraints and relies on a lower controller = a+(l a) R+B=2 (21a)
to achieve desired kinematic states. However, it is not feasible 1 B
to compare a kinematic model with a dynamic model. M, = =GL (21b)

The pure friction model neglects the relationship between 4
the shear stress and shear displacement. It assumes that friatibare,a is a parameter, and = 0:85 is recommended. is
will reach its limit when relative displacement occurs, whickurning resistance coef cient. 5 is the turning resistance
does not conform to the terramechanics theory. As Fig. t8ef cient when the turning radius iB=2. The Nikitin em-
shows, shear stress increases gradually with the shear displadgeal formula assumes the project of turning centy is
ment increasing until it reaches its limit, while the frictioralways located on the CoG, implying the vehicle veloaity
stress is a constant irrelevant to the relative displacemeistalways forward. That is, the lateral dynamic is neglected.
To some extent, the pure friction theory can be regarded lasother words, the Nikitin empirical formula can only be
a particular case of the Janosi-Hanamoto's equation whesed to estimate the turning resistance moments, that is, the
the shear deformation parametér is in nitesimally small. yaw dynamics. To compare the model performance, we tted
Therefore, the pure friction model may work when the TRthe Nikitin empirical with the experimental data to its best
travels on hard ground, like a small TRV on indoor harderformance by adjusting the parameters gfx anda, as
oor, but models based on the terramechanics theory are mdéiig. 15 shown. The MAE performance comparison between

universal. the proposed model and the Nikitin empirical formula is shown
) in Table IV. The two models achieve similar performances, but
4 . SXUHIULFWLR the Nikitin formula is an empirical formula that neglects the

lateral dynamics. In addition, the parameters in the Nikitin
formula do not have a clear physical meaning. Therefore,
compared to the Nikitin empirical formula-based models, the

-DQRVL +DQDPR

HTXDWLRQ proposed terramechanics-based model includes lateral dynam-
ics and has a clear physical meaning while achieving similar
1 > performance in estimating the turning resistance moment.
Fig. 13. Comparison between terramechanics theory and pure slip theory. TABLE IV

THE MAE COMPARISON BETWEEN THE PROPOSED MODEL AND THE
To further compare the model performance, a comparison NIKITIN EMPIRICAL FORMULA ON SAND-GRAVEL ROAD.
between the proposed model and the pure friction model on
a sand-gravel road at 15 km/h is made, as shown in Fig. 14.
Even with parameters adjustments to t the experimental data, M, [Nm]
the consistency between the pure friction model's prediction
and experimental data is poor. The turning resistance moment

State Model 3km/h 10km/h  15km/h
Proposed model 1819 1830 1559
Nikitin 1441 1870 1374
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6 19 result in more stable vehicle states and reduced corresponding
& Nikitin  emp J&D formula actuator demands.

o e S0 As mentioned, the small turning radius of the TRVs can
= O experiment at 15kmh lead to modeling errors for both the dynamic model and
Z 3 the kinematic model. Therefore, path following for steady-
= state turning on small turning radius was used to verify the

effectiveness of the proposed model. Fig. 17 shows the results
) % of steady-state turning with a radius of 10 meters. Compared
0 3 = - " with the kinematic and empirical models, the proposed model

has the lowest tracking error and one of the most stable states,
as Fig. 17 (e)-(f) illustrates. It should be noted that the torque
Fig. 15. Experimental data and the Nikitin empirical formula tted perforOUtput of the kinematic model is extremely unstable, which
mance. is dif cult to achieve in the real world, as Fig. 17 (g) shows.
The path-following performance comparison between our pro-
posed method and previous methods is shown in Table V. In
summary, the proposed method has the best comprehensive

To further verify the effectiveness of the proposed contréPntrol performance.
scheme and strategy, simulations were conducted on the MAT-
LAB/Simulink and Recurdyn multibody dynamic software co- TABLE V
simulation. Different scenarios, including lane change scenario "'t MAE COMPARISON BETWEEN MODELS AND SCENARIOS
and steady turning scenario, were introduced to validate the =, lane change steady turn
proposed method. As indicated in Section II-A, the kinematic Yer (M) " en(rad)  Yer (M) ' o (rad)
model and empirical model are the most commonly used ~cpnirical 00548  0.0067  0.1799 0.0570
models for path tracking of TRVs. Thus, these two models  kinematic ~ 0.0353 0.0135 0.2697  0.0541
were used as comparison models to verify the effectiveness _Proposed 0.0221 ~ 0.0081 ~ 0.0905  0.0566
of the proposed model. The kinematic model calculates the
desired sprocket speeds with an MPC controller, and these
speeds are ful lled by PID controllers. The empirical model VI. CONCLUSION
used for comparison is shown as following: In this paper, we propose a terramechanics-based TRV dy-
M GL namics model that avoids complex integration and can be used
-t == max (22) in optimization-based real-time control for the rst time. By
Iz 4lza+(1 a)vx_.gﬂ introducing concepts of slip ratio and slip angle from the eld
. of WVs, we have derived a concise track-ground interaction
For the empirical and proposed models, the control rgsoq4e| To reduced measurement demands, we simpli ed the
quency was 10 Hz, and the predictive horizon and contrgky model to a single-track model and designed an ef cient
horizon were set as 10 and 3, respectively. Since the kinemafiGtion control scheme by considering lateral and longitudinal
model_ is relatlvgly_3|mple_, its control frequency was se_t as 1Q0namics separately. The dynamic model was veri ed through
Hz, with a predictive horizon of 20, and a control horizon Ofwg rea| car experimental results, and the control scheme was
4. . _ validated with multibody dynamics simulations. The results
Fig. 16 shows the results of the system states with differeg{ow that the proposed dynamic model is consistent with the
models and control schemes during the lane-change maneuxgs|_car experiments, and the proposed control scheme can
As shown in Fig. 16 (a), all the models can follow the desirelqinprove the performance of TRV path following tasks.
trajectory, but the proposed model and control scheme exhibity/hile the proposed single-track dynamic model demon-
the best performance. Detailed states of the TRV during laggates its advantages, it still has some limitations. Although
change maneuver, including longitudinal velocity, yaw ratgme proposed model is validated on regular rm soil, it may
tracking errors, etc., are shown in Fig. 16 (b)-(g). From 1@ not perform well on soft ground due to the limitation of
(b), it can be seen that all the methods can follow a desirg¢h janosi-Hanamoto's equation (Eq. 2). The equation does not
longitudinal velocity, but the empirical model and the proposegnsider the bulldozing force; however, the bulldozing force

model perform better. Fig. 16 (e) and 16 (f) show that thgjj replace the shear force as the main form of resistance
proposed model and scheme have minimal control error \jphen tracks sink into soft soil.

lane-change maneuver. Fig. 16 (d) and (g) show the outputs
of the MPC controller and the nal torque_ outpu_t of the REFERENCES
left sprocket. The nal torque output of the kinematic model . )
d t table as that of the empirical model aH& Z. Zang, J. Gong, Z. Li, J. Song, H. Liu, C. Gong, X. Zhang, and

0€s not appear as s - C T ) piri Y. Li, “Formation trajectory tracking control of utvs: A coupling multi-
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C. Simulation
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Fig. 16. System states of (a) position, (b) longitudinal velocity, (c) yaw rate, (d) driving moment, (e) lateral error, (f) yaw angle error and (g) left sprocket
torque output comparison in lane change maneuver.

Reference
Empirical
Kinematic
Proposed

3:00

2:75

[rad/s]

2:50

vy [m/s]

2:25

2:00

0 5 10 15

(b) t[s] (c) t[s] 0 (d) t[s]

1:0

0:5

Yerr [M]
TL [Nm]

1:0

(e)ts] () t[s] (9) t[s]

Fig. 17. System states of (a) position, (b) longitudinal velocity, (c) yaw rate, (d) driving moment, (e) lateral error, (f) yaw angle error and (g) left sprocket
torque output comparison in steady-state turning maneuver.
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